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Abstract

In this thesis, we meticulously construct an invariant Modified-Crank-Nicolson method
that fast convergent to the exact solution of a one-dimensional non-linear heat equa-
tion. This innovative construction can be faithfully done by preferentially using discrete
symmetry groups. Burgers’ equation is reduced to a one-dimensional heat equation
by using Hopf-Cole transformation. Moreover, this new transformation function rep-
resents the exact solution of Burgers’ equation. The innovative invariant numerical
scheme is carefully constructed by the composition of continuous and discrete symme-
try groups. Furthermore, with this numerical scheme, the convergence and efficiency of
the standard Crank-Nicolson method is meaningfully improved for the exact solution
of Burgers’ equation. The notable performance of this numerical scheme is shown both

graphically and in tabular form.
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Introduction

Our universe is full of evolving correlated entities like the path of a projectile varies
with speed and angle, earth’s location varies over time and many more examples like
this. These changing entities are known as variables in the language of mathematics
and their rate of change in the context of another variable is known as derivative. In
mathematics, differential equations are the equations which demonstrate the correspon-
dence amidst these variables and their derivatives. In such way differential equations
can be categorized mainly into two types. One is known as ordinary differential equa-
tion (ODE), in which the derivative of a dependent variable is taken with respect to
one independent variable, while for the second type of differential equation called the
partial differential equation (PDE), in which we take the derivative of a dependent
variable(s) with respect to more than one independent variables. Both these types of
differential equations can be sorted into two forms, one is linear and the other one is
non-linear depending upon the degree and the product of dependent variables(s) and
its derivatives. For instance, if the degree of a dependent variable(s) and its derivative
is one and their product is not present then we call it a linear differential equation. On
contrary, a differential equation is said to be non-linear differential equation if any of

the above-mentioned cases for linearity gets changed.

Many of the physical phenomenon such as force, momentum, temperature, velocity
etc., are usually dependent on several variables and generally deals in PDEs. In the
18 century, scientists like Euler, Lagrange, and Laplace [1] did the introductory work
about the PDEs. However, it was during the 19" century that it gained so much
popularity chiefly due to the influence of Reimann in certain fields of mathematics [1].

As far as the applications of PDEs are concerned in the field of physics and engineering,



Maxwell’s equations describe the entire theory of electricity and magnetism [1].

Partial differential equations can be solved either analytically or numerically. Nu-
merical solution is an approximate solution of a PDE when it is impossible to solve it

analytically.

In reality, a substantial portion of the physical problems exist in form of non-linear
PDEs. In this thesis, Burgers’ equation is picked because it is non-linear and admits
finite number of continuous symmetries. The focus is to solve the Burgers’ equation
numerically with a novel approach which is known as Modified-Crank-Nicolson method
(M-CNM). We have adopted procedure of transforming the Burgers’ equation into dif-
fusion heat equation by means of Hopf-Cole transformation and then approximating
the diffusion heat equation. This approximation is carried out by using different finite
difference schemes like FTCS, CNM and M-CNM. The numerical scheme M-CNM is
obtained by modifying the CNM with the help of discrete symmetries of the Burg-
ers’ equation. To check the accuracy, the solutions obtained through these numerical
schemes is transformed back to compare with Hopf-Cole transform analytical solution

of the Burgers’ equation.

1.1 Background of Burgers’ Equation

Burgers’ equation

Ugz + 2UU$ = U,

can be defined as the non-linear model of a Navier-Stokes equation (Rafiq et al., 2011).
It is a parabolic equation with the inclusion of viscous term, v, that is, vu,,. However,
for v = 1, the Burgers’ equation turns into an elliptic equation. This equation includes
three terms wu,, u;, u, that are convective term, time-dependent term and diffusive

term, with v = 1, respectively.

Burgers’ equation was first established by Forsyth [2] in 1906. Yet, it was in 1915
that Bateman [3] derived the Burgers’ equation from a physical context and given the

steady. Following the discovery of Bateman, in 1940 Burgers presented a more unique



solution and significance of the equation. In 1948, Burgers brought in the relationship
of the equation in the theory of turbulence (Burgers, 1948). This was the time that
the equation has been widely recognized as Burgers’ equation due to the vast majority
of work done by Burgers in some fields of mathematics (Kutluay et al., 1999). In 1949,
Lagerstorm [4] noted a potential of transforming the Burgers’ equation into linear heat
equation. In 1950, after the establishment of a coordinate transformation Hopf [4] stud-
ied the Burgers’ equation in the context of gas dynamics. One year later in 1951, based
on the suitable initial and boundary conditions, Cole [5] formalized the hypothetical
Fourier solution of the Burgers’ equation. Another hypothetical solution depended on
the test and trail with suitable conditions are obtained by Madsen and Sincovec [6].
Lighthill [7] and Blackstock [8] studied the Burgers’ equation in the propagation of
one-dimensional acoustic of limited amplitude in 1956 and 1964, respectively. In 1958,
Hayes discussed the shock structures in the Navier-Stokes fluid. Without utilizing a
few additional conditions Riccati solution was derived from Burgers’ equation by Rodin
in 1970 [9]. In 1972, Benton and Platzman [10] discovered the thirty-five different solu-
tions in infinite domain for the Burgers’ equation. However, in the same year Ames [11]
found a way to determine the proper groups by applying the Morgan-Michal method to
Burgers’ equation. Simultaneously, from 1980-1990 numerous researcher have worked
on the Burgers’ equation and to exercise the Hopf-Cole transformation in acquiring the
analytical solution but it was Shtelen [12] who was able to discover this transformation

theoretically.

There has been extensive research in the last few decade aimed at the improvement
of the robust computational schemes to deal with the non-linear PDEs found in heat
transfer and fluid mechanics. The Burger equation is one of the most popular equa-
tion with non-linear propagation effects as well as diffusive effects. As a non-linear
PDE, Burgers’ equation describes numerous practical problems in engineering which
are naturally difficult to solve. It additionally deals in different areas of mathematics.
The standard Burgers’ equation turns into inviscid Burgers’ equation when v tends

to zero, thereby yields a model for non-linear wave propagation. Burgers’ equation



has been widely used in gas dynamics with its source terms emerged in the theory of
aerodynamics. It has great significance in the study of standard problem for numerical

methods. Many numerical schemes can be verified through it.

Burgers’ equation is mainly used in the field of fluid dynamics and essentially as
a model for acoustics, shock theory, cosmology, viscous flow, turbulence, traffic flow,
quantum field, heat conduction, mass transport, boundary layer behavior, longitudinal
elastic waves in isotropic solids and water wave dispersion. Due to its expansive scope
of relevance, it has redirected consideration of a few researchers to its solution. Thus
far, the Burgers equation for a small range of arbitrary initial and boundary conditions

can be analytically resolved.

For many decades, numerical solution of PDEs has been relevant research subject both
in thermal and fluid mechanics. The very first stage is to comprehend the mechanics
of the problem, which leads with the help of equations to construct a mathematical
model. Such equations in most situations are either ODEs or PDEs. A few suppo-
sitions must be made, on the grounds that the real-life problems in engineering are
somewhat perplexing to examine. These calculations are then solved by computational
methods including the method of finite volume, the method of finite difference and the

method of finite element.

Different approaches for mathematical simulation have their own benefits and draw-
backs. Finite difference method is the most basic and oldest way of resolving ODEs and
PDEs through the discretization process. In order to solve the Burgers’ equation by
solving the diffusion heat equation explicitly, Bhattacharya [13] was the first to develop
the exponential finite difference scheme. Similarly, with the help of uniform implicit
difference method Kadalbajoo [14] was the first to solve the time dependent Burgers’
equation. Varoglu and Finn [15] presented the numerical solution of Burgers’ equation
by using finite element method. The transformed Burgers’ equation to heat equation
by using the Hopf-Cole transformation, and then solving the heat equation with insu-
lated boundary conditions by using explicit and exact-explicit numerical schemes was

presented by Kutluay et al., [16]. Based on the least square approach, Nguyen and



Rynen [17] discovered the linear space-time element method. Wani and Thakar dis-
cussed a scheme based on Crank-Nicolson method in [18]. A new technique for solving
the Burgers’ equation by using the method of lines (MOL) and matrix-free modified
extended backward difference formula was proposed by Javidi [19]. Cubic spline func-
tions in two spaced variables was used by Jain and Holla [20] in 1978. Malek and Mansi
[21] presented the group theoretic approach to solve the Burgers’ equation by applying
the one-parameter group of transformation to Burgers’ equation with suitable initial
and boundary conditions. Simultaneously, there are numerous other researchers who

contributed to solve the Burgers’ equation numerically.

1.2 Symmetry

The difference of linearity holds a special place in differential equations especially in
PDEs. Linear PDEs can be solved easily through the numerous methods discussed in
the literature like separation of variables, superposition principle, Laplace transform,
Fourier transform etc. However, non-linear PDEs are not that easy to be solved an-
alytically. Most of these PDEs appear in the engineering and science, which is why
non-linear PDEs are typically much more complicated than linear ones to grasp. Al-
most every single equation must be analyzed as a single problem. It is a well known
fact that methods of symmetry are of great significance when testing differential equa-
tions [22]. In recent trends, a symmetry approach is considered to be one of the best

methods to solve PDEs.

The solutions of differential equations are based several innovative methods. How-
ever, it is to know that most of these methods are drawn from a unified theory of
continuous differential equation symmetries. The theory of symmetry methods was
first established by a Norwegian mathematician Marius Sophus Lie [23]. Inspired by
Galois’ theory, he has done most of his work in the field of continuous symmetries,
which he used in the study of differential equations and geometry. The algebraic equa-
tions like quadratic, cubic and quartic were solved by Evariste Galois in 19*" century by

using the theoretical approach of groups. In doing so he unified three major branches



of mathematics namely Algebra, Analysis and Geometry. On the basis of comparison,
Lie introduced his notion, that is, the infinite groups, groups consistently relying on at
least one real or complex variable, would most likely be responsible in the treatment
of ODEs and PDEs analogous to finite groups requirement of deciding the solvability
of finite-degree polynomial equations [22, 24, 25, 26].

The groups that Lie tried were the continuous groups, the differential equation sym-
metries, which were consistently based on single or multiple real or complex variables.
These symmetry groups were later called Lie groups, in which the investigation of sym-
metries was based on some conditions. Symmetries can be categorized mainly into two
types. One is the continuous or Lie point symmetries and the other one is discrete sym-
metries. Discrete symmetries are defined as the non-continuous symmetries or in other
words, those symmetries which lies outside of Lie groups. Some significant applications

of discrete symmetries of differential conditions are talked about in [27, 28, 29, 30].

Numerous methods have been established for finding discrete symmetries of a dif-
ferential equation but the method proposed by Peter E. Hydon is perfect for identifying
the discrete symmetries of a differential equation having a finite dimensional Lie algebra
of infinitesimal generators of its Lie group of point symmetries [27, 28, 29, 31, 32, 33].
His approach is based on the idea that any point symmetry produces an automorphism

for the Lie algebra of the Lie point symmetry generators.

In Chapter 2, we give some basic notions, definitions, theorems, and techniques
necessary for finding the continuous or Lie point symmetries of a differential equa-
tion. Chapter 3 contains the detailed discussion of discrete symmetries of a differential
equation including the Peter E. Hydon’s technique for finding the discrete symmetries.
In Chapter 4, the comprehensive symmetry analysis of Burgers’ equation is carried
out. As an immediate application of the discrete symmetries of a Burgers’ equation,
Chapter 5 includes the original work of the construction of numerical schemes to ap-
proximate the exact solution of Burgers’ equation. The Hopf-Cole transformation of
Burger’ equation to diffusion heat equation and the exact solution of the Burgers’
equation is also discussed. In Chapter 6, the detailed stability analysis of the newly

constructed numerical schemes and the explicit study of solving the Burgers’ equation

6



by using these new numerical schemes along with FTCS and CNM is also presented in

the form of tables and figures followed by a brief conclusion.



Chapter 2

Lie Point Symmetries of
Differential Equations

The motivation behind this chapter is to compactly study some essential notions com-
prehended with Lie point symmetries of differential equations. Basic definitions and
notations are introduced. All the theorems are laid out without proof. A permeable
on certain standards which are useful while finding the Lie point symmetries for dif-
ferential equations is also introduced in this chapter. For details, adequate references

are given.

2.1 One-Parameter Lie Group of Point Transfor-
mation

For the simplification of an ordinary differential equation by using the suitable change
of variables, a point transformation can be define as the transformation of independent
and dependent variables, that is x and wu respectively maps points (z,u) into points
(z,a) [34],

T=1x(x,u), u=1u(r,u), (2.1)

where & and u are continuous functions. Moreover, in case of symmetry transformation,
a point transformation must depend on at least one continuous parameter say e, that
is

T =27 (z,u,€), U =1u(r,u,¢), (2.2)



where & and @ are infinitely differentiable with respect to (x and ).
This section presents the basic definitions required for one-parameter Lie group of
point transformations [22].

Definition 2.1.1. A group G is said to be r-parameter Lie group, if the group operations
f:GxG—G [f(lLk)=Lk Lkeg,

and
f:6—¢ f=0" 1leg,

acting upon the r-dimensional C'*°-manifold are smooth maps between the manifolds.

Definition 2.1.2. Let M be a C*°-manifold. Then an r-parameter Lie group G is said

to be Lie group of transformation, if there is a smooth map
: G x M — M, v (l,m) =Im,
satisfying the following two properties
o (li.ly)m=10(lom) VY l1,l€G and me M.
e Let I be the identity element of G then Im=m ¥ m & M.

Now if
b =1 (be), (2.3)

and

ﬁztﬁ(tb(b,e),a)zzb(f),a), (2.4)

where b = (b1, by, ..., by), b = (61, by, ... b}), W = (1, Pa, .., ) and (e, ) be the law
of composition of parameters ¢, 0 € V, forms a one-parameter group of transfor-

mations in the region D if the following properties hold [35],

e V forms a group with law of composition ¢.



e For € = ¢y corresponding to an identity element, we have b = b for each b in the

region D.
e For b € D, the tansformation must be injective in D for each e € V.
e From Eqgs. (2.3) and (2.4), we have
b= (b, (c,07). (25)
where f),l:) e D.

Definition 2.1.3. Let G be a Lie group and M be the C*-manifold with ¢(e,0) is a
composition function. Then a transformation Lie group is said to be one-parameter

Lie group of transformation if it satisfies the following conditions

o For e = 0 and —e corresponds to identity and inverse transformation group re-

spectively as € 1 a continuous parameter with e € V. C R.

o Let x and u be any points in the region D C R, then X and G are continuously

differentiable w.r.t x & u and are analytic in e C V.

e The composition function ¢(e,0) is an analytic function in € and o, where €,0 €
V.

2.2 Infinitesimal Transformation and Their Gener-
ators

Now we define the infinitesimal transformations and their corresponding generators.

Let us consider Eq. (2.3)

b=v(b.e),
then by Taylor expansion at € = 0, we have
~ 0 €2 0? 3
b—b+ea1/:(b,e) —1—5@1/)&),6) +0(€).

e=0 e=0

10



Consider

0
& (b) E) o =¢ (b) ) (26)

then the infinitesimal transformation of Lie group is given by
b=b+e(b). (2.7)

Equation (2.6) is used in the following Lie’s first fundamental theorem which
provides a technique to re-parametrize a one-parameter group of transformation that

is of definitive form.

Theorem 2.2.1. For Lie group of transformation (2.3) to be equivalent to the solution
of an initial value problem for the autonomous system of first order ordinary differential

equations there exists a parametrization 7(€) stated by
ob

=), 23)

with condition ® =b at 7 =0 [26]. Particularly,

T(€) = /06 A <e/> de (2.9)

7O = 56 (0.

where

, A0)=1. (2.10)
(9:h)=(e€")

Now, in the following definition a representation of one-parameter Lie group of

transformation will be incorporated in the form of a group generator [26, 22].

Definition 2.2.1. The infinitesimal generator for one-parameter Lie group of trans-

formation can be defined by the linear differential operator

X=€(b).V =6 (b) (2.11)

where &€ (b) = (&1(b), &(b), ..., & (b)) and V is the gradient operator.

11



For any differential equation
W(zx) =W (1,22, ....,2,), (2.12)

we can write
oW (z)

o (2.13)

XW(z) = £(b). VW (z) = Zﬁj (b).

Theorem 2.2.2. Let X be the linear operator defined by Eq. (2.13) and consider Eg.
(2.3) given by

b=1(be),
then the corresponding generators for the one-parameter Lie group of transformation

are
2
b= (b,e) :eGXb:b+eXb+%X2b+O(e3) ,
=3 SXb,
n!
n=0
and X" = XX [22, 26].

Moreover, for a one-parameter Lie group of transformation Eq. (2.3) and corre-
sponding infinitesimal generator Eq. (2.13), the generalization [26, 22] of Theorem
2.2.2 for any analytic function F is given by

F(B) = F (eXb) = > F (b).

2.3 Prolongation of Lie Group of Point Transfor-
mation and Their Generators

The definition of Lie’s first fundamental theorem Eq. (2.6) corresponding to one depen-
dent and one independent variable in an ordinary differential equation can be written
as
0z ot
Eau) = 5 (@u,0)| naw) = S (@] L (214)

e=0

12



respectively. Now if we want to apply Eq. (2.2) to an ordinary differential equation

[34],
W (2, u, ', u", ...,u(")) =0,

(2.15)

then first we have to extend the point transformation up to mt* order derivative of

u™, n=1,2,...,m. Then by recursive relation we have

ngan—l

- (n)
Y D.i

with @(©) = 4 and D, is the total derivative w.r.t « given by
0

D —£+u/£+u//_+...
T Ox ou ou/ '

Consequently, we can write

T=z+e(v,u)+ ---=x+eXz+ -,
t=u+en(r,u)+---=u+eXu+---,
W =u+en(zu)+-=u +eXu 4,
A = 4™ e (2 0) 4 e = 0™ G Xut™
where 1, ', .- - -, (™ are defined by
di ,du . du” my ™
77 dé? T] dE’ T] de ? 777 dE Y a €

Now, by comparing Eqgs. (2.16) and (2.20) implies
a™ = u™ e (D™t — ul™ D,¢)

with n© = .

Moreover, the values of 0, 17/, ', - -, n™ can be computed by

U(m) = D:vnm_l - u(m)Dwf

Similarly, Eqs. (2.17)-(2.20) yields the following prolongation of generator X

0 0 0
(m) _ ¢~ il I (m)
X éf(?az: +n(‘3u n ou' ot oum’
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2.4 Multi-Parameter Lie Group of Point Transfor-
mation and Their Infinitesimal Generators

This section deals with the generalization of one-parameter Lie group of point trans-
formations to r-parameter Lie group of point transformations [26, 22]. Let us consider

the transformation
B = ¢ (ba E) 5

where b = (b}, by, - - - ,bAn) and b = (by, by, -+ ,b,) belong to the region D C R™ with
= (1,19, -+ ,1,) depending on more than one-parameter say r-parameters €y, that
is € = (€1,€2, -+ ,6) € V C R satisfying all the properties of a group. The group
operation is given by ¢ (€,0). Then the r-parameter Lie group of transformation is

given by

b=1(be) =[] exp(exXn)b. (2.25)

N=1
Moreover, the corresponding general infinitesimal transformation [34] for one dependent

and one independent variable Eq. (2.3) can be written in the form

0 0
XN —SN(I,U)%%—?]N(LUJ)%, (2.26)
with
0z ot
_ - . 2.2
En(z,u) . EZO, and ny(x,u) Jen| . (2.27)

In case of r-parameter group, the vector £ (b) takes the form of a matrix £y;(x), where
e=1,2,--- ,rand j =1,2,--- ,n. Then, the associated generator Xy, corresponding

to the parameter €y of the r-parameter Lie group of transformation is defined as

" o
XN:Z&Vj(b)@, N=1,2--,r (2.28)
j=1

2.5 Lie Algebra of Infinitesimal Generators

We start this section with the definition of an algebraic structure Lie algebra [22].

14



Definition 2.5.1. Let L be the vector space over a field F on which a commutator
product [, ] is defined. Then L is said to be Lie algebra if it satisfies the following

properties
o X,,X,]eL, VX, X, €L

o [Xp, X ==X, Xp], VX, Xg € L.

[X,, aX, + bX,] = [X,,aX,] + [X,,0X,], V X,, X, X, € L and for all a,b € F.
o [Xy, [Xg, Xsl] + [Xs, [Xp, Xg]] + [Xyg, [Xs, Xp]] =0, V X, X, X5 € L.

Consequently, from second property it follows that [X,,, X,] = 0, which yields the
following definition of abelian Lie algebra [34].

Definition 2.5.2. A Lie algebra L is said to be abelian if and only if for all X,,, X, € L,
we have

[va XQ] = 0.
The commutators of two generators X,, and X, is defined by
(X5, X = XX — XX, (2.29)

Since, Eq. (2.29) satisfies all the properties of a Lie algebra. Therefore, the set of
all {X,}, together with the commutator form the Lie algebra under the group. The
following two theorems demonstrates the structure of a Lie algebra as a linear com-
bination of r basic generators also known as Lie’s second and third fundamental

theorem [26] respectively.

Theorem 2.5.1. Let X, and X, be any two infinitesimal generators of an r-parameter
Lie group of point transformation. Then the commutator [X,, X,] is again an infinites-
mmal generator

(X, X, = Ch X, (2.30)

where the coefficients C*

vy P,4=1,2,- -1 are called structure constants.
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Theorem 2.5.2. Consider the structure constants in Eq. (2.30), then the following
two properties hold.

e The structure constants are antisymmetric in the lower two indices.
ko k
Cpq - _qu'
o Structure constants must satisfy Lie’s identity, that is

a ,vd a vd a ~d
CoCl 4 ol 4 cp el = 0.

a

2.6 Symmetry Condition for an Ordinary Differen-
tial Equations

Since, we have defined all the basic mathematical theory. Now we are able to state an

essential theorem for finding Lie point symmetries of a differential equation.

Theorem 2.6.1. An ordinary differential equation

admits a group of symmetries with generator X if and only if
XMW, _, =0, (2.31)
holds [34].

2.7 Lie Point Symmetries of a Partial Differential
Equations

Consider the system of k*" order non-linear partial differential equations in P-independent

and Q-dependent variables as

W (X,u,u(l),u@), e ,u(k)) =0, m=1,2,3,---,1, (2.32)



where x = (z',27%,--+ ,2") € X C RP and u = (u!,u?, -+ ,u?) € U C R? are the
corresponding P-independent and Q-dependent variables [34]. Moreover, u™ denotes

all the n'* order partial derivatives of u w.r.t. & with the corresponding coordinate for

o"u

U(n) is 0zP1 02P2 - 9zPn) given by Ule2mpj, P = 1,2,3, ce ,P for n = 1,2,3, ce ,]{. For
the coordinates x,u!,u?, -+, u* Eq. (2.32) takes the form of an algebraic equation
which is a hypersurface in (x,u, ul u?, - ,u’“)—space. Now the point transformation

Eq. (2.1) for independent and dependent variables 27, p = 1,2,3,---, P and a9,
q=1,2,3,---,Q of the k™ order system of partial differential equations [34] is

P =P (ma, ub) ,  ul =l (x“, ub) , (2.33)

where a,p = 1,2,3,--- , P, and b,q = 1,2,3,--- ,Q). Likewise, for any particular
parameter say € € V C R, Eq. (2.33) takes the form

P =P (x“,ub; e) ., uwl =t ($“, u®; e) ) (2.34)

Then the infinitesimal generator of the one-parameter Lie group of point transforma-

tions is given by

0 0
P a by Y q a , by _ Y
X=¢ (x’u)ﬁxp+77 (x,u)auq, (2.35)
with the corresponding infinitesimal transformation
ozP oul
P =_""_ 9 = ____ X 2.36
&= ) =50 L (2.36)

Moreover, the extension of an infinitesimal generator Eq. (4.35) for an arbitrary order
derivatives [34] is given by

0 0 0 0

X — &P q q q 4 — 1+ ... 2.37
é axp _'_ 77 auq + np aug + npr augr + nprs augrs + ’ ( )
where
D D¢e
q — —
= Dar "D (2.38)
Dnt D¢e
g — "'Ip _ g 2.39
Tor = Dar "Dy (2:39)
with the total derivative Dg - can be define as
D 0
_ q q e
Dxp  Qxp * Py Tl dut L (2.40)

17



The following theorem is the symmetry condition for a partial differential equation

(34].
Theorem 2.7.1. Let

0 0 0
X(k) = fp(x,u)— + 77(%“)_ + 77;(31) (xvuau(l)) Tt

OxP ou oul
0
k 1 2 k
cee 771(;13172,--~,pj (x,u, U( )7U( )7 T ,U( )) m, (241)

be the k'™ order prolonged infinitesimal generator Eq. (4.35) of the corresponding one-

parameter Lie group of transformation

=X (x,u;e), (2.42)
u=U(z,u;e), (2.43)
with
1y = Dy — (Dp&p) tn, p=1,2,3-,P (2.44)
My 2o o = pkn]()]f;o;l?“'vpk—l - (Dpk€n>“phpz,-wp(kfnnv (2.45)
where p, = 1,2,3,--- ,P form = 1,2,3,--- ,k with k = 1,2,3,---. Then a partial

differential Eq. (2.32) admits one-parameter Lie group of transformations Eqgs. (2.41)-
(2.43) if and only if

X®Ew (2, u, TIRTIC ,u(k)) 0, (2.46)

‘WzO -

holds.

Particularly, for two independent variables (z,¢) and one dependent variable u, Eq.

(2.41) with k = 2 can be written as

X2 = &(x,t, u)g + 7(z,t, u)2 + n(zx, t, u)3 + 0 (T, t,u, uy)

Oz ot o u,
0
+ Mt ('TJ t7 U, Uy, U't) (9_Ut + Nz (I’, t’ U U, Uty 'Uz;m:) au_m:
0
+ Nt (.I, ta Uy Uy y Ugy Uz, uwt) Wxt + Nt (ZL', ta Uy Ugy Uty Uy Ugty Utt) th’
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where Eqs. (2.44) and (2.45) is given by

e = Dy () — Dy (1) — uz Dy (§)
=1z + (nu - g:v) Uy — TxUt — éu (u:r)Q — Ty UtUy, (247)

ne = Dy (1) — urDe(T) — u Dy (§)

=0+ (= 70) iy — &ty — T (w)” — Suttgity, (2.48)

- 2Txuutuz - éuu (uz)g — TuuUt (uac)2 - 3€uuxu:m: — TyUtUgy — QTuuxuma (249>

Nyt = D:C (nt) - uttD;B(T) - utha: (5) )
- ntx + (277tu - é.tac) Ug + (nux - Tta:) Uy + (nuu — Ttu — fuac) UgUyg + (nu — Ty — gac) Uty
— Tuz (ut)z — TuuUgx (ut)2 - guutu:{:a} - gtu (Ux)z - gtuacw — TpU — guuut (uz)Q

- 2§uuxutx — Ty UgUgt — QTuutuxtv (250)

Neax = Dt (777&) — UttDt(T) - U’tIDt (f) )
= Nt + (200 — Tat) Ut + (Nuw — 2T1r) (Ut)2 — Tuu (Ut)3 — 3Tty — Splle — 28ty

- 2§tutm - guuux (ut)2 - éuuwutt - 2£uutua:t‘ (251>

Generally, for one independent and one dependent variables z and w the symmetry
condition of Eq. (2.46) gives a non-linear partial differential equation in terms of
(&(x,u),n(z,u)), which by comparing the coefficients of powers of derivatives of u gen-
erates a system of partial differential equations. Corresponding to each infinitesimal
generator a solution of the system can be obtained in terms of £ and 7 forming a Lie
algebra.

If the obtained symmetries are actual symmetries of a partial differential Eq. (2.32),
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then it will leave the differential equation invariant under the generated point trans-
formations through the obtained point symmetries [34].
Now we give an example to understand the procedure.

Example 2.7.1. Consider the Thomas equation
Uyt + ally + buy + cuguy = 0, (2.52)
where a, b and ¢ are constants such that a,b > 0 and ¢ # 0.

As Eq. (2.52) is of second order, we need to apply the second order prolongation

of the infinitesimal generators for partial differential equations, that is

0 0 0

5 —+ J + J + 0 + + + +
A T N €T :mc_ €T
R R R R L - I L

autt

with the coefficients given in Eqs. (2.47)-(2.52). Now in order to apply the Lie point

symmetry condition for partial differential equations, let us consider
W = g + auy + buy 4+ cuguy, (2.53)
then by Theorem (2.7.1), we have
XOw|, _, =0. (2.54)
Substituting the values of X and W yields
Nat + a1l + b1y + ¢ (Nauy + Nyug) = 0. (2.55)

Using Egs. (2.47)-(2.49) in Eq. (2.55) and re-arranging the equation with respect to
dependence among the derivatives of the equation. Collecting the coefficients of the

various monomials in the first and second order derivatives, we get the following system

20



of equations

Ug Uy -

Uty -

constant :

—7y =0,
—&u =0,
T = 0,
=& =0,
—Tuu = 0,
—&uu = 0,

— Ty — €T + b7, =0,

=& — &+ a&y = 0,

Nuw = &uw — Tew + b&u + a7y + ¢y = 0,
New = Tat + €Ny — Ty + b = 0,

New — &t + cny — bE + aty = 0,

an; + bnt + Nt = 0.

From Eqgs. (2.56) and (2.58), we obtain

T =g(t).

Similarly, Eqs. (2.57) and (4.59) yields

§=flx).

Now from Eq. (2.64) we deduce that

n=H(z,t)e ™+ K(x,t).

(2.69)

(2.70)

Let for our convenience substituting —w instead of H(z,t), then Eq. (2.70) takes

the form

H
n=——e “+ K.
c

Using Egs. (2.68)-(2.71) in Egs. (2.65) and (4.66), we have

K, + bE, =0,
CKt +an = 0.

21
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From Egs. (2.72) and (2.73), we get that

K,
£ = —Cb : (2.74)
CKt
= —— 2.75
Tt a 3 ( )
and
K, =0. (2.76)
Consequently, we have
K= )\1.’13 + )\2t + dl, (277)

where A1, Ay and d; are the arbitrary constants. Upon the substitution of Eq. (2.77)
in Eq. (2.71), we have
H
n=——e "4+ \Nxr+ Mt +d; (2.78)
c

Using Eq. (2.78) in Eq. (2.67), we obtain
a\i + by = 0. (2.79)

So, for § = %1, yields the coefficients functions &, 7 and 7 in the most general form as

6 = —dcr + d3, (280)

T = bct + d, (2.81)
H _

n=——e “+dbx —dat + dy, (2.82)
c

where dy, do, d3 and § are arbitrary constants, while H is any solution of the Eq. (2.67).

The corresponding symmetry generator is given by

X = (=dcx + d3) % + (dct + do) 9 + (—Eecu + dbx — dat + dl) 82

ot c U

Therefore, Thomas equation has a four-dimensional Lie algebra, which is spanned by
0

X, =— 2.83
0

Xy = — 2.84
0

X3 =— 2.85

3 au7 ( )

X, = —ca:g + ct2 + (bx — at) 2, (2.86)

ox ot ou
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and the subalgebra of infinite dimension is

H 0

Xy = — e

c ou

The corresponding one-parameter Lie group of point transformations are

Gy :
G :
Gs:
Gy :

GHZ

u=m(xz,t) is a solution of Eq. (2.52), so are the following functions

(
(x,t+ €,u),
(

b

x+e€tu),

x,t,u+e€),

<a:7“_“, te®,

SR~

(1~

1
(x, t,—log[cHe + ec“]) :
c

According to definition each of G;, j = 1,2,3,4, H is a symmetry group, then let

uyp =m(x —e€t),

ug = m(x,t) + ¢,

1
ug = —log[cHe + e™],
c

ug = (e“—1)+ %t (e’“ — 1) +m (:L*e“,te_“) ,

a
—C€ _1_ Cet
e )x—i—c( ) +u),

(2.92)

where € is any real number. The commutator relations among these vector fields is

given in Table 2.1.

X, X] X4 Xy X3 X4 Xm
X4 0 0 0 -cX1+bX3 Xy,
X 0 0 0 cXq-aXg X
X3 0 0 0 0 X _em
X4 cX1-bX3 | -cXo+aX;s 0 0 X,
Xu ~Xm, Xy Xem X, 0

Table 2.1: Commutator table for the Lie algebra X; and Xg
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where

= —cxmy + ctmy — ¢ (bx — at) m.

Notice that the totality of these symmetries must be a Lie algebra. Therefore, for m to
be any solution of the Eq. (2.67), consequently m,., m; and —cxm,+ctm;—c (bx — at) m

are also the solutions.
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Chapter 3

Discrete Symmetries of Differential
Equations

This chapter presents details of finding the discrete symmetries of differential equations.
Discrete symmetries are defined as the non-continuous point symmetries of a differen-
tial equation [27, 28, 29]. Nevertheless, it was never a straightforward way to find the
discrete symmetries of a differential equation. Numerous procedures have been pro-
duced for finding discrete symmetries of differential equations, yet regularly, either the
symmetry condition is too hard to even consider solving, that is, the subsequent system
of determining equations is too hard to illuminate or the strategy does not give all the
discrete symmetries of the differential equation. This chapter describes the Peter E.
Hydon’s technique, who was the first to establish an indirect method for finding discrete
symmetries of second or higher order differential equations [27, 28, 29, 30, 31, 32, 33]
with a property of having a finite dimensional Lie algebra of infinitesimal generators of
one-parameter Lie group of point symmetries. The method not only facilitates the im-
pertinent system of determining equations, it also produces all the discrete symmetries
of a differential equation in a comprehensive manner.

Our main goal is to understand the framework and find all the discrete symmetries
of a differential equation. However, this chapter only describes the method for ODEs
whereas PDEs is nearly the equivalent yet fitting extra detail will be given for PDEs

where applicable.
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3.1 Core Theory

We start this section by recalling some important definitions and theorems [27, 28, 29].

Definition 3.1.1. A non-continuous point symmetry of a differential equation is called

a discrete symmetry.

Consider an ordinary differential equation
(n) — 1o (n—1)
u —W(:L’,u,u,u,~~,u ), (3.1)

then the representation of one-parameter Lie group of point symmetry of Eq. (3.1) is
given by
C : (x,u) — (:i:(:c,u),ﬁ(x,u)), (32)

and the corresponding infinitesimal generator is

X = &z, u)5- +n(z,u) (3:3)

o ou’

Moreover, the representation of one-parameter Lie group of point symmetry Eq. (3.2)

for s-basis elements {X,,},_; of the finite dimensional Lie algebra £ of one-parameter

Lie group of point symmetry of an ordinary differential Eq. (3.1) is
G ¢ (zu) — (eFma, eTmu). (3.4)

The following theorem is iterative form of the generalization of Theorem (1.2.2) for

two variables.

Theorem 3.1.1. Let F(x,u) be the C*®°-function , then for a particular parameter say
€, of the Lie group of point symmetries ((€) with generator Eq. (3.3), an action of a

point symmetry s
F(z,u)=F (eﬁxx, eexu) = eFoF(x,y) = CF(z,y). (3.5)

The following are the basic theorems [27, 28, 29] for the theory of discrete symme-

tries.
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Theorem 3.1.2. Let Eq. (3.2) be any discrete or continuous point symmetry and L
be the Lie algebra of an infinitesimal generator Eq. (3.3) of a differential Eq. (3.1).
Then for every generator X € L, we have (X~ € L and for each € the corresponding

point transformation
Gm(€) = CGnC™, (3.6)

1s also a point symmetry of a differential equation.

Theorem 3.1.3. Consider ( be any discrete or continuous point symmetry of a dif-
ferential equation. Then {¢X(71}s. _, will be the basis of a Lie algebra L if and only if
{Xn}2,1 is a basis of L.

Theorem 3.1.4. Let X,, — X, be the transformation such that {X,,}*._, and
{X,.}2._, are the basis of some Lie algebra L, then

if and only if
(X, X} =CL X, (3.8)

From Theorem 3.1.2 it concludes that both the basis {X,,}%,_; and {¢X,,¢ '},
are of the same Lie algebra L. Consequently, each X,, can be written as a linear

combination of ¢X,,(!’s, which generalizes the above Theorem 3.1.4 with the help of
following lemma [27, 28, 29].

Lemma 3.1.1. Fvery discrete or continuous point symmetry of the Lie algebra L of
an infinitesimal generator of one-parameter Lie group of point symmetries of Eq. (3.1)
induces an automorphism. That is, for each (, there exist a constant N x N nonsingular
matriz B = bl such that

X,, = bL,¢(X¢ =0, X, (3.9)

preserving all the structure constants.

27



3.2 Discrete Symmetries Through Peter E. Hydon
Technique

This technique was introduced by Peter E. Hydon in 1998. This method mainly con-
sists of two stages. In the first stage, Lemma 3.1.1 has been applied to obtain the
corresponding first order partial differential equations, which should satisfy every point

symmetry Eq. (3.2) of an ordinary differential Eq. (3.1).
X = bl (X', m=1,2,3,--- s
= b, (Xyz,
= b, C& (2, u),
= b6 (&, 0),
= & (3.10)
Similarly
Xt =0 (X, m=1,2,3,---,s
= 5, (Xyu,
= by, G, w),
= b, (2,1),
= bl 7. (3.11)

Equations (3.10) and (3.11) together yields a system of partial differential equations.
Now, in order to obtain the values of (&, ) interms of x,u,b! , the aforementioned

system can be solved by method of characteristics equations. Moreover, these obtained

values may have some constants and even some unknown functions, whose values will
!

be determined during the second stage. It should be noted that analogous to b = ol

the solution of the preceeding system always admit the trivial symmetry (z,4) = (x, u).

Now in the second stage, we separate non-point symmetry solutions from point sym-
metry solutions because there may be some solutions which will not satisfy the system
of partial differential equations. This process is carried out by applying the symmetry

condition on the general solution of the system of partial differential equations.
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So, with the help of this technique we can obtain the complete list of all the point
symmetries of Eq. (3.1). Since, we know about the continuous symmetries, that is
Lie point symmetries. Therefore, other than that every other symmetry is a discrete
symmetry. For further discussion, let us write Eq. (3.10) and Eq. (3.11) in a respective

marix forms as

X, I B L I P
Xy by b3 b - B3| |G
Xy | = |05 3 b} - byl |Gl (3.12)
X, @ bLov2 b bl | En
and
Xy bi 0 b o WYL |
Xy I S ) I 7
Xgi| = |bL b2 b3 - br| [6s] - (3.13)
X, i A

By combining Eq. (3.12) and Eq. (3.13), we obtain a system of determining equations,

X, X, R TRl FIR
Xor Xyt By B3 by - Bl |&
Xyt Xgu| = [b} B2 b3 - v| |& A (3.14)
X, i X, b B2 bE - b &

Moreover, Eq. (3.14) is an un-coupled system of first order partial differential equa-
tions. In case of partial differential equation or any other complex ordinary differential
equation, this system of determining equations needs not to be linear. In addition
to the symmetry condition, if complex valued parameters were permitted to be used

then this method also gives the complex discrete symmetries of the given differential
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equation.

On the off chance that we are to find the discrete symmetries of a partial differential
equation rather than an ordinary differential equation, there will be some additional
columns for other independent variables. For instance, a partial differential equation
with two independent variables (x,¢) and one dependent variable u, framework of Eq.

(3.14) will take the structure

X,z Xit Xy by 02 b - W & T om
Xoi Xof Xy by b3 by - byl & T iy
Xgi Xat Xgti| = |by b2 B3 - bp| |& T3 73| (3.15)
X, & X,i X, O A A I F
where
X £(xtu)a+ (a:tu)a+ (gvtu)a (3.16)
m — Sm\L, b, W) 5 Tm\Z, 1, U) =7 m\Ly by U)o .
O ot du
The remainder of the strategy will remain precisely the equivalent.
Let us consider a detailed but simple example to understand the procedure.
Example 3.2.1. Consider an ordinary differential equation
d*u du
— = — . 3.17
dx? / (d:c) (3:17)

It has two-dimensional abelian Lie algebra of infinitesimal generators of one-parameter

Lie group of point symmetries

0
0
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System of determining equation (3.14) for Eq. (3.17) is

X,i Xyl bbb & i
Xoi Xot| |65 8] & ]
bt b2 |0 1
bl il |1 0
bi b
b3 by
Solving the system, we have
Xg.ﬁi':bg,
oz
2 =2
ox ¥

& = byr + g(u).

Now
XoZ = bf,
0z
2
ou b

g(u) = b3u+cy.

So, Eq. (3.25) implies

& = b3z + bju + c1.
Similarly,

i = byx + bju + co.

Therefore, the general solution of Eq. (3.22) is
(2,0) = (b3z + bju+ c1,byx + bju + ¢3) .

By definition Eq. (3.31) is the symmetry condition of Eq. (3.17) if and only if

(%)

dz?

du
z
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Now extending the transformation to first and second derivatives

di  d(byx + biu+ c2)

di  d b3z + bju+cp)’
_ by + b} L
b3 + b

Likewise,

&i di (d_u) B d(iii::)
di d(b3x +b2u+cy)’
(b1b3 — bhO}) o5
(03 + 1722’
(b1b3 — byb?) f (42)
(B3 +132)”

Thus, the symmetry condition is

blp2 — plp2 du b1+b1d_u
(bib3 — b 12lf2(dm) = f —g ;gi : (3.33)
(b3 + b2du) by + b1,
The symmetry condition (3.33) is satisfied only if b} =03 = 1 and b} = b7 = 0.
Therefore, the only discrete symmetry of Eq. (3.17) up to equivalence is
(Z,0) = (z+ c1,u+ c2) . (3.34)

3.3 Some Advancements in the Peter E. Hydon Tech-
nique

This section talks about certain enhancements in the fundamental startegy which was
presented in the last section. If the Lie algebra £ of infinitesimal generators of one-
parameter Lie group of point symmetries is abelian, then in such case small enhance-
ments can be made. On the other hand, for a non-abelian Lie algebra L, system of

determining equations (3.14) can be substantially simplified in two steps [27, 28, 29].
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3.3.1 Canonical Coordinates

Consider Lie algebra to be abelian. Then in such case it is easy to use the canonical
coordinates as it ensures that a minimum of one generator within the basis is simplified.
This method is particularly effective when dimension of the Lie algebra is one [27].

Consider the canonical coordinates h(z,u) and k(x,u) satisfy
X.h=1, Xik=0, (3.35)

such that
0

" oh
As a result, the system of determining equations (3.15) for one dimension of Lie algebra

X, = O (3.36)

embodied in the form

b Xik| = (o] [1 0. (3.37)
Now Eq. (3.37) implies
oh ok
8_}} - bl 7& Oa 8_}} - 07
h=bih+s(k), k=t(k), (3.38)

which is the general solution of Eq. (3.37) for some function s and ¢. The significance
of the symmetry condition on this transformation concludes which function among s, t

and constant (b]) are passable.

Example 3.3.1. Consider the Poisson-Boltzman equation [29]

Py rdu
R v — —1.1}. .
de—{—tdx—i—ﬁe 0, r#0, pe{-1,1} (3.39)

It has one-dimensional Lie algebra of point symmetry generators, spanned by

0 0
Xy =r——2—. A4
1T Yo ou (340)

In canonical coordinates h(x,u) and k(x,u) by solving the system (3.35), we obtained

the corresponding symmetry transformation
h=In(z), k=u+In(z?). (3.41)
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Then Eq. (3.39) becomes

d*k dk &
- — - (h) —
et (r—1) (dh 2) + fe 0. (3.42)
Now according to symmetry condition if Eq. (3.42) holds so must
4k dk G
—+(r=1) | —=—2] + 8" =0. 3.43
e RRCRY < o ) 8 (3.43)

d2k
dh?
and applying the symmetry condition, then performing symmetry transformation once

Since, we know that k = f (k). So, for a particular case of r = 1, calculating

more to convert back to (z,u) coordinates, thereby yields the following real set of

discrete symmetries of the Poisson-Boltzman equation
(2,0) € {2 u+2In(z' "1}, n#£0, (3.44)

where 1 is an arbitrary constant.

3.3.2 Non-abelian Lie Algebra

Further taking the discussion of structure of Lie algebra. Consider £ to be a non-

abelian Lie algebra. This means that at this point probably some of the equations
X, X, =Cr X, (3.45)
are non-trivial, which leads to the following theorems [27, 28, 29].

Theorem 3.3.1. Let L be a Lie algebra, abelian or non-abelian, and X be the generator
of one-parameter Lie group of point symmetries of a differential equation. Then the

commuataor relation
[(Xon¢ ™ (X CTH = O 0K (3.46)

holds, if and only if
X, X, =Cr X, (3.47)
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Theorem 3.3.2. Consider (X,,(~! be the generator satisfying the same commutator
relation as X,,. Then from Egs. (3.7)-(3.9), the structure constants CI,. and the

elements of the matriz B = (bﬁn) satisfying the following equations can be written as

Cp bbbl = Cr by, all indices ranges from 1 to dim(L). (3.48)

mn-’r’

Particularly, let dim(£) = s, then Eq. (3.48) will have s*-equations but due to the
antisymmetric property of the structure constraints in the lower indices, the number of
2(8

distinct equations will reduce to STA) So, it is adequate to confine diligence towards

m <n.

Thus, the system of determining equations is simplified extensively with the help of
these limitations on the elements of the matrix B = (b]). In this way making the
system simpler to settle. On the off chance if the number of equations is excessively

huge, utilization of some computer algebra is suggested.

Now we give a detailed example to understand the process.

Example 3.3.2. Consider an ordinary differential equation
d*u B\’ du
o (2= —— . 3.49
dxt (d:c3 ) (3: d:l?) (349)

It has three dimensional Lie algebra, with the basis

0

X = W (3.50)

Xy = % + xaa (3.51)

X3 = xag + 2u% (3.52)
The only non-zero structure constants are

Cl,=2, O3 =-2, (3.53)

Ca =1, C2,=-1. (3.54)
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Now we solve the equations

C’;qbfnb‘jl = C7 b, all indices ranges from 1 to 3.

mn-r?

(3.55)

As we have already studied that we get the distinct equations if and only if m < n.

Now in this particular case, (m,n) = (1,2), (1, 3), (2,3). Since, the superscript value of

3 in the structure constant is zero. Therefore, we will start with ¢ = 3, thereby making

it easier to solve.

Consider t = 3
3 _
Cpy =0, mn=123.

Consquently, the constraints reduce to linear equations

Cr b =0,

mn-r

Ch b4+ C2 by +C2 b3 = 0.

For (m,n) = (1,2), equation is satisfied. Now for (m,n) = (1, 3), we have

b? = 0.

Likewise, for (m,n) = (2, 3)

Consider t =1
Coo =0, (p.q) #(1,3),(3,1).

The constraints reduce to non-linear equations

Clbl b3 + C3,03 bt = C7 b}

mn-r?

(2)byby, + (=2)p, by, = Cpby + Crby + G b,
LB 2B = CL Bl O bl OB b,
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(3.62)
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For (m,n) = (1,2), equation is satisfied, whereas for (m,n) = (1, 3)

2b1b3 — 2b3by = C'l3by + Claby + Ciaby, (3.65)
bibs = by. (3.66)
For (m,n) = (2,3)
2byb3 — 2b3by = Co3by + Cazby + Ciasby, (3.67)
2b3b3 = by, (3.68)
Consider t = 2
CZ,=0, (p.q)#(23),(3,2). (3.69)

The constraints reduce to non-linear equations

Casbiby, + Csbybr, = G b7, (3.70)
R bR = CL B G2 R4 OB IR, (3.71)

For (m,n) = (1,2), equation is satisfied, and for (m,n) = (1, 3), we have

biby — bib; = Club] + Cibs + Cab, (3.72)
b2b3 = 203 (3.73)
For (m,n) = (2,3)
b3bi — babs = Cozbt + Ciabs + Casb3, (3.74)
bab3 = b3. (3.75)

Thus, we have been able to simplify B = (b!,) as

B | [ oo
B= o 2 | =00 82 of, (3.76)

by b5 by by b5 by
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with the following conditions

bib3 = bl, (3.77)
2b3b3 = by, (3.78)
b2bs = 202, (3.79)
babs = b3. (3.80)

Since, we know that B must be non-singular. Therefore, with b} # 0 and b3 # 0

resulting in b} = b7 = 0 and b3 = 1, thus

blo0 0
B=10 b 0f. (3.81)
by b3 1

3.3.3 Inequivalent Discrete Symmetries

This section deals with more improvisation of the process and to figure out how to find

the inequivalent discrete symmetries [29, 32].

Definition 3.3.3. Let ( and é be the two point symmetries of an ordinary differential
equation (3.1), then these symmetries are said to be equivalent if there exists X € L
such that é = eX(.

The system of determining equations (3.14) naturally simplified with the number of
reduction of matrices due to the abelian structure of a Lie algebra (i.e. all the structure

constants are zero), implying that there are no constraints.

Furthermore, this improvement is not limited to only non-abelian Lie algebra L.
Infact, it can be applied to a Lie algebra with zero structure constants, but no consid-

erable simplification of the system is achieved.

On contrary, for the non-abelian case we always try to simplify the matrix B = (bin)

first with the help of non-linear constraints. It is to be noted that for simplification the
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improvements discussed in previous and preceding sections must be used simultane-
ously. Let us define some important notions [29, 32] regarding matrices and theorems

forming basis for corresponding inequivalent discrete symmetries as
(3.82)

and

A= E—l (C(n)Y = eC(n). (3.83)

Theorem 3.3.3. Let ¢ be the point symmetry and L be the Lie algebra. Then for a
particular parameter say €, the automorphism stimulated by the point symmetry ¢ s

given by ¢ = eXm with the corresponding matriz representation
B = A(n,e), (3.84)
where X, is basis element of L.

Theorem 3.3.4. Let By and By be the corresponding matrixz representation of an au-
tomorphism stimulated by the point symmetries (; and (o respectively. Then the matrix
representation of the composition of point symmetries (;0(; inducing the automorphism

18 BgBl.

Theorem 3.3.5. Let the point symmetries (; and (o = eX¢; stimulating the automor-
phism with the corresponding matriz representation as By and By respectively. Then

for some parameter €,,, m =1,2,3,--- ,s, we have
BQ = A(]_,El)A(2,€2)"'A(S,ES)Bl, (385)
where s is the dimension of a Lie algebra L.

In order to obtain the inequivalent discrete symmetries, we have to solve the system
(3.14) for the inequivalent matrices only. To find the corresponding Lie point symme-
tries generated by X,,, we need to generate a new matrix say B, by multiplying B;
with each matrix A(n,€) once, that is, A(n,e;)B; or BiA(n,€5). Then the obtained

matrix By can further be simplified by assigning a particular value to €,,’s. This will
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help in creating zeros in the matrix B, resulting in the simplification of determining
equations and non-linear constraints. It is to be noted that all the above procedure is
applicable if for some €, C'(n) is non-zero. On contrary, A(n,€) is the identity matrix
for all ¢, if for some n, C'(n) = 0. By solving the determining equations, symmetries

obtained in such way stimulates a non-trivial automorphism on a Lie algebra L.

We epitomize the framework with an example [36].

Example 3.3.4. Consider a first order ODE

du_

with a two dimensional Lie algebra, spanned by

10
X{=—— 3.87
22 0
X_2 = e 2 —, (3-88)
U
The commutator relation
(X1, Xo] = Xo, (3.89)

yields the following non-zero structure constants
C% =1, C% =-1. (3.90)

Now we try to solve the system of non-linear constraints (3.48) for the given values of

.
Cro

Cy o bl = Cyp by, all indices ranges from 1 to 2. (3.91)
Consider t = 1, we have
Coy=0, pg=12 (3.92)
The constraints reduce to
Crobl =0, (3.93)
Cl by + C2 by = 0. (3.94)
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Now for (m,n) = (1,2) with m < n, Eq. (3.94) takes the form

by = 0. (3.95)
Consider t = 2, we have
C2 =0, (pq #(1,2),(2,1). (3.96)
The constraints reduce to
by b2 — b2y = Cp b + C2, b3, (3.97)

For (m,n) = (1,2), Eq. (3.97) can be written as
by (b1 — 1) =0, (3.98)
Since, B is non-singular, therefore
bi =1, as b3 # 0. (3.99)
Substituting all the values of (blm) into the matrix B, we have

by b3 1 b2
B= - . (3.100)
by b3 0 b3
Now in order to find the inequivalent matrices using Theorems (3.3.3)-(3.3.5), first we

calculate the matrices C'(n) and A (n,€).

So,
0 0
c(1) = , (3.101)
0 —1
and
01
c(2) = . (3.102)
00



Now

1 0
A(l,e) =exp (eC(1)) = NE (3.103)
0 1—e+5
Similarly,
1 €
A(2,¢) = . (3.104)
01
Multiplying B with A(1,¢€), we have
1 b?

A(l,€)B = (3.105)

0 b§<1—6+§)

Let e =€; =1+, so that 1 — e+ % = 0. Therefore, Eq. (3.105) takes the form

1 b7
AL e) = . (3.106)
0 0
Now multiplying A(2, €)
1 b
A(2,e)A(1,€6)B = : (3.107)
0 0

Let By = A(2,€)A(1,€)B is the required inequivalent matrix. To obtain the general

solution by utilizing the determining equations (3.14), we have

X2 Xy 1 v o0
= R (3.108)
Xoz Xot 0 0] [0 ez
- E
1 pley
=" . (3.109)
0 O
Its general solution is
(z,u) = (x +ay, bPeT + a2> : (3.110)
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where a; are constants.

Upon applying the symmetry condition to Eq. (3.110), we should have

di
— = Zu. 3.111
v~ " (3.111)
Since,
du 22
i birve's. (3.112)
So, Eq. (3.111) implies the symmetry condition as
x2 902 2
bize? =bire? +

zas + aie’T + ajas. (3.113)
The symmetry condition of Eq. (3.113) is satisfied if b7 = 1, and a; = ay = 0.

Therefore, up to equivalence there is only one discrete symmetry of Eq. (3.86)

(z,0) = <x,e%> :

(3.114)
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Chapter 4

Continuous and Discrete Symmetry
Analysis of Burgers’ Equation

The primary objective of this chapter is to find all the continuous and discrete sym-
metries of the Burgers’ equation. The calculation of all the discrete symmetries of the

Burgers’ equation is exhaustive, thereby computer algebra is recommended.

4.1 Analysis of Continuous Symmetries

Consider a one-dimensional Burgers’ equation
Ugy + 2utly, = uy, 0< <1, (4.1)
with initial and boundary conditions

u(z,0) = sin(rz), 0<z<l1, (4.2)
u(0,t) = u(l,t) =0, t>0. (4.3)

Since, Eq. (4.1) is a second order non-linear PDE, so we need to apply the second
order prolongation X ® with the corresponding coefficient Eqs. (1.47)-(1.51). To use

the infinitesimal criterion of invariance, let us introduce

W = Uy + 2utiy — uy, (4.4)
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then by Theorem (1.7.1), we have
XOWlhy_y =0, (4.5)
which reduces to
Mza + 205U — e + 20tz = 0. (4.6)
Using the values of 7, 1, n; and n,, from Eqs. (1.47)-(1.51) in Eq. (4.6), we have
Nez + (2Neu — Exx)Us — Tuztly + Ny — 260 sz — 2T0Use + (Nuu — 2600 )02
— 2Ty Uty — Uy — TumUgty — BEUUTT — 2T Uty + 2(N + (1 — Ea)Ua
— Tptty — &ty — Tyttytiy )t — (1 + (1 — Ty — &gty — U5 — Euuitiy)
+ 2nu, = 0. (4.7)
The comparison of coefficients of uy, yields
Tez = Tuu = 0. (4.8)
Therefore, Eqn.(4.7) simplified to
Mo+ (2w = )t + (T = 260 e + (e — 260015 — Euntl] — 36 Ugtis
+ 200 + (u — & )te — Eud)u — (e + (1 — T)uy — Eia — Eutiytiy) — &ty
= Luwty) + 2nug = 0, (4.9)
which after some calculus reduces to
Maw = T+ 200t + (2w — Eaw + 2650 + & + 20ty + (Nuy — 2 + 4Euu) 0
— s + (1i — 28U, — 26, )uy = 0. (4.10)

9(60) m @ 3

By comparing the coefficients of ug’, us ', ug ,u,;) and u, yields the following system

of partial differential equations

ua(cO) : Nex — Mt + 27790“’ = 07 (411)
ull) Mow — vz + 2650 + & +2n =0, (4.12)
Uy T — 28Uy — 2&, = 0. (4.15)
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After solving the system, one obtains the coefficient functions £, 7 and 7 of the form

1 1
E(z,t,u) = 5(011’ — deg)t + G2 + cs,
Lo
T(z,t,u) = 50175 + cot + c3,
1 1
n(x,t,u) = —Z(x + 2ut)c; — U+ ca.
The corresponding vector field X is

1 1 0 1 0
X = (5(0123 — 4C4)t + §ng + C5> % + <§Clt2 + cot + CS) a
0

1 1
+ (—Z(ZL’ + 2Ut)01 — §CQU + C4> %

(4.16)
(4.17)

(4.18)

(4.19)

Hence, the Lie algebra of infinitesimal symmetry of the Burgers’ equation is spanned

by the five vector fields, that is

1 9 1.0 1 9
Xy = —awt— 4 -t*— — - Qut) —
1= grta oty T gt 2ut) o,

10, .9 10

X2 = %xa— T 2
X3 g

Xy = —Qt% + %,

X = aﬁ

(4.20)
(4.21)
(4.22)
(4.23)

(4.24)

The commutation relations between these infinitesimal generators are given in the

following table:

X, Xan] X, X, X X, X
X, 0 ~X; | —X, 0 1%,
X, X, 0 —Xg | 1X4 | —1Xs
X X, X 0 | —2Xs 0
X, 0 —1X, | 2X; 0 0
X ~IX, | IX 0 0 0

Table 4.1: Commutator table for the Lie algebra X, and X,
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4.2 Analysis of Discrete Symmetries

In this section we find all the discrete symmetries of the Burgers’ equation.

4.2.1 Non-zero Structure Constants

The non-zero structure constants C7 = obtained from commutation relations are

0112 — _]., 0211 — 1, 0123 — _]_, Cgl — 17
1 1
05’3 = —1, 03?2 =1, Oif) = Z’ Cgl = _217
1 1 1 1
0514 = 57 05112 = _57 C’255 = _57 C§2 = 57

4.2.2 Non-linear Constraints

Now in order to simplify the B = (bfn) matrix, we need to substitute the non-zero

structure constants in the corresponding non-linear constraints

ccobbl =Cr by, om<n, mmnpqrs=1727345. (4.25)

pg’m mnr)

Consider s = 1, we have
C;m =0, (m,n)#(1,2),(2,1).
The constraints reduce to non-linear equations

Cloby by + Coybp, by, = Gy

mn-r)

—bL b2 DA b =CL bl CF b+ O3 b+ C b4 CP b
For (m,n) = (1,2)

—b1b3 + biby = Clyby + Choby + CPhbs + Cloby 4 Chobs,
—byby + biby = —by.
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For (m,n) = (1, 3)

—bibs + biby = Ci3by + Clsby + Csbs + Cisby + Clsbs,
—b1b3 + bibs = —bb.

For (m,n) = (1,4)

—bibi + by = Ciyby + Clyby + Cfyb3 + Cyby + Clabs,
—b1b3 + biby = 0.

For (m,n) = (1,5)

—bibs + bibs = Cisby + iy + Cisbs + Cisby + Cisbs,

1
—byb; + biby = Zbi.
For (m,n) = (2,3)

—byb3 + b3by = Cagby + Csbh + Cisbs + Cisby + Csbs,
—bybs + byby = —b3.

For (m,n) = (2,4)

—byb; + bsby = Cayby + C3,b + C3,b3 + Cyuby + C3,b:,
—byb; + b3by = 0.

For (m,n) = (2,5)

—bybg + b3bs = Cosby + Csby + by + Cisby + Cisb,
1
—bybZ + b3bs = 5@1.
For (m,n) = (3,4)
—bsb + b3by = Cayby + Ciyby + C5uby + Ciyby + Ciyby,

—bsb; + b3by = 0.
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—bb3 + b3bs = Ciysby + Cisby + Cisby + Cisby + Cisbs,
—b3bZ + b3bs = 0.
For (m,n) = (4,5)
—byb3 + bibs = Cisby + Cisby + Cisbs + Cisby + Cishs,
—bybz + bibt = 0.
Thus, for s = 1, yields the system of non-linear equations as
—bib3 + b3y = —b7,)
—biby +bib; = —b,
—bibj + by =0,
—bibf +biby = gbi.
—bybi + b3by = —bj,
B 4 B2 =0,
—bybZ + b3b; = 3bi,
—bib: + 030 =0,
—BA2 4+ 13BE =0,
—bib2 + b3 =0. )

(4.26)

By solving the system (4.26) of non-linear equations in Maple, we get five different
possibilities to solve it. Due to non-sigularity of the martix B, we can only work with
three of them. Therefore, for the first case equating b2 = —1, b3 # 0 and b} # 0, we
obtain the following form of the matrix B = (bﬁn) =D

ot 02 ot ut | [0 0 bobt ]
bhobg by b B3| |0 —1 B3 bd B3
Bi={6b 02 08 bd we|= |60 82 03 bt 3l (4.27)
o s ot Bl |0 0 B on o
IR IR
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Consider s = 2, we have

C2 =0, (m,n)#(1,3),(3,1).
The constraints reduce to non-linear equations

Clsbu by, + C3105,b, = O, 07,
—bL b 03 b =CL bl C% b2+ O3 bE 4+ CL b4 CP bR
For (m,n) = (1, 3)
—by05 + bibg = Cisbi + Cisby + O3 + Cfsbi + Csb3,
—bib3 + by = (—1)b3,
bibs = 1,

1
b:f:b—é, as by # 0.

For (m,n) = (1,5)
—bib5 + bibs = Cisby + Cisb; + Cisbs + Ciisby + Cisbs,
1
b; = 0.
For (m,n) = (2,3)
—bybs + by = Cogb + b + Cosbs + Cogbiy + C305,
—byb + b3bs = —b3,
b3by = —b3.
For (m,n) = (2,4)
—byby + b3by = Cobt + C3ub; + G305 + Coubi + C3,05,
1
-wﬁ+@@:§
b; = 0.

2
by,
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For (m,n) = (2,5)
=yl + bybs = Cosbi + C3sb; + Csbs + Cisbi + O35,

1

—bab + bb; = —5

bz =0.

2
b5,

For (m,n) = (3,4)
b3y + bby = Cyybi + C34b; + C3,05 + Cygbi + G505,
_béb?l = _Zbga
byb; = 0,
b =0, as by #0.
For (m,n) = (3,5)
—bgb + bsbs = Cisby + by + Cigsbs + Cibi + s,
—bsbi + b3b) = 0,
—b3b = 0,
b2 =0, since by # 0.

However, for (m,n) = (1,2),(1,4), (4,5), the corresponding equations are satisfied.

Thus, Eq. (4.27), the matrix B, takes the form
0 0 é bi b
0 —1 b b b
Bi= 10 2 03 by b3
0 0 0 b b

0 0 0 b b

Consider s = 3, we have

C: =0, (m,n)#(2,3),(3,2).

o1

(4.28)



The constraints reduce to non-linear equations
Cosbrby, + Cinbiy b, = C1b7,
—b2 b2+ b3 b2 = CL bt + C2 b+ C2 b3 + Cb b+ C2 be.
For (m,n) = (1,2)
—bibs + bibs = Chyby + Chybs + Ciyb + Ciybj + Cyb,
—bib + bybs = —bi,
b =102 #£0.
For (m,n) = (1, 3)
—bib + bibs = Ciyby + Chybs + Ciyby + Cigbi + Ciybs,
—bib + bib; = b3,
bR — 1.
For (m,n) = (2,3)
—b3b + b3bs = Cogby + Caabs + by + Cigbi + Cyb,
—b3bi + bbs = —0i,
b2 — b,
Similarly, for (m,n) = (i,4), 4,7 = 1,2,3,4, with i < j, the corresponding equations
are satisfied. Consequently, Eq. (4.28), the matrix By can be written as

0 0 L b o

o
0 —1 b3 b3 b}
By=|b; v b3 b3 b} |- (4.29)

0 0 0 b B
0 0 0 bl 2

Consider n = 4, we have
Con=0, (m,n)#(1,5),(5,1),(2,4),(4,2).
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The constraints leads to non-linear equations

Clsbh b2 + Cg .02 by + Co b2 b + CLbt b2 = CT b

TODL — UL+ ST — CUABR = Ol o+ R+ OB + Gl + Gl
For (m,n) = (1,2)
TIBE — OO+ 0B — DI = Ol Chb Ol Ol ORb,
— (=0t =t
bi = 0.

For (m,n) = (1, 3)

1 1 1 1
Loty — Laind + Totnd — Late3 — bt Cpt+ Ot + Ol + R
1
__bSbl _ —b4
4 1¥3 2
1
b = L0

For (m,n) = (1,5)

1 1 1 1
Jb10} — ZbbE + Sbib — Sbib2 = Clibl + CLib + il + Clibi + Clbh,
1 1 1 1 1
—be2 — Zp°pE + =02 — bt = —pd
4 1Y5 4 1%5 2 1%¥5 2 1¥5 4 45

b; = 0.

For (m,n) = (2,3)

1 1 1 1
JUADE — JUR0 - SRbE — SBAR = Chb! -+ Cbd + Clhb + Clybd + CRb,
1 1 1
—Zbgbé - 553 - 55215% = —b3,
1/1 1

1
#%+@@:@

53



For (m,n) = (2,5)

TR — ORDL + OB — SR = Chbl - Cbh O+ O+ O,
.
bi=1b2#0
For (m,n) = (3,4)
H48% — 0 + 5301 — S4B = CAibt+ Cbd+ Clibd + Cilbd +

1

1/1
—E(Z@@>:b§

1 1 1 1

SO — SO Lo hUEE = Ol BB + Ol + Clbd + Gl
1 1
4 4

For (m,n) = (3,5)

1 1
bibe — @@+§@%—§%@:Q

1 1
Z@@+§@%:O.

Nontheless, the corresponding equations for (m,n) = (1,4),(2,4), (4,5), are satisfied.

So, Eq. (4.29), the matrix By is

0 0 é 0 b
0 —1 b5  o%pd 05
bi b2 b3 b3bL 4 bdb2 b3
0 0 0 0 b;

0 0 0 i() B

By

Consider n = 5, we have

C? =0, (m,n)#(2,5),(572),(3,4),(4,3).

o4

(4.30)



The constraints reduce to non-linear equations

Casb2 0> 4 C2,0° b2 + C5,b2 b2 + C2b2 b2 = CT b

1 1
—§bfnb2 + §bfnbi =203 b} + 208 2 = O B+ C2 b5+ C2 b5+ O by 4+ C2 .

For (m,n) = (1,2)

1 1
—§bfbg + §b?b§ — 2b3by + 2b1by = C,b3 + CRbh + C3ab3 + Oab + ChbE,
1

2b§ — 2633 + 20165 = —b°,

1
§b? — 2b3b5 = 0.
For (m,n) = (1, 3)
1 1

1

—b°b% — 2636 + 20103 = —b)

2 1¥3 1¥3 1¥3 2

1

—§b‘;’b§ + 203b5 — 20763 = b,

For (m,n) = (1,5)

1 1
—§b§b§ + §b§b§ — 203b3 4 20162 = CL.0° + CZb5 + C%by 4+ C1ib; + OFb2,
1

1 1
ot (- gttt ) = 0

1 1
() =%

b2 = b} # 0.

1
i

For (m,n) = (2,3)

1 1
—§b§b§ + §b§b§ — 2bib3 + 2b3bs = Cab’ + Cabl + Cibl + Oy + Chsbt,
1 2
—§b§bg + §b§b§ — 2bb3 + 2bybs = —b3,
1 2
§b§ - 5bgbg — 2bib3 + 2b3bs = —b3.

(4.31)
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For (m,n) = (2,4)

1 1
—§b§bi + §b‘;’bi — 2b5by + 2b3b; = Cyubh + Caub5 + C3,b5 + Oy, by + C5,bE,

1 1
by = b # 0.

For (m,n) = (2,5)

1 1
—Ebgbg + 5531@ — 2b3bs + 2b3b3 = Co5b7 + CF5b3 + CF5b3 + Cosby + Csb2,
1 2 1

215

b2 — 2b3bs + 2b3bE =
b2 — 2bbs = 0.

5
b5,

For (m,n) = (3,4)
—%bgbi + %bgbi — 26%621 + 2b§bi = C§4b? + C§4b‘;’ + C’ibg + C§4bi + C§4bg,
%bgbi — o,
BT = b
For (m,n) = (3,5)
S8R + SH3E — 2004+ 200 = O]+ OB+ CiRbS + Ot + O3,
—%bgbg + gbgbg — 2b3bs + 2b3b2 = 0,

1
§b§b§ + 2b3bs = 0.

Likewise, the corresponding equations for (m,n) = (1,4),(4,5), are satisfied. Up to

this point, the matrix B; = (bﬁn) has been simplified as

0 0 4 0 b |
0 -1 —bb2 1% b
By= [b} —b3bi —b02 Lo3bd+ k2 03|
0 0 0 0 b3
00 0 —5(ghtd) B3]
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with the following non-linear constraints

1 1
Zb§b§ - 5bgbg =0,
1
Ebi’ —20%b5 = 0,

1
—§b§b§ + 20%b3 — 20103 = b3,
1

2
2b§ + Zb5b3 — 2b3bs 4 2byb3 = —b3,

2
b2 — 263b% =0,
b = b3,

1
50303 + 26564 = 0.

Solving the non-linear conditions yields the following simplified form of the matrix B

as
0 0 5 0 b
3
0 —1 _% i% %4bé—:§b§bé
_ b2)2 2b4p2
Bi= oy v 1G5 b “BE (4.33)
0 0 0 0 b}
00 0 —ghht 5030
Similarly, setting b3 = 1, b} # 0, and b3 # 0, yields B
b 0 0 bi 0
4
R L R A
By= 301 (83)° 0 5 —j0Rbid B, (4.34)
0 0 0 b 0
b4
|0 00 gk
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and with b3 = 1, b} = b2 = 0, we have Bj as

2)2 512
L
0 1 2b3 1 (02)%65 1 2b34(b%)%b5
28w 2 b2
3
Bs=| 0 0 % 0 b
314
0 0 0 b —
20364
i 0 0 0 0 e
4.2.3 Inequivalent Symmetries
Recall Theorems (2.3.3)-(2.3.5), we have
C(n)p = Chns
and
A(n,e) = exp (eC(n)).
Calculating C(n), n = 1,2,3,4,5 matrices
Ch Ch Ci Ch Ch
Cy G5 G5 Oy C3
C(l)=|Cy C3 C3 G G
Ch Ch Ch Ch Ch
oy o o choan)
000 00
100 00O
=1010 00
000 00
000 —10

o8

(4.35)

(4.36)



Similarly,

[ 100 00]
000 00
C@2)= o001 00
000 —3 0
| 000 0 3|
(0 -1 00 0]
0 0 -100
CB3)=(0 0 000
0 0 00 2
(00 0 0 |
(0000 0]
0003 0
C4=10000 -2
0000 0
(0000 0]
and
_oooio_
0000 -1
CB)=]10000 0
0000 O
(0000 0]

Now calculating matrices A(n,e) = exp (eC'(n)),

29

(4.37)

(4.38)

(4.39)

(4.40)



A(1,€) = exp (eC(1)),

— eXp €

—_
o o o o o

—_
(@)
— o o o

Likewise,

1 — 5

0 1 —e
=10 0 1
0O 0 0

_0 0 0

_ o o o o

oS = O O O

o o o o
o o o o o

=

o o o o

gV
N

(4.41)

(4.42)

(4.43)



A4, €) = exp (T (4)),

1000 0
010¢% 0
=100 10 —2 |,
0001 0
0000 1
and
A(5,€) = exp (eC'(5)),
100< 0
0100 —%
=10010 0
0001 0
0000 1
Now post-multiplying B; by A(2,€)
0 0 0 b e 0 0 0
b3 16° 1 4b4 —b5b2bk
BiA(2,e) = by 03 1G5 b == 0 0 e 0
0 0 0 0 b3 0 0 0 e2
0 0 0 —gbibs  1b30% 0 00 0
0 0 g 0 Wes |
3
0 1 b2ec 1 b8 1 (4b3—b3b308)e 3
N Tl 470k 2 bl
2)2 € e 45205
= |bje b3 1) ble s =
0 0 0 0 bies
00 0  —ibjbie 2 Tbbjer |
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o o o O

®
vlo

(4.44)

(4.45)

(4.46)



Let € = ¢; = In (|b}]), then we have

by ble~¢ = plem (b3l
b3
= =+l
03]
y ec em(B3)!
: DA
03]
=2 =41
b3
b S
b b
—b3(1bs]) 3
= = + (—03) .
3
€ n 1
bg : 1(6%)26 _ 1(6%)261 (Ib3])
2 b 2 b
L2 (bsl) _ 100
== =+-(b
2 b 5(s)
" 10he5  100em B 2
2 408 T4 b
1o 1
=~ = +-b}.
ylbslby 4
e =1
by : ble=s = plem (b)) 72
b4
= 31 =
b3
bfé : —%b§b4@—§ — _lbébgeln(lbé\)’%7
= _1 bébi = 4+ <_1bi> )
8 \/|bi] 8
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)



b

bg:

Thus, we have

BlA(2, 61) =

1
Bes — i (A2

= b/ B3] = b}.

1 (4b3 — D3B2BY) €5 1 (4bd — D3B2DY) et (3D
2 b} -2 b ’
_ L (4b — bYb3b3) \/1b3]
=3 i ,
1
= g 4t} — (£575)].
obibZes  2bibzem (i
Ny
20402 /]b1]
=225 2:1,, = & (—2b303) -
boes = el (b2
= b/ 1] = b}
1 e 1 !
Jabiet = Jhbie (W07,
1 1
= S0yl =
0 0 %l 0 b
0 —1 +£(=b) 5 £5[405 — (£b103)]
SIS TCI + (—20305)
0 0 0 0 b;
000 =(-h)
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(4.56)

(4.57)
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Now post-multiplying by A(3,€)

0 0 +1 0 b 1 —e¢
0 —1 =£(=b})  £3b]  £35[4bj— (£53)]] [0 1
BiA2,e)AB €)= [+£1 1} +1 (1) b + (—20303) 0 0
0 0 0 0 b3 0 0
(0 0 0 + (—303) 16303 |0 o0
0 0 +1 0 b
0o -1 + (e — b3) 50 507 & A6 — (0}b3)]
= |+l +(—e)+b2 £ b2 103> L 2ebi + (—2b%b2)
0 0 0 0 b3
0 0 0 +(—4b5) £ (—1bie) + 1b3b;
Considering € = €5 = b%, we have
bs +(e—b3) =+ (b5 —b3),
= 0.
b3 + (—€) + b3 = £ (—b3) + b3,
3 2 2 1 oy2 212 2.2 . L 0\2
b; tet — byt (b3)" = £(b3)° — b3b; + 3 (b3)",
= 0.
1 1
b : j:§eb‘;’ + (405 — b7b3) = i§b§b§ + [4b; — (£b753)],
= +4b3.

64

o = O O O




bg:

b2

+2¢b3 & 2b3b3 = +£2b3b; + 233,

1 1 1

=0.

So, Eq. (4.59) can be further simplified as

Post-multiplying by A(4, €)

B1A(2,€1)A(3,€2)A(4,€)

BlA(Q, €1>A(3, 62) =

2 J03
=0.
0 +1 0 b
-1 0+  +4p)
0 0 +b3 0
0 0 0 b3
0 0 £(-gbj) 0 |
+1 0 i | [1 o
0 +ip  +4pd| [0 1
0 +b3 0 |00
0 0 b; | |10 0
0 £(-gb) 0 ][00
+1 0 + (—2¢ + b})
0 —lexib} +4b4
0 +b3 0
0 0 b
0 (1) 0
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o o = o O

o

(@) — O NIa

(4.60)




Let € = 3 = 107, then

by + (=2 +b7) =+ (=07 +b7),
=0.
1 1 1 1
=0.

Therefore, we have

(0 0 41 0 0 |
0 -1 0 0 +4b3
BiA(2,e1)A(3,e2)A(d,e3) = |£1 0 0 Lb) 0 |- (4.61)
0 0 0 0 b3
[0 0 0 £(-gb]) 0 |
Now post-multiplying by A(5, €)
(0 0 41 0 o [t 0o < 0]
0 -1 0 0 +4b31 |0 1 0 0 —%
Bi1A(2,61)A(3,62)A(4,e3)A(5, ) = |+£1 0 0 +b3 0 0010 0],
0 0 0 0 b; [ [0 00 1 0
(0 0 0 £(-gb}) 0 ||00O0O0 1]
(0 0 41 0 0 |
0 -1 0 0 Le+4b]
=|+1 0 0 =+ie+b] 0
0 0 0 0 b
0 0 0 £(—gb}) 0
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Considering € = ¢4 = 4b3, we have

1 1

bs izeibg =+ (4b3) =+ b,
=0, if b3 =0.

4 1 4 1 4 4

by §ei4b3 =5 (4b3) + 4bs,
= 0.

Finally, we have the most simplified form of the matrix By as

[ 0 0 =1 0 O-
0 -1 0 0 0
B1A(2,€1)A(3,€3)A(4,€3)A(B,ea) = |£1 0 0 0 0f- (4.62)
0 0 0 0 b3
(0 0 0 £(50]) 0]

Let
Bl = BlA(2, 61)A(3, 62)14(4, 63)A(5, 64)7

then Eq. (4.62) can be written as

0 0 A 0o 0]
0 -1 0 0 0
Bl=|x 0 0 0 0], (4.63)
00 0 0 b
0 0 0 —gb) 0]

where A = +1.

Similarly, one can obtain the corresponding B2 and B3 matrices for the respective
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aforementioned cases of (b)) in Eqgs. (4.34) and (4.35), that is,

B2 =

and

B3 =

where £ = +£1 and 0 = £1.

B0 0 b0
iz 10 i -3
WO B & 0 0 |,
0 00 ¢ 0
0 0 0 —3b3 g |
Py A R

0 1 % 0 0

0 0 & 0 0 |
0 0 0 b -
[0 0 0 0 Fg

4.2.4 System of Determining Equations

Now from Eq. (2.15) we know that

XmXn = Bon(2,1,4), m=1,2,3,4,5, n=1,2,3,

where
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Using Eq. (4.63) in Eq. (4.66) implies

So, we have

X]_i' = 0,
. L.
XoZ = —§x,
1. ..
X3T = =\t
2
X4z = bi,
1. ..
X5i’ = ZAbit,

where b} # 0 and \ = +1.

g
by
by
b}
K

bt
b3
b3
b

5

Ui
b3
b
b
b3

A

0
0
0
0

by
b3
b
b

b

1
2$

It A2 (-

bj

| AbiE

X]_t - )\,
Xyt = —t,
|
Xst = =\t2,
2
X4£ - O,
X5t =0,

69

by
b3
b3
b

b3

&1
)
£3
€4
£

—1

0
0

N

Xy =0,
Xt = %u
Xt = A —i
X4t =0,

Xst = —é)\bi,

o — S -

+ 2at)

>

(4.67)

(4.68)



Upon substituting the corresponding values of symmetry generators yields

lowing system of first order non-linear partial differential equations for By

(lact2 + 12522 — 1(35 + 2ut)£) T =0,

2 0r 2 0Ot 4 ou
10 1,0 1 o\,

19 1,0 1 o\

1,0 ,,0 1 9Y._
2 or Ttor T 2%ou) T

=t
=

22
I
/|\
| =
=>
|
N =
g3
>
N———

N
ée
Tl
_l’_
Tl
SN—
>
|
S
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(4.69)
(4.70)
(4.71)
(4.72)
(4.73)
(4.74)
(4.75)

(4.76)

(4.77)
(4.78)
(4.79)
(4.80)
(4.81)

(4.82)

(4.83)



Likewise, using Eq. (4.64) in Eq.

(4.67), we have

Xi& Xqt Xqd by 0 0 b 0 | |2t 382 —% (& + 2af)
Xoi Xl Xai Bb1 0 L —Zbi i ~Lq
X3t Xat Xaa| = |1b1(03)* 3 % 0 0 0 1 0 ;
Xai Xat Xgui 0 0 0 ¢ 0 -2t 0 1
Xsi Xst Xsil 0 0 0 —i3 5 1 0 0
- - L 1 L -
iblet — 2bit bl —1 (& + 2at) b} + b
Lbibii + L — bivdi — 3 Lptodi> + i —1 (& + 20d) 162 — L+ Lbin?
= | a3 W@ Rk —L0he)? (2 + 2af) — L0
—2¢t 0 3
SE0T + 0 — 1603 |
By equating, we get that
L1 1af _ opds 1 172
Xlzz: = §b137t 2b1t, Xlt = 2b1t 5
1 .
Xyit = =7 (& + 2ad) by + by,
o1, . 1 7
Xyi = 5b}bggmf + 58— bibit — b—f Xt = —blb3t2 + ¢,
X 1. o o1
1 | .1 .1
Xgi = ~by(b2)%0t + =b3t, Xt = b1 (03)°1* + b3t + —,
4 2 4 bl
1 L1
Xt = —gb}(bg)Q (2 + 2at) — 5bga,
X i = —26t, X4t =0,
Xt = ¢,
1 -
X5j7 = —gbgt + él, X5t =Y
X5 = 1562
s5U = 4 3
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where b}, b2 # 0 and ¢ = +1.

Consequently, for B2 we have the following system of non-linear partial differential

equations
G“% %ﬂ% — i(:{: + 2ut)a%> &= %b}ii — 2bit,
(%xt% n %ﬂ% _ i(gj + zut)%) i = —= (& + 2at) by + by,
(%xa% n t% _ %u%) 5= %b}bgzﬁﬂ %x T 2b—bf
(%xa% + t% - %u%) i= %b}bgfz +,
(%x% t% _ % a%) i = —i (& + 2af) bHo — %u + %b‘ibi,
B

1 o1
= L) + b,

1 1/71.2\212 27 1
= —lbl(b2)2 (2 + 2at) — Lizg
- 8 1\V3 2 3%
= _251?7
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(4.84)
(4.85)
(4.86)
(4.87)
(4.88)
(4.89)
(4.90)
(4.91)

(4.92)

(4.93)
(4.94)
(4.95)
(4.96)

(4.97)

(4.98)



Moreover, for B3 using Eq. (4.65) in Eq. (4.67) implies

X:z Xyt Xit %((1;) ¥ o 0 0 % t ;t2 —i (:v+2ut)
Xoi Xal Xai 0 1 3% 0 0 LA —3
X3t Xgt Xgu|=| 0 0 & 0 0 0 1 0 ,
Xad Xaf Xqi 0 0 0 b 2|1 9 o0 1
1
Xsi Xst Xsi 00 0 0 2|1 0 0
L - - 1 - L -
1Oy Lg 1O 4 g2f g o L (G g 2af) — L2
13 t+ % —1a
= 0 o 0
—2bif — 12 0 b
1
o 4
L 0 0 |
By equating the corresponding elements yields
1?2 . 1 1(b2)? . 1(b2)2 L1
X, i = 1( ) a4 —b22, Xyl = 1) 2+ b} +o, Xqt= _g( ) (2 +2at) — §b§a,
ag g ag
1 .2 1
Xait = 5, Xof =i b—;’ Xt = — i,
1
. R 20 A
X3[E = O, X3t = W, X3U . 0,
. dob? A
X = -2 - 5 Xai =0, Xl = bj,
1
. 20b} N R
X5ZL’ @, X5t = 0, X5U = 0,

where 07,0} # 0 and 0 = +1.
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Thus, for B3 we have the following system of non-linear partial differential equations

(%xt(% + %ﬂ% - i(x - 2ut)%> t=- T (b%) ~ P bt to (4.100)
(;xt% + %ﬂ% — Z(a: + 2ut)(%) i = —é< 3)2 (2 + 2at) — %bfﬁ, (4.101)
(%x% ; t% _ ?%) it Qb—;’ (4.103)
NN AP 10

% — 0, (4.105)

% _ (2% (4.106)

% =0, (4.107)

< 2t(% + (%) i = —2b4 — 4‘;%[)4, (4.108)

( 2t(% a%) t=0, (4.109)

( 2t% a%) i = b, (4.110)

gi (2;;)’3 (4.111)

g_i —0, (4.112)

% _ 0. (4.113)
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4.2.5 Solution of System of Determining Equations for B1

To solve the system of first order non-linear PDEs for B1, we consider Eq. (4.82)

ot

Z

Ox ’
t=A(t,u).

Taking Eq. (4.80) and using Eq. (4.82), we have

OA(t,u)
o
A(t,u) = A(t).
Using Eq. (4.114) implies
t=A(t).

Now taking Eq. (4.70) and using Eq. (4.82), we have

1,0t 1 ot
f— —_— - 2 —_—
2 o T2,
Since,
ot
=0.
ou
So, Eq. (4.116) can be written as
1,0t
—tP— =\
2 Ot ’
oAl _ 2
ot 12
2
A(t) =—=) + C1,
£ =——A\+ C1

Using Eqs. (4.82) and (4.117) in Eq. (4.73) yields

ot

t— = —i.

ot
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A

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)



Substituting Eq. (4.118) implies

¢ =0. (4.119)
Therefore, Eq. (4.118) reduces to
N 2
i=-2X (4.120)
For 2, we consider Eq. (4.81)
0% _ Ly
ox 4747
Subsituting Eq. (4.120)
or 1 2
— = ZM(—=A
aw 4 4( t )7
or )\2b5
ox 27V
. N
= —%bzﬁ + B(t, u). (4.121)

Taking Eq. (4.78) and substituting Eq. (4.121), we have

2 B(t
—2t (——bf;) + OB(tu) _ b3,

2t ou
OB(t,u)
M) + o b3,
0B(t,u
(;u ) = bi - )‘2b151a
B(t,u) = bju — Nbju + B(t). (4.122)
So, Eq. (4.121) implies
)\2

T = —2—th$ + b3u — A2bu + B(t). (4.123)
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Now using Eqs. (4.120) and (4.123) in Eq. (4.75)

A\ . dB(t) A2
gl T = e
1 t dB(t)
A — ——b5 .
ST VIR

By comparing Eqs. (4.123) and (4.124), we have

A2 1 t dB(t
~ S0+ b — A0ju + B(t) =~ b t dBlY)

A2 dt
t dB(t) A2
———2 + B(t)= =
voa PW=5

1
bz — Q—tbix + A2b5u — blu.

(4.124)

(4.125)

Upon solving Eq. (4.125) in Maple and using Eq. (4.72), yields the following value of

T
. I 5
T = —2—tb4x.
Similarly, for @, consider Eq. (4.83)
ou 1
— = —-\b]
ot g

1
U= —g)\bix + C(t,u).

Taking Eq. (4.80) and using Eq. (4.127)

2 (-g) + o

8 ou
oC(t,u) A4
ou 4b4t’

C(t,u) = —%bitu + C(t).

So, Eq. (4.127) implies
1 A

7

(4.126)

(4.127)

(4.128)

(4.129)



Now taking Eq. (4.77) and using Eq. (4.129)

Los dC(t)  A[ 1\ 1/ 1.5 1, —2)
4/\b4u+ e 4( th4x 5 8)\b4a: 4)\b4ut+0(t) |

dC(t) A 1 1 t 1 1
—2 —ZCO(t) = =\bS — N5 . —\b] b3

dt tO() gy A g MDAt AR g ADT AR,
dC(t A A A

Solving the non-homogenous and non-linear Eq. (4.130) in Maple and using Eq. (4.74)
yields, C(t) = 0. Therefore, the value of @ simplifies to

1 1
i = —= bz — ~ Abjut. (4.131)
8 4
Thus, the general solution for B1 is
e 1 2 1 1
(z,t,a) = (—Q—tbix, —2/\, —g)\bix - Z)\biut) . (4.132)

4.2.6 Solution of System of Determining Equations for B2

In order to solve the system of non-linear PDEs, we consider Eq. (4.97)

ot
ar
t=A(t,u). (4.133)
Taking Eq. (4.94) and using Eq. (4.97)
0A(t,u)
S =0, (4.134)
A(t,u) = A(t)
So, Eq. (4.133) implies
t=A(t). (4.135)



Now taking Eq. (4.85) and using Eq. (4.97)

1,0t 1 1

ot
"= - - ut)— = —bit?. 4.1
2 ot~ TR, = gh (4.136)
Since,
ot
— =0 4.1
then Eq. (4.136) can be written as
1,00 1
L0t _ Ly
2° 0t 21
0t
o
1 1 N
—_— = —— C1,
A
fo ! (4.138)
b — et '
Now using Eqs. (4.97) and (4.137)-(4.138) in Eq. (4.88), one can obtain
bl 1., ( t? ) t
— = =b;b + . 4.139
B —ct)? 27\t —g)?) bl -t (4.139)
Multiplying (b} — ¢1t)? on both sides
1
bit = ib}bgﬁ +t(by — ait),
1
bit = §bib§t2 + bt — o t?,
1
€ = §b}b§. (4.140)
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Therefore, Eq. (4.138) implies

t
by — (3bib5) ¢
t
261 12t

2

2t
2T — b2t

t=

Thus, we have
2t

fo___ 2t
bt (b3t — 2)

Now for Z, we consider Eq. (4.96)

ozx ~ &

= i+ >

ox Sbst + b
Since,

. 2t

t =

So, Eq. (4.142) is given by

oz 1 2t ¢
D i >
Bz 253( b%(bgt—2)>+b}’
01 b2
—xz—%tﬂL%

b2
&= £ tx+£a:+B(t,u).

Cbit—-2) " bl

Now using the value of £ and Eq. (4.143) in Eq. (4.93), we have

vl 0B(t,u) 2t
- (‘b% 5 - 2>t> ’ - (_—b% G z>> ’

ou
0B(t,u) B 4¢ _ 2§b§
ou bk}t —2) bl (B3t—2) "’
2
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= tu —
B2t —2) " B (3t —2)

(4.141)

(4.142)

(4.143)

t*u + B(t).



Therefore, Eq. (4.143) implies

b2 4 2£b3
05 t:z:+£x—|— s 05

L K -2 ey pe). (4144
mw =) Tt Y T =g B0 (14

T=—

Since,

—EBRbE (b3t — 2)z + EBL(b2)2ta
b (b2t — 2))?

Y

2 ( §b2 tx

( )=
)
)

0 ( tu _ 4€0% (b3t — 2)u — 4Eb1b3tu

ot \ b th — [0} (b3t — 2)]? ’
B 2612 AR ( th — 2)u+ 2618w
ot ( bl (b2t — 2) u) = bt (52t — 2)]

So, Eq. (4.90) takes the form

—E3DL (B3t — D) + EBY(B3) | 46D (B3t — 2)u — AL}t

bt (03t — 2)]° [b} (02t — 2))°
—AE030} (B3t — 2)u + 2bI(1)°FPu | dB(1)
b} (b3t — 2)]° dt

1 &b ¢ 1€ 2617
Rl (. — R T B
i ( =2 T T e -y TP

ot 1 £b? ¢ 1€ 26h2
_—_ —b2 ——3t — tu — 3 t2 B(t .
( b%(bgt—2)>+23< =) Tt T T =gy v B
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Thus, we have

dB( ) 1/7.2\2 2t 1 2
———bb =\ B)— =Bt =
£12b! (bgt —2)z— BL(R)r  Aebl (B3t — 2)u — 4cbibdtu

[} (03t — 2)]” (b} (b3t — 2)]°
N AEb3by (b3t — 2)u — 261 (b3)*t%u 4 lbl(bQ)Z _—'Sbg tor + ém N
bl (02t — 2)]° 418 b (b3t — 2) bt by (b3t — 2)
| A¢ 212 2 £b?
_bl bQ 2 tu — 3 t2 - _b2
T3 s) <b}(b§t—2) ame-n ) nmen) T2 nme-a”
1, /¢ A€ 212
—b2 . B Y — SR I :
X (wx+bWVt—@ -2 " —

Upon solving the non-homogenous and non-linear Eq. (4.145) in Maple and using Eq.
(4.84), we get the value of z

L 20+ &)
= . 4.14
T T me-2) (4.146)
Now for 1, consider Eq. (4.98)
ol
R L
ax 5 39
- ——gb  + B(t,u). (4.147)
Taking Eq. (4.95) and using Eq. (4.147)
OB(t,u) 1,
“ou %
1
B(t,u) = &u — §b§£tu + B(t). (4.148)
So, Eq. (4.147) can be written as
= ——56295 + u — —bggtu + B(t). (4.149)
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Using Eq. (4.149) in Eq. (4.86) yields
1 1 1 1 dB(t)\ 1 1

T — —t* [ —=b2 — | — = 2ut — b3t | =

o7 ( 435)“‘2 ( 235“"‘ i ) 4(I+ u)(§ 235)
1 { 2 (4b} + &x)

1 1 2t
_EE TS L o[ g —R¢u+Bl)) () | B!
oy " (453”5“ Uttt “)( bi(bs,t—m)]l
+ b

Thus, we have
1 ,dB(t) t 1, 1o, 5 1 1,
- B(t) = =bzéxt + —bzéut - 2ut — —bxét
L[ 2(4b] + &) 1, 1, 2t )
—— |+ 2 —=&b — —bs&t ——F || b
I oy 2\ st T Su bt )~ gy ) |

+ bi. (4.150)

By solving the non-linear and non-homogenous Eq. (4.150) in Maple and using Eq.
(4.89), one can obtain the value of 4, that is,

1 1
i = —§§b§tu — bib: — Zé‘bgw + &u. (4.151)

So, B2 has a general solution of the form

NP 2 (4b1 + &x) 2t 1, P
t = |- — —=&bstu — bib; — =&b . (4.152

4.2.7 Solution of System of Determining Equations for B3

Now to solve the system of non-linear partial differential equations for B3, we consider
Eq. (4.113)

i
oz =
= A(t,u).

(4.153)
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Taking Eq. (4.107)

ou
o =
DA(t,u) o,
ot
A(t,u) = A(u)
Using Eq. (4.153) implies
= A(u)

Now taking Eq. (4.110) and using Eq. (4.113)

on .,
% - b47
ou v

A(u) = bju + ¢,

S
U = byu+ c;.

Using Eqs. (4.107) and (4.113) in Eq. (4.104), we have
ou

Since,
ou
— =bl
ou 4
So, Eq. (4.156) implies

61:0.

Therefore, Eq. (4.155) can be written as

~ g4
u = byu.
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(4.155)
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Similarly, for ¢, taking Eq. (4.112)

ot
oz "
t = B(t,u)
Using Eq. (4.112) in Eq. (4.109) implies
B(t,u) = B(t).
So, Eq. (4.157) is given by
t=DB(t)

OB(t) 20
o (B2
20
B = gt e
t = Q_Ut +
GRS

ot 2" ou I
Since,
ot
— = 0.
ou
Hence, Eq. (4.160) yields
ot . 20
ot b

By substituting Eq. (4.159) in Eq. (4.161), we have

20 y 20 fte+ 20
- 4t = CQ —,
o9 (0])? b}

20

Cy = ——=.

2 b%
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(4.158)

(4.159)

(4.160)

(4.161)

(4.162)



Therefore, Eq. (4.159) implies

o 20 20
IGE
Finally, for z, taking Eq. (4.105)
90 _
ot 7
T =C(x,u). (4.163)

Using Eq. (4.163) in Eq. (4.111), we have

OC(z,u)  20b)

Ox (b2)%’
20b}
20D}
p=__4 ) 4.164
z (b%)zx + C(u) (4.164)

Substituting Eq. (4.164) in Eq. (4.108)

4 . 4 4
o (2064) N dC'(u) _ o obj

(b7)? du b
4ob}  dC(u) 4 20 20 4obj
st =204\ ot — 02 | —
(01) du (1) by by
_401)2 N dC(u) _40()211 4ob} B 4obj
(b)?  du ()2 (D)2 (bD)*
dC'(u)
du 0,
C(u) = cs.
So, Eq. (4.164) takes the form
200}
&= (;);x + e (4.165)
1
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Now using Eq. (4.105) in Eq. (4.102), we have

10 1 9\, 1.
Since,
oz
ou

Consequently, by substituting Eq. (4.165) in Eq. (4.166) yields

C3 — 0.
Therefore, Eq. (4.165) takes the form
R 201)?l
T =S
(b7)?

Hence, for B3 the corresponding general solution is

A 2007 20 20

4.2.8 Analysis of Symmetry Condition

Since, the corresponding general solutions of determining equations are given by

. 1 2A 1 1
Bl: (&,t,4)= (—Q—tbix,—T,—g)\bix— ZAbiut) : (4.168)
L 2 (4b + ¢ —2t 1 1

Ba: (i) = <_ bf (bét_z;’ Ty M bt - Zfng—i—fu) |

(4.169)
R 20b% 20 20

B3: (&4,40)=(otz, ot — b 4.1

R e ) 470

Now in the following sections we discuss the corresponding symmetry condition for

each general solution of the determininng equation.
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Symmetry Condition for B1

For Eq. (4.168) to be symmetry of Eq. (4.1) if and only if, we have
i = flas + 20,

that is,
Uzz + 2005 — up = 0, (4.171)
when

Uge + 22Uy, — up = 0.
Since, we have

O O (—§Abjz — A bjut)
ot 0 (%) ’
—%)\bi% — Z—ll)\bf’lut (t% + u%)
2 )
t2
— A3 (tug + u)
— . 4.172
> (4.172)

Now

O (—§Abix — ;Abjut)
0r 0 (—%b5) ’
— 2B} 5L — Ibjton
bi oz ’

2t Ox
§ADY + G DGt
b ox ’
2t Ox
1
1 oz )
2t Oz
2t (A + 2Xtuy)

= = (4.173)
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Also,

P (6@) ) 9 ()\t+22\t2ux>
9x \ox)  0(—zblx)
_ 1 (g 20 5)

1b5@ ’

T2t 740z
IM2U,,
_ et (4.174)

_ 15
2tb4

Using Eqs. (4.172)-(4.174) in Eq. (4.171) implies

A3y 1 1 At + 2Mt%u —bit? (tus + u)
B L) Y VPV 297 T) = 4 t .
S ( g\t Ty 4“)( A ) 8

Re-arrangment of the equation leads to

Mug, 1/ 1 1 1 1 —b3t? (¢
—S <—§A2bixt — VWt — N §A262t3uum> = (8“'* Y
4
AUy 1 1 1 1 —b3t? (¢
A Ly~ Dieu, — Igea - s, — AT
b 16 8 8 1 8

Multiplying —% on both sides

(03)° tuy | (b3)"u
8At 8AE

2 U
t

1 x 1 x 1 1
o+ 7oA (09)" 5+ A (0]) T + A ()7 5 A (8) s =

Upon simplification, one obtains that if we choose A = 1 and b = 2v/27, where y = %1,

then we have

Ugr + 20ty — up = 0.

Consequently, for B1

V2 (4.175)



Likewise,

t=—-= (4.176)

and

V2

1 (x + 2ut). (4.177)

U =

Therefore, the first discrete symmetry of the Burgers’ equation (4.1) up to equivalence
is given by

G (5, 0) — (—%ﬁx —%, —%ﬁ(x n 2ut)> . (4.178)

Symmetry Condition for B2

Now for Eq. (4.169) to be symmetry of Eq. (4.1), we find
O 0 (—3Eb5tu — biby — 1Eb3w + Eu)

ot ot ’
g (b}(bﬁt—Q))

560 (15 +ugy) — gb3EGE + 5
T T R (T T
[b} (83t—2)]”
(—1€83 (tuq + u) + €uy) b} (B3t — 2))°

= . 4.179
m (4.179)

Y

Similarly,
Ou O (—5Ebjtu — bib3 — &bz + Eu)

0 5 ( 2(4b‘}+§z)> ’

bl (b3t-2)

du ox ou
—58batay — UG + ¢
_gg%
b} (b3t—2)

—2b¥tu, — 103+ u,

= — ,
b} (b3t—2)

B by (b3t — 2) (—3b3tu, — 163 + uy)
= —5 )

Y

(4.180)
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Now
0 <81}> 50 (01(03)%17u, — 201b3tu, + 501 (D3)t — bib3 — 2b1b5tu, + 4bju,)
0z \ 0% 9 <_2(4b‘11+§x>> ;
b} (b3t—2)
[} (52)2 215, — 2010301y, + 101 (02)21 — BYBE — 2BM02t11,, + ADusy, ]
) |
_ SR s — Wb e (4.181)

b} (b3t—2)

=

Substituting Eqgs. (4.179)-(4.181) in Eq. (4.171)

101 (6222, — b2t ULy, + Dl 1 1
41 e L 49 (—ifbgtu — il — S + §u>

b} (b3t—2)

(b}(b§)2t2ux — 2Bt + L0L(1R)%t — bO2 — 2BN03tu, + 4@}%) -

4

(—L€b2 (tu, +u) + Euy) b} (b3t — 2))?
40! '

(4.182)

One can conclude that by setting b3 = 0, bj = 1 and b = J, where J is any arbitrary
constant, then Eq. (4.182) yields

Yoz + 2&uu, = Euy,

§
Uy + 26%un, = E2uy. (4.183)

Recall that
So,

Therefore, Eq. (4.183) implies

Uge + 22Uty — up = 0.
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Since, for B2
2 (4b} + &)

T T m-2)
20T + &)
— —
=47 + & (4.184)
Similarly,
i —2t
(0 —2)
=2t
- —
=1, (4.185)
and

1 1
0= —§§b§tu — bib2 — Zgbga: + &u,
= &u. (4.186)

Hence, the second discrete symmetry of the Burgers’ equation (3.1) up to equivalence

is given by

Co: (@,1,4) — (4T + &x,t, €u). (4.187)
Symmetry Condition for B3

In order to apply the symmetry condition on Eq. (4.170), we find
ou d (bju)

o 2% 4 _ 20
3(<b%>2t b%)
0

bi

20 _0t7

©2)7 ot

4

20 )

(v7)?
(b%)%ﬁiut
200

(4.188)
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Equivalently,
ou d (bju)

~ obl 9
% o (o)

by o
2003 9’
(b%)2 Oz
(b%)205

— 4.1
2007 (4.189)

—~

and

2\2p,4
) (2)-° (“Ftw)
o obd ’
o (k)
(62)2bjucs
20b3
- ﬁ, (4190)
(b7)?

Now using Eqs. (4.188)-(4.190) in Eq. (4.171) yields

40b? 20(b})?
Uy + Wux = (b%)2 Ug. (4.191)

Choosing 0 = 1, b? = V2AK, and b} = A, where K = £1, and A is any arbitrary

constant. Then we have

do A 2047
\/EAIC)Q T 2 ts

(V2AK)
which satisfies the symmetry condition.

ua}x +
(

Since, for B3

20b}
22"
2(1)A

=7

(V2AK)?"
= —7. (4.192)

=>
I



Likewise,

f= 204 %
G
= V2AK
(V2AK)?
t—2AK
=—5 (4.193)
with £? =1, and
o= Au. (4.194)

Therefore, the third discrete symmetry of the Burgers’ equation (3.1) up to equivalence
is

Cs: (&,F,0) — (%x #,m) , A0 (4.195)

As every discrete symmetry satisfied its respective system of partial differential equa-
tions and left the system invariant. Therefore, we conclude that up to equivalence
and invariance the following three are the actual discrete symmetries of the Burgers’

equation (3.1)

Cl : (i’7£

) — (—Lﬁx,—g —Lﬁ(x+2ut)> :

t t’ 4

G (i) — (%x,#,f@ ,

where &, = +1 and 7, A are any arbitrary constants.

These results are extremely exhaustive. Therefore, computer algebra is recommended.
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Chapter 5

Construction of an Invariant
Numerical Scheme for Burgers’
Equation using Discrete Symmetry
Groups

Crank-Nicolson method was first developed by John Crank and Phyllis Nicolson in the
mid-20th century used to approximate diffusion heat equation and other PDEs.

As an immediate application of discrete symmetries, in this chapter an innova-
tive approach of Crank-Nicolson method which is known as Modified-Crank-Nicolson
method is introduced to approximate the exact solution of the Burgers’ equation. This
modification is conducted through the composition of continuous and discrete symme-
tries and substituting the resultant in the variable v of the CNM to yield an invariant
numerical scheme (M-CNM). Furthermore, the linearization framework of the Burgers’
equation is carried out by using the Hopf-Cole transformation together with the initial
and boundary conditions. In addition to this, the analytical solution of the Burgers’

equation by using the Fourier series has been laid out.

The numerical schemes for explicit finite difference schemes (FTCS) and standard

Crank-Nicolson method (CNM) for the heat equation are discussed in the appendix.
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5.1 Lie Point Symmetry Transformations of Burg-
ers’ Equation

In the previous chapter we find Lie point (continuous) symmetries of Burgers’ equation.
In this section, we find the transformation of Lie point symmetries.
Now taking

1 . 0 1,0

1 0

Here

1
& (x,t,u) = 51:25,

1
1 (l’,t, U) = §t27
(2.t 1) 1 1 ;
A Uu) = ——r — =-ut.
T s Uy 4 92

So, by using the definition of Lie point symmetry transformation Eq. (1.8), we have

ox
a R — 51 (.T,t,U),

In (&) = te + cy.
Using condition, z(0) = «

In (2)* —In (z)* = te,

T =uwxe2,
=x (1 + %e) .
Now
% ! (x,t,u),
—z = €+ Co.
t
Using condition, £(0) = ¢
2 e—-2
i
R
2—et



Likewise,

ol (2..1)
—| =m(z,tu
O¢ le—o mix,t, )
U ! ! te +
U = ——xe — —ute + cs.
g
Using conditon, u(0) = u, yields
.1
u:1(4u—xe—2ut6).

Thus, the corresponding symmetry transformation G; for the symmetry generator Xy
is
JPR tx 2t 1
G1 : (l’,t, 'U,) = (iL‘ + ?E, m, Z_l (4U — T€ — 2Ut€)> . (51)
Using the same framework one obtains the Lie point symmetry transformations for the

corresponding symmetry generators of the Burgers’ equation (3.1) as given in Table

5.1 are
Symmetry Generators Symmetry Transformations
lot2 + 128 — Lz +2ut) 2 (z+ Ze, 525, 1 (4u — ze — 2ute))
%xa% + t% — %u% (xeé,tee, ue’é)
2 (x,t+ € u)
-2+ 2 (z — 2te, t,u+€)
2 (x +et,u)

Table 5.1: Continuous Symmetry Transformations of Burgers’ equation (3.1)

5.2 Invariantization of Crank-Nicolson Method

In this section, we show that Crank-Nicolson method is invariant under the discrete

symmetry transformation.
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5.2.1 Invariantization of Crank-Nicolson Method using Dis-
crete Symmetry Group (4

As the first discrete symmetry group (; of the Burgers’ equation is

G (8,44) — (—Lﬂx,—g —%ﬂ(x+2ut)>. (5.2)

t t’

Consider that u,; = u (nAx, jAt) with x,, = nAz and t; = jAt be the approximate
value of u(x,t) at the mesh points (z,,t;), then by using the discrete symmetry group

(1 of the Burgers’ equation, we have the following transformation

u= —%ﬁ(x + 2ut). (5.3)

So, by substituting Eq. (5.3) into the Crank-Nicolson formulae for approximating the

linear parabolic equations, we obtain

W2 W2

+2(1 —a) [_T (xn + 2un’jtj)]

(0% —T (xn—l + 2un_1,jtj)
V2 V2
+ a —’YT (g1 + 2Upp jtj) | = —a —WT (Tp—1 + 2up_1 j41tj41)
V2 V2
+2(1+a) | =15 (@0 + 2ungiatinn) | — @ | =5 (@i + 2wty |

which upon simplification reduces to

(o1 + 2up_1t;) +2(1 — @) (zy + 2up jt;) + @ (Tpt1 + 2upy1 it5)

= —a (Tp-1 + 2Un-111tj41) + 2(1 + @) (T + 2upji1tjp1) — @ (Tpg1 + 2Unpjyitjpr) -

Now considering

J=t and N =ux,.

79
The transformation Eq. (5.3) takes the form

2
Un,g = —%_ (N+2UN7JJ).
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Consequently, we have

a[(N = 1) +2up1;J] +2(1 — ) [N + 2up jJ] + @ [(N 4+ 1) + 2upyy ;J]
= —« [(N — 1) + 2Un_17j+1 (J + 1)] + 2(1 + Oé) [N + 2uw'+1 (J + 1)]
—a[(N+1)+ 2upt1 41 (J+1)],

which deduces to
aun_1,g +2(1 — @)un,y + auni1,g = —aun—1,54+1 + 2(1 + Q)un 11 + 2unt1,741,

which is again the same Crank-Nicolson method for the parabolic equations. Hence,
the Crank-Nicolson method under the transformation of a discrete symmetry group (3
is invariant. So, with the same procedure one can also show that CNM is invariant

under the transformation of the discrete symmetry groups (» and (3, respectively.

5.3 Construction of an Invariant Numerical Scheme

In this section, we construct an invariant numerical scheme for the Crank-Nicolson
method by taking the composition of continuous and discrete symmetry groups con-
verging to the exact solution of the Burgers’ equation and giving the most appropriate
results as compared to any other finite difference scheme. This construction is purely
based on the variable u of these two groups.

It is to be noted that € is a continuous parameter and for the better performance

of the numerical scheme, we are opting € to be a very small number.

5.3.1 Construction of an Invariant Numerical Scheme using
Discrete Symmetry Group (;

Burgers’ equation has a projective symmetry group as

oA tx 2t 1
(z,t,4) = (x + 565 ' (du — ze — 2ute)> , (5.4)
with
1
S = 1 (du — ze — 2ute) . (5.5)
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Furthermore, the variable u of the discrete symmetry group (; is

(1= —@(x + 2ut). (5.6)

Now the composition of projective group S; and discrete symmetry group (; is

_ v {x—i—Q G (4u—i‘e—2ufe)>t} ,

1 .
= —— (.CE + 2ut — Eite — utte) ,

where 7 and t is written for our convienence to differentiate between the continuous

_ V2w

- and

and discrete symmetry variables. So, substituting the corresponding = =

t= —% values of the discrete symmetry group (3, we obtain

1 1 1
S10¢ = —Z\/é’y (26 + Qt) U — Zﬁy (E\/ﬁf}/xe + LL‘> ’
which is further simplified to obtain the transformation u of the form

u= —%l\/ify {(26 ) u+ (% + 1) x] . (5.7)

Now re-writing the above transformation of variable u as an approximate value of

u(x,t) at the grid points (z,,t;) as

U = —i\/ﬁv [(26 4 2) U + (% + 1) xn} . (5.8)

So, using the variable u in the Crank-Nicolson method with the above transformation
implies
2v2(1 — a)y
4
Q@ e
— Z\@’y [(2€ + 2t5) Unt1,5 + xa] = Z\/i’Y [(2€ + 2tj41) Un—1,j+1 + x1]

2v/2(1 + « @
- # [(2€ + 2tj41) Up j+1 + X2] + Z\@V [(2€ + 28511) Unpr i1 + Xa)

(8]
— Z\@V [(2€ + 2t5) un—15 + x1] — [(2€ + 2t5) un,; + X2
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where

(1)
=\ —F= Tn—1,
X1 \/§ 1
ve
=(—=+1 Ly
e (ﬂ )
€
X3 = (% + 1) Tpgi-

which reduces to
e e
a (264 2t5) up—1; + 7 +1) 2| +2(1 — ) [ (26 + 2t5) upy; + 7 +1)z,
V€ V€
+o (26 + Qt]’) Un+1,5 + % +1 Tpt1| = — & (26 + Qtj_H) Up—1,5+1 + E +1 Tn-1

e e

—|—2(1 + Oé) |:(2€ + Qt]qu) Un,j+1 + (E -+ 1) .fL'n:| — |i(2€ + 2tj+1) Un+1,5+1 + (E + 1) $n+11 s

which is the acquired Modified-Crank-Nicolson method (M-CNM) corresponding to

first discrete symmetry group (.

5.3.2 Construction of an Invariant Numerical Scheme using
Discrete Symmetry Groups (; and (3

Similarly, the variable u of the discrete symmetry groups (» and (3 are
CQ = gua and C3 = AU,

where the composition of projective and discrete symmetry groups (» and (3 of variable

u as an approximate value of u(x,t) at the grid points (z,,t;) are

Upj = g ((2 — 15€) Uy j — gxne — 27’6) , (5.9)

and

2 _¢t.
Upj = (\/iA’CE ;—jA t]‘f) Upj — lan’ (510)
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respectively. Now using the variable u in the Crank-Nicolson method with the trans-

formation Eq. (5.9), we have

a—f <(2 —t5€) Up_1,j — gxnle — 27’6) + M ((2 — tj€) Uy ; — %xne — 27’6)

2
a
+ 75 <(2 — tje) un+1,j gxn+1€ - 27—€> - — 2§ ((2 — t +1€) Up— 1,j+1 — gxn_le — 27—6)
2(1 + «
+ - ( . IS ((2 — tj41€) Unj11 — xne — 2T€ ( 1j41€) Upt1 j+1 — gane — 27’6) ,

which can be written as
§ §
al (2—tje)up_1,;— S Tn-1€ = 21e | +2(1 —a) | (2 —tj€) up,; — 5 Tn€ — 27¢€

§xn_1e — 27‘6)

+ ((2 — ti€) Upt1,j — gane - 27’6) =~ ((2 — tj41€) Up—1,j41 — 5

+2(1+a) <(2 — ti41€) Up j1 — gxne — 2T€> —« ((2 — £ 41€) Unt1,j41 — ganE — 27’6) )

In similar way, one can obtain the invariant numerical scheme corresponding to Eq.

(5.10) as
1 1 1
a | Xup_1; — 1 in-1€ +2(1—a) | Xun; — 7ine + o | Xiuptr, — 7 i€

1 1 1
= — (x2un—1,j+1 — an_le) + 2(1 + Oé) (%Qun,jﬂ — anE) — (%211%4_1,]‘4_1 — Z$n+16) s

where

V2AKe +2A% — te

== 2A
X, — \/EAK:G + 2./42 - tj+1€
2 2A .

The convergence and performance of these invariant numerical schemes will be

discussed in the following chapter.
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5.4 Transformation of 1-D Burgers’ Equation to 1-
D Heat Equation

The newly constructed invariant numerical scheme for the Crank-Nicolson method is
only applicable to the linear PDEs. Since, the Burgers’ equation is a non-linear PDE.
So, for the eligibility of this method to solve the Burgers’ equation, we will transform the
1-D Burgers’ equation by using the Hopf-Cole transformation [5, 4] to a 1-D diffusion

heat equation.

For this, let us consider a transformation

u(z,t) = ¥ (x,t),

then we have

Uy = wmm
Ugpr = w$11‘7
Ut = Ygy.

Thus, Burgers’ Eq. (3.1) can be written as

Integrating w.r.t x

hi=2 {wx [ et | (% w.) [ wmdx) da:} .

After some calculus, we get the following transformation of Burgers’ equation

Now again consider the transformation

w($>t> = hl(b(:ll‘,t),
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then we obtain

1
wt Q_ZS ¢t7
1
¢ ¢ ¢£E7
PPz — P2
(S TE

Therefore, Eq. (5.11) implies,
1 )

OPuz — O3 <i52

Gr = ¢x 5

¢

transforms to 1-D diffusion heat equation

Pt = Paa- (5.12)

Now to transform the boundary conditions, we have the Hopf-Cole transformed exact

solution of the Burgers’ equation as

U= %, (5.13)
that is,
u(0,t) = % =0,
¢.(0,1) = 0. (5.14)
and
u(l,t) = % =0,
¢x(1,1) = 0. (5.15)

Likewise, for the transformation of initial condition, we have
u(z,0) = sinnz,

Pz

— =sinnz,
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deduces to

1
o(a.0) = exp (=), (5.16)
T
Hence, we have transformed the 1-D Burgers’ equation
Up = 2Uly + Uy,
with initial and boundary conditions
u(z,0) = sinmz, 0<zx<l1,
u(0,t) = u(1,t) =0, t>0.
to the 1-D heat equation
with non-homogenenous initial condition and insulated homogeneous boundary condi-
tions
1—
o(x,0) = exp (M), 0<z<l, (5.18)
T
¢:(0,t) = ¢,(1,t) =0, t>0. (5.19)

As the initial temperature is only a function of z and the end points are both insulated.
Consequently, this will also model the temperature u(x,t) within the infinite slab in
three dimensional space. That is, the temperature will quickly work out as the heat is
redistributed with the increasing ¢. In other words, the original total heat distributes

itself uniformly throughout the surface.

5.5 Exact Solution of the Burgers’ Equation

Now in this section we will use transformation (5.13) to find the exact Fourier solution

to the Burgers’ equation. In other words, ¢(z,t) is any solution of the heat equation

Eq. (5.17) with the corresponding conditions Egs. (5.18) and (5.19), then the trans-
ba(2,t)

formation ) is a solution of the Burgers Eq. (2.1) subject to the corresponding

105



conditions Egs. (2.2) and (2.3).

Consider the transformation (5.13)

_
.

Now using the method of separation of variables. Suppose,

u

olz,t) = X(2)T(1).

So, Eq. (5.17) implies

0? 0
922 (XT) = En (XT),
we obtain
LdX 14T
X de2 T dt’
that is,

LEX _1dT
Xde2 Tdt
Consequently, Eq. (5.24) can be written as
LEX

X de?2 ’

which leads to the second ODE

It has a general solution
X(z) = dy cos(Ax) + da sin(Az).

Since,

0X

8—(1:) = —Ad; sin(Az) + Ad; cos(Az),
T
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For x = 0, we have dy = 0, So, Eq. (5.27) implies

X(x) = dy cos(Az), (5.29)
that is,
0X .
%(a:) = —d; sin(Az). (5.30)

Now for x = 1, we have the infinite sequence of the eigenvalues and corresponding

eigenfunctions

—dy sin(\) =0,

Ap=nm, n=1273 -,

as d; # 0 and A # 0.

Therefore, Eq. (5.29) yields

Xn(x) =dycos(nmx), n=1,2,3,---. (5.31)

Similarly, Eq. (5.24) also implies

T.(t) = cexp (—n*7%t), n=1,2,3,---. (5.32)

Upon substitution of Eq. (5.31) and Eq. (5.32) in Eq. (5.21) we have the product
function satisfying the homogenous conditions are

On(x,t) = dy cos(nmz)cexp (—n’m’t),

=d, exp (—n27r2t) cos(nmz), n=1,2,3,---, (5.33)

as dic = Q,,.
Now using the principle of superposition Eq. (5.33) takes the form

On(x,t) = Z Q, exp (—n’7’t) cos(nmx). (5.34)
n=1
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For t =0, Eq. (5.34) can be written as

On(z,0) = Z Q,, cos (nmx)

exp (%W) = Z Q,, cos (nmx) .
n=1

Multiplying by cos(mmx) on both sides

exp (1_+S<mj)) cos(mmx) = Z Q,, cos (nmx) cos(mmx),
n=1

Integrating w.r.t x

/01 P (LS(MJ)> cos(mmz)dr = / Z Q,, cos (nrz) cos(mmz)dz,

T
= —ZQn/ 2 cos (nmz) cos(mmx)dx,
deduces to
! 1 — cos(mx) 1 & sin(n +m)rz  sin(n —m)mx
[rom (5 ot = 30 (S0 - #00)

Now for m = n, one obtains

1 1_
/ exp (M) cos(mrx)dr =0, m=1,2,3,---.
0

1

0

™

Likewise, for m # n, we have

1 _ 1
/0 exXp (—1 C;S(Wx>> COS mﬂx Z Qn < SIHQQT:ZT:E)> .

)

Thus,
00 1 1—
Z Q= 2/ exp <M> cos(mmx)dr, m=1,23,---. (5.35)
n=1 0 g
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By using Eq. (5.35) in Eq. (5.34) yields

(1) = i (2 /O 1 exp (M) Cos(mrx)dm) exp (—n’7’t) cos(nmx).

v
n=1

Therefore, the trail solution reduces to the Fourier cosine series to

o(z,t) = qo + Z qn exp (—n’m’t) cos(nrz), (5.36)
n=1
with
1 1_
qo = / exp <M> dx, (5.37)
0 T
and
1 1_
On = 2/ exp (M) cos(nrz)dr, n=1,2,3,---, (5.38)
0 T

where qo and {q,,} are the coefficients of Fourier cosine series of the initial temperature

function.

Hence, the exact Fourier solution to the Burgers’ equation using the Hopf-Cole trans-
formation (5.20) is given by

> oo g exp (—n*m?t) nsin(nrr)

Qo + Yoy dn exp (—n272t) cos(nmz)’ (5.39)

uw(z,t) = —7

where q¢ and ¢, are defined by Eqgs. (5.37) and (5.38), respectively.
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Chapter 6

Stability and Numerical Analysis of
an Invariant Numerical Scheme

This chapter deals with the stability and computational analysis of the Burgers’ equa-
tion. The stability investigation of the newly constructed invariant numerical scheme
(M-CNM) in Chapter 5 has been established by means of Von Neumann stability anal-
ysis and Lax convergence theorem, which shows that the invariant numerical scheme
(M-CNM) corresponding to second discrete symmetry (, of the Burgers’ equation is
consistent with the diffusion heat equation, thereby ensuring that the numerical is
absolutely convergent to the exact solution of the Burgers’ equation. Note that the
stability analysis has been done only for the second discrete symmetry (,. However,
one can also check the convergence of the remaining numerical schemes following the

similar strategy.

The computation results of Burgers’ equation are obtained by virtue of FTCS,
CNM and M-CNM. For all methods, tables and figures are used to display the results.
Moreover, the comparison of all three methods was also discussed to obtain a verdict
that which among these three methods has faster convergence rate and error reduction

in terms of time and step size, N respectively.

Exact solution of the Burgers’ equation, FTCS, CNM and M-CNM are all coded in
MATLAB.
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6.1 Core Theory for Convergence of a Numerical
Scheme

In order to discuss the convergence of any numerical scheme, we require three notions

to address [37].

6.1.1 Local Truncation Error

Local truncation error is a basic way of providing the comparison between local accu-
racies of different numerical schemes. It can be define as "the difference between the
finite difference approximation at (n,j)th grid point in space and time and its exact
differential equation. For instance, an exact solution U satisfying the partial differen-
tial equation say R (i) and a numerical approximation u staisfying the equation R(u)

then the local truncation error at the (n,j)th mesh point is T, ; = R, ; (U).

6.1.2 Consistency

The concept of consistency can be regarded as the representation of a partial differential
equation by the finite difference approximation. As the grids of space and time are
rectified of errors the finite difference equation converges to the original equation,
thereby proving the consistency of a finite difference equation with differential equation.
Thus, we conclude that the numerical scheme is consistent as the grids of space and

time are rectified then the truncation error 7,, ; — 0.

6.1.3 Stability

Stability of any numerical scheme deals with the propagation of numerical error be-
tween the exact solution of the approximating equations to the solution of a differential
equation. Any numerical scheme is stable, If the error remains constant or decreases
as the approximation in time and space goes on. On the other hand, if error grows
with time, the scheme is said to be unstable.

This concludes the convergence of any numerical scheme as At — 0 and Az — 0

while keeping z,, and ¢; constant, the computed solution w,, ; of the discretized equation
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at any point z, = nAx and t; = jAt converges to the exact solution U, ; of the

differential equation with the error given as
gn,j = Un,j — un,j7 (61)
satisfying the following convergence theorem [37]

lim |&, ;| — 0 at constant z,, = nAz and t; = jAt. (6.2)
Ax,At—0

Theorem 6.1.1 (Lax Theorem). If a numerical scheme corresponds to the partial
differential equation, then for the convergence, stability is the necessary and sufficient

condition subject to an appropriate initial and boundary conditions, that is

Consistency + Stability <+ Convergence.

6.2 Convergence of an Invaraint Numerical Scheme
using Discrete Symmetry Group (,

This section deals with the convergence of a Modified-Crank-Nicolson method obtained
by using second discrete symmetry (5. First, we will discuss the stability of concerned
numerical scheme. Since, there are numerous techniques to discuss the stability analysis
of a finite difference scheme. In this academic thesis, we will discuss one of them, which
is the most commonly used method is Von Neumann stability analysis. Consider the

following theorems [38, 37] for the main idea of this analysis.

Theorem 6.2.1. Let u € Ly € [—7,m| be the function of discrete Fourier transform of

u € ly. Then forV € [—m, x|, we have

o0

. 1 o
u(V):E D ey, (6.3)

n=—0oo

and the inverse transformation

1 ﬂ—_v
= —— Wi (V) dy, 6.4
2 m/e i(V) (6.4)



with the Parselval’s relation ||4]|2=||ul|2 as

[dni1ll2< o (V) o[- (6.5)
Then in the transformed Loy space the finite difference scheme will be stable iff
p(V) <1, (6.6)
where p (V) is the amplification factor.

Theorem 6.2.2. For the operator g : ls — Lo the discrete Fourier transform in [—m, ]

s given by

1 - -y
g(u) = Nr Z e "y, (6.7)

n=—oo

Theorem 6.2.3. Let S+ u = {v;} be the shift operator with v; = vjy for j =

0,41,---. Then the discrete Fourier transform (6.7) takes the form
9 (S +u) =eg(u), (6.8)
=V (V). (6.9)

6.2.1 Von Neumann Stability Analysis

In order to apply the Von Neumann stability analysis, consider M-CNM corresponding

to second discrete symmetry (o
§ §
« (2 — tjﬁ) Un—1,5 — 55[,'”,16 —27¢ | + 2(1 — CK) (2 — tjE) Un,j — 537716 — 27T€
§ _ §
+ « (2 — tjE) Un+1,5 — §In+1€ — 21 | = — (2 — thrlE) Un—1,j+1 — 533'”,16 — 27T€

+2(1+4 «) <(2 — 1j41€) Up j41 — gxne — 27’(—:> —« ((2 — t41€) Upy1 541 — gxnﬂe — 2T€
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which can be simplified to

(2 —tje) (aup_1;+2(1 — ) up; + Ups1j) +2(1 — @) (—%xne — 27‘6)

-« <g (Tpo1 + Tpg1) €+ 47‘6)

= (2 —tjr1€) (o141 + 2 (1 — @) Up jy1 — QU171 5+1) + 2(1 4+ @) <—gxne — 27’6)

—« (g (Tp—1+ Tpy1) €+ 47’6) : (6.10)

Since, we have

Tpo1+ Ty = (n—1)Az + (n+ 1)Ax,
= 2nAz.

Therefore, Eq. (6.10) implies

(2 —tje) (qup—1, +2 (1 — @) upj + Qtiny1j) — nAxke — 4te

= (2 —tj116) (—aup_1j+1 +2(1 — @) Up j41 — QUpt1 j41) — nAxEe — 4Te€.
Applying the Von Neumann analysis, we have

(2 — tje) [ae™i; + 2(1 — a)u; + reVay]

= (2 —tjpe) [—Oée_bvﬁjﬂ +2(1+a)t — Oéebvﬁjﬂ} )

(2 —tje) [a(cosV —tsinV) + 2 — 2a+ acos V + ¢sin V)] 4,

= (2 —tjp1€) [—a(cosV +sinV) + 2 + 2o — a(cos V + ¢sin V)] 441,

which deduces to

R 2—2a+ acosV 2—tie \ .
1 = ( > ( ] )uj. (6.11)

24+2a—acosV ) \2—tjne€
After some calculus, Eq. (6.11) takes the form

. 1 —4asin® ¥ 2—tje \ .
Ujy1 = ) 2 J Uy,
1+ 4asin % 2 —tjn€

—p(V) . (6.12)
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Thus, the amplification factor is

1 —4asin® ¥ 2 —tie
V) = 2 J . 6.13
pV) (1+4asin2g) (Q—tj+1e) ( )

Since, we know that a solution is stable iff |p (V)| < 1. Therefore, Eq. (6.13) implies

1 — 4o sin?
S ThdasmZy S (6.14)

ISIAM[ A

Hence, this proves that the invariant numerical scheme which is the Modified-Crank-
Nicolson method corresponding to second discrete symmetry group (s is stable for all

values of «.

6.2.2 Local Truncation Error

The compact form of an invariant numerical scheme Eq. (4.7) is

(Aun]H gcpne - 27’6) (Bu,w» - %xne — 27’6)

_ 6.15
and
o [(Btngry = Xiy) = 2(Bunj — Xiy) + (Bn-15 — Xiy)]
m 2(Ax)?
n [(Atpi1j01 — Xiy) = 2 (Atp i — Xiy) + (Atngr g — Xogr — Xiy)] (6.16)
2(Ax)? T
where
= (2 _tj+1€)
= (2 —tje),
Xy, = g:vke+276 ki=n—1,nn+1 for 1=1,2,3.
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Now, expanding u by Taylor expansion of two variables

(Ax)? (Ax)® (Ax)*
Un41,j = Un,j + Axua: + Tux;r + 6 Ugzr + 24 Ugggr T 77
At)? At)3 At)!
Upjr1 = Unj + Atug + ( 2) U + ( 6) Uttt + ( 24) Uge + 7+
Azx)? At)? Az)?
Un+1,j+1 = Unj + AZEU@ + Atut + ( 5) Uy + ( 2) Ut + AZL’AI{?UM + %Umzfc
At)3 Ax)?At Ax(At)? Ax)? At)?
+ ( 6) U + %umxt (2 ) Uzt + ( 24) Uzgez + %utttt
(Ax)?(At)? (Ax)3At Ax(At)?
F Ut T Uggat + ———— Ut + -
4 6 6
and
Azx)? At)? Az)3
Up—1,j+1 = Un,j — AQT'LLI + Atut + ( ;) Uy + ( 2> U — AxAkuxt - %uaxz}x
At)3 Az)2At Az (At)? Az)? At)?
+ ( 6) Ut + %uxxt — (2 ) Uzt + ( 24) Ugzzr %Utttt
Az)?(At)? Az)2At Az (At)3
T G N G e S G
4 6 6
Since, the residue of heat equation u; = u,, is
R”:j (U) = Ut — Ugg- (617)
Substituting Eqgs. (6.15) and (6.16) in Eq. (6.17), we have
R, () (AuwH — %xne - 27’6) — (Buw- — gmn_le — 27’6)
n,J At
_ [(Bupsy — Xiy) = 2(Bup — Xiy) + (Bun-1,; — Xi,)]
2(Az)?
[(Aups1g41 — Xiy) = 2 (Atn1 — Xiy) + (At — X — X))

+

2(Ax)? ’
By substituting the corresponding values of w415, Un j+1, Unt1j+1 and u,—q j+1, the

above equation can be written as

B BAt B(At)? B(Ax)?
Tn,j = Z (ut - uzz) + ﬁ (utt - uzxt) + %uttt - 52—?7%61&'1:
+0 (A1) + O ((Ax)?), (6.18)
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where the principal part is

B(At)?

B(Ax)?

6—Auttt -

That is,
T,, =

B(At)?

J 6A

if Az — 0 and At — 0.

Hence, the invariant numerical scheme (4.7) is consistent with the partial differential
equation. Moreover, it is also stable. Therefore, by Lax theorem it implies that the
invariant numerical scheme is convergent. Likewise, one can also show that the nu-
merical scheme corresponding to discrete symmetry groups (; and (3 are neither stable

nor consistent with the partial differential equation, thereby does not converge to the

exact solution of the Burgers’ equation.
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6.3 Numerical Analysis

In this section, the computational results of Burgers’ equation by using Explicit Fi-

nite Difference Method (FTCS), Crank-Nicolson Method (CNM) and Modified-Crank-
Nicolson Method (M-CNM) are presented. For all the methods tables and figures are

used to show the obtained results.

6.3.1 Burgers’ Equation Computation using Explicit Finite

Difference Method (FTCS)

The numerical computation of Burgers’ equation through a Hopf-Cole transformation

by using explicit finite difference method (FTCS) are presented in Table 6.1, 6.2, 6.3

and Figure 6.1, 6.2, 6.3 respectively.

Numerical Solution

Exact Solution

N =10 N =20 N =40 N =380
0.1 0.124116518 0.125486314 0.125829775 0.125915700 0.125949755
0.2 0.232616063 0.234985427 0.235578534 0.235726852 0.235786641
0.3 0.313015514 0.315814130 0.316512951 0.316687598 0.316760166
0.4 0.357912510 0.360596054 0.361264136 0.361430977 0.361503607
0.5 0.365285616 0.367493013 0.368040774 0.368177459 0.368241064
0.6 0.337524500 0.339118106 0.339512244 0.339610515 0.339660562
0.7 0.279949000 0.280965179 0.281215677 0.281278083 0.281313681
0.8 0.199452686 0.200015973 0.200154394 0.200188853 0.200211135
0.9 0.103571779 0.103813384 0.103872608 0.103887342 0.103897943

Table 6.1: Comparison of explicit finite difference (FTCS) solutions with exact solution
of Burgers’ equation at different step size, N

Table 6.1 reflects the discrete values of exact and explicit finite difference solutions

of the Burgers’ equation for ¢ = 0.1 with At = 0.00001 at various times. Table 6.1

then being illustrated into Figure 6.1 for all the values of a numerical simulation.
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Figure 6.1: Burgers’ equation solutions at different step sizes, N for t = 0.1 with
At = 0.00001 using explicit finite difference (FTCS)

From the Figure 6.1, it is clearly observed that the explicit finite difference (FTCS)
solutions get nearer to the exact solution as the number of step size, N increases. The
numerical values obtained by using the FTCS with different step size appears to have
been imbricated and onerous to note from the plots because of the closeness of the
computed solutions with the exact solution. However, the sole recognizable difference
between the computed solutions and exact solution is when N = 10. This additionally

demonstrate the less accuracy of computed solutions contrasted with the exact solution.
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Absolute Error

’ N =10 N =20 N =40 N =380

0.1 0.001833237 0.463441E-03 0.119980E-03 0.34055E-04
0.2 0.003170578 0.801214E-03 0.208108E-03 0.59789E-04
0.3 0.003744652 0.946035E-03 0.247214E-03 0.72567E-04
0.4 0.003591097 0.907553E-03 0.239471E-03 0.72630E-04
0.5 0.002955448 0.748051E-03 0.200290E-03 0.63606E-04
0.6 0.002136062 0.542456E-03 0.148318E-03 0.50047E-04
0.7 0.001364681 0.348502E-03 0.098005E-03 0.35598E-04
0.8 0.000758449 0.195162E-03 0.056741E-03 0.22282E-04
0.9 0.000326164 0.084559E-03 0.025336E-03 0.10601E-04

Table 6.2: Absolute error differences of explicit finite difference (FTCS) solutions with
exact solution of Burgers’ equation at different step size, N

Table 6.1 demonstrates the absolute error difference of exact solution and the ap-
proximation of FTCS of the Burgers’ equation presented in Table 6.1. It is clear from
the Table 6.2 that error is gradually decreasing and slowly approaching zero as the

number of step size, IV increases as shown in Figure 6.2.
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Figure 6.2: Relative error difference of explicit finite difference (FTCS) solutions and
exact solution of Burgers’ equation for t = 0.1 with At = 0.00001 at different step size

Numerical Solution

’ t=0.1 t=02 t=04 t=0.6 t=0.8

0.1 0.125915700 0.044186236 0.005923086 0.000818905 0.113683E-03
0.2 0.235726852 0.083517712 0.011256632 0.001557463 0.216234E-03
0.3 0.316687598 0.113835409 0.015472577 0.002143264 0.297613E-03
0.4 0.361430977 0.132203343 0.018158317 0.002518966 0.349854E-03
0.5 0.368177459 0.137168587 0.019057027 0.002647908 0.367845E-03
0.6 0.339610515 0.128752859 0.018090429 0.002517655 0.349829E-03
0.7 0.281278083 0.108249805 0.015362731 0.002141142 0.297572E-03
0.8 0.200188853 0.077928886 0.011146785 0.001555341 0.216193E-03
0.9 0.103887342 0.040730539 0.005855196 0.000817594 0.113658E-03

Table 6.3: Explicit finite difference (FTCS) solutions of Burgers’ equation for different
time, t with space step size of N=80

Table 6.3 displays the discrete computation of Burgers’ equation solutions at dif-
ferent time, t = 0.1, t = 0.2, t = 0.4, t = 0.6 and t = 0.8 with the time step size of
At = 0.00001. All the obtained values of the numerical scheme are shown in the figure.
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Figure 6.3: Explicit finite difference (FTCS) solutions of Burgers’ equation for different
time, t

Figure 6.3 indicates that even though, the value of the Burgers’ equation solution

decreases as the time expands, the shape is yet held as a curve shape.

It has been evidently noted that the numerical solutions obtained through explicit
finite difference method (FTCS) are passably encompass agreement with the exact so-
lution. This additionally means that the computed results obtained through explicit
difference approximation (FTCS) have high precision if apply the higher number of step
size with condition in the scope of time step fulfill the Von Neumann stability, which
can be obtained as At < 3 (Az)? [37]. Hence, this method can be used to approximate

the Burgers’ equation solution.

6.3.2 Burgers’ Equation Computation using Crank-Nicolson
Method (CNM)

In this section, the computation of Hopf-Cole transformed Burgers’ equation by using
Crank-Nicolson method are presented in Table 6.4, 6.5, 6.6 and Figure 6.4, 6.5, 6.6

respectively.
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- Numerical Solution Exact Solution
N =10 N =20 N =40 N =80
0.1 0.124121709 0.125491666 0.125835169 0.125921105 0.125949755
0.2 0.232626020 0.234995674 0.235588855 0.235737192 0.235786641
0.3 0.313029387 0.315828364 0.316527277 0.316701947 0.316760166
0.4 0.357929046 0.360612961 0.361281137 0.361448001 0.361503607
0.5 0.365303242 0.367510969 0.368058813 0.368195518 0.368241064
0.6 0.337541466 0.339135332 0.339529536 0.339627823 0.339660562
0.7 0.279963572 0.280979934 0.281230476 0.281292894 0.281313681
0.8 0.199463347 0.200026745 0.200165193 0.200199659 0.200211135
0.9 0.103577408 0.103819064 0.103878300 0.103893037 0.103897943

Table 6.4: Comparison of Crank-Nicolson method (CNM) solutions with the exact so-
lution of Burgers’ equation at different step size, N

Table 6.4 shows the Crank-Nicolson method (CNM) method solutions and exact
solution of the Burgers’ equation for time, t = 0.1 with time step size of At = 0.00001.
The following Figure 6.4 is based on Table 6.4 for all the points of x.
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Figure 6.4: Burgers’ equation solutions at different step size, N for t = 0.1 with
At = 0.00001 using Crank-Nicolson method (CNM)
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Figure 6.4 has a similar shape to Figure 6.1. This is due to the results obtained
by using Crank-Nicolson method (CNM) are inadequately close to exact solution of
the Burgers’ equation and consequently, reducing the transparency among the curves
particularly for N = 10. Nevertheless, this also suggest that the obtained solutions for

N = 10 are much less accurate as compared to different step size.

. Absolute Error
N =10 N =20 N =40 N =380

0.1 0.001828046 0.458089E-03 0.114586E-03 0.28650E-04
0.2 0.003160621 0.790968E-03 0.197787E-03 0.49449E-04
0.3 0.003730778 0.931801E-03 0.232888E-03 0.58218E-04
0.4 0.003574561 0.890646E-03 0.222470E-03 0.55606E-04
0.5 0.002937822 0.730095E-03 0.182251E-03 0.45546E-04
0.6 0.002119096 0.525230E-03 0.131026E-03 0.32739E-04
0.7 0.001350109 0.333748E-03 0.083205E-03 0.20787E-04
0.8 0.000747787 0.184389E-03 0.045942E-03 0.11476E-04
0.9 0.000320535 0.078879E-03 0.019644E-03 0.04906E-04

Table 6.5: Absolute error differences of Crank-Nicolson method (CNM) solutions with
the exact solution of Burgers’ equation at different step size, N

Table 6.5 displays the absolute error difference between Crank-Nicolson method
(CNM) solutions and the exact solution of Burgers’ equation for time, ¢ = 0.1 with a
time step size of At = 0.00001. One can see that the error is decreasing significantly
and quickly approaching zero with each increment of a step size. Therefore, one can
deduce that the veracity of a computed solutions pivots upon the step size. The higher
the step size, the more minute the value of absolute difference between the computed

solutions and exact solution as shown in the Figure 6.5.
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Figure 6.5: Relative error difference of Crank-Nicolson method solutions and exact
solution of Burgers’ equation for t = 0.1 with At = 0.00001 at different step size, N

Numerical Solution

v t=01 t=02 i=04 | =06 t=08

0.1 0.125921105 0.044190673 0.005924246 0.000819144 0.113727E-03
0.2 0.235737192 0.083526060 0.011258836 0.001557918 0.216319E-03
0.3 0.316701947 0.113846705 0.015475602 0.002143891 0.297729E-03
0.4 0.361448001 0.132216346 0.018161861 0.002519702 0.349990E-03
0.5 0.368195518 0.137181948 0.019060739 0.002648682 0.367988E-03
0.6 0.339627823 0.128765283 0.018093946 0.002518390 0.349965E-03
0.7 0.281292894 0.108260163 0.015365713 0.002141768 0.297688E-03
0.8 0.200199659 0.077936295 0.011148946 0.001555796 0.216278E-03
0.9 0.103893037 0.040734395 0.005856330 0.000817832 0.113702E-03

Table 6.6: Crank-Nicolson method (CNM) solutions of Burgers’ equation for different
time, t with space step size of N=80

Table 6.6 exhibits the simulacrum results of Crank-Nicolson method (CNM) vac-
illates in time notably ¢ = 0.1, ¢t = 0.2, ¢t = 0.4, t = 0.6 and t = 0.8. It is to be
noted that the obtained solutions of the Burgers’ equation are shrinking and gradually

approaching zero with time as follows in Figure 6.6.
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Figure 6.6: Crank-Nicolson method (CNM) solutions of Burgers’ equation for different
time, t

The Crank-Nicolson method (CNM) is known to be efficient in using to approximate
Burgers’ equation solutions according to the numbers and graphs scrutinized for this
method. The explanation is that the simulated solutions are reminiscent of the exact

solution.
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6.3.3 Burgers’ Equation Computation using Modified-Crank-
Nicolson Method (M-CNM)

This section deals with the numerical computation of Burgers’ equation by means of
Hopf-Cole transformation using Modified-Crank-Nicolson method (M-CNM) through
second discrete symmetry (» which are presented in Table 6.7, 6.8, 6.9 and Figure 6.7,
6.8, 6.9 respectively.

- Numerical Solution Exact Solution
N =10 N =20 N =40 N =80
0.1 0.124125305 0.125499708 0.125845588 0.125932744 0.125949755
0.2 0.232642366 0.235015589 0.235610615 0.235759881 0.235786641
0.3 0.313055072 0.315856751 0.316557007 0.316732333 0.316760166
0.4 0.357960001 0.360645852 0.361314942 0.361482232 0.361503607
0.5 0.365335452 0.367544519 0.368092950 0.368229900 0.368241064
0.6 0.337571430 0.339166241 0.339560806 0.339659209 0.339660562
0.7 0.279988479 0.281005581 0.281256351 0.281318797 0.281313681
0.8 0.199481036 0.200045127 0.200183739 0.200218176 0.200211135
0.9 0.103586233 0.103828653 0.103888035 0.103902704 0.103897943

Table 6.7: Comparison of Modified-Crank-Nicolson method (M-CNM) solutions with
the exact solution of Burgers’ equation at different step size, N

Table 6.7 displays the discrete results obtained by using Modified-Crank-Nicolson
method (M-CNM) with e = 107", 7 = 1, £ = 1 for time, ¢ = 0.1 with the time step,
At = 0.00001. The main reason for choosing such values for €, 7 and £ is that these are
the ideal values for this method to be highly accurate with an adherent convergence
rate. Table 6.7 then being illustrated into Figure 6.7 for all values of x. Note that the

value of € must be smaller as this method fails for any ¢ < 1077.
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Figure 6.7: Burgers’ equation solutions at different step size, N for t = 0.1 with
At = 0.00001 using Modified-Crank-Nicolson method (M-CNM)

It is prominent from the Figure 6.7 that the numerical results are conceivably in

good congruity with the exact solution of the Burgers’ equation. As one can see that the

visibility of the curves between the computed and exact solution for N = 10 has been

slowly diminished. However, the solutions obtained by using M-CNM with different

step size expounds to have been completely cohered and the graphs are convolutedly

distinguishable.
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Absolute Error

v N =10 N =20 N — 40 N = 80

0.1 0.001824450 0.450047E-03 0.104167E-03 0.17011E-04
0.2 0.003144275 0.771052E-03 0.176026E-03 0.26760E-04
0.3 0.003705094 0.903415E-03 0.203159E-03 0.27833E-04
0.4 0.003543606 0.857755E-03 0.188665E-03 0.21375E-04
0.5 0.002905612 0.696545E-03 0.148114E-03 0.11164E-04
0.6 0.002089132 0.494321E-03 0.099756E-03 0.01353E-04
0.7 0.001325202 0.308100E-03 0.057330E-03 0.05116E-04
0.8 0.000730099 0.166008E-03 0.027396E-03 0.07041E-04
0.9 0.000311710 0.069290E-03 0.009908E-03 0.04761E-04

Table 6.8: Absolute error differences of Modified-Crank-Nicolson method (M-CNM)
solutions with the exact solution of Burgers’ equation at different step size, N

Table 6.8 can be inquired from Table 6.7 which shows that the absolute error
difference between the computed solutions using Modified-Crank-Nicolson method (M-
CNM) and exact solution for time, ¢ = 0.1 with a step size of time, At = 0.00001 has

been truncated conspicuously as adorned into Figure 6.8.
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Numerical Solution

’ t=0.1 t=02 t=04 t=06 t=08

0.1 0.125932744 0.044199367 0.005927927 0.000821367 0.115635E-03
0.2 0.235759881 0.083543494 0.011266837 0.001563145 0.220946E-03
0.3 0.316732333 0.113870667 0.015486850 0.002151325 0.304337E-03
0.4 0.361482232 0.132244163 0.018175152 0.002528520 0.357836E-03
0.5 0.368229900 0.137210789 0.019074788 0.002658041 0.376325E-03
0.6 0.339659209 0.128792410 0.018107447 0.002527443 0.358044E-03
0.7 0.281318797 0.108283119 0.015377393 0.002149672 0.304764E-03
0.8 0.200218176 0.077952997 0.011157617 0.001561727 0.221606E-03
0.9 0.103902704 0.040743183 0.005860932 0.000820992 0.116544E-03

Table 6.9: Modified-Crank-Nicolson method (M-CNM) solutions of Burgers’ equation
for different time, t with space step size of N=80

Table 6.9 exhibits the obtained solutions for Burgers’ equation by using Modified-
Crank-Nicolson method (M-CNM) with e = 1077, 7 = 1, £ = 1 at different times with
a step size of At = 0.00001. It is clearly observed that the numerical solutions reflect
the accurate physical behavior of a problem with more sophisticated convergence rate

as follows in the Figure 6.9.
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Figure 6.9: Modified-Crank-Nicolson method (M-CNM) solutions of Burgers’ equation
for different time, t

o
o

In the Figure 6.9, one can see that the corresponding curve for N = 80, which was

initially held as an arch shaped in the aforementioned methods appears to have been
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flattened, thereby elucidating the precision of the convergence rate of Modified-Crank-
Nicolson method (M-CNM).

However, the solutions of Modified-Crank-Nicolson method (M-CNM) obtained through
first and third discrete symmetries of the Burgers’ equation are scattered everywhere
and diverging completely from the exact solution of the Burgers’ equation as shown in

the Figure 6.10.
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Figure 6.10: Modified-Crank-Nicolson method (M-CNM) solutions corresponding to
first and second discrete symmetries with exact solution of the Burgers’ equation for
t = 0.1 with At = 0.00001 at different step size, N

This also proves a notion that though any differential equation will yield many
discrete symmetries, but this does not guarantee that all those discrete symmetries
will approximate the exact solution of that differential equation. However, one thing is
clear that in all the obtained discrete symmetries, at least one discrete symmetry will

approximate the exact solution of the corresponding differential equation.
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6.3.4 Comparison of Transformed Burgers’ Equation For FTCS,
CNM and M-CNM

In this thesis, Burgers’ equation has been transformed to diffusion heat equation by
using the Hopf-Cole transformation as appeared in Chapter 4. Here, FTCS, CNM and
M-CNM were picked to fathom the transformed Burgers’ equation. The computed
results then can be transformed back to yield a solution of Burgers’ equation. To
determine the precision and convergence rate of the methods used, a comparison is
presented in Table 6.10, 6.11 with the corresponding absolute error difference in Table
6.12, 6.13.

Numerical Solution
T FTCS CNM FTCS CNM FTCS CNM Exact Solution
N =20 N =40 N =80
0.1 0.125486314 0.125491666 0.125829775 0.125835169 0.125915700 0.125921105 0.125949755
0.2 0.234985427 0.234995674 0.235578534 0.235588855 0.235726852 0.235737192 0.235786641
0.3 0.315814130 0.315828364 0.316512951 0.316527277 0.316687598 0.316701947 0.316760166
0.4 0.360596054 0.360612961 0.361264136 0.361281137 0.361430977 0.361448001 0.361503607
0.5 0.367493013 0.367510969 0.368040774 0.368058813 0.368177459 0.368195518 0.368241064
0.6 0.339118106 0.339135332 0.339512244 0.339529536 0.339610515 0.339627823 0.339660562
0.7 0.280965179 0.280979934 0.281215677 0.281230476 0.281278083 0.281292894 0.281313681
0.8 0.200015973 0.200026745 0.200154394 0.200165193 0.200188853 0.200199659 0.200211135
0.9 0.103813384 0.103819064 0.103872608 0.103878300 0.103887342 0.103893037 0.103897943

Table 6.10: Comparison of FTCS and CNM solutions with the exact solution of the
Burgers’ Equation at different step size, N

Table 6.10 shows the computation simulation of the Burgers’ equation by using
both FTCS and CN methods with the increments of step size, N at time, t = 0.1 with
a time step size of, At = 0.00001. One can clearly observe that the convergence rate

of CNM is faster than FTCS as the step size, N increases.
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Absolute Error

T FTCS CNM FTCS CNM FTCS CNM

N =20 N =40 N =80

0.1 0.463441E-03 0.458089E-03 0.119980E-03 0.114586E-03 0.34055E-04 0.28650E-04
0.2 0.801214E-03 0.790968E-03 0.208108E-03 0.197787E-03 0.59789E-04 0.49449E-04
0.3 0.946035E-03 0.931801E-03 0.247214E-03 0.232888E-03 0.72567E-04 0.58218E-04
0.4 0.907553E-03 0.890646E-03 0.239471E-03 0.222470E-03 0.72630E-04 0.55606E-04
0.5 0.748051E-03 0.730095E-03 0.200290E-03 0.182251E-03 0.63606E-04 0.45546E-04
0.6 0.542456E-03 0.525230E-03 0.148318E-03 0.131026E-03 0.50047E-04 0.32739E-04
0.7 0.348502E-03 0.333748E-03 0.098005E-03 0.083205E-03 0.35598E-04 0.20787E-04
0.8 0.195162E-03 0.184389E-03 0.056741E-03 0.045942E-03 0.22282E-04 0.11476E-04
0.9 0.084559E-03 0.078879E-03 0.025336E-03 0.019644E-03 0.10601E-04 0.04906E-04

Table 6.11: Comparison of Absolute error difference of FTCS and CNM solutions with
the exact solution of the Burgers’ Equation at different step size, N

Table 6.11 reflects the absolute error difference of both FTCS and CNM computed
solutions with the exact solution based on Table 6.10. As it is clearly evident from
Table 6.11 that for N = 20, the error difference of CNM is smaller in contrast to FTCS.
However, for N = 40, and N = 80, the error difference has been auxiliary truncated to

a lesser degree due to the increase in step size, N.

Numerical Solution
T CNM ‘ M-CNM CNM ‘ M-CNM CNM M-CNM Exact Solution
N =20 N =40 N =80
0.1 0.125491666 0.125499708 0.125835169 0.125845588 0.125921105 0.125932744 0.125949755
0.2 0.234995674 0.235015589 0.235588855 0.235610615 0.235737192 0.235759881 0.235786641
0.3 0.315828364 0.315856751 0.316527277 0.316557007 0.316701947 0.316732333 0.316760166
0.4 0.360612961 0.360645852 0.361281137 0.361314942 0.361448001 0.361482232 0.361503607
0.5 0.367510969 0.367544519 0.368058813 0.368092950 0.368195518 0.368229900 0.368241064
0.6 0.339135332 0.339166241 0.339529536 0.339560806 0.339627823 0.339659209 0.339660562
0.7 0.280979934 0.281005581 0.281230476 0.281256351 0.281292894 0.281318797 0.281313681
0.8 0.200026745 0.200045127 0.200165193 0.200183739 0.200199659 0.200218176 0.200211135
0.9 0.103819064 0.103828653 0.103878300 0.103888035 0.103893037 0.103902704 0.103897943

Table 6.12: Comparison of CNM and M-CNM solutions with the exact solution of the
Burgers’ Equation at different step size, N

Table 6.12 promulgates the CNM and M-CNM solutions with the exact solution of
the Burgers’ equation for time, ¢ = 0.1 with step size of time, At = 0.00001 at different

step size, N. It can be seen that the computational simulations of M-CNM is eclipsing

CNM as the grids are refined.

133



Absolute Error

T CNM M-CNM CNM M-CNM CNM M-CNM
N =20 N =40 N =80

0.1 0.458089E-03 0.450047E-03 0.114586E-03 0.104167E-03 0.28650E-04 0.17011E-04
0.2 0.790968E-03 0.771052E-03 0.197787E-03 0.176026E-03 0.49449E-04 0.26760E-04
0.3 0.931801E-03 0.903415E-03 0.232888E-03 0.203159E-03 0.58218E-04 0.27833E-04
0.4 0.890646E-03 0.857755E-03 0.222470E-03 0.188665E-03 0.55606E-04 0.21375E-04
0.5 0.730095E-03 0.696545E-03 0.182251E-03 0.148114E-03 0.45546E-04 0.11164E-04
0.6 0.525230E-03 0.494321E-03 0.131026E-03 0.099756E-03 0.32739E-04 0.01353E-04
0.7 0.333748E-03 0.308100E-03 0.083205E-03 0.057330E-03 0.20787E-04 0.05116E-04
08 0.184389E-03 0.166008E-03 0.045942E-03 0.027396E-03 0.11476E-04 0.07041E-04
0.9 0.078879E-03 0.069290E-03 0.019644E-03 0.009908E-03 0.04906E-04 0.04761E-04

Table 6.13: Comparison of Absolute error difference of CNM and M-CNM solutions
with the exact solution of the Burgers’ Equation at different step size, N

Table 6.13 is based on Table 6.12 which displays the error difference of CNM and
M-CNM solutions with the exact Burgers’ equation. It is clearly observed that both
numerical methods are reasonably in good agreement with the exact solution as the
error has been reduced significantly with each increment of a step size, N. Moreover,

M-CNM behaves more refined and swiftly approaching zero as compared to CNM.

6.4 Conclusion

The main objective of this comparison is to parade the precision of all three simu-
lations in MATLAB. All three numerical schemes demonstrate that the more precise
the solutions are, when certain constraints apply, as the number of step size, N in-
creases. For simple and efficient confirmation of the accuracy of the used numerical
schemes the absolute difference between exact and numerical solutions has been de-
termined, in which all three numerical schemes demonstrate a promising result. In
addition to the precision, graphic layout for all the solutions are analyzed as time is
increased, in which the result is achieved that the solution decreases as time increases.
All three numerical schemes focus on various approaches for solving the Burgers’ equa-
tion. Logically, M-CNM obtained by using second discrete symmetry group (s yields
more accurate solutions compare to FTCS and CNM as seen in the error difference
Tables 6.12-6.13. The explanation is that the truncation error of M-CNM is of sec-

ond order with some constants in terms of time derivative, whereas FTCS and CNM
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has first and second order truncation error in terms of time derivative respectively,
thereby confirming the convergence of the numerical scheme M-CNM discussed earlier
in Section 6.2. In short, all three numerical methods are applicable to approximate the
solution of Burgers’ equation, however due to high accuracy, M-CNM can therefore be
considered to be competitive with the other two methods and worth recommendation.
Simultaneously, the results of this analysis showed that the trajectory of the computer

simulations is on the correct course.
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Appendix

This appendix discusses the numerical schemes for FTCS and CNM.

Explicit Finite Difference Scheme (FTCS)

The finite difference scheme for the heat equation is given by

Upji1 = QUp g+ Q (Ungrj — 2Unj + Up_1;)

where o = (AA—;)Q and for the mesh points (x,,t;), Az and At are the space and time

step size respectively. This scheme is conditionally convergent with a bound 0 < o < %

on a and a truncation error of O (At) [37].

Crank-Nicolson Method (CNM)

The Crank-Nicolson scheme for diffusion heat equation is
2unj + @ (Ung1j = 2Un g+ Un15) = 2un g1+ @ (“Ungrjpn + 2Un i1 — Uno1j41) -

This numerical scheme is implicit and unconditionally stable [37] with a great signifi-

cance for the time-accurate solutions. It has a truncation error of O (At?).
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