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Abstract

In this academic research we generalized the Duhamel’s principle and extended this
principle for the higher order integer and fractional psi differential equation subject to
suitable initial conditions. Furthermore, as application of the generalized Duhamel’s
principle, some notions like stability, existence and uniqueness of the solutions of the
generalized fractional differential equation with initial conditions is investigated. In
order to approximate the solutions of the generalized nonlinear fractional differential
equation with initial conditions, we introduce a new numerical technique combining

the Haar wavelets and Duhamel’s principle called Haar-Duhamel’s method.
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Chapter 1

Introduction

1.1 Fractional Calculus

The idea of calculus occurs when the concept of derivative arises. The definition of
derivative that is used now a days was given by Newton in 1666 [1]. The researchers
were developed many physical or geometrical interpretation from the derivative and
integration. The integral of a function is the area under the cure [2]. This type of cal-
culus was developed widely over three or four centuries. Now a days, many scientists
can understand or describe the physical facts with an ordinary differential equation.
If we generalize the ordinary calculus i.e. derivative and integration of integer order
to arbitrary non-integer value, we get the fractional calculus i.e. fractional derivative
and integration. We defined the fractional calculus as: the branch of mathematics in
which we study the properties of fractional derivative and fractional integral is called
fractional calculus.

In 1695, Leibniz derived the nth order derivatives formula i.e d%- After his publica-
tion of the nth derivatives formula, L-Hospital rises a question to Leibniz that if we
take n=1/2 what will be the result? This question was the beginning of the fractional
calculus. L-Hospital’s reply: “An apparent paradox, from which one day very use-
ful results will be drawn.” After that time fractional calculus was developed by many
mathematicians. Bertram Ross is the first person who done his Ph.D. on the fractional
calculus. In 1974, Keith B. Oldam and Jerome Spanier published the monograph and
they devoted their publications to the Fractional calculus ([3]). Now a days,many
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books, journals, articles and conferences held on the fractional calculus and its appli-
cations and properties. Many well-known mathematicians Riemann, Liouville, Caputo,
Hadamard and Grunwald work in the field of fractional calculus, they also give their
own definitions in fractional calculus. There are different definitions in the fractional
calculus but Riemann-Liouville integral and derivative are the most famous. Later,
a mathematician Caputo gives another definition of fractional derivative to solve the
fractional order differential equation Which is the more generalized form of Riemann-
Liouville derivative. On the bases of Leibniz’s answer studies over 200-300 years and
has proved many concepts right.

In this chapter introduction to the theory of fractional calculus, some basic preliminar-
ies and major results already obtained. Also, we will define some special functions. We
review literature and research about the fractional derivative and integral with respect
to another function and generalized Laplace transform. Its properties and some results
are also given. We will give examples to understand the concept of the given result.
In chapter 2, we generalized Duhamel’s principle for @ operator. We will also give its
examples to understand the concept of this famous principle.

In chapter 3, the applications of the generalized Duhamel’s principle that is the stabil-
ity and existence of the solutions of the solutions of generalized fractional differential
equation (FDE) .

In chapter 4, we review literature and research about wavelet, Haar wavelet, the Haar
matrix and the integration matrix. We also approximate function by Haar wavelet and
error analysis. Also develop Haar-Duhamel’s method to solve the fractional differential

equation (FDEs).

1.2 Special Functions

There are many special functions that are very helpful for solving the problems of
fractional differential equations. In this section, the definitions of some of the special

functions and their properties are discussed.



1.2.1 Gamma Function

Many well-known mathematicians studied the Gamma function. The Gamma function
is represented by I'. It is the generalization of the factorial function (i.e I'(m+1) = m!

for m € N). The gamma function I' : (0,400) — R is defined as:

I(w) = /Ooo(s)wlesds, w> 0. (1.1)

The integral in equation (1.1) is convergent for Re(w) > 0. There are many properties

of the Gamma function, but we list few of them [4].

Figure 1.1: The Gamma function for real argument



e Properties

L'(m+1)=m!
r(;)=va

(a) Duplication formula

(2)2° 710 (w)D(w + %) = V7T (2w).

(b) Reflection formula

T'(w)[(1 — w) = Sing;w).
Ifw=#0
[(w) = w (1.2)

Right hand side of the equation (1.2) is defined for w > 0. Now, If w # 0, w # —1,

we have n( 2
w +
I'w) = wwT1)

The equation (1.3) is valid for w > —2, as w # 0, —1. The process is repeated g¢-times,

(1.3)

we get

I'w + q)

P = o Dw =D (wt Do’

w#0,—1,-2, ...

Thus the domain of the Gamma function is w € R\ {0, —-1,—-2, -3, ....}.



1.2.2 Beta Function

The name of the Beta function is used by the Legendr and Whittakar and Waston
1990. It is defined by the following definite integral:

1
B(m,n) = / t™ (1 —t)"""ds, Re(m) >0, Re(n) > 0. (1.4)

0
Sometimes, we replace the Beta function by the Gamma function with a relation that

is [4]:

L(m)I'(n)

B(m,n) = Tmtn)

1.2.3 Mittage-Leffler Function

G.M Mittag-Leffler was a Swedish mathematician who defined and studied the Mittag-
Leffler function in 1903 [5]. Generally, it is the parameterized form of the exponential
function. It has vast applications in the area of applied sciences, engineering and

mathematics.

Definition 1.2.1. The Mittage-Leffler function of order one is defined as [5]:

q

> w
E = _ R C.
’Y(w> qz;r(,yq+1)7 /VE ) w e

Later, Agarwal introduced the second order Mittage-Leffler function, which is de-

fined as following:

Definition 1.2.2. For v,n € R and w € C, the Mittage-Leffler function of second

order is given as
o0
9=

If n =1, then we get E,1(w) that is written as E.(z).

F7q+n

e Some special cases



_7:1,”:1
— — ’}":2,'{}:1
3t =2,n=2
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Remark 1.2.1. If |arg(w)| € [u, 7] and w — oo
then

E

where m > 2 is any integer.

(1) = =3 et Ol ).



Theorem 1.2.1. The following relations hold for v > 0, n > 0;

1
Eyp(w) = wEy 5 m(w) + 5 (1.5)
dn
dwn [wn_lE%n(wv)] = w" " o (w7). (1.6)
w
d
By y(w) =nE, p1(w) + yw——E, pp(w). (1.7)

dw
1.3 Fractional integral and derivatives

In this section we will discuss some important definitions and results for fractional

integral and derivatives.

1.3.1 Riemann-Liouville integral

With the help of Cauchy integral formula, we can define fractional integrals and deriva-

tives. So, first we defined the Cauchy iterative integral formula as:

Tmh(z) = /b ) %h(t)dt, (1.8)

where m € N and h € Ly[b, c], b,c € R.
If we use (m — 1)! = I'(m) and replace m with any positive real number v > 0 in

equation (4.1). Then we get the definition of integral fractional.

Definition 1.3.1. The Riemann-Liouville integral J, of fractional order v € Rt as:

Th(z) = /b ’ %h(t)dt, (1.9)

where h € Ly[b, ¢, and b < x < c.

The Riemann-Liouville fractional integral of the function h(s) = s” for v > 0, and

n > —1, is given as

"/WZL SS_ ’Y*lsn
T =g [ o=



Substitute v = ST_t ast —0, v—1andast— s, v— 0,80, sdv = —dt
Y 1 ' v—1 n
Jos"==— [ (sv)7 (s —sv)"sdv
0

:m/o ()" (1—=v)"" " dv

e

- mﬁ(%n +1).

Using B(v,n+1) = %, we obtained

Cin+1)

Vg — NI
Jo Fy+n+1)

$1H (1.10)

Example 1.3.2. Consider that h(s) = s2, then by equation (1.10) the R-L integral of
h(s) is

(1.11)

Now, we consider some cases i.e.

1 1

For v = 57 \7023% = 2\;7(_];2 ~ (.8862s.
3 3 1 s>

For v =>; J2s? = ~ 0.44315.

ory =5 Jost = opm) i

5 501 3

For v = 57 j0255 = 2]:‘(-2) =~ 0147753
7 L 4

For v = 57 j025§ = 2F7T(-z> ~ 0036954

These integrals are plotted in the Figurel.3.

e Properties

(a) Identity operator
If we take v = 0, then we obtain the identity operator that is Z°h = h.

9



Jgh(s)

Figure 1.3: The R-L integral of h(s) = s2 are shown.

(b) Linearity
If functions g(s) and h(s) are continuous V s > 0. For some v > 0 and pu € C.
Then

T, (ng(s) + h(s)) = uJ, g(s) + T, h(s).

(c) Semi group law

If a function h(s) is continuous V s > 0.
Ty (F(s)) = Fy h(s) = Ty (T h(s)) . ¥ v,m € RT.

Lemma 1.3.1. If the function h(s) is continuous for all s > 0 and the integral J*

10



exists. Then

[y

n—

(s —b)*

Jy'D"h(s) = h(s) — J

Dh(b).

Il
o

q
1.3.2 Riemann-Liouville Derivative

After defining the fractional integral, Now we introduce the fractional derivative. There
are variety of derivatives definitions. But here we discuss the Riemann-Liouville and

Caputo fractional differential operators [6]-[7].

Definition 1.3.3. The Riemann-Liouville derivative of a function h € Lq[b, c] of frac-
tion order v € Rt is defined as:

DJh(s) = DET" h(s).
If we use the equation (1.9), then we obtained

ko ps
! d /b (s — )" " h(z)de.

P = =y as

where v = [k].

For n > —1 and 7 > 0, the Riemann-Liouville derivative of the function h(s) =
(s — b)" is obtained by using definition (1.3.3), we have
D}h(s) = D"J," "h(s)
=D"7" " (s—b)".
Substituting equation (1.10), we get

C(n+1)

D)h =
ph(s) I'(n—v+n+1)

Dr (S o b)"I—’Y-H? )

Applying D"s™ = %sm_”, we obtained
r 1
Dih(s) = —FD oy (1.12)
I(n—v+1)
Example 1.3.4. Make use of the equation (1.12), we have
1 r(Z+1 31
D025% = 3(2 1 ) (3)%75
3
= Z\/ES

11



e Properties

(a) Identity law
If a function h € Ly[b,c] and v € (k — 1, k], then

D}J)h = h.
(b) Linearity

If the functions g, h € Ly[b, ¢], and D] g(s) and D} h(s) exists fory € (k — 1,k], k €

N, p € C. Then the Riemann-Liouville derivative is linear i.e.
Dy (ng(s) + h(s)) = nDyg(s) + Dyh(s).

(c) Semi group property
If a function h(s) is such that the operator D} h(s) is exists forally € (k — 1,k], k €
N. Then in general

D} (Djh) = Dy*h # D} (Djh).
Hence, the Riemann-Liouville derivative are not commutative i.e.
Dy (Dyh) # Dy (Djh).

Lemma 1.3.2. Suppose that jbk_”h is integrable for v > 0, k = [~]. Then

n—l1 b)Y 1
FIDih(s) = his) ~ S O T =g im D T s),
q=0

1.3.3 The Caputo fractional differentiation operator

The Italian mathematician Caputo reformulated the definition of Riemann-Liouville

derivative to give another definition for fractional derivative [8].
Definition 1.3.5. The Caputo fractional derivative of order v € R is defined as:
‘Dyh(t) = J;" " D*h(t)
1 /t ana(n) (1.13)
) Sy (¢

I'(g—~ — 77)”“*‘1 "

where n € (¢ —1,q), and if n = q € N then we obtained - dtq

12



Lemma 1.3.3. Consider that h(t) = (t — b)” for some p € R. Then

C(p+1) .
CDZh(t) — T(p—y+1) (t - b) . € (n - 1,”), P >n—1 (114)
0; vye€(n—1,n), p<n-—1.

e Properties

(a) Linearity

If the derivatives D] g and D} h exists. Then Caputo derivatives are linear i.e
°D) (kg(s) + h(s)) = k°D]g(s) + °D}h(s), v >0, k € C.

(b) Semi group law
The semi group law does not hold for the Caputo derivative, if the derivatives
°D) and °D) exist then
“Dj) (“Dyh) = °D}""h # °D} (“Djh).
Hence, the Caputo fractional derivative are non-commutative.

Example 1.3.6. Consider thatn — 1 <~ <n and h(t) = t2. Then, by using Lemma
(1.8.3), we obtain
s _TG+D 4,
(G —v+1)

3

VT s,
LG -7

Now, we consider some cases for fixed values of vy ie. v = %, v = g, v = g and v = %

2 2 3
For v = —, CDSt% = 45ﬁ2 £375 = 1.2000¢¢
3 P(§ - 5)
5 s s
4 INCE
T oI 1
For v = 67 cDSt% = F(iﬁ7)tg_g = 1.4886¢3
276
9 , o 1
2 7

—_
w
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Figure 1.4: The Caputo fractional derivatives of h(t) = t2

Theorem 1.3.1. Assume that h € Li[b,c| such that the derivatives °D/h and D} h
exists, for v € R™ and n = [v]. Then

n—1
Dih
°D/h(s) = D/ h(s (s —b)* "
o) = it - = A0
Lemma 1.3.4. If a function h € Ly[b,c] and v > 0. Then
D} h = h.

Lemma 1.3.5. Let us consider that v € RY, n = [v] and h € C"[b,c]. Then

D) = h(s) — S

(s —b)?.



1.3.4 Hadamard operator

Let v > 0, and the function h(t) € L?[b, ¢], then Hadamard integral is defined as [9];

"gn) = o [ (1n<f>)”_1 ha) gy,

INGY x x

and if h € C™[b, ], then the Hadamard fractional derivative is defined as

"Dine) = (1) T h)

respectively, where m = [y] + 1 € N.

1.4 The Laplace transform

In this part, we will discuss the definition, properties and the results of the Laplace
transform [10]. It is used for solving the initial value problem on the domain [0, o).
Now a days, Laplace transform is used in the areas of mathematics, physics and engi-

neering etc.

Definition 1.4.1. The Laplace transform is defined on (0,00) for the function g(p) by

L{g(p)} =g(s) = /OOO e~*Pg(p)dp, Re(s) > 0.

This transform was first discovered by the French mathematician Pierre-simon

Laplace.

Definition 1.4.2. The inverse Laplace transform is defined as:
1 c+ioco
LMW = 5 [ eTTds, Rel) >0
2mi c—100
Lemma 1.4.1 (Properties of Laplace transform). Suppose that the Laplace transform
of functions g(p) and h(p) exists, that is G(s) and H(s) respectively. Then the following
holds [10]:

(a) The Linear property of the Laplace transform is
L{pg(p) + h(p)} = pG(s) + H(s). p € R.

15



(b) The Laplace transform of convolution of g(p) and h(p) is given as

L{g(p) * h(p)} = G(s)H(s).

and the convolution is given as follows:

9(p) * h(p) = /Opg(p — p)h(p)dp = /Opg(n)h(p — p)dp.

(d) The k-times derivative(k € N) of the Laplace transform is stated as:

—

£{g®(p)} = #G(s) = 3 s+ 140(0) (1.16)

q

Il
=)

Example 1.4.3. The Laplace transform of Bessel function of order zero is
1
Vs? +a?

Lemma 1.4.2 (Laplace transform of the fractional operator). Let us consider that

L{Jo(ap)} =

p > 0 and assume the Laplace transform of g(p) exists [10]. Then the Laplace transform
of the following operator is given as
(a) The Laplace transform of Riemann-Liouville fractional derivative of the ordery > 0

18
m—1
L{DGg(p)} = s7g(s) = Y s™ T DITFg(p) lp=o -
q=0

(b) If T3 denote the fractional integral, Then its Laplace transform is given by
G(s)

57

LT 9(p)} =

Theorem 1.4.1. If the L{h(t)} exists that is H(s) and p > 0. Then the Laplace

transform of the Caputo fractional derivative is

—_

m—

L{Dyg(p)} = "G(s) = Y _ "~ g'D(0).

q=0

16



1.4.1 Application of Laplace transform

Laplace transform are used to solve the initial value problem. we will use classical
Laplace transform to solve ordinary differential equations (ODEs) and partial differen-

tial equations (PDEs).

Example 1.4.4. Consider the initial value differential equation

dy
"t hy(p) = ¢(p); p >0, y(0) =0. (1.17)
Applying Laplace transform on the equation (1.17) and using Lemma (1.4.1(d)),
we obtain
b »(s)
= . 1.1
y() S+h+8—|—h (1.18)

Applying Laplace inverse on the equation (1.18) and using convolution theorem, we

get

4
y(p) = be ™ + / oo — p)edp.
0

1.5 Fractional integral and derivatives with respect
to another Function

There are wide number of definitions of a fractional integrals and derivatives. Recently
researchers developed theory of generalized fractional derivatives and integrals which
hold a large of fractional operators as special case. Particularly in what follows, we

focus on fractional operators of functions w.r.t other functions

Definition 1.5.1. Suppose that h is an integrable function and ¢ € C[b,c| be an
increasing function such that {'(s) # 0,V s € I, where interval I is —oo < b < ¢ < 400
and let v > 0 and m = [v]. Then fractional integrals and derivatives with respect to

an other function v are defined as [11, 12, 13]

T h(s) = ﬁ / (@) (1(s) — (@) h()d,

17



and

DY h(s) = ( w,ts)%)mjm”h(sx

s () [ e v nwas

respectively.
Similarly, right fractional integral and derivative are defined as:
Fns) = [ e 0(s))" " hla)da,

and

D}V h(s) = ( t)i> TV h(s)

-t (7 ds) / V(@) (9(z) — ()™ h(a)da.

In equation (1.19) if ¢/(s) = s, Riemann-Liouville derivative is obtained and for ¢ (s) =

(1.19)

In(s), then we get Hadamard operator is retrieved.
Semi group property:
If v,n7 > 0, then fractional integral holds the semi group property

jb% (jnwh( )) :jvarn,wh( ) jnw (j'“ph( ))

Lemma 1.5.1. [11] Let 7, > 0,
(1) If u(s) = ((s) =¥ (b)""". Then

T u(s) =

18



1.5.1 Caputo fractional derivative with respect to -function

In this section, we focus on a Caputo fractional derivative with respect to y-function.
We also present some properties and results of it. Almeida [14] using the concept of the
Caputo fractional derivative, introduced a new definition called -Caputo derivative

with respect to y-function.

Definition 1.5.2. Suppose that v > 0, m € N, ¢ is an increasing function such that
Y'(s) #0, for all s € I, I is an interval —oo < b < ¢ < 400 and h,v € C™([b,c]).
Then left 1-Caputo derivative is defined as;
1 d\"
c R0 _ gm—y
DZJr h(S) — Ypt K (W(S) %) h(s)a

-t [ @ e s () beds

And the right ¢-Caputo derivative is

_ 1od\"
°DIVh(s) = Jm <— " @)%) h(s),

where m = [7].
Lemma 1.5.2. Suppose that a function h € C[b,c| and vy > 0, then we have
DIV TV h(t) = h(t).

Lemma 1.5.3. Let v > 0 and p > 0.
(a) If u(s) = (¥(s) = 9(b)" ", then

“Diule) = s (0(s) = )
(b) If v(s) = (1(b) — ()", then
“Diuls) = s ()~ vl

If h € C™[b,c] and v > 0, then
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1.6 The y-Laplace Transform

In this section, the definition of the generalized Laplace transform is discussed which
has been introduced by the Abdeljawad and Jarad in 2019 ( [15]). Which can be used
to solve the fractional differential equation involving psi-Riemann-Liouville, and psi-
Caputo fractional derivatives. It is also used to solve dynamical systems depending
on the fractional operator. This new 1 —Laplace transform is the generalization of the
classical Laplace transform. Some important properties, results and applications of ¢)—

Laplace transform are also part of this section.

Definition 1.6.1. Let ¢ > 0, be an increasing function such that 1¥(0) = 0, and h be
a real valued function h : [0, +00) — R. Then 1p-Laplace transform is defined by

) = Lo (h(s)} = [ PO v (s)h(s)ds.
0
this integral is valid for all p.

Theorem 1.6.1 (Existence condition of ¢-Laplace transform). [15] If h is of exponen-
tial order-y and h : [0,00) — R is a piecewise continuous function, then its 1»— Laplace

transform exists for p > c.

Theorem 1.6.2 (Relation between 1)—Laplace transform and classical Laplace trans-
form). Let h,v : [b,00) — R be a real valued continuous function such that ¢'(s) > 0

and the 1— Laplace transform of h exists. Then

Ly {h(s)} (v) = L{h (7" (s + (b)) } (v).

Lemma 1.6.1 (Linearity property). If the 1-Laplace transform of the functions g and

h exists on [a,00). Then, for constant v > C, then ¥— Laplace transform is linear i.e.

Ly{Cg(s) +h(s)} = CLy {g(5)} (v) + Ly {A(s)} (v).

Lemma 1.6.2. If v)-Laplace transform exists, then the following properties hold

(a) Ly{c}= E, for v >0, cis constant.
v

n!

0) L)'} =
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Theorem 1.6.3 (¢-Laplace transform of fractional derivatives w.r.t another function).
If h(s), T "Yh(s), DI "Yh(s), ..., D" T N(s), exists, for v > 0, and
m = [v] + 1, where DY = (ﬁs)d%) , are continuous on RY and of 1{-exponential
order, while DV h(s) is piecewise continuous on [0, 4+00). Then

(@) Lo {Di"h(s)} = v"Lo{h(s)} = S e (7577"h) (0).

() Lo { Dy h(s)} = v Ly {h(s)} - S (D) (0).

Theorem 1.6.4. Let v > 0 and h be a continuous function over the finite interval

[0, T, of ¥-exponential. Then

£ {(F¥n) ()} = v 7Ly {(s)}

Lemma 1.6.3. Suppose that R(y) > 0 and | 5| < 1. Then

vl

vr—1°

Ly {En (n(()")} =

Theorem 1.6.5 (Convolution theorem). [15/ Suppose h and g are of exponential order

and piecewise continuous on each [0, T]. Then the convolution of h and g is defined as:
s=y~ 1 (4(s)) . /
(s9) o) = [ (6 (6(5) = 010) 9l)e ().
0

1.6.1 Applications of y-Laplace transform

In this subsection, we use i-Laplace transform to solve the differential equations and

also verified. For the sake of simplicity “DJ ¥ will be denoted by ¢DVY.

Lemma 1.6.4. Consider the linear homogeneous differential equation

“Dg(t) — g(t) = 0, 9(0) 0, (1.20)

then the solution of equation (1.20) is g(t) = g(0)e¥®).
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Proof. Applying L, on both sides of equation (1.20)

Ly [“Dg(t)] — Lylg(t)] =0

using theorem 1.6.3(a) and initial condition, we obtained

9(0) = (1.21)

Applying E;l on the equation (1.21), we get

g(t) = g(0)e™

Lemma 1.6.5. Consider the non-homogeneous differential equation
“DHg(t) — g(t) = h(t), g(0) = 0. (1.22)

Then the solution of equation (1.22) is

o0) = [ OOy

Proof. Applying L, on both sides of equation (1.22) and using Theorem 1.6.3(a), we
obtain ,
vg(v) = > v (DMg) (0) — g(v) = h(v).
k=0
Using condition ¢g(0) = 0, and simplifying, we get;
h(v)
v—1

g9(v) = (1.23)

Applying E;l on the equation (1.23) and using Convolution theorem (1.6.5), we ob-

tained

o0 = | O ()h(p)dp.
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Now we verify that g(t) given by

o(0) = [ O )i (129

Satisfies the initial value problem (1.22).
Applying D% on the equation (1.24), and using Leibniz theorem, we obtained

"DV = h(t) + / O () (r)dr
0
“DMVg(t) — g(t) = h(t).

Lemma 1.6.6. Consider the higher order linear differential equation
“D¥g(t) — g(t) = 0. (1.25)
g(0) =0, (P"*)(0)=0, ..., (D™"¥)(0)=0. (1.26)
Then the solution of equations (1.25)-(1.26) is given by
g(t) = (D™ ¥g) (0) (¥(t))"™ " Bnn ((1))"

Proof. Applying L, on both sides of equation (1.25) and using Theorem 1.6.3(b), we

obtained

Vg(v) = 3 8 (D) (0) — g(v) = 0.

g(v) = 2 . (1.27)

Applying /31;1 on equation (1.27),
m— 17,[) -1
k:O

_ (pm-1, ()"
— (D™ 1Y) (O)kzm

g(t) = (D™ 1g) (0) (W(1))™ " B ((1))").




Lemma 1.6.7. Consider the higher order non-linear differential equation
“D"g(t) — g(t) = h(t), (1.28)
9(0) =0, (D"g) (0) =0, ..., (D" "¥g) (0) = 0. (1.29)
then the solution of the equation (1.28)-(1.29) is given by
t
o) = [0 = 610" Bu (600) = 000 & (9D (p)p.

Proof. Applying L, on both sides of equation (1.28) and using Theorem 1.6.3(b), we

obtain
v"g(v) — Rl (Dk’wg) (0) — g(v) = h(v).

By using equation (1.29), we get

h(v)

9(v) = . (1.30)

Applying L’;l on the equation (1.30) and using convolution theorem (1.6.5), we ob-

tained

Lemma 1.6.8. Consider the linear differential equation
“DWg(t) —wg(t) =0, g(0) #0; 0<~vy <1, (1.31)

Then the solution of equation (1.81) is given by

Proof. Applying L, on both sides of equation (1.31), we have
Ly ["Dg(t)] —wLy [g(t)] = 0.
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Now, using theorem 1.6.3, we obtained

m—1

Zzﬂ =1 (D?%g) (0) — wy(s) = 0.

Using condition ¢(0) # 0, we obtained

After simplification, we get

o (w)?
0> e (1.32)
q=0
Applying E;l on both sides of equation (1.32), we obtained

9(t) = g(0) Ey (w(())")

O

Lemma 1.6.9. Consider the non-linear differential equation
‘DWg(t) —wg(t) =0, n—1<vy<n. (1.33)
9(0) =0, (D"¥g) (0)=0,..., (D" "¥g) (0) # 0. (1.34)

then solution of the equation (1.33-1.34) is given by

g(t) = (D™ ¥g) (0) (¥(t))" " B (w( (1))

Proof. Applying L, on both sides of equation (1.33), and using theorem1.6.3(b), we

obtain B
st =1 (D% g) (0) — wg(v) = 0.

Now, using equation (1.34), we get

g(v) = (D" ¥g) (0) Z (w)* : (1.35)

Applying E;l on equation (1.35), we obtained

g(t) = (D" 109) (0) ()" Enn (w(t(2))") -
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Verification:

Now, we verify that the function

g(t) = (D™ ¥g) (0) (¥(1))™ " By (w( (1)) (1.36)

is solution of the problem (1.33), (1.34).
Applying “D?¥ on both sides of equation (1.36), and using definition of Mittag-Leffler

function, we obtain

))vq+m—1

CDV’wg(t) _ (Dmfl R CD’Y R Z

vq +m)
By using definition (1.5.2)

D m-1 N (w)? @O (@) T(vg +m)
Pren) = (7 ql( > P(vg +m) P(yg+m—7)

=w (D"1¥g) (0) (L ()" B (w(®(1))")
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Chapter 2

Generalization of the Duhamel’s
principle

The classical Duhamel’s principle introduced by the French mathematician and physi-
cist Jean- Marie Duhamel’s in 1830, is well-known. The main aim of this theory is to
reduce the Cauchy problem for the given non-homogeneous PDE to the corresponding
homogeneous PDE, which is easy to solve.

The classical Duhamel’s principle is not directly applicable to the fractional order
Cauchy problem because the non-homogeneous fractional order differential equations
cannot be reduced directly to the corresponding homogeneous equation. S. Umarov
generalized this famous principle for the Cauchy problem of fractional order non-
homogeneous generalized differential operators. ( [16],[17]).

In this chapter, we generalize Duhamel’s principle for the generalized differential oper-
ators, including the generalized Caputo fractional differential operator. For simplicity

¢DJ and DY will be denoted by D and “D"¥ respectively.

2.1 Duhamel’s principle for ODEs and PDEs

In this section, we present the Duhamel’s principle for the PDEs and ODEs involving
the integer order derivatives. By using Duhamel’s principle, we can find the solution
of the ODEs and PDEs. This principle allows us to solve non-homogeneous PDE by

considering the solution of homogeneous PDE. First, we present Duhamel’s principle
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for ODEs.

2.1.1 Duhamel’s principle for ODES

Duhamel’s principle states that the solution of homogeneous IVP, can be obtained by

the solution of homogeneous IVP [18]. Consider
w'(t) + kw(t) = 6(t), t > 0; w(0) =0. (2.1)
Let G(t; p) be the solution of the homogeneous problem
G'(t;p) + kG(t;p) = 0, t e RT; G(0;p) = 0(p), (2.2)
where p a new parameters has been introduced. The solution of the problem (2.2) is
G(t; p) = 0(p) exp(—Fkt).

The solution of the nonhomogeneous IVP (2.1) is the integral of the solution of the
corresponding homogeneous IVP G(t, p) (with ¢ replaced by t — p), with a source is

involved as initial condition.

Theorem 2.1.1. The solution of the non-homogeneous IVP
d +
%w(t) + kw(t) =0(t). t e R, (2.3)

with initial condition w(0) = 0 is given by

t
w(t) = [ Glt = pip)ip. (2.4
0
where G(t; p) is solution of the homogeneous problem
d
EG(U +EkG(t) =0, t > 0; (2.5)
satisfying initial condition

G(0;p) =0(p), peR".

28



This principle also holds for the second order ODEs with initial conditions. Now

we consider the second order ODEs.

Theorem 2.1.2. The solution of the non-homogeneous problem
d*g(t)

T k*g(t) = h(t), g(0) =0, ¢'(0) =0, (2.6)
is given by g(t) = fotw(t — p, p)dp, where w(t, p) is solution of the problem
d*w(t
;’;5 ) + E2w(t) =0, w(0) =0, w'(0) = 0(p). (2.7)
Proof. Since the solution of the problem (2.6) is
t
o) = [ it~ psp)dp. 2:5)
0
Differentiating equation (2.8) and using Leibniz rule, we have
dg(t ! dw
WO — w0+ [ St sy (29)
0
Using w(0) = 0 in equation (2.9), we get
dg(t) /t dw
— = t— d 2.10
i ) e (2.10)
Again differentiating equation (2.10) and using Leibniz rule, we have
d*g , d*w(t — p; p)
—(t) =w'(0 —————Zdp. 2.11
)=o)+ [ LB, (211)
Using w'(0) = 6(p), in equation (2.11) and we obtain
d*g(t) " dPw(t — p;p)
=40 ——————dp. 2.12
A= o)+ [ S, (212

Using equation (2.12) in equation (2.6) , we have

d2g(t L dw(t — p;p '
dgtg)+k2g(t):9(p)+/ %—F/g/ w(t — p; p)dp,
0 0

—op)+ [ [Pt )] (213)

Using equation (2.7) in (2.13), we obtained
d*g(t)
dt?

+kg(t) = 0(p).
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Remark 2.1.1. The solution of the problem (2.7) is
w(t) = k™ sin(kt)0(t). (2.14)

We also know that the solution of the problem (2.6) is

g(t) = / k" sin(k(t — p))8(o)dp. (2.15)

Now by comparing the solutions (2.14) and (2.15), we see that the solution (2.15) is

equivalent to

g(t) :/0 w(t — p; p)dp,

where w(t, p) is the solution of the problem (2.7).

2.1.2 Duhamel’s principle for PDEs

In this section we explain Duhamel’s principle for the PDEs. This principle allows
us to find the solution of a non-homogeneous PDE, in terms of the solution of the
homogeneous PDE [19]. We will elaborate this principle for the wave equation.

Since the three-dimensional Euclidean space is denoted by R? and a point in R? be de-
noted by Y = (y1, 40, y3). If W (Y, p) is a solution of the homogeneous wave equation,
for each fixed p,

Wy (Y1) — VW (Y,t) =0, t >0, Y € R®, (2.16)

with conditions

W(Y,0,p) =0, Wi(Y,0,p) = h(Y, p). (2.17)

Where h(Y, p) is a continuous function defined for Y € R3. Then the solution of the

non-homogeneous wave equation
Gu(Y,t) — E*V2G(Y,t) = h(Y,t), Y € R® t € RT, (2.18)
with initial conditions

G<Y7 0) = 07 Gt(}/J 0) = 07
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is given by

¢
Gv.) = [ Wt = p.p)dp
0

Proof. Differentiating (2.19) and using the Leibniz rule, we have

t
GiY.t) =W(Y,0.0)+ [ WYt = pip)ip.

0

Using equation (2.17), we get

t
Gi(Yit) = [ WYt = p.p)ip
0

Again differentiating equation(2.20) with respect to ¢, we obtain

t
Gtt(}/v t) - Wt<y7t =P p) + / th<Y7t - P p>d10
0

Using equation(2.17) in equation(2.21), we get

t
GulY,1) = h(Y, p) + / Wa(Y,t — p. p)dp.
0

And

t
E*V2G(Y,t) = / k*V2W dp.
0
Using equation (2.22) and (2.23) in equation (2.18), we have

t t
Gtt(Y> t) - k2V2G<Y, t) = h(Y7 p) +/ th(}/vt - P p)dp - / k2V2dea
0 0
t

0

By using equation (2.16), we obtained

GulY.t) = K*V2G(Y,1) = h(Y, p).
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2.2 Duhamel’s principle for fractional differential
equation

In this section we establish a fractional Duhamel’s principle for the Caputo and Riemann-
Liouville type FDEs [20]. The generalization of the fractional Duhamel’s principle es-
tablished in [17] can be directly applied to a nonhomogeneous FDEs reducing them to

the corresponding homogeneous equations.

2.2.1 Duhamel’s principle for Caputo differential equations

In this subsection we present the fractional Duhamel’s principle for the Caputo differ-

ential equation.

Theorem 2.2.1. [21] If v(y,t; p) is the solution of homogeneous IVP

0*v(y,t
‘Dlv(y,t) — 72% =0, 7€ (0,1), t>p, yeR, (2.24)

with initial condition

(Y ) li=p="D'0(y. ), (2.25)

where 0(y,t) is a differentiable function. Then the solution of inhomogeneous IVP

2 azg(yv t)

‘D7g(y,t) — v 0 0(y,t), v€(0,1), y e R, ¢t >0, (2.26)

satisfying initial conditions g(y,0) =0, y € R, is given by
t
9(y,t) = / (Y, t; p)dp. (2.27)
0
Proof. Differentiating equation (2.27) with respect to t and using Leibniz rule, we get
S0 =ot0) ey + [t 2.23)
— =v(y, t; _ —o(y, t; . .
8759 Y, y,t;p t=p 0 825 y,t;p)ap
From equation (2.28) and definition of Caputo derivative, we have

?g(y,t) 0 ?g(y,t)
cnyY _ A2 \D ) gl _ A2\ D
D7g(y,t) — v 9 T 59 t) = oE
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o0 [t b 0%u(y, t;
=J* ”E/O v(y,t;p)dp—/o 72%@- (2.29)

Applying Leibniz rule on the equation (2.29), we get

2 a2g(ya t)

)
¢ Y —_— = 1_7 N _ —_ N
Dg(y,t) —~ e J {v(y,t,p) li=p +/0 atv(y,t,p)d/}}

2.30
_/t 20%0(y, tip) | (230
; Y ENE p-
Using equation (2.25) in equation (2.30), we obtain
0%g(y. 1) '* )
cDa A2 ) — 1—v ch—'y / 1-—v 7 .
gy, t) — 0 =Y ( 0y, 1)) + i [J oW, 7)
0*v(y. t; p)
A2 ) )
LA }dp,
t 0*v(y. t; p)
=000~ 000.0) + [ | Dt~ g s
0

Using equation (2.24) in equation (2.31), we obtain

0%q(y,t
‘D7g(y,t) — 72% = 0(y,1).

Further g(y,0) = 0. Hence g(y,t) = fgv(y,t;p)dp is the solution of the problem
(2.26). O

2.2.2 Duhamel’s principle for Riemann-Liouville differential
equation

In this subsection, we state the Duhamel’s principle for fractional differential equation
with the Riemann-Liouville derivative.

Consider the non-homogeneous Cauchy problem
BDJw(s) + Lw(s) = 0(s), s >0 (2.32)
satisfying homogeneous initial condition
T w(0) = 0. (2.33)
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The fractional Duhamel’s principle establishes a relation between the solution of the

inhomogeneous Cauchy problem with the homogeneous problem
"D3g(s, p) + Lg(s,p) =0, s> p (2.34)
subject to the inhomogeneous initial condition
T 779(5,p) |s=o= 0(p)- (2-35)
Where v € (0,1) and 6(p), p > 0, is a continuous function.

Theorem 2.2.2. [20] Suppose that g(s, p) is a solution of the homogeneous problem
(2.34)-(2.35). Then the solution of the inhomogeneous problem (2.32)-(2.33) is given
by Duhamel’s integral

wl) = [ ol ) (2:36)

Proof. Applying D] on the equation (2.36), we have

R Dgu(t) = F(%_Wi / (s—a) / " g(e, p)dudp,

_d [t
_E/o T g(s, p)dp. (2.37)

From equation (2.37), (2.32) and Leibniz rule, we obtain

_ S d _ S
BDgw(s) + Lw(s) = T g(s, p) |s=p +/ %Jl 7g(s,p)dei/ g9(s, p)dp. (2.38)
0 0
Using equation (2.35) in equation (2.38), we get
"Dju(s) + Lu(s) = 06) + [ ["D'gls.0)+ Lot )] dp. (239)
0

Using equation (2.34) in equation (2.39), then we obtain

EDJw(s) + Lw(s) = 0(p).
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2.2.3 Duhamel’s principle for psi-differential equation

In this part we established the fractional Duhamel’s principle for psi-differential equa-

tion.

q
Let C' = C(xz, %,D‘W) and D¥i= (ﬁ%) be a linear differential operator whose

coefficients not depending on s. Consider the Cauchy problem
D*%w(s, z) + Cw(s,z) = 0(s,2), s >0, z€ R" (2.40)
with initial homogeneous conditions
w(0,2) = 0; D"Yw(0,2) = 0. (2.41)
If w(s,n, z), is a solution of the homogeneous problem
D*YG(s,p,z) + CG(s,p,z) =0,
with initial conditions :
G(5,p,2) ls=p= 0, D'"WG(s,p, 2) |s=p=0(p, 2).
Then solution of the Cauchy problem (2.40) -(2.41) is given by the integral
wis2) = [ Gl p 00 )i (2.42)

The integral involved in equation(2.42) is the Duhamel’s integral for ¢ —fractional

operator.

Lemma 2.2.1. Assume that g is continuous on R™ x [0, s] , and its partial derivatives

are jointly continuous in the X-norm, and (m%) € L1(0,5;X)V s>0. If

w(s) = /0 Sg(s,p)w’(p)dp, (2.43)
then
2 ; 1\ g1 s, 8 s 1 \"0"g(s, ,
mew(s):;mkm) Taa | [ (o) SRt
(2.44)
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Proof. Applying D% on both sides of the equation (2.43) and using Leibniz rule, we

have

1 Jg(s,p)
P'(s) Os

Again applying D% on the equation (2.45) and using Leibniz rule, we get

20(s) = D"a(s. s 1 Jg(s,s) 3 1\’ 9%(s,p) ,
D¥u(s) = DMgls0) + s 0 () RO

A repeated application of above process for n-times, leads us to

Dhule) = ; o [(Wé) ) . %] o () e
(2.46)

]

D" u(s) = gls,s) + / S (p)dp. (2.45)

2.2.4 Generalization of the Duhamel’s principle for psi differ-
ential equation

In this subsection we generalize Duhamel’s principle for the higher integer order psi-

differential equation. Consider the Cauchy problem

D" Y G(s, p) s=p=0(p). (2.47)

D%¥(0) = ¢,4(0). ¢ =0,...,n — 1. (2.48)

Duhamel’s principle establishes a connection between the solutions of the Inhomoge-

neous Cauchy problem (2.47) with the initial homogeneous condition
DG (8,p) |s=p=0, ¢=10,1,...;n — 2, (2.49)

and the Cauchy problem for the corresponding homogeneous equation

n—1

D™ G(s,p) + Y _ fo(A)D™G(s,p) =0, (2.50)

q=0
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DG (8,p) ls=p=0, ¢=10,1,...;n — 2, (2.51)

D" MG (s, p) |s=p=0(p). (2.52)

Where 6 is a continuous function and G(s, p) is m times differentiable with respect to

[0, g — 1] are jointly continuous in the topology of
EXP 4. (X).

Theorem 2.2.3. If G(s, p) is solution of the problem (2.50)-(2.52). Then a solution
of the inhomogeneous Cauchy problem (2.47)-(2.49) is given by

w(s) = / (s, 1 (p)dp. (2.53)

Proof. By applying D% on the above equation (2.53) and using Leibniz theorem, we

have

, P)
D" (s) (s,s) / e 83 Y (p)dp. (2.54)
From equation (2.51) and (2.54) obviously (D" ww) (0) = 0.

Now, by Lemma (2.2.1), we have

g—1 1 q—1-1 aq—l—lG( , )
priate) =0 (i) P

=0 q (2.55)
U1 G(s,p) ,
o[ () Zosteom
Using initial condition (2.51), we obtain
(1 \"0iG(s,s)
qvw — q—lﬂﬁ ) /
D w(s) =D G(s,s) —i—/o <1//(S)) st V' (p)dp. (2.56)
Now using equation (2.49) in equation (2.56), we have
S 1 \T01G(s,s)
9,9 — ) ’
prvuts) = [ (55) et (25)

Note that w(s) defined in equation (2.53) satisfying the initial condition (2.51). More-
over, by substituting equation (2.57) and (2.56) in equation (2.47), we have

s Sanmir= v 1) 252

’(p)} dp + ni fq(A) /0 S ( wts))q aq%(; /) W (p)dp.
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Using equation (2.52) in equation (2.58), we obtain

n—1

D™Yw(s) + Z fo(A) D w(s) = 0(s) + /OS [D"’¢G(s,p)

(2.59)

n—1

+ D fo(ADG(s, P)] V' (p)dp.

q=0
Now by using equation (2.50) in equation (2.59), we get

n—1

D" w(s)+ Y f(A) D™ w(s) = 0(s).

q=0

Lemma 2.2.2. If v(s) = (¥(5))" " Eyn(—7 ((5))?) then
D"¥y(s) —Tv(s) =0, v € (n —1,n)]
where 1 is increasing differential function.

Theorem 2.2.4. If w(s) = J*7Yh(s), 1 is non-decreasing differential function with
¥(0) =0 and Y'(0) # 0. where v € (¢—1,4q], h € Li[a,b] and a < s < b. Then solution
of the Cauchy problem

D" w(s) + 1w(s) = f(s) ,w(0) =0, (D"Yw) (0) =0,..., (D™ "w) (0) =0, (2.60)

s given by .
we) = [ alsp) ()p (2.61)

Where g(s, p) is a solution of the problem

D"¥g(s;p) 4+ 1g(s;p) =0, g(0;p) =0, D"¥g(0;p) =0, ...,

D*g(0;p) = < >Q1 h(7). (262)

1
¥'(0)
Proof. By Lemma 2.2.2, we have

9(s,p) = (0()"" By (=7 (¢(5)))(p). (2.63)
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The function g in equation(2.63) satisfies the equation(2.62). By definition Mittage

lefller function definition, we have

= w(s»”’”‘ﬂ h(p)
2% e . (2.64)

Now applying D™¥ on the equation (2.64), we have

o @) 1\
ot =3 S (o) 10

Now, it is easily checked

9(0;p) =0, D*¥g(0;p) =0, ,..., DI g(0; p) = (zpio))q_ h(p)-

Now, we have to prove that w(s) defined by equation (2.61) holds equation (2.60). Now

equation (2.61) can be written as

s

(W(s) = ©(p) T By g(=7(1(s) = 9 (p))")¢' (p)h(p)dp,
= Yo [ one

I
S—

ym+q)
=) (=) T R(s). (2.65)

Now again applying D7¥ on the equation (2.65), we have

(_T)mpijmwwh(s)

K

D" (s) =

3
IS

(_T)mjv(mfl)ﬂ,zﬁh(s)’

[
[M]#

3
Il
o

= wﬁh +Z mjw(m 1+qwh( )
m=1

o)

_TZ mj'merq"/’h( )
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By using equation (2.65), we get
D" w(s) = f(s) — Tw(s).

]

2.2.5 Generalization of the Duhamel’s principle for the Ca-
puto psi-differential operator

In this subsection, we generalize the Duhamel’s principle for the Caputo fractional psi

differential operator. Consider the operator

HOVful(s) = D" i)+ [ fI D ueM ), (260

where \ represents any arbitrary finite number with supA € [0,n—1], n—1 < p < n and
v € (0,n—1). The theorem given below presents the solution of the non-homogeneous

Cauchy problem involving the Caputo ¢-operator.

Theorem 2.2.5. The solution of Cauchy problem

n—1
Dl + [ D RN )y = (s), >0 (2.67)
0
satisfying the homogeneous initial conditions
(“D*w) (0) =0, ¢=0,....,n — L. (2.68)

1 given by the Duhamel’s principle as;

wl) = [ als. o). (2.69)
Where g(s, p) is the solution of the problem
D)+ [ FI D N ) =0, 5> p 270)
‘D g(s,p) |empro=0, ¢ =10,.....n — 2 (2.71)
DM (s, ) emprom D 0(p). (2.72)
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Proof. Since

The condition (2.68) holds obviously.
Consider the Cauchy problem (2.67), we have

“D*Yw(s) + /0”_ F(Y)eD Y w(s)MY' ()dy = h(s). s > 0 (2.73)

By the definition of *D*¥ we have

e DR (s) = r(ql_ - /O W () (W(s) — p(t))T 7L (vl(t) %)qw(t)dt. (2.74)
Now, we find

<1i)qt—(1i)qstw()d (2.75

swar) CO=\goa) J, 9@ 75)

By Lemma (2.2.1) and using initial condition (2.68), we get

<¢’1(t) %)qw(ﬂ = /08 (w,l(t))q qua(tt(; ) V' (p)dp, ¢ =0,...,n—1. (2.76)

By substituting equation(2.76) in equation(2.74) and also changing integration order,

we get
D) = [ s [ w - v (5 ) TR s
(2.77)
The equation (2.77) can be written as
‘DY w(s) = /0 S “DyYg(s, p)d' (p)dp, (2.78)
Duls) = ot [0 we) - vy () won @

Now we calculate,

(g - () )]

o () oo




By using initial condition (2.72), we obtained

() o= [ (f) 3

This implies that

(sma) mo=os [ (55) “gpviosn e

By substituting (2.80) in equation (2.79), we have

1

Drule) = P(n = p)

JRCICORO il A

+ /O t ( w,l( t))n aﬂ%gi’ 0) w’(p)dp} dt.

Again by using definition of “D*¥ and changing integration order, we obtained

5 1
‘DMYw(s) = JrTHYCD TR (s +/ —
(5) (5) o D(n—p)

[ v - vy () Foe oo

= 0(s)+ [ Dy ol o) o)ip (281)

By using equation (2.78) and (2.81) in equation (2.73)
n—1
D)+ [ D (e )y
0

— 0(s) + / “eDEPg(s, o) () + / ") / "D g(s, ) (DM (7)dpd,

— (s) + / 5 [CDMS, o)+ / D g(s, )M ()| (o).

By using equation (2.70), we

“Diu(s) + / ) D ()M (1) = 0(s).
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2.3 Conclusion

A novel technique named Duhamel’s principle has been develop for solving inhomoge-
neous initial value problems. The method has been applied for solving inhomogeneous
FDE. Also, Duhamel’s principle has been developed for solving generalized fractional
differential equation. Duhamel’s technique has been employed to reduce the inhomo-

geneous [VP to the corresponding homogeneous IVP.
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Chapter 3

Applications of the Duhamel
principle

The concept of Duhamel’s principle is very useful because it will help us in finding the
solution of the inhomogeneous equation using corresponding homogeneous equation.
This principle has a wide rang of applications in the field of applied mathematics, en-
gineering, and physics. The interest in this principle is caused by many applications
to problems of mechanics, geometry, applied physics, and other applied fields (see,
e.g.,[22, 23, 24, 25].

Furthermore, in literature [26, 27, 28, 29], IBVPs for both fractional ordinary differ-
ential equations and partial fractional differential equations are studied. An enormous
the results of fractional calculus like stability, existence, uniqueness, etc. of the solution
have been obtained for the fractional differential equations (FDEs) ([22, 24, 30, 31]).
Seemab. A in [32] was established the existence result for fractional non-linear par-
tial differential equations (PDEs) containing fractional Caputo derivative of order
1<y <2

In this chapter, we shall discuss the applications of the generalized Duhamel’s principle
for the psi-differential operator. In first section of this chapter we will present stability

analysis of the FDEs. Second section is about the existence of this principle.
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3.1 Stability of solution for differential equation

In this section, we will discuss the stability of the solutions of the system of differential
equations. Particularly we will discuss the behavior of the solutions of the system of

the form
dx dy

= = UE®y(), o =V (@®),y0), (3.1)

where = and y are unknown scalar functions, and the first partial derivatives of U and
V' are continuous in region a D of the xy—plane. Such system is called autonomous,
because U and V' do not depend on t. We will require a number of definitions, for more

discussion.

Definition 3.1.1. [33] A critical point (c,d) of (3.1) is said to be an isolated critical

point if 3 a circle

V@) = + (y(t) - d) = R, R >0,
containing no other critical point inside it.

Example 3.1.2. Consider the system

dx dy
ey 2= ) 3.2

The critical point (0,0) of (3.2) is isolated because it is only critical point of (3.2).
Now, we introduce the idea of the stability of the solution x(t) = ¢, y(t) = d, t €

(—o0,+00), of (3.1) or the stability of a critical point.

Definition 3.1.3. [35] If (c,d) is an isolated critical point of the system (3.1), then
(¢,d) is said to be stable if any given € > 0, 3 6 > 0 such that, whenever the solution
(x,y) satisfies

V() = + [y(0) - d* < 3,

the solution for t > 0 exists and satisfies

Vi) — o + [y(t) - d? < <.
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The critical point (¢, d) is said to be asymptotically stable if it is stable and in addition
3 69 > 0 such that

lim z(t) = ¢, tli)r?o y(t) =d,

t—00

whenever

VIE(0) = o + [y(0) — d* < .
An isolated critical point, that is not stable, is said to be unstable.

Example 3.1.4. Consider the system

dx dy
% = —ux, % = —2y. (3-3)

The critical point of (3.3) is (0,0) only. Let x(0) = ¢, y(0) = d. The solution of
(3.3) is z(t) = cexp (—t), y(t) = dexp (—2t). By using definition (3.1.3), we have

V2 +d? < 0.

Again applying definition (3.1.3), we obtained

V@®) + 1) =/ (coxp(—1) + (dexp(~21)) < VT < 6.
We choose € = §. So, by definition (3.1.3) critical point (0,0) is stable. Also
lim cexp(—t) =0, lim dexp(—2t) = 0.
t—o0 t—o0

Hence (0,0) is asymptotically stable.

3.2 Stability analysis of FDEs

The stability of the solutions of the problems play an important role in the field of
PDEs. Since the fractional derivatives have weakly singular kernels, therefore the
stability of FDEs is more complex than that of the ODE. The author in [34] discussed
the stability of the linear FDEs with Caputo fractional derivative of order 0 < v <
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1. Recently Qian et al. [35] discussed the analysis on stability of linear FDEs with
Riemann-Liouville fractional derivative of order 0 < v < 1.
In this section, we introduce the stability of the solutions of the generalized linear and

nonlinear FDEs with Caputo fractional psi-differential operator.

Definition 3.2.1. The Mittag-Leffler function of two parameter v and p is defined as:

ZF72+p

If v = 1, then this will become E. ;(w) that is also written as E,(w) and this is the
Mittag-Leffler function of one parameter.

Remark 3.2.1. [35] If |arg(w)| € [p, 7| and w — oo
then

m

==X,

1=

—1-m
Fop g O™

where m > 2 is any integer.

Lemma 3.2.1 (Gronwall Inequality). [35] Suppose that the functions w, v are contin-
wous in [so, s1]. If

o) <+ | [w(p) (o) + ) dp.

S0

then

v(s) < (u+r(s1— so))exp (/ w(p)dp), s € [sg, $1]-
S0
where v(s) >0, >0 and r > 0.
Definition 3.2.2. [35] Consider the fractional differential system

D"%w(s) — Bw(s) = 0. (3.4)
with initial condition DY"5¥w(s) |s—o= wo = (w1g, Wa, ..., wno)T
where w(s) = [wi(s), wa(s),...,wn(s)]", 0 <~y <1 and B € R™™. The system (3.4)
is said to be

(1) Stable iff for any wy, there exists € > 0, such that ||w(s)|| <€, for s > 0;
(2) Asymptotically stable iff lim,_,o [Jw(s)|| = 0.

9
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The stability of the fractional differential system containing Riemann-Liouville
derivative of order 0 < v < 1 was investigated by Qian et al.[35]. Motivated by
this paper, we generalized the results of stability for generalized fractional differential

equation containing Caputo derivative.

3.2.1 Stability analysis of linear generalized Caputo differen-
tial system

Consider the linear FDEs involving Caputo-psi differential operator as
“D"w(s) — Bw(s) =0, v € (0,1) (3.5)

where ¢ is an increasing function, w(s) = [w;(s),...,w,(s)]" € R*, B = (a;;), .. €

R™*" and the initial condition
CDn_l’ww(S) |5:0: Wy = [wlo, . ’wno]T . (36)

Theorem 3.2.1. If all the eigenvalues of B satisfy

|axg (u(B)) | > - (3.7)
Then the solution (3.5) is asymptotically stable.
Proof. The solution of (3.5) is given by
w(s) = wo (¥(s))" By (B (¥(s))7). (3.8)

Suppose that B matrix is similar to a diagonal matrix, i.e 3 an invertible matrix H

such that
p=H'BH =dia (1, ..., ftn) -

Then,

B (B (1(s))") = H By (1 ((s))") H™
— Hding [E, (11 (0(5))7) o By (1 (003))7) H.
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By Remark (3.2.1), we have

B (1 (()) = = 3 % + O ((s)) |77, 1< i <,

q=2

== U LT (2 (wls) ) 0, s o

Thus

Eyn (1 ((5))7)

diag [Eyn (11 (())7) 5 ) By (1 (¥(5))7)]

)—>0.

So, the result holds.
Now, we consider that B matrix is similar to a Jordan canonical form i.e 3 an invertible

matrix H such that
J=H'BH =diag (Jy, ..., J;),

Jr, 1 <k <, has the following form

pr 1
He
1
Kk

Eyn (B (4(5))") = Hdiag [y, (S ($(5))7) s oo By (r (00(s))")] H™
(i (0(s))"

— Thag+n)
IO L G
_ (1/1(5))7'1 MZ .
I'(vq +n) - 10 ! ’
1.
By (i (0()") 52 By (e 0)) - gy (52) B (e (0(5))7)
— B (ur (1(5))7)
5B (i ((5))7)
E o (11 (1(5))7)
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By some calculations and using Remark (3.2.1). If |arg (yx(B)) | > 3, 1 <k <l and
s — 00, then we have

By (11 (4(5))7)
k<l

These can be seen from the following

I

q=2

— 0 and —-0,0<7<n,—1, 1<

L () B e (005)))

+O (Il 77 (@() 7).

This implies that [E, ,, (ux (¥(s))”) | — 0, as t — oo, and
Loy w10y — (1)~ (9(s) ™
7 () £ 0 =55 (557) { R

+O (|77 (0(s)) ) }

- _ - (=1 (¢+j5—1)...(¢g+ 1)q:“1;q_j (1h(s)) 7
- JT(n = 7q)

+O (] ™77 (W(s) ).

—0,1<7<n;—1,ass— oco. It now

This shows that % (%)j E. (e (9(s))7)

follows that

lw ()]l = llwo (¥(5)" " En (B ((3))") || = 0,

as s — +oo for non-zero initial value wy. O

3.2.2 Stability analysis of the generalized perturbed fractional
system

Consider the non-linear FDEs

“DYw(s) — Bw(s) = g(s)w(s); (0<vy<1), (3.9)

T

where the matrix B = (b;;), .. € R™" and vector w(s) = [wi(s), wa(s), ..., w,(s)]" €

nxn

R™ ™. g(s) is a matrix of order n x n which depends upon s.
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satisfying non-homogeneous initial condition
D Ip(s) |gmo= wo. (3.10)

Theorem 3.2.2. Suppose that ||g(s)]|| is bounded, that is for some N >0, ||g(s)|| < N
and all the eigenvalues of B satisfy

jarg (u(B)) | > 5~ (3.11)

Then the solution of system (3.9)-(3.10) is asymptotically stable.

Proof. By the Duhamel’s principle the solution of the system (3.9) with condition
(3.10) is

w(s = wo (¢(p))7_1 E, (B (v(p)”)

’ 1 ) (3.12)
+ / (6(s — p) ™ By (B (s — p))) 4 (0)a(p)w(p)dp.

By applying norm on both sides of equation (3.12) and also by triangle property of

norm, we obtained

lw ()]l < [Jwo (¥(p)"™" By (B ((0))
+ /0 (s = p)" " 1By (B (s — oD (0 g (o) | 1) | dp-

By using Lemma (3.2.1), we have

lw() < Jlwo ()™ By (B (w(p)))]|
o {/ (s = )" 1By (B (s — ) IF ()] w(p)dp} ,

= |lwo (¥(p))"™" Ey s (B (1(p))")]| exp { / W) B (B W) g(s — o)l w'<p>dp} .

Since ¢(s) is bounded. So, we have

lw(s)I| < [Jwo (w(p))" ™" By (B (%(p))) exp {/ON @)™ By (B ()] W(P)dﬂ}-
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First, we consider that B matrix is similar to a diagonal matrix. i.e. 3 an invertible

matrix H, such that

/0 )™ By (B () o) dp = / | prdiag [w(p))v—l . (i (9(0))) ¥/ (o),
(¢(p))7—1 E, o (e (¢(p))7) P (p), ...

s () By (i (¥(p))7) ¢’(p)] a
(3.13)

dp.

Now, we will prove that 3 a constant K > 0, such that

S
/0
For s > s9 > 0, we have

(o)™ By s o)) o )] = [

_|_/
S0

L1000 By @y welde < 7000 By Gl 667 0o

“f
S0

£ O (™7 @) (o) dp,

(W)™ B (i ((p)) ' (p)dp < K, 1<k <.

(W)™ By (s (000))) ') .

N ) W)
qz; Iy —q) )

))"/‘H”Y‘l

’Mk|q / ¢ |:uk|_q ° y—yq—1 1
<[ Z Tty N S [ s
O (7 () ).

(3.14)
By integrating the equation (3.14), we have
s B mk‘ W-i—"/ |,Uk| q ’Y q
(W) By (i (¢ ‘d =
/0 T B Z; 7q4r7+1 Z T(y - w+1)\

)’Y 74

‘,Uk’ q 1—r Sl
Z 0 (' (0(9) 7).
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)’Y Yq

< N, as s = +o0.

q
— (1(50))" Ey 1 (1] (¥ +Z‘/TIE’7 7q+1)|

thus equation (3.13) becomes

Lt GO P do < C for s> 0

Now, we suppose that matrix B is similar to a Jordan form. Since s > sq > 0, we have
S
J
S0

J
S
o
50

By Mittag-Leflier definition and using Remark (3.2.1) in the equation (3.15), we get
0

[0 5 (2 b o) o
/ q—l (¢ —J+ Dlps|*

J'F g+ )

(W) - ( o )E (s (6(0))") /) o

Ok

W 5 () B e 07 0 (3.15)

o % (5 )E (1. (6(0))") /().

Opu,

(W ()" (p)dp

-t L T ) (@ (p) IR
((M) {_Z T(y— + O (I =77 (0 (p) )}w(p)‘dp,

= Yq)
3 — 1 + 1)| |q ’ Yq+y=1 1
qZ o ,pqwi I ™ ot o
q tJ- 1) ( ) " y=va=1 1
/ { (g — DIT(y — ~q) (¥(p)) V'(p)

+O (|l T () } dp.

(3.16)
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Integrating equation (3.16) and also use property of absolute value

s 1 8 7 , ,
[ w5 ( o) B (6(0) w(p)\dp
4(g = 1)---(q = j + D"~ )7t (¢ +7 — Dlpg| 77 =4
<Z 'F’yq+7+1) +Z (g — 1)!|0(y — 7q+1)|<w(5))

(q+4 = DA Y=7q —1-r —r
—Z o — DTG — gy el +0 (Il ™7 () ™)

L(_oy g+ = Dl (W)
ﬁw(swﬁ(m) B, (il (6 +Z 4l e " <

as s — +00.

This shows that exp {M [ H B, (B (W(p)) v (p)||dp} is bounded.
We also note that ||wo (¥(p))""" E, (B (¥(s))")|| = 0 as s — +o0.

Finally, we have lim w(s) = 0.
S—00

So, the solution (3.12) is asymptotically stable. ]

3.3 Existence and uniqueness of solutions for gen-
eralized FDEs

In this part, we will discuss the existence and uniqueness of the solutions of the gener-

alized differential equation. Consider the operator A(s, p), which is defined as

n—1
sy =5+ [ span, (317)
0
where n — 1 < p <mn, f(v) is continuous for all v > 0, and analytic in y € G C C.

Lemma 3.3.1. Consider the operator A,(s,w), which is defined as
n—1
Gy(s,y) = Byp_g-1(s,y) + / f(V)By—g-1(s,y)dy, ¢=0,...,n— 1. (3.18)
q

where B,(s,y) = 5;1[%](8) yeGCl, and ,C;l represents the inverse 1- Laplace
transform. Then Gy(s, C)vy, solves the Cauchy problem

cDPYw(s) + /0 ' F(Y)eD"w(s)dy = 0, (3.19)
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(CDpvww>(O) e 0p7qup s p = O, ...,n - 1 (320)

where o, 4, shows the Kronecker delta

s )L ifp=q
M0 ifp#a

Proof. By applying £, on equation (3.19), we obtain
n—1
Ly "D w(s)] +> /( | F(Y)Ly [FDw(s)] dy = 0.
g=1 7 (a-1g

By using the property of the 1-Laplace transform
vw(v) = Y75y v (D w) (0)+

> [ 1w [mww) =YD ) (0) | dy = 0.

By simplifying the above equation, we have
_ n—1 _
sfw(v) + fy f()vw(v)dy =

i v DY w) (0) + /O" VP EDPYw)(0) f(y)dry.

p

)
—

I
=)

By virtue of equation (3.20), we have
n—1 n—1
w(v) {U” —|—/ f(fy)'zﬂdfy} =PIy, —|—/ vy dry.
0 q

Now using equation (3.18), we get

n—1

w(v)A(v, C) =, (v”_q_l +/ f(v)v“’_q_lyqdy) :

q

So, finally, we obtained
n—1
Go(s,y) =v" "1 + / VT (y)dy.
q

So, the solution is given by w, = G4(s,C)v,, ¢=0,....,n — 1. ]
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Corollary 3.3.1. Let the collection of solution operators be represented by Gy(s,y),
q=0,....,n— 1, which is defined in Lemma (3.5.1). Then the Cauchy problem

CD’“pw(s)+/ F(V)ED u(s)Ady = 0, (“DPYw)(0) = 0pqtp, p=0,...,m—1. (3.21)
0

has a solution
n—1

w(s) = ZGq(s,C)I/q. (3.22)

q=0
Theorem 3.3.1. Supose that g(s) is continuous on s € [0,T], and v, be a continuous
forallq=0,...,m — 1. Then the Cauchy problem (3.21) has a unique solution

v(s) = g

q=0

Gyl Oy + [ Goals = . Chalp)o ()dp (3.23)

Proof. We separate the Cauchy problem (3.21) in to two problems

cD*Vuy(s) + / f(y)D"¥u(s)Ady = 0, (3.24)
0
“Dv(0) = vy, ¢q=0,...,m — 1. (3.25)
And
cDFY(s) +/ f(Y)Dw(s)Ady = h(s), s > 0, (3.26)
0
‘D w](0) =0, ¢=0,...,m — 1. (3.27)

By using corollary (3.3.1) the unique solution to the Cauchy problem (3.24)-(3.25) is
given by

—_

m—

v(s) = Z Gy(s, Q). (3.28)

q=0
For the solution of Cauchy problem (3.26)-(3.27), follows from the fractional Duhamel’s

principle, it enough to solve the Cauchy problem for the the homogeneous equation:

CDFYy(s) + / f(y,C) D" u(s)\dy = 0, (3.29)
0

“D¥w(s, p) |e=p=0, ¢ =0,...,m — 2. (3.30)

“DY" (s, p) |e=p= hip). (3.31)
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Again using the result of corollary (3.3.1) to obtain the solution of this problem ,(also

note that Gy(s, p,z) = G,(s — p,2), ¢=0,...,m — 1, is given by the
w(s, p) = Sm-1(s — p, C)h(p). (3.32)

Thus equation (3.23) obtained by the Duhamel’s integral of w(s, p) and equation (3.28).

The uniqueness of a solution also follows from the obtained representation (3.23).
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Chapter 4

Haar-Duhamel methods for
fractional differential equation

Exact solutions of many FDEs are unknown. Therefore, different numerical tech-
niques have been applied for providing approximate solutions. So, many numerical
techniques i.e. the Adomian decomposition method (ADM) [36], the homotopy per-
turbation method (HPM) [37], wavelet methods [38, 39] etc. have been used for approx-
imating the solution of FDEs. There are different types of wavelet but Haar wavelet
is the orthonormal simplest of them [40]. Lepik in 2007-8 [41, 42] solved differential
equations by using Haar wavelet algorithm. Hariharan [40] in 2009, found the ap-
proximate solution of Fisher’s equation using Haar wavelet method. In the same way,
Kannan [43] and Hariharan solved Fitzhugh-Nagumo equation. Berwal [44] in 2013
solved Telegraph equation using Haar wavelet technique. The good characteristics of
this technique is to convert a fractional differential equation into an algebraic equation
and possibility to integrate a rectangular function analytically arbitrary time. The
disadvantage of this technique is their discontinuity. In this chapter we will discuss
wavelet, Haar wavelet and their properties. Also, we present operational matrix of
fractional integration by Haar wavelets technique. We also used Haar wavelet with

Duhamel’s principle to develop a method for solving fractional differential equations.
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4.1 Wavelet

The Haar wavelet was first presented in the thesis of the A.Haar (1909). The concept
of the wavelet is not a new. The concept of wavelet originates from different field
involving engineerings, Physics and applied mathematics. It has many different origins
in the history of the mathematics. It has been used in the numerical analysis and signal
processing. Now a days, it has been commonly used in the field of numerical solution
of the initial and boundary value problem.

Wavelets are defined as orthonormal system of functions with a compact support ob-
tained with the assistance of dilation and translation. Its basis is formed by a particular
functions defined on the finite interval using dilation and translation. If the proper-
ties of orthonormality are not necessary, then large class of functions are also called
“wavelets”. There are many form of wavelets e.g Haar wavelets [45, 46], Legender
wavelets [47], Battle-Lemarie [48].

Wavelets are constructed from the specific transformation i.e. compression and trans-

lation of a single valued function called the mother wavelet which is given as:

Guals) = 26 (7). (1)

If ¢ > 1 in equation (4.1), then wavelet has larger support in time domain and having
lower frequencies. On the other hand, if we take ¢ < 1, then wavelet has smaller
support in time domain and having higher frequencies become compressed form of
mother wavelet.

The parameters are discretized as ¢ = ¢, !, d = mdycy?. Then we obtained the class of

discrete wavelets
Gym(s) = leo|2G (cls — mdy)

where G ,(s) form a basis for L?(R). These wavelets became orthonormal basis, if
co =2, and dy = 1.
An orthonormal wavelets form called the Haar wavelet, which has been used by many

researchers. Mathematically, Haar wavelets family carries with its rectangular func-
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tions. Haar wavelets has many applications in the field of engineering and science. It

is also used to determine the eigenfunctions corresponding to the eigenvalues[49],[50].

4.2 Haar wavelet

Note that the Haar wavelet are the simplest orthonormal of the wavelet. It was first
introduced by Alfred Haar in 1910. They are the piecewise function defined on the
real line which have —1,0,1 values only. Commonly, Haar wavelets are defined for

0 < s < 1, but in general case s € [¢,d]. we will split the [c¢,d] interval into 27

d—c
27T

Go(s) = {1, s € [e,d],

0, otherwise

subintervals of equal width, As = The set of orthogonal Haar wavelet at [c, d]

interval is defined.

and
1 s e [m(i), na(i))
Gi(s) =14 —1; s € [m(i),mn(i) (4.2)
0;  otherwise
where
m(i) =c+ (d—c) g
m(i) =c+(d—c) Qq:17 (4.3)
qg+1

n3(i) = c+ (d—c) p—

We defined T' = 27, » = 2/, where j = 0,1,2,....,J and ¢ = 0,1,2,..,r — 1. The j
and ¢ parameters involved here have a definite significance. The quantity j represents
the dilation parameter or level of wavelet, because the wavelet turns small or support
decreases by increasing j, and J represents the level of maximal resolution for the Haar
wavelet. We can deduced from the following subsistence or width of the i-th wavelet
equation as p ;
. . —C —C
(i) —m() = — = 5 (14)

The ¢ parameter represents the translation, because ¢ denotes the position of the

wavelet on the z-axis; by giving values of ¢ from 0 to r — 1, the starting point of the
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i-th wavelet 7, (i) translated from z = ¢ to z = w

. The relationship between ¢, q
and r is i = r + ¢ + 1. The above equation(4.2) is true for ¢ > 3. For i = 2, the

corresponding scaling function is given as

1, s€ e,

Ga(s) =4¢ —1; se[42d) (4.5)
0;  otherwise.

Since the Haar wavelet functions are orthogonal, then the equation(4.2) become

d 1, fori=1;
/ Gi(s)Gi(s)ds = ¢ —1; for i #1; (4.6)
¢ 0; otherwise

Example 4.2.1. Suppose that ¢ = 0, d = 1, the wavelet number is 1 = 2, if J = 2,
then j =0,1,2, and now, we consider j =0, g = o0, and r = 1, the equation (4.5) will

become

1, 0<s<i,
Gao(s) =¢ -1, $<s<1,
0, otherwise.

Similarly, the wavelet number is i = 3, for ¢ = 0, j = 1 and r = 2. so, equation (4.5)

will become
1, 0<s<i,

Gs(s)=¢ -1, 1<s<s3,

0, elsewhere.
e Properties

1 Any arbitrary function can be written as a linear combination of Gy(s), Go(2s), ...,

Go(29s), ... and their translation functions.

2 Any arbitrary function can be written as a linear combination of constant function

G1(s), G1(2s),...,G1(2%s), ... and their translation.
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4.3 Approximation of functions by Haar wavelet

Let w be the function defined on [0, 1]. It can be written in the form of Haar wavelet

as

w(s) = Z KGy(s). (4.7)

where G; are the basis functions and co-efficient of Haar wavelet represented by K.

We decompose the equation (4.7) into 27-terms as

w(s) = Z K,Gy(s). (4.8)

The corresponding approximation function of the equation (4.8) can be written as

w(s;) = i K,Gi(s1). (4.9)
=0
The matrix form of equation (4.9) is
Wt = KaG, (4.10)
where K can be found as
K =wTga,

where W7 and G are row vector of dimension 27", and G is Haar matrix. There are
many ways to calculate the error function of the wavelet estimations, but we define

one of these error function as:

Haar wavelet are related to the groups of piecewise functions. If the function is differ-

entiable, then constant function convergence rate function is O(%)
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4.4 Fractional integral by Haar wavelet

The Haar wavelets Algorithm are helpful for computing the numerical solution of inte-
gral and differential equations due to its simplicity. We compute the integrals by Haar

wavelet function. If we integrating Haar function -times, we have

JIGi(s) = PYi(s) = / DT G (4.11)

i=1,2,3,..2T.

Generally, these integrals can be calculated by using equation (4.11).

S s—t)Y 1
fm(s) ( p?y) dt, 7]1(5> <s< 772(5)7
P%l(s) = fs (s) (SFE,Y) dt? 7]2(5> <s< 773(5)7
—1

S
m

S s 71
Sy STt s > m(s),

and -
B P m(s) < s < ms)
P7(s) = m((s)) (SFt()W 1alt f;(s) r o gy, na(s) < s < ms(s),
S Cxydt = [t F'E)J dt, s> ns(s).

So, finally we get the integrals of the Haar wavelet function of order v as

s—mn1(s))”
%7 m(s) < s <mls),
; s—mn1(s))” s—mn2(s))”
Pri(s) = Gomlel _ glemGll m(s) < s < ns(s), (4.12)
(s—m(s)” (s—n2(s))” (s=n3(s)”
e~ 2 e e s > m(s),

The equation (4.12) is valid for i > 1. If we take i = 1, we have n(1) = a, no(1) =

n3(1) = b and
1

P(s)= =———(s—a)". 4.13
©) = Fry ) (113
4.4.1 Haar Matrix
First of all, we define the grid point as
d —
S§=c+l—— e ,l—0,1,2,3 47 (4.14)
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where J is the maximal level of resolution. We use collocation points as

1
=5 (51— &), 1=1,2,3,....47. (4.15)

and replacing s by s; in equation (4.2),(4.12) and equation (4.13). It gives the results of
these sets in the form of a matrix. For this we present the Haar matrices G, P, ..., P* of
order 2T x 2T. The entries of Haar matrices will be G(i,1) = G;(1), P“(i,1) = P¥(s;),
where u =1,2,3,4, ...

For example suppose that ¢ = 0, d = 1 and J = 1. so, the Haar matrix will be
a 4 x 4 matrix. From the equation (4.14), the grid points for [ = 0,1,2,3,4,5 are

1 z 2

So=0,81=7, S$2=7, S3= %, and §4, = 1. To find collocation points using these grid

points in equation (4.15), we obtained s; = %, S9 = %, 53 = g and s4 = %. The entries
of Haar matrix G can be calculated by using equation (4.2).
Now for Gi(s) at the points s1, S2, S3, S4 € [m1(1),12(1)), the first row of G matrix

contains all entries 1. Similarly, for Ga(s), Gs(s) and G4(s). So, G matrix is

11 1 1
1 1 -1 -1
G= 1 -1 0 0
0o 0 1 -1

4.4.2 Integration Matrix for Haar wavelet

Now we develop the integration matrix (or operational matrix) for the Haar wavelets.
These matrices have been mostly used to solve the FDEs.

Now we find the entries of P! by using equation (4.2), (4.12) and (4.13). For cal-
culating P''(s;) at the points s;, sz, s3, s4 € [1(1),72(1)), and we use P7(s) =
ﬁ [s = mu(i)]", for s € (i), m2(i)]. For v = 1, the entries of first row of P! is
0.125, 0.375, 0.625, 0.875. Similarly, other entries of P! and P? operational matrices

are
1357 1 9 25 49
pr_l{1 331 L, 1|19 2331
8|1 10 0] 1281 7 8 8|
0011 00 1 7
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0.03324519 0.17274707 0.37169252 0.61570954
0.03324519 0.17274707 0.30520214 0.27021539
0.03324519 0.10625669 0.05944356 0.04507156

0 0 0.03324519 0.10625669

P1.5 —

4.4.3 Riemann-Liouville integral by Haar wavelet

Now we consider Riemann-Liouville integration of a function w(s) defined on [0, 1] by
Haar wavelet. Suppose that function g(s) is integrable. Then function w(s) can be

approximated as

= KGi(s). (4.16)
Now taking finite terms of the series in (4.16)
n—1
w(s) =Y KGi(s). (4.17)
i=0

After substituting collocation point into equation(4.17),we have
W(s) = K,Gy(s). (4.18)
Applying Riemann-Liouville integration on the equation(4.18), we have
TIW(s) = KpJ)Gn(s) = K, Pl nGu(s). (4.19)

We can compute J)W (s) = K, P,,.,Gn(s) by using equation (4.12) and (4.13).

Example 4.4.1. Consider that
w(s) = cos(ws), s €[0,1] and v € (1,2]. (4.20)
First of all, we calculate the exact R-L integral of the equation (4.20), as
Tiw(s) = J7 {eos(ws)} (4.21)

By using Taylor series of cos(ys) in equation (4.21), we have

Z F 2 +1 ‘77 B (422)

q=0
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Now using J's" = %s”*” and by definition of Mittag-Leffler function in equation(4.22)

Tow(s) =5"Eyi1 (— (ws)Z) . (4.23)

The above equation (4.23) gives the exact R-L integral of functions in equation (4.20).
The approximate and exact R-L integral by Haar wavelet are plotted in Figd.1(a) and
also for J = 5 and distinct values of ~, the absolute error between approximate and

exact are shown.

Example 4.4.2. Consider
w(s) = exp(ws), s € [0,1] and v € (1,2]. (4.24)

By using Taylor series of exp(ws), we have

4.25
;Fq—i-l ( )

Applying R-L integral on the equation(4.25), we have

- Z F . (4.26)

9=

By using J,'s? = Fr(q—“)sq*’y in equation (4.26)

(g+7+1)
S (w)q q+
= - . 4.27
2_: Tlg+ty+1) (4.21)
q=0
By Mittag-Leffler function
Jow(s) = sTE} 441 (ws) . (4.28)

The above equation (4.28) is exact R-L integral of equation (4.24). The exact and
approximate R-L integral and their absolute error is plotted in the Figd.1(b) for distinct
values of v and J = 5.
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() J =5, v =5 w="T. (b) J=5, w="T, v =6

Figure 4.1: The exact R-L integral of w(s) and by Haar wavelet R-L integral are plotted
4.5 Error Analysis

In this part, we discuss an inequality [51] in the form of upper bound, that shows the

Haar wavelet convergence.

Theorem 4.5.1. If a function w(s) is differentiable and its first order derivative is
bounded i.e |w'(s)| < T, T > 0, Vs € (a,b), the approzimation of w(s) is represented
by w,(s). Then

fu(s) ~ w0 7).
Proof. Let w(s) be defined on [a,b) as
w(s) =Y K,Gnl(s), (4.29)

where K, = (w(s), Gn(s)). We consider r-th terms of equation (4.29), which is repre-

sented by w,(s) and is the approximation of w(s), that is

w(s) = wy(s) =Y K,Gnls), (4.30)

where r = 2771 ¢ =0,1,2, ..., the equation (4.30) become
(e} r—1
w(s) = wp(s) = Y KnGnls) = Y K,Guls) (4.31)
n=o n=0
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= K.Gu(s)

Applying norm on equation (4.31), we obtained

b
lw(s) —w,(s)]* = / (w(t) —wi(s))" ds

_ /ab (i: KnGn(s)>2ds

S5 S s [ o o

n=r n=r’

By using orthogonality property on equation (4.32), we get

Iots) = = 3K = 3 K2 (4.3
=2041
where K,, = fabw(s)Gn(s)ds = (w(s), Gp(s)). Since
1, a+29g<s<a+(%)2
Gu(s)=¢ -1, a+ (3) 277 <s<a+(¢g+1)27,

0, otherwise.

o (252) 427904
/ w(s)ds—/ w(s)ds ¢ .
a+277¢q a+t(2LH)

By mean value theorem for integral, 3 ~, A such that

By substituting, we got

s,

K, =2

v E [a+2jq,a—|—( q;— )29),

2¢+1

\e [a—i—( )2_j,a+2_j(q+1)>.

So,

Kn—z‘%{ <a—|—(2q2+1)2 —(a+27 Jq)) w(y)

- (a—l—Zj(q—i- 1) — <a—|— (Qq; 1)21’)) w()\)},
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|
M‘m

K, =271 (w(y) —w(})

Again by mean value theorem, 3 v < p < A such that
Ky =277 (A =)w(p)
<27 12T, - |w/(p)| < T
=927,
Therefore the equation (4.33) become

o 2011
lw(s) —w,(s)]* = }jl@ LY. K
n=2a+1 j=q+1 n=27J
0o 29t 1

<> (X ey

j=q+1 \ n=2J

) 20+1_1
_ Z 9—3j—2712 Z
Jj=q+1 n=27
=) @FPT (T —1-2+1))
J=q+1
lw(s) — w,(s)||* = T Z 277,
j=q+1

Applying geometric sum formula in the equation (4.34), we have

) 2—2q—2

Juts) —wr () = 2
()

_ T2 ..
3“7

WM@—%%@M2=O(%).

T2

— 9¢tl

(4.34)

If the numerical value of T" is given, then we can find the exact value of error bound

—2q—2

2 —T? for the equation (4.31). Now to find the value of T, we have suppose that

w(s) and its first order derivative continuous and differentiable on [a, b], also w’ € [a, b].

w'(s) can be given as
r—1
'(s) ~ Z K, Gp(s)
n=0
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where K,, = (w'(s),G(s)). The matrix form of equation (4.35) can be written as
w'(s) ~ KTG, (4.36)

where K, = [Ky, K1, ...,Kr_l]T, and G = [Gy, Gy, ..., G,_1] . Integration of equation
(4.35), leads to

r—1 s
a)~>Y K, / G (t)dt. (4.37)
n=0 a
We defined the points s; as,
1 — 0.001
55 = j—, j=123,...,r
r

By using s; in equation (4.37), we get

r—1 s;
w(s;) — wia) ~ 3K, / G (s)ds. (4.38)
n=0 a
We can write equation (4.38) in matrix form as
W —W(a) = KF. (4.39)

The above equation (4.39) is system of linear equation. Where K = [Ky, K7, ..., K,_ I]T,
W(a) = [w(a), w(a), ..., w(a)] and W = [w(s1), w(s2), ..., w(s,)]" and F = e

Now the vector K can be determined by solving the system of linear equation (4.38)

}Ogn<r717

and using vector K in equation (4.35), w'(s) can be calculated for each s € [a,b].
Suppose that s; € [a,b] and w'(s;) can be calculated for each i = 1,2, 3, ..., 1, where [ is

equidistant, then approximation of 7" may be considered as € + maz|w'(s;)|i<<;. ]

4.6 Haar-Duhamel’s method for solving FDEs

We developed a new method to obtain the solutions of the non-linear FDEs numerically,
called Haar-Duhamel’s method. In general, this method requires to use operational
matrix for FDEs. Interestingly, accuracy is not compromised, rather enhanced by

using Haar-Duhamel’s technique for solving FDEs subject to the initial conditions.

Example 4.6.1. Consider the FDEs of order v € (n — 1,n]
DIV (s) + po(s) = w(s), (4.40)
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satisfying the conditions
v(0) =0, v'(0) =0,...,v" " (5) |s=o= 0. (4.41)

We can check that v(s) = s7T! is solution of the problem (4.40)-(4.41) with w(s) =
[(v+2)s+ As”*!. By Duhamel’s principle the solution of the problem (4.40)-(4.41) is

given as
o) = [ 5= B (s = ) el (1.42)
where
w(p) = T3 "e(p). (4.43)

We find the numerical solution of the equation (4.40) with condition (4.41) by Haar
wavelet that is presented in section (4.3). By Haar wavelet, we can approximate ¢(s)

p(p) = KG(p). (4.44)

Now by using equation (4.44) in equation (4.43), we have

w(p) = KTy "G(p). (4.45)
After putting collocation points, the above equation (4.45) become

W(p) = KP* G (p). (4.46)

The equation (4.46) represents a system of linear equation. Where G is Haar matrix
and P is operational matrix and K is unknown matrix, which is determined by any
Algebraic method using MATLAB program.

Now ¢ can be determined by using K in equation (4.44). By substituting ¢(p) in
equation (4.42), we got

o) = [ 5= By (s = 9)) KGo),

K [ 5= By (s = ) Gl
—KEIG.
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The above linear system is calculated with the help of MATLAB.
In Table4.1, we give the absolute error for constant valueof p =1, n=2, 1 <~y <2

and for distinct values of resolution level J, as J increases, the absolute error decreases.

|

‘ Absolute Error H

J

5 | 2.07395 x 102
6 | 1.81276 x 1072
7

8

1.57557 x 1072
1.37121 x 1072

Table 4.1: This table shows the absolute error for distinct values of J.

0.8

0.6

Vv(S)

0.4

0.2

" B 1.2
¥ 1 s

Figure 4.2: Approximate and exact solutions by Haar-Duhamel’s for J = 7.
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Chapter 5

Summary

In first chapter we have given a brief introduction and some basic definitions of frac-
tional calculus. Basic notions like Gamma and Mittag-Lefler functions are introduced.
Also, we have defined fractional integral and derivatives with respect to another func-
tion. We have discussed the classical and generalized Laplace transform and their
important properties, results and applications.

In second chapter, we provided a method for finding the solutions of a generalized
non-linear fractional differential equations with initial conditions known as Duhamel’s
principle. A detailed discussion of this method for ordinary differential equations and
partial differential equations is carried out. We propose this principle for fractional
differential equations subject to initial conditions. We also generalized Duhamel’s prin-
ciple for psi-differential equation and extend this principle for the higher integer order
psi-differential equation. We also developed this principle for the fractional higher or-
der psi-differential equation.

In chapter 3 we have presented the applications of the generalized Duhamel’s principle.
We discussed the stability of the solutions of generalized linear and non-linear FDEs
involving Caputo psi-differential equation. Also, we develop the existence and unique-
ness of the solutions of the generalized FDEs.

Haar Wavelets which are the primary tool to develop the numerical methods are dis-
cussed in detail for the ordinary fractional differential equations and partial fractional

differential equations subject to the initial conditions. In chapter 4, we developed a
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numerical technique for finding the approximate solution of the generalized non-linear
FDEs with initial conditions, called Haar-Duhamel’s method. Furthermore, to check
the accuracy and effectiveness of the proposed method, the results of essential numer-

ical applications are documented in a graphical as well as tabular form.
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