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Abstract

In this thesis, we meticulously construct an invariant Modified-Crank-Nicolson method

that fast convergent to the exact solution of a one-dimensional non-linear heat equa-

tion. This innovative construction can be faithfully done by preferentially using discrete

symmetry groups. Burgers’ equation is reduced to a one-dimensional heat equation

by using Hopf-Cole transformation. Moreover, this new transformation function rep-

resents the exact solution of Burgers’ equation. The innovative invariant numerical

scheme is carefully constructed by the composition of continuous and discrete symme-

try groups. Furthermore, with this numerical scheme, the convergence and efficiency of

the standard Crank-Nicolson method is meaningfully improved for the exact solution

of Burgers’ equation. The notable performance of this numerical scheme is shown both

graphically and in tabular form.
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Introduction

Our universe is full of evolving correlated entities like the path of a projectile varies

with speed and angle, earth’s location varies over time and many more examples like

this. These changing entities are known as variables in the language of mathematics

and their rate of change in the context of another variable is known as derivative. In

mathematics, differential equations are the equations which demonstrate the correspon-

dence amidst these variables and their derivatives. In such way differential equations

can be categorized mainly into two types. One is known as ordinary differential equa-

tion (ODE), in which the derivative of a dependent variable is taken with respect to

one independent variable, while for the second type of differential equation called the

partial differential equation (PDE), in which we take the derivative of a dependent

variable(s) with respect to more than one independent variables. Both these types of

differential equations can be sorted into two forms, one is linear and the other one is

non-linear depending upon the degree and the product of dependent variables(s) and

its derivatives. For instance, if the degree of a dependent variable(s) and its derivative

is one and their product is not present then we call it a linear differential equation. On

contrary, a differential equation is said to be non-linear differential equation if any of

the above-mentioned cases for linearity gets changed.

Many of the physical phenomenon such as force, momentum, temperature, velocity

etc., are usually dependent on several variables and generally deals in PDEs. In the

18th century, scientists like Euler, Lagrange, and Laplace [1] did the introductory work

about the PDEs. However, it was during the 19th century that it gained so much

popularity chiefly due to the influence of Reimann in certain fields of mathematics [1].

As far as the applications of PDEs are concerned in the field of physics and engineering,
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Maxwell’s equations describe the entire theory of electricity and magnetism [1].

Partial differential equations can be solved either analytically or numerically. Nu-

merical solution is an approximate solution of a PDE when it is impossible to solve it

analytically.

In reality, a substantial portion of the physical problems exist in form of non-linear

PDEs. In this thesis, Burgers’ equation is picked because it is non-linear and admits

finite number of continuous symmetries. The focus is to solve the Burgers’ equation

numerically with a novel approach which is known as Modified-Crank-Nicolson method

(M-CNM). We have adopted procedure of transforming the Burgers’ equation into dif-

fusion heat equation by means of Hopf-Cole transformation and then approximating

the diffusion heat equation. This approximation is carried out by using different finite

difference schemes like FTCS, CNM and M-CNM. The numerical scheme M-CNM is

obtained by modifying the CNM with the help of discrete symmetries of the Burg-

ers’ equation. To check the accuracy, the solutions obtained through these numerical

schemes is transformed back to compare with Hopf-Cole transform analytical solution

of the Burgers’ equation.

1.1 Background of Burgers’ Equation

Burgers’ equation

uxx + 2uux = ut,

can be defined as the non-linear model of a Navier-Stokes equation (Rafiq et al., 2011).

It is a parabolic equation with the inclusion of viscous term, ν, that is, νuxx. However,

for ν = 1, the Burgers’ equation turns into an elliptic equation. This equation includes

three terms uux, ut, ux that are convective term, time-dependent term and diffusive

term, with ν = 1, respectively.

Burgers’ equation was first established by Forsyth [2] in 1906. Yet, it was in 1915

that Bateman [3] derived the Burgers’ equation from a physical context and given the

steady. Following the discovery of Bateman, in 1940 Burgers presented a more unique
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solution and significance of the equation. In 1948, Burgers brought in the relationship

of the equation in the theory of turbulence (Burgers, 1948). This was the time that

the equation has been widely recognized as Burgers’ equation due to the vast majority

of work done by Burgers in some fields of mathematics (Kutluay et al., 1999). In 1949,

Lagerstorm [4] noted a potential of transforming the Burgers’ equation into linear heat

equation. In 1950, after the establishment of a coordinate transformation Hopf [4] stud-

ied the Burgers’ equation in the context of gas dynamics. One year later in 1951, based

on the suitable initial and boundary conditions, Cole [5] formalized the hypothetical

Fourier solution of the Burgers’ equation. Another hypothetical solution depended on

the test and trail with suitable conditions are obtained by Madsen and Sincovec [6].

Lighthill [7] and Blackstock [8] studied the Burgers’ equation in the propagation of

one-dimensional acoustic of limited amplitude in 1956 and 1964, respectively. In 1958,

Hayes discussed the shock structures in the Navier-Stokes fluid. Without utilizing a

few additional conditions Riccati solution was derived from Burgers’ equation by Rodin

in 1970 [9]. In 1972, Benton and Platzman [10] discovered the thirty-five different solu-

tions in infinite domain for the Burgers’ equation. However, in the same year Ames [11]

found a way to determine the proper groups by applying the Morgan-Michal method to

Burgers’ equation. Simultaneously, from 1980-1990 numerous researcher have worked

on the Burgers’ equation and to exercise the Hopf-Cole transformation in acquiring the

analytical solution but it was Shtelen [12] who was able to discover this transformation

theoretically.

There has been extensive research in the last few decade aimed at the improvement

of the robust computational schemes to deal with the non-linear PDEs found in heat

transfer and fluid mechanics. The Burger equation is one of the most popular equa-

tion with non-linear propagation effects as well as diffusive effects. As a non-linear

PDE, Burgers’ equation describes numerous practical problems in engineering which

are naturally difficult to solve. It additionally deals in different areas of mathematics.

The standard Burgers’ equation turns into inviscid Burgers’ equation when ν tends

to zero, thereby yields a model for non-linear wave propagation. Burgers’ equation
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has been widely used in gas dynamics with its source terms emerged in the theory of

aerodynamics. It has great significance in the study of standard problem for numerical

methods. Many numerical schemes can be verified through it.

Burgers’ equation is mainly used in the field of fluid dynamics and essentially as

a model for acoustics, shock theory, cosmology, viscous flow, turbulence, traffic flow,

quantum field, heat conduction, mass transport, boundary layer behavior, longitudinal

elastic waves in isotropic solids and water wave dispersion. Due to its expansive scope

of relevance, it has redirected consideration of a few researchers to its solution. Thus

far, the Burgers equation for a small range of arbitrary initial and boundary conditions

can be analytically resolved.

For many decades, numerical solution of PDEs has been relevant research subject both

in thermal and fluid mechanics. The very first stage is to comprehend the mechanics

of the problem, which leads with the help of equations to construct a mathematical

model. Such equations in most situations are either ODEs or PDEs. A few suppo-

sitions must be made, on the grounds that the real-life problems in engineering are

somewhat perplexing to examine. These calculations are then solved by computational

methods including the method of finite volume, the method of finite difference and the

method of finite element.

Different approaches for mathematical simulation have their own benefits and draw-

backs. Finite difference method is the most basic and oldest way of resolving ODEs and

PDEs through the discretization process. In order to solve the Burgers’ equation by

solving the diffusion heat equation explicitly, Bhattacharya [13] was the first to develop

the exponential finite difference scheme. Similarly, with the help of uniform implicit

difference method Kadalbajoo [14] was the first to solve the time dependent Burgers’

equation. Varoglu and Finn [15] presented the numerical solution of Burgers’ equation

by using finite element method. The transformed Burgers’ equation to heat equation

by using the Hopf-Cole transformation, and then solving the heat equation with insu-

lated boundary conditions by using explicit and exact-explicit numerical schemes was

presented by Kutluay et al., [16]. Based on the least square approach, Nguyen and
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Rynen [17] discovered the linear space-time element method. Wani and Thakar dis-

cussed a scheme based on Crank-Nicolson method in [18]. A new technique for solving

the Burgers’ equation by using the method of lines (MOL) and matrix-free modified

extended backward difference formula was proposed by Javidi [19]. Cubic spline func-

tions in two spaced variables was used by Jain and Holla [20] in 1978. Malek and Mansi

[21] presented the group theoretic approach to solve the Burgers’ equation by applying

the one-parameter group of transformation to Burgers’ equation with suitable initial

and boundary conditions. Simultaneously, there are numerous other researchers who

contributed to solve the Burgers’ equation numerically.

1.2 Symmetry

The difference of linearity holds a special place in differential equations especially in

PDEs. Linear PDEs can be solved easily through the numerous methods discussed in

the literature like separation of variables, superposition principle, Laplace transform,

Fourier transform etc. However, non-linear PDEs are not that easy to be solved an-

alytically. Most of these PDEs appear in the engineering and science, which is why

non-linear PDEs are typically much more complicated than linear ones to grasp. Al-

most every single equation must be analyzed as a single problem. It is a well known

fact that methods of symmetry are of great significance when testing differential equa-

tions [22]. In recent trends, a symmetry approach is considered to be one of the best

methods to solve PDEs.

The solutions of differential equations are based several innovative methods. How-

ever, it is to know that most of these methods are drawn from a unified theory of

continuous differential equation symmetries. The theory of symmetry methods was

first established by a Norwegian mathematician Marius Sophus Lie [23]. Inspired by

Galois’ theory, he has done most of his work in the field of continuous symmetries,

which he used in the study of differential equations and geometry. The algebraic equa-

tions like quadratic, cubic and quartic were solved by Evariste Galois in 19th century by

using the theoretical approach of groups. In doing so he unified three major branches
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of mathematics namely Algebra, Analysis and Geometry. On the basis of comparison,

Lie introduced his notion, that is, the infinite groups, groups consistently relying on at

least one real or complex variable, would most likely be responsible in the treatment

of ODEs and PDEs analogous to finite groups requirement of deciding the solvability

of finite-degree polynomial equations [22, 24, 25, 26].

The groups that Lie tried were the continuous groups, the differential equation sym-

metries, which were consistently based on single or multiple real or complex variables.

These symmetry groups were later called Lie groups, in which the investigation of sym-

metries was based on some conditions. Symmetries can be categorized mainly into two

types. One is the continuous or Lie point symmetries and the other one is discrete sym-

metries. Discrete symmetries are defined as the non-continuous symmetries or in other

words, those symmetries which lies outside of Lie groups. Some significant applications

of discrete symmetries of differential conditions are talked about in [27, 28, 29, 30].

Numerous methods have been established for finding discrete symmetries of a dif-

ferential equation but the method proposed by Peter E. Hydon is perfect for identifying

the discrete symmetries of a differential equation having a finite dimensional Lie algebra

of infinitesimal generators of its Lie group of point symmetries [27, 28, 29, 31, 32, 33].

His approach is based on the idea that any point symmetry produces an automorphism

for the Lie algebra of the Lie point symmetry generators.

In Chapter 2, we give some basic notions, definitions, theorems, and techniques

necessary for finding the continuous or Lie point symmetries of a differential equa-

tion. Chapter 3 contains the detailed discussion of discrete symmetries of a differential

equation including the Peter E. Hydon’s technique for finding the discrete symmetries.

In Chapter 4, the comprehensive symmetry analysis of Burgers’ equation is carried

out. As an immediate application of the discrete symmetries of a Burgers’ equation,

Chapter 5 includes the original work of the construction of numerical schemes to ap-

proximate the exact solution of Burgers’ equation. The Hopf-Cole transformation of

Burger’ equation to diffusion heat equation and the exact solution of the Burgers’

equation is also discussed. In Chapter 6, the detailed stability analysis of the newly

constructed numerical schemes and the explicit study of solving the Burgers’ equation
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by using these new numerical schemes along with FTCS and CNM is also presented in

the form of tables and figures followed by a brief conclusion.
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Chapter 2

Lie Point Symmetries of
Differential Equations

The motivation behind this chapter is to compactly study some essential notions com-

prehended with Lie point symmetries of differential equations. Basic definitions and

notations are introduced. All the theorems are laid out without proof. A permeable

on certain standards which are useful while finding the Lie point symmetries for dif-

ferential equations is also introduced in this chapter. For details, adequate references

are given.

2.1 One-Parameter Lie Group of Point Transfor-

mation

For the simplification of an ordinary differential equation by using the suitable change

of variables, a point transformation can be define as the transformation of independent

and dependent variables, that is x and u respectively maps points (x, u) into points

(x̂, û) [34],

x̂ = x̂ (x, u) , û = û (x, u) , (2.1)

where x̂ and û are continuous functions. Moreover, in case of symmetry transformation,

a point transformation must depend on at least one continuous parameter say ε, that

is

x̂ = x̂ (x, u, ε) , û = û (x, u, ε) , (2.2)
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where x̂ and û are infinitely differentiable with respect to (x and u).

This section presents the basic definitions required for one-parameter Lie group of

point transformations [22].

Definition 2.1.1. A group G is said to be r-parameter Lie group, if the group operations

f : G × G −→ G f(l, k) = l.k, l, k ∈ G,

and

f̂ : G −→ G f̂ (l) = l−1, l ∈ G,

acting upon the r-dimensional C∞-manifold are smooth maps between the manifolds.

Definition 2.1.2. Let M be a C∞-manifold. Then an r-parameter Lie group G is said

to be Lie group of transformation, if there is a smooth map

ψ : G ×M −→M, ψ (l,m) = lm,

satisfying the following two properties

� (l1.l2)m = l1 (l2m) ∀ l1, l2 ∈ G and m ∈M .

� Let I be the identity element of G then Im=m ∀ m ∈M .

Now if

b̂ = ψ (b, ε) , (2.3)

and
ˆ̂b = ψ (ψ (b, ε) , σ) = ψ

(
b̂, σ

)
, (2.4)

where b = (b1, b2, ..., bn), b̂ =
(
b̂1, b̂2, ..., b̂n

)
, ψ = (ψ1, ψ2, ..., ψn) and φ(ε, σ) be the law

of composition of parameters ε, σ ∈ V, forms a one-parameter group of transfor-

mations in the region D if the following properties hold [35],

� V forms a group with law of composition φ.
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� For ε = ε0 corresponding to an identity element, we have b̂ = b for each b in the

region D.

� For b̂ ∈ D, the tansformation must be injective in D for each ε ∈ V.

� From Eqs. (2.3) and (2.4), we have

ˆ̂b = ψ (b, φ (ε, σ)) , (2.5)

where b̂, ˆ̂b ∈ D.

Definition 2.1.3. Let G be a Lie group and M be the C∞-manifold with φ(ε, σ) is a

composition function. Then a transformation Lie group is said to be one-parameter

Lie group of transformation if it satisfies the following conditions

� For ε = 0 and −ε corresponds to identity and inverse transformation group re-

spectively as ε is a continuous parameter with ε ∈ V ⊂ R.

� Let x and u be any points in the region D ⊂ R, then x̂ and û are continuously

differentiable w.r.t x & u and are analytic in ε ⊂ V.

� The composition function φ(ε, σ) is an analytic function in ε and σ, where ε, σ ∈
V.

2.2 Infinitesimal Transformation and Their Gener-

ators

Now we define the infinitesimal transformations and their corresponding generators.

Let us consider Eq. (2.3)

b̂ = ψ (b, ε) ,

then by Taylor expansion at ε = 0, we have

b̂ = b + ε
∂

∂ε
ψ (b, ε)

∣∣∣∣
ε=0

+
ε2

2

∂2

∂ε2
ψ (b, ε)

∣∣∣∣
ε=0

+O
(
ε3
)
.
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Consider
∂

∂ε
ψ (b, ε)

∣∣∣∣
ε=0

= ξ (b) , (2.6)

then the infinitesimal transformation of Lie group is given by

b̂ = b + εξ (b) . (2.7)

Equation (2.6) is used in the following Lie’s first fundamental theorem which

provides a technique to re-parametrize a one-parameter group of transformation that

is of definitive form.

Theorem 2.2.1. For Lie group of transformation (2.3) to be equivalent to the solution

of an initial value problem for the autonomous system of first order ordinary differential

equations there exists a parametrization τ(ε) stated by

∂b̂

∂τ
= ξ (b) , (2.8)

with condition b̂ = b at τ = 0 [26]. Particularly,

τ (ε) =

∫ ε

0

λ
(
ε
′
)
dε
′
, (2.9)

where

λ (ε) =
∂

∂h
φ (g, h)

∣∣∣∣
(g,h)=(ε,ε′)

, λ(0) = 1. (2.10)

Now, in the following definition a representation of one-parameter Lie group of

transformation will be incorporated in the form of a group generator [26, 22].

Definition 2.2.1. The infinitesimal generator for one-parameter Lie group of trans-

formation can be defined by the linear differential operator

X = ξ (b) .∇ =
n∑
j=1

ξj (b)
∂

∂bj
, (2.11)

where ξ (b) = (ξ1(b), ξ2(b), ..., ξn(b)) and ∇ is the gradient operator.

11



For any differential equation

W (x) = W (x1, x2, ..., xn) , (2.12)

we can write

XW (x) = ξ(b).∇W (x) =
n∑
j=1

ξj(b).
∂W (x)

∂bj
. (2.13)

Theorem 2.2.2. Let X be the linear operator defined by Eq. (2.13) and consider Eq.

(2.3) given by

b̂ = ψ (b, ε) ,

then the corresponding generators for the one-parameter Lie group of transformation

are

b̂ = ψ (b, ε) = eεXb = b + εXb +
ε2

2
X2b +O

(
ε3
)
,

=
∞∑
n=0

εn

n!
Xnb,

and Xn = XXn−1 [22, 26].

Moreover, for a one-parameter Lie group of transformation Eq. (2.3) and corre-

sponding infinitesimal generator Eq. (2.13), the generalization [26, 22] of Theorem

2.2.2 for any analytic function F is given by

F
(
b̂
)

= F
(
eεXb

)
= eεXF (b) .

2.3 Prolongation of Lie Group of Point Transfor-

mation and Their Generators

The definition of Lie’s first fundamental theorem Eq. (2.6) corresponding to one depen-

dent and one independent variable in an ordinary differential equation can be written

as

ξ(x, u) =
∂x̂

∂ε
(x, u, ε)

∣∣∣∣
ε=0

, η(x, u) =
∂û

∂ε
(x, u, ε)

∣∣∣∣
ε=0

, (2.14)
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respectively. Now if we want to apply Eq. (2.2) to an ordinary differential equation

[34],

W
(
x, u, u′, u′′, ..., u(n)

)
= 0, (2.15)

then first we have to extend the point transformation up to mth order derivative of

u(n), n = 1, 2, ...,m. Then by recursive relation we have

û(n) ≡ Dxû
n−1

Dxx̂
, (2.16)

with û(0) ≡ û and Dx is the total derivative w.r.t x given by

Dx =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ · · · .

Consequently, we can write

x̂ = x+ εξ (x, u) + · · · = x+ εXx+ · · · , (2.17)

û = u+ εη(x, u) + · · · = u+ εXu+ · · · , (2.18)

û′ = u′ + εη′(x, u) + · · · = u′ + εXu′ + · · · , (2.19)
...

û(m) = u(m) + εη(m)(x, u) + · · · = u(m) + εXu(m) + · · · , (2.20)

where η, η′, η′′,· · · , η(m) are defined by

η =
dû

dε
, η′ =

dû′

dε
, η′′ =

dû′′

dε
, · · · , η(m) =

dûm

dε
, at ε = 0. (2.21)

Now, by comparing Eqs. (2.16) and (2.20) implies

û(m) = u(m) + ε
(
Dxη

m−1 − u(m)Dxξ
)
, (2.22)

with η(0) ≡ η.

Moreover, the values of η, η′, η′′,· · · , η(m) can be computed by

η(m) = Dxη
m−1 − u(m)Dxξ. (2.23)

Similarly, Eqs. (2.17)-(2.20) yields the following prolongation of generator X

X(m) = ξ
∂

∂x
+ η

∂

∂u
+ η′

∂

∂u′
+ · · ·+ η(m) ∂

∂u(m)
. (2.24)
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2.4 Multi-Parameter Lie Group of Point Transfor-

mation and Their Infinitesimal Generators

This section deals with the generalization of one-parameter Lie group of point trans-

formations to r -parameter Lie group of point transformations [26, 22]. Let us consider

the transformation

b̂ = ψ (b, ε) ,

where b̂ =
(
b̂1, b̂2, · · · , b̂n

)
and b = (b1, b2, · · · , bn) belong to the region D ⊂ Rn with

ψ = (ψ1, ψ2, · · · , ψn) depending on more than one-parameter say r -parameters εN , that

is ε = (ε1, ε2, · · · , εr) ∈ V ⊂ Rn satisfying all the properties of a group. The group

operation is given by φ (ε, σ). Then the r -parameter Lie group of transformation is

given by

b̂ = ψ (b, ε) =
r∏

N=1

exp (εNXN) b. (2.25)

Moreover, the corresponding general infinitesimal transformation [34] for one dependent

and one independent variable Eq. (2.3) can be written in the form

XN = ξN(x, u)
∂

∂x
+ ηN(x, u)

∂

∂u
, (2.26)

with

ξN(x, u) =
∂x̂

∂εN

∣∣∣∣
ε=0

, and ηN(x, u) =
∂û

∂εN

∣∣∣∣
ε=0

. (2.27)

In case of r -parameter group, the vector ξ (b) takes the form of a matrix ξNj(x), where

ε = 1, 2, · · · , r and j = 1, 2, · · · , n. Then, the associated generator XN , corresponding

to the parameter εN of the r -parameter Lie group of transformation is defined as

XN =
n∑
j=1

ξNj(b)
∂

∂bj
, N = 1, 2, · · · , r. (2.28)

2.5 Lie Algebra of Infinitesimal Generators

We start this section with the definition of an algebraic structure Lie algebra [22].
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Definition 2.5.1. Let L be the vector space over a field F on which a commutator

product [ , ] is defined. Then L is said to be Lie algebra if it satisfies the following

properties

� [Xp,Xq] ∈ L, ∀ Xp,Xq ∈ L.

� [Xp,Xq] = − [Xq,Xp], ∀ Xp,Xq ∈ L.

� [Xp, aXq + bXs] = [Xp, aXq] + [Xp, bXs], ∀ Xp,Xq,Xs ∈ L and for all a,b ∈ F.

� [Xp, [Xq,Xs]] + [Xs, [Xp,Xq]] + [Xq, [Xs,Xp]] = 0, ∀ Xp,Xq,Xs ∈ L.

Consequently, from second property it follows that [Xp,Xp] = 0, which yields the

following definition of abelian Lie algebra [34].

Definition 2.5.2. A Lie algebra L is said to be abelian if and only if for all Xp,Xq ∈ L,

we have

[Xp,Xq] = 0.

The commutators of two generators Xp and Xq is defined by

[Xp,Xq] = XpXq −XqXp. (2.29)

Since, Eq. (2.29) satisfies all the properties of a Lie algebra. Therefore, the set of

all {Xp}, together with the commutator form the Lie algebra under the group. The

following two theorems demonstrates the structure of a Lie algebra as a linear com-

bination of r basic generators also known as Lie’s second and third fundamental

theorem [26] respectively.

Theorem 2.5.1. Let Xp and Xq be any two infinitesimal generators of an r-parameter

Lie group of point transformation. Then the commutator [Xp,Xq] is again an infinites-

imal generator

[Xp,Xq] = Ck
pqXk, (2.30)

where the coefficients Ck
pq, p,q=1,2,· · · ,r are called structure constants.
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Theorem 2.5.2. Consider the structure constants in Eq. (2.30), then the following

two properties hold.

� The structure constants are antisymmetric in the lower two indices.

Ck
pq = −Ck

qp.

� Structure constants must satisfy Lie’s identity, that is

Ca
pqC

d
ab + Ca

qbC
d
ap + Ca

bpC
d
aq = 0.

2.6 Symmetry Condition for an Ordinary Differen-

tial Equations

Since, we have defined all the basic mathematical theory. Now we are able to state an

essential theorem for finding Lie point symmetries of a differential equation.

Theorem 2.6.1. An ordinary differential equation

W
(
x, u, u′, u′′, · · · , u(n)

)
= 0,

admits a group of symmetries with generator X if and only if

X(n)W
∣∣
W=0

= 0, (2.31)

holds [34].

2.7 Lie Point Symmetries of a Partial Differential

Equations

Consider the system of kth order non-linear partial differential equations in P-independent

and Q-dependent variables as

Wm

(
x, u, u(1), u(2), · · · , u(k)

)
= 0, m = 1, 2, 3, · · · , l, (2.32)
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where x =
(
x1, x2, · · · , xP

)
∈ X ⊂ RP and u =

(
u1, u2, · · · , uQ

)
∈ U ⊂ RQ are the

corresponding P-independent and Q-dependent variables [34]. Moreover, un denotes

all the nth order partial derivatives of u w.r.t. x with the corresponding coordinate for

u(n) is ∂nu
(∂xp1∂xp2 ···∂xpn )

given by unp1p2···pj , p = 1, 2, 3, · · · , P for n = 1, 2, 3, · · · , k. For

the coordinates x, u1, u2, · · · , uk, Eq. (2.32) takes the form of an algebraic equation

which is a hypersurface in
(
x, u, u1, u2, · · · , uk

)
-space. Now the point transformation

Eq. (2.1) for independent and dependent variables x̂p, p = 1, 2, 3, · · · , P and ûq,

q = 1, 2, 3, · · · , Q of the kth order system of partial differential equations [34] is

x̂p = x̂p
(
xa, ub

)
, ûq = ûq

(
xa, ub

)
, (2.33)

where a, p = 1, 2, 3, · · · , P , and b, q = 1, 2, 3, · · · , Q. Likewise, for any particular

parameter say ε ∈ V ⊂ R, Eq. (2.33) takes the form

x̂p = x̂p
(
xa, ub; ε

)
, ûq = ûq

(
xa, ub; ε

)
. (2.34)

Then the infinitesimal generator of the one-parameter Lie group of point transforma-

tions is given by

X = ξp
(
xa, ub

) ∂

∂xp
+ ηq

(
xa, ub

) ∂

∂uq
, (2.35)

with the corresponding infinitesimal transformation

ξp ≡ ∂x̂p

∂ε

∣∣∣∣
ε=0

, ηq ≡ ∂ûq

∂ε

∣∣∣∣
ε=0

. (2.36)

Moreover, the extension of an infinitesimal generator Eq. (4.35) for an arbitrary order

derivatives [34] is given by

X = ξp
∂

∂xp
+ ηq

∂

∂uq
+ ηqp

∂

∂uqp
+ ηqpr

∂

∂uqpr
+ ηqprs

∂

∂uqprs
+ · · · , (2.37)

where

ηqp =
Dηq

Dxp
− uqa

Dξa

Dxp
, (2.38)

ηqpr =
Dηqp
Dxr

− uqpa
Dξa

Dxr
, (2.39)

with the total derivative D
Dxp

can be define as

D

Dxp
=

∂

∂xp
+ uqp

∂

∂uq
+ uqpr

∂

∂uqr
+ · · · . (2.40)
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The following theorem is the symmetry condition for a partial differential equation

[34].

Theorem 2.7.1. Let

X(k) = ξp(x, u)
∂

∂xp
+ η(x, u)

∂

∂u
+ η(1)

p

(
x, u, u(1)

) ∂

∂u1
+ · · ·

· · ·+ η(k)
p1,p2,··· ,pj

(
x, u, u(1), u(2), · · · , u(k)

) ∂

∂up1,p2,··· ,pn
, (2.41)

be the kth order prolonged infinitesimal generator Eq. (4.35) of the corresponding one-

parameter Lie group of transformation

x̂ = X (x, u; ε) , (2.42)

û = U (x, u; ε) , (2.43)

with

η1
p = Dpη − (Dpξp)un, p = 1, 2, 3, · · · , P, (2.44)

ηnp1,p2,··· ,pk = Dpkη
(k−1)
p1,p2,··· ,pk−1

− (Dpkξn)up1,p2,··· ,p(k−1)n, (2.45)

where pn = 1, 2, 3, · · · , P for n = 1, 2, 3, · · · , k with k = 1, 2, 3, · · · . Then a partial

differential Eq. (2.32) admits one-parameter Lie group of transformations Eqs. (2.41)-

(2.43) if and only if

X(k)W
(
x, u, u(1), u(2), · · · , u(k)

) ∣∣
W=0

= 0, (2.46)

holds.

Particularly, for two independent variables (x, t) and one dependent variable u, Eq.

(2.41) with k = 2 can be written as

X(2) = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
+ ηx (x, t, u, ux)

∂

∂ux

+ ηt (x, t, u, ux, ut)
∂

∂ut
+ ηxx (x, t, u, ux, ut, uxx)

∂

∂uxx

+ ηxt (x, t, u, ux, ut, uxx, uxt)
∂

∂uxt
+ ηtt (x, t, u, ux, ut, uxx, uxt, utt)

∂

∂utt
,
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where Eqs. (2.44) and (2.45) is given by

ηx = Dx (η)− utDx(τ)− uxDx (ξ) ,

= ηx + (ηu − ξx)ux − τxut − ξu (ux)
2 − τuutux, (2.47)

ηt = Dt (η)− utDt(τ)− utDt (ξ) ,

= ηt + (ηu − τt)ut − ξtux − τu (ut)
2 − ξuutux, (2.48)

ηxx = Dx (ηx)− utxDx(τ)− uxxDx (ξ) ,

= ηxx + (2ηxu − ξxx)ux − τxxut + (ηu − 2ξx)uxx − 2τxutx + (ηuu − 2ξxu) (ux)
2

− 2τxuutux − ξuu (ux)
3 − τuuut (ux)

2 − 3ξuuxuxx − τuutuxx − 2τuuxutx, (2.49)

ηxt = Dx (ηt)− uttDx(τ)− utxDx (ξ) ,

= ηtx + (2ηtu − ξtx)ux + (ηux − τtx)ut + (ηuu − τtu − ξux)utux + (ηu − τt − ξx)utx

− τux (ut)
2 − τuuux (ut)

2 − ξuutuxx − ξtu (ux)
2 − ξtuxx − τxutt − ξuuut (ux)

2

− 2ξuuxutx − τuuxuxt − 2τuutuxt, (2.50)

ηxx = Dt (ηt)− uttDt(τ)− utxDt (ξ) ,

= ηtt + (2ηtu − τtt)ut + (ηuu − 2τtu) (ut)
2 − τuu (ut)

3 − 3τuututt − ξttux − 2ξututux

− 2ξtutx − ξuuux (ut)
2 − ξuuxutt − 2ξuutuxt. (2.51)

Generally, for one independent and one dependent variables x and u the symmetry

condition of Eq. (2.46) gives a non-linear partial differential equation in terms of

(ξ(x, u), η(x, u)), which by comparing the coefficients of powers of derivatives of u gen-

erates a system of partial differential equations. Corresponding to each infinitesimal

generator a solution of the system can be obtained in terms of ξ and η forming a Lie

algebra.

If the obtained symmetries are actual symmetries of a partial differential Eq. (2.32),
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then it will leave the differential equation invariant under the generated point trans-

formations through the obtained point symmetries [34].

Now we give an example to understand the procedure.

Example 2.7.1. Consider the Thomas equation

uxt + aux + but + cuxut = 0, (2.52)

where a, b and c are constants such that a, b > 0 and c 6= 0.

As Eq. (2.52) is of second order, we need to apply the second order prolongation

of the infinitesimal generators for partial differential equations, that is

X(2) = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ ηx

∂

∂ux
+ ηt

∂

∂ut
+ ηxx

∂

∂uxx
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
,

with the coefficients given in Eqs. (2.47)-(2.52). Now in order to apply the Lie point

symmetry condition for partial differential equations, let us consider

W = uxt + aux + but + cuxut, (2.53)

then by Theorem (2.7.1), we have

X(2)W
∣∣
W=0

= 0. (2.54)

Substituting the values of X(2) and W yields

ηxt + aηx + bηt + c (ηxut + ηtux) = 0. (2.55)

Using Eqs. (2.47)-(2.49) in Eq. (2.55) and re-arranging the equation with respect to

dependence among the derivatives of the equation. Collecting the coefficients of the

various monomials in the first and second order derivatives, we get the following system
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of equations

uxutt : −τu = 0, (2.56)

utuxx : −ξu = 0, (2.57)

utt : −τx = 0, (2.58)

uxx : −ξt = 0, (2.59)

ux (ut)
2 : −τuu = 0, (2.60)

(ux)
2 ut : −ξuu = 0, (2.61)

(ut)
2 : −τxu − cτx + bτu = 0, (2.62)

(ux)
2 : −ξtu − cξt + aξu = 0, (2.63)

uxut : ηuu − ξux − τtu + bξu + aτu + cηu = 0, (2.64)

ut : ηxu − τxt + cηx − aτx + bξx = 0, (2.65)

ux : ηtu − ξxt + cηt − bξt + aτt = 0, (2.66)

constant : aηx + bηt + ηxt = 0. (2.67)

From Eqs. (2.56) and (2.58), we obtain

τ = g(t). (2.68)

Similarly, Eqs. (2.57) and (4.59) yields

ξ = f(x). (2.69)

Now from Eq. (2.64) we deduce that

η = H (x, t) e−cu +K(x, t). (2.70)

Let for our convenience substituting −H(x,t)
c

instead of H(x, t), then Eq. (2.70) takes

the form

η = −H
c
e−cu +K. (2.71)

Using Eqs. (2.68)-(2.71) in Eqs. (2.65) and (4.66), we have

cKx + bξx = 0, (2.72)

cKt + aτt = 0. (2.73)
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From Eqs. (2.72) and (2.73), we get that

ξx = −cKx

b
, (2.74)

τt = −cKt

a
, (2.75)

and

Kxt = 0. (2.76)

Consequently, we have

K = λ1x+ λ2t+ d1, (2.77)

where λ1, λ2 and d1 are the arbitrary constants. Upon the substitution of Eq. (2.77)

in Eq. (2.71), we have

η = −H
c
e−cu + λ1x+ λ2t+ d1 (2.78)

Using Eq. (2.78) in Eq. (2.67), we obtain

aλ1 + bλ2 = 0. (2.79)

So, for δ = λ1
b

, yields the coefficients functions ξ, τ and η in the most general form as

ξ = −δcx+ d3, (2.80)

τ = δct+ d2, (2.81)

η = −H
c
e−cu + δbx− δat+ d1, (2.82)

where d1, d2, d3 and δ are arbitrary constants, while H is any solution of the Eq. (2.67).

The corresponding symmetry generator is given by

X = (−δcx+ d3)
∂

∂x
+ (δct+ d2)

∂

∂t
+

(
−H
c
e−cu + δbx− δat+ d1

)
∂

∂u
.

Therefore, Thomas equation has a four-dimensional Lie algebra, which is spanned by

X1 =
∂

∂x
, (2.83)

X2 =
∂

∂t
, (2.84)

X3 =
∂

∂u
, (2.85)

X4 = −cx ∂
∂x

+ ct
∂

∂t
+ (bx− at) ∂

∂u
, (2.86)
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and the subalgebra of infinite dimension is

XH = −H
c
e−cu

∂

∂u
. (2.87)

The corresponding one-parameter Lie group of point transformations are

G1 : (x+ ε, t, u) , (2.88)

G2 : (x, t+ ε, u) , (2.89)

G3 : (x, t, u+ ε) , (2.90)

G4 :

(
xr−cε, tecε,

b

c

(
1− e−cε

)
x+

a

c
(1− ecε) t+ u

)
, (2.91)

GH :

(
x, t,

1

c
log [cHε+ ecu]

)
. (2.92)

According to definition each of Gj, j = 1, 2, 3, 4, H is a symmetry group, then let

u = m(x, t) is a solution of Eq. (2.52), so are the following functions

u1 = m (x− ε, t) , (2.93)

u2 = m (x, t− ε) , (2.94)

u3 = m(x, t) + ε, (2.95)

u4 =
b

c
x (ecε − 1) +

a

c
t
(
e−cε − 1

)
+m

(
xecε, te−cε

)
, (2.96)

uH =
1

c
log [cHε+ ecu] , (2.97)

where ε is any real number. The commutator relations among these vector fields is

given in Table 2.1.

[Xi,Xj] X1 X2 X3 X4 Xm

X1 0 0 0 -cX1+bX3 Xmx

X2 0 0 0 cX2-aX3 Xmt

X3 0 0 0 0 X−cm

X4 cX1-bX3 -cX2+aX3 0 0 Xµ

XH -Xmx Xmt Xcm Xµ 0

Table 2.1: Commutator table for the Lie algebra Xi and XH
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where

µ = −cxmx + ctmt − c (bx− at)m.

Notice that the totality of these symmetries must be a Lie algebra. Therefore, for m to

be any solution of the Eq. (2.67), consequentlymx, mt and−cxmx+ctmt−c (bx− at)m
are also the solutions.
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Chapter 3

Discrete Symmetries of Differential
Equations

This chapter presents details of finding the discrete symmetries of differential equations.

Discrete symmetries are defined as the non-continuous point symmetries of a differen-

tial equation [27, 28, 29]. Nevertheless, it was never a straightforward way to find the

discrete symmetries of a differential equation. Numerous procedures have been pro-

duced for finding discrete symmetries of differential equations, yet regularly, either the

symmetry condition is too hard to even consider solving, that is, the subsequent system

of determining equations is too hard to illuminate or the strategy does not give all the

discrete symmetries of the differential equation. This chapter describes the Peter E.

Hydon’s technique, who was the first to establish an indirect method for finding discrete

symmetries of second or higher order differential equations [27, 28, 29, 30, 31, 32, 33]

with a property of having a finite dimensional Lie algebra of infinitesimal generators of

one-parameter Lie group of point symmetries. The method not only facilitates the im-

pertinent system of determining equations, it also produces all the discrete symmetries

of a differential equation in a comprehensive manner.

Our main goal is to understand the framework and find all the discrete symmetries

of a differential equation. However, this chapter only describes the method for ODEs

whereas PDEs is nearly the equivalent yet fitting extra detail will be given for PDEs

where applicable.
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3.1 Core Theory

We start this section by recalling some important definitions and theorems [27, 28, 29].

Definition 3.1.1. A non-continuous point symmetry of a differential equation is called

a discrete symmetry.

Consider an ordinary differential equation

u(n) = W
(
x, u, u′, u′′, · · · , u(n−1)

)
, (3.1)

then the representation of one-parameter Lie group of point symmetry of Eq. (3.1) is

given by

ζ : (x, u) −→ (x̂(x, u), û(x, u)) , (3.2)

and the corresponding infinitesimal generator is

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
. (3.3)

Moreover, the representation of one-parameter Lie group of point symmetry Eq. (3.2)

for s-basis elements {Xm}sm=1 of the finite dimensional Lie algebra L of one-parameter

Lie group of point symmetry of an ordinary differential Eq. (3.1) is

ζm : (x, u) −→
(
eεXmx, eεXmu

)
. (3.4)

The following theorem is iterative form of the generalization of Theorem (1.2.2) for

two variables.

Theorem 3.1.1. Let F(x, u) be the C∞-function , then for a particular parameter say

ε, of the Lie group of point symmetries ζ(ε) with generator Eq. (3.3), an action of a

point symmetry is

F(x̂, û) = F
(
eεXx, eεXu

)
= eεXoF(x, y) = ζF(x, y). (3.5)

The following are the basic theorems [27, 28, 29] for the theory of discrete symme-

tries.
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Theorem 3.1.2. Let Eq. (3.2) be any discrete or continuous point symmetry and L
be the Lie algebra of an infinitesimal generator Eq. (3.3) of a differential Eq. (3.1).

Then for every generator X ∈ L, we have ζXζ−1 ∈ L and for each ε the corresponding

point transformation

ζ̂m(ε) = ζζmζ
−1, (3.6)

is also a point symmetry of a differential equation.

Theorem 3.1.3. Consider ζ be any discrete or continuous point symmetry of a dif-

ferential equation. Then {ζXζ−1}sm=1 will be the basis of a Lie algebra L if and only if

{Xm}sm=1 is a basis of L.

Theorem 3.1.4. Let Xm −→ X̂m be the transformation such that {Xm}sm=1 and

{X̂m}sm=1 are the basis of some Lie algebra L, then

{X̂m, X̂n} = C l
mnX̂l, (3.7)

if and only if

{Xm,Xn} = C l
mnXl. (3.8)

From Theorem 3.1.2 it concludes that both the basis {Xm}sm=1 and {ζXmζ
−1}sm=1

are of the same Lie algebra L. Consequently, each Xm can be written as a linear

combination of ζXmζ
−1’s, which generalizes the above Theorem 3.1.4 with the help of

following lemma [27, 28, 29].

Lemma 3.1.1. Every discrete or continuous point symmetry of the Lie algebra L of

an infinitesimal generator of one-parameter Lie group of point symmetries of Eq. (3.1)

induces an automorphism. That is, for each ζ, there exist a constant N×N nonsingular

matrix B = blm such that

Xm = blmζXζ
−1 = blmX̂l, (3.9)

preserving all the structure constants.
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3.2 Discrete Symmetries Through Peter E. Hydon

Technique

This technique was introduced by Peter E. Hydon in 1998. This method mainly con-

sists of two stages. In the first stage, Lemma 3.1.1 has been applied to obtain the

corresponding first order partial differential equations, which should satisfy every point

symmetry Eq. (3.2) of an ordinary differential Eq. (3.1).

Xmx̂ = blmζXζ
−1x̂, m = 1, 2, 3, · · · , s

= blmζXlx,

= blmζξl(x, u),

= blmξl (x̂, û) ,

= blmξ̂l. (3.10)

Similarly

Xmû = blmζXlζ
−1û, m = 1, 2, 3, · · · , s

= blmζXlu,

= blmζηl(x, u),

= blmη (x̂, û) ,

= blmη̂l. (3.11)

Equations (3.10) and (3.11) together yields a system of partial differential equations.

Now, in order to obtain the values of (x̂, û) interms of x, u, blm, the aforementioned

system can be solved by method of characteristics equations. Moreover, these obtained

values may have some constants and even some unknown functions, whose values will

be determined during the second stage. It should be noted that analogous to blm = σlm

the solution of the preceeding system always admit the trivial symmetry (x̂, û) = (x, u).

Now in the second stage, we separate non-point symmetry solutions from point sym-

metry solutions because there may be some solutions which will not satisfy the system

of partial differential equations. This process is carried out by applying the symmetry

condition on the general solution of the system of partial differential equations.
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So, with the help of this technique we can obtain the complete list of all the point

symmetries of Eq. (3.1). Since, we know about the continuous symmetries, that is

Lie point symmetries. Therefore, other than that every other symmetry is a discrete

symmetry. For further discussion, let us write Eq. (3.10) and Eq. (3.11) in a respective

marix forms as 

X1x̂

X2x̂

X3x̂
...

Xnx̂


=



b1
1 b2

1 b3
1 · · · bn1

b1
2 b2

2 b3
2 · · · bn2

b1
3 b2

3 b3
3 · · · bn3

...
...

...
. . .

...

b1
n b2

n b3
n · · · bnn





ξ̂1

ξ̂2

ξ̂3

...

ξ̂n


, (3.12)

and 

X1û

X2û

X3û
...

Xnû


=



b1
1 b2

1 b3
1 · · · bn1

b1
2 b2

2 b3
2 · · · bn2

b1
3 b2

3 b3
3 · · · bn3

...
...

...
. . .

...

b1
n b2

n b3
n · · · bnn





η̂1

η̂2

η̂3

...

η̂n


. (3.13)

By combining Eq. (3.12) and Eq. (3.13), we obtain a system of determining equations,

X1x̂ X1û

X2x̂ X2û

X3x̂ X3û
...

...

Xnx̂ Xnû


=



b1
1 b2

1 b3
1 · · · bn1

b1
2 b2

2 b3
2 · · · bn2

b1
3 b2

3 b3
3 · · · bn3

...
...

...
. . .

...

b1
n b2

n b3
n · · · bnn





ξ̂1 η̂1

ξ̂2 η̂2

ξ̂3 η̂3

...
...

ξ̂n η̂n


. (3.14)

Moreover, Eq. (3.14) is an un-coupled system of first order partial differential equa-

tions. In case of partial differential equation or any other complex ordinary differential

equation, this system of determining equations needs not to be linear. In addition

to the symmetry condition, if complex valued parameters were permitted to be used

then this method also gives the complex discrete symmetries of the given differential
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equation.

On the off chance that we are to find the discrete symmetries of a partial differential

equation rather than an ordinary differential equation, there will be some additional

columns for other independent variables. For instance, a partial differential equation

with two independent variables (x, t) and one dependent variable u, framework of Eq.

(3.14) will take the structure

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û
...

...
...

Xnx̂ Xnt̂ Xnû


=



b1
1 b2

1 b3
1 · · · bn1

b1
2 b2

2 b3
2 · · · bn2

b1
3 b2

3 b3
3 · · · bn3

...
...

...
. . .

...

b1
n b2

n b3
n · · · bnn





ξ̂1 τ̂1 η̂1

ξ̂2 τ̂2 η̂2

ξ̂3 τ̂3 η̂3

...
...

...

ξ̂n τ̂n η̂n


, (3.15)

where

Xm = ξm(x, t, u)
∂

∂x
+ τm(x, t, u)

∂

∂t
+ ηm(x, t, u)

∂

∂u
. (3.16)

The remainder of the strategy will remain precisely the equivalent.

Let us consider a detailed but simple example to understand the procedure.

Example 3.2.1. Consider an ordinary differential equation

d2u

dx2
= f

(
du

dx

)
. (3.17)

It has two-dimensional abelian Lie algebra of infinitesimal generators of one-parameter

Lie group of point symmetries

X1 =
∂

∂u
, (3.18)

X2 =
∂

∂x
. (3.19)
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System of determining equation (3.14) for Eq. (3.17) isX1x̂ X2û

X2x̂ X2û

 =

b1
1 b2

1

b1
2 b2

2

ξ̂1 η̂1

ξ̂2 η̂2

 , (3.20)

=

b1
1 b2

1

b1
2 b2

2

0 1

1 0

 , (3.21)

=

b2
1 b1

1

b2
2 b1

2

 . (3.22)

Solving the system, we have

X2x̂ = b2
2, (3.23)

∂x̂

∂x
= b2

2, (3.24)

x̂ = b2
2x+ g(u). (3.25)

Now

X2x̂ = b2
1, (3.26)

∂x̂

∂u
= b2

1, (3.27)

g(u) = b2
1u+ c1. (3.28)

So, Eq. (3.25) implies

x̂ = b2
2x+ b2

1u+ c1. (3.29)

Similarly,

û = b1
2x+ b1

1u+ c2. (3.30)

Therefore, the general solution of Eq. (3.22) is

(x̂, û) =
(
b2

2x+ b2
1u+ c1, b

1
2x+ b1

1u+ c2

)
. (3.31)

By definition Eq. (3.31) is the symmetry condition of Eq. (3.17) if and only if

d2û

dx̂2
= f

(
dû

x̂

)
. (3.32)
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Now extending the transformation to first and second derivatives

dû

dx̂
=
d (b1

2x+ b1
1u+ c2)

d (b2
2x+ b2

1u+ c1)
,

=
b1

2 + b1
1
du
dx

b2
2 + b2

1
du
dx

.

Likewise,

d2û

dx̂2
=
dû

dx̂

(
dû

dx̂

)
=

d
(
b12+b11

du
dx

b22+b21
du
dx

)
d (b2

2x+ b2
1u+ c1)

,

=
(b1

1b
2
2 − b1

2b
2
1) d2u

dx2(
b2

2 + b2
1
du
dx

)2 ,

=
(b1

1b
2
2 − b1

2b
2
1) f

(
du
dx

)(
b2

2 + b2
1
du
dx

)2 .

Thus, the symmetry condition is

(b1
1b

2
2 − b1

2b
2
1) f

(
du
dx

)(
b2

2 + b2
1
du
dx

)2 = f

(
b1

2 + b1
1
du
dx

b2
2 + b2

1
du
dx

)
. (3.33)

The symmetry condition (3.33) is satisfied only if b1
1 = b2

2 = 1 and b1
2 = b2

1 = 0.

Therefore, the only discrete symmetry of Eq. (3.17) up to equivalence is

(x̂, û) = (x+ c1, u+ c2) . (3.34)

3.3 Some Advancements in the Peter E. Hydon Tech-

nique

This section talks about certain enhancements in the fundamental startegy which was

presented in the last section. If the Lie algebra L of infinitesimal generators of one-

parameter Lie group of point symmetries is abelian, then in such case small enhance-

ments can be made. On the other hand, for a non-abelian Lie algebra L, system of

determining equations (3.14) can be substantially simplified in two steps [27, 28, 29].
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3.3.1 Canonical Coordinates

Consider Lie algebra to be abelian. Then in such case it is easy to use the canonical

coordinates as it ensures that a minimum of one generator within the basis is simplified.

This method is particularly effective when dimension of the Lie algebra is one [27].

Consider the canonical coordinates h(x, u) and k(x, u) satisfy

X1h = 1, X1k = 0, (3.35)

such that

X1 =
∂

∂h
= ∂h. (3.36)

As a result, the system of determining equations (3.15) for one dimension of Lie algebra

embodied in the form [
X1ĥ X1k̂

]
=
[
b1

1

] [
1 0

]
. (3.37)

Now Eq. (3.37) implies

∂ĥ

∂h
= b1

1 6= 0,
∂k̂

∂h
= 0,

ĥ = b1
1h+ s(k), k̂ = t(k), (3.38)

which is the general solution of Eq. (3.37) for some function s and t. The significance

of the symmetry condition on this transformation concludes which function among s, t

and constant (b1
1) are passable.

Example 3.3.1. Consider the Poisson-Boltzman equation [29]

d2u

dx2
+
r

t

du

dx
+ βeu = 0, r 6= 0, β ∈ {−1, 1}. (3.39)

It has one-dimensional Lie algebra of point symmetry generators, spanned by

X1 = x
∂

∂x
− 2

∂

∂u
. (3.40)

In canonical coordinates h(x, u) and k(x, u) by solving the system (3.35), we obtained

the corresponding symmetry transformation

h = ln (x), k = u+ ln (x2). (3.41)
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Then Eq. (3.39) becomes

d2k

dh2
+ (r − 1)

(
dk

dh
− 2

)
+ βek(h) = 0. (3.42)

Now according to symmetry condition if Eq. (3.42) holds so must

d2k̂

dĥ2
+ (r − 1)

(
dk̂

dĥ
− 2

)
+ βek̂(ĥ) = 0. (3.43)

Since, we know that k̂ = f(k). So, for a particular case of r = 1, calculating d2k̂

dĥ2

and applying the symmetry condition, then performing symmetry transformation once

more to convert back to (x, u) coordinates, thereby yields the following real set of

discrete symmetries of the Poisson-Boltzman equation

(x̂, û) ∈
{
xy, u+ 2 ln

(
x1−yy−1

)}
, y 6= 0, (3.44)

where y is an arbitrary constant.

3.3.2 Non-abelian Lie Algebra

Further taking the discussion of structure of Lie algebra. Consider L to be a non-

abelian Lie algebra. This means that at this point probably some of the equations

[Xm,Xn] = Cr
mnXr, (3.45)

are non-trivial, which leads to the following theorems [27, 28, 29].

Theorem 3.3.1. Let L be a Lie algebra, abelian or non-abelian, and X be the generator

of one-parameter Lie group of point symmetries of a differential equation. Then the

commuataor relation [
ζXmζ

−1, ζXnζ
−1
]

= Cr
mnζXrζ

−1, (3.46)

holds, if and only if

[Xm,Xn] = Cr
mnXr. (3.47)
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Theorem 3.3.2. Consider ζXmζ
−1 be the generator satisfying the same commutator

relation as Xm. Then from Eqs. (3.7)-(3.9), the structure constants Cr
mn and the

elements of the matrix B =
(
blm
)

satisfying the following equations can be written as

Ct
pqb

p
mb

q
n = Cr

mnb
t
r, all indices ranges from 1 to dim(L). (3.48)

Particularly, let dim(L) = s, then Eq. (3.48) will have s3-equations but due to the

antisymmetric property of the structure constraints in the lower indices, the number of

distinct equations will reduce to s2(s−1)
2

. So, it is adequate to confine diligence towards

m < n.

Thus, the system of determining equations is simplified extensively with the help of

these limitations on the elements of the matrix B = (b1
1). In this way making the

system simpler to settle. On the off chance if the number of equations is excessively

huge, utilization of some computer algebra is suggested.

Now we give a detailed example to understand the process.

Example 3.3.2. Consider an ordinary differential equation

d4u

dx4
=

(
d3u

dx3

)3(
x− du

dx

)
. (3.49)

It has three dimensional Lie algebra, with the basis

X1 =
∂

∂u
, (3.50)

X2 =
∂

∂x
+ x

∂

∂u
, (3.51)

X3 = x
∂

∂x
+ 2u

∂

∂u
. (3.52)

The only non-zero structure constants are

C1
13 = 2, C1

31 = −2, (3.53)

C2
23 = 1, C2

32 = −1. (3.54)
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Now we solve the equations

Ct
pqb

p
mb

q
n = Cr

mnb
t
r, all indices ranges from 1 to 3. (3.55)

As we have already studied that we get the distinct equations if and only if m < n.

Now in this particular case, (m,n) = (1, 2), (1, 3), (2, 3). Since, the superscript value of

3 in the structure constant is zero. Therefore, we will start with t = 3, thereby making

it easier to solve.

Consider t = 3

C3
pq = 0, m, n = 1, 2, 3. (3.56)

Consquently, the constraints reduce to linear equations

Cr
mnb

3
r = 0, (3.57)

C1
mnb

3
1 + C2

mnb
3
2 + C3

mnb
3
3 = 0. (3.58)

For (m,n) = (1, 2), equation is satisfied. Now for (m,n) = (1, 3), we have

b3
1 = 0. (3.59)

Likewise, for (m,n) = (2, 3)

b3
2 = 0. (3.60)

Consider t = 1

C1
pq = 0, (p, q) 6= (1, 3), (3, 1). (3.61)

The constraints reduce to non-linear equations

C1
13b

1
mb

3
n + C1

31b
3
mb

1
n = Cr

mnb
1
r, (3.62)

(2)b1
mb

3
n + (−2)b3

mb
1
n = C1

mnb
1
1 + C2

mnb
1
2 + C3

mnb
1
3, (3.63)

2b1
mb

3
n − 2b3

mb
1
n = C1

mnb
1
1 + C2

mnb
1
2 + C3

mnb
1
3. (3.64)
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For (m,n) = (1, 2), equation is satisfied, whereas for (m,n) = (1, 3)

2b1
1b

3
3 − 2b3

1b
1
3 = C1

13b
1
1 + C2

13b
1
2 + C3

13b
1
3, (3.65)

b1
1b

3
3 = b1

1. (3.66)

For (m,n) = (2, 3)

2b1
2b

3
3 − 2b3

2b
1
3 = C1

23b
1
1 + C2

23b
1
2 + C3

23b
1
3, (3.67)

2b1
2b

3
3 = b1

2. (3.68)

Consider t = 2

C2
pq = 0, (p, q) 6= (2, 3), (3, 2). (3.69)

The constraints reduce to non-linear equations

C2
23b

2
mb

3
n + C2

23b
3
mb

2
n = Cr

mnb
2
r, (3.70)

b2
mb

3
n − b3

mb
2
n = C1

mnb
2
1 + C2

mnb
2
2 + C3

mnb
2
3. (3.71)

For (m,n) = (1, 2), equation is satisfied, and for (m,n) = (1, 3), we have

b2
1b

3
3 − b3

1b
2
3 = C1

13b
2
1 + C2

13b
2
2 + C3

13b
2
3, (3.72)

b2
1b

3
3 = 2b2

1. (3.73)

For (m,n) = (2, 3)

b2
2b

3
3 − b3

2b
2
3 = C1

23b
2
1 + C2

23b
2
2 + C3

23b
2
3, (3.74)

b2
2b

3
3 = b2

2. (3.75)

Thus, we have been able to simplify B =
(
blm
)

as

B =


b1

1 b2
1 b3

1

b1
2 b2

2 b3
2

b1
3 b2

3 b3
3

 =


b1

1 b2
1 0

b1
2 b2

2 0

b1
3 b2

3 b3
3

 , (3.76)
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with the following conditions

b1
1b

3
3 = b1

1, (3.77)

2b1
2b

3
3 = b1

2, (3.78)

b2
1b

3
3 = 2b2

1, (3.79)

b2
2b

3
3 = b2

2. (3.80)

Since, we know that B must be non-singular. Therefore, with b1
1 6= 0 and b2

2 6= 0

resulting in b1
2 = b2

1 = 0 and b3
3 = 1, thus

B =


b1

1 0 0

0 b2
2 0

b1
3 b2

3 1

 . (3.81)

3.3.3 Inequivalent Discrete Symmetries

This section deals with more improvisation of the process and to figure out how to find

the inequivalent discrete symmetries [29, 32].

Definition 3.3.3. Let ζ and ζ̂ be the two point symmetries of an ordinary differential

equation (3.1), then these symmetries are said to be equivalent if there exists X ∈ L
such that ζ̂ = eεXζ.

The system of determining equations (3.14) naturally simplified with the number of

reduction of matrices due to the abelian structure of a Lie algebra (i.e. all the structure

constants are zero), implying that there are no constraints.

Furthermore, this improvement is not limited to only non-abelian Lie algebra L.

Infact, it can be applied to a Lie algebra with zero structure constants, but no consid-

erable simplification of the system is achieved.

On contrary, for the non-abelian case we always try to simplify the matrix B =
(
blm
)

first with the help of non-linear constraints. It is to be noted that for simplification the
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improvements discussed in previous and preceding sections must be used simultane-

ously. Let us define some important notions [29, 32] regarding matrices and theorems

forming basis for corresponding inequivalent discrete symmetries as

(C(n))rm = Cr
mn, (3.82)

and

A (n, ε) =
∞∑
j=0

εj

j!
(C(n))j = eεC(n). (3.83)

Theorem 3.3.3. Let ζ be the point symmetry and L be the Lie algebra. Then for a

particular parameter say ε, the automorphism stimulated by the point symmetry ζ is

given by ζ = eεXm with the corresponding matrix representation

B = A (n, ε) , (3.84)

where Xm is basis element of L.

Theorem 3.3.4. Let B1 and B2 be the corresponding matrix representation of an au-

tomorphism stimulated by the point symmetries ζ1 and ζ2 respectively. Then the matrix

representation of the composition of point symmetries ζ2◦ζ1 inducing the automorphism

is B2B1.

Theorem 3.3.5. Let the point symmetries ζ1 and ζ2 = eεXζ1 stimulating the automor-

phism with the corresponding matrix representation as B1 and B2 respectively. Then

for some parameter εm, m = 1, 2, 3, · · · , s, we have

B2 = A (1, ε1)A (2, ε2) · · ·A (s, εs)B1, (3.85)

where s is the dimension of a Lie algebra L.

In order to obtain the inequivalent discrete symmetries, we have to solve the system

(3.14) for the inequivalent matrices only. To find the corresponding Lie point symme-

tries generated by Xm, we need to generate a new matrix say B2 by multiplying B1

with each matrix A(n, ε) once, that is, A(n, εs)B1 or B1A(n, εs). Then the obtained

matrix B2 can further be simplified by assigning a particular value to εm’s. This will
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help in creating zeros in the matrix B2 resulting in the simplification of determining

equations and non-linear constraints. It is to be noted that all the above procedure is

applicable if for some ε, C(n) is non-zero. On contrary, A(n, ε) is the identity matrix

for all ε, if for some n, C(n) = 0. By solving the determining equations, symmetries

obtained in such way stimulates a non-trivial automorphism on a Lie algebra L.

We epitomize the framework with an example [36].

Example 3.3.4. Consider a first order ODE

du

dx
= xu. (3.86)

with a two dimensional Lie algebra, spanned by

X1 =
1

x

∂

∂x
, (3.87)

X2 = e
x2

2
∂

∂u
. (3.88)

The commutator relation

[X1,X2] = X2, (3.89)

yields the following non-zero structure constants

C2
12 = 1, C2

21 = −1. (3.90)

Now we try to solve the system of non-linear constraints (3.48) for the given values of

Cr
mn.

Ct
pqb

p
mb

q
n = Cr

mnb
t
r, all indices ranges from 1 to 2. (3.91)

Consider t = 1, we have

C1
pq = 0, p, q = 1, 2. (3.92)

The constraints reduce to

Cr
mnb

1
r = 0, (3.93)

C1
mnb

1
1 + C2

mnb
1
2 = 0. (3.94)
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Now for (m,n) = (1, 2) with m < n, Eq. (3.94) takes the form

b1
2 = 0. (3.95)

Consider t = 2, we have

C2
pq = 0, (p, q) 6= (1, 2), (2, 1). (3.96)

The constraints reduce to

b1
mb

2
n − b2

mb
1
n = C1

mnb
2
2 + C2

mnb
2
2. (3.97)

For (m,n) = (1, 2), Eq. (3.97) can be written as

b2
2

(
b1

1 − 1
)

= 0, (3.98)

Since, B is non-singular, therefore

b1
1 = 1, as b2

2 6= 0. (3.99)

Substituting all the values of
(
blm
)

into the matrix B, we have

B =

b1
1 b2

1

b1
2 b2

2

 =

1 b2
1

0 b2
2

 . (3.100)

Now in order to find the inequivalent matrices using Theorems (3.3.3)-(3.3.5), first we

calculate the matrices C(n) and A (n, ε).

So,

C(1) =

0 0

0 −1

 , (3.101)

and

C(2) =

0 1

0 0

 . (3.102)
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Now

A(1, ε) = exp (εC(1)) =

1 0

0 1− ε+ ε2

2

 , (3.103)

Similarly,

A(2, ε) =

1 ε

0 1

 . (3.104)

Multiplying B with A(1, ε), we have

A(1, ε)B =

1 b2
1

0 b2
2

(
1− ε+ ε2

2

) . (3.105)

Let ε = ε1 = 1± ι, so that 1− ε+ ε2

2
= 0. Therefore, Eq. (3.105) takes the form

A(1, ε1) =

1 b2
1

0 0

 . (3.106)

Now multiplying A(2, ε)

A(2, ε)A(1, ε1)B =

1 b2
1

0 0

 . (3.107)

Let B1 = A(2, ε)A(1, ε1)B is the required inequivalent matrix. To obtain the general

solution by utilizing the determining equations (3.14), we haveX1x̂ X1û

X2x̂ X2û

 =

1 b2
1

0 0

 1
x

0

0 e
x2

2

 , (3.108)

=

 1
x

b2
1e

x2

2

0 0

 . (3.109)

Its general solution is

(x̂, û) =
(
x+ a1, b

2
1e

x2

2 + a2

)
, (3.110)
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where ai are constants.

Upon applying the symmetry condition to Eq. (3.110), we should have

dû

dx̂
= x̂û. (3.111)

Since,
dû

dx̂
= b2

1xe
x2

2 . (3.112)

So, Eq. (3.111) implies the symmetry condition as

b2
1xe

x2

2 = b2
1xe

x2

2 + xa2 + a1e
x2

2 + a1a2. (3.113)

The symmetry condition of Eq. (3.113) is satisfied if b2
1 = 1, and a1 = a2 = 0.

Therefore, up to equivalence there is only one discrete symmetry of Eq. (3.86)

(x̂, û) =
(
x, e

x2

2

)
. (3.114)
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Chapter 4

Continuous and Discrete Symmetry
Analysis of Burgers’ Equation

The primary objective of this chapter is to find all the continuous and discrete sym-

metries of the Burgers’ equation. The calculation of all the discrete symmetries of the

Burgers’ equation is exhaustive, thereby computer algebra is recommended.

4.1 Analysis of Continuous Symmetries

Consider a one-dimensional Burgers’ equation

uxx + 2uux = ut, 0 < x < 1, (4.1)

with initial and boundary conditions

u(x, 0) = sin(πx), 0 < x < 1, (4.2)

u(0, t) = u(1, t) = 0, t > 0. (4.3)

Since, Eq. (4.1) is a second order non-linear PDE, so we need to apply the second

order prolongation X(2) with the corresponding coefficient Eqs. (1.47)-(1.51). To use

the infinitesimal criterion of invariance, let us introduce

W = uxx + 2uux − ut, (4.4)
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then by Theorem (1.7.1), we have

X(2)W |W=0 ≡ 0, (4.5)

which reduces to

ηxx + 2ηxu− ηt + 2ηux = 0. (4.6)

Using the values of η, ηx, ηt and ηxx from Eqs. (1.47)-(1.51) in Eq. (4.6), we have

ηxx + (2ηxu − ξxx)ux − τxxut + (ηu − 2ξx)uxx − 2τxutx + (ηuu − 2ξxu)u
2
x

− 2τxuutux − ξuuu3
x − τuuutu2

x − 3ξuuxuxx− 2τuuxutx + 2(ηx + (ηu − ξx)ux

− τxut − ξuu2
x − τuutux)u− (ηt + (ηu − τt)ut − ξtux − τuu2

x − ξuutux)

+ 2ηux = 0. (4.7)

The comparison of coefficients of utx yields

τxx = τuu = 0. (4.8)

Therefore, Eqn.(4.7) simplified to

ηxx + (2ηxu − ξxx)ux + (ηu − 2ξx)uxx + (ηuu − 2ξxu)u
2
x − ξuuu3

x − 3ξuuxuxx

+ 2(ηx + (ηu − ξx)ux − ξuu2
x)u− (ηt + (ηu − τt)ut − ξtux − ξuutux)− ξtux

− ξuutux) + 2ηux = 0, (4.9)

which after some calculus reduces to

ηxx − ηt + 2ηxu+ (2ηxu − ξxx + 2ξxu+ ξt + 2η)ux + (ηuu − 2ξxu + 4ξuu)u2
x

− ξuuu3
x + (τt − 2ξuux − 2ξx)ut = 0. (4.10)

By comparing the coefficients of u
(0)
x , u

(1)
x , u

(2)
x , u

(3)
x and ut yields the following system

of partial differential equations

u(0)
x : ηxx − ηt + 2ηxu = 0, (4.11)

u(1)
x : 2ηxu − ξxx + 2ξxu+ ξt + 2η = 0, (4.12)

u(2)
x : ηuu − 2ξxu + 4ξuu = 0, (4.13)

u(3)
x : ξuu = 0, (4.14)

ut : τt − 2ξuux − 2ξx = 0. (4.15)
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After solving the system, one obtains the coefficient functions ξ, τ and η of the form

ξ(x, t, u) =
1

2
(c1x− 4c4)t+

1

2
c2x+ c5, (4.16)

τ(x, t, u) =
1

2
c1t

2 + c2t+ c3, (4.17)

η(x, t, u) = −1

4
(x+ 2ut)c1 −

1

2
c2u+ c4. (4.18)

The corresponding vector field X is

X =

(
1

2
(c1x− 4c4)t+

1

2
c2x+ c5

)
∂

∂x
+

(
1

2
c1t

2 + c2t+ c3

)
∂

∂t

+

(
−1

4
(x+ 2ut)c1 −

1

2
c2u+ c4

)
∂

∂u
. (4.19)

Hence, the Lie algebra of infinitesimal symmetry of the Burgers’ equation is spanned

by the five vector fields, that is

X1 =
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u
, (4.20)

X2 =
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u
, (4.21)

X3 =
∂

∂t
, (4.22)

X4 = −2t
∂

∂x
+

∂

∂u
, (4.23)

X5 =
∂

∂x
. (4.24)

The commutation relations between these infinitesimal generators are given in the

following table:

[Xm,Xn] X1 X2 X3 X4 X5

X1 0 −X1 −X2 0 1
4
X4

X2 X1 0 −X3
1
2
X4 −1

2
X5

X3 X2 X3 0 −2X5 0

X4 0 −1
2
X4 2X5 0 0

X5 −1
4
X4

1
2
X5 0 0 0

Table 4.1: Commutator table for the Lie algebra Xm and Xn
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4.2 Analysis of Discrete Symmetries

In this section we find all the discrete symmetries of the Burgers’ equation.

4.2.1 Non-zero Structure Constants

The non-zero structure constants Cr
mn obtained from commutation relations are

C1
12 = −1, C1

21 = 1, C2
13 = −1, C2

31 = 1,

C3
23 = −1, C3

32 = 1, C4
15 =

1

4
, C4

51 = −1

4
,

C4
24 =

1

2
, C4

42 = −1

2
, C5

25 = −1

2
, C5

52 =
1

2
,

C5
34 = −2, C5

43 = 2.

4.2.2 Non-linear Constraints

Now in order to simplify the B =
(
blm
)

matrix, we need to substitute the non-zero

structure constants in the corresponding non-linear constraints

Cs
pqb

p
mb

q
n = Cr

mnb
s
r, m < n, m, n, p, q, r, s = 1, 2, 3, 4, 5. (4.25)

Consider s = 1, we have

C1
mn = 0, (m,n) 6= (1, 2), (2, 1).

The constraints reduce to non-linear equations

C1
12b

1
mb

2
n + C1

21b
2
mb

1
n = Cr

mnb
1
r,

−b1
mb

2
n + b2

mb
1
n = C1

mnb
1
1 + C2

mnb
1
2 + C3

mnb
1
3 + C4

mnb
1
4 + C5

mnb
1
5.

For (m,n) = (1, 2)

−b1
1b

2
2 + b2

1b
1
2 = C1

12b
1
1 + C2

12b
1
2 + C3

12b
1
3 + C4

12b
1
4 + C5

12b
1
5,

−b1
1b

2
2 + b2

1b
1
2 = −b1

1.
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For (m,n) = (1, 3)

−b1
1b

2
3 + b2

1b
1
3 = C1

13b
1
1 + C2

13b
1
2 + C3

13b
1
3 + C4

13b
1
4 + C5

13b
1
5,

−b1
1b

2
3 + b2

1b
1
3 = −b1

2.

For (m,n) = (1, 4)

−b1
1b

2
4 + b2

1b
1
4 = C1

14b
1
1 + C2

14b
1
2 + C3

14b
1
3 + C4

14b
1
4 + C5

14b
1
5,

−b1
1b

2
4 + b2

1b
1
4 = 0.

For (m,n) = (1, 5)

−b1
1b

2
5 + b2

1b
1
5 = C1

15b
1
1 + C2

15b
1
2 + C3

15b
1
3 + C4

15b
1
4 + C5

15b
1
5,

−b1
1b

2
4 + b2

1b
1
4 =

1

4
b1

4.

For (m,n) = (2, 3)

−b1
2b

2
3 + b2

2b
1
3 = C1

23b
1
1 + C2

23b
1
2 + C3

23b
1
3 + C4

23b
1
4 + C5

23b
1
5,

−b1
2b

2
3 + b2

2b
1
3 = −b1

3.

For (m,n) = (2, 4)

−b1
2b

2
4 + b2

2b
1
4 = C1

24b
1
1 + C2

24b
1
2 + C3

24b
1
3 + C4

24b
1
4 + C5

24b
1
5,

−b1
2b

2
4 + b2

2b
1
4 = 0.

For (m,n) = (2, 5)

−b1
2b

2
5 + b2

2b
1
5 = C1

25b
1
1 + C2

25b
1
2 + C3

25b
1
3 + C4

25b
1
4 + C5

25b
1
5,

−b1
2b

2
5 + b2

2b
1
5 =

1

2
b1

4.

For (m,n) = (3, 4)

−b1
3b

2
4 + b2

3b
1
4 = C1

34b
1
1 + C2

34b
1
2 + C3

34b
1
3 + C4

34b
1
4 + C5

34b
1
5,

−b1
3b

2
4 + b2

3b
1
4 = 0.

48



For (m,n) = (3, 5)

−b1
3b

2
5 + b2

3b
1
5 = C1

35b
1
1 + C2

35b
1
2 + C3

35b
1
3 + C4

35b
1
4 + C5

35b
1
5,

−b1
3b

2
5 + b2

3b
1
5 = 0.

For (m,n) = (4, 5)

−b1
4b

2
5 + b2

4b
1
5 = C1

45b
1
1 + C2

45b
1
2 + C3

45b
1
3 + C4

45b
1
4 + C5

45b
1
5,

−b1
4b

2
5 + b2

4b
1
5 = 0.

Thus, for s = 1, yields the system of non-linear equations as

−b1
1b

2
2 + b2

1b
1
2 = −b1

1,

−b1
1b

2
3 + b2

1b
1
3 = −b1

2,

−b1
1b

2
4 + b2

1b
1
4 = 0,

−b1
1b

2
4 + b2

1b
1
4 = 1

4
b1

4,

−b1
2b

2
3 + b2

2b
1
3 = −b1

3,

−b1
2b

2
4 + b2

2b
1
4 = 0,

−b1
2b

2
5 + b2

2b
1
5 = 1

2
b1

4,

−b1
3b

2
4 + b2

3b
1
4 = 0,

−b1
3b

2
5 + b2

3b
1
5 = 0,

−b1
4b

2
5 + b2

4b
1
5 = 0.



(4.26)

By solving the system (4.26) of non-linear equations in Maple, we get five different

possibilities to solve it. Due to non-sigularity of the martix B, we can only work with

three of them. Therefore, for the first case equating b2
2 = −1, b2

3 6= 0 and b1
3 6= 0, we

obtain the following form of the matrix B =
(
blm
)

= B1

B1 =



b1
1 b2

1 b3
1 b4

1 b5
1

b1
2 b2

2 b3
2 b4

2 b5
2

b1
3 b2

3 b3
3 b4

3 b5
3

b1
4 b2

4 b3
4 b4

4 b5
4

b1
5 b2

5 b3
5 b4

5 b5
5


=



0 0 b3
1 b4

1 b5
1

0 −1 b3
2 b4

2 b5
2

b1
3 b2

3 b3
3 b4

3 b5
3

0 0 b3
4 b4

4 b5
4

0 0 b3
5 b4

5 b5
5


. (4.27)
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Consider s = 2, we have

C2
mn = 0, (m,n) 6= (1, 3), (3, 1).

The constraints reduce to non-linear equations

C2
13b

1
mb

3
n + C2

31b
3
mb

1
n = Cr

mnb
2
r,

−b1
mb

3
n + b3

mb
1
n = C1

mnb
1
1 + C2

mnb
2
2 + C3

mnb
2
3 + C4

mnb
2
4 + C5

mnb
2
5.

For (m,n) = (1, 3)

−b1
1b

3
3 + b3

1b
1
3 = C1

13b
2
1 + C2

13b
2
2 + C3

13b
2
3 + C4

13b
2
4 + C5

13b
2
5,

−b1
1b

3
3 + b1

3b
3
1 = (−1)b2

2,

b3
1b

1
3 = 1,

b3
1 =

1

b1
3

, as b1
3 6= 0.

For (m,n) = (1, 5)

−b1
1b

3
5 + b1

3b
1
5 = C1

15b
2
1 + C2

15b
2
2 + C3

15b
2
3 + C4

15b
2
4 + C5

15b
2
5,

−b1
1b

3
5 + b3

1b
1
5 =

1

4
b2

4,

b2
4 = 0.

For (m,n) = (2, 3)

−b1
2b

3
3 + b3

2b
1
3 = C1

23b
2
1 + C2

23b
2
2 + C3

23b
2
3 + C4

23b
2
4 + C5

23b
2
5,

−b1
2b

3
3 + b3

2b
1
3 = −b2

3,

b3
2b

1
3 = −b2

3.

For (m,n) = (2, 4)

−b1
2b

3
4 + b3

2b
1
4 = C1

24b
2
1 + C2

24b
2
2 + C3

24b
2
3 + C4

24b
2
4 + C5

24b
2
5,

−b1
2b

3
4 + b3

2b
1
4 =

1

2
b2

4,

b2
4 = 0.
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For (m,n) = (2, 5)

−b1
2b

3
5 + b3

2b
1
5 = C1

25b
2
1 + C2

25b
2
2 + C3

25b
2
3 + C4

25b
2
4 + C5

25b
2
5,

−b1
2b

3
5 + b3

2b
1
5 = −1

2
b2

5,

b2
5 = 0.

For (m,n) = (3, 4)

−b1
3b

3
4 + b3

3b
1
4 = C1

34b
2
1 + C2

34b
2
2 + C3

34b
2
3 + C4

34b
2
4 + C5

34b
2
5,

−b1
3b

3
4 = −2b2

5,

b1
3b

3
4 = 0,

b3
4 = 0, as b1

3 6= 0.

For (m,n) = (3, 5)

−b1
3b

3
5 + b3

3b
1
5 = C1

35b
2
1 + C2

35b
2
2 + C3

35b
2
3 + C4

35b
2
4 + C5

35b
2
5,

−b1
3b

3
5 + b3

3b
5
1 = 0,

−b1
3b

3
5 = 0,

b3
5 = 0, since b1

3 6= 0.

However, for (m,n) = (1, 2), (1, 4), (4, 5), the corresponding equations are satisfied.

Thus, Eq. (4.27), the matrix B1 takes the form

B1 =



0 0 1
b13

b4
1 b5

1

0 −1 b3
2 b4

2 b5
2

b1
3 b2

3 b3
3 b4

3 b5
3

0 0 0 b4
4 b5

4

0 0 0 b4
5 b5

5


. (4.28)

Consider s = 3, we have

C3
mn = 0, (m,n) 6= (2, 3), (3, 2).
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The constraints reduce to non-linear equations

C3
23b

2
mb

3
n + C3

32b
3
mb

2
n = Cr

mnb
3
r,

−b2
mb

3
n + b3

mb
2
n = C1

mnb
3
1 + C2

mnb
3
2 + C3

mnb
3
3 + C4

mnb
3
4 + C5

mnb
3
5.

For (m,n) = (1, 2)

−b2
1b

3
2 + b3

1b
2
2 = C1

12b
3
1 + C2

12b
3
2 + C3

12b
3
3 + C4

12b
3
4 + C5

12b
3
5,

−b2
1b

3
2 + b3

1b
2
2 = −b3

1,

b3
1 = b3

1 6= 0.

For (m,n) = (1, 3)

−b2
1b

3
3 + b3

1b
2
3 = C1

13b
3
1 + C2

13b
3
2 + C3

13b
3
3 + C4

13b
3
4 + C5

13b
3
5,

−b2
1b

3
3 + b3

1b
2
3 = −b3

2,

b3
1b

2
3 = −b3

2.

For (m,n) = (2, 3)

−b2
2b

3
3 + b3

2b
2
3 = C1

23b
3
1 + C2

23b
3
2 + C3

23b
3
3 + C4

23b
3
4 + C5

23b
3
5,

−b2
2b

3
3 + b3

2b
2
3 = −b3

3,

b3
2b

2
3 = −b3

3.

Similarly, for (m,n) = (i, j), i, j = 1, 2, 3, 4, with i < j, the corresponding equations

are satisfied. Consequently, Eq. (4.28), the matrix B1 can be written as

B1 =



0 0 1
b13

b4
1 b5

1

0 −1 b3
2 b4

2 b5
2

b1
3 b2

3 b3
3 b4

3 b5
3

0 0 0 b4
4 b5

4

0 0 0 b4
5 b5

5


. (4.29)

Consider n = 4, we have

C4
mn = 0, (m,n) 6= (1, 5), (5, 1), (2, 4), (4, 2).
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The constraints leads to non-linear equations

C4
15b

1
mb

5
n + C4

51b
5
mb

1
n + C4

24b
2
mb

4
n + C4

42b
4
mb

2
n = Cr

mnb
4
r,

1

4
b1
mb

5
n −

1

4
b5
mb

1
n +

1

2
b2
mb

4
n −

1

2
b4
mb

2
n = C1

mnb
4
1 + C2

mnb
4
2 + C3

mnb
4
3 + C4

mnb
4
4 + C5

mnb
4
5.

For (m,n) = (1, 2)

1

4
b1

1b
5
2 −

1

4
b5

1b
1
2 +

1

2
b2

1b
4
2 −

1

2
b4

1b
2
2 = C1

12b
4
1 + C2

12b
4
2 + C3

12b
4
3 + C4

12b
4
4 + C5

12b
4
5,

−1

2
(−1)b4

1 = −b4
1,

b4
1 = 0.

For (m,n) = (1, 3)

1

4
b1

1b
5
3 −

1

4
b5

1b
1
3 +

1

2
b2

1b
4
3 −

1

2
b4

1b
2
3 = C1

13b
4
1 + C2

13b
4
2 + C3

13b
4
3 + C4

13b
4
4 + C5

13b
4
5,

−1

4
b5

1b
1
3 = −b4

2,

b4
2 =

1

4
b5

1b
1
3.

For (m,n) = (1, 5)

1

4
b1

1b
5
5 −

1

4
b5

1b
1
5 +

1

2
b2

1b
4
5 −

1

2
b4

1b
2
5 = C1

15b
4
1 + C2

15b
4
2 + C3

15b
4
3 + C4

15b
4
4 + C5

15b
4
5,

1

4
b1

1b
5
5 −

1

4
b5

1b
1
5 +

1

2
b2

1b
4
5 −

1

2
b4

1b
2
5 =

1

4
b4

4,

b4
4 = 0.

For (m,n) = (2, 3)

1

4
b1

2b
5
3 −

1

4
b5

2b
1
3 +

1

2
b2

2b
4
3 −

1

2
b4

2b
2
3 = C1

23b
4
1 + C2

23b
4
2 + C3

23b
4
3 + C4

23b
4
4 + C5

23b
4
5,

−1

4
b5

2b
1
3 −

1

2
b4

3 −
1

2
b4

2b
2
3 = −b4

3,

−1

2

(
1

2
b5

2b
1
3 + b4

2b
2
3

)
= −1

2
b4

3,

1

2
b5

2b
1
3 + b4

2b
2
3 = b4

3.
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For (m,n) = (2, 5)

1

4
b1

2b
5
5 −

1

4
b5

2b
1
5 +

1

2
b2

2b
4
5 −

1

2
b4

2b
2
5 = C1

25b
4
1 + C2

25b
4
2 + C3

25b
4
3 + C4

25b
4
4 + C5

25b
4
5,

−1

2
b4

5 = −1

2
b4

5,

b4
5 = b4

5 6= 0.

For (m,n) = (3, 4)

1

4
b1

3b
5
4 −

1

4
b5

3b
1
4 +

1

2
b2

3b
4
4 −

1

2
b4

3b
2
4 = C1

34b
4
1 + C2

34b
4
2 + C3

34b
4
3 + C4

34b
4
4 + C5

34b
4
5,

1

4
b1

3b
5
4 = −2b4

5,

−1

2

(
1

4
b1

3b
5
4

)
= b4

5.

For (m,n) = (3, 5)

1

4
b1

3b
5
5 −

1

4
b5

3b
1
5 +

1

2
b2

3b
4
5 −

1

2
b4

3b
2
5 = C1

35b
4
1 + C2

35b
4
2 + C3

35b
4
3 + C4

35b
4
4 + C5

35b
4
5,

1

4
b1

3b
5
5 −

1

4
b5

3b
1
5 +

1

2
b2

3b
4
5 −

1

2
b4

3b
2
5 = 0,

1

4
b1

3b
5
5 +

1

2
b2

3b
4
5 = 0.

Nontheless, the corresponding equations for (m,n) = (1, 4), (2, 4), (4, 5), are satisfied.

So, Eq. (4.29), the matrix B1 is

B1 =



0 0 1
b13

0 b5
1

0 −1 b3
2

1
4
b5

1b
1
3 b5

2

b1
3 b2

3 b3
3 b5

2b
1
3 + b4

2b
2
3 b5

3

0 0 0 0 b5
4

0 0 0 −1
4

(
1
2
b1

3b
4
5

)
b5

5


. (4.30)

Consider n = 5, we have

C5
mn = 0, (m,n) 6= (2, 5), (5, 2), (3, 4), (4, 3).
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The constraints reduce to non-linear equations

C5
25b

2
mb

5
n + C5

52b
5
mb

2
n + C5

34b
3
mb

4
n + C5

43b
4
mb

3
n = Cr

mnb
5
r,

−1

2
b2
mb

5
n +

1

2
b5
mb

2
n − 2b3

mb
4
n + 2b4

mb
3
n = C1

mnb
5
1 + C2

mnb
5
2 + C3

mnb
5
3 + C4

mnb
5
4 + C5

mnb
5
5.

For (m,n) = (1, 2)

−1

2
b2

1b
5
2 +

1

2
b5

1b
2
2 − 2b3

1b
4
2 + 2b4

1b
3
2 = C1

12b
5
1 + C2

12b
5
2 + C3

12b
5
3 + C4

12b
5
4 + C5

12b
5
5,

−1

2
b5

1 − 2b3
1b

4
2 + 2b4

1b
3
2 = −b5

1,

1

2
b5

1 − 2b3
1b

4
2 = 0.

For (m,n) = (1, 3)

−1

2
b2

1b
5
3 +

1

2
b5

1b
2
3 − 2b3

1b
4
3 + 2b4

1b
3
3 = C1

13b
5
1 + C2

13b
5
2 + C3

13b
5
3 + C4

13b
5
4 + C5

13b
5
5

1

2
b5

1b
2
3 − 2b3

1b
4
3 + 2b4

1b
3
3 = −b5

2,

−1

2
b5

1b
2
3 + 2b3

1b
4
3 − 2b4

1b
3
3 = b5

2.

For (m,n) = (1, 5)

−1

2
b2

1b
5
5 +

1

2
b5

1b
2
5 − 2b3

1b
4
5 + 2b4

1b
3
5 = C1

15b
5
1 + C2

15b
5
2 + C3

15b
5
3 + C4

15b
5
4 + C5

15b
5
5,

−2b3
1b

4
5 =

1

4
b5

4,

−2b3
1

(
−1

8
b1

3b
5
4

)
=

1

4
b5

4,

1

4
b3

1

(
1

b3
1

)
b5

4 =
1

4
b5

4,

b5
4 = b5

4 6= 0.

For (m,n) = (2, 3)

−1

2
b2

2b
5
3 +

1

2
b5

2b
2
3 − 2b3

2b
4
3 + 2b4

2b
3
3 = C1

23b
5
1 + C2

23b
5
2 + C3

23b
5
3 + C4

23b
5
4 + C5

23b
5
5,

−1

2
b2

2b
5
3 +

2

2
b5

2b
2
3 − 2b3

2b
4
3 + 2b4

2b
3
3 = −b5

3,

1

2
b5

3 +
2

2
b5

2b
2
3 − 2b3

2b
4
3 + 2b4

2b
3
3 = −b5

3.

(4.31)
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For (m,n) = (2, 4)

−1

2
b2

2b
5
4 +

1

2
b5

2b
2
4 − 2b3

2b
4
4 + 2b4

2b
3
4 = C1

24b
5
1 + C2

24b
5
2 + C3

24b
5
3 + C4

24b
5
4 + C5

24b
5
5,

1

2
b5

4 =
1

2
b5

4,

b5
4 = b5

4 6= 0.

For (m,n) = (2, 5)

−1

2
b2

2b
5
5 +

1

2
b5

2b
2
5 − 2b3

2b
4
5 + 2b4

2b
3
5 = C1

25b
5
1 + C2

25b
5
2 + C3

25b
5
3 + C4

25b
5
4 + C5

25b
5
5,

−1

2
b2

2b
5
5 +

2

2
b5

2b
2
5 − 2b3

2b
4
5 + 2b4

2b
3
5 = −1

2
b5

5,

b5
5 − 2b3

2b
4
5 = 0.

For (m,n) = (3, 4)

−1

2
b2

3b
5
4 +

1

2
b5

3b
2
4 − 2b3

3b
4
4 + 2b4

3b
3
4 = C1

34b
5
1 + C2

34b
5
2 + C3

34b
5
3 + C4

34b
5
4 + C5

34b
5
5,

1

2
b2

3b
5
4 = 2b5

5,

b2
3b

5
4 = b5

5.

For (m,n) = (3, 5)

−1

2
b2

3b
5
5 +

1

2
b5

3b
2
5 − 2b3

3b
4
5 + 2b4

3b
3
5 = C1

35b
5
1 + C2

35b
5
2 + C3

35b
5
3 + C4

35b
5
4 + C5

35b
5
5,

−1

2
b2

3b
5
5 +

2

2
b5

3b
2
5 − 2b3

3b
4
5 + 2b4

3b
3
5 = 0,

1

2
b2

3b
5
5 + 2b3

3b
4
5 = 0.

Likewise, the corresponding equations for (m,n) = (1, 4), (4, 5), are satisfied. Up to

this point, the matrix B1 =
(
blm
)

has been simplified as

B1 =



0 0 1
b13

0 b5
1

0 −1 −b3
1b

2
3

1
4

b51
b13

b5
2

b1
3 −b3

2b
1
3 −b3

2b
2
3

1
2
b5

2b
1
3 + b4

2b
2
3 b5

3

0 0 0 0 b5
4

0 0 0 −1
4

(
1
2
b1

3b
5
4

)
b5

5


, (4.32)
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with the following non-linear constraints

1

4
b1

3b
5
5 +

1

2
b2

3b
4
5 = 0,

1

2
b5

1 − 2b3
1b

4
2 = 0,

−1

2
b5

1b
2
3 + 2b3

1b
4
3 − 2b4

1b
3
3 = b5

2,

1

2
b5

3 +
2

2
b5

2b
2
3 − 2b3

2b
4
3 + 2b4

2b
3
3 = −b5

3,

b5
5 − 2b3

2b
4
5 = 0,

b2
3b

5
4 = b5

5,

1

2
b2

3b
5
5 + 2b3

3b
4
5 = 0.

Solving the non-linear conditions yields the following simplified form of the matrix B1

as

B1 =



0 0 1
b13

0 b5
1

0 −1 − b23
b13

1
4

b51
b13

1
2

4b43−b51b23b13
b13

b1
3 b2

3
1
2

(b23)2

b13
b4

3 −2b43b
2
3

b13

0 0 0 0 b5
4

0 0 0 −1
8
b1

3b
5
4

1
4
b3

2b
5
4


. (4.33)

Similarly, setting b2
2 = 1, b1

3 6= 0, and b2
3 6= 0, yields B2

B2 =



b1
1 0 0 b4

1 0

b1
1b

2
3 1 0 −1

4
b1

1b
5
3 + 1

2
b4

1b
2
3 −

2b41
b11

1
2
b1

1 (b2
3)

2
b2

3
1
b11

−1
4
b5

3b
1
1b

2
3 b5

3

0 0 0 b4
4 0

0 0 0 −1
4
b4

4b
2
3

b44
b11


, (4.34)
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and with b2
2 = 1, b1

3 = b2
3 = 0, we have B3 as

B3 =



1
2

(b21)2

b31
b2

1 b3
1 −1

4

b51b
2
1

b31
b5

1

0 1
2b31
b21

−1
8

(b21)2b53
b31

1
2

2b51+(b21)2b53
b21

0 0
2b31

(b21)2
0 b5

3

0 0 0 b4
4 −4b31b

4
4

b21

0 0 0 0
2b31b

4
4

(b21)2


. (4.35)

4.2.3 Inequivalent Symmetries

Recall Theorems (2.3.3)-(2.3.5), we have

C(n)rm = Cr
mn,

and

A(n, ε) = exp (εC(n)).

Calculating C(n), n = 1, 2, 3, 4, 5 matrices

C(1) =



C1
11 C2

11 C3
11 C4

11 C5
11

C1
21 C2

21 C3
21 C4

21 C5
21

C1
31 C2

31 C3
31 C4

31 C5
31

C1
41 C2

41 C3
41 C4

41 C5
41

C1
51 C2

51 C3
51 C4

51 C5
51


,

=



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1
4

0


. (4.36)
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Similarly,

C(2) =



−1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 −1
2

0

0 0 0 0 1
2


, (4.37)

C(3) =



0 −1 0 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 0 2

0 0 0 0 0


, (4.38)

C(4) =



0 0 0 0 0

0 0 0 1
2

0

0 0 0 0 −2

0 0 0 0 0

0 0 0 0 0


, (4.39)

and

C(5) =



0 0 0 1
4

0

0 0 0 0 −1
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (4.40)

Now calculating matrices A(n, ε) = exp (εC(n)),
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A(1, ε) = exp (εC(1)),

= exp


ε



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1
4

0




,

=



1 0 0 0 0

ε 1 0 0 0

ε2

2
ε 1 0 0

0 0 0 1 0

0 0 0 − ε
4

1


. (4.41)

Likewise,

A(2, ε) = exp (εC(2)),

=



e−ε 0 0 0 0

0 1 0 0 0

0 0 eε 0 0

0 0 0 e−
ε
2 0

0 0 0 0 e
ε
2


, (4.42)

A(3, ε) = exp (εC(3)),

=



1 −ε ε2

2
0 0

0 1 −ε 0 0

0 0 1 0 0

0 0 0 1 2ε

0 0 0 0 1


, (4.43)
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A(4, ε) = exp (εC(4)),

=



1 0 0 0 0

0 1 0 ε
2

0

0 0 1 0 −2ε

0 0 0 1 0

0 0 0 0 1


, (4.44)

and

A(5, ε) = exp (εC(5)),

=



1 0 0 ε
4

0

0 1 0 0 − ε
2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (4.45)

Now post-multiplying B1 by A(2, ε)

B1A(2, ε) =



0 0 1
b13

0 b5
1

0 −1 − b32
b31

1
4

b51
b13

1
2

4b43−b51b23b13
b13

b1
3 b2

3
1
2

(b23)2

b13
b4

3 −2b43b
2
3

b13

0 0 0 0 b5
4

0 0 0 −1
8
b1

3b
4
5

1
4
b2

3b
5
4





e−ε 0 0 0 0

0 1 0 0 0

0 0 eε 0 0

0 0 0 e−
ε
2 0

0 0 0 0 e
ε
2


,

=



0 0 eε

b13
0 b5

1e
ε
2

0 −1 − b23e
ε

b13

1
4

b51e
− ε2

b13

1
2

(4b43−b51b23b13)e
ε
2

b13

b1
3e
−ε b2

3
1
2

(b23)2eε

b13
b4

3e
− ε

2 −2b43b
2
3e
ε
2

b13

0 0 0 0 b5
4e

ε
2

0 0 0 −1
8
b1

3b
5
4e
− ε

2
1
4
b2

3b
5
4e

ε
2


. (4.46)
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Let ε = ε1 = ln (|b1
3|), then we have

b1
3 : b1

3e
−ε = b1

3e
− ln (|b13|),

=
b1

3

|b1
3|

= ±1. (4.47)

b3
1 :

eε

b1
3

=
eln (|b13|)−1

b1
3

,

=
|b1

3|
b1

3

= ±1. (4.48)

b3
2 :

−b3
2e
ε

b1
3

=
−b3

2e
ln (|b13|)−1

b1
3

,

=
−b3

2(|b1
3|)

b1
3

= ±
(
−b3

2

)
. (4.49)

b3
3 :

1

2

(b2
3)2eε

b1
3

=
1

2

(b2
3)2eln (|b13|)

b1
3

,

=
1

2

(b2
3)2(|b1

3|)
b1

3

= ±1

2
(b2

3)2. (4.50)

b4
2 :

1

4

b5
1e
− ε

2

b1
3

=
1

4

b5
1e

ln (|b13|)
− 1

2

b1
3

,

=
1

4

b5
1√
|b1

3|b1
3

= ±1

4
b5

1. (4.51)

b4
3 : b4

3e
− ε

2 = b4
3e

ln (|b13|)
− 1

2 ,

=
b4

3√
|b1

3|
= b4

3. (4.52)

b4
5 : −1

8
b1

3b
5
4e
− ε

2 = −1

8
b1

3b
4
5e

ln (|b13|)
− 1

2 ,

= −1

8

b1
3b

5
4√
|b1

3|
= ±

(
−1

8
b5

4

)
. (4.53)

62



b5
1 : b5

1e
ε
2 = b5

1e
ln (|b13|)

1
2 ,

= b5
1

√
|b1

3| = b5
1. (4.54)

b5
2 :

1

2

(4b4
3 − b5

1b
2
3b

1
3) e

ε
2

b1
3

=
1

2

(4b4
3 − b5

1b
2
3b

1
3) eln (|b13|)

1
2

b1
3

,

=
1

2

(4b4
3 − b5

1b
2
3b

1
3)
√
|b1

3|
b1

3

,

= ±1

2

[
4b4

3 −
(
±b5

1b
2
3

)]
. (4.55)

b5
3 : −2b4

3b
2
3e

ε
2

b1
3

= −2b4
3b

2
3e

ln (|b13|)
1
2

b1
3

,

= −2b4
3b

2
3

√
|b1

3|
b1

3

= ±
(
−2b4

3b
2
3

)
. (4.56)

b5
4 : b5

4e
ε
2 = b5

4e
ln (|b13|)

1
2 ,

= b5
4

√
|b1

3| = b5
4. (4.57)

b5
5 :

1

4
b3

2b
5
4e

ε
2 =

1

4
b3

2b
5
4e

ln (|b13|)
1
2 ,

=
1

4
b3

2b
5
4

√
|b1

3| =
1

4
b3

2b
5
4. (4.58)

Thus, we have

B1A(2, ε1) =



0 0 ±1 0 b5
1

0 −1 ± (−b2
3) ±1

4
b5

1 ±1
2

[4b4
3 − (±b5

1b
2
3)]

±1 b2
3 ±1

2
(b2

3)
2

b4
3 ± (−2b4

3b
2
3)

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
1
4
b2

3b
5
4


. (4.59)
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Now post-multiplying by A(3, ε)

B1A(2, ε1)A(3, ε) =



0 0 ±1 0 b5
1

0 −1 ± (−b2
3) ±1

4
b5

1 ±1
2

[4b4
3 − (±b5

1b
2
3)]

±1 b2
3 ±1

2
(b2

3)
2

b4
3 ± (−2b4

3b
2
3)

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
1
4
b2

3b
5
4





1 −ε ε2

2
0 0

0 1 −ε 0 0

0 0 1 0 0

0 0 0 1 2ε

0 0 0 0 1


,

=



0 0 ±1 0 b5
1

0 −1 ± (ε− b2
3) ±1

4
b5

1 ± ε
2
b5

1 ± 1
2
[4b4

3 − (±b5
1b

2
3)]

±1 ± (−ε) + b2
3 ±ε2 − εb2

3 ± 1
2

(b2
3)

2 ±b4
3 2εb4

3 ± (−2b4
3b

2
3)

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
±
(
−1

4
b5

4ε
)

+ 1
4
b2

3b
5
4


.

Considering ε = ε2 = b2
3, we have

b2
3 : ±

(
ε− b2

3

)
= ±

(
b2

3 − b2
3

)
,

= 0.

b3
2 : ± (−ε) + b2

3 = ±
(
−b2

3

)
+ b2

3,

= 0.

b3
3 : ±ε2 − εb2

3 ±
1

2

(
b2

3

)2
= ±(b2

3)2 − b2
3b

2
3 ±

1

2

(
b2

3

)2
,

= 0.

b5
2 : ±1

2
εb5

1 ±
(
4b4

3 − b5
1b

2
3

)
= ±1

2
b2

3b
5
1 ±

[
4b4

3 −
(
±b5

1b
2
3

)]
,

= ±4b4
3.

64



b5
3 : ±2εb4

3 ± 2b4
3b

2
3 = ±2b2

3b
4
3 ± 2b4

3b
2
3,

= 0.

b5
5 : ±1

4
εb5

4 +
1

4
b3

2b
5
4 = ±1

4
b2

3b
5
4 +

1

4
b2

3b
5
4,

= 0.

So, Eq. (4.59) can be further simplified as

B1A(2, ε1)A(3, ε2) =



0 0 ±1 0 b5
1

0 −1 0 ±1
4
b5

1 ±4b4
3

±1 0 0 ±b4
3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0


. (4.60)

Post-multiplying by A(4, ε)

B1A(2, ε1)A(3, ε2)A(4, ε) =



0 0 ±1 0 b5
1

0 −1 0 ±1
4
b5

1 ±4b4
3

±1 0 0 ±b4
3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0





1 0 0 0 0

0 1 0 ε
2

0

0 0 1 0 −2ε

0 0 0 1 0

0 0 0 0 1


,

=



0 0 ±1 0 ± (−2ε+ b5
1)

0 −1 0 −1
2
ε± 1

4
b5

1 ±4b4
3

±1 0 0 ±b4
3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0


.
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Let ε = ε3 = 1
2
b5

1, then

b5
1 : ±

(
−2ε+ b5

1

)
= ±

(
−b5

1 + b5
1

)
,

= 0.

b4
2 : −1

2
ε± 1

4
b5

1 = −1

4
b5

1 ±
1

4
b5

1,

= 0.

Therefore, we have

B1A(2, ε1)A(3, ε2)A(4, ε3) =



0 0 ±1 0 0

0 −1 0 0 ±4b4
3

±1 0 0 ±b4
3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0


. (4.61)

Now post-multiplying by A(5, ε)

B1A(2, ε1)A(3, ε2)A(4, ε3)A(5, ε) =



0 0 ±1 0 0

0 −1 0 0 ±4b4
3

±1 0 0 ±b4
3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0





1 0 0 ε
4

0

0 1 0 0 − ε
2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

=



0 0 ±1 0 0

0 −1 0 0 1
2
ε± 4b4

3

±1 0 0 ±1
4
ε± b4

3 0

0 0 0 0 b5
4

0 0 0 ±
(
−1

8
b5

4

)
0


.
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Considering ε = ε4 = 4b4
3, we have

b4
3 : ±1

4
ε± b4

3 = ±1

4

(
4b4

3

)
± b4

3,

= 0, if b4
3 = 0.

b4
3 :

1

2
ε± 4b4

3 =
1

2

(
4b4

3

)
± 4b4

3,

= 0.

Finally, we have the most simplified form of the matrix B1 as

B1A(2, ε1)A(3, ε2)A(4, ε3)A(5, ε4) =



0 0 ±1 0 0

0 −1 0 0 0

±1 0 0 0 0

0 0 0 0 b5
4

0 0 0 ±
(−1

8
b5

4

)
0


. (4.62)

Let

B1 = B1A(2, ε1)A(3, ε2)A(4, ε3)A(5, ε4),

then Eq. (4.62) can be written as

B1 =



0 0 λ 0 0

0 −1 0 0 0

λ 0 0 0 0

0 0 0 0 b5
4

0 0 0 −λ
8
b5

4 0


, (4.63)

where λ = ±1.

Similarly, one can obtain the corresponding B2 and B3 matrices for the respective
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aforementioned cases of
(
blm
)

in Eqs. (4.34) and (4.35), that is,

B2 =



b1
1 0 0 b4

1 0

b1
1b

2
3 1 0 1

2
b4

1b
2
3 −2b41

b11

1
2
b1

1(b2
3)2 b2

3
1
b11

0 0

0 0 0 ξ 0

0 0 0 −1
4
ξb2

3
ξ
b11


, (4.64)

and

B3 =



1
2

(b21)2

σ
b2

1 σ 0 0

0 1 2σ
b21

0 0

0 0 2σ
(b21)2

0 0

0 0 0 b4
4 −

4σb44
b21

0 0 0 0
2σb44
(b21)2


, (4.65)

where ξ = ±1 and σ = ±1.

4.2.4 System of Determining Equations

Now from Eq. (2.15) we know that

XmX̂n = Bφn(x̂, t̂, û), m = 1, 2, 3, 4, 5, n = 1, 2, 3, (4.66)

where

φ1 = ξ(x̂, t̂, û),

φ2 = τ(x̂, t̂, û),

φ3 = η(x̂, t̂, û).
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Using Eq. (4.63) in Eq. (4.66) implies

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û


=



b1
1 b2

1 b3
1 b4

1 b5
1

b1
2 b2

2 b3
2 b4

2 b5
2

b1
3 b2

3 b3
3 b4

3 b5
3

b1
4 b2

4 b3
4 b4

4 b5
4

b1
5 b2

5 b3
5 b4

5 b5
5





ξ̂1 τ̂1 η̂1

ξ̂2 τ̂2 η̂2

ξ̂3 τ̂3 η̂3

ξ̂4 τ̂4 η̂4

ξ̂5 τ̂5 η̂5


, (4.67)

=



0 0 λ 0 0

0 −1 0 0 0

λ 0 0 0 0

0 0 0 0 b5
4

0 0 0 −1
8
b5

4 0





1
2
x̂t̂ 1

2
t̂2 −1

4

(
x̂+ 2ût̂

)
1
2
x̂ t̂ −1

2
û

0 1 0

−2t̂ 0 1

1 0 0


.

So, we have 

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û


=



0 λ 0

−1
2
x̂ −t̂ 1

2
û

1
2
λx̂t̂ 1

2
λt̂2 λ

(
−1

4
x̂− 1

2
ût̂
)

b5
4 0 0

1
4
λb5

4t̂ 0 −1
8
λb5

4


. (4.68)

By equating the corresponding elements of both matrices, we get

X1x̂ = 0, X1t̂ = λ, X1û = 0,

X2x̂ = −1

2
x̂, X2t̂ = −t̂, X2û =

1

2
û,

X3x̂ =
1

2
λx̂t̂, X3t̂ =

1

2
λt̂2, X3û = λ

(
−1

4
x̂− 1

2
ût̂

)
,

X4x̂ = b5
4, X4t̂ = 0, X4û = 0,

X5x̂ =
1

4
λb5

4t̂, X5t̂ = 0, X5û = −1

8
λb5

4,

where b5
4 6= 0 and λ = ±1.
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Upon substituting the corresponding values of symmetry generators yields the fol-

lowing system of first order non-linear partial differential equations for B1(
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
x̂ = 0, (4.69)(

1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
t̂ = λ, (4.70)(

1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
û = 0, (4.71)(

1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
x̂ = −1

2
x̂, (4.72)(

1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
t̂ = −t̂, (4.73)(

1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
û =

1

2
û, (4.74)

∂x̂

∂t
=

1

2
λx̂t̂, (4.75)

∂t̂

∂t
=

1

2
λt̂2, (4.76)

∂û

∂t
= λ

(
−1

4
x̂− 1

2
ût̂

)
, (4.77)(

−2t
∂

∂x
+

∂

∂u

)
x̂ = b5

4, (4.78)(
−2t

∂

∂x
+

∂

∂u

)
t̂ = 0, (4.79)(

−2t
∂

∂x
+

∂

∂u

)
û = 0, (4.80)

∂x̂

∂x
=

1

4
λb5

4t̂, (4.81)

∂t̂

∂x
= 0, (4.82)

∂û

∂x
= −1

8
λb5

4. (4.83)
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Likewise, using Eq. (4.64) in Eq. (4.67), we have

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û


=



b1
1 0 0 b4

1 0

b1
1 1 0 1

2
b4

1b
2
3 −2b41

b11

1
2
b1

1(b2
3)2 b2

3
1
b11

0 0

0 0 0 ξ 0

0 0 0 −1
4
ξb2

3
ξ
b11





1
2
x̂t̂ 1

2
t̂2 −1

4

(
x̂+ 2ût̂

)
1
2
x̂ t̂ −1

2
û

0 1 0

−2t̂ 0 1

1 0 0


,

=



1
2
b1

1x̂t̂− 2b4
1t̂

1
2
b1

1t̂
2 −1

4

(
x̂+ 2ût̂

)
b1

1 + b4
1

1
2
b1

1b
2
3x̂t̂+ 1

2
x̂− b4

1b
2
3t̂−

2b41
b11

1
2
b1

1b
3
2t̂

2 + t̂ −1
4

(
x̂+ 2ût̂

)
b1

1b
2
3 − 1

2
û+ 1

2
b4

1b
2
3

1
4
b1

1(b2
3)2x̂t̂+ 1

2
b2

3x̂
1
4
b1

1(b2
3)2t̂2 + b2

3t̂+ 1
b11

−1
8
b1

1(b2
3)2
(
x̂+ 2ût̂

)
− 1

2
b2

3û

−2ξt̂ 0 ξ

1
2
ξb2

3t̂+ ξ
b11

0 −1
4
ξb2

3


.

By equating, we get that

X1x̂ =
1

2
b1

1x̂t̂− 2b4
1t̂, X1t̂ =

1

2
b1

1t̂
2,

X1û = −1

4

(
x̂+ 2ût̂

)
b1

1 + b4
1,

X2x̂ =
1

2
b1

1b
2
3x̂t̂+

1

2
x̂− b4

1b
2
3t̂−

2b4
1

b1
1

, X2t̂ =
1

2
b1

1b
3
2t̂

2 + t̂,

X2û = −1

4

(
x̂+ 2ût̂

)
b1

1b
2
3 −

1

2
û+

1

2
b4

1b
2
3,

X3x̂ =
1

4
b1

1(b2
3)2x̂t̂+

1

2
b2

3x̂, X3t̂ =
1

4
b1

1(b2
3)2t̂2 + b2

3t̂+
1

b1
1

,

X3û = −1

8
b1

1(b2
3)2
(
x̂+ 2ût̂

)
− 1

2
b2

3û,

X4x̂ = −2ξt̂, X4t̂ = 0,

X4û = ξ,

X5x̂ =
1

2
ξb2

3t̂+
ξ

b1
1

, X5t̂ = 0,

X5û = −1

4
ξb2

3,
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where b1
1, b

2
3 6= 0 and ξ = ±1.

Consequently, for B2 we have the following system of non-linear partial differential

equations(
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
x̂ =

1

2
b1

1x̂t̂− 2b4
1t̂, (4.84)(

1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
t̂ =

1

2
b1

1t̂
2, (4.85)(

1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
û = −1

4

(
x̂+ 2ût̂

)
b1

1 + b4
1, (4.86)(

1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
x̂ =

1

2
b1

1b
2
3x̂t̂+

1

2
x̂− b4

1b
2
3t̂−

2b4
1

b1
1

, (4.87)(
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
t̂ =

1

2
b1

1b
3
2t̂

2 + t̂, (4.88)(
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
û = −1

4

(
x̂+ 2ût̂

)
b1

1b
2
3 −

1

2
û+

1

2
b4

1b
2
3, (4.89)

∂x̂

∂t
=

1

4
b1

1(b2
3)2x̂t̂+

1

2
b2

3x̂, (4.90)

∂t̂

∂t
=

1

4
b1

1(b2
3)2t̂2 + b2

3t̂+
1

b1
1

, (4.91)

∂û

∂t
= −1

8
b1

1(b2
3)2
(
x̂+ 2ût̂

)
− 1

2
b2

3û, (4.92)(
−2t

∂

∂x
+

∂

∂u

)
x̂ = −2ξt̂, (4.93)(

−2t
∂

∂x
+

∂

∂u

)
t̂ = 0, (4.94)(

−2t
∂

∂x
+

∂

∂u

)
û = ξ, (4.95)

∂x̂

∂x
=

1

2
ξb2

3t̂+
ξ

b1
1

, (4.96)

∂t̂

∂x
= 0, (4.97)

∂û

∂x
= −1

4
ξb2

3. (4.98)
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Moreover, for B3 using Eq. (4.65) in Eq. (4.67) implies

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û


=



1
2

(b21)2

σ
b2

1 σ 0 0

0 1 2σ
b21

0 0

0 0 2σ
(b21)2

0 0

0 0 0 b4
4 −

4σb44
b21

0 0 0 0
2σb44
(b21)2





1
2
x̂t̂ 1

2
t̂2 −1

4

(
x̂+ 2ût̂

)
1
2
x̂ t̂ −1

2
û

0 1 0

−2t̂ 0 1

1 0 0


,

=



1
4

(b21)2

σ
x̂t̂+ 1

2
b2

1x̂
1
4

(b21)2

σ
t̂2 + b2

1t̂+ σ −1
8

(b21)2

σ

(
x̂+ 2ût̂

)
− 1

2
b2

1û

1
2
x̂ t̂+ 2σ

b21
−1

2
û

0 2σ
(b21)2

0

−2b4
4t̂−

4σb44
b21

0 b4
4

2σb44
(b21)2

0 0


.

By equating the corresponding elements yields

X1x̂ =
1

4

(b2
1)2

σ
x̂t̂+

1

2
b2

1x̂, X1t̂ =
1

4

(b2
1)2

σ
t̂2 + b2

1t̂+ σ, X1û = −1

8

(b2
1)2

σ

(
x̂+ 2ût̂

)
− 1

2
b2

1û,

X2x̂ =
1

2
x̂, X2t̂ = t̂+

2σ

b2
1

, X2û = −1

2
û,

X3x̂ = 0, X3t̂ =
2σ

(b2
1)2
, X3û = 0,

X4x̂ = −2b4
4t̂−

4σb4
4

b2
1

, X4t̂ = 0, X4û = b4
4,

X5x̂ =
2σb4

4

(b2
1)2
, X5t̂ = 0, X5û = 0,

where b2
1, b

4
4 6= 0 and σ = ±1.
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Thus, for B3 we have the following system of non-linear partial differential equations(
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
x̂ =

1

4

(b2
1)2

σ
x̂t̂+

1

2
b2

1x̂, (4.99)(
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
t̂ =

1

4

(b2
1)2

σ
t̂2 + b2

1t̂+ σ, (4.100)(
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u

)
û = −1

8

(b2
1)2

σ

(
x̂+ 2ût̂

)
− 1

2
b2

1û, (4.101)(
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
x̂ =

1

2
x̂, (4.102)(

1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
t̂ = t̂+

2σ

b2
1

, (4.103)(
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u

)
û = −1

2
û, (4.104)

∂x̂

∂t
= 0, (4.105)

∂t̂

∂t
=

2σ

(b2
1)2
, (4.106)

∂û

∂t
= 0, (4.107)(

−2t
∂

∂x
+

∂

∂u

)
x̂ = −2b4

4t̂−
4σb4

4

b2
1

, (4.108)(
−2t

∂

∂x
+

∂

∂u

)
t̂ = 0, (4.109)(

−2t
∂

∂x
+

∂

∂u

)
û = b4

4, (4.110)

∂x̂

∂x
=

2σb4
4

(b2
1)2
, (4.111)

∂t̂

∂x
= 0, (4.112)

∂û

∂x
= 0. (4.113)
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4.2.5 Solution of System of Determining Equations for B1

To solve the system of first order non-linear PDEs for B1, we consider Eq. (4.82)

∂t̂

∂x
= 0,

t̂ = A(t, u). (4.114)

Taking Eq. (4.80) and using Eq. (4.82), we have

∂A(t, u)

∂u
= 0,

A(t, u) = A(t).

Using Eq. (4.114) implies

t̂ = A(t). (4.115)

Now taking Eq. (4.70) and using Eq. (4.82), we have

1

2
t2
∂t̂

∂t
− 1

4
(x+ 2ut)

∂t̂

∂u
= λ. (4.116)

Since,
∂t̂

∂û
= 0. (4.117)

So, Eq. (4.116) can be written as

1

2
t2
∂t̂

∂t
= λ,

∂A(t)

∂t
=

2

t2
λ,

A(t) = −2

t
λ+ c1,

t̂ = −2

t
λ+ c1. (4.118)

Using Eqs. (4.82) and (4.117) in Eq. (4.73) yields

t
∂t̂

∂t
= −t̂.
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Substituting Eq. (4.118) implies

c1 = 0. (4.119)

Therefore, Eq. (4.118) reduces to

t̂ = −2

t
λ. (4.120)

For x̂, we consider Eq. (4.81)
∂x̂

∂x
=

1

4
λb5

4t̂.

Subsituting Eq. (4.120)

∂x̂

∂x
=

1

4
λb5

4(−2

t
λ),

∂x̂

∂x
= −λ

2

2t
b5

4,

x̂ = −λ
2

2t
b5

4x+B(t, u). (4.121)

Taking Eq. (4.78) and substituting Eq. (4.121), we have

−2t

(
−λ

2

2t
b5

4

)
+
∂B(t, u)

∂u
= b5

4,

λ2b5
4 +

∂B(t, u)

∂u
= b5

4,

∂B(t, u)

∂u
= b5

4 − λ2b5
4,

B(t, u) = b5
4u− λ2b5

4u+B(t). (4.122)

So, Eq. (4.121) implies

x̂ = −λ
2

2t
b5

4x+ b5
4u− λ2b5

4u+B(t). (4.123)
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Now using Eqs. (4.120) and (4.123) in Eq. (4.75)

λ2

2t2
b5

4x+
dB(t)

dt
= −λ

2

t
x̂,

x̂ = − 1

2t
b5

4x−
t

λ2

dB(t)

dt
. (4.124)

By comparing Eqs. (4.123) and (4.124), we have

−λ
2

2t
b5

4x+ b5
4u− λ2b5

4u+B(t) = − 1

2t
b5

4x−
t

λ2

dB(t)

dt
,

t

λ2

dB(t)

dt
+B(t) =

λ2

2t
b5

4x−
1

2t
b5

4x+ λ2b5
4u− b5

4u. (4.125)

Upon solving Eq. (4.125) in Maple and using Eq. (4.72), yields the following value of

x̂

x̂ = − 1

2t
b5

4x. (4.126)

Similarly, for û, consider Eq. (4.83)

∂û

∂t
= −1

8
λb5

4,

û = −1

8
λb5

4x+ C(t, u). (4.127)

Taking Eq. (4.80) and using Eq. (4.127)

−2t

(
−λ

8
b5

4

)
+
∂C(t, u)

∂u
= 0,

∂C(t, u)

∂u
= −λ

4
b5

4t,

C(t, u) = −λ
4
b5

4tu+ C(t). (4.128)

So, Eq. (4.127) implies

û = −1

8
λb5

4x−
λ

4
b5

4tu+ C(t). (4.129)
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Now taking Eq. (4.77) and using Eq. (4.129)

−1

4
λb5

4u+
dC(t)

dt
= −λ

4

(
− 1

2t
b5

4x

)
− 1

2

(
−1

8
λb5

4x−
1

4
λb5

4ut+ C(t)

)(
−2λ

t

)
,

dC(t)

dt
− λ

t
C(t) =

1

8t
λb5

4x+
1

8t
λ2b5

4x+
t

4
λ2b5

4u+
1

8t
λb5

4x+
1

4
λb5

4u,

dC(t)

dt
− λ

t
C(t) =

λ

8t
b5

4 (λ+ 1)x+
λ

4
b5

4 (λt+ 1)u. (4.130)

Solving the non-homogenous and non-linear Eq. (4.130) in Maple and using Eq. (4.74)

yields, C(t) = 0. Therefore, the value of û simplifies to

û = −1

8
λb5

4x−
1

4
λb5

4ut. (4.131)

Thus, the general solution for B1 is(
x̂, t̂, û

)
=

(
− 1

2t
b5

4x,−
2

t
λ,−1

8
λb5

4x−
1

4
λb5

4ut

)
. (4.132)

4.2.6 Solution of System of Determining Equations for B2

In order to solve the system of non-linear PDEs, we consider Eq. (4.97)

∂t̂

∂x
= 0,

t̂ = A(t, u). (4.133)

Taking Eq. (4.94) and using Eq. (4.97)

∂A(t, u)

∂u
= 0, (4.134)

A(t, u) = A(t).

So, Eq. (4.133) implies

t̂ = A(t). (4.135)
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Now taking Eq. (4.85) and using Eq. (4.97)

1

2
t2
∂t̂

∂t
− 1

4
(x+ 2ut)

∂t̂

∂u
=

1

2
b1

1t̂
2. (4.136)

Since,
∂t̂

∂u
= 0, (4.137)

then Eq. (4.136) can be written as

1

2
t2
∂t̂

∂t
=

1

2
b1

1t̂
2,

t̂−2∂t̂

∂t
= b1

1t
−2,

−1

t̂
= −b

1
1

t
+ c1,

t̂ =
t

b1
1 − c1t

. (4.138)

Now using Eqs. (4.97) and (4.137)-(4.138) in Eq. (4.88), one can obtain

b1
1

(b1
1 − c1t)

2 =
1

2
b1

1b
2
3

(
t2

(b1
1 − c1t)

2

)
+

t

b1
1 − c1t

. (4.139)

Multiplying (b1
1 − c1t)

2 on both sides

b1
1t =

1

2
b1

1b
2
3t

2 + t
(
b1

1 − c1t
)
,

b1
1t =

1

2
b1

1b
2
3t

2 + b1
1t− c1t

2,

c1 =
1

2
b1

1b
2
3. (4.140)
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Therefore, Eq. (4.138) implies

t̂ =
t

b1
1 −

(
1
2
b1

1b
2
3

)
t
,

=
t

2b11−b11b23t
2

,

=
2t

2b1
1 − b1

1b
2
3t
.

Thus, we have

t̂ = − 2t

b1
1 (b2

3t− 2)
. (4.141)

Now for x̂, we consider Eq. (4.96)

∂x̂

∂x
=

1

2
ξb2

3t̂+
ξ

b1
1

. (4.142)

Since,

t̂ = − 2t

b1
1 (b2

3t− 2)
.

So, Eq. (4.142) is given by

∂x̂

∂x
=

1

2
ξb2

3

(
− 2t

b1
1 (b2

3t− 2)

)
+
ξ

b1
1

,

∂x̂

∂x
= − ξb2

3

b1
1 (b2

3t− 2)
t+

ξ

b1
1

,

x̂ = − ξb2
3

b1
1 (b2

3t− 2)
tx+

ξ

b1
1

x+B(t, u). (4.143)

Now using the value of t̂ and Eq. (4.143) in Eq. (4.93), we have

−2t

(
− ξb2

3

b1
1 (b2

3t− 2)
t

)
+
∂B(t, u)

∂u
= −2ξ

(
− 2t

b1
1 (b2

3t− 2)

)
,

∂B(t, u)

∂u
=

4ξ

b1
1 (b2

3t− 2)
t− 2ξb2

3

b1
1 (b2

3t− 2)
t2,

B(t, u) =
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u+B(t).
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Therefore, Eq. (4.143) implies

x̂ = − ξb2
3

b1
1 (b2

3t− 2)
tx+

ξ

b1
1

x+
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u+B(t). (4.144)

Since,

∂

∂t

(
− ξb2

3

b1
1 (b2

3t− 2)
tx

)
=
−ξb2

3b
1
1 (b2

3t− 2)x+ ξb1
1(b2

3)2tx

[b1
1 (b2

3t− 2)]
2 ,

∂

∂t

(
ξ

b1
1

x

)
= 0,

∂

∂t

(
4ξ

b1
1 (b2

3t− 2)
tu

)
=

4ξb1
1 (b2

3t− 2)u− 4ξb1
1b

2
3tu

[b1
1 (b2

3t− 2)]
2 ,

∂

∂t

(
− 2ξb2

3

b1
1 (b2

3t− 2)
t2u

)
=
−4ξb2

3b
1
1 (b2

3t− 2)u+ 2ξb1
1(b2

3)2t2u

[b1
1 (b2

3t− 2)]
2 .

So, Eq. (4.90) takes the form

−ξb2
3b

1
1 (b2

3t− 2)x+ ξb1
1(b2

3)2tx

[b1
1 (b2

3t− 2)]
2 +

4ξb1
1 (b2

3t− 2)u− 4ξb1
1b

2
3tu

[b1
1 (b2

3t− 2)]
2

+
−4ξb2

3b
1
1 (b2

3t− 2)u+ 2ξb1
1(b2

3)2t2u

[b1
1 (b2

3t− 2)]
2 +

dB(t)

dt
=

1

4
b1

1(b2
3)2

(
− ξb2

3

b1
1 (b2

3t− 2)
tx+

ξ

b1
1

x+
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u+B(t)

)
(
− 2t

b1
1 (b2

3t− 2)

)
+

1

2
b2

3

(
− ξb2

3

b1
1 (b2

3t− 2)
tx+

ξ

b1
1

x+
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u+B(t)

)
.
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Thus, we have

dB(t)

dt
− 1

4
b1

1(b2
3)2

(
− 2t

b1
1 (b2

3t− 2)

)
B(t)− 1

2
b2

3B(t) =

ξb2
3b

1
1 (b2

3t− 2)x− ξb1
1(b2

3)2tx

[b1
1 (b2

3t− 2)]
2 − 4ξb1

1 (b2
3t− 2)u− 4ξb1

1b
2
3tu

[b1
1 (b2

3t− 2)]
2

+
4ξb2

3b
1
1 (b2

3t− 2)u− 2ξb1
1(b2

3)2t2u

[b1
1 (b2

3t− 2)]
2 +

1

4
b1

1(b2
3)2

(
− ξb2

3

b1
1 (b2

3t− 2)
tx+

ξ

b1
1

x

)(
− 2t

b1
1 (b2

3t− 2)

)
+

1

4
b1

1(b2
3)2

(
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u

)(
− 2t

b1
1 (b2

3t− 2)

)
+

1

2
b2

3

(
− ξb2

3

b1
1 (b2

3t− 2)
tx

)
+

1

2
b2

3

(
ξ

b1
1

x+
4ξ

b1
1 (b2

3t− 2)
tu− 2ξb2

3

b1
1 (b2

3t− 2)
t2u

)
. (4.145)

Upon solving the non-homogenous and non-linear Eq. (4.145) in Maple and using Eq.

(4.84), we get the value of x̂

x̂ = −2 (4b4
1 + ξx)

b1
1 (b2

3t− 2)
. (4.146)

Now for û, consider Eq. (4.98)

∂û

∂x
= −1

4
ξb2

3,

û = −1

4
ξb2

3x+B(t, u). (4.147)

Taking Eq. (4.95) and using Eq. (4.147)

∂B(t, u)

∂u
= ξ − 1

2
b2

3ξt,

B(t, u) = ξu− 1

2
b2

3ξtu+B(t). (4.148)

So, Eq. (4.147) can be written as

û = −1

4
ξb2

3x+ ξu− 1

2
b2

3ξtu+B(t). (4.149)
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Using Eq. (4.149) in Eq. (4.86) yields

1

2
xt

(
−1

4
b2

3ξ

)
+

1

2
t2
(
−1

2
b2

3ξu+
dB(t)

dt

)
− 1

4
(x+ 2ut)

(
ξ − 1

2
b2

3ξt

)
=

− 1

4

[
−2 (4b4

1 + ξx)

b1
1 (b2

3t− 2)
+ 2

(
−1

4
ξb2

3x+ ξu− 1

2
b2

3ξtu+B(t)

)(
− 2t

b1
1 (b2

3t− 2)

)]
b1

1

+ b4
1.

Thus, we have

1

2
t2
dB(t)

dt
+

t

(b2
3t− 2)

B(t) =
1

8
b2

3ξxt+
1

4
b2

3ξut
2 +

1

4
(x+ 2ut)

(
ξ − 1

2
b2

3ξt

)
− 1

4

[
−2 (4b4

1 + ξx)

b1
1 (b2

3t− 2)
+ 2

(
−1

4
ξb2

3x+ ξu− 1

2
b2

3ξtu

)(
− 2t

b1
1 (b2

3t− 2)

)]
b1

1

+ b4
1. (4.150)

By solving the non-linear and non-homogenous Eq. (4.150) in Maple and using Eq.

(4.89), one can obtain the value of û, that is,

û = −1

2
ξb2

3tu− b4
1b

2
3 −

1

4
ξb2

3x+ ξu. (4.151)

So, B2 has a general solution of the form(
x̂, t̂, û

)
=

(
−2 (4b4

1 + ξx)

b1
1 (b2

3t− 2)
,− 2t

b1
1 (b2

3t− 2)
,−1

2
ξb2

3tu− b4
1b

2
3 −

1

4
ξb2

3x+ ξu

)
. (4.152)

4.2.7 Solution of System of Determining Equations for B3

Now to solve the system of non-linear partial differential equations for B3, we consider

Eq. (4.113)

∂û

∂x
= 0,

û = A(t, u). (4.153)
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Taking Eq. (4.107)

∂û

∂t
= 0,

∂A(t, u)

∂t
= 0,

A(t, u) = A(u).

Using Eq. (4.153) implies

û = A(u). (4.154)

Now taking Eq. (4.110) and using Eq. (4.113)

∂û

∂u
= b4

4,

∂A(u)

∂u
= b4

4,

A(u) = b4
4u+ c1,

û = b4
4u+ c1. (4.155)

Using Eqs. (4.107) and (4.113) in Eq. (4.104), we have

u
∂û

∂u
= û. (4.156)

Since,
∂û

∂u
= b4

4.

So, Eq. (4.156) implies

c1 = 0.

Therefore, Eq. (4.155) can be written as

û = b4
4u.
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Similarly, for t̂, taking Eq. (4.112)

∂t̂

∂x
= 0,

t̂ = B(t, u). (4.157)

Using Eq. (4.112) in Eq. (4.109) implies

B(t, u) = B(t).

So, Eq. (4.157) is given by

t̂ = B(t). (4.158)

Now substituting Eq. (4.158) in Eq. (4.106)

∂B(t)

∂t
=

2σ

(b2
1)2
,

B(t) =
2σ

(b2
1)2
t+ c2,

t̂ =
2σ

(b2
1)2
t+ c2. (4.159)

By using Eq. (4.112) in Eq. (4.103), one obtains(
t
∂

∂t
− 1

2
u
∂

∂u

)
t̂ = t̂+

2σ

b2
1

. (4.160)

Since,
∂t̂

∂u
= 0.

Hence, Eq. (4.160) yields

t
∂t̂

∂t
= t̂+

2σ

b2
1

. (4.161)

By substituting Eq. (4.159) in Eq. (4.161), we have

2σ

(b2
1)2
t =

2σ

(b2
1)2
t+ c2 +

2σ

b2
1

,

c2 = −2σ

b2
1

. (4.162)
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Therefore, Eq. (4.159) implies

t̂ =
2σ

(b2
1)2
t− 2σ

b2
1

.

Finally, for x̂, taking Eq. (4.105)

∂x̂

∂t
= 0,

x̂ = C(x, u). (4.163)

Using Eq. (4.163) in Eq. (4.111), we have

∂C(x, u)

∂x
=

2σb4
4

(b2
1)2
,

C(x, u) =
2σb4

4

(b2
1)2
x+ C(u),

x̂ =
2σb4

4

(b2
1)2
x+ C(u). (4.164)

Substituting Eq. (4.164) in Eq. (4.108)

−2t

(
2σb4

4

(b2
1)2

)
+
dC(u)

du
= −2b4

4t̂−
4σb4

4

b2
1

,

−4σb4
4

(b2
1)2
t+

dC(u)

du
= −2b4

4

(
2σ

(b2
1)2
t− 2σ

b2
1

)
− 4σb4

4

b2
1

,

−4σb4
4

(b2
1)2
t+

dC(u)

du
= −4σb4

4

(b2
1)2
t+

4σb4
4

(b2
1)2
− 4σb4

4

(b2
1)2
,

dC(u)

du
= 0,

C(u) = c3.

So, Eq. (4.164) takes the form

x̂ =
2σb4

4

(b2
1)2
x+ c3. (4.165)
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Now using Eq. (4.105) in Eq. (4.102), we have(
1

2
x
∂

∂x
− 1

2
u
∂

∂u

)
x̂ =

1

2
x̂. (4.166)

Since,
∂x̂

∂u
= 0.

Consequently, by substituting Eq. (4.165) in Eq. (4.166) yields

c3 = 0.

Therefore, Eq. (4.165) takes the form

x̂ =
2σb4

4

(b2
1)2
x.

Hence, for B3 the corresponding general solution is

(x̂, t̂, û) =

(
2σb4

4

(b2
1)2
x,

2σ

(b2
1)2
t− 2σ

b2
1

, b4
4u

)
. (4.167)

4.2.8 Analysis of Symmetry Condition

Since, the corresponding general solutions of determining equations are given by

B1 : (x̂, t̂, û) =

(
− 1

2t
b5

4x,−
2λ

t
,−1

8
λb5

4x−
1

4
λb5

4ut

)
, (4.168)

B2 : (x̂, t̂, û) =

(
−2 (4b4

1 + ξx)

b1
1 (b2

3t− 2)
,

−2t

b1
1 (b2

3t− 2)
,−1

2
ξb2

3tu− b4
1b

2
3 −

1

4
ξb2

3x+ ξu

)
,

(4.169)

B3 : (x̂, t̂, û) =

(
2σb4

4

(b2
1)2
x,

2σ

(b2
1)2
t− 2σ

b2
1

, b4
4u

)
(4.170)

Now in the following sections we discuss the corresponding symmetry condition for

each general solution of the determininng equation.
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Symmetry Condition for B1

For Eq. (4.168) to be symmetry of Eq. (4.1) if and only if, we have

ût̂ = ûx̂x̂ + 2ûûx̂,

that is,

ûx̂x̂ + 2ûûx̂ − ût̂ = 0, (4.171)

when

uxx + 2uux − ut = 0.

Since, we have

∂û

∂t̂
=
∂
(
−1

8
λb5

4x− 1
4
λb5

4ut
)

∂
(
−2λ

t

) ,

=
−1

8
λb5

4
∂x
∂t
− 1

4
λb5

4ut
(
t∂u
∂t

+ u∂t
∂t

)
2λ
t2

,

=
−λb5

4t
2 (tut + u)

8λ
. (4.172)

Now

∂û

∂x̂
=
∂
(
−1

8
λb5

4x− 1
4
λb5

4ut
)

∂
(
− 1

2t
b5

4x
) ,

=
−1

8
λb5

4
∂x
∂x
− 1

4
λb5

4t
∂u
∂x

− b54
2t
∂x
∂x

,

=
1
8
λb5

4 + 1
4
λb5

4tux
b54
2t
∂x
∂x

,

=
1
8
λ+ 1

4
λtux

1
2t
∂x
∂x

,

=
2t (λ+ 2λtux)

8
. (4.173)
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Also,

∂

∂x̂

(
∂û

∂x̂

)
=
∂
(
λt+2λt2ux

4

)
∂
(
− 1

2t
b5

4x
) ,

=
1
4

(
λ ∂t
∂x

+ 2λt2 ∂ux
∂x

)
− 1

2t
b5

4
∂x
∂x

,

=
1
2
λt2uxx

− 1
2t
b5

4

. (4.174)

Using Eqs. (4.172)-(4.174) in Eq. (4.171) implies

−λt
3uxx
b5

4

+ 2

(
−1

8
λb5

4x−
1

4
λb5

4ut

)(
λt+ 2λt2ux

4

)
=
−b5

4t
2 (tut + u)

8
.

Re-arrangment of the equation leads to

−λt
3uxx
b5

4

+
1

2

(
−1

8
λ2b5

4xt−
1

4
λ2b5

4xt
2ux −

1

4
λ2b5

4t
2u− 1

2
λ2b5

4t
3uux

)
=
−b5

4t
2 (tut + u)

8
,

−λt
3uxx
b5

4

−− 1

16
λ2b5

4xt−
1

8
λ2b5

4xt
2ux −

1

8
λ2b5

4t
2u− 1

4
λ2b5

4t
3uux =

−b5
4t

2 (tut + u)

8
.

Multiplying − b54
λt3

on both sides

uxx +
1

16
λ
(
b5

4

)2 x

t2
+

1

8
λ
(
b5

4

)2 x

t
ux +

1

8
λ
(
b5

4

)2 u

t
+

1

4
λ
(
b5

4

)2
uux =

(b5
4)

2
tut

8λt
+

(b5
4)

2
u

8λt
.

Upon simplification, one obtains that if we choose λ = 1 and b5
4 = 2

√
2γ, where γ = ±1,

then we have

uxx + 2uux − ut = 0.

Consequently, for B1

x̂ = −1

2
b5

4x,

= − 1

2t

(
2
√

2γ
)
x,

= −γ
√

2

t
x. (4.175)
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Likewise,

t̂ = −2

t
, (4.176)

and

û = −γ
√

2

4
(x+ 2ut) . (4.177)

Therefore, the first discrete symmetry of the Burgers’ equation (4.1) up to equivalence

is given by

ζ1 : (x̂, t̂, û) −→

(
−γ
√

2

t
x,−2

t
,−γ
√

2

4
(x+ 2ut)

)
. (4.178)

Symmetry Condition for B2

Now for Eq. (4.169) to be symmetry of Eq. (4.1), we find

∂û

∂t̂
=
∂
(
−1

2
ξb2

3tu− b4
1b

2
3 − 1

4
ξb2

3x+ ξu
)

∂

(
−2t

b11(b23t−2)

) ,

=
−1

2
ξb2

3

(
t∂u
∂t

+ u∂t
∂t

)
− 1

4
b2

3ξ
∂x
∂t

+ ξ ∂u
∂t

−2tb11
∂
∂t(b23t−2)−b11(b23t−2) ∂

∂t
(−2t)

[b11(b23t−2)]
2

,

=

(
−1

2
ξb2

3 (tut + u) + ξut
)

[b1
1 (b2

3t− 2)]
2

4b1
1

. (4.179)

Similarly,

∂û

∂x̂
=
∂
(
−1

2
ξb2

3tu− b4
1b

2
3 − 1

4
ξb2

3x+ ξu
)

∂

(
−2(4b41+ξx)

b11(b23t−2)

) ,

=
−1

2
ξb2

3t
∂u
∂x
− 1

4
b2

3ξ
∂x
∂x

+ ξ ∂u
∂x

−2ξ ∂x
∂x

b11(b23t−2)

,

=
−1

2
b2

3tux − 1
4
b2

3 + ux
−2

b11(b23t−2)

,

=
b1

1 (b2
3t− 2)

(
−1

2
b2

3tux − 1
4
b2

3 + ux
)

−2
. (4.180)
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Now

∂

∂x̂

(
∂û

∂x̂

)
=

1
4
∂
(
b1

1(b2
3)2t2ux − 2b1

1b
2
3tux + 1

2
b1

1(b2
3)2t− b1

1b
2
3 − 2b1

1b
2
3tux + 4b1

1ux
)

∂

(
−2(4b41+ξx)

b11(b23t−2)

) ,

=
1
4

[
b1

1(b2
3)2t2uxx − 2b1

1b
2
3tuxx + 1

2
b1

1(b2
3)2t− b1

1b
2
3 − 2b1

1b
2
3tuxx + 4b1

1uxx
]

−2ξ

b11(b23t−2)

,

=
1
4
b1

1(b2
3)2t2uxx − b1

1b
2
3tuxx + b1

1uxx
−2ξ

b11(b23t−2)

. (4.181)

Substituting Eqs. (4.179)-(4.181) in Eq. (4.171)

1
4
b1

1(b2
3)2t2uxx − b1

1b
2
3tuxx + b1

1uxx
−2ξ

b11(b23t−2)

+ 2

(
−1

2
ξb2

3tu− b4
1b

2
3 −

1

4
ξb2

3x+ ξu

)
(
b1

1(b2
3)2t2ux − 2b1

1b
2
3tux + 1

2
b1

1(b2
3)2t− b1

1b
2
3 − 2b1

1b
2
3tux + 4b1

1ux

4

)
=(

−1
2
ξb2

3 (tut + u) + ξut
)

[b1
1 (b2

3t− 2)]
2

4b1
1

. (4.182)

One can conclude that by setting b2
3 = 0, b1

1 = 1 and b4
1 = J , where J is any arbitrary

constant, then Eq. (4.182) yields

uxx
ξ

+ 2ξuux = ξut,

uxx + 2ξ2uux = ξ2ut. (4.183)

Recall that

ξ = ±1.

So,

ξ2 = 1.

Therefore, Eq. (4.183) implies

uxx + 2uux − ut = 0.
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Since, for B2

x̂ = −2 (4b4
1 + ξx)

b1
1 (b2

3t− 2)
,

=
−2 (4J + ξx)

−2
,

= 4J + ξx. (4.184)

Similarly,

t̂ =
−2t

b1
1 (b2

3t− 2)
,

=
−2t

−2
,

= t, (4.185)

and

û = −1

2
ξb2

3tu− b4
1b

2
3 −

1

4
ξb2

3x+ ξu,

= ξu. (4.186)

Hence, the second discrete symmetry of the Burgers’ equation (3.1) up to equivalence

is given by

ζ2 : (x̂, t̂, û) −→ (4J + ξx, t, ξu) . (4.187)

Symmetry Condition for B3

In order to apply the symmetry condition on Eq. (4.170), we find

∂û

∂t̂
=

∂ (b4
4u)

∂
(

2σ
(b21)2

t− 2σ
b21

) ,
=

b4
4
∂u
∂t

2σ
(b21)2

∂t
∂t

,

=
b4

4ut
2σ

(b21)2

,

=
(b2

1)2b4
4ut

2σ
. (4.188)
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Equivalently,

∂û

∂x̂
=

∂ (b4
4u)

∂
(

2σb44
(b21)2

x
) ,

=
b4

4
∂u
∂x

2σb44
(b21)2

∂x
∂x

,

=
(b2

1)2b4
4

2σb4
4

, (4.189)

and

∂

∂x̂

(
∂û

∂x̂

)
=
∂
(

(b21)2b44
2σb44

ux

)
∂
(

2σb44
(b21)2

x
) ,

=

(b21)2b44uxx
2σb44
2σb44
(b21)2

, (4.190)

Now using Eqs. (4.188)-(4.190) in Eq. (4.171) yields

uxx +
4σb4

4
2

(b2
1)2

ux =
2σ(b4

4)2

(b2
1)2

ut. (4.191)

Choosing σ = 1, b2
1 =
√

2AK, and b4
4 = A, where K = ±1, and A is any arbitrary

constant. Then we have

uxx +
4σA2

(
√

2AK)2
ux =

2σA2

(
√

2AK)2
ut,

which satisfies the symmetry condition.

Since, for B3

x̂ =
2σb4

4

(b2
1)2
x,

=
2(1)A

(
√

2AK)2
x,

=
1

A
x. (4.192)
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Likewise,

t̂ =
2σ

(b2
1)2
t− 2σ

b2
1

,

=
t−
√

2AK
(
√

2AK)2
,

=
t−
√

2AK
A2

, (4.193)

with K2 = 1, and

û = Au. (4.194)

Therefore, the third discrete symmetry of the Burgers’ equation (3.1) up to equivalence

is

ζ3 : (x̂, t̂, û) −→

(
1

A
x,
t−
√

2AK
A2

,Au

)
, A 6= 0. (4.195)

As every discrete symmetry satisfied its respective system of partial differential equa-

tions and left the system invariant. Therefore, we conclude that up to equivalence

and invariance the following three are the actual discrete symmetries of the Burgers’

equation (3.1)

ζ1 : (x̂, t̂, û) −→

(
−γ
√

2

t
x,−2

t
,−γ
√

2

4
(x+ 2ut)

)
,

ζ2 : (x̂, t̂, û) −→ (4J + ξx, t, ξu) ,

ζ3 : (x̂, t̂, û) −→

(
1

A
x,
t−
√

2AK
A2

,Au

)
,

where ξ,K = ±1 and J ,A are any arbitrary constants.

These results are extremely exhaustive. Therefore, computer algebra is recommended.
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Chapter 5

Construction of an Invariant
Numerical Scheme for Burgers’
Equation using Discrete Symmetry
Groups

Crank-Nicolson method was first developed by John Crank and Phyllis Nicolson in the

mid-20th century used to approximate diffusion heat equation and other PDEs.

As an immediate application of discrete symmetries, in this chapter an innova-

tive approach of Crank-Nicolson method which is known as Modified-Crank-Nicolson

method is introduced to approximate the exact solution of the Burgers’ equation. This

modification is conducted through the composition of continuous and discrete symme-

tries and substituting the resultant in the variable u of the CNM to yield an invariant

numerical scheme (M-CNM). Furthermore, the linearization framework of the Burgers’

equation is carried out by using the Hopf-Cole transformation together with the initial

and boundary conditions. In addition to this, the analytical solution of the Burgers’

equation by using the Fourier series has been laid out.

The numerical schemes for explicit finite difference schemes (FTCS) and standard

Crank-Nicolson method (CNM) for the heat equation are discussed in the appendix.
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5.1 Lie Point Symmetry Transformations of Burg-

ers’ Equation

In the previous chapter we find Lie point (continuous) symmetries of Burgers’ equation.

In this section, we find the transformation of Lie point symmetries.

Now taking

X1 =
1

2
xt

∂

∂x
+

1

2
t2
∂

∂t
− 1

4
(x+ 2ut)

∂

∂u
.

Here

ξ1 (x, t, u) =
1

2
xt,

τ1 (x, t, u) =
1

2
t2,

η1 (x, t, u) = −1

4
x− 1

2
ut.

So, by using the definition of Lie point symmetry transformation Eq. (1.8), we have

∂x̂

∂ε

∣∣∣
ε=0

= ξ1 (x, t, u) ,

ln (x̂)2 = tε+ c1.

Using condition, x̂(0) = x

ln (x̂)2 − ln (x)2 = tε,

x̂ = xe
tε
2 ,

= x

(
1 +

t

2
ε

)
.

Now

∂t̂

∂ε

∣∣∣
ε=0

= τ1 (x, t, u) ,

−2

t̂
= ε+ c2.

Using condition, t̂(0) = t

−2

t̂
=
εt− 2

t
,

t̂ =
2t

2− εt
.
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Likewise,

∂û

∂ε

∣∣∣
ε=0

= η1 (x, t, u) ,

û = −1

4
xε− 1

2
utε+ c3.

Using conditon, û(0) = u, yields

û =
1

4
(4u− xε− 2utε) .

Thus, the corresponding symmetry transformation G1 for the symmetry generator X1

is

G1 :
(
x̂, t̂, û

)
=

(
x+

tx

2
ε,

2t

2− εt
,
1

4
(4u− xε− 2utε)

)
. (5.1)

Using the same framework one obtains the Lie point symmetry transformations for the

corresponding symmetry generators of the Burgers’ equation (3.1) as given in Table

5.1 are

Symmetry Generators Symmetry Transformations

1
2
xt ∂

∂x
+ 1

2
t2 ∂
∂t
− 1

4
(x+ 2ut) ∂

∂u

(
x+ tx

2
ε, 2t

2−εt ,
1
4

(4u− xε− 2utε)
)

1
2
x ∂
∂x

+ t ∂
∂t
− 1

2
u ∂
∂u

(
xe

ε
2 , teε, ue−

ε
2

)
∂
∂t

(x, t+ ε, u)

−2t ∂
∂x

+ ∂
∂u

(x− 2tε, t, u+ ε)

∂
∂x

(x+ ε, t, u)

Table 5.1: Continuous Symmetry Transformations of Burgers’ equation (3.1)

5.2 Invariantization of Crank-Nicolson Method

In this section, we show that Crank-Nicolson method is invariant under the discrete

symmetry transformation.
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5.2.1 Invariantization of Crank-Nicolson Method using Dis-
crete Symmetry Group ζ1

As the first discrete symmetry group ζ1 of the Burgers’ equation is

ζ1 : (x̂, t̂, û) −→

(
−γ
√

2

t
x,−2

t
,−γ
√

2

4
(x+ 2ut)

)
. (5.2)

Consider that un,j = u (n∆x, j∆t) with xn = n∆x and tj = j∆t be the approximate

value of u(x, t) at the mesh points (xn, tj), then by using the discrete symmetry group

ζ1 of the Burgers’ equation, we have the following transformation

u = −γ
√

2

4
(x+ 2ut). (5.3)

So, by substituting Eq. (5.3) into the Crank-Nicolson formulae for approximating the

linear parabolic equations, we obtain

α

[
−γ
√

2

4
(xn−1 + 2un−1,jtj)

]
+ 2(1− α)

[
−γ
√

2

4
(xn + 2un,jtj)

]

+ α

[
−γ
√

2

4
(xn+1 + 2un+1,jtj)

]
= −α

[
−γ
√

2

4
(xn−1 + 2un−1,j+1tj+1)

]

+ 2(1 + α)

[
−γ
√

2

4
(xn + 2un,j+1tj+1)

]
− α

[
−γ
√

2

4
(xn+1 + 2un+1,j+1tj+1)

]
,

which upon simplification reduces to

α (xn−1 + 2un−1,jtj) + 2(1− α) (xn + 2un,jtj) + α (xn+1 + 2un+1,jtj)

= −α (xn−1 + 2un−1,j+1tj+1) + 2(1 + α) (xn + 2un,j+1tj+1)− α (xn+1 + 2un+1,j+1tj+1) .

Now considering

J = tj, and N = xn.

The transformation Eq. (5.3) takes the form

uN,J = −γ
√

2

4
(N + 2uN,JJ) .
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Consequently, we have

α [(N − 1) + 2un−1,jJ ] + 2(1− α) [N + 2un,jJ ] + α [(N + 1) + 2un+1,jJ ]

= −α [(N − 1) + 2un−1,j+1 (J + 1)] + 2(1 + α) [N + 2un,j+1 (J + 1)]

− α [(N + 1) + 2un+1,j+1 (J + 1)] ,

which deduces to

αuN−1,J + 2(1− α)uN,J + αuN+1,J = −αuN−1,J+1 + 2(1 + α)uN,J+1 + 2uN+1,J+1,

which is again the same Crank-Nicolson method for the parabolic equations. Hence,

the Crank-Nicolson method under the transformation of a discrete symmetry group ζ1

is invariant. So, with the same procedure one can also show that CNM is invariant

under the transformation of the discrete symmetry groups ζ2 and ζ3, respectively.

5.3 Construction of an Invariant Numerical Scheme

In this section, we construct an invariant numerical scheme for the Crank-Nicolson

method by taking the composition of continuous and discrete symmetry groups con-

verging to the exact solution of the Burgers’ equation and giving the most appropriate

results as compared to any other finite difference scheme. This construction is purely

based on the variable u of these two groups.

It is to be noted that ε is a continuous parameter and for the better performance

of the numerical scheme, we are opting ε to be a very small number.

5.3.1 Construction of an Invariant Numerical Scheme using
Discrete Symmetry Group ζ1

Burgers’ equation has a projective symmetry group as(
x̂, t̂, û

)
=

(
x+

tx

2
ε,

2t

2− εt
,
1

4
(4u− xε− 2utε)

)
, (5.4)

with

S1 =
1

4
(4u− xε− 2utε) . (5.5)
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Furthermore, the variable u of the discrete symmetry group ζ1 is

ζ1 = −
√

2γ

4
(x+ 2ut). (5.6)

Now the composition of projective group S1 and discrete symmetry group ζ1 is

S1 ◦ ζ1 = −
√

2γ

4
(x+ 2ut),

= −
√

2γ

4

[
x+ 2

(
1

4

(
4u− x̃ε− 2ut̃ε

))
t

]
,

= −
√

2γ

4

(
x+ 2ut− 1

2
x̃tε− ut̃tε

)
,

where x̃ and t̃ is written for our convienence to differentiate between the continuous

and discrete symmetry variables. So, substituting the corresponding x̃ = −
√

2γx
t

and

t̃ = −2
t

values of the discrete symmetry group ζ2, we obtain

S1 ◦ ζ1 = −1

4

√
2γ (2ε+ 2t)u− 1

4

√
2γ

(
1

2

√
2γxε+ x

)
,

which is further simplified to obtain the transformation u of the form

u = −1

4

√
2γ

[
(2ε+ 2t)u+

(
γε√

2
+ 1

)
x

]
. (5.7)

Now re-writing the above transformation of variable u as an approximate value of

u(x, t) at the grid points (xn, tj) as

un,j = −1

4

√
2γ

[
(2ε+ 2tj)un,j +

(
γε√

2
+ 1

)
xn

]
. (5.8)

So, using the variable u in the Crank-Nicolson method with the above transformation

implies

− α

4

√
2γ [(2ε+ 2tj)un−1,j + χ1]− 2

√
2(1− α)γ

4
[(2ε+ 2tj)un,j + χ2]

− α

4

√
2γ [(2ε+ 2tj)un+1,j + χ3] =

α

4

√
2γ [(2ε+ 2tj+1)un−1,j+1 + χ1]

− 2
√

2(1 + α)γ

4
[(2ε+ 2tj+1)un,j+1 + χ2] +

α

4

√
2γ [(2ε+ 2tj+1)un+1,j+1 + χ3] ,
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where

χ1 =

(
γε√

2
+ 1

)
xn−1,

χ2 =

(
γε√

2
+ 1

)
xn,

χ3 =

(
γε√

2
+ 1

)
xn+1.

which reduces to

α

[
(2ε+ 2tj)un−1,j +

(
γε√

2
+ 1

)
xn−1

]
+ 2(1− α)

[
(2ε+ 2tj)un,j +

(
γε√

2
+ 1

)
xn

]
+α

[
(2ε+ 2tj)un+1,j +

(
γε√

2
+ 1

)
xn+1

]
= −α

[
(2ε+ 2tj+1)un−1,j+1 +

(
γε√

2
+ 1

)
xn−1

]
+2(1 + α)

[
(2ε+ 2tj+1)un,j+1 +

(
γε√

2
+ 1

)
xn

]
− α

[
(2ε+ 2tj+1)un+1,j+1 +

(
γε√

2
+ 1

)
xn+1

]
,

which is the acquired Modified-Crank-Nicolson method (M-CNM) corresponding to

first discrete symmetry group ζ1.

5.3.2 Construction of an Invariant Numerical Scheme using
Discrete Symmetry Groups ζ2 and ζ3

Similarly, the variable u of the discrete symmetry groups ζ2 and ζ3 are

ζ2 = ξu, and ζ3 = Au,

where the composition of projective and discrete symmetry groups ζ2 and ζ3 of variable

u as an approximate value of u(x, t) at the grid points (xn, tj) are

un,j =
ξ

2

(
(2− tjε)un,j −

ξ

2
xnε− 2τε

)
, (5.9)

and

un,j =

(√
2AKε+ 2A2 − tjε

2A

)
un,j −

1

4
xnε, (5.10)
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respectively. Now using the variable u in the Crank-Nicolson method with the trans-

formation Eq. (5.9), we have

αξ

2

(
(2− tjε)un−1,j −

ξ

2
xn−1ε− 2τε

)
+

2(1− α)ξ

2

(
(2− tjε)un,j −

ξ

2
xnε− 2τε

)
+
αξ

2

(
(2− tjε)un+1,j −

ξ

2
xn+1ε− 2τε

)
= −αξ

2

(
(2− tj+1ε)un−1,j+1 −

ξ

2
xn−1ε− 2τε

)
+

2(1 + α)ξ

2

(
(2− tj+1ε)un,j+1 −

ξ

2
xnε− 2τε

)
− αξ

2

(
(2− tj+1ε)un+1,j+1 −

ξ

2
xn+1ε− 2τε

)
,

which can be written as

α

(
(2− tjε)un−1,j −

ξ

2
xn−1ε− 2τε

)
+ 2(1− α)

(
(2− tjε)un,j −

ξ

2
xnε− 2τε

)
+ α

(
(2− tjε)un+1,j −

ξ

2
xn+1ε− 2τε

)
= −α

(
(2− tj+1ε)un−1,j+1 −

ξ

2
xn−1ε− 2τε

)
+ 2(1 + α)

(
(2− tj+1ε)un,j+1 −

ξ

2
xnε− 2τε

)
− α

(
(2− tj+1ε)un+1,j+1 −

ξ

2
xn+1ε− 2τε

)
.

In similar way, one can obtain the invariant numerical scheme corresponding to Eq.

(5.10) as

α

(
X1un−1,j −

1

4
xn−1ε

)
+ 2(1− α)

(
X1un,j −

1

4
xnε

)
+ α

(
X1un+1,j −

1

4
xn+1ε

)
= −α

(
X2un−1,j+1 −

1

4
xn−1ε

)
+ 2(1 + α)

(
X2un,j+1 −

1

4
xnε

)
− α

(
X2un+1,j+1 −

1

4
xn+1ε

)
,

where

X1 =

√
2AKε+ 2A2 − tjε

2A
,

X2 =

√
2AKε+ 2A2 − tj+1ε

2A
.

The convergence and performance of these invariant numerical schemes will be

discussed in the following chapter.
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5.4 Transformation of 1-D Burgers’ Equation to 1-

D Heat Equation

The newly constructed invariant numerical scheme for the Crank-Nicolson method is

only applicable to the linear PDEs. Since, the Burgers’ equation is a non-linear PDE.

So, for the eligibility of this method to solve the Burgers’ equation, we will transform the

1-D Burgers’ equation by using the Hopf-Cole transformation [5, 4] to a 1-D diffusion

heat equation.

For this, let us consider a transformation

u(x, t) = ψx(x, t),

then we have

ux = ψxx,

uxx = ψxxx,

ut = ψxt.

Thus, Burgers’ Eq. (3.1) can be written as

2ψxψxx + ψxxx = ψxt.

Integrating w.r.t x

ψt = 2

[
ψx

∫
ψxxdx−

∫ (
d

dx
(ψx)

∫
ψxdx

)
dx

]
+ ψxx.

After some calculus, we get the following transformation of Burgers’ equation

ψt = ψ2
x + ψxx. (5.11)

Now again consider the transformation

ψ(x, t) = lnφ(x, t),
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then we obtain

ψt =
1

φ
φt,

ψx =
1

φ
φx,

ψxx =
φφxx − φ2

x

[φ]2
.

Therefore, Eq. (5.11) implies,

1

φ
φt =

(
1

φ
φx

)2

+
φφxx − φ2

x

[φ]2
,

φt =
1

φ
φ2
x +

φφxx − φ2
x

φ
,

transforms to 1-D diffusion heat equation

φt = φxx. (5.12)

Now to transform the boundary conditions, we have the Hopf-Cole transformed exact

solution of the Burgers’ equation as

u =
φx
φ
, (5.13)

that is,

u(0, t) =
φx
φ

= 0,

φx(0, t) = 0. (5.14)

and

u(1, t) =
φx
φ

= 0,

φx(1, t) = 0. (5.15)

Likewise, for the transformation of initial condition, we have

u(x, 0) = sin πx,

φx
φ

= sinπx,
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deduces to

φ(x, 0) = exp

(
1− cosπx

π

)
. (5.16)

Hence, we have transformed the 1-D Burgers’ equation

ut = 2uux + uxx,

with initial and boundary conditions

u(x, 0) = sin πx, 0 < x < 1,

u(0, t) = u(1, t) = 0, t > 0.

to the 1-D heat equation

φt = φxx, (5.17)

with non-homogenenous initial condition and insulated homogeneous boundary condi-

tions

φ(x, 0) = exp

(
1− cosπx

π

)
, 0 < x < 1, (5.18)

φx(0, t) = φx(1, t) = 0, t > 0. (5.19)

As the initial temperature is only a function of x and the end points are both insulated.

Consequently, this will also model the temperature u(x, t) within the infinite slab in

three dimensional space. That is, the temperature will quickly work out as the heat is

redistributed with the increasing t. In other words, the original total heat distributes

itself uniformly throughout the surface.

5.5 Exact Solution of the Burgers’ Equation

Now in this section we will use transformation (5.13) to find the exact Fourier solution

to the Burgers’ equation. In other words, φ(x, t) is any solution of the heat equation

Eq. (5.17) with the corresponding conditions Eqs. (5.18) and (5.19), then the trans-

formation φx(x,t)
φ(x,t)

is a solution of the Burgers Eq. (2.1) subject to the corresponding
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conditions Eqs. (2.2) and (2.3).

Consider the transformation (5.13)

u =
φx
φ
. (5.20)

Now using the method of separation of variables. Suppose,

φ(x, t) = X(x)T (t). (5.21)

So, Eq. (5.17) implies
∂2

∂x2
(XT ) =

∂

∂t
(XT ) , (5.22)

we obtain
1

X

d2X

dx2
=

1

T

dT

dt
, (5.23)

that is,
1

X

d2X

dx2
=

1

T

dT

dt
= −λ2. (5.24)

Consequently, Eq. (5.24) can be written as

1

X

d2X

dx2
= −λ2, (5.25)

which leads to the second ODE

d2X

dx2
+ λ2X = 0. (5.26)

It has a general solution

X(x) = d1 cos(λx) + d2 sin(λx). (5.27)

Since,

∂X

∂x
(x) = −λd1 sin(λx) + λd2 cos(λx), (5.28)
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For x = 0, we have d2 = 0, So, Eq. (5.27) implies

X(x) = d1 cos(λx), (5.29)

that is,

∂X

∂x
(x) = −d1 sin(λx). (5.30)

Now for x = 1, we have the infinite sequence of the eigenvalues and corresponding

eigenfunctions

−d1 sin(λ) = 0,

λn = nπ, n = 1, 2, 3, · · · ,

as d1 6= 0 and λ 6= 0.

Therefore, Eq. (5.29) yields

Xn(x) = d1 cos(nπx), n = 1, 2, 3, · · · . (5.31)

Similarly, Eq. (5.24) also implies

Tn(t) = c exp
(
−n2π2t

)
, n = 1, 2, 3, · · · . (5.32)

Upon substitution of Eq. (5.31) and Eq. (5.32) in Eq. (5.21) we have the product
function satisfying the homogenous conditions are

φn(x, t) = d1 cos(nπx)c exp
(
−n2π2t

)
,

= dn exp
(
−n2π2t

)
cos(nπx), n = 1, 2, 3, · · · , (5.33)

as d1c = Qn.

Now using the principle of superposition Eq. (5.33) takes the form

φn(x, t) =
∞∑
n=1

Qn exp
(
−n2π2t

)
cos(nπx). (5.34)
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For t = 0, Eq. (5.34) can be written as

φn(x, 0) =
∞∑
n=1

Qn cos (nπx) ,

exp

(
1− cos(πx)

π

)
=
∞∑
n=1

Qn cos (nπx) .

Multiplying by cos(mπx) on both sides

exp

(
1− cos(πx)

π

)
cos(mπx) =

∞∑
n=1

Qn cos (nπx) cos(mπx),

Integrating w.r.t x∫ 1

0

exp

(
1− cos(πx)

π

)
cos(mπx)dx =

∫ 1

0

∞∑
n=1

Qn cos (nπx) cos(mπx)dx,

=
1

2

∞∑
n=1

Qn
∫ 1

0

2 cos (nπx) cos(mπx)dx,

deduces to∫ 1

0

exp

(
1− cos(πx)

φ

)
cos(mπx)dx =

1

2

∞∑
n=1

Qn
(

sin(n+m)πx

n+m
− sin(n−m)πx

n−m

) ∣∣∣∣1
0

.

Now for m = n, one obtains∫ 1

0

exp

(
1− cos(πx)

π

)
cos(mπx)dx = 0, m = 1, 2, 3, · · · .

Likewise, for m 6= n, we have∫ 1

0

exp

(
1− cos(πx)

π

)
cos(mπx)dx =

1

2

∞∑
n=1

Qn
(
x− sin(2nπx)

2nx

) ∣∣∣∣1
0

,

=
1

2

∞∑
n=1

Qn.

Thus,

∞∑
n=1

Qn = 2

∫ 1

0

exp

(
1− cos(πx)

π

)
cos(mπx)dx, m = 1, 2, 3, · · · . (5.35)
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By using Eq. (5.35) in Eq. (5.34) yields

φ(x, t) =
∞∑
n=1

(
2

∫ 1

0

exp

(
1− cos(πx)

π

)
cos(nπx)dx

)
exp

(
−n2π2t

)
cos(nπx).

Therefore, the trail solution reduces to the Fourier cosine series to

φ(x, t) = q0 +
∞∑
n=1

qn exp
(
−n2π2t

)
cos(nπx), (5.36)

with

q0 =

∫ 1

0

exp

(
1− cos(πx)

π

)
dx, (5.37)

and

qn = 2

∫ 1

0

exp

(
1− cos(πx)

π

)
cos(nπx)dx, n = 1, 2, 3, · · · , (5.38)

where q0 and {qn} are the coefficients of Fourier cosine series of the initial temperature

function.

Hence, the exact Fourier solution to the Burgers’ equation using the Hopf-Cole trans-

formation (5.20) is given by

u(x, t) = −π
∑∞

n=1 qn exp (−n2π2t)n sin(nπx)

q0 +
∑∞

n=1 qn exp (−n2π2t) cos(nπx)
, (5.39)

where q0 and qn are defined by Eqs. (5.37) and (5.38), respectively.
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Chapter 6

Stability and Numerical Analysis of
an Invariant Numerical Scheme

This chapter deals with the stability and computational analysis of the Burgers’ equa-

tion. The stability investigation of the newly constructed invariant numerical scheme

(M-CNM) in Chapter 5 has been established by means of Von Neumann stability anal-

ysis and Lax convergence theorem, which shows that the invariant numerical scheme

(M-CNM) corresponding to second discrete symmetry ζ2 of the Burgers’ equation is

consistent with the diffusion heat equation, thereby ensuring that the numerical is

absolutely convergent to the exact solution of the Burgers’ equation. Note that the

stability analysis has been done only for the second discrete symmetry ζ2. However,

one can also check the convergence of the remaining numerical schemes following the

similar strategy.

The computation results of Burgers’ equation are obtained by virtue of FTCS,

CNM and M-CNM. For all methods, tables and figures are used to display the results.

Moreover, the comparison of all three methods was also discussed to obtain a verdict

that which among these three methods has faster convergence rate and error reduction

in terms of time and step size, N respectively.

Exact solution of the Burgers’ equation, FTCS, CNM and M-CNM are all coded in

MATLAB.
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6.1 Core Theory for Convergence of a Numerical

Scheme

In order to discuss the convergence of any numerical scheme, we require three notions

to address [37].

6.1.1 Local Truncation Error

Local truncation error is a basic way of providing the comparison between local accu-

racies of different numerical schemes. It can be define as ”the difference between the

finite difference approximation at (n, j)th grid point in space and time and its exact

differential equation. For instance, an exact solution U satisfying the partial differen-

tial equation say R (U) and a numerical approximation u staisfying the equation R(u)

then the local truncation error at the (n, j)th mesh point is Tn,j = Rn,j (U).

6.1.2 Consistency

The concept of consistency can be regarded as the representation of a partial differential

equation by the finite difference approximation. As the grids of space and time are

rectified of errors the finite difference equation converges to the original equation,

thereby proving the consistency of a finite difference equation with differential equation.

Thus, we conclude that the numerical scheme is consistent as the grids of space and

time are rectified then the truncation error Tn,j → 0.

6.1.3 Stability

Stability of any numerical scheme deals with the propagation of numerical error be-

tween the exact solution of the approximating equations to the solution of a differential

equation. Any numerical scheme is stable, If the error remains constant or decreases

as the approximation in time and space goes on. On the other hand, if error grows

with time, the scheme is said to be unstable.

This concludes the convergence of any numerical scheme as ∆t → 0 and ∆x → 0

while keeping xn and tj constant, the computed solution un,j of the discretized equation
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at any point xn = n∆x and tj = j∆t converges to the exact solution Un,j of the

differential equation with the error given as

En,j = un,j − Un,j, (6.1)

satisfying the following convergence theorem [37]

lim
∆x,∆t→0

|En,j| → 0 at constant xn = n∆x and tj = j∆t. (6.2)

Theorem 6.1.1 (Lax Theorem). If a numerical scheme corresponds to the partial

differential equation, then for the convergence, stability is the necessary and sufficient

condition subject to an appropriate initial and boundary conditions, that is

Consistency + Stability↔ Convergence.

6.2 Convergence of an Invaraint Numerical Scheme

using Discrete Symmetry Group ζ2

This section deals with the convergence of a Modified-Crank-Nicolson method obtained

by using second discrete symmetry ζ2. First, we will discuss the stability of concerned

numerical scheme. Since, there are numerous techniques to discuss the stability analysis

of a finite difference scheme. In this academic thesis, we will discuss one of them, which

is the most commonly used method is Von Neumann stability analysis. Consider the

following theorems [38, 37] for the main idea of this analysis.

Theorem 6.2.1. Let û ∈ L2 ∈ [−π, π] be the function of discrete Fourier transform of

u ∈ l2. Then for V ∈ [−π, π], we have

û (V) =
1√
2π

∞∑
n=−∞

e−ιnVun, (6.3)

and the inverse transformation

u2 =
1√
2π

∫ π

−π
e−ιnV û (V) dV , (6.4)
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with the Parselval’s relation ‖û‖2=‖u‖2 as

‖ûn+1‖2≤ ρ (V)‖û0‖2. (6.5)

Then in the transformed L2 space the finite difference scheme will be stable iff

ρ (V) 6 1, (6.6)

where ρ (V) is the amplification factor.

Theorem 6.2.2. For the operator g : l2 → L2 the discrete Fourier transform in [−π, π]

is given by

g(u) =
1√
2π

∞∑
n=−∞

e−ιnVun. (6.7)

Theorem 6.2.3. Let S ± u = {υj} be the shift operator with υj = υj±1 for j =

0,±1, · · · . Then the discrete Fourier transform (6.7) takes the form

g (S ± u) = e±ιVg(u), (6.8)

= e±ιV û (V) . (6.9)

6.2.1 Von Neumann Stability Analysis

In order to apply the Von Neumann stability analysis, consider M-CNM corresponding

to second discrete symmetry ζ2

α

(
(2− tjε)un−1,j −

ξ

2
xn−1ε− 2τε

)
+ 2(1− α)

(
(2− tjε)un,j −

ξ

2
xnε− 2τε

)
+ α

(
(2− tjε)un+1,j −

ξ

2
xn+1ε− 2τε

)
= −α

(
(2− tj+1ε)un−1,j+1 −

ξ

2
xn−1ε− 2τε

)
+ 2(1 + α)

(
(2− tj+1ε)un,j+1 −

ξ

2
xnε− 2τε

)
− α

(
(2− tj+1ε)un+1,j+1 −

ξ

2
xn+1ε− 2τε

)
,
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which can be simplified to

(2− tjε) (αun−1,j + 2 (1− α)un,j + αun+1,j) + 2(1− α)

(
−ξ

2
xnε− 2τε

)
− α

(
ξ

2
(xn−1 + xn+1) ε+ 4τε

)
= (2− tj+1ε) (−αun−1,j+1 + 2 (1− α)un,j+1 − αun+1,j+1) + 2(1 + α)

(
−ξ

2
xnε− 2τε

)
− α

(
ξ

2
(xn−1 + xn+1) ε+ 4τε

)
. (6.10)

Since, we have

xn−1 + xn+1 = (n− 1)∆x+ (n+ 1)∆x,

= 2n∆x.

Therefore, Eq. (6.10) implies

(2− tjε) (αun−1,j + 2 (1− α)un,j + αun+1,j)− n∆xξε− 4τε

= (2− tj+1ε) (−αun−1,j+1 + 2 (1− α)un,j+1 − αun+1,j+1)− n∆xξε− 4τε.

Applying the Von Neumann analysis, we have

(2− tjε)
[
αeιV ûj + 2(1− α)uj + reιV ûj

]
= (2− tj+1ε)

[
−αe−ιV ûj+1 + 2(1 + α)ûj+1 − αeιV ûj+1

]
,

(2− tjε) [α (cosV − ι sinV) + 2− 2α + α(cosV + ι sinV)] ûj

= (2− tj+1ε) [−α (cosV + ι sinV) + 2 + 2α− α(cosV + ι sinV)] ûj+1,

which deduces to

ûj+1 =

(
2− 2α + α cosV
2 + 2α− α cosV

)(
2− tjε

2− tj+1ε

)
ûj. (6.11)

After some calculus, Eq. (6.11) takes the form

ûj+1 =

(
1− 4α sin2 V

2

1 + 4α sin2 V
2

)(
2− tjε

2− tj+1ε

)
ûj,

= ρ (V) ûj. (6.12)
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Thus, the amplification factor is

ρ (V) =

(
1− 4α sin2 V

2

1 + 4α sin2 V
2

)(
2− tjε

2− tj+1ε

)
. (6.13)

Since, we know that a solution is stable iff |ρ (V)| 6 1. Therefore, Eq. (6.13) implies

−1 6
1− 4α sin2 V

2

1 + 4α sin2 V
2

6 1. (6.14)

Hence, this proves that the invariant numerical scheme which is the Modified-Crank-

Nicolson method corresponding to second discrete symmetry group ζ2 is stable for all

values of α.

6.2.2 Local Truncation Error

The compact form of an invariant numerical scheme Eq. (4.7) is

ut =

(
Aun,j+1 − ξ

2
xnε− 2τε

)
−
(
Bun,j − ξ

2
xnε− 2τε

)
∆t

, (6.15)

and

uxx =
[(Bun+1,j −Xk3)− 2 (Bun,j −Xk2) + (Bun−1,j −Xk1)]

2(∆x)2

+
[(Aun+1,j+1 −Xk3)− 2 (Aun,j+1 −Xk2) + (Aun+1,j+1 −Xn+1 −Xk1)]

2(∆x)2
, (6.16)

where

A = (2− tj+1ε) ,

B = (2− tjε) ,

Xki =
ξ

2
xkiε+ 2τε, ki = n− 1, n, n+ 1 for i = 1, 2, 3.
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Now, expanding u by Taylor expansion of two variables

un+1,j = un,j + ∆xux +
(∆x)2

2
uxx +

(∆x)3

6
uxxx +

(∆x)4

24
uxxxx + · · · ,

un,j+1 = un,j + ∆tut +
(∆t)2

2
utt +

(∆t)3

6
uttt +

(∆t)4

24
utttt + · · · ,

un+1,j+1 = un,j + ∆xux + ∆tut +
(∆x)2

2
uxx +

(∆t)2

2
utt + ∆x∆kuxt +

(∆x)3

6
uxxx

+
(∆t)3

6
uttt +

(∆x)2∆t

2
uxxt +

∆x(∆t)2

2
uxtt +

(∆x)4

24
uxxxx +

(∆t)4

24
utttt

+
(∆x)2(∆t)2

4
uxxtt +

(∆x)3∆t

6
uxxxt +

∆x(∆t)3

6
uxttt + · · · ,

and

un−1,j+1 = un,j −∆xux + ∆tut +
(∆x)2

2
uxx +

(∆t)2

2
utt −∆x∆kuxt −

(∆x)3

6
uxxx

+
(∆t)3

6
uttt +

(∆x)2∆t

2
uxxt −

∆x(∆t)2

2
uxtt +

(∆x)4

24
uxxxx +

(∆t)4

24
utttt

+
(∆x)2(∆t)2

4
uxxtt −

(∆x)3∆t

6
uxxxt −

∆x(∆t)3

6
uxttt + · · · .

Since, the residue of heat equation ut = uxx is

Rn,j(u) = ut − uxx. (6.17)

Substituting Eqs. (6.15) and (6.16) in Eq. (6.17), we have

Rn,j(u) =

(
Aun,j+1 − ξ

2
xnε− 2τε

)
−
(
Bun,j − ξ

2
xn−1ε− 2τε

)
∆t

− [(Bun+1,j −Xk3)− 2 (Bun,j −Xk2) + (Bun−1,j −Xk1)]

2(∆x)2

+
[(Aun+1,j+1 −Xk3)− 2 (Aun,j+1 −Xk2) + (Aun+1,j+1 −Xn+1 −Xk1)]

2(∆x)2
,

By substituting the corresponding values of un+1,j, un,j+1, un+1,j+1 and un−1,j+1, the

above equation can be written as

Tn,j =
B

A
(ut − uxx) +

B∆t

2A
(utt − uxxt) +

B(∆t)2

6A
uttt −

B(∆x)2

12A
uxxxx

+O
(
(∆t)3)+O

(
(∆x)3) , (6.18)
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where the principal part is

B(∆t)2

6A
uttt −

B(∆x)2

12A
uxxxx. (6.19)

That is,

Tn,j =
B(∆t)2

6A
− B(∆x)2

12A
= 0, (6.20)

if ∆x→ 0 and ∆t→ 0.

Hence, the invariant numerical scheme (4.7) is consistent with the partial differential

equation. Moreover, it is also stable. Therefore, by Lax theorem it implies that the

invariant numerical scheme is convergent. Likewise, one can also show that the nu-

merical scheme corresponding to discrete symmetry groups ζ1 and ζ3 are neither stable

nor consistent with the partial differential equation, thereby does not converge to the

exact solution of the Burgers’ equation.
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6.3 Numerical Analysis

In this section, the computational results of Burgers’ equation by using Explicit Fi-

nite Difference Method (FTCS), Crank-Nicolson Method (CNM) and Modified-Crank-

Nicolson Method (M-CNM) are presented. For all the methods tables and figures are

used to show the obtained results.

6.3.1 Burgers’ Equation Computation using Explicit Finite
Difference Method (FTCS)

The numerical computation of Burgers’ equation through a Hopf-Cole transformation

by using explicit finite difference method (FTCS) are presented in Table 6.1, 6.2, 6.3

and Figure 6.1, 6.2, 6.3 respectively.

x
Numerical Solution

Exact Solution
N = 10 N = 20 N = 40 N = 80

0.1 0.124116518 0.125486314 0.125829775 0.125915700 0.125949755

0.2 0.232616063 0.234985427 0.235578534 0.235726852 0.235786641

0.3 0.313015514 0.315814130 0.316512951 0.316687598 0.316760166

0.4 0.357912510 0.360596054 0.361264136 0.361430977 0.361503607

0.5 0.365285616 0.367493013 0.368040774 0.368177459 0.368241064

0.6 0.337524500 0.339118106 0.339512244 0.339610515 0.339660562

0.7 0.279949000 0.280965179 0.281215677 0.281278083 0.281313681

0.8 0.199452686 0.200015973 0.200154394 0.200188853 0.200211135

0.9 0.103571779 0.103813384 0.103872608 0.103887342 0.103897943

Table 6.1: Comparison of explicit finite difference (FTCS) solutions with exact solution
of Burgers’ equation at different step size, N

Table 6.1 reflects the discrete values of exact and explicit finite difference solutions

of the Burgers’ equation for t = 0.1 with ∆t = 0.00001 at various times. Table 6.1

then being illustrated into Figure 6.1 for all the values of a numerical simulation.
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Figure 6.1: Burgers’ equation solutions at different step sizes, N for t = 0.1 with
∆t = 0.00001 using explicit finite difference (FTCS)

From the Figure 6.1, it is clearly observed that the explicit finite difference (FTCS)

solutions get nearer to the exact solution as the number of step size, N increases. The

numerical values obtained by using the FTCS with different step size appears to have

been imbricated and onerous to note from the plots because of the closeness of the

computed solutions with the exact solution. However, the sole recognizable difference

between the computed solutions and exact solution is when N = 10. This additionally

demonstrate the less accuracy of computed solutions contrasted with the exact solution.
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x
Absolute Error

N = 10 N = 20 N = 40 N = 80

0.1 0.001833237 0.463441E-03 0.119980E-03 0.34055E-04

0.2 0.003170578 0.801214E-03 0.208108E-03 0.59789E-04

0.3 0.003744652 0.946035E-03 0.247214E-03 0.72567E-04

0.4 0.003591097 0.907553E-03 0.239471E-03 0.72630E-04

0.5 0.002955448 0.748051E-03 0.200290E-03 0.63606E-04

0.6 0.002136062 0.542456E-03 0.148318E-03 0.50047E-04

0.7 0.001364681 0.348502E-03 0.098005E-03 0.35598E-04

0.8 0.000758449 0.195162E-03 0.056741E-03 0.22282E-04

0.9 0.000326164 0.084559E-03 0.025336E-03 0.10601E-04

Table 6.2: Absolute error differences of explicit finite difference (FTCS) solutions with
exact solution of Burgers’ equation at different step size, N

Table 6.1 demonstrates the absolute error difference of exact solution and the ap-

proximation of FTCS of the Burgers’ equation presented in Table 6.1. It is clear from

the Table 6.2 that error is gradually decreasing and slowly approaching zero as the

number of step size, N increases as shown in Figure 6.2.
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Figure 6.2: Relative error difference of explicit finite difference (FTCS) solutions and
exact solution of Burgers’ equation for t = 0.1 with ∆t = 0.00001 at different step size

x
Numerical Solution

t = 0.1 t = 0.2 t = 0.4 t = 0.6 t = 0.8

0.1 0.125915700 0.044186236 0.005923086 0.000818905 0.113683E-03

0.2 0.235726852 0.083517712 0.011256632 0.001557463 0.216234E-03

0.3 0.316687598 0.113835409 0.015472577 0.002143264 0.297613E-03

0.4 0.361430977 0.132203343 0.018158317 0.002518966 0.349854E-03

0.5 0.368177459 0.137168587 0.019057027 0.002647908 0.367845E-03

0.6 0.339610515 0.128752859 0.018090429 0.002517655 0.349829E-03

0.7 0.281278083 0.108249805 0.015362731 0.002141142 0.297572E-03

0.8 0.200188853 0.077928886 0.011146785 0.001555341 0.216193E-03

0.9 0.103887342 0.040730539 0.005855196 0.000817594 0.113658E-03

Table 6.3: Explicit finite difference (FTCS) solutions of Burgers’ equation for different
time, t with space step size of N=80

Table 6.3 displays the discrete computation of Burgers’ equation solutions at dif-

ferent time, t = 0.1, t = 0.2, t = 0.4, t = 0.6 and t = 0.8 with the time step size of

∆t = 0.00001. All the obtained values of the numerical scheme are shown in the figure.
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Figure 6.3: Explicit finite difference (FTCS) solutions of Burgers’ equation for different
time, t

Figure 6.3 indicates that even though, the value of the Burgers’ equation solution

decreases as the time expands, the shape is yet held as a curve shape.

It has been evidently noted that the numerical solutions obtained through explicit

finite difference method (FTCS) are passably encompass agreement with the exact so-

lution. This additionally means that the computed results obtained through explicit

difference approximation (FTCS) have high precision if apply the higher number of step

size with condition in the scope of time step fulfill the Von Neumann stability, which

can be obtained as ∆t 6 1
2

(∆x)2 [37]. Hence, this method can be used to approximate

the Burgers’ equation solution.

6.3.2 Burgers’ Equation Computation using Crank-Nicolson
Method (CNM)

In this section, the computation of Hopf-Cole transformed Burgers’ equation by using

Crank-Nicolson method are presented in Table 6.4, 6.5, 6.6 and Figure 6.4, 6.5, 6.6

respectively.

122



x
Numerical Solution

Exact Solution
N = 10 N = 20 N = 40 N = 80

0.1 0.124121709 0.125491666 0.125835169 0.125921105 0.125949755

0.2 0.232626020 0.234995674 0.235588855 0.235737192 0.235786641

0.3 0.313029387 0.315828364 0.316527277 0.316701947 0.316760166

0.4 0.357929046 0.360612961 0.361281137 0.361448001 0.361503607

0.5 0.365303242 0.367510969 0.368058813 0.368195518 0.368241064

0.6 0.337541466 0.339135332 0.339529536 0.339627823 0.339660562

0.7 0.279963572 0.280979934 0.281230476 0.281292894 0.281313681

0.8 0.199463347 0.200026745 0.200165193 0.200199659 0.200211135

0.9 0.103577408 0.103819064 0.103878300 0.103893037 0.103897943

Table 6.4: Comparison of Crank-Nicolson method (CNM) solutions with the exact so-
lution of Burgers’ equation at different step size, N

Table 6.4 shows the Crank-Nicolson method (CNM) method solutions and exact

solution of the Burgers’ equation for time, t = 0.1 with time step size of ∆t = 0.00001.

The following Figure 6.4 is based on Table 6.4 for all the points of x.
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Figure 6.4: Burgers’ equation solutions at different step size, N for t = 0.1 with
∆t = 0.00001 using Crank-Nicolson method (CNM)

123



Figure 6.4 has a similar shape to Figure 6.1. This is due to the results obtained

by using Crank-Nicolson method (CNM) are inadequately close to exact solution of

the Burgers’ equation and consequently, reducing the transparency among the curves

particularly for N = 10. Nevertheless, this also suggest that the obtained solutions for

N = 10 are much less accurate as compared to different step size.

x
Absolute Error

N = 10 N = 20 N = 40 N = 80

0.1 0.001828046 0.458089E-03 0.114586E-03 0.28650E-04

0.2 0.003160621 0.790968E-03 0.197787E-03 0.49449E-04

0.3 0.003730778 0.931801E-03 0.232888E-03 0.58218E-04

0.4 0.003574561 0.890646E-03 0.222470E-03 0.55606E-04

0.5 0.002937822 0.730095E-03 0.182251E-03 0.45546E-04

0.6 0.002119096 0.525230E-03 0.131026E-03 0.32739E-04

0.7 0.001350109 0.333748E-03 0.083205E-03 0.20787E-04

0.8 0.000747787 0.184389E-03 0.045942E-03 0.11476E-04

0.9 0.000320535 0.078879E-03 0.019644E-03 0.04906E-04

Table 6.5: Absolute error differences of Crank-Nicolson method (CNM) solutions with
the exact solution of Burgers’ equation at different step size, N

Table 6.5 displays the absolute error difference between Crank-Nicolson method

(CNM) solutions and the exact solution of Burgers’ equation for time, t = 0.1 with a

time step size of ∆t = 0.00001. One can see that the error is decreasing significantly

and quickly approaching zero with each increment of a step size. Therefore, one can

deduce that the veracity of a computed solutions pivots upon the step size. The higher

the step size, the more minute the value of absolute difference between the computed

solutions and exact solution as shown in the Figure 6.5.
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Figure 6.5: Relative error difference of Crank-Nicolson method solutions and exact
solution of Burgers’ equation for t = 0.1 with ∆t = 0.00001 at different step size, N

x
Numerical Solution

t = 0.1 t = 0.2 t = 0.4 t = 0.6 t = 0.8

0.1 0.125921105 0.044190673 0.005924246 0.000819144 0.113727E-03

0.2 0.235737192 0.083526060 0.011258836 0.001557918 0.216319E-03

0.3 0.316701947 0.113846705 0.015475602 0.002143891 0.297729E-03

0.4 0.361448001 0.132216346 0.018161861 0.002519702 0.349990E-03

0.5 0.368195518 0.137181948 0.019060739 0.002648682 0.367988E-03

0.6 0.339627823 0.128765283 0.018093946 0.002518390 0.349965E-03

0.7 0.281292894 0.108260163 0.015365713 0.002141768 0.297688E-03

0.8 0.200199659 0.077936295 0.011148946 0.001555796 0.216278E-03

0.9 0.103893037 0.040734395 0.005856330 0.000817832 0.113702E-03

Table 6.6: Crank-Nicolson method (CNM) solutions of Burgers’ equation for different
time, t with space step size of N=80

Table 6.6 exhibits the simulacrum results of Crank-Nicolson method (CNM) vac-

illates in time notably t = 0.1, t = 0.2, t = 0.4, t = 0.6 and t = 0.8. It is to be

noted that the obtained solutions of the Burgers’ equation are shrinking and gradually

approaching zero with time as follows in Figure 6.6.
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Figure 6.6: Crank-Nicolson method (CNM) solutions of Burgers’ equation for different
time, t

The Crank-Nicolson method (CNM) is known to be efficient in using to approximate

Burgers’ equation solutions according to the numbers and graphs scrutinized for this

method. The explanation is that the simulated solutions are reminiscent of the exact

solution.
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6.3.3 Burgers’ Equation Computation using Modified-Crank-
Nicolson Method (M-CNM)

This section deals with the numerical computation of Burgers’ equation by means of

Hopf-Cole transformation using Modified-Crank-Nicolson method (M-CNM) through

second discrete symmetry ζ2 which are presented in Table 6.7, 6.8, 6.9 and Figure 6.7,

6.8, 6.9 respectively.

x
Numerical Solution

Exact Solution
N = 10 N = 20 N = 40 N = 80

0.1 0.124125305 0.125499708 0.125845588 0.125932744 0.125949755

0.2 0.232642366 0.235015589 0.235610615 0.235759881 0.235786641

0.3 0.313055072 0.315856751 0.316557007 0.316732333 0.316760166

0.4 0.357960001 0.360645852 0.361314942 0.361482232 0.361503607

0.5 0.365335452 0.367544519 0.368092950 0.368229900 0.368241064

0.6 0.337571430 0.339166241 0.339560806 0.339659209 0.339660562

0.7 0.279988479 0.281005581 0.281256351 0.281318797 0.281313681

0.8 0.199481036 0.200045127 0.200183739 0.200218176 0.200211135

0.9 0.103586233 0.103828653 0.103888035 0.103902704 0.103897943

Table 6.7: Comparison of Modified-Crank-Nicolson method (M-CNM) solutions with
the exact solution of Burgers’ equation at different step size, N

Table 6.7 displays the discrete results obtained by using Modified-Crank-Nicolson

method (M-CNM) with ε = 10−7, τ = 1, ξ = 1 for time, t = 0.1 with the time step,

∆t = 0.00001. The main reason for choosing such values for ε, τ and ξ is that these are

the ideal values for this method to be highly accurate with an adherent convergence

rate. Table 6.7 then being illustrated into Figure 6.7 for all values of x. Note that the

value of ε must be smaller as this method fails for any ε < 10−7.
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Figure 6.7: Burgers’ equation solutions at different step size, N for t = 0.1 with
∆t = 0.00001 using Modified-Crank-Nicolson method (M-CNM)

It is prominent from the Figure 6.7 that the numerical results are conceivably in

good congruity with the exact solution of the Burgers’ equation. As one can see that the

visibility of the curves between the computed and exact solution for N = 10 has been

slowly diminished. However, the solutions obtained by using M-CNM with different

step size expounds to have been completely cohered and the graphs are convolutedly

distinguishable.
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x
Absolute Error

N = 10 N = 20 N = 40 N = 80

0.1 0.001824450 0.450047E-03 0.104167E-03 0.17011E-04

0.2 0.003144275 0.771052E-03 0.176026E-03 0.26760E-04

0.3 0.003705094 0.903415E-03 0.203159E-03 0.27833E-04

0.4 0.003543606 0.857755E-03 0.188665E-03 0.21375E-04

0.5 0.002905612 0.696545E-03 0.148114E-03 0.11164E-04

0.6 0.002089132 0.494321E-03 0.099756E-03 0.01353E-04

0.7 0.001325202 0.308100E-03 0.057330E-03 0.05116E-04

0.8 0.000730099 0.166008E-03 0.027396E-03 0.07041E-04

0.9 0.000311710 0.069290E-03 0.009908E-03 0.04761E-04

Table 6.8: Absolute error differences of Modified-Crank-Nicolson method (M-CNM)
solutions with the exact solution of Burgers’ equation at different step size, N

Table 6.8 can be inquired from Table 6.7 which shows that the absolute error

difference between the computed solutions using Modified-Crank-Nicolson method (M-

CNM) and exact solution for time, t = 0.1 with a step size of time, ∆t = 0.00001 has

been truncated conspicuously as adorned into Figure 6.8.
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Figure 6.8: Relative error difference of Modified-Crank-Nicolson method (M-CNM)
solutions and exact solution of Burgers’ equation for t = 0.1 with ∆t = 0.00001 at
different step size, N
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x
Numerical Solution

t = 0.1 t = 0.2 t = 0.4 t = 0.6 t = 0.8

0.1 0.125932744 0.044199367 0.005927927 0.000821367 0.115635E-03

0.2 0.235759881 0.083543494 0.011266837 0.001563145 0.220946E-03

0.3 0.316732333 0.113870667 0.015486850 0.002151325 0.304337E-03

0.4 0.361482232 0.132244163 0.018175152 0.002528520 0.357836E-03

0.5 0.368229900 0.137210789 0.019074788 0.002658041 0.376325E-03

0.6 0.339659209 0.128792410 0.018107447 0.002527443 0.358044E-03

0.7 0.281318797 0.108283119 0.015377393 0.002149672 0.304764E-03

0.8 0.200218176 0.077952997 0.011157617 0.001561727 0.221606E-03

0.9 0.103902704 0.040743183 0.005860932 0.000820992 0.116544E-03

Table 6.9: Modified-Crank-Nicolson method (M-CNM) solutions of Burgers’ equation
for different time, t with space step size of N=80

Table 6.9 exhibits the obtained solutions for Burgers’ equation by using Modified-

Crank-Nicolson method (M-CNM) with ε = 10−7, τ = 1, ξ = 1 at different times with

a step size of ∆t = 0.00001. It is clearly observed that the numerical solutions reflect

the accurate physical behavior of a problem with more sophisticated convergence rate

as follows in the Figure 6.9.
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Figure 6.9: Modified-Crank-Nicolson method (M-CNM) solutions of Burgers’ equation
for different time, t

In the Figure 6.9, one can see that the corresponding curve for N = 80, which was

initially held as an arch shaped in the aforementioned methods appears to have been
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flattened, thereby elucidating the precision of the convergence rate of Modified-Crank-

Nicolson method (M-CNM).

However, the solutions of Modified-Crank-Nicolson method (M-CNM) obtained through

first and third discrete symmetries of the Burgers’ equation are scattered everywhere

and diverging completely from the exact solution of the Burgers’ equation as shown in

the Figure 6.10.
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Figure 6.10: Modified-Crank-Nicolson method (M-CNM) solutions corresponding to
first and second discrete symmetries with exact solution of the Burgers’ equation for
t = 0.1 with ∆t = 0.00001 at different step size, N

This also proves a notion that though any differential equation will yield many

discrete symmetries, but this does not guarantee that all those discrete symmetries

will approximate the exact solution of that differential equation. However, one thing is

clear that in all the obtained discrete symmetries, at least one discrete symmetry will

approximate the exact solution of the corresponding differential equation.
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6.3.4 Comparison of Transformed Burgers’ Equation For FTCS,
CNM and M-CNM

In this thesis, Burgers’ equation has been transformed to diffusion heat equation by

using the Hopf-Cole transformation as appeared in Chapter 4. Here, FTCS, CNM and

M-CNM were picked to fathom the transformed Burgers’ equation. The computed

results then can be transformed back to yield a solution of Burgers’ equation. To

determine the precision and convergence rate of the methods used, a comparison is

presented in Table 6.10, 6.11 with the corresponding absolute error difference in Table

6.12, 6.13.

x

Numerical Solution

Exact SolutionFTCS CNM FTCS CNM FTCS CNM

N = 20 N = 40 N = 80

0.1 0.125486314 0.125491666 0.125829775 0.125835169 0.125915700 0.125921105 0.125949755

0.2 0.234985427 0.234995674 0.235578534 0.235588855 0.235726852 0.235737192 0.235786641

0.3 0.315814130 0.315828364 0.316512951 0.316527277 0.316687598 0.316701947 0.316760166

0.4 0.360596054 0.360612961 0.361264136 0.361281137 0.361430977 0.361448001 0.361503607

0.5 0.367493013 0.367510969 0.368040774 0.368058813 0.368177459 0.368195518 0.368241064

0.6 0.339118106 0.339135332 0.339512244 0.339529536 0.339610515 0.339627823 0.339660562

0.7 0.280965179 0.280979934 0.281215677 0.281230476 0.281278083 0.281292894 0.281313681

0.8 0.200015973 0.200026745 0.200154394 0.200165193 0.200188853 0.200199659 0.200211135

0.9 0.103813384 0.103819064 0.103872608 0.103878300 0.103887342 0.103893037 0.103897943

Table 6.10: Comparison of FTCS and CNM solutions with the exact solution of the
Burgers’ Equation at different step size, N

Table 6.10 shows the computation simulation of the Burgers’ equation by using

both FTCS and CN methods with the increments of step size, N at time, t = 0.1 with

a time step size of, ∆t = 0.00001. One can clearly observe that the convergence rate

of CNM is faster than FTCS as the step size, N increases.
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x

Absolute Error

FTCS CNM FTCS CNM FTCS CNM

N = 20 N = 40 N = 80

0.1 0.463441E-03 0.458089E-03 0.119980E-03 0.114586E-03 0.34055E-04 0.28650E-04

0.2 0.801214E-03 0.790968E-03 0.208108E-03 0.197787E-03 0.59789E-04 0.49449E-04

0.3 0.946035E-03 0.931801E-03 0.247214E-03 0.232888E-03 0.72567E-04 0.58218E-04

0.4 0.907553E-03 0.890646E-03 0.239471E-03 0.222470E-03 0.72630E-04 0.55606E-04

0.5 0.748051E-03 0.730095E-03 0.200290E-03 0.182251E-03 0.63606E-04 0.45546E-04

0.6 0.542456E-03 0.525230E-03 0.148318E-03 0.131026E-03 0.50047E-04 0.32739E-04

0.7 0.348502E-03 0.333748E-03 0.098005E-03 0.083205E-03 0.35598E-04 0.20787E-04

0.8 0.195162E-03 0.184389E-03 0.056741E-03 0.045942E-03 0.22282E-04 0.11476E-04

0.9 0.084559E-03 0.078879E-03 0.025336E-03 0.019644E-03 0.10601E-04 0.04906E-04

Table 6.11: Comparison of Absolute error difference of FTCS and CNM solutions with
the exact solution of the Burgers’ Equation at different step size, N

Table 6.11 reflects the absolute error difference of both FTCS and CNM computed

solutions with the exact solution based on Table 6.10. As it is clearly evident from

Table 6.11 that for N = 20, the error difference of CNM is smaller in contrast to FTCS.

However, for N = 40, and N = 80, the error difference has been auxiliary truncated to

a lesser degree due to the increase in step size, N.

x

Numerical Solution

Exact SolutionCNM M-CNM CNM M-CNM CNM M-CNM

N = 20 N = 40 N = 80

0.1 0.125491666 0.125499708 0.125835169 0.125845588 0.125921105 0.125932744 0.125949755

0.2 0.234995674 0.235015589 0.235588855 0.235610615 0.235737192 0.235759881 0.235786641

0.3 0.315828364 0.315856751 0.316527277 0.316557007 0.316701947 0.316732333 0.316760166

0.4 0.360612961 0.360645852 0.361281137 0.361314942 0.361448001 0.361482232 0.361503607

0.5 0.367510969 0.367544519 0.368058813 0.368092950 0.368195518 0.368229900 0.368241064

0.6 0.339135332 0.339166241 0.339529536 0.339560806 0.339627823 0.339659209 0.339660562

0.7 0.280979934 0.281005581 0.281230476 0.281256351 0.281292894 0.281318797 0.281313681

0.8 0.200026745 0.200045127 0.200165193 0.200183739 0.200199659 0.200218176 0.200211135

0.9 0.103819064 0.103828653 0.103878300 0.103888035 0.103893037 0.103902704 0.103897943

Table 6.12: Comparison of CNM and M-CNM solutions with the exact solution of the
Burgers’ Equation at different step size, N

Table 6.12 promulgates the CNM and M-CNM solutions with the exact solution of

the Burgers’ equation for time, t = 0.1 with step size of time, ∆t = 0.00001 at different

step size, N . It can be seen that the computational simulations of M-CNM is eclipsing

CNM as the grids are refined.
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x

Absolute Error

CNM M-CNM CNM M-CNM CNM M-CNM

N = 20 N = 40 N = 80

0.1 0.458089E-03 0.450047E-03 0.114586E-03 0.104167E-03 0.28650E-04 0.17011E-04

0.2 0.790968E-03 0.771052E-03 0.197787E-03 0.176026E-03 0.49449E-04 0.26760E-04

0.3 0.931801E-03 0.903415E-03 0.232888E-03 0.203159E-03 0.58218E-04 0.27833E-04

0.4 0.890646E-03 0.857755E-03 0.222470E-03 0.188665E-03 0.55606E-04 0.21375E-04

0.5 0.730095E-03 0.696545E-03 0.182251E-03 0.148114E-03 0.45546E-04 0.11164E-04

0.6 0.525230E-03 0.494321E-03 0.131026E-03 0.099756E-03 0.32739E-04 0.01353E-04

0.7 0.333748E-03 0.308100E-03 0.083205E-03 0.057330E-03 0.20787E-04 0.05116E-04

0.8 0.184389E-03 0.166008E-03 0.045942E-03 0.027396E-03 0.11476E-04 0.07041E-04

0.9 0.078879E-03 0.069290E-03 0.019644E-03 0.009908E-03 0.04906E-04 0.04761E-04

Table 6.13: Comparison of Absolute error difference of CNM and M-CNM solutions
with the exact solution of the Burgers’ Equation at different step size, N

Table 6.13 is based on Table 6.12 which displays the error difference of CNM and

M-CNM solutions with the exact Burgers’ equation. It is clearly observed that both

numerical methods are reasonably in good agreement with the exact solution as the

error has been reduced significantly with each increment of a step size, N. Moreover,

M-CNM behaves more refined and swiftly approaching zero as compared to CNM.

6.4 Conclusion

The main objective of this comparison is to parade the precision of all three simu-

lations in MATLAB. All three numerical schemes demonstrate that the more precise

the solutions are, when certain constraints apply, as the number of step size, N in-

creases. For simple and efficient confirmation of the accuracy of the used numerical

schemes the absolute difference between exact and numerical solutions has been de-

termined, in which all three numerical schemes demonstrate a promising result. In

addition to the precision, graphic layout for all the solutions are analyzed as time is

increased, in which the result is achieved that the solution decreases as time increases.

All three numerical schemes focus on various approaches for solving the Burgers’ equa-

tion. Logically, M-CNM obtained by using second discrete symmetry group ζ2 yields

more accurate solutions compare to FTCS and CNM as seen in the error difference

Tables 6.12-6.13. The explanation is that the truncation error of M-CNM is of sec-

ond order with some constants in terms of time derivative, whereas FTCS and CNM
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has first and second order truncation error in terms of time derivative respectively,

thereby confirming the convergence of the numerical scheme M-CNM discussed earlier

in Section 6.2. In short, all three numerical methods are applicable to approximate the

solution of Burgers’ equation, however due to high accuracy, M-CNM can therefore be

considered to be competitive with the other two methods and worth recommendation.

Simultaneously, the results of this analysis showed that the trajectory of the computer

simulations is on the correct course.
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Appendix

This appendix discusses the numerical schemes for FTCS and CNM.

Explicit Finite Difference Scheme (FTCS)

The finite difference scheme for the heat equation is given by

un,j+1 = αun,j + α (un+1,j − 2un,j + un−1,j) ,

where α = ∆t
(∆x)2

and for the mesh points (xn, tj), ∆x and ∆t are the space and time

step size respectively. This scheme is conditionally convergent with a bound 0 < α < 1
2

on α and a truncation error of O (∆t) [37].

Crank-Nicolson Method (CNM)

The Crank-Nicolson scheme for diffusion heat equation is

2un,j + α (un+1,j − 2un,j + un−1,j) = 2un,j+1 + α (−un+1,j+1 + 2un,j+1 − un−1,j+1) .

This numerical scheme is implicit and unconditionally stable [37] with a great signifi-

cance for the time-accurate solutions. It has a truncation error of O (∆t2).
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