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Abstract

Topological indices, sometimes also seen as graph-theoretic filters, maintain the order of

molecular elements and provide mathematical language to predict features such as boiling

points, radius of gyrations, viscosity, etc. These indices reflect topology and are usually

mathematically holding fixed graph structures. There are certain important categories

of topological indices relating to their specific topological features, such as degrees of

vertices, distances between vertices, eccentricities of vertices, communication, etc. In

this thesis, we study extremist graphs in relation to certain topological degree attackers.

The graphs we emphasize include unicyclic graphs and dendrimers. Our main focus is

on studying F-coindex. On smaller graphs the calculation of non-adjacent vertices is

easily determined, however, on larger graphs, i.e., n vertices graphs, unicyclic graphs,

chemical structures, etc., it is difficult to determine non-adjacent vertexes. First, we

develop another F-coindex formula, which directly processes the non-adjacent vertices of

large graphs, unicyclic networks, chemical structures, etc. The advantage of the changing

formula is that it reduces calculation time and works effectively on almost every graph.

Second, we determine the F-coindex of unicyclic networks, in addition, the minimum and

maximum F-coindex of unicyclic networks are also estimated. Finally, we investigate the

F-coindex of some dendrimers.
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Chapter 1

Fundamentals of Graph Theory

1.1 Introduction to Graph Theory

We start this dissertation with a brief and interesting historical note on the role of Euler

in setting foundation of graph theory in this chapter. In Section 1.2, we will give a brief

description of history of graph theory. In Section 1.3, we will utilize the vital terminologies,

notions and definitions of modern graph theory. In Section 1.4, we will focus on different

methods of graph operations. Section 1.5 is devoted to introduce the readers with trees

and its related structures. In the last section, a short introduction on current research on

extremal graphs is provided, whereas, all the notations defined in these sections will be

followed throughout the thesis.

1.2 History of Graph Theory

Historically, most of the branches of mathematics come from basic problems of calculations

and measurements. However, the ancestry of graph theory comes from mere puzzle like

problems [1]. These problems caught the attention of mathematicians, as a result of which

graph theory came into being. This subject has developed rapidly over the years. It has

given many theoretical results of large variety, ranging from chemical structures to many
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economic problems. In 1736, the city of Prussia named Königsberg was situated along

the river which is familiar as Kaliningrad, Russia, in modern time. The river Pregelowed

through the city was separated by a river into four land regions. These regions were joined

by seven bridges. Residents of Königsberg are not sure about whether it was possible to

walk from island to island by crossing seven bridges in one tour and come back to the

initial point. This challenge is labeled by the Königsberg bridge problem. The mayor

of Prussia Carl Gottlieb Ehler was concerned to this problem, and he wants to obtain

the solution of it. Therefore, he discussed it with a Swiss mathematician Leonhard Euler

in 1735. After which Euler studied the problem by eliminating the nonessential parts of

the map as shown in the Figure 1.1. At that time, Euler concluded that the solution of

Figure 1.1: Königsberg bridge problem

the Königsberg bridge problem was impossible. Also, he wrote [2] on it and presented

it in front of his teammates at the Academy of Sciences at St.Petersburg. Moreover,

Euler gave the justification on it in [2] in 1736. It is noteworthy that Euler did not

produce the type of graphs we use today. It was one century later that such graphs made

an appearance. This kind of a solution in which a real life problem was converted into

a mathematical phenomenon opened the gates to the solution of many other practical

problems. Graph theory has solved many such problems by converting the elements
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of certain problems into an abstract graph containing vertice, edges and preserving the

relationship between vertices. Usually known that graph theory has implementations in

combinatorics, but it has also beneficial applications in chemistry, optimization theory,

biology, applied mathematics, electrical engineering, computer science, bioinformatics,

network analysis, sociology, business administration, economics and other scientific and

not-scientific areas.

1.3 Basics of Graph Theory

In this section, we will discuss some basic definitions and word phrases in relation to

the concept of a graph. The graph, with the common notation G̃, can be defined as

G̃ = (V (G̃), E(G̃)), where the v ∈ V item is defined as a vertex and the e ∈ E item is

called edge. Here each e ∈ E item can be written as {u, v} or simply uv for u, v ∈ V .

The seamless graph, that is, E = 0 is called a null graph. V and E sets can also be

represented by V (G̃) and E(G̃), respectively. In the graph, points indicate vertices and

can represent anything, for example, people, cities, atoms, etc. The edges of the graph

are indicated by lines or curves that connect the vertices and can represent acquaintances,

roads, chemical bonds, etc. A graph with limited set of vertices and edges is called finite

graph, otherwise, it is an endless (infinite) graph. Two or more edges that occur in one

vertice are called multiple edges. A loop is an edge that joins the vertex itself. The e

edge is said to be incident on v, only if v is the final vertex of e. The number of edges

incident on a vertex v in G̃ represents its degree in the graph, denoted by du. Edges

with a common end-vertex are called adjacent edges. Edges that do not have mutual

end points are called separate edges or independent edges. Graphs that have multiple

edges or loops are called multigraphs. Graphs that do not have many edges or loops are

considered simple graphs. In a finite graph if their vertex is only one and there is no edge

called a trivial graph. In a directed graph all the vertices are connected together, and

all the edges are directed from one vertex to another. The null graph is a graph without

3



vertices. The total number of vertices and edges on the graph |V (G̃)| = α, |E(G̃)| = β.

Isolated vertex is that vertex which have no adjacent vertices and a pendent vertex have

only adjacent vertex. Sequence of vertices v1, v2, . . . , vα in such a way that consecutive

vertices are adjacent represent the walk. The first vertex in a row is called the first vertex,

it says v1, and the last vertex is called the last vertex, it says vα. In a walk going through

all the different edges is called a trail. If the walking vertices are different, then it becomes

the path. The path in which the first and last vertex are the same is called the cycle. The

order of the path or cycles is the number of vertices in it. Number of edges in path or

cycle gives the length of the path and cycle. If no cycle is present in a connected graph

then it is called a tree. An adjacency matrix of a graph G̃ is a square matrix used to

represent a finite graph. Matrix entries indicate whether a pair of vertices are adjacent

or not on the graph. The length of the short cycle contained in the graph is called the

girth of the graph. If the graph does not have any cycles (that is, an acyclic graph), its

magnitude is defined as infinite. For example, 4 -cycle (square) has girth 4.

1.4 Basic Operations

Basic operations are also known as graph editing functions. The graph editing function

creates a new graph from the first with simple local changes, for example vertex additions,

vertex or edges removal, vertices merging, vertices splitting, edge cutting, etc. We will

describe some of the basic functions in graphs in this section, and these functions will be

used to create new graphs with specific features. The basic graph in which these functions

are used will significantly change the structure of the graph. First we describe some of the

graph functions performed in a single graph. Let G̃ be a graph with vertex set V (G̃) and

edge set E(G̃), after addition of a new vertex u /∈ V (G̃) to G̃ then the resultant graph ´̃G

will have V ( ´̃G) = V (G̃)∪{u} a new set of vertices. The edge set remains unchanged. This

process is called vertex addition or a combination of graph and vertex. Similarly, when

vertex v is removed from the G̃ graph, then vertex v and its incident edges are removed

4



to create a new graph, say Y . The vertex set and the edge of the new graph Y are offered

by V (Y ) = V (G̃) \ {v} and E(Y ) = E(G̃) \ {vw ∈ E(G̃) | w ∈ V (G̃)}. This process

is called vertex removal from the graph. When an edge ab /∈ E(G̃), be added as a new

edge to G̃ then the resultant graph Y ′ will have the new edge set E(Y ′) = E(G̃) ∪ {ab},

this process is called edge addition and the vertex set remains unchanged. The deletion

of an edge ab from G̃ involves removal of the edge ab ∈ E(G̃) such that the edge set of

the new graph is given by E(G̃) \ {ab} and vertex set remains unchanged. A vertex and

an edge such that their removal transforms a connected graph into a graph having more

than one components is called cut-vertex and cut-edge. Minimal edge set is the smallest

possible set of edges required to keep the graph connected. There may exist more than

one minimal edge sets.

Example 1.1. When we remove a vertex from a given graph of G̃, we must remove the

entire edges incident on that vertex. Once we have removed the vertex then the adjacent

matrix will not contain the row and column of the corresponding vertex. This function

converts the vertex and edge family of the graph. Below the image helps to understand

vertex removal.

Figure 1.2: Vertex deletion

Example 1.2. Graph complement Ĝ is a graph that has the same vertices as G̃ but the

edges defined by two vertices in the complement is adjacent only if they are not adjacent

in G̃. The Complement of a graph is demonstrated in the below Figure 1.3.

5



Figure 1.3: Complement

Several other operations on graphs can be found in Harary and Wilcox [3]. For ad-

vanced contents on graph operations, reader is referred to a handbook on product graphs

[4].

1.5 Isomorphic Graphs

A graph can be constructed in miscellaneous ways in which the shape of edges are not

significant. All such drawings of a graph refer to the same graph and are described as

isomorphic graphs. These graphs fulfill some conditions. Consider two graphs, namely

R and S such that R = (V (R), E(R)) and S = (V (S), E(S)). R and S are isomorphic

if there exist functions r and s such that, r : V (R) → V (S) and s : E(R) → E(S)

such that s(uv) = s(u)k(v), where uv is an edge in graph R and s(u)h(v) is an edge in

graph S. In other words, both graphs should have the same number of vertices, edges,

loops, components and parallel edges, etc. In isomorphism, both graphs must have the

same properties, for example, layout, size, vertex degree sequence, equal number of cycle

lengths, similar complements, etc. However, these scenarios are not enough to prove that

the two graphs are isomorphic to each other for a large n.
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1.6 Connectivity and Distances

In graph G̃, a subgraph that is not contained in any other connected subgraph of G̃ is

called component. When G̃ has more than one components, it is called disconnected. In

a connected graph G̃, a cut-vertex v ∈ V (G̃) has the property that G̃− v is disconnected,

and a cut-edge e ∈ E(G̃) is such that G̃ − e is disconnected. An edge (cut-edge) is a

bridge if and only if it does not belong to a cycle. A connected subgraph of G̃ with no

cut-vertex and is not contained in a larger connected subgraph of G̃ is known as a block.

Distance dG̃(k,l) between k and l is defined as the length of a shortest path between them.

Largest distance from a vertex k to any other vertex is called eccentricity eG̃(k) of k. A

connected graph is that in which we find a path for every pair of vertices that connects

them. If there exists vertices k, l ∈ V in G̃ such that there exists no path between them

then G̃ is called a disconnected graph. In acyclic graph there is not any cycle present. A

connected and acyclic graph is known as a tree. There are some families of graphs which

are called tree-like structures because they become a tree after deletion of a some edges.

Figure 1.4: The center C(G̃) of a graph G̃.

1.7 Structure of Trees

Tree is a connected and acyclic graph and it is represented by T . In a tree T , a non-

pendent vertex is said to be an internal vertex and every pair of distinct vertices of T are

linked by a single path.Edges of the tree are called branches and the elements of trees are

called their nodes. In the above figure. 1.7, all are trees with fewer than 6 vertices.
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Figure 1.6: Edge-cut and vertex-cut.

Figure 1.7: Trees with fewer than 6 vertices

1.8 Forest

In the context of graph theory, the undirected, disconnected and acyclic graph is called

a forest. In other words, a disjoint collection of trees is known as forest. Each tree is

8



the part of a forest. Thus a forest is a graph such that all of its components are trees.

There are no cycles in the given graph and it is a single disconnected graph therefore it

Figure 1.8: Forest

is a forest.
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1.9 Star Graph

A star Sα is an α-vertex tree with (α − 1) pendent vertices. Star graph is a special type

of graph where central vertex has (α − 1) degree and (α − 1) vertices have a degree 1.

This looks likes (α− 1) vertices are connected to a one central vertex. A graph is said to

be a caterpillar with a tree α ≥ 3 if the removal of its pendent vertices gives a path.

Figure 1.9: Star graph of order α

1.10 Extremal Graph Theory

In extremal graph theory, the researchers analyzed the effect of earth structures (order,

size, analogy, independence number, etc.) of the graph on its local structures. To date,

identifying extremal graphs (the smallest or largest) in a given category of graphs in rela-

tion to topological indices has become an important indicator in the concept of extremal

graph. In line with these lines, excellent results have been obtained. We see that extremal

graphs are proportional to certain given categories of graphs. In 1907, Mantel [5] provided

an answer to the extremal problem of what is the largest size of the trianglae-free graph

10



G̃. At 1941, Turán [6] began work on advancing extremal graph theory when he decided

to do a Mantel theorem.

Lemma 1.3. (Turán [6]). For a given r ∈ 3, 4 . . . α, what is the maximal size graph that

does not contain Kr.

Other motivational work on extremal graphs can be found in [7], [8], [9].
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Chapter 2

Chemical Graph Theory and

Topological Invariants

Over the past two centuries, a lot of research work has been done in the implementations

of chemistry and graph theory in different fields by investigators. In later 18th century,

chemical graphs were first used as the fundamental study of particles and matters. We

mention some famous mathematicians who, in the past, have studied chemical problems.

Cayley [10] used alkane trees to examine diferent categories of isomers. Sylvester [11] who

observed the similarity between a chemical constitutional formula and a graph in 1878.

In 1970, Read and Harary [12] studied the famous polyhex problem of enumerating

polycyclic aromatic molecules.

A molecular graph G̃ is generally known as a chemical graph, where vertices and

edges of G̃ correlate to atoms and chemical bonds, respectively. Topological indices are

described as numerical parameters of molecular structures, and they perform a crucial part

in the detection of the physical-chemical characterizations of molecules. For applications

of topological indices in drug design, we refer to a book published by Kier and Hall [13].

This chapter comprises of basic definition of topological index which are provided in

Section 2.1, whereas the details of oldest topological index and some important known

results related to these index are included in Section 2.2.
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2.1 Topological Invariants

Topological invariants have long been used in mathematical chemistry. These are the

calculation based values, as the experimentation, availability of resources and manpower

takes alot of time. These invariants provide the chemists and mathematicians with valu-

able information regarding structural, physical, organic and medicinal chemistry [14].

Many of the old indicies, to this date, which are conceptually simple and computation-

ally straightforward offer satisfactory structure-property-activity relations. They are very

useful in Quantitative structureactivity relationship models (QSAR models) and QSPR

Quantitative Structure-Property Relationship (QSPRs) studies [15–21].To date, over 1000

research articles on the subject have appeared [22,23] and a book [24]. Topological indices

may be classified into several categories depending upon the specific topological feature

which they measure. Some basic topological features include degrees of vertices, distances

between vertices, matching of different sizes in a graph, etc. These features categorize

topological indices into degree-based, distance-based, counting-polynomials based indices

and into some other types as well.

2.2 Some Old and New Topological Indices

Let G̃ be a connected and simple graph with vertex set V (G̃) and edge set E(G̃). Harold

Wiener [25] in 1947 represented the first and the most notable indecator, the Wiener

index W (G̃), in his study of the effect of pure diversity in the area where paraffin boils.

He called it path number and is now known as Wiener index W (G̃) of graph G̃. Later

on, Hosoya [26] in 1971, described the notion of Wiener index for G̃ as:

W (G̃) =
∑

(u,v)∈V (G̃)

d(u, v). (2.1)

In study [25] he also introduced the concept of Wiener polarity index Wp(G̃). Physical-

chemical interpretation of Winer polarity index Wp(X) is found by Hosoya [26]. The
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Winer polarity index [25] is defined by (2.2) for u, v ∈ V as:

Wp(G̃) =
∣∣{{u, v} ⊆ V (G̃) | dX(u, v) = 3}

∣∣. (2.2)

To calculate paraffin boiling points a linear formula based on W and Wp was used. Some

recent works of the Wiener polarity index for trees with different parameters are provided

[27,28]. It helped to calculate system robustness and also been used for lattice networks.

Lukovits and Linert [29] introduced quantitative structural relationships in a series of

hydrocarbons containing acyclic and cycles using the wiener polarity index. The Wiener

polarity index for fullerenes and six-dimensional systems was read in [30]. Recently,

Arockiaraj et al. [31], read the hyper-Wiener and Wiener polarity articles for silicate

and oxide networks. The hyper Wiener WW (G̃) indicator is also an old indicator and

a continuation of the Wiener index. Hyper Wiener index WW (G̃) of G̃, translated by

Randiác [32], provided by:

WW (G̃) =
1

2

∑
u∈V (G̃)

∑
v∈V (G̃)

(
d(u, v) + d(u, v)2

)
. (2.3)

Relation between Wiener polarity index and Zagreb indices (M1,M2) was given by Muhuo

Liu and Bolian Liu [33], which is given in following theorem:

Theorem 2.1. For a graph G̃ with k vertices and l edges Wp = M2−M1 + k, when G̃ is

connected, Wp = M2 −M1 + k, if G̃ is a tree.

In the most studied families of molecular graphs, Benzenoid systems and carbon nan-

otubes Niko Tratnik [34], in the year 2018, developed a method for computing the Wiener

polarity index.

In this thesis, we emphasize on those topological indices which are defined in terms of

degrees and distances in graph G̃. Now we discuss some degree and distance-based topo-

logical indices. A research on the structure-dependency of total π- electron energy Eπ in

1972 proposed an approach to the branching of the carbon-atom skeleton by demonstrat-

ing that the sum of squares of the vertex degrees of the molecular graph can determine
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Eπ, that were described by Gutman and Trinajstic [35] and named it the Zagreb group

indices. More details on total π-electron energy can be found in Gutman et al. [36–38],

Angelina et al. [39], Türker and Gutman [40], Jones et al. [41], Radenković and Gutman

[42], Peric et al. [43], Morales [44], Markovic [45], and Morales [46]. Now a days, these

invariants are titled with the Zagreb indices and are specified as follows:

M1(G̃) =
∑

v∈V (G̃)

d2
v =

∑
uv∈E(G̃)

(du + dv), (2.4)

M2(G̃) =
∑

uv∈E(G̃)

dudv. (2.5)

It was immediately recognized that these terms provide quantitative measures of molecular

branching [47,51–56]. For properties of the two Zagreb indices [48–50]. New degreebased

Zagreb index named hyper-Zagrebindex as:

HM(G̃) =
∑

uv∈E(G̃)

(du + dv)
2. (2.6)

are introduced by Shirdeletal. [58] in 2013. In 2012 Ghorbani and Azimi [59] determined

the two new versions of Zagreb indices called first multiple Zagreb index PM1(G̃) and

second multiple Zagreb index PM2(G̃) of graph G̃ are defined as:

PM1(G̃) =
∑

uv∈E(G̃)

[du + dv], (2.7)

PM2(G̃) =
∑

uv∈E(G̃)

[du × dv]. (2.8)

The Zagreb polynomials M1(G̃,X), M2(G̃,X) are defined as:

M1(G̃,X) =
∑

uv∈E(G̃)

X(du+dv), (2.9)

M2(G̃,X) =
∑

uv∈E(G̃)

X(du×dv). (2.10)

For some chemical structures the properties of M1(G̃,X), M2(G̃,X) polynomials have

been studied in [60]. The redefined Zagreb index is defined by Ranjini et al. [61], named
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as the redefined first, second and third Zagreb indices of graph G. These indices appear

as:

ReZG1(G̃) =
∑

uv∈E(G̃)

du+ dv

du.dv
, (2.11)

ReZG2(G̃) =
∑

uv∈E(G̃)

du.dv

du+ dv
, (2.12)

ReZG3(G̃) =
∑

uv∈E(G̃)

(du.dv)(du+ dv). (2.13)

For multiplicative Zagreb indices some upper bonds for different graph operations are

derived by Das et al. [62]. Veylaki et al. [63], enmerate third hyper-Zagreb index and

hyper-Zagreb coindices of some graph operations.

In 1975, Randić [64] investigated a novel topological invariant to judge the boundaries

of branching of the carbon-atom skeleton of saturated hydrocarbons. Now a days, it is

known as Randic index. The Randić index is the known and the most applied invariant

among all topological invariants.it is described as follows:

R(G̃) =
∑

(u,v)∈E(G̃)

(dudv)
− 1

2 . (2.14)

It was designed to reflect the amount of branching present in a chemical species. Using

this index, very good correlations were again obtained with a spacious range of physico-

chemical properties, such as vapor pressure and chromatographic retention times. For

drug designs randic index was immediately calculated. Later, in 1998, Bollobas and

Erdós [65] presented the generalization of Randić index and called it general Randić

index. It was specified as follows:

Rγ(G̃) =
∑

(u,v)∈E(G̃)

(dudv)
γ, (2.15)

where γ is a real number. Therefore the Randić connectivity index of graph G is R−
1
2 .

The general sum-connectivity index is a late topological invariant that was designed by

Zhou and Trinajstić [66]. They replaced the product term (dudv) by (du + dv) in the
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general Randić index and written as follows:

χγ(G̃) =
∑

(u,v)∈E(G̃)

(du + dv)
2 , (2.16)

where γ

is a real number. Therefore χγ is the classical sum-connectivity index, which was

investigated by Zhou and Trinajstić [67]. Following zagreb first and second indices,

Furtula and Gutman (2015) introduced forgotten topological index (also called F-index)

which was defined as:

F (G̃) =
∑

v∈V (G̃)

d3
v =

∑
uv∈E(G̃)

(d2
u + d2

v). (2.17)

Where the degree of vertex v is denoted as dv. In a contemporary research on the structure-

dependency of the total π-electron energy, it was designate that another term on which

this energy depends is F-index. Li and Zheng in [68], generalised the first Zagreb index

and F-index as follows:

Mγ(G̃) =
∑

(u)∈V (G̃)

(du)
γ. (2.18)

where, γ 6= 0, 1 clearly, when γ = 2 and γ ∈ R. According to the International Academy

of Mathematical Chemistry, determining whether there is any topological index useful in

predicting chemical properties, the coorelation between the values of that octane isomer

formation and the parameter values associated with their specific physicochemical proper-

ties should be considered. Octane isomers are generally suitable for such studies, because

the number of isomers of the octane structure is large enough to make the mathematical

conclusion reliable. Fururtula and Gutman. [69] suggested that the predictive ability of

the forgotten topological index is almost the same as that of the original Zagreb index

with acentric factor and entropy, and both received coefficients greater than 0.95. On the

other hand, in some physicochemical structures, either M1 or F does not correspond sat-

isfactorily. A simple linear model is devised for the improvement of the predictive ability

of these indices:

M1 + λF (2.19)
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where λ is fitting parameter. Its value varied from −20 to 20 to achieve the best correla-

tion. The above model has been applied to each physico-chemical properties provided in

the octane database. Unfortunately, for all but one physico-chemical asset, the improve-

ments achieved by the model (2.19) were not significant. Surprisingly, however, in the

case of an octanol-water coefficient, significant improvements could be made. Although

there have been a number of contributions to distance-based indices and degree based

standardized cell structures, researchers have forgotten the F-index of specific specialized

drug components. This fact explains why the forgotten index is useful in examining the

chemical and pharmacological properties of drug molecules. F-index for different graph

operations was read by the present authors in [70]. Recently, the forgotten topological

index of certain drug molecular structures is demonstrated by, Gao et al. (2016a). Abdo

et al. [71] manifested the extremal trees with respect to the F-index. As a result, great

interest in education and industry has been drawn into researching the forgotten index of

drug molecular structure from a mathematical perspective. With ongoing work on Gao

et al. (2016a), we find a forgotten topological index of important chemical structures

with high frequency in drug structures. Similar to other topological polynomials, the

F-polynomial graph G̃ is also described as:

F (G̃,X) =
∑

uv∈E(G̃)

X(d2u+d2v). (2.20)

De at al. [72], study basic properties, some are prescribed in the following theorems:

Proposition 2.2. (Furtula [69]) For a graph G̃ with β edges, and M1(G̃) is first Zagreb

index. Then

F (G̃) ≥ M1(G̃)2

2β
. (2.21)

Proposition 2.3. (Furtula [69]) Let G̃ be a graph with β edges, and M1(G), M2(G̃) are

first and second Zagreb indices respectively. Then

F (G̃) ≥ M1(G̃)2

β
− 2M2(G̃). (2.22)
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Proposition 2.4. (Furtula [69]) Let G̃ be a connected graph with α vertices and β edges,

and M2(G̃) is second Zagreb index. Then

F (G̃) ≥ 2M2(G̃) + β(α− 2). (2.23)

Equality is accomplish if and only if G̃ is the star graph.

Wei.Gao. [73] studied the F-index of some chemical graphs some results are given as:

Theorem 2.5. (Nilanjan [98]) Let NS1[k] be the nanostar dendrimer. Then

F (NS1[k]) = 5.2k + 1 + 40(2k − 1) + 8(12.2k − 11). (2.24)

Theorem 2.6. (Nilanjan [98]) Let NS2[k] be the nanostar dendrimer. Then

F (NS2[k]) = 5.2k + 1 + 8(8.2k − 5) + 13(6.2k − 6). (2.25)

Theorem 2.7. (Yasir [74]) Let G̃ be the molecular graph of PETIM dendrimer. Then

F (G̃) = 216× 2k − 222.

F (G̃,X) = 2k+1x5 + (16× 2k − 18)x8 + (6× 2k − 6)x13.

Y et.al [74] studied the F-index of some dendrimers sturcture some are given as:

Theorem 2.8. (Yasir [74]) Let DnPn be a Porphyrin dendrimer. Then

F (DnPn) = 1566k − 118.

F (DnPn, x) = 2kx10 + 24kx17 + (10k − 5)x8 + (48k − 6)x13 + 13kx18 + 8kx25.

Theorem 2.9. (Yasir [74]) Let DPZn be a zincporphyrin dendrimer. Then

F (DPZn) = 792× 2k − 428.
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Recently, Akther, et.al [75] manifested F-index of extremal graphs between the cate-

gories of unicyclic and bicyclic graphs. In the enumeration of weighted Wiener polynomial

of certain composite graphs Doslic [76] introduced Zagreb coindices. Thus the Zagreb

coindices of G̃ are termed as :

M̄1 =
∑

uv/∈E(G̃)

[du + dv], (2.26)

and

M̄2 =
∑

uv/∈E(G̃)

(dudv). (2.27)

Formal definitions of Zagreb coindices and basic properties were reported by Ashrafi, et.

al. [77]. By the motivation of the work of Ashrafi, et al. [77], very recently, De, et. al. [72]

have studied the coindex version of F-index. It is manifested as

F̄ (G̃) =
∑

uv/∈E(G̃)

(
d2
u + d2

v

)
, (2.28)

in which sum is taken over square of the degrees of every pair of non-adjacent vertices.

The complement of graph G̃ is denoted by ¯̃G, is a simple graph in which two vertices u

and v are non-adjacent on the same set of vertices V (G̃), if and only if they are adjacent

in G̃. F-index and F-coindex research is an active research site now a days and we

can find many good articles, for example D, at al. [72], analyze the performance of

the newly launched F-coindex, basic mathematical properties and under various graph

functions.Ruhul Amin [78] determines the extremal trees with the first minimum, second

minimum and third minimum F-coindex. Using graph analysis and composition, Melaku

Berhe [79] researches the F-coindex of other chemical molecular graphs that appear

frequently in medical engineering. Nilanjan De. [80] study, explicit statements of F-

index and coindex of extruded graphs such as line graph, division graph, vertex-semitotal

graph, edge-semitotal graph, total graph, complete graph and paraline graph (line graph

of subdivision graph) are obtained. In this thesis, we provide an alternative form of F-

coindex. Then we use these properties to study extremal graphs for F-coindex for the
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family of unicyclic graphs and also by using this alternative form we calculate F-coindex

of some dendrimers. Now we have some results on F-coindex.

2.3 Basic Results

The basic calculation of the F-coindex can be performed for some special families of graphs

as an introductory exercise. For an α-vertex graph X with α ≥ 4, a few such calculations

are performed below. Let Pα, Cα, K1,α−1 and Kα be the path, cycle, star and complete

graphs on n vertices. Then F-coindex for these graphs are as follows:

(i) F̄ (Pα) = 4α2 − 18α + 20

(ii) F̄ (Cα) = 4α2 − 12α

(iii) F̄ (K(1, α− 1)) = (α− 1)(α− 2)

(iv) F̄ (Kα) = 0

Ruhul Amin [78] determine the extremal trees with minimum, second minimum and

third minimum F-coindex as given below:

Lemma 2.10. (Rahul [78]) Let T1 be a tree of order α. Assume that P = ud1ud...uα is a

longest path in T1 with d = d(ud) ≥ 2, and u1, u2, ..., ud2 are neighbours of ud other than

ud1, ud+1. T2 is formed by deleting the edges udu1, udu2, ..., udud2 and adding the edges

ud1u1, ud1u2, ..., ud1ud2. Then

F̄ (T1) < F̄ (T2),

if

d <
[1 + 2α]

6
+ 1.

Lemma 2.11. (Rahul [78]) Let T1 be a tree of order α. Assume that P = ud1ud...uα is the

longest path in T1 with d(ud) = d(uα1) = 2, and d = d(uk) ≥ 2 for some d+ 1 ≤ k ≤ α2.
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u1, u2..., ud2 are the neighbors of uk other than uk1, uk+1. T2 is formed by deleting the edge

uku1 and adding a new edge ud1u1. Then

F̄ (T1) > F̄ (T2)

if

d <
[2α + 1]

6
+ 1

and

F̄ (T1) < F̄ (T2)

if

d >
[2α + 1]

6
+ 1.

Theorem 2.12. (Rahul [78]) Among trees with α vertices The star Sα has minimum

F-coindex when α > 3. ,

De at al. [72], study basic mathematical properties, some are given in the following

theorems:

Proposition 2.13. (Nilanjan [72]) Let G̃ be a simple graph with α vertices and β edges,

then

F̄ (G̃) = F ( ¯̃G)− 2(α− 1)M1( ¯̃G) + 2β̄(α− 1)2. (2.29)

Proposition 2.14. (Nilanjan [72]) Let G̃ be a simple graph with α vertices and β edges,

then

F̄ (G̃) = (α− 1)M1(G̃)− F (G̃). (2.30)

Proposition 2.15. (Nilanjan [72]) Let G̃ be a simple graph with α vertices and β edges,

then

F̄ (G̃) = 2β(α− 1)2 − (α− 1)M1(G̃)− F̄ (G̃). (2.31)

Proposition 2.16. (Nilanjan [72]) Let G̃ be a simple graph with α vertices and β edges,

then

F̄ (G̃1UG̃2) = F̄ (G̃1) + F̄ (G̃2) + α2M1(G̃1) + α1M1(G̃2). (2.32)
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Proposition 2.17. (Nilanjan [72]) Let G̃ be a simple graph with α vertices and β edges,

then

F̄ (G̃1 + G̃2) = F̄ (G̃1) + F̄ (G̃2) + 2α2M̄1(G̃1) + 2α1M̄1(G̃2) + 2α2
2β̄1 + 2α2

1β̄2. (2.33)

Corollary 2.18. (Nilanjan [72]) The F-coindex of suspension of G̃ is given by

F̄ (G̃+K1) = F̄ (G̃) + 2M̄1(G̃) + 2β̄. (2.34)

Nilanjan De. [80] study, the explicit expressions for F-index and coindex of derived

graphs, some are given as:

Theorem 2.19. (Nilanjan [72]) Let G̃ be the line graph of the subdivision graph of the

cycle Cα with α vertices. Then F-coindex of G̃ is

F̄ (G̃) = 16α2 − 16α. (2.35)

Theorem 2.20. (Nilanjan [72]) Let G̃ be the line graph of the subdivision graph of the

star Sα with α vertices. Then F-coindex of G̃ is

F̄ (G̃) = (α− 1)(α− 2)(α2 − 2α + 3). (2.36)
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Chapter 3

F-coindex of Extremal Graphs

In this chapter, we provide an alternative form of F-coindex. Then we use this to study

different properties of unicyclic graphs. Then we use these properties to study extremal

graphs for F-coindex for the family of unicyclic graphs. The subsequent part of this chap-

ter is organized as; Section 3.1 covers basic definations and results, Section 3.2 provides

main results on the unicyclic family of graphs having minimum and maximum F-coindex.

Finally, we concluded our findings in the last section.

3.1 F-coindex an Alternative Formula

Let G̃ be a connected graph where V (G̃) and E(G̃) denote vertex and edge sets, re-

spectively. Further note that the order and size of G̃ are given by |V (G̃)| and |E(G̃)|,

receptively. Note that an edge e = uv ∈ E(G̃) implies that u and v are adjacent. On

the other hand uw /∈ E(G̃) shows that vertices u and w are not adjacent. Moreover du

denotes the degree of u ∈ V (G̃)
(
or u ∈ G̃

)
and Nu denotes the number of vertices not

adjacent to u ∈ G̃, Mathematically,

Nu = |{w|uw /∈ E(G̃)}|, for u ∈ G̃. (3.1)
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The Forgotten topological index is defined by

F (G̃) =
∑

v∈V (G̃)

d3
v. (3.2)

The equation(3.2) can be written as

F (G̃) =
∑

uv∈E(G̃)

(
d2
u + d2

v

)
. (3.3)

It can be noted that first general Zagreb index is defined by Mα
1 =

∑
uv∈E(G̃)

(dα−1
u + dα−1

v ),

reduces to Forgotten index for α = 3.

In the similar way, F-coindex is denoted and defined as follows

F̄ (G̃) =
∑

uv/∈E(G̃)

(
d2
u + d2

v

)
. (3.4)

The complement of G̃, denoted by ¯̃G, is a simple graph such that

V (G̃) = V ( ¯̃G), E( ¯̃G) = {uv | uv /∈ E(G̃)}.

Obviously, E(G̃)∪E( ¯̃G) = E(Kα), where Kα, represents a complete graph of order α. So

if v has degree dv in G̃ then degree of the same vertex will be α− 1− dv, in ¯̃G.

Lemma 3.1. Let G̃ be any graph with n vertices and u ∈ G̃ such that degree of u is du.

Then number of non-adjacent vertices to u is given by

Nu = n− 1− du. (3.5)

Proof. There are n− 1 vertices other than u and u is adjacent to du vertices. Thus there

are n− 1− du vertices that are not adjacent to u.

Now we present a new form of F-coindex that makes computations of F-coindex simpler

than
∑

uv∈E( ¯̃G)
[d2
u + d2

v].

Theorem 3.2. Let G̃ be any graph. Then F-coindex of G̃ may be written as

F̄ (G̃) =
∑
u∈G̃

d2
u ×Nu. (3.6)
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Proof. We know that for any graph G̃ we define F-coindex as follows

F̄ (G̃) =
∑

uv∈E( ¯̃G)

[d2
u + d2

v], or F̄ (G̃) =
∑

uv/∈E(G̃)

[d2
u + d2

v].

For any vertex u, the term d2
u appears in F-coindex for each pair of vertex that is not

adjacent to u. This means that d2
u appears Nu times. The same is true for each vertex.

Thus

F̄ (G̃) =
∑

uv/∈E(G̃)

[d2
u + d2

v] =
∑
u∈G̃

d2
u ×Nu.

Using expression of Nu from eq(3.5), in the last expression we obtain

F̄ (G̃) =
∑
u∈G̃

[
(n− 1) d2

u − d3
u

]
. (3.7)

3.2 Basic Results

Here we present some basic results by using alternative form of F-coindex. For an n-vertex

graph G̃ with n ≥ 4, a few such calculations are performed below. Let Pn, Cn, K1,n−1

and Kn be the path, cycle, star and complete graphs on n vertices. Then F-coindex for

these graphs are as follows:

Lemma 3.3. (i) F̄ (Pn) = 4n2 − 18n+ 20

(ii) F̄ (Sn) = n2 − 3n+ 2

(iii) F̄ (Cn) = 4n2 − 12n

(iv) F̄ (K1, n− 1) = (n− 1)(n− 2)

(v) F̄ (Kn) = 0
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Proof. (i) Let we have an n-vertex path in which pendent vertices have degree 1 which

are only two and remaning n− 2 vertices have degree 2, now by using equation (3.6), we

have

F (Pn) =
∑
u∈Pn

d2
u ×Nu = [(1)2 × (n− 2)× (2) + (2)2 × (n− 3)× (n− 2)] = 4n2 − 18n+ 20.

(ii) Let we have an n-vertex star in which pendent vertices have degree 1 which are n− 1

and remaning 1 vertix have degree n− 1. Now by using equation (3.6), we have

F (Sn) =
∑
u∈Sn

d2
u ×Nu = [(1)2 × (n− 2)× (n− 1) + (n− 1)2 × (0)× (1)] = n2 − 3n+ 2.

(iii) Now we have an n-vertex cycle Cn in which all vertices have degree 2, now by using

equation (3.6), we have

F (Cn) =
∑
u∈cn

d2
u ×Nu = [(2)2 × (n− 3)× (n)] = 4n2 − 12n.

same as for (iv)− (v).

3.3 F-coindex of Unicyclic Graphs

Unicyclic graphs are connected graphs with equal number of vertices and edges. Let Un

denotes the set of the unicyclic graphs with n vertices and Uk
n denotes the class of all

unicyclic graphs with n vertices having a cycle of length k. Let Uk
n(p1, p2, · · · , pk) ∈ Uk

n

denotes a unicyclic graph with n vertices having cyclic of length k and each vertex i of

cycle has pi pendent vertices on it, here 1 ≤ i ≤ k. For example U3
12(5, 4, 2) represents a

unicyclic graph with 12 vertices having a cycle of length 3, where these 3 vertices of cycle

has 5, 4 and 2 pendents, respectively. It is important to note that in

Uk
n(p1, p2, · · · , pk), k + p1 + p2 + · · ·+ pk = n.

h
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Theorem 3.4. For n ≥ 4, U3
α(n−3, 0, 0) ∈ Uk

n has minimum F-coindex among the family

of unicyclic graphs. The F-coindex for U3
n(n− 3, 0, 0) is given by

F̄
(
U3
n(n− 3, 0, 0)

)
= (n− 3)(n+ 6). (3.8)

Proof. First we will calculate U3
n(n−3, 0, 0) and then show that it has minimum F-coindex

among the family of unicyclic graphs. It is obvious from the structure of U3
n(n − 3, 0, 0)

that there would be two vertices of degree 2, one vertex of degree n − 1 having n − 3

pendents, as shown in Figure below. From the figure we can have the following table

Figure 3.1: U3
n(n− 3, 0, 0)

du Nu Frequency

1 n− 2 n− 3

2 n− 3 2

n− 1 0 1

Using the formula given by eq(3.6), we get

F̄
(
U3
n(n− 3, 0, 0)

)
= (n− 3)[(1)2 · (n− 2)] + 2[(2)2 · (n− 3)]

= (n− 3)(n− 2) + 8(n− 3) = (n− 3)(n+ 6)

Thus F̄ (U3
n(n− 3, 0, 0)) = (n− 3)(n+ 6).

Now we will show that F̄ (U3
n(n− 3, 0, 0)) = (n − 3)(n + 6) is minimum value of F-

coindex for the family of unicyclic graph. As we can see that in U3
n(n− 3, 0, 0) the vertex
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say u has degree n− 1, that is maximum possible degree that any vertex can have in an

unicyclic graph on n vertices. The contribution of u towards F-coindex is zero as it is

connected to every other vertex of U3
n(n− 3, 0, 0). This completes the proof.

Theorem 3.5. Let G̃ ∈ Un and du be the degree of vertex u ∈ V (G̃). Let u∗ ∈ V (G̃) be

the vertex with maximum contribution towards F̄ (G̃) then degree of the vertex u∗ is given

by

du∗ =

 d2
3

(n− 1)e if n ≡ 2 (mod 3),

b2
3

(n− 1)c otherwise.
(3.9)

Proof. From equation (3.7) we know that F-coindex of a graph is given by

F̄ (G̃) =
∑
u∈G

[
(n− 1) d2

u − d3
u

]
.

Let u∗ with degree du∗ have maximum contribution towards F̄ . Then

∂F̄

∂du∗
= 2(n− 1)du∗ − 3 (du∗)2 = 0, this gives du∗ =

2(n− 1)

3
.

Also note that
∂2F̄

∂d2
u∗

= −2(n− 1) < 0.

This implies that the vertex with degree du∗ = 2(n−1)
3

will have maximum contribution

towards F̄ (G̃). Note that du∗ must be an integer value. To make du∗ an integer value we

round off du∗ = 2(n−1)
3

to nearest integer value to get

du∗ =

 d2
3

(n− 1)e if n ≡ 2 (mod 3),

b2
3

(n− 1)c otherwise.

According to Theorem 3.5, it is evident that contribution of a vertex towards F-coindex

in a unicyclic graph increase with an increase in degree of the vertex until degree of the

vertex reaches a value given by equation(3.9).

Theorem 3.6. Let U3
n(p1, p2, 0) ∈ Un with p1, p2 be the pendents on u1 and u2, respec-

tively. Then
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(a) For |p1 − p2| ≤ 1 the contribution of u1 and u2 towards F̄ (G̃) is given by

1
4

(n+ 1)2 (n− 3) if n is odd, (3.10)

1
4

(n3 − n2 − 6n− 8) if n is even, (3.11)

(b) For |p1 − p2| > 1 contribution of u1 and u2 towards F̄ (G) will be less than that of

given by expressions (3.10) and (3.11).

Proof. (a) Let U3
n(p1, p2, 0) ∈ Un and n be an odd number then we have p1 = p2 = n−3

2

be the pendents on u1 and u2, respectively. In this case, both of u1 and u2 will have

degree 1
2

(n+ 1) and both will be non-adjacent to 1
2

(n− 3). Thus contribution of

both of u1 and u2 towards F-coindex given by

= 2.

(
1

2
(n+ 1)

)2(
n− 3

2

)
=

1

4
(n+ 1)2 (n− 3) .

This proves the result when n is odd. Now let’s assume that U3
n(p1, p2, 0) ∈ Un and n

be an even number. Here u1 and u2 have p1 = 1
2

(n− 2) and p2 = 1
2

(n− 4). In this

case contribution of both of u1 and u2 towards F-coindex given by 1
4

(n3 − n2 − 6n− 8).

(b) Let m ≥ 1 be any positive integer and we assume that n is odd without loss of

generality such that pendent at vertex u1 are p1 = n−3
2

+ m and similarly for u2,

p2 = n−3
2
−m. It is easy to see that

du1 =
n+ 1

2
+m and du2 =

n+ 1

2
−m.

Note that

Nu1 =
n+ 1

2
−m and Nu2 =

n+ 1

2
+m.

So the contribution of u1 and u2 for F̄ (G̃) in this case, is given by

=

(
n+ 1

2
+m

)2(
n+ 1

2
−m

)
+

(
n+ 1

2
−m

)2(
n+ 1

2
+m

)

=
1

4
(n+ 1)2(n− 3)− [nm2 + n2m+ nm+ 5m2]
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Using equation(3.10), it is obvious that if we have unequal degrees of two vertices

that there contribution towards F̄ (G̃) reduces.

It is important to note here that if one vertex have degree du∗ given by (3.9) then

maximum possible degree of any other vertex, say u∗∗ in a unicyclic graph would be

n − 3 − du∗ . Theorem 4.5 says that the contribution both of u∗ and u∗∗ towards F̄ (G̃)

would be less than that if both vertices having degrees states in Theorem 4.5.

Theorem 3.7. Let Uk
n(p1, p2, · · · , pk) ∈ Uk

n such that |pi − pj| ≤ 1, for 1 ≤ i, j ≤ k, then

k = 2n
n−4

maximizes F-coindex of unicyclic graph.

Proof. Without loss of generality we assume n such that each vertex has equal vertices

that is 1
k

(n− k). It is obvious from the structure of Uk
n(p1, p2, · · · , pk) that there would

be (n− k) vertices of degree 1 and k vertices of degree 1
k

(n+ k) as shown in Figure 3.2.

Figure 3.2: Uk
n(p1, p2, · · · , pk) with pi = 1

k
(n− k), for 1 ≤ i ≤ k.

From the Figure 3.2, we can have the following table Using the formula given by
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du Nu Frequency

1 n− 2 n− k
n−k
k

+ 2 n(k−1)−2k
k

k

Table 3.1: For Uk
n(p1, p2, · · · , pk) with pi = 1

k
(n− k), for 1 ≤ i ≤ k.

equation(3.6), we get

F̄
(
Uk
n (p1, p2, · · · , pk)

)
= k

[
n− k
k

+ 2

]2 [
n(k − 1)− 2k

k

]
+
[
(1)2(n− k)(n− 2)

]
=

1

k2

[
k3(n− 2) + k2(2n2 − 5n) + k(n3 − 4n2)− n3

]
+ n2 − kn− 2n+ 2k

=
1

k

(
n3 − 4n2

)
− n3

k2
+ (3n2 − 7n)

In order to get the value of that maximizes F̄
(
Uk
n (p1, p2, · · · , pk)

)
we proceeds as follows.

dF̄

dk
= 0 implies that k =

2n

n− 4
.

Also note that for k = 2n
n−4

, we have d2F̄
dk2

< 0. This means that k = 2n
n−4

maximizes

F̄
(
Uk
n (p1, p2, · · · , pk)

)
.

We know that k must be a positive integer. From the expression k = 2n
n−4

, it can be

seen that for large value of n is close to 2 but for some values of n, k tends towards 3.

Theorem 3.8. For n ≥ 28, let U3
n(p1, p2, 0) ∈ Uk

n , with p1, p2 ∈
{
bn−3

2
c, dn−3

2
e
}

, such that

p1 + p2 = n− 3. In this case

F̄
(
U3
n(p1, p2, 0)

)
=

 1
4

(n− 3) (n2 + 6n+ 9) if n is odd,

1
4

(n3 + 3n2 − 10n− 32) if n is even.
(3.12)

Furthermore, values given by equation(3.12) are maximum F-coindex for family of uni-

cyclic graph with n ≥ 28.

Proof. Let U3
n(p1, p2, 0) ∈ Uk

n , with p1, p2 ∈ N such that p1 + p2 = n− 3 and

|p1 − p2| =

 1 if n is even,

0 if n is odd,
for n ≥ 28.
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The structure of such graphs is shown in figure below.

Figure 3.3: U3
n(p1, p2, 0), n ≥ 28.

From Figure 3.3 we have the data in Table 3.2 and Table 3.3. In this case F-coindex is

obtained by adding (n− 3) (n+ 2) the contribution of pendents and degree 2 vertices in

equation(3.10) and equation(3.11), respectively for odd and even values of n. Thus Using

du Nu Frequency

1 n− 2 n− 3

2 n− 3 1

1
2

(n+ 1) 1
2

(n− 3) 2

Table 3.2: For U3
n(n−3

2
, n−3

2
, 0).

du Nu Frequency

1 n− 2 n− 3

2 n− 3 1

n
2

1
2

(n− 2) 1

1
2

(n+ 2) 1
2

(n− 4) 1

Table 3.3: For U3
n(n−2

2
, n−4

2
, 0).

the table given above we may write

F̄
(
U3
n(p1, p2, 0)

)
=

 1
4

(n− 3) (n2 + 6n+ 9) if n is odd,

1
4

(n3 + 3n2 − 10n− 32) if n is even.
(3.13)

It can easily be verified that F̄ (U3
n(p1, p2, 0)) given by eq(3.13) is maximum by using

Theorem 4.5 and Theorem 4.6.

Theorem 3.9. For 11 ≤ n ≤ 27, let U3
n(p1, p2, p3) ∈ Uk

n with pi ∈
{
bn−3

3
c, dn−3

3
e
}

, for

i = 1, 2, 3, such that
∑3

i=1 pi = n− 3 then

F̄
(
U3
n(p1, p2, p3)

)
=


2n3

9
+ 5n2

3
− 7n if n ≡ 0 (mod 3),

6n3

27
+ 5n2

3
− 53n

9
− 4 if n ≡ 1 (mod 3),

2n3

9
+ 53n2

27
− 7n− 22

9
if n ≡ 2 (mod 3).

(3.14)
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Proof. For 11 ≤ n ≤ 27, let U3
n(p1, p2, p3) ∈ Uk

n with p1, p2, p3 ∈ N such that p1 +p2 +p3 =

n− 3 then we have following three possible cases for p1, p2 and p3.

Case(I) When n ≡ 0 (mod 3), then p1 = p2 = p3 = n−3
3

.

Case(II) When n ≡ 1 (mod 3), then p1 = dn−3
3
e and p2 = p3 = bn−3

3
c.

Case(III) When n ≡ 2 (mod 3), then p1 = p2 = dn−3
3
e and p3 = bn−3

3
c.

Now we consider each case separately, to find the F-coindex of U3
n(p1, p2, p3) for 11 ≤ n ≤

27. Case(I): When n ≡ 0 (mod 3), then p1 = p2 = p3 = n−3
3

. In this class we discuss all

Figure 3.4: U3
n(p1, p2, p3)

that graphs for 11 ≤ n ≤ 27 when n is divided by 3 with remainder is 0, that is, n = 3k,

for k = 4, 5, · · · , 9. For such graphs degree of each vertex of cycle is given by n+3
2

and

there are (n− 3) are pendent vertices. From the figure we have the following table.

du Nu Frequency

n+3
3

2
3
(n− 3) 3

1 n− 2 n− 3

Table 3.4: For U3
n(p1, p2, p3).

Using the formula given by eq(3.6), and the above table we get

F̄ (G̃) = 3.

(
n+ 3

3

)2(
2

3
(n− 3)

)
+ (n− 2) (n− 3)
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du Nu Frequency

1
3

(n+ 2) 1
3

(2n− 5) 2

1
3

(n+ 5) 2
3
(n− 4) 1

1 n− 2 n− 3

Table 3.5: For U3
n(p1, p2, p3).

Simplification of the above equation gives

F̄ (G̃) =
2n3

9
+

5n2

3
− 7n (3.15)

Case(II): When n ≡ 1 (mod 3), then p1 = n−1
3

and p2 = p3 = n−4
3

, for n = 3k+ 1 where

k = 4, 5, · · · , 8.

In this case we have following values of degrees, non-adjacent vertices and frequencies.

Using the formula given by eq(3.6) and the above table we get

F̄ (G̃) = 2

(
n+ 2

3

)2(
2n− 5

3

)
+

(
n+ 5

3

)2(
2n− 8

3

)
+ (n− 3) (n− 2)

After simplifying last equation we obtain

F̄ (G̃) =
6n3

27
+

5n2

3
− 53n

9
− 4 (3.16)

Case(III): In the last case we consider the family of unicyclic graphs U3
n(p1, p2, p3) ∈ Uk

n

with n ≡ 2( (mod 3)). Here p1 = p2 = n−2
3

and p3 = n−5
3

where n = 3k + 2 for

k = 4, 5, · · · , 8. It’s easy to construct the following table.

du Nu Frequency

1
3

(n+ 4) 1
3

(2n− 7) 2

1
3

(n+ 1) 2
3

(n− 2) 1

1 n− 2 n− 3

Table 3.6: For U3
n(p1, p2, p3).

Using the formula given by eq(3.6), and the above table we get

F̄ (G̃) = 2

(
n+ 4

3

)2(
2n− 7

3

)
+

(
n+ 1

3

)2(
2n− 4

3

)
+ (n− 3) (n− 2)
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Thus we obtain

F̄ (G̃) =
2n3

9
+

53n2

27
− 7n− 22

9
(3.17)

Theorem 3.10. Let U3
n(p1, p2, p3) ∈ Uk

n with pi ∈
{
bn−3

3
c, dn−3

3
e
}

, for i = 1, 2, 3, such

that p1 + p2 + p3 = n− 3 then F̄ (U3
n(p1, p2, p3)) has maximum F-coindex for the family of

unicyclic graphs with 11 ≤ n ≤ 27.

Proof. By Theorem 4.6, we know that k = 2n
n−4

maximizes F-coindex of unicyclic graph.

This value must be integer as it represents number of vertices on which we should divide

pendent vertices. The value 0f k given in Theorem 4.6 is close to 3 when n = 11 and

it decreases as we increase n. Therefore, we can compare F-coindex of both values of k,

that is, k = 2 and k = 3.

Figure 3.5: U3
n(p1, p2, p3) and U3

n(p1, p2, 0)

Without loss of generality we assume that n − 3 is even and divisible by 3 as well it is

equivalent to say that n is odd and divisible by 3. As it is evident from the Figure or

table below, that both U3
n(p1, p2, p3) and U3

n(p1, p2, 0) have same pendent vertices with

same number of non-adjacent vertices.

Therefore, contribution of pendent vertices would be same in both cases. It means

that we should compare the contribution of other vertices for F-coindex of U3
n(p1, p2, p3)
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du Nu Frequency

n+3
3

2
3
(n− 3) 3

1 n− 2 n− 3

Table 3.7: For U3
n(n−3

3
, n−3

3
, n−3

3
).

du Nu Frequency

1 n− 2 n− 3

2 n− 3 1

n+1
2

n−3
2

2

Table 3.8: For U3
n(n−3

2
, n−3

2
, 0).

and U3
n(p1, p2, 0). As we can see that in U3

n(p1, p2, p3) there are 3 vertices, say u1, u2 and

u3, with degree n+3
3

with non-adjacent vertices 2(n−3)
3

.

F̄ui =
2

9
(n+ 3)2 (n− 3) , for i = 1, 2, 3, (3.18)

here F̄ui for i = 1, 2, 3, represents contribution of u1, u2 and u3 towards F̄
(
U3
n(n−3

3
, n−3

3
, n−3

3
)
)
.

Similarly, for U3
n(p1, p2, 0) contribution of v1, v2 and v3 is given by

F̄vi =
1

4
(n− 3)

(
n2 + 2n+ 17

)
, for i = 1, 2, 3, (3.19)

here F̄vi for i = 1, 2, 3, represents contribution of v1, v2 and 3 towards F̄
(
U3
n(n−3

2
, n−3

2
, 0)
)
.

By analyzing eq(3.18) and eq(3.19), we have

F̄ui = F̄vi for n = 27, and F̄ui > F̄vi for 11 ≤ n < 27. (3.20)

In general we can write
F̄ (U3

n(p1, p2, p3)) > F̄ (U3
n(p1, p2, 0)) for 11 ≤ n < 27,

F̄ (U3
n(p1, p2, p3)) = F̄ (U3

n(p1, p2, 0)) for n = 27,

F̄ (U3
n(p1, p2, p3)) < F̄ (U3

n(p1, p2, 0)) for n > 27.

(3.21)

Therefore, for 11 ≤ n ≤ 27, F̄ (U3
n(p1, p2, p3)) has maximum F-coindex for the family of

unicyclic graphs.

Summary of the Results

In this chapter, we introduce an alternative form of F-coindex of graphs. We use this form

to study different properties of unicyclic graphs. We also calculate maximum F-coindex

of minimum F-coindex for the family of unicyclic graphs.
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Chapter 4

F-coindex of Some Dendrimers

Structure with Alternative Formula

Dendrimers are deeply expanded natural macromolecules with continuous layers of branch

units covering the central context. These particles are essential to nanotechnology and can

be widely used. Nanobiotechnology is a fast-growing region of rational and innovative use

instruments and processes for nanofabrication to create gadgets for the testing of biological

systems. In this emerging field of science dendrimers are crucial as well as fundamental

elements. In fact, it is a molecule which is actually synthesized or produced from the

expanded units which are known as monomers using nanoscale in the process of making.

Now a days, dendrimers are recognized as one of the large scale commercially available

nanoscale, complex and huge particles with large visible compound. Moreover, due to

the magnificent three dimensional branched design the dendrimers are almost ideal for

macromolecules. These macromolecules comprises of three main building blocks, one of

them is core, the second one is branches and third is the end groups. New branches from

the main center are inserted in the steps until a tree-like structure is formed. For some

different applications regarding dendrimers, we refer to [81]. Y et. al read the F index of

some dendrimers in [74]. To date, the study of the F-index of specialized chemicals and

nano-structures has been severely limited. Therefore, we are interested in studying the
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mathematical properties of F-coindex of some dendrimers. In this thesis, we determine

F-coindex of poly (propyl) ether mines, porphyrin, and zinc-porphyrin dendrimers.

4.1 Some Families of Nanostar Dendrimers

The use of nanostar dendrimers is not limited to drug delivery or diagnosis, it is now

expanded into genetic delivery, mixing, targeting other biological applications. Graovac et

al. find the fifth geometric arithmetric index for nanostar dendrimers. To date, the study

of the F-index of special chemical and structural components is very limited. Nilanjan De

presented the direct F-index and F-polynomial presentations of the six unlimited classes

of nanostar dendrimers. Thus, we are interested in studying the mathematical properties

of F-coindex for some nanostar dendrimers.

4.2 F-coindex of type-I nanostar dendrimers (D1[k])

The structures of Type-I nanostar dendrimer, for k = 1 and k = 2, are given in Figure 4.1.

It can be seen that order and size of D1[1] are 24 and 27, respectively, where as of D1[2]

its 60 and 67. Generally we can obtain order of D1[k] by 2n(18)− 12 and size of D1[k] is

obtained by 27 + 42(n − 1). Following theorem gives us information about F-coindex of

D1[k] nanostar dendrimers as shown in Figure (4.1).

Theorem 4.1. The F-coindex of nanostar dendrimers D1[k] is denoted by F (D1[k]) and

is given as follows:

F (D1[k]) = 1836(4k)− 2988(2k) + 1224, for k ≥ 1. (4.1)

Proof. As can be seen from Figure 4.1, growth of nanostar dendrimers D1[k] is symmet-

rical. We can use this symmetry to compute F-coindex of D1[k] just by labeling of single

branch of D1[k]. On the basis of frequency, non-adjacency and degree we select two rep-

resentative vertices say u and v, for the central hexagon. Other representatives for the
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Figure 4.1: D1[k] with k = 1 and 2.

branch are labeled as: ai, bi, ci, di where 1 ≤ i ≤ n. Note that ci for 1 ≤ i ≤ n− 1 and cn

would be different. The information required for computation of F-coindex for all these

representatives are given in the Table 4.1 as follows: Now with the help of Table 4.1 and

Representative Degree Frequency Non-adjacency

u 2 3 2k(18)− 15

v 3 3 2k(18)− 16

ai 3 3× 2i−1 2k(18)− 16

bi 2 6× 2i−1 2k(18)− 15

ci(i 6= k) 3 6× 2i−1 2k(18)− 16

cn 2 6× 2k−1 2k(18)− 15

di 2 3× 2i−1 2k(18)− 15

Table 4.1: Degrees, frequencies and non-adjacencies of the representative vertices of D1[k].

formula given by eq(3.6) we can write the F-coindex of D1[1] as follows.

F (D1[1]) = 22 × 3× 21 + 32 × 3× 20 + 32 × 3× 20 + 22 × 6× 21 + 22 × 6× 21 + 22 × 3× 21 = 2592
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The F-coindex of D1[k] for n ≥ 2 can be written as follows.

F (D1[k]) =4 ·
(
2k(18)− 15

)
·

(
3 + 6 ·

(
k∑
i=1

2i−1

)
+ 3 ·

(
k∑
i=1

2i−1

)
+ 6× 2k−1

)

+9 ·
(
2k(18)− 16

)(
3 + 3 ·

(
k∑
i=1

2i−1

)
+ 6 ·

(
k−1∑
i=1

2i−1

)) (4.2)

From well known formula for sum of geometric series we can write(
k∑
i=1

2i−1

)
= 2k − 1 and

(
k−1∑
i=1

2i−1

)
= 2k−1 − 1. (4.3)

Using eq(4.3) in eq(4.2) and simplifying we obtain

F (D1[k]) =4 ·
(
2k(18)− 15

)
·
(
3 + 9 ·

(
2k − 1

)
+ 3 · 2k

)
+9 ·

(
2k(18)− 16

) (
3 + 3 ·

(
2k − 1

)
+ 6 ·

(
2k−1 − 1

)) (4.4)

Eq(4.4) may be written as

F (D1[k]) = 24 ·
(
2k(18)− 15

) (
2k+1 − 1

)
+ 54 ·

(
2k(18)− 16

) (
2k − 1

)
Further simplification of the above equation gives F (D1[k]) = 1836(4k) − 2988(2k) +

1224.

4.3 F-coindex of type-II nanostar dendrimers (D2[k])

The structure of D2[k] or type-II nanostar dendrimers is given in Figure 4.2. In case of

D2[k], the order is given by 10(2k+1) + 4(2k+2)− 44.

Theorem 4.2. The F-coindex of nanostar dendrimers D2[k] is denoted by F (D2[k]) and

is given as follows:

F (D2[k]) = −7344 · 4k − 18680 · 2k + 11812, for k ≥ 1. (4.5)

Proof. From Figure 4.2 we can analyze that expansion of D2[k] follows a symmetrical

pattern. Therefore, for the computation of F-coindex for D2[k], labeling of a single branch
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Figure 4.2: D2[k] with k = 1 and 2.

of D2[k] may be used. Following the symmetry of the structure three representatives

namely u, v and w, are needed for central hexagon. The remaining representatives are

divided into two groups. Representatives of first group are labeled as ai, bi, ci, di, ei and

fi for 1 ≤ i ≤ k. The second group of representatives for 1 ≤ i′i ≤ k− 1 are denoted with

the symbols ài, b̀i, c̀i, d̀i, èi, f̀i. The information required for computation of F-coindex is

given in the Table 4.2 and Table 4.3. Note that the order of D2[1] is 28 and

Nu = 27− du for u ∈ D2[1].

Now with the help of Table 4.2 and formula given by eq(3.6) we can write the F-coindex

of D2[1] as follows.

F (D2[1]) = 12 · 26 (2 + 8) + 22 · 25 (2 + 2 + 4) + 32 · 24 (2 + 2 + 2) + 42 · 23 (4) = 3828

In order to calculate F (D2[k]) for k ≥ 2, we have

Nu = 10(2k+1) + 4(2k+2)− 45− du = 36 · 2k − 45− du for u ∈ D2[k].

We have to use the data of both the tables, that is, Table 4.2 and Table 4.3. Hence
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Representative Degree Frequency Non-adjacency

u 2 2 36 · 2k − 47

v 2 2 36 · 2k − 47

w 3 2 36 · 2k − 48

ai 1 2i 36 · 2k − 46

bi 3 2i 36 · 2k − 48

ci 3 2i 36 · 2k − 48

di 2 2i+1 36 · 2k − 47

ei(i 6= k) 3 2i+1 36 · 2k − 48

ek 4 2k+1 36 · 2k − 49

fi(i 6= k) 2 2i+1 36 · 2k − 47

fk 1 2k+2 36 · 2k − 46

Table 4.2: Degrees, frequencies and non-adjacencies of the representative vertices of

D2[k], for 1 ≤ i ≤ k

Representative Degree Frequency Non-adjacency

ái 1 2i+1 36 · 2k − 46

b́i 3 2i+1 36 · 2k − 48

ći 3 2i+1 36 · 2k − 48

d́i 2 2i+2 36 · 2k − 47

éi 2 2i+2 36 · 2k − 47

f́i 3 2i+1 36 · 2k − 48

Table 4.3: Degrees, frequencies and non-adjacencies of the representative vertices of

D2[k], 1 ≤ i ≤ k − 1 and k ≥ 2

the F-coindex of D2[k] for k ≥ 2 can be written as :

F (D2[k]) = 12 ·
(
36 · 2k − 46

)( k∑
i=1

2i + 2k+2 +
k−1∑
i=1

2i+1

)

+ 22 ·
(
36 · 2k − 47

)(
4 +

k∑
i=1

2i+1 +
k−1∑
i=1

2i+1 + 2
k−1∑
i=1

2i+2

)

+ 32 ·
(
36 · 2k − 48

)(
2 + 2

k∑
i=1

2i + 4
k−1∑
i=1

2i+1

)
+ 42 ·

(
36 · 2k − 49

) (
2k+1

)
.

(4.6)
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Using following geometric series sum

k∑
i=1

2i+p = 2p+1
(
2k − 1

)
, for any poitive integer p,

in eq(4.6) and simplifying we obtain

F (D2[k]) =
(
36 · 2k − 46

) (
8 · 2k − 6

)
+ 4 ·

(
36 · 2k − 47

) (
14 · 2k − 20

)
+ 9 ·

(
36 · 2k − 48

) (
12 · 2k − 18

)
+ 32 ·

(
36 · 2k − 49

) (
2k
)

= 36 · 4k (204)− 36 · 2k (248)− 2k (9752) + 11812

(4.7)

after further simplification of above equation, we obtain the F-coindex of D2[k] in the

following form F (D2[k]) = 7344 · 4k − 18680 · 2k + 11812.

4.4 Hetrofunctional Dendrimers

In this section, we study the molecular graph of a class of hetrofunctional dendimers

(HFD).In this thesis we select a HFD(ei)-G3-e(allyl)16-i-(hydroxyl)28 denoted by D[k]

indicated in Fig 4.3.Graphs for different growth stages are shown in Fig. 4.3-4.8. It is

evident that order and size of D[k] are equal i.e.

|V (D[k])| = |E(D[k])|.

The order and size of D[k] is given as:.

|V (D[k])| =


16× 2t+1 + 8× 2t − 38 ifk = 2t, t ≥ 1,

24× 2t+1 − 38 ifk = 2t+ 1, t ≥ 0.

4.5 The F-coindex of Hetrofunctional Dendimers

In this section we compute the F-coindex of hetrofunctional dendimers D[k] as shown in

Fig. 4.3.
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Figure 4.3: D1[k] with k = 1 and 2.

Figure 4.4: D2[k] with k = 1 and 2.

Theorem 4.3. The F-coindex of D[k] for k = 2t+ 1 where t ≥ 0 is given by

F̄ (D[k]) = 9792(22t)− 16092(2t) + 6592.

Proof. As can be seen from the Fig 4.3-4.8 growth of hetrofunctional dendimers D[k] is

symmetrical. We can use this symmetry to compute F-coindex of D[k] just by labeling of

single branch of D[k]. On the basis of frequency, non-adjacency and degree we select repre-

sentative vertices from set of vertices these are labelled as v, w, x, y, ai, bi, ci, di, ei, fi, gi, hi, vi, wi, xi, yi.

Here 1 ≤ i ≤ k−1
2

when k ≥ 3. The information required for computation of F-coindex
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for all these representatives are given in the Table 4.4 as follows:

Representative Degree Frequency Non-adjacency

v 2 4 24(2t+1)− 41

w 3 2 24(2t+1)− 42

x 2 2 24(2t+1)− 41

y(k = 1) 1 2 24(2t+1)− 40

y(k 6= 1) 3 2 24(2t+1)− 42

Table 4.4: The vertices introduced at core (first generation) with their degrees, frequencies

and non adjacencies for k ≥ 1, where k is odd.

when k = 1 then t = 0. using table 4.4 the F-coindex for D[k] can be written as

follows:

F̄ (D[1]) = (22 × 7× 4) + (32 × 6× 2) + (22 × 7× 2) + (1× 8× 2) = 292, (4.8)

Representative Degree Frequency Non-adjacency

ai 2 2i+1 24(2t+1)− 41

bi 3 2i+1 24(2t+1)− 42

ci 2 2i+1 24(2t+1)− 41

di 1 2i+1 24(2t+1)− 40

ei 2 2i+1 24(2t+1)− 41

fi 2 2i+1 24(2t+1)− 41

gi 2 2i+1 24(2t+1)− 41

hi 2 2i+1 24(2t+1)− 41

Table 4.5: The verties introduced at 2nd generation with their degrees, frequencies and

non-adjacencies for k ≥ 3, where k is odd.
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Representative Degree Frequency Non-adjacency

vi 2 2i+1 424(2t+1)− 41

wi 2 2i+1 24(2t+1)− 41

xi 2 2i+1 24(2t+1)− 41

yi(i = t) 1 2i+1 24(2t+1)− 40

yi(i 6= t) 3 2i+1 24(2t+1)− 42

Table 4.6: The vertices introduced at third generation with their degrees, frquencies and

non-adjacencies for k ≥ 3, where k is odd.

when k ≥ 3 then using table 4.4-4.6 the F-coindex of D[k] is written as follows:

F̄ (D[k]) = (22×4×(24(2t+1)−41))+(32×2×(24(2t+1)−42))+(22×4×(24(2t+1)−41))+

(32 × 2× (24(2t+1)− 42)) +
∑t

i=1[(22 × 2i+1 × (24(2t+1)− 41)) + (32 × 2i+1 × (24(2t+1)−

42)) + (22× 2i+1× (24(2t+1)− 41)) + (1× 2i+1× (24(2t+1)− 40)) + (22× 2i+1× (24(2t+1)−

41)) + (22×2i+1× (24(2t+1)−41)) + (22×2i+1× (24(2t+1)−41)) + (22×2i+1× (24(2t+1)−

41))] +
∑t

i=1[(22 × 2i+1 × (24(2t+1) − 41)) + (22 × 2i+1 × (24(2t+1) − 41)) + (22 × 2i+1 ×

(24(2t+1)− 41))] +
∑t−1

i=1[(32 × 2i+1 × (24(2t+1)− 42))] + (1× 2t+1 × (24(2t+1)− 40)),

after simplification we get the following result.

F̄ (D[k]) = 9792(22t)− 16092(2t) + 6592

this completes the proof.

Theorem 4.4. The F-coindex of D[k] for k = 2t , where t ≥ 1 is given by

F̄ (D[k]) = 6880(22t)− 13500(2t) + 6592.

Proof. As can be seen from the Fig 4.3-4.8 growth of hetrofunctional dendimers D[k] is

symmetrical. We can use this symmetry to compute F-coindex of D[k] just by labeling of

single branch of D[k]. On the basis of frequency, non-adjacency and degree we select repre-

sentative vertices from set of vertices these are labelled as v, w, x, y, ai, bi, ci, di, ei, fi, gi, hi, vi, wi, xi, yi.

Here 1 ≤ i ≤ k
2
.
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Representative Degree Frequency Non-adjacency

v 2 4 16(2t+1) + 8(2t)− 41

w 3 2 16(2t+1) + 8(2t)− 42

x 2 2 16(2t+1) + 8(2t)− 41

y 3 2 16(2t+1) + 8(2t)− 42

Table 4.7: The vertices introduced at core (first generation) with their degrees, frequencies

and non-adjacencies for k ≥ 2, where k is even.

Representative Degree Frequency Non-adjacency

ai 2 2i+1 16(2t+1) + 8(2t)− 41

bi 3 2i+1 16(2t+1) + 8(2t)− 42

ci 2 2i+1 16(2t+1) + 8(2t)− 41

di 1 2i+1 16(2t+1) + 8(2t)− 40

ei 2 2i+1 16(2t+1) + 8(2t)− 41

Table 4.8: The vertices introduced at 2nd generation with their degrees, frequencies and

non-adjacencies for k ≥ 2, where k is even.

Representative Degree Frequency Non-adjacency

fi 2 2i+1 16(2t+1) + 8(2t)− 41

gi 2 2i+1 16(2t+1) + 8(2t)− 41

hi(i = t) 1 2i+1 16(2t+1) + 8(2t)− 40

hi(i 6= t) 2 2i+1 16(2t+1) + 8(2t)− 41
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Representatie Degree Frequency Non-adjacency

vi 2 2i+1 16(2t+1) + 8(2t)− 41

wi 2 2i+1 16(2t+1) + 8(2t)− 41

xi 2 2i+1 16(2t+1) + 8(2t)− 41

yi 2 2i+1 16(2t+1) + 8(2t)− 41

Table 4.9: The vertices introduced at third generation with their degrees, frequencies and

non-adjacency for k ≥ 4, where k is even.

Now we take representative from set of vertices which are introduced at k = 3 and

have same degree and non-adjacency. These representatives are labelled as vi, wi, xi, yi.

Here 1 ≤ i ≤ t− 1 and t = k
2

. when k = 2 then t = 1 , using table 4.9 we get;

F̄ (D[2]) = 22×4×39)+(32×2×38)+(22×2×39)+(32×2×38)+(22×4×39)+(32×4×38)+

(22×4×39)+(1×4×40)+(22×4×39)+(22×4×39)+(22×4×39)+(22×4×39)+(1×4×40) =

7736.

when k ≥ 4 then using Table 4.7-4.8-4.9 , the F-coindex of D[k] can be written as follows;

F̄ (D[k]) = (22× 4× (16(2t+1) + 8(2t)− 41)) + (32× 2× (16(2t+1) + 8(2t)− 42)) + (22× 4×

(16(2t+1) + 8(2t)− 41)) + (32× 2× (16(2t+1) + 8(2t)− 42)) +
∑t

i=1[(22× 2i+1× (16(2t+1) +

8(2t)− 41)) + (32× 2i+1× (16(2t+1) + 8(2t)− 42)) + (22× 2i+1× (16(2t+1) + 8(2t)− 41)) +

(1× 2i+1 × (16(2t+1) + 8(2t)− 40)) + (22 × 2i+1 × (16(2t+1) + 8(2t)− 41)) + (22 × 2i+1 ×

(16(2t+1)+8(2t)−41))+(22×2i+1×(16(2t+1)+8(2t)−41))]+
∑t−1

i=1[(22×2i+1×(16(2t+1)+

8(2t)− 41))] + (1× 2t+1× (16(2t+1) + 8× 2t− 40) +
∑t−1

i=1[(22× 2i+1× (16(2t+1) + 8(2t)−

41)) + (22 × 2i+1 × (16(2t+1) + 8(2t)− 41)) + (22 × 2i+1 × (16(2t+1) + 8(2t)− 41)) + (32 ×

2i+1 × (16(2t+1) + 8(2t)− 42))],

after simplification we get the following result.

F̄ (D[k]) = 6880(22t)− 13500(2t) + 6592,

which completes the proof.
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4.6 F-coindex of Poly(Propyl) Ether Imine (PETIM)

Dendrimer

We now compute the F-coindex of Polynomial of Poly(Propyl) Ether Imine (PETIM)

dendrimer in this section. We denote PETIM dendrimer by G[k] where k represents the

kth growth stages of G[k]. The structure of G[k] for k ≥ 1 is shown in Figure 4.5. It is a

tree with order and size given by 24× 2k − 23 and 24× 2k − 24, respectively.

Figure 4.5: Growth of of poly(propyl) ether imine (PETIM) dendrimer at k = 5.

To compute F-coindex for the G[k] shown in Figure 4.5, we have to use Table 4.10 that

contains information about degree, frequency and non-adjacency of the vertices of G[k].

Representative Degree Frequency Non-adjacency

a 1 2k+1 24(2k)− 25

b 2 20(2k)− 21 24(2k)− 26

c 3 2k+1 − 2 24(2k)− 27

Table 4.10: Degrees, frequencies and non-adjacencies of G[k] for k ≥ 1
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Theorem 4.5. Let G̃[k] be the molecular structure of PETIM dendrimer. Then F-coindex

of G[k] denoted by F (G̃[k]) and is given by

F (G̃[k]) = 2400 · 4k − 5064 · 2k + 2670. (4.9)

Proof. Let G̃[k] be the molecular structure of PETIM dendrimer. Depending upon the

structure of G̃[k], edge set V (G̃[k]) may be explained with the help of three representatives,

namely a, b and c. This division is done on the basis of degree of vertices. The degrees of

a, b and c are 1, 2 and 3, respectively. Note that,

Nu = 24(2k)− 24− du, for u ∈ G̃[k],

By using the formula given in eq(??) and data given in Table 4.10, F-coindex of G̃[k] is

obtained as follows:

F (G̃[k]) = 12 ·
(
24 · 2k − 25

)
· 2k+1 + 22 ·

(
24 · 2k − 26

)
·
(
20 · 2k − 21

)
+ 32 ·

(
24 · 2k − 27

)
·
(
2k+1 − 2

)
Simplifying the above equation gives F (G̃[k]) = 2400 · 4k − 5064 · 2k + 2670, which is

required.

4.7 The F-coindex of Porphyrin Dendrimers

The class of porphyrin dendrimers is shown in Figure 4.6 and Figure 4.7, for growth

stages 4 and 16, respectively. It is important to note that porphyrin dendrimers are

mathematically represented by DkPk, where k = 2m for m ≥ 2. Here we present the

F-coindex for Porphyrin dendrimers. The order of DkPk is given by 96k−10, where as its

size is 105k − 11. Based upon the structure of DkPk we need four representatives. These

four representatives and required information for the computation of F-coindex of DkPk

are given in the Table 4.11.
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Figure 4.6: Molecular structure of porphyrin dendrimer D4P4.

Figure 4.7: Molecular structure of porphyrin dendrimer D16P16.

Theorem 4.6. Let DkPk be a Porphyrin dendrimer, then F-coindex of DkPk denoted by

F (DkPk) and is given by

F (DkPk) = 52032k2 − 12328k + 668

Proof. Let DkPk be a Porphyrin dendrimer, four representatives v, w, x and y of DkPk

and their degrees, frequencies and non-adjacencies are given in the Table 4.11. Using

eq(3.6) and Table 4.11 we have
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Representative Degree Frequency Non-adjacency

v 1 26k 96k − 12

w 2 34k − 8 96k − 13

x 3 28k − 2 96k − 14

y 4 8k 96k − 15

Table 4.11: Degrees, frequencies and non-adjacencies for the representatives in DkPk

F ((DkPk) =
(
12 · (96k − 12) · 26k

)
+
(
22 · (34k − 8) · (96k − 13)

)
+
(
32 · (28k − 2) · (96k − 14)

)
+
(
42 · (96k − 14) · 8k

)
On simplifying the above equation we obtain the required result, that is, F (DkPk) =

52032k2 − 12328k + 668.
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4.8 The F-coindex of ZincPorphyrin Dendrimer

The class of dendrimer zinc-porphyrin is denoted by DPZk and is shown in Figure 4.8.

Representative vertices and their degrees, frequencies and non-adjacencies are given in

the Table 4.12.

Figure 4.8: Molecular structure of dendrimer zinc porphyrin DPZ4.

Representative Degree Frequency Non-adjacency

e 2 44× 2n − 12 56(2n)− 10

f 3 12× 2n + 4 56(2n)− 11

g 4 1 56(2n)− 12

Table 4.12: Degrees, frequencies and non-adjacencies for the representatives in DPZk for

k ≥ 1.

Theorem 4.7. Let DPZk be a zinc-porphyrin dendrimer,then F-coindex of DPZk denoted

by F (DPZk) and is given by

F (DPZk) = 15904(22k)− 348(2k)− 108
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Proof. Let DPZk be a zinc-porphyrin dendrimer, representative vertices e, f, g depending

upon degrees are given in the Table 4.12. With the help of eq(3.6) and the Table 4.12 we

have

F (DPZk) =22 ·
(
44 · 2k − 12

)
·
(
56 · 2k − 10

)
+ 32 ·

(
12 · 2k + 4

)
·
(
56 · 2k − 11

)
+ 42 ·

(
56 · 2k − 12

)
simplification gives us following expression F (DPZk) = 15904(22k)− 348(2k)− 108.

4.9 Conclusions

To deal with novel diseases, due to continuous growth of viruses, the development of

new drugs is of prime significance. To test and predict chemical properties of these new

drugs concept of topological indices is very useful especially for developing countries.

In this paper, we achieved the forgotten coindex of dendrimers that are very vital for

targeted delivery for cancer therapy. These results may be used in material engineering,

pharmaceutical and chemical industries.
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and Clarstructure-based parameters. Monatshefte fur Chemie, 137, 1127− 1138.

[39] E, L. Angelina., D, J. R. Duarte., and N. M. Peruchena. (2013). Is the decrease of the

total electron energy density a covalence indicator in hydrogen and halogen bonds.

Journ. Mol. Mod, 19, 2097− 2106.

[40] L, Türker., I,Gutman. 2005. Iterative estimation of total π-electron energy. Journ.

Serb. Chemi. Soci, 70, 1193− 1197.

[41] N, C. Jones., D, Field., and J,P. Ziesel. (2008). Low-energy total electron scattering

in the methyl halides CH3Cl, CH3Br and CH3I. Inter. Jour. Mas. Spectro, 277, 1−3,

91− 95.

59
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