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Abstract

In this academic research we generalized the Duhamel’s principle and extended this

principle for the higher order integer and fractional psi differential equation subject to

suitable initial conditions. Furthermore, as application of the generalized Duhamel’s

principle, some notions like stability, existence and uniqueness of the solutions of the

generalized fractional differential equation with initial conditions is investigated. In

order to approximate the solutions of the generalized nonlinear fractional differential

equation with initial conditions, we introduce a new numerical technique combining

the Haar wavelets and Duhamel’s principle called Haar-Duhamel’s method.
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Chapter 1

Introduction

1.1 Fractional Calculus

The idea of calculus occurs when the concept of derivative arises. The definition of

derivative that is used now a days was given by Newton in 1666 [1]. The researchers

were developed many physical or geometrical interpretation from the derivative and

integration. The integral of a function is the area under the cure [2]. This type of cal-

culus was developed widely over three or four centuries. Now a days, many scientists

can understand or describe the physical facts with an ordinary differential equation.

If we generalize the ordinary calculus i.e. derivative and integration of integer order

to arbitrary non-integer value, we get the fractional calculus i.e. fractional derivative

and integration. We defined the fractional calculus as: the branch of mathematics in

which we study the properties of fractional derivative and fractional integral is called

fractional calculus.

In 1695, Leibniz derived the nth order derivatives formula i.e dn

dxn
. After his publica-

tion of the nth derivatives formula, L-Hospital rises a question to Leibniz that if we

take n=1/2 what will be the result? This question was the beginning of the fractional

calculus. L-Hospital’s reply: “An apparent paradox, from which one day very use-

ful results will be drawn.” After that time fractional calculus was developed by many

mathematicians. Bertram Ross is the first person who done his Ph.D. on the fractional

calculus. In 1974, Keith B. Oldam and Jerome Spanier published the monograph and

they devoted their publications to the Fractional calculus ([3]). Now a days,many
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books, journals, articles and conferences held on the fractional calculus and its appli-

cations and properties. Many well-known mathematicians Riemann, Liouville, Caputo,

Hadamard and Grunwald work in the field of fractional calculus, they also give their

own definitions in fractional calculus. There are different definitions in the fractional

calculus but Riemann-Liouville integral and derivative are the most famous. Later,

a mathematician Caputo gives another definition of fractional derivative to solve the

fractional order differential equation Which is the more generalized form of Riemann-

Liouville derivative. On the bases of Leibniz’s answer studies over 200-300 years and

has proved many concepts right.

In this chapter introduction to the theory of fractional calculus, some basic preliminar-

ies and major results already obtained. Also, we will define some special functions. We

review literature and research about the fractional derivative and integral with respect

to another function and generalized Laplace transform. Its properties and some results

are also given. We will give examples to understand the concept of the given result.

In chapter 2, we generalized Duhamel’s principle for ψ operator. We will also give its

examples to understand the concept of this famous principle.

In chapter 3, the applications of the generalized Duhamel’s principle that is the stabil-

ity and existence of the solutions of the solutions of generalized fractional differential

equation (FDE) .

In chapter 4, we review literature and research about wavelet, Haar wavelet, the Haar

matrix and the integration matrix. We also approximate function by Haar wavelet and

error analysis. Also develop Haar-Duhamel’s method to solve the fractional differential

equation (FDEs).

1.2 Special Functions

There are many special functions that are very helpful for solving the problems of

fractional differential equations. In this section, the definitions of some of the special

functions and their properties are discussed.
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1.2.1 Gamma Function

Many well-known mathematicians studied the Gamma function. The Gamma function

is represented by Γ. It is the generalization of the factorial function (i.e Γ(m+ 1) = m!

for m ∈ N). The gamma function Γ : (0,+∞)→ R is defined as:

Γ(w) =

∫ ∞
0

(s)w−1e−sds, w > 0. (1.1)

The integral in equation (1.1) is convergent for Re(w) > 0. There are many properties

of the Gamma function, but we list few of them [4].

Figure 1.1: The Gamma function for real argument
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• Properties

Γ(m+ 1) = m!

Γ(
1

2
) =
√
π

Γ(w + 1) = wΓ(w).

(a) Duplication formula

(2)2w−1Γ(w)Γ(w +
1

2
) =
√
πΓ(2w).

(b) Reflection formula

Γ(w)Γ(1− w) =
π

sin(πw)
.

If w 6= 0

Γ(w) =
Γ(w + 1)

w
(1.2)

Right hand side of the equation (1.2) is defined for w > 0. Now, If w 6= 0, w 6= −1,

we have

Γ(w) =
Γ(w + 2)

w(w + 1)
. (1.3)

The equation (1.3) is valid for w > −2, as w 6= 0,−1. The process is repeated q-times,

we get

Γ(w) =
Γ(w + q)

(w + q − 1)(w + q − 2)...(w + 1)w
, w 6= 0,−1,−2, ...

Thus the domain of the Gamma function is w ∈ R \ {0,−1,−2,−3, ....}.
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1.2.2 Beta Function

The name of the Beta function is used by the Legendr and Whittakar and Waston

1990. It is defined by the following definite integral:

B(m,n) =

∫ 1

0

tm−1 (1− t)n−1 ds, Re(m) > 0, Re(n) > 0. (1.4)

Sometimes, we replace the Beta function by the Gamma function with a relation that

is [4]:

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
.

1.2.3 Mittage-Leffler Function

G.M Mittag-Leffler was a Swedish mathematician who defined and studied the Mittag-

Leffler function in 1903 [5]. Generally, it is the parameterized form of the exponential

function. It has vast applications in the area of applied sciences, engineering and

mathematics.

Definition 1.2.1. The Mittage-Leffler function of order one is defined as [5]:

Eγ(w) =
∞∑
q=0

wq

Γ(γq + 1)
, γ ∈ R, w ∈ C.

Later, Agarwal introduced the second order Mittage-Leffler function, which is de-

fined as following:

Definition 1.2.2. For γ, η ∈ R and w ∈ C, the Mittage-Leffler function of second

order is given as

Eγ,η(w) =
∞∑
q=0

wq

Γ(γq + η)
.

If η = 1, then we get Eγ,1(w) that is written as Eγ(z).

• Some special cases
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Figure 1.2: The Mittag-leffler function for different values of γ and η.

E1(w) = ew,

E2(w) = cosh(
√
w),

E1,0(w) = wew,

E1,2(w) =
ew − 1

w
,

E2,2(w) =
sinh(

√
w)√

w
.

Remark 1.2.1. If |arg(w)| ∈ [µ, π] and w →∞
then

Eγ,η(w) = −
m∑
i=2

w−i

Γ(η − γi)
+O(|w|−1−m).

where m ≥ 2 is any integer.

7



Theorem 1.2.1. The following relations hold for γ > 0, η > 0;

Eγ,η(w) = wEγ,γ+η(w) +
1

η
. (1.5)

dn

dwn
[
wη−1Eγ,η(w

γ)
]

= wη−n−1Eγ,η−n(wγ). (1.6)

Eγ,η(w) = ηEγ,η+1(w) + γw
d

dw
Eγ,η+1(w). (1.7)

1.3 Fractional integral and derivatives

In this section we will discuss some important definitions and results for fractional

integral and derivatives.

1.3.1 Riemann-Liouville integral

With the help of Cauchy integral formula, we can define fractional integrals and deriva-

tives. So, first we defined the Cauchy iterative integral formula as:

Jm
b h(x) =

∫ x

b

(x− t)m−1

(m− 1)!
h(t)dt, (1.8)

where m ∈ N and h ∈ L1[b, c], b, c ∈ R.

If we use (m − 1)! = Γ(m) and replace m with any positive real number γ > 0 in

equation (4.1). Then we get the definition of integral fractional.

Definition 1.3.1. The Riemann-Liouville integral J γ
b of fractional order γ ∈ R+ as:

J γ
b h(x) =

∫ x

b

(x− t)γ−1

Γ(γ)
h(t)dt, (1.9)

where h ∈ L1[b, c], and b ≤ x ≤ c.

The Riemann-Liouville fractional integral of the function h(s) = sη for γ > 0, and

η > −1, is given as

J γ
0 s

η =
1

Γ(γ)

∫ s

0

(s− t)γ−1 (s)ηdt.
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Substitute v = s−t
s

as t→ 0, v → 1 and as t→ s, v → 0,so, sdv = −dt

J γ
0 s

η =
1

Γ(γ)

∫ 1

0

(sv)γ−1 (s− sv)η sdv

=
sγ+η

Γ(γ)

∫ 1

0

(v)γ−1 (1− v)η+1−1 dv

=
sγ+η

Γ(γ)
β(γ, η + 1).

Using β(γ, η + 1) = Γ(γ)Γ(η+1)
Γ(γ+η+1)

, we obtained

J γ
0 s

η =
Γ(η + 1)

Γ(γ + η + 1)
sγ+η. (1.10)

Example 1.3.2. Consider that h(s) = s
1
2 , then by equation (1.10) the R-L integral of

h(s) is

J γ
0 s

1
2 =

Γ(1
2

+ 1)

Γ(1
2

+ γ + 1)
s

1
2

+γ

=

√
π

2Γ(3
2

+ γ)
s

1
2

+γ.

(1.11)

Now, we consider some cases i.e.

For γ =
1

2
; J

1
2

0 s
1
2 =

√
πs

2Γ(2)
≈ 0.8862s.

For γ =
3

2
; J

3
2

0 s
1
2 =

√
πs2

2Γ(3)
≈ 0.4431s2.

For γ =
5

2
; J

5
2

0 s
1
2 =

√
πs3

2Γ(4)
≈ 0.1477s3.

For γ =
7

2
; J

7
2

0 s
1
2 =

√
πs4

2Γ(5)
≈ 0.0369s4.

These integrals are plotted in the Figure1.3.

• Properties

(a) Identity operator

If we take γ = 0, then we obtain the identity operator that is I0
ah = h.
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Figure 1.3: The R-L integral of h(s) = s
1
2 are shown.

(b) Linearity

If functions g(s) and h(s) are continuous ∀ s ≥ 0. For some γ > 0 and µ ∈ C.

Then

J γ
b (µg(s) + h(s)) = µJ γ

b g(s) + J γ
b h(s).

(c) Semi group law

If a function h(s) is continuous ∀ s ≥ 0.

J γ
b (J η

b h(s)) = J γ+η
b h(s) = J η

b (J γ
b h(s)) . ∀ γ, η ∈ R+.

Lemma 1.3.1. If the function h(s) is continuous for all s ≥ 0 and the integral J n
b

10



exists. Then

J n
b D

nh(s) = h(s)−
n−1∑
q=0

(s− b)q

q!
Dqh(b).

1.3.2 Riemann-Liouville Derivative

After defining the fractional integral, Now we introduce the fractional derivative. There

are variety of derivatives definitions. But here we discuss the Riemann-Liouville and

Caputo fractional differential operators [6]-[7].

Definition 1.3.3. The Riemann-Liouville derivative of a function h ∈ L1[b, c] of frac-

tion order γ ∈ R+ is defined as:

Dγ
b h(s) = Dk

bJ k−γh(s).

If we use the equation (1.9), then we obtained

Dγ
b h(s) =

1

Γ(k − γ)

dk

dsk

∫ s

b

(s− x)k−γ−1 h(x)dx.

where γ = dke.

For η > −1 and γ > 0, the Riemann-Liouville derivative of the function h(s) =

(s− b)η is obtained by using definition (1.3.3), we have

Dγ
b h(s) = DnJ n−γ

b h(s)

= DnJ n−γ
b (s− b)η .

Substituting equation (1.10), we get

Dγ
b h(s) =

Γ(η + 1)

Γ(η − γ + n+ 1)
Dn (s− b)n−γ+η .

Applying Dnsm = Γ(m+1)
Γ(m−n+1)

sm−n, we obtained

Dγ
b h(s) =

Γ(η + 1)

Γ(η − γ + 1)
(s− b)η−γ . (1.12)

Example 1.3.4. Make use of the equation (1.12), we have

D
1
2
0 s

3
2 =

Γ(3
2

+ 1)

Γ(3
2
− 1

2
+ 1)

(s)
3
2
− 1

2

=
3

4

√
πs.
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• Properties

(a) Identity law

If a function h ∈ L1[b, c] and γ ∈ (k − 1, k], then

Dγ
bJ

γ
b h = h.

(b) Linearity

If the functions g, h ∈ L1[b, c], andDγ
b g(s) andDγ

b h(s) exists for γ ∈ (k − 1, k] , k ∈
N, µ ∈ C. Then the Riemann-Liouville derivative is linear i.e.

Dγ
b (µg(s) + h(s)) = µDγ

b g(s) +Dγ
b h(s).

(c) Semi group property

If a function h(s) is such that the operatorDγ
b h(s) is exists for all γ ∈ (k − 1, k] , k ∈

N. Then in general

Dγ
b (Dη

bh) = Dγ+η
b h 6= Dη

b (Dγ
b h) .

Hence, the Riemann-Liouville derivative are not commutative i.e.

Dγ
b (Dη

bh) 6= Dη
b (Dγ

b h) .

Lemma 1.3.2. Suppose that J k−γ
b h is integrable for γ > 0, k = dγe. Then

J γ
b D

γ
b h(s) = h(s)−

n−1∑
q=0

(s− b)γ−q−1

Γ(γ − q)
lim
s→b

Dn−q−1J n−γ
b h(s).

1.3.3 The Caputo fractional differentiation operator

The Italian mathematician Caputo reformulated the definition of Riemann-Liouville

derivative to give another definition for fractional derivative [8].

Definition 1.3.5. The Caputo fractional derivative of order γ ∈ R+ is defined as:

cDγ
b h(t) = J q−γ

b Dqh(t)

=
1

Γ(q − γ)

∫ t

b

dq

dηq
h(η)

(t− η)γ+1−q dη,
(1.13)

where η ∈ (q − 1, q), and if η = q ∈ N then we obtained dq

dtq
.
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Lemma 1.3.3. Consider that h(t) = (t− b)ρ for some ρ ∈ R. Then

cDγ
b h(t) =

{
Γ(ρ+1)

Γ(ρ−γ+1)
(t− b)ρ−γ ; γ ∈ (n− 1, n) , ρ > n− 1

0; γ ∈ (n− 1, n) , ρ ≤ n− 1.
(1.14)

• Properties

(a) Linearity

If the derivatives cDγ
b g and cDγ

b h exists. Then Caputo derivatives are linear i.e

cDγ
b (kg(s) + h(s)) = kcDγ

b g(s) + cDγ
b h(s), γ > 0, k ∈ C.

(b) Semi group law

The semi group law does not hold for the Caputo derivative, if the derivatives

cDγ
b and cDη

b exist then

cDγ
b (cDη

bh) = cDγ+η
b h 6= cDη

b (cDγ
b h) .

Hence, the Caputo fractional derivative are non-commutative.

Example 1.3.6. Consider that n− 1 < γ ≤ n and h(t) = t
3
2 . Then, by using Lemma

(1.3.3), we obtain

cDγ
0 t

3
2 =

Γ(3
2

+ 1)

Γ(3
2
− γ + 1)

t
3
2
−γ,

=
3
4

√
π

Γ(5
2
− γ)

t
3
2
−γ, (1.15)

Now, we consider some cases for fixed values of γ i.e. γ = 2
3
, γ = 5

4
, γ = 7

6
and γ = 9

7
.

For γ =
2

3
, cD

2
3
0 t

3
2 =

3
4

√
π

Γ(5
2
− 2

3
)
t
3
2
− 2

3 = 1.2000t
5
6 .

For γ =
5

4
, cD

5
4
0 t

3
2 =

3
4

√
π

Γ(5
2
− 5

4
)
t
3
2
− 5

4 = 1.4131t
1
4 .

For γ =
7

6
, cD

7
6
0 t

3
2 =

3
4

√
π

Γ(5
2
− 7

6
)
t
3
2
− 7

6 = 1.4886t
1
3 .

For γ =
9

7
, cD

9
7
0 t

3
2 =

3
4

√
π

Γ(5
2
− 9

7
)
t
3
2
− 9

7 = 1.4536t
13
18 .
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Figure 1.4: The Caputo fractional derivatives of h(t) = t
3
2

Theorem 1.3.1. Assume that h ∈ L1[b, c] such that the derivatives cDγ
b h and Dγ

b h

exists, for γ ∈ R+ and n = dγe. Then

cDγ
b h(s) = Dγ

b h(s)−
n−1∑
q=0

Dqh(b)

Γ(q − γ + 1)
(s− b)q−γ .

Lemma 1.3.4. If a function h ∈ L1[b, c] and γ ≥ 0. Then

cDγ
bJ

γ
b h = h.

Lemma 1.3.5. Let us consider that γ ∈ R+, n = dγe and h ∈ Cn[b, c]. Then

J γ
b
cDγ

b h(s) = h(s)−
n−1∑
q=0

Dqh(b)

q!
(s− b)q .
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1.3.4 Hadamard operator

Let γ > 0, and the function h(t) ∈ Lp[b, c], then Hadamard integral is defined as [9];

HJ γ
b h(t) =

1

Γ(γ)

∫ t

b

(
ln(

t

x
)

)γ−1
h(x)

x
dx.

and if h ∈ Cm[b, c], then the Hadamard fractional derivative is defined as

HDγb h(t) =

(
t
d

dt

)m
Jm−γ
b h(t),

respectively, where m = dγe+ 1 ∈ N.

1.4 The Laplace transform

In this part, we will discuss the definition, properties and the results of the Laplace

transform [10]. It is used for solving the initial value problem on the domain [0,∞).

Now a days, Laplace transform is used in the areas of mathematics, physics and engi-

neering etc.

Definition 1.4.1. The Laplace transform is defined on (0,∞) for the function g(p) by

L{g(p)} = g(s) =

∫ ∞
0

e−spg(p)dp, Re(s) > 0.

This transform was first discovered by the French mathematician Pierre-simon

Laplace.

Definition 1.4.2. The inverse Laplace transform is defined as:

L−1 {g(p)} =
1

2πi

∫ c+i∞

c−i∞
espf(s)ds, Re(s) > 0.

Lemma 1.4.1 (Properties of Laplace transform). Suppose that the Laplace transform

of functions g(p) and h(p) exists, that is G(s) and H(s) respectively. Then the following

holds [10]:

(a) The Linear property of the Laplace transform is

L{µg(p) + h(p)} = µG(s) +H(s). µ ∈ R.
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(b) The Laplace transform of convolution of g(p) and h(p) is given as

L{g(p) ∗ h(p)} = G(s)H(s).

and the convolution is given as follows:

g(p) ∗ h(p) =

∫ p

0

g(p− ρ)h(ρ)dρ =

∫ p

0

g(η)h(p− ρ)dρ.

(d) The k-times derivative(k ∈ N) of the Laplace transform is stated as:

L
{
g(k)(p)

}
= skG(s)−

n−1∑
q=0

sk−q−1g(q)(0). (1.16)

Example 1.4.3. The Laplace transform of Bessel function of order zero is

L{J0(ap)} =
1√

s2 + a2
.

Lemma 1.4.2 (Laplace transform of the fractional operator). Let us consider that

p > 0 and assume the Laplace transform of g(p) exists [10]. Then the Laplace transform

of the following operator is given as

(a) The Laplace transform of Riemann-Liouville fractional derivative of the order γ > 0

is

L{Dγ
0g(p)} = sγg(s)−

m−1∑
q=0

sm−q−1DqJ n−γ
0 g(p) |p=0 .

(b) If J γ
0 denote the fractional integral, Then its Laplace transform is given by

L{J γ
0 g(p)} =

G(s)

sγ
.

Theorem 1.4.1. If the L{h(t)} exists that is H(s) and p > 0. Then the Laplace

transform of the Caputo fractional derivative is

L{cDγ
0g(p)} = sγG(s)−

m−1∑
q=0

sγ−q−1g(q)(0).
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1.4.1 Application of Laplace transform

Laplace transform are used to solve the initial value problem. we will use classical

Laplace transform to solve ordinary differential equations (ODEs) and partial differen-

tial equations (PDEs).

Example 1.4.4. Consider the initial value differential equation

dy

dp
+ hy(p) = ϕ(p); p > 0, y(0) = b. (1.17)

Applying Laplace transform on the equation (1.17) and using Lemma (1.4.1(d)),

we obtain

y(s) =
b

s+ h
+
ϕ(s)

s+ h
. (1.18)

Applying Laplace inverse on the equation (1.18) and using convolution theorem, we

get

y(p) = be−hp +

∫ p

0

ϕ(p− ρ)e−hρdρ.

1.5 Fractional integral and derivatives with respect

to another Function

There are wide number of definitions of a fractional integrals and derivatives. Recently

researchers developed theory of generalized fractional derivatives and integrals which

hold a large of fractional operators as special case. Particularly in what follows, we

focus on fractional operators of functions w.r.t other functions

Definition 1.5.1. Suppose that h is an integrable function and ψ ∈ C1[b, c] be an

increasing function such that ψ′(s) 6= 0, ∀ s ∈ I, where interval I is −∞ ≤ b < c ≤ +∞
and let γ > 0 and m = dγe. Then fractional integrals and derivatives with respect to

an other function ψ are defined as [11, 12, 13]

J γ,ψ
b+ h(s) =

1

Γ(γ)

∫ s

b

ψ′(x) (ψ(s)− ψ(x))γ−1 h(x)dx,
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and

Dγ,ψb+ h(s) =

(
1

ψ′(s)

d

ds

)m
Jm−γ
b h(s),

=
1

Γ(m− γ)

(
1

ψ′(s)

d

ds

)m ∫ s

b

ψ′(x) (ψ(s)− ψ(x))m−γ−1 h(x)dx,

respectively.

Similarly, right fractional integral and derivative are defined as:

J γ,ψ
b− h(s) =

1

Γ(γ)

∫ b

s

ψ′(x) (ψ(x)− ψ(s))γ−1 h(x)dx,

and

Dγ,ψ
b− h(s) =

(
− 1

ψ′(s)

d

ds

)m
Jm−γ,ψ
b− h(s)

=
1

Γ(m− γ)

(
− 1

ψ′(s)

d

ds

)m ∫ b

s

ψ′(x) (ψ(x)− ψ(s))m−γ−1 h(x)dx.

(1.19)

In equation (1.19) if ψ(s) = s, Riemann-Liouville derivative is obtained and for ψ(s) =

ln(s), then we get Hadamard operator is retrieved.

Semi group property:

If γ, η > 0, then fractional integral holds the semi group property

J γ,ψ
b

(
J η,ψ
b h(s)

)
= J γ+η,ψ

b h(s) = J η,ψ
b

(
J γ,ψ
b h(s)

)
.

Lemma 1.5.1. [11] Let γ, µ > 0,

(1) If u(s) = (ψ(s)− ψ(b))µ−1. Then

J γ,ψ
b+ u(s) =

Γ(µ)

Γ(γ + µ)
(ψ(s)− ψ(b))γ+µ−1 .

(2) If v(s) = (ψ(a)− ψ(s))µ−1, then

J γ,ψ
a− v(s) =

Γ(µ)

Γ(γ + µ)
(ψ(a)− ψ(s))γ+µ−1 .
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1.5.1 Caputo fractional derivative with respect to ψ-function

In this section, we focus on a Caputo fractional derivative with respect to ψ-function.

We also present some properties and results of it. Almeida [14] using the concept of the

Caputo fractional derivative, introduced a new definition called ψ-Caputo derivative

with respect to ψ-function.

Definition 1.5.2. Suppose that γ > 0, m ∈ N, ψ is an increasing function such that

ψ′(s) 6= 0, for all s ∈ I, I is an interval −∞ ≤ b < c ≤ +∞ and h, ψ ∈ Cm ([b, c]).

Then left ψ-Caputo derivative is defined as;

cDγ,ψ
b+ h(s) = Jm−γ,ψ

b+

(
1

ψ′(s)

d

ds

)m
h(s),

=
1

Γ(m− γ)

∫ s

b

ψ′(x) (ψ(s)− ψ(x))m−γ−1

(
1

ψ′(s)

d

ds

)m
h(s)ds.

And the right ψ-Caputo derivative is

cDγ,ψ
a− h(s) = Jm−γ,ψ

a−

(
− 1

ψ′(s)

d

ds

)m
h(s),

where m = dγe.

Lemma 1.5.2. Suppose that a function h ∈ C[b, c] and γ > 0, then we have

cDγ,ψ
b J

γ,ψ
b h(t) = h(t).

Lemma 1.5.3. Let γ > 0 and µ > 0.

(a) If u(s) = (ψ(s)− ψ(b))µ−1 , then

cDγ,ψ
b+ u(s) =

Γ(µ)

Γ(µ− γ)
(ψ(s)− ψ(b))γ+µ−1 .

(b) If v(s) = (ψ(b)− ψ(s))µ−1 , then

cDγ,ψ
b− v(s) =

Γ(µ)

Γ(µ− γ)
(ψ(b)− ψ(s))γ+µ−1 .

If h ∈ Cm[b, c] and γ > 0, then
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1.6 The ψ-Laplace Transform

In this section, the definition of the generalized Laplace transform is discussed which

has been introduced by the Abdeljawad and Jarad in 2019
(

[15]
)
. Which can be used

to solve the fractional differential equation involving psi-Riemann-Liouville, and psi-

Caputo fractional derivatives. It is also used to solve dynamical systems depending

on the fractional operator. This new ψ−Laplace transform is the generalization of the

classical Laplace transform. Some important properties, results and applications of ψ−
Laplace transform are also part of this section.

Definition 1.6.1. Let ψ > 0, be an increasing function such that ψ(0) = 0, and h be

a real valued function h : [0,+∞)→ R. Then ψ-Laplace transform is defined by

h(p) = Lψ {h(s)} =

∫ ∞
0

e−p(ψ(s))ψ′(s)h(s)ds.

this integral is valid for all p.

Theorem 1.6.1 (Existence condition of ψ-Laplace transform). [15] If h is of exponen-

tial order-ψ and h : [0,∞)→ R is a piecewise continuous function, then its ψ−Laplace

transform exists for p > c.

Theorem 1.6.2 (Relation between ψ−Laplace transform and classical Laplace trans-

form). Let h, ψ : [b,∞) → R be a real valued continuous function such that ψ′(s) > 0

and the ψ−Laplace transform of h exists. Then

Lψ {h(s)} (v) = L
{
h
(
ψ−1 (s+ ψ(b))

)}
(v).

Lemma 1.6.1 (Linearity property). If the ψ-Laplace transform of the functions g and

h exists on [a,∞). Then, for constant v > C, then ψ−Laplace transform is linear i.e.

Lψ {Cg(s) + h(s)} = CLψ {g(s)} (v) + Lψ {h(s)} (v).

Lemma 1.6.2. If ψ-Laplace transform exists, then the following properties hold

(a) Lψ {c} =
c

v
, for v > 0, c is constant.

(b) Lψ {(ψ(s))n} =
n!

vn+1
.
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Theorem 1.6.3 (ψ-Laplace transform of fractional derivatives w.r.t another function).

If h(s),Jm−γ,ψ
0 h(s), D1,ψJm−γ,ψ

0 h(s), ..., Dm−1,ψJm−γ,ψ
0 h(s), exists, for γ > 0, and

m = dγe + 1, where Dk,ψ =
(

1
ψ′(s)

d
ds

)k
, are continuous on R+ and of ψ-exponential

order, while Dγ,ψ
0 h(s) is piecewise continuous on [0,+∞). Then

(a) Lψ
{
Dγ,ψ

0 h(s)
}

= vnLψ {h(s)} −
n−1∑
q=0

vn−q−1
(
J n−q−γ,ψ

0 h
)

(0).

(b) Lψ
{
cDγ,ψ

0 h(s)
}

= vnLψ {h(s)} −
n−1∑
q=0

vγ−q−1
(
Dq,ψh

)
(0).

Theorem 1.6.4. Let γ > 0 and h be a continuous function over the finite interval

[0, T ], of ψ-exponential. Then

Lψ
{(
J γ,ψ

0 h
)

(s)
}

= v−γLψ {h(s)} .

Lemma 1.6.3. Suppose that <(γ) > 0 and | µ
vγ
| < 1. Then

Lψ {En (µ (ψ(s))γ)} =
vγ−1

vγ − 1
.

Theorem 1.6.5 (Convolution theorem). [15] Suppose h and g are of exponential order

and piecewise continuous on each [0, T ]. Then the convolution of h and g is defined as:

(h ∗ψ g) (s) =

∫ s=ψ−1(ψ(s))

0

h(ψ−1 (ψ(s)− ψ(ρ)) g(ρ)ψ′(ρ)dρ.

1.6.1 Applications of ψ-Laplace transform

In this subsection, we use ψ-Laplace transform to solve the differential equations and

also verified. For the sake of simplicity cDγ,ψ0 will be denoted by cDγ,ψ.

Lemma 1.6.4. Consider the linear homogeneous differential equation

cD1,ψg(t)− g(t) = 0, g(0) 6= 0, (1.20)

then the solution of equation (1.20) is g(t) = g(0)eψ(t).
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Proof. Applying Lψ on both sides of equation (1.20)

Lψ
[
cD1,ψg(t)

]
− Lψ [g(t)] = 0

using theorem 1.6.3(a) and initial condition, we obtained

vg(v)−
1∑

k=0

v−k
(
Dk,ψg

)
(0)− g(v) = 0

g(0) =
g(0)

v − 1
(1.21)

Applying L−1
ψ on the equation (1.21), we get

g(t) = g(0)eψ(t)

Lemma 1.6.5. Consider the non-homogeneous differential equation

cD1,ψg(t)− g(t) = h(t), g(0) = 0. (1.22)

Then the solution of equation (1.22) is

g(t) =

∫ t

0

e(ψ(t)−ψ(ρ))ψ′(ρ)h(ρ)dρ.

Proof. Applying Lψ on both sides of equation (1.22) and using Theorem 1.6.3(a), we

obtain

vg(v)−
1∑

k=0

v−k
(
Dk,ψg

)
(0)− g(v) = h(v).

Using condition g(0) = 0, and simplifying, we get;

g(v) =
h(v)

v − 1
. (1.23)

Applying L−1
ψ on the equation (1.23) and using Convolution theorem (1.6.5), we ob-

tained

g(t) =

∫ t

0

e(ψ(t)−ψ(ρ))ψ′(ρ)h(ρ)dρ.

22



Now we verify that g(t) given by

g(t) =

∫ t

0

e(ψ(t)−ψ(ρ))ψ′(ρ)h(ρ)dρ. (1.24)

Satisfies the initial value problem (1.22).

Applying cD1,ψ on the equation (1.24), and using Leibniz theorem, we obtained

cD1,ψ = h(t) +

∫ t

0

e(ψ(t)−ψ(τ))ψ′(τ)h(τ)dτ

cD1,ψg(t)− g(t) = h(t).

Lemma 1.6.6. Consider the higher order linear differential equation

cDn,ψg(t)− g(t) = 0. (1.25)

g(0) = 0,
(
D1,ψ

)
(0) = 0, ...,

(
Dm−1,ψ

)
(0) = 0. (1.26)

Then the solution of equations (1.25)-(1.26) is given by

g(t) =
(
Dm−1,ψg

)
(0) (ψ(t))m−1En,m (ψ(t))n

Proof. Applying Lψ on both sides of equation (1.25) and using Theorem 1.6.3(b), we

obtained

vng(v)−
m−1∑
k=0

sn−k−1
(
Dm−1,ψg

)
(0)− g(v) = 0.

Using condition (1.26), we get

g(v) =
vn−m

(
Dm−1,ψg

)
(0)

vn − 1
. (1.27)

Applying L−1
ψ on equation (1.27),

g(t) =
(
Dm−1,ψg

)
(0)

∞∑
k=0

L−1
ψ

[
1

vnk+m

]
=
(
Dm−1,ψg

)
(0)

∞∑
k=0

(ψ(t))nk+m−1

Γ(nk +m)

g(t) =
(
Dm−1,ψg

)
(0) (ψ(t))m−1En,m ((ψ(t))n) .
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Lemma 1.6.7. Consider the higher order non-linear differential equation

cDn,ψg(t)− g(t) = h(t), (1.28)

g(0) = 0,
(
D1,ψg

)
(0) = 0, ...,

(
Dm−1,ψg

)
(0) = 0. (1.29)

then the solution of the equation (1.28)-(1.29) is given by

g(t) =

∫ t

0

(ψ(t)− ψ(ρ))n−1En,n ((ψ(t)− ψ(ρ))n)ψ′(ρ)h(ρ)dρ.

Proof. Applying Lψ on both sides of equation (1.28) and using Theorem 1.6.3(b), we

obtain

vng(v)−
m−1∑
k=0

vn−k−1
(
Dk,ψg

)
(0)− g(v) = h(v).

By using equation (1.29), we get

g(v) =
h(v)

vn − 1
. (1.30)

Applying L−1
ψ on the equation (1.30) and using convolution theorem (1.6.5), we ob-

tained

g(t) =

∫ t

0

(ψ(t)− ψ(ρ))n−1En,n ((ψ(t)− ψ(ρ))n)ψ′(ρ)h(τ)dρ.

Lemma 1.6.8. Consider the linear differential equation

cDγ,ψg(t)− wg(t) = 0, g(0) 6= 0; 0 < γ ≤ 1. (1.31)

Then the solution of equation (1.31) is given by

g(t) = g(0)Eγ (w(ψ(t))γ) .

Proof. Applying Lψ on both sides of equation (1.31), we have

Lψ
[
cDγ,ψg(t)

]
− wLψ [g(t)] = 0.
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Now, using theorem 1.6.3, we obtained

vγg(v)−
m−1∑
q=0

vγ−q−1
(
Dq,ψg

)
(0)− wg(s) = 0.

Using condition g(0) 6= 0, we obtained

x(v) =
g(0)vγ−1

vγ − w
.

After simplification, we get

g(v) = g(0)
∞∑
q=0

(w)q

vγq+1
(1.32)

Applying L−1
ψ on both sides of equation (1.32), we obtained

g(t) = g(0)Eγ (w(ψ(t))γ) .

Lemma 1.6.9. Consider the non-linear differential equation

cDγ,ψg(t)− wg(t) = 0, n− 1 < γ ≤ n. (1.33)

g(0) = 0,
(
D1,ψg

)
(0) = 0, ...,

(
Dn−1,ψg

)
(0) 6= 0. (1.34)

then solution of the equation (1.33-1.34) is given by

g(t) =
(
Dm−1,ψg

)
(0) (ψ(t))m−1Eγ,m (w(ψ(t))γ) .

Proof. Applying Lψ on both sides of equation (1.33), and using theorem1.6.3(b), we

obtain

vγg(v)−
m−1∑
q=0

sγ−q−1
(
Dq,ψg

)
(0)− wg(v) = 0.

Now, using equation (1.34), we get

g(v) =
(
Dm−1,ψg

)
(0)

∞∑
q=0

(w)q

vγq+m
. (1.35)

Applying L−1
ψ on equation (1.35), we obtained

g(t) =
(
Dm−1,ψg

)
(0) (ψ(t))m−1Eγ,m (w(ψ(t))γ) .
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Verification:

Now, we verify that the function

g(t) =
(
Dm−1,ψg

)
(0) (ψ(t))m−1Eγ,m (w(ψ(t))γ) . (1.36)

is solution of the problem (1.33), (1.34).

Applying cDγ,ψ on both sides of equation (1.36), and using definition of Mittag-Leffler

function, we obtain

cDγ,ψg(t) =
(
Dm−1,ψg

)
(0)cDγ,ψ

∞∑
q=0

(w)q (ψ(t))γq+m−1

Γ(γq +m)
.

By using definition (1.5.2)

cDγ,ψg(t) =
(
Dm−1,ψg

)
(0)

∞∑
q=1

(
1

ψ′(t)

)γ
(w)q

Γ(γq +m)

(ψ(t))γq+m−γ−1 (ψ′(t))γ Γ(γq +m)

Γ(γq +m− γ)

=w
(
Dm−1,ψg

)
(0) (ψ(t))m−1Eγ,m (w(ψ(t))γ)

cDγ,ψg(t) = wg(t)

cDγ,ψg(t)− wg(t) = 0.
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Chapter 2

Generalization of the Duhamel’s
principle

The classical Duhamel’s principle introduced by the French mathematician and physi-

cist Jean- Marie Duhamel’s in 1830, is well-known. The main aim of this theory is to

reduce the Cauchy problem for the given non-homogeneous PDE to the corresponding

homogeneous PDE, which is easy to solve.

The classical Duhamel’s principle is not directly applicable to the fractional order

Cauchy problem because the non-homogeneous fractional order differential equations

cannot be reduced directly to the corresponding homogeneous equation. S. Umarov

generalized this famous principle for the Cauchy problem of fractional order non-

homogeneous generalized differential operators. ( [16],[17]).

In this chapter, we generalize Duhamel’s principle for the generalized differential oper-

ators, including the generalized Caputo fractional differential operator. For simplicity

cDγ
0 and cDγ,ψ

0 will be denoted by cDγ and cDγ,ψ respectively.

2.1 Duhamel’s principle for ODEs and PDEs

In this section, we present the Duhamel’s principle for the PDEs and ODEs involving

the integer order derivatives. By using Duhamel’s principle, we can find the solution

of the ODEs and PDEs. This principle allows us to solve non-homogeneous PDE by

considering the solution of homogeneous PDE. First, we present Duhamel’s principle
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for ODEs.

2.1.1 Duhamel’s principle for ODES

Duhamel’s principle states that the solution of homogeneous IVP, can be obtained by

the solution of homogeneous IVP [18]. Consider

w′(t) + kw(t) = θ(t), t > 0; w(0) = 0. (2.1)

Let G(t; ρ) be the solution of the homogeneous problem

G′(t; ρ) + kG(t; ρ) = 0, t ∈ R+; G(0; ρ) = θ(ρ), (2.2)

where ρ a new parameters has been introduced. The solution of the problem (2.2) is

G(t; ρ) = θ(ρ) exp(−kt).

The solution of the nonhomogeneous IVP (2.1) is the integral of the solution of the

corresponding homogeneous IVP G(t, ρ) (with t replaced by t − ρ), with a source is

involved as initial condition.

Theorem 2.1.1. The solution of the non-homogeneous IVP

d

dt
w(t) + kw(t) = θ(t). t ∈ R+, (2.3)

with initial condition w(0) = 0 is given by

w(t) =

∫ t

0

G(t− ρ; ρ)dρ, (2.4)

where G(t; ρ) is solution of the homogeneous problem

d

dt
G(t) + kG(t) = 0, t > 0; (2.5)

satisfying initial condition

G(0; ρ) = θ(ρ), ρ ∈ R+.
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This principle also holds for the second order ODEs with initial conditions. Now

we consider the second order ODEs.

Theorem 2.1.2. The solution of the non-homogeneous problem

d2g(t)

dt2
+ k2g(t) = h(t), g(0) = 0, g′(0) = 0, (2.6)

is given by g(t) =
∫ t

0
w(t− ρ, ρ)dρ, where w(t, ρ) is solution of the problem

d2w(t)

dt2
+ k2w(t) = 0, w(0) = 0, w′(0) = θ(ρ). (2.7)

Proof. Since the solution of the problem (2.6) is

g(t) =

∫ t

0

w(t− ρ; ρ)dρ. (2.8)

Differentiating equation (2.8) and using Leibniz rule, we have

dg(t)

dt
= w(0) +

∫ t

0

dw

dt
(t− ρ; ρ)dρ. (2.9)

Using w(0) = 0 in equation (2.9), we get

dg(t)

dt
=

∫ t

0

dw

dt
(t− ρ; ρ)dρ. (2.10)

Again differentiating equation (2.10) and using Leibniz rule, we have

d2g

dt2
(t) = w′(0) +

∫ t

0

d2w(t− ρ; ρ)

dt2
dρ. (2.11)

Using w′(0) = θ(ρ), in equation (2.11) and we obtain

d2g(t)

dt2
= θ(ρ) +

∫ t

0

d2w(t− ρ; ρ)

dt2
dρ. (2.12)

Using equation (2.12) in equation (2.6) , we have

d2g(t)

dt2
+ k2g(t) = θ(ρ) +

∫ t

0

d2w(t− ρ; ρ)

dt2
+ k2

∫ t

0

w(t− ρ; ρ)dρ,

= θ(ρ) +

∫ t

0

[
d2w(t− ρ; ρ)

dt2
+ k2w(t− ρ; ρ)

]
dρ. (2.13)

Using equation (2.7) in (2.13), we obtained

d2g(t)

dt2
+ k2g(t) = θ(ρ).

29



Remark 2.1.1. The solution of the problem (2.7) is

w(t) = k−1 sin(kt)θ(t). (2.14)

We also know that the solution of the problem (2.6) is

g(t) =

∫ t

0

k−1 sin(k(t− ρ))θ(ρ)dρ. (2.15)

Now by comparing the solutions (2.14) and (2.15), we see that the solution (2.15) is

equivalent to

g(t) =

∫ t

0

w(t− ρ; ρ)dρ,

where w(t, ρ) is the solution of the problem (2.7).

2.1.2 Duhamel’s principle for PDEs

In this section we explain Duhamel’s principle for the PDEs. This principle allows

us to find the solution of a non-homogeneous PDE, in terms of the solution of the

homogeneous PDE [19]. We will elaborate this principle for the wave equation.

Since the three-dimensional Euclidean space is denoted by R3 and a point in R3 be de-

noted by Y = (y1, y2, y3). If W (Y, t, ρ) is a solution of the homogeneous wave equation,

for each fixed ρ,

Wtt(Y, t)− k2∇2W (Y, t) = 0, t > 0, Y ∈ R3, (2.16)

with conditions

W (Y, 0, ρ) = 0, Wt(Y, 0, ρ) = h(Y, ρ). (2.17)

Where h(Y, ρ) is a continuous function defined for Y ∈ R3. Then the solution of the

non-homogeneous wave equation

Gtt(Y, t)− k2∇2G(Y, t) = h(Y, t), Y ∈ R3, t ∈ R+, (2.18)

with initial conditions

G(Y, 0) = 0, Gt(Y, 0) = 0,
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is given by

G(Y, t) =

∫ t

0

W (Y, t− ρ, ρ)dρ. (2.19)

Proof. Differentiating (2.19) and using the Leibniz rule, we have

Gt(Y, t) = W (Y, 0, t) +

∫ t

0

Wt(Y, t− ρ; ρ)dρ.

Using equation (2.17), we get

Gt(Y, t) =

∫ t

0

Wt(Y, t− ρ, ρ)dρ. (2.20)

Again differentiating equation(2.20) with respect to t, we obtain

Gtt(Y, t) = Wt(Y, t− ρ, ρ) +

∫ t

0

Wtt(Y, t− ρ, ρ)dρ. (2.21)

Using equation(2.17) in equation(2.21), we get

Gtt(Y, t) = h(Y, ρ) +

∫ t

0

Wtt(Y, t− ρ, ρ)dρ. (2.22)

And

k2∇2G(Y, t) =

∫ t

0

k2∇2Wdρ. (2.23)

Using equation (2.22) and (2.23) in equation (2.18), we have

Gtt(Y, t)− k2∇2G(Y, t) = h(Y, ρ) +

∫ t

0

Wtt(Y, t− ρ, ρ)dρ−
∫ t

0

k2∇2Wdρ,

= h(Y, ρ) +

∫ t

0

[
Wtt − k2∇2W

]
dρ.

By using equation (2.16), we obtained

Gtt(Y, t)− k2∇2G(Y, t) = h(Y, ρ).
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2.2 Duhamel’s principle for fractional differential

equation

In this section we establish a fractional Duhamel’s principle for the Caputo and Riemann-

Liouville type FDEs [20]. The generalization of the fractional Duhamel’s principle es-

tablished in [17] can be directly applied to a nonhomogeneous FDEs reducing them to

the corresponding homogeneous equations.

2.2.1 Duhamel’s principle for Caputo differential equations

In this subsection we present the fractional Duhamel’s principle for the Caputo differ-

ential equation.

Theorem 2.2.1. [21] If v(y, t; ρ) is the solution of homogeneous IVP

cDγv(y, t)− γ2∂
2v(y, t)

∂y2
= 0, γ ∈ (0, 1), t > ρ, y ∈ R, (2.24)

with initial condition

v(y, t) |t=ρ= cD1−γθ(y, ρ), (2.25)

where θ(y, t) is a differentiable function. Then the solution of inhomogeneous IVP

cDγg(y, t)− γ2∂
2g(y, t)

∂y2
= θ(y, t), γ ∈ (0, 1), y ∈ R, t > 0, (2.26)

satisfying initial conditions g(y, 0) = 0, y ∈ R, is given by

g(y, t) =

∫ t

0

v(y, t; ρ)dρ. (2.27)

Proof. Differentiating equation (2.27) with respect to t and using Leibniz rule, we get

∂

∂t
g(y, t) = v(y, t; ρ) |t=ρ +

∫ t

0

∂

∂t
v(y, t; ρ)dρ. (2.28)

From equation (2.28) and definition of Caputo derivative, we have

cDγg(y, t)− γ2∂
2g(y, t)

∂y2
= J 1−γ ∂

∂t
g(y, t)− γ2∂

2g(y, t)

∂y2
,
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= J 1−γ ∂

∂t

∫ t

0

v(y, t; ρ)dρ−
∫ t

0

γ2∂
2v(y, t; ρ)

∂y2
dρ. (2.29)

Applying Leibniz rule on the equation (2.29), we get

cDγg(y, t)− γ2∂
2g(y, t)

∂y2
= J 1−γ

[
v(y, t; ρ) |t=ρ +

∫ t

0

∂

∂t
v(y, t; ρ)dρ

]
−
∫ t

0

γ2∂
2v(y, t; ρ)

∂y2
dρ.

(2.30)

Using equation (2.25) in equation (2.30), we obtain

cDαg(y, t)− γ2∂
2g(y, t)

∂y2
= J 1−γ (cD1−γθ(y, t)

)
+

∫ t

0

[
J 1−γ ∂

∂t
v(y, t; τ)

−γ2∂
2v(y, t; ρ)

∂y2

]
dρ,

= θ(y, t)− θ(y, 0) +

∫ t

0

[
cDγv(y, t; ρ)− γ2∂

2v(y, t; ρ)

∂y2

]
dρ. (2.31)

Using equation (2.24) in equation (2.31), we obtain

cDγg(y, t)− γ2∂
2g(y, t)

∂y2
= θ(y, t).

Further g(y, 0) = 0. Hence g(y, t) =
∫ t

0
v(y, t; ρ)dρ is the solution of the problem

(2.26).

2.2.2 Duhamel’s principle for Riemann-Liouville differential
equation

In this subsection, we state the Duhamel’s principle for fractional differential equation

with the Riemann-Liouville derivative.

Consider the non-homogeneous Cauchy problem

RDγ0w(s) + Lw(s) = θ(s), s > 0 (2.32)

satisfying homogeneous initial condition

J 1−γw(0) = 0. (2.33)
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The fractional Duhamel’s principle establishes a relation between the solution of the

inhomogeneous Cauchy problem with the homogeneous problem

RDγ0g(s, ρ) + Lg(s, ρ) = 0, s > ρ (2.34)

subject to the inhomogeneous initial condition

J 1−γg(s, ρ) |s=ρ= θ(ρ). (2.35)

Where γ ∈ (0, 1) and θ(ρ), ρ ≥ 0, is a continuous function.

Theorem 2.2.2. [20] Suppose that g(s, ρ) is a solution of the homogeneous problem

(2.34)-(2.35). Then the solution of the inhomogeneous problem (2.32)-(2.33) is given

by Duhamel’s integral

w(s) =

∫ s

0

g(s, ρ)dρ. (2.36)

Proof. Applying RDγ
0 on the equation (2.36), we have

RDγ
0w(t) =

1

Γ(1− γ)

d

ds

∫ s

0

(s− x)−γ
∫ x

0

g(x, ρ)dxdρ,

=
d

ds

∫ s

0

J 1−γg(s, ρ)dρ. (2.37)

From equation (2.37), (2.32) and Leibniz rule, we obtain

RDγ
0w(s) + Lw(s) = J 1−γg(s, ρ) |s=ρ +

∫ s

0

d

ds
J 1−γg(s, ρ)dρ+ L

∫ s

0

g(s, ρ)dρ. (2.38)

Using equation (2.35) in equation (2.38), we get

RDγ
0w(s) + Lw(s) = θ(ρ) +

∫ s

0

[
RDγg(s, ρ) + Lg(s, ρ)

]
dρ. (2.39)

Using equation (2.34) in equation (2.39), then we obtain

RDγ
0w(s) + Lw(s) = θ(ρ).
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2.2.3 Duhamel’s principle for psi-differential equation

In this part we established the fractional Duhamel’s principle for psi-differential equa-

tion.

Let C = C(x, ∂
∂s
, Dq,ψ) and Dψ,q=

(
1

ψ′(s)
d
ds

)q
be a linear differential operator whose

coefficients not depending on s. Consider the Cauchy problem

D2,ψw(s, z) + Cw(s, z) = θ(s, z), s > 0, z ∈ Rn (2.40)

with initial homogeneous conditions

w(0, z) = 0; D1,ψw(0, z) = 0. (2.41)

If w(s, η, z), is a solution of the homogeneous problem

D2,ψG(s, ρ, z) + CG(s, ρ, z) = 0,

with initial conditions :

G(s, ρ, z) |s=ρ= 0, D1,ψG(s, ρ, z) |s=ρ= θ(ρ, z).

Then solution of the Cauchy problem (2.40) -(2.41) is given by the integral

w(s, z) =

∫ s

0

G(s, ρ, z)ψ′(ρ)dρ. (2.42)

The integral involved in equation(2.42) is the Duhamel’s integral for ψ−fractional

operator.

Lemma 2.2.1. Assume that g is continuous on R+× [0, s] , and its partial derivatives

are jointly continuous in the X-norm, and
(

1
ψ′(s)

d
ds

)n
∈ L1(0, s;X) ∀ s > 0 . If

w(s) =

∫ s

0

g(s, ρ)ψ′(ρ)dρ, (2.43)

then

Dn,ψw(s) =
n−1∑
l=0

Dl,ψ

[(
1

ψ′(s)

)n−1−l
∂n−1−lg(s, s)

∂sn−1−l

]
+

∫ s

0

(
1

ψ′(s)

)n
∂ng(s, ρ)

∂sn
ψ′(ρ)dρ.

(2.44)
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Proof. Applying D1,ψ on both sides of the equation (2.43) and using Leibniz rule, we

have

D1,ψw(s) = g(s, s) +

∫ s

0

1

ψ′(s)

∂g(s, ρ)

∂s
ψ′(ρ)dρ. (2.45)

Again applying D1,ψ on the equation (2.45) and using Leibniz rule, we get

D2,ψw(s) = D1,ψg(s, s) +
1

ψ′(s)

∂g(s, s)

∂s
+

∫ s

0

(
1

ψ′(s)

)2
∂2g(s, ρ)

∂s2
ψ′(ρ)dρ.

A repeated application of above process for n-times, leads us to

Dn,ψw(s) =
n−1∑
l=0

Dl,ψ

[(
1

ψ′(s)

)n−1−l
∂n−1−lg(s, s)

∂sn−1−l

]
+

∫ s

0

(
1

ψ′(s)

)n
∂ng(s, ρ)

∂sn
ψ′(ρ)dρ.

(2.46)

2.2.4 Generalization of the Duhamel’s principle for psi differ-
ential equation

In this subsection we generalize Duhamel’s principle for the higher integer order psi-

differential equation. Consider the Cauchy problem

Dn−1,ψG(s, ρ) |s=ρ= θ(ρ). (2.47)

Dq,ψ(0) = φq(0). q = 0, ..., n− 1. (2.48)

Duhamel’s principle establishes a connection between the solutions of the Inhomoge-

neous Cauchy problem (2.47) with the initial homogeneous condition

Dq,ψG(s, ρ) |s=ρ= 0 , q = 0, 1, ..., n− 2, (2.49)

and the Cauchy problem for the corresponding homogeneous equation

Dn,ψG(s, ρ) +
n−1∑
q=0

fq(A)Dq,ψG(s, ρ) = 0, (2.50)
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Dq,ψG(s, ρ) |s=ρ= 0 , q = 0, 1, ..., n− 2, (2.51)

Dn−1,ψG(s, ρ) |s=ρ= θ(ρ). (2.52)

Where θ is a continuous function and G(s, ρ) is m times differentiable with respect to

s and the partial derivatives ∂iG
∂si

i ∈ [0, q − 1] are jointly continuous in the topology of

EXPA,G(X).

Theorem 2.2.3. If G(s, ρ) is solution of the problem (2.50)-(2.52). Then a solution

of the inhomogeneous Cauchy problem (2.47)-(2.49) is given by

w(s) =

∫ s

0

G(s, ρ)ψ′(ρ)dρ. (2.53)

Proof. By applying D1,ψ on the above equation (2.53) and using Leibniz theorem, we

have

D1,ψw(s) = G(s, s) +

∫ s

0

1

ψ′(s)

∂G(s, ρ)

∂s
ψ′(ρ)dρ. (2.54)

From equation (2.51) and (2.54) obviously
(
D1,ψw

)
(0) = 0.

Now, by Lemma (2.2.1), we have

Dq,ψw(s) =

q−1∑
l=0

Dl,ψ

[(
1

ψ′(s)

)q−1−l
∂q−1−lG(s, s)

∂sq−1−l

]

+

∫ s

0

(
1

ψ′(s)

)q
∂qG(s, ρ)

∂sq
ψ′(ρ)dρ.

(2.55)

Using initial condition (2.51), we obtain

Dq,ψw(s) = Dq−1,ψG(s, s) +

∫ s

0

(
1

ψ′(s)

)q
∂qG(s, s)

∂sq
ψ′(ρ)dρ. (2.56)

Now using equation (2.49) in equation (2.56), we have

Dq,ψw(s) =

∫ s

0

(
1

ψ′(s)

)q
∂qG(s, s)

∂sq
ψ′(ρ)dρ. (2.57)

Note that w(s) defined in equation (2.53) satisfying the initial condition (2.51). More-

over, by substituting equation (2.57) and (2.56) in equation (2.47), we have

Dn,ψw(s) +
n−1∑
q=0

fq(A)Dq,ψw(s) = Dn−1,ψG(s, s) +

∫ s

0

[( 1

ψ′(s)

)n
∂nw(s, ρ)

∂sn

ψ′(ρ)
]
dρ+

n−1∑
q=0

fq(A)

∫ s

0

(
1

ψ′(s)

)q
∂qG(s, ρ)

∂sq
ψ′(ρ)dρ.

(2.58)
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Using equation (2.52) in equation (2.58), we obtain

Dn,ψw(s) +
n−1∑
q=0

fq(A)Dq,ψw(s) = θ(s) +

∫ s

0

[
Dn,ψG(s, ρ)

+
n−1∑
q=0

fq(A)Dq,ψG(s, ρ)
]
ψ′(ρ)dρ.

(2.59)

Now by using equation (2.50) in equation (2.59), we get

Dn,ψw(s) +
n−1∑
q=0

fq(A)Dq,ψw(s) = θ(s).

Lemma 2.2.2. If v(s) = (ψ(s))n−1Eγ,n(−τ (ψ(s))γ) then

Dγ,ψv(s)− τv(s) = 0, γ ∈ (n− 1, n]

where ψ is increasing differential function.

Theorem 2.2.4. If w(s) = J k−γ,ψh(s), ψ is non-decreasing differential function with

ψ(0) = 0 and ψ′(0) 6= 0. where γ ∈ (q−1, q], h ∈ L1[a, b] and a ≤ s ≤ b. Then solution

of the Cauchy problem

Dγ,ψw(s) + τw(s) = f(s) , w(0) = 0,
(
D1,ψw

)
(0) = 0, ...,

(
Dm−1,ψw

)
(0) = 0, (2.60)

is given by

w(s) =

∫ s

0

g(s, ρ)ψ′(ρ)dρ. (2.61)

Where g(s, ρ) is a solution of the problem

Dγ,ψg(s; ρ) + τg(s; ρ) = 0, g(0; ρ) = 0, D1,ψg(0; ρ) = 0, ...,

Dq−1,ψg(0; ρ) =

(
1

ψ′(0)

)q−1

h(γ).
(2.62)

Proof. By Lemma 2.2.2, we have

g(s, ρ) = (ψ(s))q−1Eγ,q(−τ (ψ(s))γ)h(ρ). (2.63)
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The function g in equation(2.63) satisfies the equation(2.62). By definition Mittage

lefller function definition, we have

g(s; ρ) =
∞∑
k=0

(−τ)k (ψ(s))γk+q−1 h(ρ)

Γ(γk + q)
. (2.64)

Now applying Dm,ψ on the equation (2.64), we have

Dm,ψg(s; ρ) =
∞∑
k=0

(−τ)k (ψ(s))γk−m+q−1

Γ(γk + q −m)

(
1

ψ′(s)

)m
h(ρ).

Now, it is easily checked

g(0; ρ) = 0, D1,ψg(0; ρ) = 0, , ..., Dq−1,ψg(0; ρ) =

(
1

ψ′(0)

)q−1

h(ρ).

Now, we have to prove that w(s) defined by equation (2.61) holds equation (2.60). Now

equation (2.61) can be written as

w(s) =

∫ s

0

g(s− ρ; ρ)ψ′(ρ)dρ,

=

∫ s

0

(ψ(s)− ψ(ρ))q−1Eγ,q(−τ(ψ(s)− ψ(ρ))ρ)ψ′(ρ)h(ρ)dρ,

=
∞∑
m=0

(−τ)m
∫ s

0

(ψ(s)− ψ(ρ))γm+q−1

Γ(γm+ q)
ψ′(ρ)h(ρ)dρ,

=
∞∑
m=0

(−τ)mJ γm+q,ψh(s). (2.65)

Now again applying Dγ,ψ on the equation (2.65), we have

Dγ,ψw(s) =
∞∑
m=0

(−τ)mDγ,ψJ γm+q,ψh(s)

=
∞∑
m=0

(−τ)mJ γ(m−1)+q,ψh(s),

= Jm−γ,ψh(s) +
∞∑
m=1

(−τ)mJ γ(m−1)+q,ψh(s),

= f(s)− τ
∞∑
m=0

(−τ)mJ γm+q,ψh(s).
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By using equation (2.65), we get

Dγ,ψw(s) = f(s)− τw(s).

2.2.5 Generalization of the Duhamel’s principle for the Ca-
puto psi-differential operator

In this subsection, we generalize the Duhamel’s principle for the Caputo fractional psi

differential operator. Consider the operator

H(µ,λ)[w](s) = cDµ,ψw(s) +

∫ n−1

0

f(γ)cDγ,ψw(s)λψ′(γ)dγ, (2.66)

where λ represents any arbitrary finite number with supλ ∈ [0, n−1], n−1 < µ < n and

γ ∈ (0, n− 1). The theorem given below presents the solution of the non-homogeneous

Cauchy problem involving the Caputo ψ-operator.

Theorem 2.2.5. The solution of Cauchy problem

cDµ,ψw(s) +

∫ n−1

0

f(γ)cDγ,ψw(s)λψ′(γ)dγ = θ(s), s > 0 (2.67)

satisfying the homogeneous initial conditions(
cDq,ψw

)
(0) = 0, q = 0, ..., n− 1. (2.68)

is given by the Duhamel’s principle as;

w(s) =

∫ s

0

g(s, ρ)ψ′(ρ)dρ. (2.69)

Where g(s, ρ) is the solution of the problem

cDµ,ψg(s) +

∫ n−1

0

f(γ)cDγ,ψg(s)λψ′(γ)dγ = 0, s > ρ (2.70)

cDq,ψg(s, ρ) |s=ρ+0= 0, q = 0, ...., n− 2 (2.71)

cDm−1,ψg(s, ρ) |s=ρ+0= cDn−µ,ψθ(ρ). (2.72)
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Proof. Since

w(s) =

∫ s

0

g(s, ρ)ψ′(ρ)dρ.

The condition (2.68) holds obviously.

Consider the Cauchy problem (2.67), we have

cDµ,ψw(s) +

∫ n−1

0

f(γ)cDγ,ψw(s)λψ′(γ)dγ = h(s). s > 0 (2.73)

By the definition of cDµ,ψ, we have

cDµ,ψw(s) =
1

Γ(q − γ)

∫ s

0

ψ′(t)(ψ(s)− ψ(t))q−γ−1

(
1

ψ′(t)

d

dt

)q
w(t)dt. (2.74)

Now, we find (
1

ψ′(t)

d

dt

)q
w(t) =

(
1

ψ′(t)

d

dt

)q ∫ s

0

g(t, ρ)ψ′(ρ)dρ. (2.75)

By Lemma (2.2.1) and using initial condition (2.68), we get(
1

ψ′(t)

d

dt

)q
w(t) =

∫ s

0

(
1

ψ′(t)

)q
∂qg(t, ρ)

∂tq
ψ′(ρ)dρ, q = 0, ..., n− 1. (2.76)

By substituting equation(2.76) in equation(2.74) and also changing integration order,

we get

cDγ,ψw(s) =

∫ s

0

1

Γ(q − γ)

∫ s

ρ

ψ′(t) (ψ(s)− ψ(t))q−γ−1

(
1

ψ′(t)

)q
∂qg(t, ρ)

∂tq
ψ′(ρ)dsdρ.

(2.77)

The equation (2.77) can be written as

cDγ,ψw(s) =

∫ s

0

cDγ,ψ
ρ g(s, ρ)ψ′(ρ)dρ, (2.78)

cDµ,ψw(s) =
1

Γ(n− µ)

∫ s

0

ψ′(t) (ψ(s)− ψ(t))n−µ−1

(
1

ψ′(t)

d

dt

)n
w(t)dt. (2.79)

Now we calculate,(
1

ψ′(t)

d

dt

)n
w(t) =

n−1∑
l=0

Dl,ψ

[(
1

ψ′(t)

)n−l−1
∂n−l−1g(t, t)

∂tn−l−1

]

+

∫ t

0

(
1

ψ′(t)

)n
∂ng(t, ρ)

∂tn
ψ′(ρ)dρ.
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By using initial condition (2.72), we obtained(
1

ψ′(t)

d

dt

)n
w(t) = cDn−1,ψg(t, t) +

∫ t

0

(
1

ψ′(t)

)n
∂ng(t, ρ)

∂tn
ψ′(ρ)dρ.

This implies that(
1

ψ′(t)

d

dt

)n
w(t) = cDn−µ,ψθ(t) +

∫ t

0

(
1

ψ′(t)

)n
∂ng(t, ρ)

∂tn
ψ′(ρ)dρ. (2.80)

By substituting (2.80) in equation (2.79), we have

cDµ,ψw(s) =
1

Γ(n− µ)

∫ s

0

ψ′(t) (ψ(s)− ψ(t))n−µ−1
[
cDn−µ,ψθ(t)

+

∫ t

0

(
1

ψ′(t)

)n
∂ng(t, ρ)

∂tn
ψ′(ρ)dρ

]
dt.

Again by using definition of cDµ,ψ and changing integration order, we obtained

cDµ,ψw(s) = J n−µ,ψcDn−µ,ψθ(s) +

∫ s

0

1

Γ(n− µ)[ ∫ s

ρ

ψ′(t) (ψ(s)− ψ(t))n−µ−1

(
1

ψ′(t)

)n
∂ng(t, ρ)

∂tn
ψ′(ρ)dt

]
dρ,

= θ(s) +

∫ s

0

cDµ,ψ
ρ g(s, ρ)ψ′(ρ)dρ. (2.81)

By using equation (2.78) and (2.81) in equation (2.73)

cDµ,ψw(s) +

∫ n−1

0

f(γ)cDγ,ψw(s)λψ′(γ)dγ

= θ(s) +

∫ s

0

cDµ,ψ
ρ g(s, ρ)ψ′(ρ) +

∫ n−1

0

f(γ)

∫ s

0

cDγ,ψ
ρ g(s, ρ)ψ′(ρ)λψ′(γ)dρdγ,

= θ(s) +

∫ s

0

[
cDµ,ψ

ρ g(s, ρ) +

∫ n−1

0

f(γ)cDγ,ψ
ρ g(s, ρ)λψ′(γ)dγ

]
ψ′(ρ)dρ.

By using equation (2.70), we

cDµ,ψw(s) +

∫ n−1

0

f(γ)cDγ,ψw(s)λψ′(γ)dγ = θ(s).
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2.3 Conclusion

A novel technique named Duhamel’s principle has been develop for solving inhomoge-

neous initial value problems. The method has been applied for solving inhomogeneous

FDE. Also, Duhamel’s principle has been developed for solving generalized fractional

differential equation. Duhamel’s technique has been employed to reduce the inhomo-

geneous IVP to the corresponding homogeneous IVP.
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Chapter 3

Applications of the Duhamel
principle

The concept of Duhamel’s principle is very useful because it will help us in finding the

solution of the inhomogeneous equation using corresponding homogeneous equation.

This principle has a wide rang of applications in the field of applied mathematics, en-

gineering, and physics. The interest in this principle is caused by many applications

to problems of mechanics, geometry, applied physics, and other applied fields (see,

e.g.,[22, 23, 24, 25].

Furthermore, in literature [26, 27, 28, 29], IBVPs for both fractional ordinary differ-

ential equations and partial fractional differential equations are studied. An enormous

the results of fractional calculus like stability, existence, uniqueness, etc. of the solution

have been obtained for the fractional differential equations (FDEs) ([22, 24, 30, 31]).

Seemab. A in [32] was established the existence result for fractional non-linear par-

tial differential equations (PDEs) containing fractional Caputo derivative of order

1 < γ < 2.

In this chapter, we shall discuss the applications of the generalized Duhamel’s principle

for the psi-differential operator. In first section of this chapter we will present stability

analysis of the FDEs. Second section is about the existence of this principle.
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3.1 Stability of solution for differential equation

In this section, we will discuss the stability of the solutions of the system of differential

equations. Particularly we will discuss the behavior of the solutions of the system of

the form
dx

dt
= U (x(t), y(t)) ,

dy

dt
= V (x(t), y(t)) , (3.1)

where x and y are unknown scalar functions, and the first partial derivatives of U and

V are continuous in region a D of the xy−plane. Such system is called autonomous,

because U and V do not depend on t. We will require a number of definitions, for more

discussion.

Definition 3.1.1. [33] A critical point (c, d) of (3.1) is said to be an isolated critical

point if ∃ a circle √
(x(t)− c)2 + (y(t)− d)2 = R, R > 0.

containing no other critical point inside it.

Example 3.1.2. Consider the system

dx

dt
= x− y, dy

dt
= x+ y. (3.2)

The critical point (0, 0) of (3.2) is isolated because it is only critical point of (3.2).

Now, we introduce the idea of the stability of the solution x(t) = c, y(t) = d, t ∈
(−∞,+∞) , of (3.1) or the stability of a critical point.

Definition 3.1.3. [33] If (c, d) is an isolated critical point of the system (3.1), then

(c, d) is said to be stable if any given ε > 0, ∃ δ > 0 such that, whenever the solution

(x, y) satisfies √
[x(0)− c]2 + [y(0)− d]2 < δ,

the solution for t ≥ 0 exists and satisfies√
[x(t)− c]2 + [y(t)− d]2 < ε.
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The critical point (c, d) is said to be asymptotically stable if it is stable and in addition

∃ δ0 > 0 such that

lim
t→∞

x(t) = c, lim
t→∞

y(t) = d,

whenever √
[x(0)− c]2 + [y(0)− d]2 < δ0.

An isolated critical point, that is not stable, is said to be unstable.

Example 3.1.4. Consider the system

dx

dt
= −x, dy

dt
= −2y. (3.3)

The critical point of (3.3) is (0, 0) only. Let x(0) = c, y(0) = d. The solution of

(3.3) is x(t) = c exp (−t), y(t) = d exp (−2t). By using definition (3.1.3), we have

√
c2 + d2 < δ.

Again applying definition (3.1.3), we obtained√
(x(t))2 + (y(t))2 =

√
(c exp(−t))2 + (d exp(−2t))2 ≤

√
c2 + d2 ≤ δ.

We choose ε = δ. So, by definition (3.1.3) critical point (0, 0) is stable. Also

lim
t→∞

c exp(−t) = 0, lim
t→∞

d exp(−2t) = 0.

Hence (0, 0) is asymptotically stable.

3.2 Stability analysis of FDEs

The stability of the solutions of the problems play an important role in the field of

PDEs. Since the fractional derivatives have weakly singular kernels, therefore the

stability of FDEs is more complex than that of the ODE. The author in [34] discussed

the stability of the linear FDEs with Caputo fractional derivative of order 0 < γ <
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1. Recently Qian et al. [35] discussed the analysis on stability of linear FDEs with

Riemann-Liouville fractional derivative of order 0 < γ < 1.

In this section, we introduce the stability of the solutions of the generalized linear and

nonlinear FDEs with Caputo fractional psi-differential operator.

Definition 3.2.1. The Mittag-Leffler function of two parameter γ and ρ is defined as:

Eγ,ρ(w) =
∞∑
i=0

wi

Γ(γi+ ρ)

If γ = 1, then this will become Eγ,1(w) that is also written as Eγ(w) and this is the

Mittag-Leffler function of one parameter.

Remark 3.2.1. [35] If |arg(w)| ∈ [µ, π] and w →∞
then

Eγ,ρ(w) = −
m∑
i=2

w−i

Γ(ρ− γi)
+O(|w|−1−m)

where m ≥ 2 is any integer.

Lemma 3.2.1 (Gronwall Inequality). [35] Suppose that the functions w, ν are contin-

uous in [s0, s1]. If

ν(s) ≤ µ+

∫ s

s0

[w(ρ)ν(ρ) + r] dρ,

then

ν(s) ≤ (µ+ r(s1 − s0)) exp

(∫ s

s0

w(ρ)dρ

)
, s ∈ [s0, s1].

where ν(s) ≥ 0, µ ≥ 0 and r ≥ 0.

Definition 3.2.2. [35] Consider the fractional differential system

Dγ,ψw(s)−Bw(s) = 0. (3.4)

with initial condition Dγ−1,ψw(s) |s=0= w0 = (w10, w20, ..., wn0)T ,

where w(s) = [w1(s), w2(s), ..., wn(s)]T , 0 ≤ γ ≤ 1 and B ∈ Rn×n. The system (3.4)

is said to be

(1) Stable iff for any w0, there exists ε > 0, such that ‖w(s)‖ < ε, for s ≥ 0;

(2) Asymptotically stable iff lims→∞ ‖w(s)‖ = 0.
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The stability of the fractional differential system containing Riemann-Liouville

derivative of order 0 < γ < 1 was investigated by Qian et al.[35]. Motivated by

this paper, we generalized the results of stability for generalized fractional differential

equation containing Caputo derivative.

3.2.1 Stability analysis of linear generalized Caputo differen-
tial system

Consider the linear FDEs involving Caputo-psi differential operator as

cDγ,ψw(s)−Bw(s) = 0, γ ∈ (0, 1) (3.5)

where ψ is an increasing function, w(s) = [w1(s), ..., wn(s)]T ∈ Rn, B = (aij)n×n ∈
Rn×n, and the initial condition

cDn−1,ψw(s) |s=0= w0 = [w10, ..., wn0]T . (3.6)

Theorem 3.2.1. If all the eigenvalues of B satisfy

| arg (µ(B)) | > γπ

2
. (3.7)

Then the solution (3.5) is asymptotically stable.

Proof. The solution of (3.5) is given by

w(s) = w0 (ψ(s))n−1Eγ,n (B (ψ(s))γ) . (3.8)

Suppose that B matrix is similar to a diagonal matrix, i.e ∃ an invertible matrix H

such that

µ = H−1BH = dia (µ1, ..., µn) .

Then,

Eγ,n (B (ψ(s))γ) = HEγ,n (µ (ψ(s))γ)H−1

= Hdiag [Eγ,n (µ1 (ψ(s))γ) , ..., Eγ,n (µn (ψ(s))γ)]H−1.
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By Remark (3.2.1), we have

Eγ,n (µi (ψ(s))γ) = −
p∑
q=2

(µi (ψ(s))γ)
−q

Γ(n− γq)
+O(|µi (ψ(s))γ |−1−p, 1 ≤ i ≤ n,

= −
p∑
q=2

(µi)
−q (ψ(s))−γq

Γ(n− γq)
+O

(
|µi|−1−p (ψ(s))−γ−γp

)
→ 0, s→∞.

Thus ∥∥∥Eγ,n (µ (ψ(s))γ)
∥∥∥ =

∥∥∥diag [Eγ,n (µ1 (ψ(s))γ) , ..., Eγ,n (µn (ψ(s))γ)]
∥∥∥→ 0.

So, the result holds.

Now, we consider that B matrix is similar to a Jordan canonical form i.e ∃ an invertible

matrix H such that

J = H−1BH = diag (J1, ..., Jl) ,

Jk, 1 ≤ k ≤ l, has the following form
µk 1

µk
. . .
. . . 1

µk

 .

Eγ,n (B (ψ(s))γ) = Hdiag [Eγ,n (J1 (ψ(s))γ) , ..., Eγ,n (Jl (ψ(s))γ)]H−1

=
∞∑
q=0

(Jk (ψ(s))γ)
q

Γ(γq + n)
,

=
(ψ(s))γq

Γ(γq + n)


µqk

qC1µ
q−1
k . . . qCnk−1µ

q−nk+1
k

µqk
. . .
. . . qC1µ

q−1
k

µqk

 ,

=


Eγ,n (µk (ψ(s))γ) 1

1!
∂
∂µi
Eγ,n (µi (ψ(s))γ) . . . 1

(ni−1)!

(
∂
∂µk

)ni−1

Eγ,n (µk (ψ(s))γ)

Eγ,n (µk (ψ(s))γ)
. . .
. . . 1

1!
∂
∂µk

Eγ,n (µk (ψ(s))γ)

Eγ,n (µk (ψ(s))γ)

 .
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By some calculations and using Remark (3.2.1). If | arg (µk(B)) | > γπ
2
, 1 ≤ k ≤ l and

s→∞, then we have∣∣∣Eγ,n (µk (ψ(s))γ)
∣∣∣ → 0 and

∣∣∣ 1
j!

(
∂
∂µk

)j
Eγ,n (µk (ψ(s))γ)

∣∣∣ → 0, 0 ≤ j ≤ nk − 1, 1 ≤
k ≤ l.

These can be seen from the following

Eγ,n (µk (ψ(s))γ) = −
r∑
q=2

(µk)
−q (ψ(s))−γq

Γ(n− γq)
+O

(
|µk|−1−r (ψ(s))−γ−γr

)
.

This implies that
∣∣∣Eγ,n (µk (ψ(s))γ)

∣∣∣→ 0, as t→∞, and

1

j!

(
∂

∂µk

)j
Eγ,n (µk (ψ(s))γ) =

1

j!

(
∂

∂µk

)j {
−

r∑
q=2

(µk)
−q (ψ(s))−γq

Γ(n− γq)

+O
(
|µk|−1−r (ψ(s))−γ−γr

)}
,

= −
r∑
q=2

(−1)j (q + j − 1) ...(q + 1)qµ−q−jk (ψ(s))−γq

j!Γ(n− γq)

+O
(
|µk|−1−r (ψ(s))−γ−γr

)
.

This shows that
∣∣∣ 1
j!

(
∂
∂µk

)j
Eγ,n (µk (ψ(s))γ)

∣∣∣→ 0, 1 ≤ j ≤ nk − 1, as s→∞. It now

follows that

‖w(s)‖ = ‖w0 (ψ(s))n−1Eγ,n (B (ψ(s))γ) ‖ → 0,

as s→ +∞ for non-zero initial value w0.

3.2.2 Stability analysis of the generalized perturbed fractional
system

Consider the non-linear FDEs

cDγ,ψw(s)−Bw(s) = g(s)w(s); (0 < γ < 1) , (3.9)

where the matrix B = (bij)n×n ∈ Rn×n, and vector w(s) = [w1(s), w2(s), ..., wn(s)]T ∈
Rn×n. g(s) is a matrix of order n× n which depends upon s.
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satisfying non-homogeneous initial condition

cDn−1,ψw(s) |s=0= w0. (3.10)

Theorem 3.2.2. Suppose that ‖g(s)‖ is bounded, that is for some N > 0, ‖g(s)‖ ≤ N

and all the eigenvalues of B satisfy

|arg (µ(B)) | > γπ

2
. (3.11)

Then the solution of system (3.9)-(3.10) is asymptotically stable.

Proof. By the Duhamel’s principle the solution of the system (3.9) with condition

(3.10) is

w(s = w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

+

∫ s

0

(ψ(s− ρ))γ−1Eγ,γ (B (ψ(s− ρ))γ)ψ′(ρ)g(ρ)w(ρ)dρ.
(3.12)

By applying norm on both sides of equation (3.12) and also by triangle property of

norm, we obtained

‖w(s)‖ ≤
∥∥w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

∥∥
+

∫ s

0

(ψ(s− ρ))γ−1 ‖Eγ,γ (B (ψ(s− ρ))γ)‖ ‖ψ′(ρ)‖ ‖g(ρ)‖ ‖w(ρ)‖ dρ.

By using Lemma (3.2.1), we have

‖w(s)‖ ≤
∥∥w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

∥∥
exp

{∫ s

0

(ψ(s− ρ))γ−1 ‖Eγ,γ (B (ψ(s− ρ))γ)‖ ‖f(ρ)‖ψ′(ρ)dρ

}
,

=
∥∥w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

∥∥ exp

{∫ s

0

(ψ(ρ))γ−1 ‖Eγ,γ (B (ψ(ρ))ρ)‖ ‖g(s− ρ)‖ψ′(ρ)dρ

}
.

Since g(s) is bounded. So, we have

‖w(s)‖ ≤
∥∥w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

∥∥ exp

{∫ s

0

N
∥∥(ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)

∥∥ψ′(ρ)dρ

}
.
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First, we consider that B matrix is similar to a diagonal matrix. i.e. ∃ an invertible

matrix H, such that∫ s

0

∥∥(ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)ψ′(ρ)
∥∥ dρ =

∫ s

0

∣∣∣∣∣
∣∣∣∣∣Hdiag

[
(ψ(ρ))γ−1Eγ,γ (µ1 (ψ(ρ))γ)ψ′(ρ),

(ψ(ρ))γ−1Eγ,γ (µ2 (ψ(ρ))γ)ψ′(ρ), ...

.., (ψ(ρ))γ−1Eγ,γ (µm (ψ(ρ))γ)ψ′(ρ)

]
H−1

∣∣∣∣∣
∣∣∣∣∣dρ.

(3.13)

Now, we will prove that ∃ a constant K > 0, such that∫ s

0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ ≤ K, 1 ≤ k ≤ m.

For s > s0 > 0, we have∫ s

0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ =

∫ s0

0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ

+

∫ s

s0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ.

By Remark (3.2.1), we obtained∫ s

0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ ≤ ∫ s0

0

(ψ(ρ))γ−1Eγ,γ (|µk| (ψ(ρ))γ)ψ′(ρ)dρ

+

∫ s

s0

∣∣∣− r∑
q=2

(µk)
−q (ψ(ρ))−γq+γ−1

Γ(γ − γq)
ψ′(ρ)

+O
(
|µk|−1−r (ψ(ρ))−γq−1)ψ′(ρ)

∣∣∣dρ,
≤
∫ s0

0

∞∑
q=0

|µk|q (ψ(ρ))γq+γ−1

Γ(γq + γ)
(ψ′(ρ)) dρ+

p∑
q=2

|µk|−q

|Γ(γ − γq)|

∫ s

s0

(ψ(ρ))γ−γq−1 ψ′(ρ)dρ

+O
(
|µk|−1−r (ψ(s))−γr

)
.

(3.14)

By integrating the equation (3.14), we have∫ s

0

∣∣∣ (ψ(ρ))γ−1Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)
∣∣∣dρ =

∞∑
q=0

|µk|q (ψ(s0))γq+γ

Γ(γq + γ + 1)
+

r∑
q=2

|µk|−q (ψ(s))γ−γq

|Γ(γ − γq + 1)|

−
r∑

k=2

|µk|−q (ψ(s0))γ−γq

|Γ(γ − γq + 1)|
+O

(
|µk|1−r (ψ(s))−γr

)
,
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→ (ψ(s0))γ Eγ,γ+1 (|µk| (ψ(s0))γ) +
r∑
q=2

|µk|−q (ψ(s0))γ−γq

|Γ(γ − γq + 1)|
≤ N, as s→ +∞.

thus equation (3.13) becomes∫ s

0

∥∥(ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))ρ)ψ′(ρ)
∥∥ dρ ≤ C for s ≥ 0.

Now, we suppose that matrix B is similar to a Jordan form. Since s > s0 > 0, we have∫ s

0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j
Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)

∣∣∣dρ
=

∫ s0

0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j
Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)

∣∣∣dρ
+

∫ s

s0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j
Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)

∣∣∣dρ.
(3.15)

By Mittag-Leflier definition and using Remark (3.2.1) in the equation (3.15), we get∫ s

0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j
Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)

∣∣∣dρ
≤
∫ s0

0

∞∑
q=0

q(q − 1)...(q − j + 1)|µk|q−j

j!Γ(γq + γ)
(ψ(ρ))γq+γ−1 ψ′(ρ)dρ

+

∫ s

s0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j {
−

r∑
q=2

(µk)
−q (ψ(ρ))−γq

Γ(γ − γq)
+O

(
|µk|−1−r (ψ(ρ))−γ−γr

)}
ψ′(ρ)

∣∣∣dρ,
=
∞∑
q=0

q(q − 1)...(q − j + 1)|µk|q−j

j!Γ(γq + γ)

∫ s0

0

(ψ(ρ))γq+γ−1 ψ′(ρ)dρ+

∫ s

s0

∣∣∣∣∣
{
−

r∑
q=2

(−1)j(q + j − 1)! (µk)
−q−j

j!(q − 1)!Γ(γ − γq)
(ψ(ρ))γ−γq−1 ψ′(ρ)

+O
(
|µk|−1−r (ψ(ρ))−γ−γr ψ′(ρ)

)}∣∣∣∣∣dρ.
(3.16)
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Integrating equation (3.16) and also use property of absolute value∫ s

0

∣∣∣ (ψ(ρ))γ−1 1

j!

(
∂

∂µk

)j
Eγ,γ (µk (ψ(ρ))γ)ψ′(ρ)

∣∣∣dρ
≤

∞∑
q=0

q(q − 1)...(q − j + 1)|µi|q−j

j!Γ(γq + γ + 1)
(ψ(s0))γq+γ +

r∑
q=2

(q + j − 1)!|µk|−q−j

j!(q − 1)!|Γ(γ − γq + 1)|
(ψ(s))γ−γq

−
r∑
q=2

(q + j − 1)!|λk|−q−j

j!(q − 1)!|Γ(γ − γq + 1)|
(ψ(s0))γ−γq +O

(
|µk|−1−r (ψ(s))−γr

)
→ (ψ(s0))γ

1

j!

(
∂

∂|µk|

)j
Eγ,γ (|µk| (ψ(s0))γ) +

r∑
q=2

(q + j − 1)!|µk|−q−j (ψ(s0))γ−γq

j!(q − 1)!Γ(γ − γq + 1)
≤ D,

as s→ +∞.
This shows that exp

{
M
∫ s

0

∥∥(ψ(ρ))γ−1Eγ,γ (B (ψ(ρ))γ)ψ′(ρ)
∥∥ dρ} is bounded.

We also note that
∥∥w0 (ψ(ρ))γ−1Eγ,γ (B (ψ(s))γ)

∥∥→ 0 as s→ +∞.
Finally, we have lim

s→∞
w(s) = 0.

So, the solution (3.12) is asymptotically stable.

3.3 Existence and uniqueness of solutions for gen-

eralized FDEs

In this part, we will discuss the existence and uniqueness of the solutions of the gener-

alized differential equation. Consider the operator 4(s, ρ), which is defined as

4(s, y) = sρ +

∫ n−1

0

f(γ)sγdγ, (3.17)

where n− 1 < ρ ≤ n, f(γ) is continuous for all γ > 0, and analytic in y ∈ G ⊂ C.

Lemma 3.3.1. Consider the operator Aq(s, w), which is defined as

Gq(s, y) = Bρ−q−1(s, y) +

∫ n−1

q

f(γ)Bγ−q−1(s, y)dγ, q = 0, ..., n− 1. (3.18)

where Bρ(s, y) = L−1
ψ [ vρ

h(v,y)
](s) ,y ∈ G ⊂ C, and L−1

ψ represents the inverse ψ- Laplace

transform. Then Gq(s, C)νq solves the Cauchy problem

cDρ,ψw(s) +

∫ n

0

f(γ)cDγ,ψw(s)dγ = 0, (3.19)
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(cDp,ψw)(0) = σp,qνp , p = 0, ..., n− 1. (3.20)

where σp,q shows the Kronecker delta

σp,q =

{
1 if p = q

0 if p 6= q.

Proof. By applying Lψ on equation (3.19), we obtain

Lψ
[
cDρ,ψw(s)

]
+

n−1∑
q=1

∫
(q−1,q)

f(γ)Lψ
[
cDγ,ψw(s)

]
dγ = 0.

By using the property of the ψ-Laplace transform

vρw̄(v)−
∑n−1

i=0 v
ρ−i−1(cDi,ψw)(0)+

n−1∑
q=1

∫ q

q−1

f(γ)

[
vγw̄(v)−

q−1∑
p=0

vγ−p−1(cDp,νw)(0)

]
dγ = 0.

By simplifying the above equation, we have

sρw̄(v) +
∫ n−1

0
f(γ)vγw̄(v)dγ =

n−1∑
i=0

vρ−i−1(cDi,ψw)(0) +

∫ n−1

0

q−1∑
p=0

vγ−p−1(cDp,ψw)(0)f(γ)dγ.

By virtue of equation (3.20), we have

w̄(v)

[
vρ +

∫ n−1

0

f(γ)vγdγ

]
= vρ−q−1νq +

∫ n−1

q

vγ−q−1νqdγ.

Now using equation (3.18), we get

w̄(v)4(v, C) = νq

(
vρ−q−1 +

∫ n−1

q

f(γ)vγ−q−1νqdγ

)
.

So, finally, we obtained

Gq(s, y) = vρ−q−1 +

∫ n−1

q

vγ−q−1f(γ)dγ.

So, the solution is given by wq = Gq(s, C)νq, q = 0, ..., n− 1.
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Corollary 3.3.1. Let the collection of solution operators be represented by Gq(s, y),

q = 0, ..., n− 1, which is defined in Lemma (3.3.1). Then the Cauchy problem

cDµ,ψw(s)+

∫ m

0

f(γ)cDγ,ψu(s)λdγ = 0, (cDp,ψw)(0) = σp,qνp , p = 0, ...,m−1. (3.21)

has a solution

w(s) =
n−1∑
q=0

Gq(s, C)νq. (3.22)

Theorem 3.3.1. Supose that g(s) is continuous on s ∈ [0, T ], and νq be a continuous

for all q = 0, ...,m− 1. Then the Cauchy problem (3.21) has a unique solution

v(s) =
m−1∑
q=0

Gq(s, C)νq +

∫ s

0

Gn−1(s− ρ, C)g(ρ)ψ′(ρ)dρ. (3.23)

Proof. We separate the Cauchy problem (3.21) in to two problems

cDµ,ψv(s) +

∫ m

0

f(γ)cDγ,ψv(s)λdγ = 0, (3.24)

cDq,ψv(0) = νq, q = 0, ...,m− 1. (3.25)

And
cDµ,ψw(s) +

∫ m

0

f(γ)cDγ,ψw(s)λdγ = h(s), s > 0, (3.26)

cDq,ψ[w](0) = 0, q = 0, ...,m− 1. (3.27)

By using corollary (3.3.1) the unique solution to the Cauchy problem (3.24)-(3.25) is

given by

v(s) =
m−1∑
q=0

Gq(s, C)νq. (3.28)

For the solution of Cauchy problem (3.26)-(3.27), follows from the fractional Duhamel’s

principle, it enough to solve the Cauchy problem for the the homogeneous equation:

cDµ,ψv(s) +

∫ m

0

f(γ, C)cDγ,ψv(s)λdγ = 0, (3.29)

cDψ,qw(s, ρ) |s=ρ= 0, q = 0, ...,m− 2. (3.30)

cDψ,m−1w(s, ρ) |s=ρ= h(ρ). (3.31)
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Again using the result of corollary (3.3.1) to obtain the solution of this problem ,(also

note that Gq(s, ρ, z) = Gq(s− ρ, z), q = 0, ...,m− 1, is given by the

w(s, ρ) = Sm−1(s− ρ, C)h(ρ). (3.32)

Thus equation (3.23) obtained by the Duhamel’s integral of w(s, ρ) and equation (3.28).

The uniqueness of a solution also follows from the obtained representation (3.23).
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Chapter 4

Haar-Duhamel methods for
fractional differential equation

Exact solutions of many FDEs are unknown. Therefore, different numerical tech-

niques have been applied for providing approximate solutions. So, many numerical

techniques i.e. the Adomian decomposition method (ADM) [36], the homotopy per-

turbation method (HPM) [37], wavelet methods [38, 39] etc. have been used for approx-

imating the solution of FDEs. There are different types of wavelet but Haar wavelet

is the orthonormal simplest of them [40]. Lepik in 2007-8 [41, 42] solved differential

equations by using Haar wavelet algorithm. Hariharan [40] in 2009, found the ap-

proximate solution of Fisher’s equation using Haar wavelet method. In the same way,

Kannan [43] and Hariharan solved Fitzhugh-Nagumo equation. Berwal [44] in 2013

solved Telegraph equation using Haar wavelet technique. The good characteristics of

this technique is to convert a fractional differential equation into an algebraic equation

and possibility to integrate a rectangular function analytically arbitrary time. The

disadvantage of this technique is their discontinuity. In this chapter we will discuss

wavelet, Haar wavelet and their properties. Also, we present operational matrix of

fractional integration by Haar wavelets technique. We also used Haar wavelet with

Duhamel’s principle to develop a method for solving fractional differential equations.
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4.1 Wavelet

The Haar wavelet was first presented in the thesis of the A.Haar (1909). The concept

of the wavelet is not a new. The concept of wavelet originates from different field

involving engineerings, Physics and applied mathematics. It has many different origins

in the history of the mathematics. It has been used in the numerical analysis and signal

processing. Now a days, it has been commonly used in the field of numerical solution

of the initial and boundary value problem.

Wavelets are defined as orthonormal system of functions with a compact support ob-

tained with the assistance of dilation and translation. Its basis is formed by a particular

functions defined on the finite interval using dilation and translation. If the proper-

ties of orthonormality are not necessary, then large class of functions are also called

“wavelets”. There are many form of wavelets e.g Haar wavelets [45, 46], Legender

wavelets [47], Battle-Lemarie [48].

Wavelets are constructed from the specific transformation i.e. compression and trans-

lation of a single valued function called the mother wavelet which is given as:

Gc,d(s) = |c|−
1
2G

(
s− d
c

)
. (4.1)

If c > 1 in equation (4.1), then wavelet has larger support in time domain and having

lower frequencies. On the other hand, if we take c < 1, then wavelet has smaller

support in time domain and having higher frequencies become compressed form of

mother wavelet.

The parameters are discretized as c = c−q0 , d = md0c
−q
0 . Then we obtained the class of

discrete wavelets

Gq,m(s) = |c0|
1
2G (cq0s−md0) ,

where Gq,m(s) form a basis for L2(R). These wavelets became orthonormal basis, if

c0 = 2, and d0 = 1.

An orthonormal wavelets form called the Haar wavelet, which has been used by many

researchers. Mathematically, Haar wavelets family carries with its rectangular func-
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tions. Haar wavelets has many applications in the field of engineering and science. It

is also used to determine the eigenfunctions corresponding to the eigenvalues[49],[50].

4.2 Haar wavelet

Note that the Haar wavelet are the simplest orthonormal of the wavelet. It was first

introduced by Alfred Haar in 1910. They are the piecewise function defined on the

real line which have −1, 0, 1 values only. Commonly, Haar wavelets are defined for

0 ≤ s < 1, but in general case s ∈ [c, d]. we will split the [c, d] interval into 2T

subintervals of equal width, ∆s = d−c
2T
, The set of orthogonal Haar wavelet at [c, d]

interval is defined.

G0(s) =

{
1, s ∈ [c, d],

0, otherwise

and

Gi(s) =


1; s ∈ [η1(i), η2(i)

)
−1; s ∈ [η1(i), η2(i)

)
0; otherwise

(4.2)

where

η1(i) = c+ (d− c) q
r
,

η2(i) = c+ (d− c) 2q + 1

r
,

η3(i) = c+ (d− c) q + 1

r
.

(4.3)

We defined T = 2J , r = 2j, where j = 0, 1, 2, ..., J and q = 0, 1, 2, .., r − 1. The j

and q parameters involved here have a definite significance. The quantity j represents

the dilation parameter or level of wavelet, because the wavelet turns small or support

decreases by increasing j, and J represents the level of maximal resolution for the Haar

wavelet. We can deduced from the following subsistence or width of the i-th wavelet

equation as

η3(i)− η1(i) =
d− c
r

=
d− c

2j
. (4.4)

The q parameter represents the translation, because q denotes the position of the

wavelet on the x-axis; by giving values of q from 0 to r − 1, the starting point of the
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i-th wavelet η1(i) translated from x = c to x = c+(r−1)d
r

. The relationship between i, q

and r is i = r + q + 1. The above equation(4.2) is true for i ≥ 3. For i = 2, the

corresponding scaling function is given as

G2(s) =


1; s ∈ [c, c+d

2

)
−1; s ∈ [ c+d

2
, d
)

0; otherwise.
(4.5)

Since the Haar wavelet functions are orthogonal, then the equation(4.2) become

∫ d

c

Gi(s)Gl(s)ds =


1; for i = l;
−1; for i 6= l;
0; otherwise

(4.6)

Example 4.2.1. Suppose that c = 0, d = 1, the wavelet number is i = 2, if J = 2,

then j = 0, 1, 2, and now, we consider j = 0, q = o, and r = 1, the equation (4.5) will

become

G2(s) =


1, 0 ≤ s < 1

2
,

−1, 1
2
≤ s < 1,

0, otherwise.

Similarly, the wavelet number is i = 3, for q = o, j = 1 and r = 2. so, equation (4.5)

will become

G3(s) =


1, 0 ≤ s < 1

4
,

−1, 1
4
≤ s < 1

2
,

0, elsewhere.

• Properties

1 Any arbitrary function can be written as a linear combination ofG0(s), G0(2s), ...,

G0(2qs), ... and their translation functions.

2 Any arbitrary function can be written as a linear combination of constant function

G1(s), G1(2s), ..., G1(2qs), ... and their translation.
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4.3 Approximation of functions by Haar wavelet

Let w be the function defined on [0, 1]. It can be written in the form of Haar wavelet

as

w(s) =
∑
i

KiGi(s). (4.7)

where Gi are the basis functions and co-efficient of Haar wavelet represented by Ki.

We decompose the equation (4.7) into 2T -terms as

w̃(s) =
2T∑
i=0

KiGi(s). (4.8)

The corresponding approximation function of the equation (4.8) can be written as

w̃(sl) =
2T∑
i=0

KiGi(sl). (4.9)

The matrix form of equation (4.9) is

W T = KG, (4.10)

where K can be found as

K = W TG,

where W T and G are row vector of dimension 2T , and G is Haar matrix. There are

many ways to calculate the error function of the wavelet estimations, but we define

one of these error function as:

∆ =

∫ d

c

[w(s)− w̃(s)]2 ds.

Haar wavelet are related to the groups of piecewise functions. If the function is differ-

entiable, then constant function convergence rate function is O( 1
T 2 ).
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4.4 Fractional integral by Haar wavelet

The Haar wavelets Algorithm are helpful for computing the numerical solution of inte-

gral and differential equations due to its simplicity. We compute the integrals by Haar

wavelet function. If we integrating Haar function γ-times, we have

J γ
a Gi(s) = P γ,i(s) =

∫ s

a

(s− t)γ−1

Γ(γ)
Gi(t)dt. (4.11)

i = 1, 2, 3, ..., 2T.

Generally, these integrals can be calculated by using equation (4.11).

P γ,i(s) =


∫ s
η1(s)

(s−t)γ−1

Γ(γ)
dt, η1(s) ≤ s < η2(s),∫ s

η1(s)
(s−t)γ−1

Γ(γ)
dt, η2(s) ≤ s < η3(s),∫ s

η1(s)
(s−t)γ−1

Γ(γ)
dt, s > η3(s),

and

P γ,i(s) =


∫ s
η1(s)

(s−t)γ−1

Γ(γ)
dt, η1(s) ≤ s < η2(s),∫ η2(s)

η1(s)
(s−t)γ−1

Γ(γ)
dt−

∫ s
η2(s)

(s−t)γ−1

Γ(γ)
dt, η2(s) ≤ s < η3(s),∫ η2(s)

η1(s)
(s−t)γ−1

Γ(γ)
dt−

∫ η3(s)

η2(s)
(s−t)γ−1

Γ(γ)
dt, s > η3(s).

So, finally we get the integrals of the Haar wavelet function of order γ as

P γ,i(s) =


(s−η1(s))γ

Γ(γ+1)
, η1(s) ≤ s < η2(s),

(s−η1(s))γ

Γ(γ+1)
− 2 (s−η2(s))γ

Γ(γ+1)
, η2(s) ≤ s < η3(s),

(s−η1(s))γ

Γ(γ+1)
− 2 (s−η2(s))γ

Γ(γ+1)
+ (s−η3(s))γ

Γ(γ+1)
, s > η3(s),

(4.12)

The equation (4.12) is valid for i > 1. If we take i = 1, we have η1(1) = a, η2(1) =

η3(1) = b and

P γ,1(s) =
1

Γ(γ + 1)
(s− a)γ . (4.13)

4.4.1 Haar Matrix

First of all, we define the grid point as

s̃l = c+ l
d− c

4J
, l = 0, 1, 2, 3, ..., 4J . (4.14)
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where J is the maximal level of resolution. We use collocation points as

sl =
1

2
(s̃l−1 − s̃l) , l = 1, 2, 3, ..., 4J . (4.15)

and replacing s by sl in equation (4.2),(4.12) and equation (4.13). It gives the results of

these sets in the form of a matrix. For this we present the Haar matrices G,P 1, ..., P u of

order 2T × 2T . The entries of Haar matrices will be G(i, l) = Gi(l), P
u(i, l) = P ui(sl),

where u = 1, 2, 3, 4, ....

For example suppose that c = 0, d = 1 and J = 1. so, the Haar matrix will be

a 4 × 4 matrix. From the equation (4.14), the grid points for l = 0, 1, 2, 3, 4, 5 are

s̃0 = 0, s̃1 = 1
4
, s̃2 = 2

4
, s̃3 = 3

4
, and s̃4 = 1. To find collocation points using these grid

points in equation (4.15), we obtained s1 = 1
8
, s2 = 3

8
, s3 = 5

8
and s4 = 7

8
. The entries

of Haar matrix G can be calculated by using equation (4.2).

Now for G1(s) at the points s1, s2, s3, s4 ∈ [η1(1), η2(1)) , the first row of G matrix

contains all entries 1. Similarly, for G2(s), G3(s) and G4(s). So, G matrix is

G =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 .

4.4.2 Integration Matrix for Haar wavelet

Now we develop the integration matrix (or operational matrix) for the Haar wavelets.

These matrices have been mostly used to solve the FDEs.

Now we find the entries of P 1 by using equation (4.2), (4.12) and (4.13). For cal-

culating P 11(sl) at the points s1, s2, s3, s4 ∈ [η1(1), η2(1)) , and we use P γ,i(s) =

1
Γ(γ+1)

[s− η1(i)]γ , for s ∈ [η1(i), η2(i)]. For γ = 1, the entries of first row of P 1 is

0.125, 0.375, 0.625, 0.875. Similarly, other entries of P 1 and P 2 operational matrices

are

P 1 =
1

8


1 3 5 7
1 3 3 1
1 1 0 0
0 0 1 1

 , P 2 =
1

128


1 9 25 49
1 9 23 31
1 7 8 8
0 0 1 7

 ,
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P 1.5 =


0.03324519 0.17274707 0.37169252 0.61570954
0.03324519 0.17274707 0.30520214 0.27021539
0.03324519 0.10625669 0.05944356 0.04507156

0 0 0.03324519 0.10625669

 .
4.4.3 Riemann-Liouville integral by Haar wavelet

Now we consider Riemann-Liouville integration of a function w(s) defined on [0, 1] by

Haar wavelet. Suppose that function g(s) is integrable. Then function w(s) can be

approximated as

w(s) =
∑
i

KiGi(s). (4.16)

Now taking finite terms of the series in (4.16)

w(s) =
n−1∑
i=0

KiGi(s). (4.17)

After substituting collocation point into equation(4.17),we have

W (s) = KnGn(s). (4.18)

Applying Riemann-Liouville integration on the equation(4.18), we have

J γ
aW (s) = KnJ γ

a Gn(s) = KnP
γ
n×nGn(s). (4.19)

We can compute J γ
aW (s) = KnP

γ
n×nGn(s) by using equation (4.12) and (4.13).

Example 4.4.1. Consider that

w(s) = cos(ws), s ∈ [0, 1] and γ ∈ (1, 2]. (4.20)

First of all, we calculate the exact R-L integral of the equation (4.20), as

J γ
0 w(s) = J γ

0 {cos(ws)} . (4.21)

By using Taylor series of cos(γs) in equation (4.21), we have

J γ
0 w(s) =

∞∑
q=0

(−1)q(w)2q

Γ(2q + 1)
J γ

0 s
2q. (4.22)
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Now using J γ
0 s

η = Γ(η+1)
Γ(η+γ+1)

sγ+η and by definition of Mittag-Leffler function in equation(4.22)

J γ
0 w(s) = sγE2,γ+1

(
− (ws)2) . (4.23)

The above equation (4.23) gives the exact R-L integral of functions in equation (4.20).

The approximate and exact R-L integral by Haar wavelet are plotted in Fig4.1(a) and

also for J = 5 and distinct values of γ, the absolute error between approximate and

exact are shown.

Example 4.4.2. Consider

w(s) = exp(ws), s ∈ [0, 1] and γ ∈ (1, 2]. (4.24)

By using Taylor series of exp(ws), we have

w(s) =
∞∑
q=0

(ws)q

Γ(q + 1)
. (4.25)

Applying R-L integral on the equation(4.25), we have

J γ
0 w(s) =

∞∑
q=0

(w)q

Γ(q + 1)
J γ

0 s
q. (4.26)

By using J γ
0 s

q = Γ(q+1)
Γ(q+γ+1)

sq+γ in equation (4.26)

J γ
0 w(s) =

∞∑
q=0

(w)q

Γ(q + γ + 1)
sq+γ. (4.27)

By Mittag-Leffler function

J γ
0 w(s) = sγE1,γ+1 (ws) . (4.28)

The above equation (4.28) is exact R-L integral of equation (4.24). The exact and

approximate R-L integral and their absolute error is plotted in the Fig4.1(b) for distinct

values of γ and J = 5.
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(a) J = 5, γ = 5, w = 7. (b) J = 5, w = 7, γ = 6.

Figure 4.1: The exact R-L integral of w(s) and by Haar wavelet R-L integral are plotted

4.5 Error Analysis

In this part, we discuss an inequality [51] in the form of upper bound, that shows the

Haar wavelet convergence.

Theorem 4.5.1. If a function w(s) is differentiable and its first order derivative is

bounded i.e |w′(s)| < T , T > 0, ∀s ∈ (a, b) , the approximation of w(s) is represented

by wr(s). Then

‖w(s)− wr(s)‖ = O

(
1

r

)
.

Proof. Let w(s) be defined on [a, b) as

w(s) =
∞∑
n=0

KnGn(s), (4.29)

where Kn = 〈w(s), Gn(s)〉. We consider r-th terms of equation (4.29), which is repre-

sented by wr(s) and is the approximation of w(s), that is

w(s) ' wr(s) =
r−1∑
n=0

KnGn(s), (4.30)

where r = 2q+1, q = 0, 1, 2, ..., the equation (4.30) become

w(s)− wr(s) =
∞∑
n=o

KnGn(s)−
r−1∑
n=0

KnGn(s) (4.31)
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=
∞∑
n=r

KnGn(s).

Applying norm on equation (4.31), we obtained

‖w(s)− wr(s)‖2 =

∫ b

a

(w(t)− wr(s))2 ds

=

∫ b

a

(
∞∑
n=r

KnGn(s)

)2

ds

=
∞∑
n=r

∞∑
n=r′

KnKn′

∫ b

a

Gn(s)Gn′(s)ds. (4.32)

By using orthogonality property on equation (4.32), we get

‖w(s)− wr(s)‖2 =
∞∑
n=r

K2
n =

∞∑
n=2q+1

K2
n, (4.33)

where Kn =
∫ b
a
w(s)Gn(s)ds = 〈w(s), Gn(s)〉. Since

Gn(s) =


1, a+ 2−jq ≤ s ≤ a+

(
2q+1

2

)
2−j,

−1, a+
(

2q+1
2

)
2−j ≤ s ≤ a+ (q + 1)2−j,

0, otherwise.

By substituting, we got

Kn = 2
j
2

{∫ a+( 2q+1
2 )

a+2−jq

w(s)ds−
∫ a+2−j(q+1)

a+( 2q+1
2 )

w(s)ds

}
.

By mean value theorem for integral, ∃ γ, λ such that

γ ∈
[
a+ 2−jq, a+ (

2q + 1

2
)2−j

)
,

λ ∈
[
a+ (

2q + 1

2
)2−j, a+ 2−j(q + 1)

)
.

So,

Kn = 2
j
2

{(
a+ (

2q + 1

2
)2−j − (a+ 2−jq)

)
w(γ)

−
(
a+ 2−j(q + 1)−

(
a+ (

2q + 1

2
)2−j

))
w(λ)

}
,
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Kn = 2
−j
2
−1 (w(γ)− w(λ)) .

Again by mean value theorem, ∃ γ < ρ < λ such that

Kn = 2
−j
2
−1 (λ− γ)w′(ρ)

≤2
−j
2
−12−jT, ∵ |w′(ρ)| < T

=2
−3j
2
−1T.

Therefore the equation (4.33) become

‖w(s)− wr(s)‖2 =
∞∑

n=2q+1

K2
n =

∞∑
j=q+1

2j+1−1∑
n=2j

K2
n


≤

∞∑
j=q+1

2j+1−1∑
n=2j

(
2
−3j
2
−1T

)2


=

∞∑
j=q+1

2−3j−2T 2

2j+1−1∑
n=2j


=

∞∑
j=q+1

(
2−3j−2T 2

(
2j+1 − 1− 2j + 1

))
‖w(s)− wr(s)‖2 = T 2

∞∑
j=q+1

2−2j−2. (4.34)

Applying geometric sum formula in the equation (4.34), we have

‖w(s)− wr(s)‖2 =
2−2q−2

3
T 2

=
(r)−2

3
T 2, ∵ r = 2q+1

‖w(s)− wr(s)‖2 =O

(
1

r

)
.

If the numerical value of T is given, then we can find the exact value of error bound

2−2q−2

3
T 2 for the equation (4.31). Now to find the value of T , we have suppose that

w(s) and its first order derivative continuous and differentiable on [a, b], also w′ ∈ [a, b].

w′(s) can be given as

w′(s) '
r−1∑
n=0

KnGn(s), (4.35)
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where Kn = 〈w′(s), G(s)〉. The matrix form of equation (4.35) can be written as

w′(s) ' KTG, (4.36)

where Kn = [K0, K1, ..., Kr−1]T , and G = [G0, G1, ..., Gr−1] . Integration of equation

(4.35), leads to

w(s)− w(a) '
r−1∑
n=0

Kn

∫ s

a

Gn(t)dt. (4.37)

We defined the points sj as,

sj =
j − 0.001

r
, j = 1, 2, 3, ..., r.

By using sj in equation (4.37), we get

w(sj)− w(a) '
r−1∑
n=0

Kn

∫ sj

a

Gn(s)ds. (4.38)

We can write equation (4.38) in matrix form as

W −W (a) = KF. (4.39)

The above equation (4.39) is system of linear equation. WhereK = [K0, K1, ..., Kr−1]T ,

W (a) = [w(a), w(a), ...., w(a)] andW = [w(s1), w(s2), ...., w(sr)]
T and F =

[∫ s
a
Gn(s)ds

]
0≤n<r−1,1≤j≤r .

Now the vector K can be determined by solving the system of linear equation (4.38)

and using vector K in equation (4.35), w′(s) can be calculated for each s ∈ [a, b].

Suppose that si ∈ [a, b] and w′(si) can be calculated for each i = 1, 2, 3, ..., l, where l is

equidistant, then approximation of T may be considered as ε+max|w′(si)|i≤≤l.

4.6 Haar-Duhamel’s method for solving FDEs

We developed a new method to obtain the solutions of the non-linear FDEs numerically,

called Haar-Duhamel’s method. In general, this method requires to use operational

matrix for FDEs. Interestingly, accuracy is not compromised, rather enhanced by

using Haar-Duhamel’s technique for solving FDEs subject to the initial conditions.

Example 4.6.1. Consider the FDEs of order γ ∈ (n− 1, n]

cDγ,ψ
0 v(s) + µv(s) = w(s), (4.40)

70



satisfying the conditions

v(0) = 0, v′(0) = 0, ..., vn−1(s) |s=0= 0. (4.41)

We can check that v(s) = sγ+1 is solution of the problem (4.40)-(4.41) with w(s) =

Γ(γ + 2)s+ λsγ+1. By Duhamel’s principle the solution of the problem (4.40)-(4.41) is

given as

v(s) =

∫ s

0

(s− ρ)γ−1Eγ,γ (−µ (s− ρ)γ)ϕ(ρ)dρ. (4.42)

where

w(ρ) = J 2−γ
0 ϕ(ρ). (4.43)

We find the numerical solution of the equation (4.40) with condition (4.41) by Haar

wavelet that is presented in section (4.3). By Haar wavelet, we can approximate ϕ(s)

as

ϕ(ρ) = KG(ρ). (4.44)

Now by using equation (4.44) in equation (4.43), we have

w(ρ) = KJ 2−γ
0 G(ρ). (4.45)

After putting collocation points, the above equation (4.45) become

W (ρ) = KP 2−γG(ρ). (4.46)

The equation (4.46) represents a system of linear equation. Where G is Haar matrix

and P is operational matrix and K is unknown matrix, which is determined by any

Algebraic method using MATLAB program.

Now ϕ can be determined by using K in equation (4.44). By substituting ϕ(ρ) in

equation (4.42), we got

v(s) =

∫ s

0

(s− ρ)γ−1Eγ,γ (−µ (s− ρ)γ)KG(ρ)dρ,

=K

∫ s

0

(s− ρ)γ−1Eγ,γ (−µ (s− ρ)γ)G(ρ)dρ,

=KEγ
nG.
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The above linear system is calculated with the help of MATLAB.

In Table4.1, we give the absolute error for constant value of µ = 1, n = 2, 1 < γ ≤ 2

and for distinct values of resolution level J , as J increases, the absolute error decreases.

J Absolute Error

5 2.07395× 10−2

6 1.81276× 10−2

7 1.57557× 10−2

8 1.37121× 10−2

Table 4.1: This table shows the absolute error for distinct values of J .
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Figure 4.2: Approximate and exact solutions by Haar-Duhamel’s for J = 7.
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Chapter 5

Summary

In first chapter we have given a brief introduction and some basic definitions of frac-

tional calculus. Basic notions like Gamma and Mittag-Lefler functions are introduced.

Also, we have defined fractional integral and derivatives with respect to another func-

tion. We have discussed the classical and generalized Laplace transform and their

important properties, results and applications.

In second chapter, we provided a method for finding the solutions of a generalized

non-linear fractional differential equations with initial conditions known as Duhamel’s

principle. A detailed discussion of this method for ordinary differential equations and

partial differential equations is carried out. We propose this principle for fractional

differential equations subject to initial conditions. We also generalized Duhamel’s prin-

ciple for psi-differential equation and extend this principle for the higher integer order

psi-differential equation. We also developed this principle for the fractional higher or-

der psi-differential equation.

In chapter 3 we have presented the applications of the generalized Duhamel’s principle.

We discussed the stability of the solutions of generalized linear and non-linear FDEs

involving Caputo psi-differential equation. Also, we develop the existence and unique-

ness of the solutions of the generalized FDEs.

Haar Wavelets which are the primary tool to develop the numerical methods are dis-

cussed in detail for the ordinary fractional differential equations and partial fractional

differential equations subject to the initial conditions. In chapter 4, we developed a
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numerical technique for finding the approximate solution of the generalized non-linear

FDEs with initial conditions, called Haar-Duhamel’s method. Furthermore, to check

the accuracy and effectiveness of the proposed method, the results of essential numer-

ical applications are documented in a graphical as well as tabular form.
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