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Abstract

The basic aim of this thesis is to consider the Fejer's inequality which is closely related

to Hadamard's inequality, when we consider the weight function with it. We try to

collect many known theorems from the literature related to Hadamard's inequality

and present their di�erent results in terms of Fejer's inequality. Examples are also

considered regarding to this inequality. Furthermore, there is an emphasis on Schur-

convexity and Schur concavity, playing the role in Fejer's inequality.
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Chapter 1

Introduction

This Chapter covers an introduction, background of the "Hadamard Inequality", "Fe-

jer's Inequality", convex and concave functions.

From the dawn of Newton and Euler ideas regarding mathematical inequalities to the

modern day applications; mathematical inequalities have played a vital role in the

progression of numerous branches of Mathematics. In the 19th century, there is a

considerable role of mathematical inequalities by many Mathematicians and it became

a dominant �eld in research areas . Consequently, generalizing the mathematical in-

equalities in a more advanced way.

As a result of applications of convex functions, it has been shown that the theory of

mathematical inequalities and convex functions are closely linked together.

In Mathematics, inequalities can be de�ned as the distinction of two qualities relatively

reciprocating two di�erent objects. In easy language, the two qualities which are not

equal refer as an inequality. With the emergence of Calculus and in the 19th century,

the touch of inequalities and its role increasingly became essential. Various areas of

science such as physical and engineering sciences have several applications of inequali-

ties.

The concept of convex functions has indeed a dominant role in Mathematics and it

keeps much importance and it can be seen in many research articles and books related

to this �eld now-a-days.
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The convexity idea is straightforward and characteristic, and can be followed from the

Archimedes regarding his famous estimation of π. This idea has immediate and round-

about e�ects in our regular day to day existence because of its various applications in

art, business, medicines, industry etc. An essential part of general theory of convexity

refers to the theory of convex function and convex function can be de�ned as one whose

super graph is a convex set.

This theory is considered as an essential part because it contracts much every part of

Mathematics, likely out of the blue we experience with this theory in graphical analysis

in which we learn the second derivative test in recognizing convexity of a graph. Also

in tracing minima and maxima of a function of several variable this their has tremen-

dous part. Also in Mathematical programming, Optimization theory, Engineering, the

convexity can be observed.

A great research regarding this �eld has done by J.L.W.V Jensen. Also in 20th century

enormous research was done by Hardy, littlewood and Poyla on publishing �rst book

in inequalities.

In the second half of 20th century a number of generalization of convex function have

been made in Mathematics and also in Professional discipline such as engineering and

economics.

From the last few decades, the most considerable inequality that has charmed many in-

equality's experts is "Hermite Hadamard" inequality. 'Jacques Hadamard'(1865-1963)

was the �rst person, whose result has introduced "Hermite Hadamard" inequality in

the literature, this result was actually due to 'Charles Hermite'(1882-1901) as pointed

out by 'Mitrinouic' and 'Lackovic' in 1985.

So from these facts, most mathematicians refer to it as "Hermite-Hadamard"(or some-

times "Hadamard-Hermite")inequality. The foremost and important subject of Mathe-

matical Analysis is the" Hadamard inequality" with numerous remarkable applications

in the �eld of mathematical sciences.
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A number of mathematicians have done their tremendous e�orts for its generaliza-

tion, re�nement and for its extension for di�erent classes of functions.

Let θ : I ⊂ R→ R be a convex function.Then we have,

θ

(
c+ d

2

)
≤ 1

d− c

∫ d

c

θ(x)dx ≤ θ(c) + θ(d)

2
, c, d ∈ I with c < d. (1.1)

This double inequality (1.1) is said to be the �rst signi�cant result for a convex func-

tion with a natural geometric values and di�erent applications. If in the "Hermite-

Hadamard" inequality, both inequalities appear in the opposite direction then the case

is considered as concave. After its discovery in 1881, there are number of di�erent texts

and research papers on it, providing new results, a number of generalization and many

more.

Various generalization of "Hermite Hadamard" inequality have been studied such as

Jensen's inequality and Fejer's inequality.

Basically the "Fejer's Inequality" is generalization of "Hermite-Hadamard" inequality,

when we consider the weight function with the "Hermite-Hadamard" inequality and

this weight function is non-negative, integrable and symmetric on Ψ(x) = Ψ(c+ d−x)

and θ : I ⊂ R→ R be a convex function.

It can be written as

θ

(
c+ d

2

)
≤
∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≤ θ(c) + θ(d)

2
, c, d ∈ I with c < d. (1.2)

Likewise in the "Hermite Hadamard" inequality, if both inequalities in (1.2) appear in

the opposite direction, then the case is considered as concave.

The integral mean of a convex function connected with the most important inequal-

ity are "Hermite-Hadamard" inequalities and its weighted version, known as "Hermite

Hadamard Fejer's inequality"

The thesis is divided into the following chapters:
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• Chapter 1 covers the background of "Hermite Hadamard" inequality and "Fejer's

inequality"

• Chapter 2 covers the basic concepts regarding the convexity, majorization and Schur

convexity and Schur concavity.

• Chapter 3 mainly focus on literature review of "Hermite-Hadamard" inequality, and

many results are provided here regarding this inequality.

• Chapter 4 is basically the core section of the thesis. In this chapter all results

are provided in terms of "Fejers's inequality". This chapter covers results regarding

Schur-m convexity and Schur m-concavity as well as with applications of "Fejer's in-

equality". This chapter highlights our own �ndings and formulation of results.

• Chapter 5 is the conclusion of thesis.
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Chapter 2

Some important de�nitions and the literature review is presented here.

2.1 Preliminary

In this Chapter, some necessary ideas and concepts are discussed that reader should

familiar with. It mainly include some preliminary de�nitions of convex function and

concave functions and their generalization. Also there are some theorems based on

these generalizations.

2.1.1 Convex and Concave function

[30] In many areas of mathematics, convex functions keep major importance. While

considering the study of optimization problems, convex functions plays a vital role

because of many practical applications(designing circuits, modeling, operation research

etc). Convex functions also facilitate one for solving inequalities with easy approach.

De�nition 2.1.1. A set κ ⊂ Rn is said to be convex, if for every pairs of points

v1, v2 ∈ κ and the segment with v1 and v2 end points lies entirely inside κ, otherwise

called not convex.

De�nition 2.1.2. Mathematically, A set κ ⊂ Rn is said to be convex, ∀ v1, v2 ∈ κ we

have,

αv1 + (1− α)v2 ∈ κ, ∀ α ∈ [0, 1]. (2.1)
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Example 1. (1) Empty set and singleton sets are convex.

(2) Rn is convex.

We want to characterize convex set in terms of convex combination. For this we

need to de�ne convex combination. A point v = αv1 + (1 − α)v2 is called convex

combination of v1 and v2. The set of all convex combination of v1 and v2 is called as

convex hull written as:

Conv[v1, v2] = [α1v1 + α2v2;α1 + α2 = 1]

with

α1 =
v − v1

v2 − v1

and α2 =
v2 − v
v2 − v1

, for v ∈ [v1, v2] and v1 6= v2.

De�nition 2.1.3. A convex combination of �nitely many point vi ∈ R with i =

1, 2, ..., k is the point v of the form,

v = v1λ1 + v2λ2...vkλk with vλ1 + λ2, ..., λk = 1, λ ≥ 0. (2.2)

We are also interested in convex function, therefore de�nition is given as

De�nition 2.1.4. Let κ ⊂ Rn be such that κ is convex. A function Φ : κ→ R is said

to be convex, if for all c1, c2 ∈ κ and λ ∈ [0, 1], we have

Φ(λc1 + (1− λ)c2) ≤ λΦ(c1) + (1− λ)Φ(c2). (2.3)

Φ is called strictly convex if the inequality is strict for λ ∈ (0, 1) and c1 6= c2.

For λ = 1
2

Φ

(
c1 + c2

2

)
≤ Φ(c1) + Φ(c2)

2
,∀c1, c2 ∈ κ, (2.4)

which is called Jensen's convex function. A function Φ is concave if −Φ is convex and

is strictly concave if −Φ is strictly convex.

Geometrically the de�nition of convex function is as:

If the chord connecting any pair of points in its graph rests on or above its points,
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then the function Φ is said to be convex. Φ is referred as strictly convex if the chord

lies above its graph. A concave function can be de�ned in similar way but in opposite

direction.

A mathematical root of majorization is demonstrated after the e�ort of Schur on

Hadamard determinant inequality. Majorization involves the solution of many Math-

ematical characterization problems.

2.1.2 Majorization

De�nition 2.1.5. If c = (c1, c2, c3, ..., cn) and d = (d1, d2, d3, ..., dn) are two nth-ordered

real numbers. d is majorized by c(in symbolically c ≺ d), if

Σk
i=1c[i] ≤ Σk

i=1d[i], (k = 1, 2, ..., n− 1) and

Σk
i=1c[i] = Σk

i=1d[i] , (k = 1, 2, ..., n) where c[1] ≥ c[2], ...,≥ c[n], d[1] ≥ d[2], ...,≥ d[n] are

readjustment of c and d in a descending order.

Example 2. Consider, (1, 2, 3) ≺ (2, 4, 0).

First we will make the readjustment in descending order,

We have

(3, 2, 1) ≺ (4, 2, 0).

So, both conditions are satis�ed here for majorization.

2.1.3 Schur-covexity and Schur-concavity

It is named after Issai Schur in 1923. Basically if we use the concept of majorization in

the de�nitions of convex and concave functions refers to the result of Schur-convexity

and Schur-concavity. In mathematics, Schur-convex is also known as S-function, iso-

tonic function or order preserving function. The de�nition of Schur-convex can be writ-

ten as a function which is convex and symmetric. Schur-convexity and Schur-concavity

have multiple applications in inequalities, quantum physics, the theory of information

and many other research �elds. Now a days, in modern analysis Schur-convexity and

Schur-concavity have a major role in research �elds.
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De�nition 2.1.6. [1] If c = (c1, c2, c3, ..., cn) and d = (d1, d2, d3, ..., dn) are two nth-

ordered real numbers.

A real valued function Φ : Υ ⊂ Rn → R is said to be Schur convex on Υ if

c ≺ d on Υ⇒ Φ(c) ≤ Φ(d).

Φ is schur concave function on Υ if and only if −Φ is a Schur convex function.

Example 3. Consider, (1, 2, 3) ≺ (2, 4, 0), and the function we have ,

Φ(x) = max(x).

Applying the de�nition, we have

max(c) = 3,

max(d) = 4.

So, it implies that Φ(c) ≤ Φ(d). It holds for Schur-convex.

Similarly, for Schur-concave,

Φ(x) = min(x).

Applying the de�nition, we have

min(c) = 1,

min(d) = 0.

So,it implies that Φ(c) ≥ Φ(d).

2.1.4 Schur-geometrically convex and Schur-geometrically con-

cave

The Schur-geometrically convexity and concavity was put forward by Zhang(2004), and

then investigated by Chu et al. (2008), Guan (2007), Sun et al. (2009), and so on.

Some authors also use the term �Schur multiplicative convexity" for the Schur- geomet-

rically convexity.

De�nition 2.1.7. [2] If c = (c1, c2, c3, ..., cn) and d = (d1, d2, d3, ..., dn) are two nth

ordered real numbers.

Let Υ ⊂ Rn
++(cn, dn ∈ Rn

++, c > 0, d > 0). A function Φ : Υ → R++ is called Schur

geometrically convex if
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lnc ≺ lnd on Υ ⇒ Φ(c) ≤ Φ(d).

Φ is Schur geometrically concave if −Φ is Schur geometrically convex.

In the theory of the Schur geometrically convex function, the below Lemma keeps

an important place and considered as basic result.

Lemma 1. [2] Let θ(c) = θ(c1, c2, ...cn) be symmetric and continuous on Υ ⊂ Rn
++

and di�erentiable in Υ0. Then θ : Υ → R++ is Schur geometrically convex (Schur

geometrically concave) if and only if

(lnc1 − lnc2)

(
c1
∂Υ

∂c1

− c2
∂Υ

∂c2

)
≥ 0 (respectively ≤ 0). (2.5)

2.1.5 Schur-harmonically convex and Schur-harmonically con-

cave

The notion of Schur-harmonically convex function and Schur-harmonically concave are

introduced by Chu (Chu et al. (2011), Chu and Sun (2010), Chu and Lv (2009).

De�nition 2.1.8. [3, 4] Let Υ ∈ Rn.

(1) A set Υ is called harmonically convex if cd
λc+(1−λ)d

∈ Υ for every c, d ∈ Υ and

λ ∈ [0, 1], where cd = Σn
i=1cidi and

1
c
=
(

1
c1
, ..., 1

cn

)
, 1
d
=
(

1
d1
, ..., 1

dn

)
.

(2) A function θ : Υ → R++ is called Schur harmonically convex on Υ if 1
c
≺ 1

d

implies θ(c) ≤ θ(d). θ is Schur harmonically concave if −θ is Schur harmonically

convex.

Lemma 2. [3, 4] Let Υ ∈ Rn be a symmetric and harmonically convex set with inner

points and let θ : Υ→ R++ be a continuously symmetric function which is di�erentiable

in Υ0, then θ is Schur harmonically convex(Schur harmonically concave) on Υ if and

only if

(c1 − c2)

(
c2

1

∂θ

∂c1

− c2
2

∂θ

∂c2

)
≥ 0 (repectively ≤ 0). (2.6)
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2.1.6 Schur f-convex and Schur f-concave

Basically the Schur f-convexity and Schur f-concavity are derived from the Schur con-

vexity and Schur concavity. Yang [5] give the Schur f-convexity an schur f-concavity in

which can be follows as:

De�nition 2.1.9. [5, 6] Let Υ ⊂ Rn be a set with non-empty interior and f be a

strictly monotone function de�ne on Υ. Let

f(c) = (f(c1), f(c2), ...f(cn)) and f(d) = (f(d1), f(d2), ...f(dn)).

Then the function θ : Υ → R is said to be Schur f -convex on Υ if f(c) ≺ f(d) on Υ

implies θ(c) ≤ θ(d).

θ is said to be Schur f-concave if −θ is Schur f-convex.

2.1.7 Schur m- power convex and Schur m- power concave

[5] There are variety of inequalities originating from the Schur-convexity and Schur-

concavity, same is the case with Schur m-power convex and Schur m-power concave.

Yang was the �rst who introduced the Schur m-power convexity and Schur m-power

concavity.

De�nition 2.1.10. [5, 6] Let Φ : R++ → R be de�ned by cm−1
m

if m 6= 0 and

Φ(c) = lnc if m = 0. Then the function θ : Υ ⊂ Rn → R is said to be Schur m-power

convex on θ if Φ(c) ≺ Φ(d) on θ implies θ(c) ≤ θ(d). θ is said to be Schur m-power

concave if −θ is Schur m-power convex.

Lemma 3. [5, 6] Let χ : Υ ⊂ Rn
++ → R be continuous on Υ and di�erentiable in Υ0.

Then χ is Schur m-power convex (Schur m-power concave) on Υ if and only if χ is

symmetric on Υ and

cm1 − cm2
m

(
c1−m

1

∂θ

∂c1

− c1−m
2

∂θ

∂c2

)
≥ 0 (respectively ≤ 0), if m 6= 0, (2.7)
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(lnc1 − lnc2)

(
c1
∂θ

∂c1

− c2
∂θ

∂c2

)
≥ 0 (respectively ≤ 0), if m = 0, (2.8)

hold for any c = (c1, c2, ...cn) ∈ Υ0 with c1 6= c2, where Υ ⊂ R is a symmetric set with

non-empty interior Υ0.

Lemma 4. [7, 8] Then the two discrimination inequalities in Lemma 3 can be written

as:

(c1 − c2)

(
c1−m

1

∂θ

∂c1

− c1−m
2

∂θ

∂c2

)
≥ 0 (respectively ≤ 0). (2.9)
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Chapter 3

Hadamard's Inequality

3.0.1 Properties of functions related to Hadamard's type in-

equality

In this section, we will discuss some important results and some basic properties of

"Hadamard's Inequality" and its applications.

Let θ : I ⊂ R → R be a convex function. The famous Hadamard's inequality is given

as

θ

(
c+ d

2

)
≤ 1

d− c

∫ d

c

θ(x)dx ≤ θ(c) + θ(d)

2
. (3.1)

In [10], S.S. Dragomir has formed the theorem which is a re�nement of the inequality

(3.1).

Theorem 3.0.1. Let θ ⊂ R++ → R be a convex function, and

P (t) =
1

2(d− c)

∫ d

c

[θ(tc+ (1− t)x) + (θ(td+ (1− t)x]dx, t ∈ [0, 1].

Then P is convex on [0, 1], and for all t ∈ [0, 1]. We have

1

d− c

∫ d

c

θ(x)dx = P (0) ≤ P (t) ≤ P (1) =
θ(c) + θ(d)

2
.

Theorem 3.0.2. Let θ ⊂ R++ → R be a continuous function on I. If θ is convex

and increasing, and a parameter m ≤ 1 (repectively if θ is convex and decreasing for

m > 1), then
1

d− c

∫ d

c

θ(x)dx ≤ c1−mθ(c) + d1−mθ(d)

c1−m + d1−m . (3.2)
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If θ is concave and decreasing, and m ≤ 1 (respectively if θ is concave and increasing,

and m > 1), then 3.2 is reversed.

Proof. Let

4 =
[
c1−m + d1−m] 1

d− c

∫ d

c

θ(x)dx−
[
c1−mθ(c) + d1−mθ(d)

]
.

Since θ(x) is convex. Then

4 ≤ [c1−m + d1−m]

[
θ(c) + θ(d)

2

]
− [c1−mθ(c) + d1−mθ(d)]

=
1

2
[c1−mθ(c) + d1−mθ(c) + c1−mθ(d) + d1−mθ(d)]− [c1−mθ(c) + d1−mθ(d)]

=
1

2
[c1−mθ(c) + d1−mθ(c) + c1−mθ(d) + d1−mθ(d)− 2c1−mθ(c)− 2d1−mθ(d)]

1

2

[
c1−mθ(d) + d1−mθ(c)− c1−mθ(c)− d1−mθ(d)

]
=

1

2

[
c1−m(θ(d)− θ(c))− d1−m(θ(d)− θ(c))

]
=

1

2

[
(c1−m − d1−m)(θ(d)− θ(c)

]
=− 1

2(d− c)2

[
[(d− c)(θ(d)− θ(c))][(d− c)(d1−m − c1−m)]

]
.

If m ≤ 1 and if θ is increasing (respectively m > 1 and θ is decreasing), by monotonoc-

ity property of function θ and we get 4 ≤ 0.

Consider again,

4 =
[
c1−m + d1−m] 1

d− c

∫ d

c

θ(x)dx−
[
c1−mθ(c) + d1−mθ(d)

]
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If θ is concave,

4 ≥ [c1−m + d1−m]

[
θ(c) + θ(d)

2

]
− [c1−mθ(c) + d1−mθ(d)]

=
1

2
[c1−mθ(c) + d1−mθ(c) + c1−mθ(d) + d1−mθ(d)]− [c1−mθ(c) + d1−mθ(d)]

=
1

2
[c1−mθ(c) + d1−mθ(c) + c1−mθ(d) + d1−mθ(d)− 2c1−mθ(c)− 2d1−mθ(d)]

=
1

2

[
c1−mθ(d) + d1−mθ(c)− c1−mθ(c)− d1−mθ(d)

]
=

1

2

[
c1−m(θ(d)− θ(c))− d1−m(θ(d)− θ(c)

]
=

1

2

[
(c1−m − d1−m)(θ(d)− θ(c)

]
=− 1

2(d− c)2

[
[(d− c)(θ(d)− θ(c))][(d− c)(d1−m − c1−m]

]
.

if m ≤ 1 and θ is decreasing (repectively m > 1 and θ is increasing). By monotonicity

condition 4 ≥ 0.

Theorem 3.0.3. Let θ : I ⊂ R++ → R be a continuous function on I. If θ is convex

and increasing, and a parameter m ≤ 1 (respectively if θ is convex and decreasing,

and m > 1), then ∀ c, d ∈ I

ω(c, d) =

{
1
d−c

∫ d
c
θ(x)dx, c 6= d

θ(c), c = d.

is Schur m-power convex on I2. If θ is concave and decreasing, and a parameter m ≤ 1

(respectively if θ is concave and increasing for m > 1), then ω(c, d) is Schur m-power

concave on I2.

Proof. Consider

ω(c, d) =
1

d− c

∫ d

c

θ(x)dx for c 6= d.

By fundamental theorem of Calculus,

∂ω

∂c
=

1

(d− c)2

∫ d

c

θ(x)dx− θ(c)

d− c
,
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And

∂ω

∂d
= − 1

(d− c)2

∫ d

c

θ(x)dx+
θ(d)

d− c
.

By the condition for Schur-m covexity, we have

M= (d− c)
(
d1−m∂ω

∂d
− c1−m∂ω

∂c

)
.

It follows that

M= (d− c)
[
d1−m

(
− 1

(d− c)2

∫ d

c

θ(x)dx+
θ(d)

d− c

)
)− c1−m

(
1

(d− c)2

∫ d

c

θ(x)dx+
θ(c)

d− c

)]
=(d− c)

[
− 1

(d− c)2

∫ d

c

θ(x)dx.d1−m +
θ(d)

d− c
.d1−m − 1

(d− c)2

∫ d

c

θ(x)dx.c1−m +
θ(c)

d− c
.c1−m

]
=(d− c)

[
− 1

(d− c)2

∫ d

c

θ(x)dx · (c1−m + d1−m) +
1

(d− c)
(c1−mθ(c) + d1−mθ(d))

]
=− 1

(d− c)

∫ d

c

θ(x)dx · (c1−m + d1−m) + (c1−mθ(c) + d1−mθ(d)).

Applying Theorem 3.0.2, if θ is convex and increasing for m ≤ 1 (and convex and

decreasing for m > 1), so

1

d− c

∫ d

c

θ(x)dx ≤ c1−mθ(c) + d1−mθ(d)

c1−m + d1−m .

= (c1−m + d1−m) · 1

d− c

∫ d

c

θ(x)dx ≤ c1−mθ(c) + d1−mθ(d)

=− (c1−m + d1−m) · 1

d− c

∫ d

c

θ(x)dx ≥ −
[
c1−mθ(c) + d1−mθ(d)

]
=− 1

(d− c)

∫ d

c

θ(x)dx · (c1−m + d1−m) + (c1−mθ(c) + d1−mθ(d)) ≥ 0.

Hence, the condition for Schur-convexity is satis�ed.

Similarly, for Schur concavity, we have

1

d− c

∫ d

c

θ(x)dx ≥ c1−mθ(c) + d1−mθ(d)

c1−m + d1−m
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= (c1−m + d1−m) · 1

d− c

∫ d

c

θ(x)dx ≥ c1−mθ(c) + d1−mθ(d)

=− (c1−m + d1−m) · 1

d− c

∫ d

c

θ(x)dx ≤ −
[
c1−mθ(c) + d1−mθ(d)

]
=− 1

(d− c)

∫ d

c

θ(x)dx · (c1−m + d1−m) + (c1−mθ(d) + d1−mθ(c)) ≤ 0.

Hence, statement of Theorem 3.0.3 is valid.

Corollary 3.0.1. Let θ : I ⊂ R++ → R be a continuous function on I. If θ is convex

and monotonicity, then θ(c, d) is Schur-convex. If θ is concave and monotonicity, then

θ(c, d) is Schur-concave.

Corollary 3.0.2. Let θ : I ⊂ R++ → R be a continuous function on I. If θ is con-

vex and increasing, then θ(c, d) is Schur geometrically convex and Schur harmonically

convex. If θ is concave and decreasing, then θ(c, d) is Schur-Geometrically concave and

Schur-Harmonically concave.

Theorem 3.0.4. Let θ ⊂ R++ → R be a continuous function,and

P (t) =
1

2(d− c)

∫ d

c

[θ(tc+ (1− t)s) + θ(td+ (1− t)s)]ds, t ∈ [0, 1].

For any t ∈ [0, 1], we de�ne a function of c, d ∈ I as follows;

Q(c, d) =

{
P (t), c 6= d

θ(c), c = d

(1) for m ≥ 1 and c1−m

c1−m+d1−m
≤ t ≤ 1, if θ is convex (repectively concave) and

decreasing on I, then P (c, d) is Schur m-power convex (respectively Schur m-

power concave) on I2.

(2) for m < 1 and 0 ≤ t ≤ c1−m

c1−m+d1−m
, if θ is concave (respectively convex) and

increasing on I, then Q(c, d) is Schur m-power concave (repectively Schur m-

power convex) on I2.
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Proof. Consider Q(c, d) for c 6= d, we have

Q1(c, d) =

∫ d

c

θ(tc+ (1− t)s)ds,

Q2(c, d) =

∫ d

c

θ(td+ (1− t)s)ds.

Then

Q(c, d) =
1

2(d− c)
[Q1(c, d) +Q2(c, d)] = P (t). (3.3)

By using r = tc+ (1− t)v, then

Q1(c, d) =
1

1− t

∫ tc+(1−t)d

c

θ(r)dr

=
1

1− t

∫ tc+(1−t)d

0

θ(r)dr −
∫ c

0

θ(r)dr.

By Fundamental theorem of Calculas,

∂Q1(c, d)

∂c
=

t

1− t
θ(tc+ (1− t)d)− θ(c)

1− t
(3.4)

∂Q1(c, d)

∂d
= θ(tc+ (1− t)d). (3.5)

∂Q2(c, d)

∂d
= −∂Q1(c, d)

∂c
= − t

1− t
θ(tc+ (1− t)d) +

θ(c)

1− t
. (3.6)

∂Q1(c, d)

∂d
= −∂Q2(c, d)

∂c
= −θ(tc+ (1− t)d). (3.7)

Since, Q2(c, d) = −Q1(d, c) from (3.4) and (3.7), so

From the condition for Schur-convexity, we have

M= (d− c)
(
d1−m∂Q(c, d)

∂d
− c1−m∂Q(c, d)

∂c

)
(3.8)

Di�erentiating equation (3.3),

∂Q(c, d)

∂d
= − 1

2(d− c)2
[Q1(c, d) +Q2(c, d)] +

1

2(d− c)

[
∂Q1(c, d)

∂d
+
∂Q2(c, d)

∂d

]
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∂Q(c, d)

∂c
= − 1

2(d− c)2
[Q1(c, d) +Q2(c, d)] +

1

2(d− c)

[
∂Q1(c, d)

∂c
+
∂Q2(c, d)

∂c

]
So, equation (3.8) follows that,

M= (d− c)
[
d1−m

(
− 1

2(d− c)2
[Q1(c, d) +Q2(c, d)] +

1

2(d− c)

(
∂Q1(c, d)

∂d
+
∂Q2(c, d)

∂d

))]
−
[
c1−m

(
− 1

2(d− c)2
[Q1(c, d) +Q2(c, d)] +

1

2(d− c)

(
∂Q1(c, d)

∂c
+
∂Q2(c, d)

∂c

))]

=
1

2

[(
d1−m∂Q1(c, d)

∂d
− c1−m∂Q1(c, d)

∂c

)
+

(
d1−m∂Q2(c, d)

∂d
− c1−m∂Q2(c, d)

∂c

)]
−Q1(c, d) +Q2(c, d)

2(d− c)
(c1−m + d1−m)

=
1

2

[(
d1−m − c1−mt

1− t

)
θ(tc+ (1− t)d) +

(
c1−m − d1−mt

1− t

)
θ(td+ (1− t)c)

]
+

1

2

[
d1−mθ(d) + c1−mθ(c)

1− t

]
−P (t)(c1−m + d1−m)

=
1

2

[(
(d1−m − (c1−m + d1−m)t

1− t

)
θ(tc+ (1− t)d)

]
+

1

2

[(
c1−m − (c1−m + d1−m)t

1− t

)
θ(td+ (1− t)c)

]
+

1

2

[
c1−mθ(c) + d1−mθ(d)

1− t

]
−P (t)(c1−m + d1−m).

Form ≥ 1 and c1−m

c1−m+d1−m
≤ t ≤ 1, then d1−m−(c1−m+d1−m)t ≤ c1−m+(c1−m+d1−m)t ≤
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0. Since θ is convex and decreasing, thus we get

∆ ≥ 1

2

[(
(d1−m − (c1−m + d1−m)t

1− t

)
θ(tc+ (1− t)d)

]
+

1

2

[(
c1−m − (c1−m + d1−m)t

1− t

)
θ(td+ (1− t)c)

]
+

[
c1−mθ(c) + d1−mθ(d)

2(1− t)

]
−P (t)(c1−m + d1−m)

= (c1−mθ(c) + d1−mθ(d))− P (t)(c1−m + d1−m)

≥ (c1−mθ(c) + d1−mθ(d))− 1

2
(θ(c) + θ(d))(c1−m + d1−m)

=
1

2
(θ(d)− θ(c))(d1−m − c1−m) ≥ 0.

If θ is concave and decreasing, thus we get

∆ ≤ 1

2

[(
(d1−m − (c1−m + d1−m)t

1− t

)
θ(tc+ (1− t)d)

]
+

1

2

[(
c1−m − (c1−m + d1−m)t

1− t

)
θ(td+ (1− t)c)

]
+

1

2

[
c1−mθ(c) + d1−mθ(d)

1− t

]
− P (t)(c1−m + d1−m)

= (u1−mθ(c) + d1−mθ(d))− P (t)(c1−m + d1−m)

≤ (c1−mθ(c) + d1−mθ(d))− 1

2
(θ(c) + θ(d))(c1−m + d1−m)

=
1

2
(θ(d)− θ(c))(d1−m − c1−m) ≤ 0.
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Corollary 3.0.3. For 1
2
≤ t ≤ 1, if θ is convex (respectively concave) on I, then

Q(c, d) is Schur convex (respectively Schur concave) on I2; for 0 ≤ t ≤ 1
2
, if θ is

concave (respectively convex) on I, then Q(c, d) is Schur concave (repectively Schur

convex) on I2.

Corollary 3.0.4. For c
c+d
≤ t ≤ 1, if θ is convex and decreasing on I, then Q(c, d) is

Schur geometrically convex on I2; for 0 ≤ t ≤ c
c+d

, if θ is concave and increasing on I,

then Q(c, d) is Schur geometrically concave on I2.

Corollary 3.0.5. For c2

c2+d2
≤ t ≤ 1, if θ is convex and decreasing on I, then Q(c, d)

is Schur harmonically convex on I2; for 0 ≤ t ≤ c2

c2+d2
, if θ is concave and increasing

on I, then Q(c, d) is Schur harmonically concave on I2.

Theorem 3.0.5. Let θ be a continuous function on I ⊂ R and let Ψ be a positive

continuous weight function on I. Then the function ∀c, d ∈ I

FΨ(c, d) =

{
1∫ d

c Ψ(t)dt

∫ d
c

Ψ(x)θ(x)dx, c 6= d

f(c), c = d.

is Schur-convex (repectively Schur-concave) on I2 if and only if the inequality

1∫ d
c

Ψ(t)dt

∫ d

c

Ψ(t)θ(t)dt ≤ θ(c)Ψ(c) + θ(d)Ψ(d)

Ψ(c) + Ψ(d)
.

holds(reverses) for all c, d in I.

3.0.2 Applications of Hadamard's inequality

Theorem 3.0.6. For c, d ∈ R++, and m ≥ 1. Then

G2(c, d) ≤ cm + dm

cm−1 + dm−1
.P (c, d), (3.9)

where G(c, d) = (cd)
1
2 , P (c, d) = d−c

lnc−lnd .

Proof:
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Let θ(x)= 1
x
, x ∈ (0,∞) and d > c .

By
1

d− c

∫ d

c

1

x
dx = P−1(c, d). (3.10)

Since θ(x) is convex and decreasing, by corollary 3.0.1, it follows that

1

d− c

∫ d

c

1

x
dx ≤ cm + dm

cd(cm−1 + dm−1)
. (3.11)

and

P−1(c, d) ≤ cm + dm

cd(cm−1 + dm−1)
. (3.12)

Thus equation (3.9) is satis�ed.

Theorem 3.0.7. For a ∈ (0, π
2
]. Then

sina

a
≥ 2

2a+ π

(
1− 2

2a+ π
cosa

)
+

2

π
. (3.13)

sina

a
≤ 2

π
+
(π

2
− a
)[sin (a

2
+ π

4

)(
a
2

+ π
4

)2 −
cos
(
a
2

+ π
4

)(
a
2

+ π
4

) ]
. (3.14)

Proof:

As we have the Hadamard's inequality,

ω(c, d) =
1

d− c

∫ d

c

θ(x)dx,

Consider the functions,

θ(x) =
cosx

x
− sinx

x2
.

Let,

ω(c, d) =
1

d− c

∫ d

c

(
cosx

x
− sinx

x2

)
dt. (3.15)
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By Lemma and Corollary 3.0.1, equation (3.15) is Schur-convex on (0, π
2
]. Since(

a+ π
2

2
,
a+ π

2

2

)
≺
(π

2
, a
)
≺
(
a+

π

2
, 0
)
.

By de�nition of Schur-Convexity, then

ω

(
a+ π

2

2
,
a+ π

2

2

)
≤ ω

(π
2
, a
)
≤ ω

(
a+

π

2
, 0
)
.

By making substitution from (3.15), we have

cos
(
a+π

2

2

)
(
a+π

2

2

) −
sin
(
a+π

2

2

)
(
a+π

2

2

)2 ≤ 1

a− π
2

sinx

x
|aπ
2
≤ 1

−π
2
− a

sinx

x
|0a+π

2
.

Firstly, taking these two, we have

cos
(
a+π

2

2

)
(
a+π

2

2

) −
sin
(
a+π

2

2

)
(
a+π

2

2

)2 ≤ 1

a− π
2

sinx

x
|aπ
2
,

(a− π

2
)

cos
(
a+π

2

2

)
(
a+π

2

2

)2 −
sin
(
a+π

2

2

)
(
a+π

2

2

)3

 ≤ sinx

x
|aπ
2
,

(π
2
− a
)sin

(
a+π

2

2

)
(
a+π

2

2

)3 −
cos
(
a+π

2

2

)
(
a+π

2

2

)2

 ≤ [sina
a
− 2

π

]
,

(π
2
− a
)sin

(
a+π

2

2

)
(
a+π

2

2

)3 −
cos
(
a+π

2

2

)
(
a+π

2

2

)2

+
2

π
≥ sina

a
.

Hence, we have inequality(3.14).

Now comparing other two, we have

1

a− π
2

sinx

x
|aπ
2
≤ 1

−π
2
− a

sinx

x
|0a+π

2
,
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sina

a
− 2

π
≤

a− π
2

−π
2
− a

[
1−

sin
(
a+ π

2

)
a+ π

2

]
,

sina

a
≥ 2

2a+ π

[
1− 2cosa

2a+ π

]
+

2

π
.

Thus, the inequality(3.13) obtained.
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Chapter 4

Fejer's Inequality

4.0.1 Results and Theorems

Actually "Fejer's inequality" is the generalization of "Hadamard inequality", when we

consider the weight function with the "Hadamard inequality".

Our aim is to investigate the di�erent results and applications of "Fejer's inequality"

in this Chapter.

We have the following "Hadamard inequality" with the weighted function Ψ , where

”Ψ” is non-negative, integrable and is symmetric on Ψ(x)=Ψ(c + d − x) and θ is a

convex function,

θ

[
c+ d

2

]
≤
∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≤ θ(c) + θ(d)

2
. (4.1)

So, above equation is referred as Fejer's Inequality.

Theorem 4.0.1. Let θ : [c, d] → R be a convex function, and Ψ be a non-negative,

integrable function on [c,d] and symmetric on Ψ(x)=Ψ(c+ d− x), then

P (t) =
1

2

∫ d
c

[θ(tc+ (1− t)x)Ψ(x) + θ(td+ (1− t)x)Ψ(x)]dx∫ d
c

Ψ(x)dx
, t ∈ [0, 1]. (4.2)

Then P is convex on [0, 1], for all t ∈ [0, 1] , we have∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
= P (0) ≤ P (t) ≤ P (1) =

θ(c) + θ(d)

2
. (4.3)
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Theorem 4.0.2. Let θ : I ⊂ R++ → R be a continuous function on I and Ψ be a

non-negative integrable, symmetric on Ψ(x) = Ψ(c + d − x) and increasing function.

If θ is convex and increasing, and a parameter m ≤ 1 (respectively if θ is convex and

decreasing and m > 1), then∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≤ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

c1−mΨ(c) + d1−mΨ(d)
. (4.4)

and if θ is concave and decreasing andm ≤ 1 (respectively if θ is concave and increasing,

and m > 1) then equation (4.4) is reversed.

Proof. Let

4 =
[
c1−mΨ(c) + d1−mΨ(d)

] ∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
−
[
c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

]
.

Since θ is convex, by (4.1),

4 ≤
[
c1−mΨ(c) + d1−mΨ(d)

] [θ(c) + θ(d)

2

]
−
[
c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

]

=
1

2

[[
c1−mΨ(c) + d1−mΨ(d)

][
θ(c) + θ(d)

]]
−
[
c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

]

=
1

2
[c1−mΨ(c)θ(c) + d1−mΨ(d)θ(c) + c1−mΨ(c)θ(d) + d1−mΨ(d)θ(d)]

−
[
c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

]
=

1

2
[c1−mΨ(c)θ(c) + d1−mΨ(d)θ(c) + c1−mΨ(c)θ(d) + d1−mΨ(d)θ(d)]

−2c1−mθ(c)Ψ(c)− 2d1−mθ(d)Ψ(d)
]

=
1

2

[
c1−mΨ(c)θ(d) + d1−mθ(c)Ψ(d)− c1−mθ(c)Ψ(c)− d1−mθ(d)Ψ(d)

]

=
1

2

[
c1−mΨ(c)[θ(d)− θ(c)]− d1−mΨ(d)[θ(d)− θ(c)]

]
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=
1

2

[(
c1−mΨ(c)− d1−mΨ(d)

)(
θ(d)− θ(c)

)]
= − 1

2(d− c)2

[
[(d− c)(θ(d)− θ(c))][(d− c)(d1−mΨ(d)− c1−mΨ(c))]

]
.

Ifm ≤ 1 and if θ is increasing (orm > 1 and θ is decreasing), by monotonocity property

of function θ and we get 4 ≤ 0.

Again consider 4 for the concavity case,

4 = (c1−mΨ(c) + d1−mΨ(d))

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
− (c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)).

If θ is concave,

4 ≥ (c1−mΨ(c) + d1−mΨ(d))

[
θ(c) + θ(d)

2

]
− (c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d))

=
1

2
[c1−mΨ(c)θ(c) + d1−mΨ(d)θ(c) + c1−mΨ(c)θ(d) + d1−mΨ(d)θ(d)]

−
[
c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

]
1

2
[c1−mΨ(c)θ(c) + d1−mΨ(d)θ(c) + c1−mΨ(c)θ(d) + d1−mΨ(d)θ(d)]

−2c1−mθ(c)Ψ(c)− 2d1−mθ(d)Ψ(d)
]

=
1

2

[
c1−mΨ(c)θ(d) + d1−mθ(c)Ψ(d)− c1−mθ(c)Ψ(c)− d1−mθ(d)Ψ(d)

]
=

1

2

[
c1−mΨ(c)(θ(d)− θ(c))− d1−mΨ(d)(θ(d)− θ(c)

]
=

1

2

[
(c1−mΨ(c)− d1−mΨ(d))(θ(d)− θ(c)

]
= − 1

2(d− c)2

[
[(d− c)(θ(d)− θ(c))][(d− c)(d1−mΨ(d)− c1−mΨ(c)]

]
.

if m ≤ 1 and θ is decreasing (respectively m > 1 and θ is increasing). By monotonicity

condition 4 ≥ 0.
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Theorem 4.0.3. Let θ ⊂ R++ → R be a continuous function on I and Ψ be a non-

negative, integrable, symmetric on Ψ(x) = Ψ(c + d − x) and increasing function. If

θ is convex and increasing, and a parameter m ≤ 1(respectively if θ is convex and

decreasing and m > 1), then ∀ c = d ∈ I,

ω(c, d) =


∫ d
c θ(x)Ψ(x)dx∫ d
c Ψ(x)dx

, c 6= d

θ(c), c = d.

is schur m-power convex on I2. If θ is concave and decreasing and m ≤ 1(respectively

if θ is concave and increasing m > 1), then θ(c, d) is Schur m-power concave on I2.

Proof:

Consider

ω(c, d) =

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
.

∂ω

∂c
=

∫ d
c
θ(x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)
2 Ψ(c)− θ(c)Ψ(c)∫ d

c
Ψ(x)dx

.

∂ω

∂d
= −

∫ d
c
θ(x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)
2 Ψ(d) +

θ(d)Ψ(d)∫ d
c

Ψ(x)dx
.

The condition for the Schur-m convexity is

M= (d− c)
(
d1−m∂ω

∂d
− c1−m∂ω

∂c

)
≥ 0 (4.5)

Substituting values in equation (4.5) ,

=

[
d1−m

(
−
∫ d
c
θ(x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)
2 Ψ(d) +

θ(d)Ψ(d)∫ d
c

Ψ(x)dx

)
− c1−m

(∫ d
c
θ(x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)
2 Ψ(c)− θ(c)Ψ(c)∫ d

c
Ψ(x)dx

)]
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=
1∫ d

c
Ψ(x)dx

[
−
∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
Ψ(d)d1−m −

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
Ψ(c)c1−m

]
+[d1−mθ(d)Ψ(d) + c1−mθ(c)Ψ(c)]

=
1∫ d

c
Ψ(x)dx

[∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
[−Ψ(c)c1−m −Ψ(d)d1−m]

]
+ [d1−mθ(d)Ψ(d) + c1−mθ(c)Ψ(c)].

By (4.4), we have

If ω is convex and increasing for m ≤ 1 (respectively convex and decreasing for m > 1),

So, ∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≤ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

c1−mΨ(c) + d1−mΨ(d)
.

=

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
(c1−mΨ(c) + d1−mΨ(d)) ≤ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

=

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
(−c1−mΨ(c)− d1−mΨ(d)) ≥ −c1−mθ(c)Ψ(c)− d1−mθ(d)Ψ(d)

=

∫ d
c
θ(x)Ψ(x))dx∫ d
c

Ψ(x)dx
(−c1−mΨ(c)− v1−mΨ(d)) + [c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)] ≥ 0.

Conditions for the Schur-m convexity is satis�ed, and applying Theorem 4.0.2, we have

Theorem 4.0.3(valid).

Similarly, for concavity, we have,∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≥ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

c1−mΨ(c) + d1−mΨ(d)
.
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=

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
(c1−mΨ(c) + d1−mΨ(d)) ≥ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

=

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
(−c1−mΨ(c)− d1−mΨ(d)) ≤ −c1−mθ(c)Ψ(c)− d1−mθ(d)Ψ(d)

∫ d
c
θ(x)Ψ(x))dx∫ d
c

Ψ(x)dx
(−c1−mΨ(c)− d1−mΨ(d)) + [c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)] ≤ 0.

As the condition for the Schur-m concavity is satis�ed, and applying Theorem 4.0.2

we have Theorem 4.0.3(valid).

Theorem 4.0.4. Let θ : I ⊂ R++ → R be a continuous function, and

P (t) =
1

2

∫ d
c

[
θ(tc+ (1− t)x)Ψ(x) + θ(td+ (1− t)x)Ψ(x))

]
dx∫ d

c
Ψ(x)dx

, t ∈ [0, 1], (4.6)

For any t ∈ [0, 1], we de�ne a function as follows, ∀c, d ∈ I,

Q(c, d) =

{
P (t), c 6= d

θ(c), c = d.

(1) for m ≥ 1 if θ is convex (respectively concave) and decreasing on I, then Q(c, d)

is Schur m-power convex (respectively Schur m-power concave) on I2.

(2) for m < 1 if θ is concave (respectively convex) and increasing on I, then Q(c, d)

is Schur m-power concave (respectively Schur m-power convex) on I2.

Proof. We will consider the case for c 6= d, such that P (t) is given in (4.6), let

Q1(c, d) =

∫ d
c
θ(tc+ (1− t)x)Ψ(x)dx∫ d

c
Ψ(x)dx

.

and

Q2(c, d) =

∫ d
c
θ(td+ (1− t)x)Ψ(x)dx∫ d

c
Ψ(x)dx

.
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Then equation (4.6) becomes,

Q(c, d) = P (t) =
1

2
[Q1(c, d) +Q2(c, d)].

Now we have the following derivatives,

∂Q1

∂c
=

∫ d
c
θ(tc+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(c)− Ψ(c)θ(c)∫ d

c
Ψ(x)dx

, (4.7)

∂Q1

∂c
=

1∫ d
c

Ψ(x)dx
[Ψ(c)Q1(c, d)− θ(c)Ψ(c)].

∂Q1

∂d
= −

∫ d
c
θ(tc+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(d) +

θ(tc+ (1− t)v)Ψ(d)∫ d
c

Ψ(x)dx
, (4.8)

∂Q1

∂d
=

1∫ d
c

Ψ(x)dx
[−Ψ(d)Q1(c, d) + θ(tc+ (1− t)d)Ψ(d)].

∂Q2

∂c
=

∫ d
c
θ(td+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(c)− Ψ(c)θ(td+ (1− t)c)∫ d

c
Ψ(x)dx

, (4.9)

∂Q2

∂c
=

1∫ d
c

Ψ(x)dx
[Ψ(c)Q2(c, d)− θ(td+ (1− t)c)Ψ(c)].

∂Q2

∂d
= −

∫ d
c
θ(td+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(d) +

θ(d)Ψ(d)∫ d
c

Ψ(x)dx
, (4.10)

∂Q2

∂d
=

1∫ d
c

Ψ(x)dx
[−Ψ(d)Q2(c, d) + θ(d)Ψ(d)].

Notice that Q1(c, d) = −Q2(c, d). From (4.7) to (4.10), we have

∂Q2

∂d
= −∂Q1

∂c
= −

∫ d
c
θ(tc+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(c) +

θ(c)Ψ(c)∫ d
c

Ψ(x)dx
. (4.11)

∂Q2

∂c
= −∂Q1

∂d
=

∫ d
c
θ(tc+ (1− t)x)Ψ(x)dx

(
∫ d
c

Ψ(x)dx)2
·Ψ(d)− θ(tc+ (1− t)d)Ψ(d)∫ d

c
Ψ(x)dx

. (4.12)
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By the condition for the Schur-convexity as well as for Schur-concavity, we have

∆ = (d− c)
(
d1−m∂Q

∂d
− c1−m∂Q

∂c

)
≥ 0(respectively ≤ 0).

First we have to prove the case for the Schur-convexity, so

∆ =
1

2
(d− c)

(
d1−m

(
∂Q1

∂d
+
∂Q2

∂d

)
− c1−m

(
∂Q1

∂c
+
∂Q2

∂c

))
.

∆ =
1

2
(d− c)

(
d1−m∂Q1

∂d
− c1−m∂Q1

∂c

)
+

(
d1−m∂Q2

∂d
− c1−m∂Q2

∂c

)
.

=
d− c

2
∫ c
d

Ψ(x)dx
[−Ψ(d)Q1(c, d)d1−m + θ(tc+ (1− t)d)Ψ(d)d1−m

−Ψ(c)Q1(c, d)c1−m

+θ(c)Ψ(c)c1−m −Ψ(d)Q2(c, d)d1−m + θ(d)Ψ(d)d1−m −Ψ(c)Q2(c, d)c1−m

+θ(td+ (1− t)c)Ψ(c)c1−m)]

Consider

=
1

2
[−Ψ(d)Q1(c, d)d1−m + θ(tc+ (1− t)d)Ψ(d)d1−m −Ψ(c)Q1(c, d)c1−m + θ(c)Ψ(c)c1−m

−Ψ(d)Q2(c, d)d1−m + θ(d)Ψ(d)d1−m −Ψ(c)Q2(c, d)c1−m + θ(td+ (1− t)c)Ψ(c)c1−m)]

=
1

2

[
Ψ(d)d1−mθ(tc+ (1− t)d) + Ψ(c)c1−mθ(td+ (1− t)c) + Ψ(c)θ(c)c1−m + Ψ(d)θ(d)d1−m]

−Ψ(d)d1−m [Q1 +Q2]

2
−Ψ(c)c1−m [Q1 +Q2]

2

=
1

2

[
Ψ(d)d1−mθ(tc+ (1− t)d) + Ψ(c)c1−mθ(td+ (1− t)c) + Ψ(c)θ(c)c1−m + Ψ(d)θ(d)d1−m]

−[Ψ(d)d1−m + Ψ(c)c1−m]
Q1 +Q2

2

=
1

2

[
Ψ(d)d1−mθ(tc+ (1− t)d) + Ψ(c)c1−mθ(td+ (1− t)c) + Ψ(c)θ(c)c1−m + Ψ(d)θ(d)d1−m]

−P (t)[Ψ(d)d1−m + Ψ(c)c1−m].
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If θ is convex and decreasing for m ≥ 1, then we have

∆ ≥ 1

2
[tθ(c)Ψ(d)d1−m + θ(d)Ψ(d)d1−m − tθ(d)Ψ(d)d1−m + tθ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m

−tθ(c)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]− P (t)[Ψ(d)d1−m + Ψ(c)c1−m]

Here, we are using P (t) ≤ P (1) from equation (4.3),

=
1

2
[θ(c)Ψ(d)d1−m + θ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]

−θ(c) + θ(d)

2
[Ψ(d)d1−m + Ψ(c)c1−m]

≥ 1

2
[θ(c)Ψ(d)d1−m + θ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]

−θ(c)Ψ(d)d1−m − θ(d)Ψ(c)c1−m − θ(c)Ψ(c)c1−m − θ(d)Ψ(d)d1−m] ≥ 0.

So, the condition for the Schur-convexity is satis�ed for m ≥ 1. Now to prove the case

for the Schur-concavity,

If θ is concave and decreasing, then we have

∆ ≤ 1

2

[
tθ(c)Ψ(d)d1−m + θ(d)Ψ(d)d1−m − tθ(d)Ψ(d)d1−m + tθ(d)Ψ(c)c1−m

+θ(c)Ψ(c)c1−m − tθ(c)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m
]

−P (t)
[
Ψ(d)d1−m + Ψ(c)c1−m].

Note that, P (t) ≥ P (0), by equation (4.3) and using Theorem 4.0.2,

=
1

2
[2θ(d)Ψ(d)d1−m + 2θ(c)Ψ(c)c1−m]−

∫ d
c
θ(x)Ψ(x)dx

Ψ(x)dx
[Ψ(d)d1−m + Ψ(c)c1−m]

=
1

2
[2θ(d)Ψ(d)d1−m + 2θ(c)Ψ(c)c1−m]− θ(d)Ψ(d)d1−m − θ(c)Ψ(c)c1−m ≤ 0.

So, the case for the Schur-concavity is proved for m ≥ 1,

Case (2) is similar for m < 1.

If θ is concave and increasing for m < 1, then we have,

∆ ≤ 1

2
[tθ(c)Ψ(d)d1−m + θ(d)Ψ(d)d1−m − tθ(d)Ψ(d)d1−m + tθ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m

−tθ(c)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]− P (t)[Ψ(d)d1−m + Ψ(c)c1−m]
(4.13)
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Note that P (t) ≤ P (1), by equation (4.3),

=
1

2
[θ(c)Ψ(d)d1−m + θ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]

−θ(c) + θ(d)

2
[Ψ(d)d1−m + Ψ(c)c1−m]

(4.14)

≤ 1

2
[θ(c)Ψ(d)d1−m + θ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]

−θ(c)Ψ(d)d1−m − θ(d)Ψ(c)c1−m − θ(c)Ψ(c)c1−m − θ(d)Ψ(d)d1−m] ≤ 0.

The condition for the Schur-concavity is satis�ed for m < 1. Now, if θ is convex and

increasing, then we have

∆ ≥ 1

2
[tθ(c)Ψ(d)d1−m + θ(d)Ψ(d)d1−m − tθ(d)Ψ(d)d1−m + tθ(d)Ψ(c)c1−m + θ(c)Ψ(c)c1−m

−tθ(c)Ψ(c)c1−m + θ(c)Ψ(c)c1−m + θ(d)Ψ(d)d1−m]− P (t)[Ψ(d)d1−m + Ψ(c)c1−m]
(4.15)

Note that, P (t) > P (0), by equation (4.3) and using Theorem 4.0.3,

=
1

2
[2θ(d)Ψ(d)d1−m + 2θ(c)Ψ(c)c1−m]− θ(d)Ψ(d)d1−m − θ(c)Ψ(c)c1−m ≥ 0. (4.16)

The condition for the Schur-convexity is satis�ed for m < 1.

Now we will consider possibility of further generalization in the companion map-

pings.

Let α : [0, 1]→ [0, 1] be a monotonic non-decreasing continuous function on [0,1]. Let

Gα : [0, 1]→ R be a function is de�ned by

Gα(t) =
1

2

∫ d
c

[θ(α(t)c+ (1− α(t)x)Ψ(x) + θ(α(t)d+ (1− α(t))x)Ψ(x)]dx∫ d
c

Ψ(x)dx
. (4.17)

Lemma 5. Suppose that θ is convex (respectively concave), then Gα(t) is convex (re-

spectively concave) if α is a linear function.

Proof: It follows that from equation (4.17), if θ is convex, also α is linear,then we have

the composition θ ◦ α is linear.
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Lemma 6. Let θ(x)= cosx
x
- sinx
x2

, tε(0,Π]. Then θ(x) is convex and decreasing on(0,Π
2
],

and θ(x) is convex and increasing on [Π
2
,π].

Proof: Since,

θ1(x) =
2sinx− 2xcosx− x2sinx

x3
.

θ2(x) =
−x3cost+ 3x2sinx+ 6xcosx− 6sinx

x4
.

Let

g(x) = 2sinx− 2xcosx− x2sinx and g(0) = 0.

Then

g1(x) = −x2cost ≤ 0.

And g(x) ≤ g(0), and θ1(x) ≤ 0. Thus, θ(x) is decreasing on (0,Π
2
].

Let h(x)=−x3cosx+ 3x2sinx+ 6xcosx− 6sinx and h(0)=0. Then h1(x)=x3sinx ≥ 0

and h(x) ≤ h(0) = 0. Further f 2(x) ≥ 0. So θ(x) is convex and increasing on (0, Π
2
]

Similarly, we get that θ(x) is convex and increasing on (0, Π
2
].

4.0.2 Applications of Fejer's Inequality

There are numerous applications of "Fejer's inequality" which have received attention

in back years. Relating to the integral mean of a convex function are the most famous

inequalities "Hadamard inequality" and "Fejer's inequality". Some applications

of "Fejer's inequality" are as follows:

Theorem 4.0.5. For c, d ∈ R++,and m ≥ 2.Then

G2(c, d) ≤ cm + dm

cm−2 + dm−2
.P (c, d). (4.18)
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where G(c, d) = cd, P (c, d) = d2−c2
2(lnc−lnd)

Proof:

Let θ(x)= 1
x2
, Ψ(x)=x, x ∈ (0,∞) and d > c .

Consider the fejer's inequality and putting values,∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
=

∫ d
c

1
x
dx∫ d

c
xdx

=
2(ln(c)− ln(d))

d2 − c2
= P−1(c, d). (4.19)

By de�nition of convex function, since θ(x) is convex and decreasing. By Theorem

4.0.2, it follows that∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
≤ c1−mθ(c)Ψ(c) + d1−mθ(d)Ψ(d)

c1−mΨ(c) + d1−mΨ(d)
. (4.20)

After simplifying,we have

≤ cm + dm

c2d2(cm−2 + dm−2)
. (4.21)

If θ is convex and monotonicity, then θ is Schur-convex. As from the 4.0.3, we have

the following equation for Schur-convexity,

1∫ d
c

Ψ(x)dx

[∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
[−Ψ(c)c1−m −Ψ(d)d1−m] + [d1−mθ(d)Ψ(d) + c1−mθ(c)Ψ(c)]

]
≥ 0,

(4.22)

Then ∫ d
c

1
x
dx∫ d

c
xdx

≤ cm + dm

c2d2[cm−2 + dm−2]
,

Thus equation(4.18) is satis�ed.

"Camille Jordan" [9] introduced the Jordan's inequality for a ∈ (0, Π
2
].

2

π
≤ sinx

x
≤ 1, (4.23)

with equality holds i� x = π
2
. By Corollary 3.0.1 and 3.0.2, further inequalities and

new re�nements for Jordan's inequality are obtained, as follows

xxxvi



Theorem 4.0.6. For a ∈ (0, π
2
].Then,

sina

a
≥

a2 − π2

4

−
(
π
2

+ a
)2

[
1− 2

2a+ π

]
+

2

π
, (4.24)

sina

a
≤ 2

π
+

(
π2

8
− a2

2

)[
sin
(
a
2

+ π
4

)(
a
2

+ π
4

) −
cos
(
a
2

+ π
4

)(
a
2

+ π
4

)2

]
. (4.25)

Proof:

As we have the "Fejer's inequality",

ω(c, d) =

∫ d
c
θ(x)Ψ(x)dx∫ d
c

Ψ(x)dx
.

Let

θ(x) =
cosx

x2
− sinx

x3
,

and Ψ(x) = x.

and it follows that

ω(c, d) =
2

d2 − c2

∫ d

c

(
cosx

x
− sinx

x2

)
dx. (4.26)

By Lemma and Corollary 3.0.1, equation (4.26) is Schur-convex on (0, π
2
]. Since(

a+ π
2

2
,
a+ π

2

2

)
≺
(π

2
, a
)
≺
(
a+

π

2
, 0
)
.

By de�nition of Schur-Convexity, then

ω

(
a+ π

2

2
,
a+ π

2

2

)
≤ ω

(π
2
, a
)
≤ ω

(
a+

π

2
, 0
)
.

By making substitution, we have

cos
(
a+π

2

2

)
(
a+π

2

2

) −
sin
(
a+π

2

2

)
(
a+π

2

2

)2 ≤ 2

a2 − π2

4

sinx

x
|aπ
2
≤ 2

−
(
π
2

+ a
)2

sinx

x
|0a+π

2
,
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Firstly, taking these two, we have

cos
(
a+π

2

2

)
(
a+π

2

2

) −
sin
(
a+π

2

2

)
(
a+π

2

2

)2 ≤ 2

a2 − π2

4

sinx

x
|aπ
2
,

a2 − π2

4

2

cos
(
a+π

2

2

)
(
a+π

2

2

) −
sin
(
a+π

2

2

)
(
a+π

2

2

)2

 ≤ sinx

x
|aπ
2
,

(
π2

8
− a2

2

)sin
(
a+π

2

2

)
(
a+π

2

2

)3 −
cos
(
a+π

2

2

)
(
a+π

2

2

)2

 ≤ [sina
a
− 2

π

]
,

(
π2

8
− a2

2

)sin
(
a+π

2

2

)
(
a+π

2

2

)2 −
cos
(
a+π

2

2

)
(
a+π

2

2

)
+

2

π
≤ sina

a
.

so from above, we have inequality(4.25).

Now comparing other two, we have

2

a2 − π2

4

sinx

x
|aπ
2
≤ 2

−
(
π
2

+ a
)2

sinx

x
|0a+π

2
,

sina

a
− 2

π
≤

a2 − π2

4

−
(
π
2

+ a
)2

[
1−

sin
(
a+ π

2

)
a+ π

2

]
,

sina

a
≤

a2 − π2

4

−
(
π
2

+ a
)2

[
1− 2cosa

2a+ π

]
+

2

π
.

Equation (4.24) is satis�ed.
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Chapter 5

Conclusion

Every Fejer's type inequality is the Hadamard's type inequality when we consider the

weight function is equal to one. We must say that every Fejer's type inequality comes

in category of Hadamard's type inequality.

Concept of Fejer's type inequality is much more easy to understand in Hadamard's type

inequality. With the help of literature we came to know about many results in terms of

Hadamard's type inequality. Authors provided many directions to resolve the problems

regarding Hadamard's type inequality. Therefore using these results of Hadamard's type

inequality, many results regarding Fejer's type inequality are formed, presented in our

thesis.

In our thesis, we have some concepts that revolves around Schur-convexity and Schur-

concavity. However, Schur Geometrically convexity and Schur Geometrically concavity

are di�erent direction to study. So, this is an interesting direction which we prepare

for future work. Also,some problems arise while studying the Schur-Convexity and

Schur-Concavity. So, that should also be studied in future.

xxxix



Bibliography

[1] Marshall AW, Olkin I, Arnold BC. Inequalities: theory of majorization and its

applications. New York: Academic press; 1979 Dec.

[2] X. M. ZHANG, Geometrically-Convex Functions, Anhui Univ. Press, Hefei,

2004(in Chinese)

[3] Yuming C, Tianchuan S. The Schur harmonic convexity for a class of symmetric

functions. Acta Mathematica Scientia. 2010 Sep 1;30(5):1501-6.

[4] Wu Y, Qi F. Schur-harmonic convexity for di�erences of some means. Analysis

(Munich). 2012 Nov 1;32:263-70.

[5] Yang ZH. Schur power convexity of Stolarsky means. PUBLICATIONES

MATHEMATICAE-DEBRECEN. 2012 Feb 1;80(1-2):43-66.

[6] Yang ZH. Schur power convexity of the Daróczy means. Math. Inequal. Appl. 2013

Jul 1;16(3):751-62.

[7] Wang W, Yang SG. Schur m-power convexity of generalized Hamy symmetric

function. Journal of Mathematical Inequalities. 2014 Sep 1.

[8] Wang W, Yang S. Schur-Power Convexity of a Class of Multiplicatively Convex

Functions and Applications. InAbstract and Applied Analysis 2014 Jan 1 (Vol.

2014). Hindawi.

[9] Mitrinovic DS, Pecaric J, Fink AM. Classical and new inequalities in analysis.

Springer Science and Business Media; 2013 Apr 17.

[10] Dragomir SS. Further properties of some mappings associated with Hermite-

Hadamard inequalities. Tamkang Journal of Mathematics. 2003 Mar 31;34(1):45-

xl



58.

[11] Yuming C, Tianchuan S. The Schur harmonic convexity for a class of symmetric

functions. Acta Mathematica Scientia. 2010 Sep 1;30(5):1501-6.

[12] V. CHULJAK, A remark on Schur-convexity of the mean of a convex function, J.

Math. Ineqal., 9(4)(2015), 1133-1142.

[13] Dragomir SS, Pearce CE. Selected Topics on Hermite-Hadamard Inequalities

and Applications, RGMIA Monographs, Victoria University, 2000. Online:

http://www. sta�. vu. edu. au/RGMIA/monographs/hermite hadamard. html.

2004.

[14] Elezovi¢ N, Pe£ari¢ J. A note on Schur-convex functions. The Rocky Mountain

Journal of Mathematics. 2000 Oct 1:853-6.

[15] Guan K, Guan R. Some properties of a generalized Hamy symmetric function

and its applications. Journal of mathematical analysis and applications. 2011 Apr

15;376(2):494-505.

[16] Klén R, Visuri M, Vuorinen M. On Jordan type inequalities for hyperbolic func-

tions. Journal of Inequalities and Applications. 2010 Dec;2010:1-4.

[17] Manfrino RB, Ortega JA, Delgado RV. Inequalities: a mathematical olympiad

approach. Springer Science and Business Media; 2009 Sep 18.

[18] Merkle M. Conditions for convexity of a derivative and some applications to the

Gamma function. Aequationes Mathematicae. 1998 May 1;55(3):273-80.

[19] M.MERKLE, Representaion of the error terms in Jensen's and some related in-

equalities with applications, J. Math. Analysis Appl.,231(1991), 76-90.

[20] Niculescu CP. The Hermite�Hadamard inequality for log-convex functions. Non-

linear Analysis: Theory, Methods and Applications. 2012 Jan 1;75(2):662-9.

[21] Özdemir ME. A theorem on mappings with bounded derivatives with applications

to quadrature rules and means. Applied mathematics and computation. 2003 Jun

20;138(2-3):425-34.

xli



[22] Peajcariaac JE, Tong YL. Convex functions, partial orderings, and statistical ap-

plications. Academic Press; 1992 Jun 3.

[23] Qi F, Niu DW, Guo BN. Re�nements, generalizations, and applications of Jor-

dan's inequality and related problems. Journal of Inequalities and Applications.

2009 Dec 1;2009(1):271923.

[24] W.T. SULAIMAN, Schur Convexity and Hadamard's Inequality, Global Journal

of Sci. frontier Research, (2011), 11,1.

[25] Tseng KL, Hwang SR, Dragomir SS. New Hermite�Hadamard-type inequalities

for convex functions (I). Applied Mathematics Letters. 2012 Jun 1;25(6):1005-9.

[26] Wu S, Debnath L. A new generalized and sharp version of Jordan's inequality and

its applications to the improvement of the Yang Le inequality. Applied Mathematics

Letters. 2006 Dec 1;19(12):1378-84.

[27] Yang ZH. Schur power convexity of Gini means. Bull. Korean Math. Soc. 2013

Mar 1;50(2):485-98.

[28] Yang ZH. New sharp Jordan type inequalities and their applications. arXiv

preprint arXiv:1206.5502. 2012 Jun 24.

[29] Gilanyi A, Pales Z. On convex functions of higher order. Mathematical Inequalities

and Applications. 2008 Apr;11(2):271-82.

[30] Niculescu C, Persson LE. Convex functions and their applications. New York:

Springer; 2006.

xlii


	Ms hafisa.pdf
	Scan16
	Scan17


