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Abstract

The energy of a graph is given by i |6,], where 6, , are the adjacency eigenvalues of the graph.
A graph has real eigenvalues becalj;lz its adjacency matrix is always symmetric. The energy of a
sidigraph is defined by i [Re(&,)l, where Re(¢,) represents the real part of eigenvalue &, of the
sidigraph. A sidigraph l(i:s complex eigenvalues because its adjacency matrix is not necessarily
symmetric. A topological index is recognized as molecular descriptor that is a conversion of a
molecular structure into some real number.

In our disquisition, we first focused on the extremal energy of sidigraphs. We investigate the
bicyclic sidigraphs having largest energy in the set of all bicyclic sidigraphs with fixed order.
We construct some non-cospectral bicyclic sidigraphs having equal energy. We also investigate
the energy ordering of signed digraphs in the class of all vertex-disjoint bicyclic sidigraphs. Our
second focus is on the energy of graphs based on the inverse sum indeg matrix and generalized
inverse sum indeg matrix. These matrices are defined by using definition of respective indices.
We give inverse sum indeg energy formula of some graphs. Bounds on inverse sum indeg energy
of graphs are obtained. Some non-cospectral equienergetic graphs with respect to inverse sum
indeg energy are also obtained. In the end, we introduce generalized inverse sum indeg index
and generalized inverse sum indeg energy of graphs. We study the generalized inverse sum
indeg index and energy from an algebraic point of view. Extremal values of this index for some
graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix
are studied. We also find Nordhaus-Gaddum-type results for generalized sum indeg energy and

spectral radius of generalized inverse sum indeg matrix.
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Chapter 1

Introduction to Graph Theory

In the first section of current chapter, a brief history review of graph theory is given. Some
terminologies of graph theory that we have used in our whole disquisition is given in Section
1.2. In next sections, a short review on spectral graph theory is given and some special types of

graphs are discussed. In the end, we give plan of the whole disquisition.

1.1 Background

A Swiss mathematician Leonhard Euler introduced the notion of graphs in the 18th century.
His attempt of solution to the eminent “Konigsberg bridge” problem given below is the origin
of graph theory: On the Pregel river, the Konigsberg city (now Kaliningrad, Russia) is situated.
The river divides city into four parts of land connected by seven bridges. A question arose that
whether there is the possibility of a walk over the city such that every bridge is crossed exactly
once? The visual representation of this problem is given in Figure 1.1.

In 1736, Euler solved the problem using graph theory and proved that such type of walk is
not possible. In the graph given by Euler (see Figure 1.2), he represented the lands by vertices
and bridges by edges.

For further study on the historical aspects and Konigsberg bridge problem solution given

by Euler, see [5,42]. In 1936, the first known graph theory book titled “Theorie der endlichen



Figure 1.1: Konigsberg bridge problem

Figure 1.2: The Konigsberg bridge problem graph

und unendlichen Graphen” was given by Konig. Graph theory has remarkable applications in
almost every branch of science such as applied mathematics, chemistry, engineering, computer

science, biology and a lot more.



1.2 Graph terminologies

An m-vertex graph G = (Vg, Eg), consists of Vg, a set of m vertices and Eg, a set of edges. If
w, z € Vg are joined by an edge then they are called adjacent, denoted by wz (or zw) and an edge
wz is an incident edge on w and z. Two edges are called adjacent if their some of end vertices
are common. For a graph G, the size ¢g and order ng are given by e¢g = |Eg| and ng = [Vg],
respectively. For any w € Vg, the neighbourhood Ng(w) of w is given as Ng(w) = {z| wz € Eg}.
Parallel edges are the edges that have same end vertices. An edge wz € Eg is said to be a loop
if w = z. A graph is simple whenever it contains no loop or parallel edges. For vertex w € Vg,
the degree of w is the cardinality |[Ng(w)|, denoted by dg(w) or d(w) or dg(w) . For any vertex w,
if [Ng(w)| = 0O, then w is recognized as an isolated vertex and if [Ng(w)| = 1, then w is a leaf.
A graph formed from G by eliminating w € Vg and each edge incident on w is expressed as
G \ {w}. For any wz € Eg, the term G \ {wgz} is defined similarly.

The largest (respectively, smallest) degree of G is the largest (respectively, smallest) vertex
degree in G, represented as Vg (respectively, dg). A graph of order ng, size ¢g, largest degree
V¢ and smallest degree dg is represented by G(ng, ¢g, Vg, 0g) and a graph of order ng and size
¢g 1s represented by Q,fg . A graph with dg(w) = b for every w € Vg, is a b-regular graph.

The complement of a simple graph G is a graph represented by G with the property that
Vg = Vg and wz € Eg if and only if wz ¢ Eg. Therefore ng = ng, ¢z = %(né —ng) — g,
Vg=ng—1-dgandég =ng—1-Vg.

Suppose G is a graph with Vg = {wy,...,w,} and Eg = {sy,..., s,}. Then a terminable
sequence wy, S1, Wi, 2, W2, 83, . ., Win—1, Sm» W, Where s, = w,_iwy, g = 1,...,m is said to be
a walk between wy and w,,. An m-vertex path #,, (m > 1), is a simple graph with Vp =
wi,...wy}and Ep, = {wwgi g =1,2...,m— 1}. An m-vertex cycle C,, (m > 3) is a simple
graph with Vo = {w;,...,w,}and E¢, = {(wowg1 lg=1,2,...,m—1} U {w,w;}. A graph not
containing any cycle is an acyclic graph. If for every pair w, z € Vg of G, a path exists between

w and z, then G is a connected graph; otherwise disconnected.

A connected and acyclic graph of order m is a tree represented by 7,,. A star graph S, is a



tree with ng, = m, in which one vertex is adjacent to m — 1 leafs. For w,z € Vg, the distance
between w and z is the length of the smallest path between w and z. The largest distance between
a vertex w of a graph G to every other vertex of G is called the eccentricity of w. The diameter
of G is the largest eccentricity of a vertex in G.

An m-vertex simple graph whose every vertex is adjacent to other m—1 vertices is termed as
a complete graph represented by K,,. If we can split vertex set Vg of a graph G into two disjoint
sets X and X, with the property that vertices of the same set are pairwise nonadjacent then G is
termed as a bipartite graph. The sets X; and X, are called partite sets of a bipartite graph G. A
complete bipartite graph %, is a bipartite graph with partite sets X; and X, such that |X;| = r,
|X;| = s and each vertex in X; is adjacent to each vertex in X,.

Suppose H; and H, are two simple graphs with Vg, N Vg, = ¢. The disjoint graph union
H, U H, is a graph with Vg, = Vg, U Vg, and Egqup, = Egy U Egy,. For any vertex
w € Vo, upt,, d(,(z)uwz = d(}(;:), g = 1,2. The join H; A H, is formed by adding wz € Eg, 19, for
each w € Vg, and z € Vg,. Two graphs H, and H, are said to be isomorphic if there exists a
bijection ¢ among Vg, and V¢, with the property that wz € Eq,, if and only if y(w) ¥(2) € Eqy,,
represented as H = H,.

A subgraph G, of G is the graph with Vg, C Vg and Eg, C Eg. A largest connected subgraph
of G is a component of G. A graph G is said to be an elementary figure if G = K, or G = C,,,
m > 3. A basic figure is a graph with elementary figures as components.

Any subset of non-adjacent vertices of G forms an independent set of G. An independence
number of a graph G is the largest size of its independent set. The line graph % of G is the
graph with V¢, = Eg and two vertices of % are adjacent if and only if their corresponding

edges in G have a common end vertex.

1.3 Spectral graph theory

Spectral graph theory is a field of graph theory that study the graph properties through some

properties of a matrix related to it, that is, eigenvalues and characteristic polynomial. It is used



to find the solutions of some chemical problems. Spectral graph theory appears in 1950. At
that time two major researches were going on: a technique suggested by Erich Hiickel in 1930
called Hiickel molecular orbital (HMO) method and a connection among spectral and structural
properties of graphs.

In 1980, Cvetkovi€ et al. [16] study the connection between these directions. The authors
compiled approximately whole research till date in aforementioned area. The authors revised
the survey in 1988 [14]. In 1995, Cvetkovic et al. [15] give the third edition of the book.

The adjacency matrix A(G) = [a,s]mxm Of a simple graph G with ng = m is an m X m matrix,

where

1 ifww, €Eg
Ars = )
0 otherwise.

The A-characteristic polynomial of G is given by:

Yo@) = det(AQ) - 6l,)
— 9’”+Zaq g (1.1)
g=1

where I, is an m X m identity matrix. The A-eigenvalues of G are the roots of ¥3(6) given in
Equation (1.1). The A-spectrum, spec 4(G), is the collection of all A-eigenvalues of G together
with multiplicities.

Graph energy is one of the strongest area in spectral graph theory. This concept of graph
energy is given by Hiickel. The equation (P — )¢ = 0 with P as the energy operator and &
as the energy of electron is the Schrodinger wave equation. The solution of this equation is ¢
(also called wave function). To get the result for the molecules, a very important role is played
by Hiickel. Hiickel normalizes the system in such a way that P becomes A(G) of the respective
graph G. The solution ¢ becomes the roots of ¥g(6).

One can study about Hiickel theory and its relation with spectral graph theory in [16]. In
chemistry, the levels of energy of many classes of conjugated hydrocarbons can be determined
by knowing about the energy levels of general class of graphs. A significant amount of research

has been done by Hiickel [46] till date.



If a graph G represents a structural formula of some chemical compound, then G is called
a molecular graph or chemical graph. In this graph, hydrogen atoms are not considered, see
[26]. The edges and vertices of such graph corresponds to the chemical bond and atom of the
compound, respectively.
The graph energy determines the m-electron energy of a conjugated carbon molecule. The
energy of a graph G is given by: .
E@) =) 16,,

g=1

where 6, are the A-eigenvalues of G.
Gutman [27] gave the concept of graph energy in 1978. Till now, a significant amount of

research has been done in this direction.

1.3.1 Spectra and graph energy

In the current section, a brief introduction to graph energy is given. Next theorem is used to find

the coeflicients of the A-characteristic polynomial of a graph.

Theorem 1.1 (Cvetkovi€ et al. [16]). Suppose G is a graph with ng = m and A-characteristic

polynomial of the form
Pa(0) = 0" + Z a, 0.

g=1

Then foreachq =1,...,m,
ag= Y =1y,

Yel,

where L, is the collection of every basic figure Y of G of order q, p(Y) represents the number of

components of Y and c(Y) represents the collection of each cycle of Y.

Coulson’s integral formula is one of the most important formula that calculates the graph en-
ergy without finding the eigenvalues. It finds the energy by using the characteristic polynomial.

The term p.v. f_ o; F(z)dz represents the principal value of f_ o; F(2)dz.



Theorem 1.2 (Coulson [13]). Suppose G is a graph with ng = m and A-characteristic polyno-

1 +oo i60 (i6)
o=z [ )

mial ¥Yg(0). Then

where (i) = 745 V5(i6).

An alternative form of Coulson integral formula is given by Gutman [27].

Theorem 1.3 (Gutman [27]). Suppose G is a graph with ng = m and A-characteristic polyno-
mial ¥g(0) = 6" + 2. by 0" Then
1 0 1 5] L5
£©) = 5 f — log [ ( ;(—m bag 629 + () (=1) bagey 6171 ) | d6.

2
w 0 oy

Many bounds for the graph energy are known. We here give some of the bounds. The

following theorem gives bounds on graph energy.

Theorem 1.4 (McCelland [55]). Suppose H = Q;g is a graph. Then

\/2eg +ng(ng — DIAH)E < E(H) < Regma. (1.2)

A graph is nonsingular if it has nonsingular adjacency matrix. Das and Gutman [19] gave

the following lower bound.

Theorem 1.5 (Das and Gutman [19]). Suppose H = Qneg is a nonsingular graph with ng; > 1.

12
_ 4 [2en 2e40 \*
Also let W = m[ E - (E) ] . Then

E(H) = \/2ew + npg(ngg — D) det AH) ™ + W,

where the inequality becomes equality for H = K

. . . , .
w or H is isomorphic to = copies of ¥

(when ng is even).

Next theorem gives bounds on graph energy with respect to its size and order.



Theorem 1.6 (Koolen and Moulton [52]). Suppose H = Q,fg is a graph with 2eq; > ngy. Also

suppose G, is a graph which is connected and has exactly two non trivial ‘A-eigenvalues with

4¢2
20—
1>
absolute value n,H_l” . Then

e 4¢2
EH) < =2 4 \/(nw 1) (%H - —27*]
n(]—{ nl],[

oy

where the inequality becomes equality for H = G, or H = K, or H is isomorphic to 3*

copies of K.
Following two theorems give some information about the energy of a graph G.
Theorem 1.7 (Bapat and Pati [3]). For an odd integer b, &(G) # b.
Theorem 1.8 (Pirzada and Gutman [63]). For an odd integer b, 5(G) # Vb.
Next result is about the bounds on graph spectra.

Theorem 1.9 (Brigham and Dutton [6]). Suppose H = Q,fg is a graph with A-eigenvalues

0y > -+ > 6,,,. Then for each integer f € [1,n4y]

2(f = Dey 2(—f +ng)ey
N1 o= \—7F

Nikiforov [59] proved the following conjecture given by Koolen and Moulton [51]: For

some & > 0, a graph H = Qneg exists with
NH
EH) =2 (Vg + D (1 - &) -

for almost every 1y > 1.

1.4 Weighted graphs

A wighted graph is a pair W = (G, w), where G = (Vg,Eg) is the underlying graph and

w : Eg — R\{0} is the corresponding weight function. For any edge e € E4, the weight of e

8



is denoted by @(e). If w(e) = 1 for each e € Eqy, then W is considered as a graph. Therefore
graphs are subclass of weighted graphs. The weight of ‘W, represented by @w(W) is defined
as w(W) = [] @wz). If @(W) > 0 (respectively, w (W) < 0), then W is called positive
(respectively,wilef;tive) weighted graph. If every cycle of weighted graph ‘W is positive, then
W is called balanced; otherwise unbalanced. Note that if the conjugated molecule has atoms
that are not carbon or hydrogen, then its respective graph has weighted edges. Hence there is
chemical significance of results on the energy of weighted graphs.

The adjacency matrix A(W) = [a,q]mxm of a weighted graph W with nqy = m, is an m X m

matrix, where

w(wpw,) ifw,w, € By
Apg =
0 otherwise.

The A-characteristic polynomial of ‘W is given by:

EU"W(H) det(ﬂ((w) -0l m)

= e S
q=1

where I, is an m X m identity matrix. The A-eigenvalues of W are the roots of ¥4y, (6).

The recursive formula for characteristic polynomial of ‘W is given in next theorem.

Theorem 1.10 (Gutman and Shao [32]). Suppose W = (G, @) be a weighted graph and wz €
Eay. Then,

Pay(0) = Pay g (0) — @ (W2) Payppoinia(0) — 2 Z W(C) Py c(0),
C
where the summation is taken on each cycle C containing wz.

Now if @ : Eq — {1, -1}, then W is called a signed graph. Thus weighted graphs are the
generalization of signed graphs.

Gutman and Shao [32] defined the energy of weighted graphs as
EW) = ) 16,
g=1

where 6, denotes the A-eigenvalues of “W. For the study about eigenvalues of weighted graphs

and chemical theories related to it, see [12,24]



1.5 Weighted digraphs

A directed graph (for short, digraph) 2 = (V4, Ay) consists of Vg, a set of nodes (vertices)
and Ay, a set of arcs. A weighted digraph W = (2, ) is a pair, where ¥ = (Vy, Ay) is the
underlying digraph of W and ¢ : Ay — R\{0} is the corresponding weight function. For any
w,z € W, if there is an arc form w to z then they are called adjacent, represented by (w,z). A
weighted arc is an arc with a given weight. The weight of (w, z) is denoted by y¥/(w, 7). The sign
of a weighted arc is the sign of its weight. The weight of W, represented by (W), is defined as
Y(W) =[] ww,z). The weighted digraph W is said to be positive if (W) > 0 and negative
if Y(W) VEGSM The order nyw and size ey of W are the cardinalities nyw = |Vw| and ew = |Awl,
respectively.

An m-vertex directed weighted path $,, is a weighted digraph with V= {w, wy, ..., Wy}
and weighted arcs Ap, = {(W,,wy1) | ¢ = 1,2,...,m — 1}. An m-vertex weighted directed
cycle C,, (m > 2), is a weighted digraph with Vo = {w,ws,...,w,} and weighted arcs
Ac, = {wg, wee1) U Wy,wy), g = 1,2,...,m — 1}. For every cycle C,, of W, if ¢(C,,) > 0
(respectively, ¥(C,,) < 0), then W is called cycle-balanced (respectively, cycle unbalanced)
weighted digraph. A linear weighted digraph is a digraph whose all components are cycles. If
for every pair w,z € Vy, a weighted directed path from a vertex w to a vertex z and from a
vertex z to a vertex w exists, then W is said to be a strongly connected weighted digraph. The
maximal connected subdigraphs of W are the strong components of W.

If all arcs of a weighted digraph W are replaced by undirected edges then the corresponding
graph is called the underlying weighted graph of W. A weighted digraph in which ny = ey
and has a unique cycle is a unicyclic weighted digraph. A weighted digraph whose underly-
ing weighted graph is connected and that has exactly two weighted directed cycles is called a
bicyclic weighted digraph.

A symmetric weighted digraph W is a weighted digraph with the property that if (w,z) €
AW with ¥(w, z) = p, then (z,w) € AW with ¥/(z, w) = p. A one to one correspondence between

W and (V_V') is given by W ~» (V_V), where Ve = Vo and each wz € Eqy with @w(wz) = p is
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replaced by two arcs (w, ), (z, w) with ¥(w, 2) = ¥(z,w) = p.
The adjacency matrix A(W) = [a,q]mxm of a weighted digraph W with nw = m is defined
by

l//(wp’ Wq) if (Wp’ Wq) € AW,

Apg = )
0 otherwise.

The A-characteristic polynomial of W is given by:
V(&) = det(A(W) — &1,),

where [,, is an m X m identity matrix. The A-eigenvalues of W are the roots of ¥y (&). The
A-spectrum, spec (W), is the collection of all A-eigenvalues of W together with their mul-
tiplicities. Next theorem is used to find the coefficients of the A-characteristic polynomial of

weighted digraph.

Theorem 1.11 (Achariya [1]). Suppose W is a weighted digraph with ‘A-characteristic poly-

nomial

Vor(&) = &'+ Y by "
q=1

Then for eachq = 1,2,...,m
b= D (=1PVlw(V)s(Y),
Yel,

where L, represents the collection of each linear weighted subdigraph Y of W of order g, p(Y)
represents the number of components of Y, w(Y) is the weight of linear weighted subdigraph Y

and s(Y) denotes the sign of Y.

Now if ¥/(w, z) = 1 for each arc (w, z) € Aw, then W is called a digraph. Also if in weighted
digraph W = (2, ¢), we take ¥ : Ay — {1, —1}, then W is called a signed digraph or sidigraph.

Hence weighted digraphs are generalizations of digraphs and sidigraphs.
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1.6 Overview

We give here whole plan of our disquisition. In second chapter, some results related to en-
ergy of sidigraphs and degree based energies of graphs are given. In third chapter, we find
extremal energy over a set of all bicyclic sidigraphs. At the end of this chapter, we find some
noncospectral equienergetic sidigraphs. For this chapter, see the paper by Hafeez et al. [36]. In
fourth chapter, we investigate the ordering of all vertex-disjoint bicyclic sidigraphs with respect
to energy. In fifth chapter, we give some properties of inverse sum indeg matrix and energy.
This matrix is defined using definition of inverse sum indeg index. We give energy formula
for some graphs with respect to ISI matrix and also find bounds for ISI energy. We also give
some non-cospectral graphs having same ISI energy. For this chapter, see the paper by Hafeez
and Farooq [37]. In sixth chapter, we define generalized inverse sum indeg index and energy.
We determine the largest and smallest value of this index in some graph classes. We study the
spectral properties of generalized ISI matrix. Some bounds on generalized ISI spectral radius
and energy are calculated and finds the Nordhaus-Gaddum type inequalities for them. For this

chapter, see the paper by Hafeez and Farooq [38]
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Chapter 2

Graphs and sidigraphs energy

In first section of the current chapter, we give a review of energy of sidigraphs. This concept
was introduced by Pirzada and Bhat [62]. In second section, we discuss about the energy of
graphs based on degree of vertices and give some basic results. This concept of the adjacency
matrix related to topological indices was introduced in [67]. Later, many types of graph energies

related to topological indices are introduced and some of them have applications in chemistry.

2.1 Energy of sidigraphs

Suppose &1, ..., &, are the eigenvalues of a sidigraph S. The energy of S is given by

£S) = ) [Re(€)], 2.1)

g=1
where Re(£,) represents the real part of £, see [60].
The A-characteristic polynomials of a positive directed signed cycle C,, and a negative

directed signed cycle C,, computed through Theorem 1.11 are:

Ve, (&) = &' -1,

¥c, (&) &+ L.

13



Therefore, the energy of C,, and C,, are, respectively, computed as:

E(Cn) cos 27|,
q=0 n
£C) = et (2q+1)7r‘
q=0 "

Pirzada and Bhat [62] computed the following formulas for energy of C,, and C,,:

2cot % if m = 0(mod4)

E(Cm) =4 2csc 2 if m = 2(mod4) (2.2)

csc =~ ifm = 1(mod2),

2m
2csc Zif m = O(mod4)

&(Cn) =1 2cotZ if m = 2(mod4) (2.3)

csc - if m = 1(mod2).
We denote a signed cycle of order m by C;, with either a positive sign or negative sign.
Next two theorems give extremal energy among m-vertex unicyclic cycle-balanced and cycle

unbalanced sidigraphs, m > 2.

Theorem 2.1 (Pefia and Rada [60]). In the class of all m-vertex unicyclic cycle balanced sidi-
graphs, the sidigraphs containing C,, Cs or C4 has the smallest energy and the sidigraphs

containing C,, has the largest energy.

Theorem 2.2 (Pirzada and Bhat [62]). For each g > 2, &(C,) < &(Cy+1). In addition, in the set
of all m-vertex unicyclic cycle unbalanced sidigraphs, the sidigraphs containing C, has smallest

energy and the sidigraphs containing C,, has the largest energy.

Pirzada and Bhat [62] proved the following relation between energy of a sidigraph and its

strong components.

Theorem 2.3 (Pirzada and Bhat [62]). Suppose S is a sidigraph and H,, . .., H; be its strong
components. Then &(S) = ¥.,_; &(H,).

14



Integral representation of energy is very useful as one can find the sidigraph energy without

knowing the eigenvalues of the sidigraph.

Theorem 2.4 (Pirzada and Bhat [62]). Suppose S is a sidigraph with ng = m and ‘A-characteristic
polynomial Vs(&). Then

U W;(zgf))
&(S) = - p-v. Im (m V(@) dé.

Next corollary is obtained from Theorem 2.4.

Corollary 2.5 (Pirzada and Bhat [62]). Let ¥ be a monic polynomial of degree m with roots
&1, ..., En and define ys(y) = y™ ‘P(é). Then

1 oo d
ES) = = po. f Inlys(l 2.
T oo y

The sidigraph energy also satisfies the following integral formula [56,62]:

2 |
£(S) = 2 fo = 0 ) 1y 24

T

Now we give some bounds on sidigraph energy. In next theorem, Pirzada and Bhat [62] give

the McCelland inequality for sidigraphs.

Theorem 2.6 (Pirzada and Bhat [62]). Suppose S is a sidigraph of order ns and size ¢s. Then

&(S) < \/%S(es +c—6),

where ¢, and ¢, are the number of positive and negative closed walks of size 2, respectively.

H
The inequality becomes equality when S is isomorphic to "73 copies of K.
Next theorem gives another upper bound on sidigraph energy.

Theorem 2.7 (Pirzada and Bhat [62]). Suppose S is a sidigraph of order ns and size es. Then

__)
&(8S) < es, where the inequality becomes equality when S is isomorphic to =% copies of K.
Following theorem gives some further information about energy of a sidigraph.
Theorem 2.8 (Pirzada and Bhat [62]). Suppose S be a sidigraph. Then

(1). &S) # (2”b)lr, where b is an odd integer, 0 < p < randr > 1.

1

(2). &S) # (5)7 where ’;‘ is a rational number, /g‘ ¢ Zandt > 1.
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2.2 Energy of graphs based on degree

In current section, we discuss about the graph energy which is based on vertex degree. These
types of energies are related to the topological index of a graph.

A topological index TI(G) of a graph G is recognized as a molecular descriptor which is
a conversion of a molecular structure into some real numbers. In computational chemistry,
topological indices are of vital importance. Numerous types of topological indices are found in
literature which include indices based on vertex degree, indices based on distance of vertices,
indices that are based on eccentricities of vertices, etc.

A topological index of a graph G which is based on vertex degree is given as

TIG) = > F(dy".dy").
wywe€EG

where ¥ is a function satisfying ¥ (w,z) = F (z, w).

To every T1(G), an m-square adjacency matrix Am(G) = [a,,] 1s defined and given as
Fdy",dy") if wyw, € Eg

Apq )
0 otherwise.

The Ar-characteristic polynomial of G is
Vg(0) = det(An(G) — O1,,),

where [, is an m X m identity matrix. The Ar-eigenvalues of G are the roots of S’fg(é). The
Arr-spectrum, spec(G) of G is the collection of all Ar-eigenvalues G together with their
multiplicities. A graph has real Ar-eigenvalues because A (G) is always symmetric. If G is a
graph with distinct Ar-eigenvalues 6; and respective multiplicities are p;, the Ar-spectrum of
G is represented as specr(G) = {Gi(pi) li=1,2,...,k}.

Let 6y,..., 0, be the eigenvalues of Ar(G). Then graph energy related to Ar(G) 1s defined
by .

En(G) = ). 16,.

q=1

16



After the remarkable success of the graph energy concept, the energies that are based on
eigenvalues of degree-based graph matrices are introduced. Recently, a significant amount of
research has been done in this direction. We list here some of the topological indices of graphs

based on vertex degree and energies related to it.

1. IfF (dg(w"), dgiw")) = dg(w") + d;w"), then TI1(G) is the first Zagreb index [35], represented by
M, (G). The first Zagreb energy &y, (G) was introduced in [64].

2. If F (dg(wp),dg(w")) = (dg(w”) + dg(w‘f))‘”z, then TI(G) is the sum connectivity index [78],

denoted by x(G). The sum-connectivity energy &,(G) was defined in [80].

3. If 7 (dg(w"),dg(w")) = (dg(wp) + dg(w"))“, where @ € R, then TI(G) is the general sum con-
nectivity index [79], represented by x,(G). The general sum-connectivity energy &,,(G)

could also be defined by using this function in A, (G).

4.1 F(dy".dg"") = (dg"” dg'")'2, then TI(G) is the Randic index [66], denoted by
R(G). The Randic energy &r(G) was defined in [9, 10].

5. If F (dg(w"),dg(w")) = (dg(w") dg(w"))“, then T1(G), where @ € R, is the generalized form of
Randic index [8], represented by R,(G). The general Randic energy &k, (G) was intro-
duced in [30].

6. IfF (dg(w”), dg(w")) = 2(dg(w”)dg(w"))” 2(dg(w”)+dg(w‘1))“, then T1(G) is the geometric-arithmetic
index [73], denoted by GA(G). The geometric-arithmetic energy &ga(G) was defined
in [68].

7. If F (dg(w”),dg(Wq)) = (dg(w”) dg(w")) (dg(w”) + a’g(Wq) )~!, then TI(G) is the inverse sum indeg

index [74], denoted by ISI(G). The inverse sum indeg energy &is;(G) was defined in [77].

8. IfF (dg(w”), d g(w")) =2 (dg(w”) + dg(w[’))‘l, then 7/(G) is the harmonic index [22], represented
by H(G). The Harmonic energy &5(G) was defined in [45].
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The first well known graph energy based on vertex degree is the Randi¢ energy. The adjacency
matrix related to Randi¢ index is called Randi¢ matrix. For detailed study on Randi¢ energy,

see [9,10,29,30,41,53,69] and references therein.

2.2.1 Some known results

In this section, we discuss some valuable results about degree based energies of graphs. By
det(M), we meant determinant of a mtarix M.
The most studied degree based graph energy is Randi¢ energy. First, we give result about

the Randi¢ energy.
Theorem 2.9 (Gutman et al. [29]). Let P,, be an m-vertex path. Then &x(P,,) = 2 + %5’ (P-2).

Note that for a b-regular graph G, & (G) = ééa G).

Next theorem is about the Randi¢ spectral radius.
Theorem 2.10 (Liu et al. [53]). The Randic spectral radius of a graph is equal to 1.
In the following theorem, we give bounds on Randi¢ energy.

Theorem 2.11 (He et al. [41]). Suppose G is a graph of order ng. Also suppose I' = det(Ar(G)).

Then
2 .
r(G) =z 1+ Z —m — 1+ (g =D (g =2) T,
wz€Eg dg dg
2 2
&RG) < 1+ \/(ng—2)( > 15 - 1)+(ng— s
G

wzeEg 4G

The concept of Randi¢ energy was further extended to general Randi¢ energy by Gu et
al. [30]. The authors obtained bounds for general Randi¢ energy and general Randi¢ spectral
radius. In the following two theorems, Gu et al. [30] give some property of general Randié¢

matrix.

Theorem 2.12 (Gu et al. [30]). The Ag,-eigenvalues of a simple and connected m-vertex graph

G are exactly two if and only if G = K.
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Theorem 2.13 (Gu et al. [30]). Suppose G is a graph that has no isolated vertex and Vg =
Wi, ..., W) Then det(Ar,(G)) = (d" dg™ ...d3")" det(AG)).

This concept was also extended to Hermitian Randi¢ energy by Lu et al. [54]. For detailed
study about general Randi¢ energy and Hermitian Randi¢ energy, we refer to [30, 54].

Zhou and Trinajsti¢ [80] put forward the concept of sum connectivity energy. The authors
studied the algebraic properties of eigenvalues of sum connectivity matrix and energy. Later,
this concept was extended to distance sum connectivity matrix [25] but we here discuss only
about sum connectivity matrix and energy.

In the following result, Zhou and Trinajsti¢ [80] obtained bounds for sum-connectivity en-

ergy.

Theorem 2.14 (Zhou and Trinajsti¢ [80]). Suppose G is a graph of order ng. Then

1 1
Y pIRp <EG@ < g D] R

wz €EBg G wz €Eg Y@
where the left inequality becomes equality for a null graph or a 1-regular graph and right
inequality becomes equality for a null graph or a complete bipartite graph possibly having

isolated vertices.

Note that for a b-regular graph G, 6,(G) = \/1—27)65 (@). For sum-connectivity energy formulas
of some specific graphs, study [61].

Next theorem gives bounds on largest eigenvalue of A, (G).

Theorem 2.15 (Zhou and Trinajsti¢ [80]). Suppose G be a graph of order ng and 6, > --- > 6

g

be its A, -eigenvalues. Then

G g el L
d(w)+d(z)
G

g g wzeEg “G

where left inequality becomes equality for A,(G) having equal row sums and right inequality

becomes equality for an empty graph or a complete graph.
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Recently, Zangi et al. [77] put forward the concept of inverse sum indeg energy of graphs.
The authors have not studied the ISI energy in detail. This detailed study was done by Hafeez
and Farooq [37]. They discuss the properties of ISI matrix and obtained several results about
ISI energy bounds (see Chapter 5).

The trace of the ISI matrix Ai(G) = [dpglmxm 18 defined by f a4, and is denoted by
tr(Ais1(G)). Zangi et al. [77] prove the following lemma. -

Lemma 2.16 (Zangi et al. [77]). Suppose G be a graph with wg = m and let 0, ...,6,, be its

Asi-eigenvalues. Then
(1 »6,=0,
g=1

@ G = L h=2 3 (%
2

déw) 49 )2
[69)
wz €Eg \"g +dg

Zangi et al. [77] prove the following result for b-regular graphs.
Theorem 2.17 (Zangi et al. [77]). For a b-regular graph G, it holds that &s1(G) = g E(G).

For more information about degree-based energies of graphs, study [21] and references

therein.
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Chapter 3

Bicyclic signed digraphs with maximal

energy

Finding sidigraphs with extremal energy over a certain set of sidigraphs is one of the funda-
mental concept in the theory of sidigraph energy. In 2015, Khan et al. [49] studied the problem
to find the smallest and largest energy in the set of all vertex-disjoint bicylic digraphs with m
vertices. In 2017, Khan and Farooq [50] considered the problem to find the extremal energy
over the set of all vertex-disjoint bicylic sidigraphs with m vertices. Monslave and Rada [58]
determined the bicyclic digraphs with largest energy over the set of all bicyclic digraphs. In
this chapter, we determine the largest energy of bicyclic sidigraphs in the set of all bicyclic

sidigraphs.

3.1 Known results and notations

In this section, we will give some notations and familiar results. Let D,, represents the collection
of m-vertex-disjoint bicyclic digraphs and D, represents the collection of m-vertex-disjoint
bicyclic sidigraphs. Suppose 8B, represents the set of all m-vertex bicyclic digraphs and 8;,
represents the set of all m-vertex bicyclic sidigraphs. Sidigraphs in B;, are classified in three

categories: the sidigraphs whose cycles are vertex-disjoint; the sidigraphs whose cycles share
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exactly one vertex and the sidigraphs whose cycles share atleast one edge.
Let g,s > 2 and let D, [q, s] = C, U Cy and D; [g,s] = C, U C,. Also suppose D; [q, s] =

C,UC,and D;[q,s] = C, U Cy. Let D;,lq, s] = {D;,lq, sl, D;,[q.s], D;lq,sl, D;lq,sl]}. Note

that ng = g + s forany S € D [q, s].

Let g, r, t are positive integers with g > r and (g,r) # (1, 1). A ¢-sidigraph with parameters
g, 1, tis made up of three directed signed paths P, P.+1 and Py, so that the end vertex of Py,
is the starting vertex of $,,; and .., and the starting vertex of #,, is the end vertex of £, and
P,+1. Note that the paths #,.; and $,,; constitute a signed cycle of size g + ¢ in a J-sidigraph.
Similarly, the paths #,.; and $,., constitute a signed cycle of size r + ¢ in a ¥-sidigraph. Both
cycles in a -sidigraph share at least one common edge. We denote a #-sidigraph with param-
eters g, r and ¢ by #[g, r, f] when both of its cycles are positive. Similarly a -sidigraph with
parameters g, r and ¢ is denoted by [ g, r, ¢] when both of its cycles are negative. A ¥-sidigraph
whose cycle constituted by paths #,.; and P, is positive and the cycle constituted by paths
P,+1 and P, is negative is denoted by g, r, £]. Similarly, a ¢-sidigraph whose cycle con-
stituted by paths #,.; and P, is negative and the cycle constituted by paths #,,; and P, is
positive is denoted by [ g, r, t]. Let E[g, r,t] = {9g,rt], dg,r,t], dg,rt], dg,r, t]}. Note
that a ¢-sidigraph has g + r + t — 1 vertices.

Let g, s be two positive integers with g > s > 2. A ®-sidigraph with parameters g, s is made
up of two directed signed cycles of sizes g and s, which share only one vertex. A ®-sidigraph
in which both cycles are positive is denoted by O[g, s] and a ®-sidigraph in which both cycles
are negative is denoted by O[g, s]. Let Olq, s] be the ®-sidigraph whose g-cycle is negative
and s-cycle is positive and ©O[g, s] be the @-sidigraph whose g-cycle is positive and s-cycle is
negative. Let 6[6], s] = {Olg, s], Olq,s], Olgq, s], Olg, s]}. Note that a ®@-sidigraph has g+ s—1

vertices.

By Theorem 2.3, to find the sidigraph energy, it is enough to find the energy of its strong

components. Using this fact, following two theorems give extremal energy in D,, and B,,,.

Theorem 3.1 (Khan et al. [49]). For each ¥ € D,,, £(2) < &(D;, [m —2,2]).
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S

Figure 3.1: On left, a ¥-sidigraph with parameters g = 6,r = 4 and t = 5. In middle, a

®-sidigraph with parameters ¢ = 6 and s = 5. On right is D; [6, 5].

Theorem 3.2 (Monslave and Rada [58]). If m > 19, then for each 9 € B,,, &(Z) < &(D;, [ m —
2,2).

In the following theorem, Khan et al. [50] give extremal energy among m-vertex bicyclic
sidigraphs in D;,.
Theorem 3.3 (Khan et al. [50]). Let S € D;,. Then we have
@) &(S) = &WD;,12,2]).
(it) For each m = O(mod 4), &(S) < &(D;,[m - 2,2]).
(iii) For each m = 2(mod 4), &(S) < &(D;,[m — 2,2]).

(iv) For each m = 1(mod 2), &(S) < &(D;,[m - 2,2]) = &(m — 2, 2]).

3.2 Maximal energy

In this section, we find those sidigraphs in B;, which have largest energy. Recall that the polyno-
mial ys(y) is defined by ys(y) = y™" Ws(f), where S is a sidigraph (see (2.4)). Following lemma
will be used to compare energies of sidigraphs. The proof is analogous to the proof of Lemma

2.1 [58] and thus neglected.

Lemma 3.4. Suppose S|, S,,S; and S, are sidigraphs. Then
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(1.) Foreach0 <y < oo, if lys, (| < lys,), then &(S1) < E(Sy);
(2.) Foreach0 <y < oo, if lys,( . lys; I < lys, W . lys, (W), then
E(S3) = E(Sy) < E(S1) — E(Sy).

Let H € D: [q, s] U BO[g, s] U dg,r, 1.

1. When ‘H € D¢ [gq, s].

m

-1 -+ 1 it H=Dlq,s]

&+ e+ 1 if H=Dlg,s]

Pu(é) = G-D
gt gr—¢g — 1 if H=D;lq,s]

& —gi+ & -1 it H=D;lq,s].

2. When H € 6[61, s].

gavs=l _ gaml _gsmlif G = @[q, 5]

gts=l 4 gq-1 4 es=1 4f qf = @[q, s]
mo =] T8 o
§q+s—1 + gq—l — gs‘l if H = ®[Cl, s]

é_-q+s—1 _ é_‘q—l + é‘-‘s_l if H = ®[q’ S] .

3. When H € 9g, r, 1].

getril _geml el of H = 9g, 1, 1]
getril pge=l el if H = e, r, t]
V(&) = o
§g+r+t—l + fg_l —_ é‘:r_l, lf 7—[ = ﬁ[ga r, t]

§g+r+t—l _ étg—l + é’r_l if H= ﬁ[g’ r, t]'

The strong components of any sidigraph S € $; are: some isolated vertices and a sidigraph
either belong to the set D;,[q, s] or @[q, s] or 90O[g,r,t]. Hence by using Theorem 2.3, it is
enough to compute the energy of sidigraphs in the sets O [q, s], @[q, s] and 5[g, r,t].

Next lemma determines the relationship between a ¥-sidigraph energy and a ®-sidigraph

energy.
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Lemma 3.5. The following equations hold true:
(). &g, r.t]) = EOlg + 1,1 +1]).

(2). &g, r. t]) =EO[g + t,r + t]).

(3). £ g, r. t]) = £O[g +t,r + t]).

4). W g,rt]) =EO[g + t,r+1]).

Proof. (1). It follows from Lemma 2.2 [58].

(2). From Equation (3.2), we have

T@[g+t,r+t](é‘:) — §g+r+2t—1 +§g+t—1 +é':r+t—1
— §I(€g+r+t—l +§g—l +é':r—l)

= é‘:t Tﬂ[g,r,t] (é‘:)

(3). From Equation (3.3), we obtain

W@[g+t,r+t](§) — §g+r+2t—l + é‘;g+t—1 _ §r+z_1
= ft(§g+r+t—1 +§:g_1 —fr_l)
- 61 Polgr. (©.

(4). From Equation (3.3), we get

T@[g+t,r+[](§) — é‘:g+r+2t—l _ §g+l‘—1 + é'_-r+t—1
— §I(§g+r+t—l _ é::g—l + gr—l)
= é:t SUﬁ[g,r,t](é‘:)-

This completes the proof. O

Thus by Lemma 3.5, it is enough to deal with the energies of sidigraphs belonging to the
sets D} [g, s] and @[q, s]. For finding sidigraphs with maximal energy in 8B;, we compute the
polynomials yeq 51, Yerq,s1 and yeyq.s- See Tables 3.1 ~ 3.5.

In the next two propositions, we will show that &'(O[q, q]) < &(D;,[g—1,2]) and &(O[q, q]) <
E(D;lq - 1,2]).
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Table 3.1: The polynomials ye, «(y) (see [58])

q = 0(mod 4) q = 1(mod 4) q = 2(mod 4) q = 3(mod 4)

s = 0(mod 4) iyl + iy’ —i iyl —y*+1 iyl —iy* +i iyl +y*—1
s = 1(mod 4) -y +iy'+1 -V =y +i -y =iy’ =1 Y +y =i
s = 2(mod 4) =iy + iy’ +i -y —y' =1 —iy? =iy’ =i -y +y' +1
s = 3(mod 4) yi+iy' =1 Y=y =i yi—-iy'+1 Yi+y +i

Table 3.2: The polynomials ygqq,s ()

g = 0(mod 4) g = 1(mod 4) g = 2(mod 4) g = 3(mod 4)

s = 0(mod 4) —iy? =iy’ =i -y +y +1 =iy + iy’ +i =iyl —y' =1
s = 1(mod 4) =iy’ +1 Yi+y +i yi+iy' =1 =y =i

s = 2(mod 4) =iy’ +i iyl +y -1 iyl +iy' —i iyl -y +1
s = 3(mod 4) -y =iy’ =1 Vi +y =i -y +iy'+1 =y =y +i

Table 3.3: The polynomials yp: 421(y) (see [58])

q = 0(mod 4) q = 1(mod 4) q = 2(mod 4) g = 3(mod 4)

Y4y =y =1 Ry =P+ ) Py eyl ey iR+ D)

Table 3.4: The polynomials ye, ()

q = 0(mod 4) q = 1(mod 4) q = 2(mod 4) q = 3(mod 4)

s = 0(mod 4) iyl —iy' =i iyl +y' +1 I +iy' +i iyl —y' -1
s = 1(mod 4) -y =iy’ +1 VI +y +i -y +iy' =1 -y =y =i
s = 2(mod 4) =iy =iy’ +i =iyl +y' -1 =iy + iy’ =i -y -y +1
s = 3(mod 4) yi—iy* =1 Yi+y =i +iy' +1 =y +i

Proposition 3.6. For each q > 3, £(0Olq, q]) < &(D;,[q — 1,2]).

Proof. We consider four cases for all values of g to prove the result.
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Table 3.5: The polynomials ye4.¢ ()

g=0(mod4) g=1(mod4) g=2(mod4)  g=3(mod4)

s = 0(mod 4) =iyl +iy' =i —iy? =y +1 —iy? —iy* +i —iyl+y° -1
s = I(mod 4) y+iy'+1 V= y +i y—iy* =1 Y+ yS =i
s = 2(mod 4) iyl +iy* +i iyl —y* -1 iyl —iy' —i iyl +y" +1
s = 3(mod 4) -y +iy* -1 -y -y =i -y —iy* + 1 -y +y +i

(1). If g = 2(mod 4) or g = 0(mod 4), then

|7D§n[q—l,2]|2 - |)’@)[q,q]|2 =y 2P+ 1)+ +2yF 20,

for each 0 <y < co. Hence Part 1 of Lemma 3.4 implies &(®lq, q]) < &(D;,[q—1,2]) for every
q=4.

(2). If g = 3(mod 4), then
ostg-120 = Worggl? = Y9207 + 1 + Y207 +2) + 20470 + 27 + 1) > 0,

for each 0 <y < co. Therefore Part 1 of Lemma 3.4 implies that &(0O|g, q]) < &(D;,[qg — 1,2])

for every g > 3.
(3). If g = 1(mod 4) then
osig-22” = Yelgql” = 07+ ¥ +y* +2y" > 0,

for each 0 < y < co. Thus by Theorem 2.1 and Part 1 of Lemma 3.4, we obtain &(®[q, g]) <
ED;lqg—2,2]) < &WD;,lg—1,2]) forall g > 5. O

Proposition 3.7. For each q > 3, £(0®lq,q]) < &(D;,[q — 1,2]).

Proof. Since |yo,ql* = [yorgql* = 0, for every 0 < y < co. Hence by using Proposition 3.6 and

Part 1 of Lemma 3.4, we get £(0[q, ql) < &(D;,[q — 1,2]). O

In next two propositions, we prove that &(®[q,s]) < &(D; g — 2,2]) and &£(O[q, s]) <
&(D; lq — 2,2]) for all g > s. We would like to mention that the idea of proofs are taken from

the proof of Proposition 2.5 [58].
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Proposition 3.8. Suppose g > s and q > 22. Then &(Olgq, s]) < E(D;, g — 2,2]).
Proof. We will prove this result by considering different cases for ¢ and s.
(1). If g = 2(mod 4) and s = 2(mod 4) then

Yelgsl® = ergsl” = =407 +y%) <0,

for each 0 < y < oco. Thus Part 1 of Lemma 3.4 implies that £(®[q, s]) < &(0Ol[q, s]) and by
Proposition 2.5 [58], we have &(Q[q, s]) < &(D;,[q—2,2]). Hence &(Blq, s]) < &(D;,[q—2,2])

for s > 2.
(2). If g = 2(mod 4) and s = 3(mod 4) or s = 1(mod 4) then
|7’®[q,s]|2 - |)’®[q,s]|2 = -4y’ <0,

for each 0 < y < oo. Therefore by Part 1 of Lemma 3.4 and Proposition 2.5 [58], we have
&(0lq,s]) < &D;,lqg —2,2]) for s > 3.

(3). If g = 2(mod 4) and s = 0(mod 4) then
Yotgsl” = ergal? = =07 + 2y = y) X 2+ y* +y°).
Let
Q@) = Y +2y-y

07 =" +2)* (3.4)

= (7 -y)+y +)0 (3.5)

Take pi(y) = =2 + y*> +y*) ¢i(y). When 0 < y < 1, then by Equation (3.4), it is clear that
q1(y) > 0 and by Equation (3.5), clearly g;(y) > 0if y > 1. So p;(y) < O foreach 0 <y < co.
Therefore Part 1 of Lemma 3.4 implies &(®[q, s]) < &(0O[q,2]), and by Proposition 2.5 [58],
we have &(0[q,2]) < &(D;,lg — 2,2]). Therefore &(0O[q,s]) < &(D;,[qg —2,2]) for s > 4 and

we are done.
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(4). If g = 3(mod 4) and s = 2(mod 4) then

Y22 = Wegsl® = Y77+ 20272 4y 4 2y -y + 2y
— (y4 _ yZS) + y2q—4 + 2y2q—2 + 2y2 + 2yY (36)
— (qu—Z _ yZS) + y2q—4 + y2q—2 + y4 + 2y2 + 2ys (37)

Since s < g — 1, therefore from Equations (3.6) and (3.7), clearly |yD;n[q_2,2]|2 - Iy@[q,s]l2 > 0 for
each 0 < y < co. Hence by Part 1 of Lemma 3.4, we have &(0lq, s]) < &(D;,[lq — 2,2]) for

s > 2.

(5). If g = 3(mod 4) and s = 3(mod 4) then we have

Wosig-221” = Wergsil® = Y+ 2277 4y + 2y — > — 2™
= OF =y + 2y = 2977 + 2t 4 2% (3.8)
= (% =)+ (29277 = 2)9) 4yt 4 29 (3.9)

From Equations (3.8) and (3.9), it is clear that |yp; ;;-2211* — [Yejgsl* = 0 foreach 0 < y < oo,
since s < g — 4. Therefore Part 1 of Lemma 3.4 implies that £(Olgq, s]) < &(D;,[qg — 2,2]) for

s > 3.

(6). If g = 3(mod 4) and s = 1(mod 4) then

|7’Di’n[q—2,2]|2 - |7’®[q,S]|2 = y2q—4 + 2)’2[]_2 + y4 + 2)’2 - y2s +2y7
= (=) + Y2 £ 222 4 2y 4 21 (3.10)
— (y2q—2 _ yZS) + y2q—4 + y2q—2 + y4 + 2y2 + 2yq+x. (31 1)

Since s < g — 2, therefore from Equations (3.10) and (3.11), clearly |yD;n[q_2,2]|2 - I)/@[q,s]l2 >0

for each 0 < y < oo. Thus by Part 1 of Lemma 3.4, we get &(0[q,s]) < &(D;,lq — 2,2]) for

s> 5.

(7). If g = 3(mod 4) and s = 0(mod 4) then

|7D§5n[q—2,2]|2 - |)’®[q,s]|2 = y2q—4 + 2y2q—2 + y4 + 2y2 B y2s -2
= =)+ (@7 =2+ )M (3.12)
= (P =)+ (27 -2 + 0+ 2y (3.13)
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From Equations (3.12) and (3.13), we get lyp: (;-2211* = [Yorqs/* = 0 for each 0 < y < oo, since

s < g — 3. Consequently by Part 1 of Lemma 3.4, we have &(0lq, s]) < &(D; [q — 2,2]) for

s> 4.

Analogously one can prove for g = O(mod 4) and ¢ = 1(mod 4). O
Proposition 3.9. Suppose q > s and q > 22. Then &(0Olq, s]) < &(D;,[lq — 2,2]).

Proof. For g # 2(mod 4) and g > s, one can easily check that |7D;”[q_2,2]|2 - I)/@[q,s]l2 > 0 for

each 0 <y < co. Therefore by Part 1 of Lemma 3.4, we obtain &(0®lgq, s]) < &(D;,[g — 2,2]).

To prove the assertion for all s > 2 when ¢ = 2(mod 4), we consider four cases.
(1). If g = 2(mod 4) and s = 2(mod 4) then
ergsl® = Yelgsl = 4y* (1 +y7) =0,

for each 0 < y < oo. Therefore by Part 1 of Lemma 3.4 and Proposition 2.5 [58], we have
£(0@[g,s]) < £Olgq,s) < EWD: g - 2,2]) for s > 2.

IA

(2). If g = 2(mod 4) and s = 3(mod 4) then

etgsil” = Yergsl” =0, (3.14)

for each 0 < y < oo. Therefore by Part 1 of Lemma 3.4 and Proposition 2.5 [58], we get
&(0lg,s]) < &(D;,lg —2,2]) for s > 3.

(3). If g = 2(mod 4) and s = O(mod 4) then
|7D,5,7[q—2,2]|2 |?’®[q+4,s]|2 - |7D3n[q+2,2]|2 |7®[q,s]|2
=0’ =D+ D7 +y + Dy
X (YTHS o yTHsHd vt as6 4 0 20k g st iy
Let
Go(y) = YIF0 4 YIS 2 gt a6 | 0 200 g s 92
= (T ) g (2 IOY g (g 2 (v ey (3.15)

+ (yq+s+4 _ ys+2) + (yq _ y2)
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Take po(y) = —(* = 1) % + 1) (> +y* + 1) y9* g2(y). By Equation (3.15), clearly ¢»(y) < 0
foreach 0 <y < 1 and ¢,(y) > 0 for y > 1. Hence p,(y) < 0 for each 0 < y < co. Consequently
by Part 2 of Lemma 3.4, it holds that

&(Dylg +2,2]) - £@lg +4,5)) > &(D,lg—2,2]) - £(Olg,s])

> &(D,lg-6,2]) - £(Olg —4,s])
> ... (3.16)
> &(D:[s,2]) — £OLs + 2, 5]).
Also
|7D,5,l[q—2,2]|2 |)’®[q+4,q+2]|2 - |)’1:>5,1[q+2,2]|2 |7’®[q,q—2]|2
= -7 =D+ 1P Q@+ )y X (22— 2% -y 4242,
Let
g3(y) = =2y 4 2y -yt 2y
= M-y + 0% =y + (27 - 2) (3.17)
= (2% =2)+ (1 =y + (P2 - T, (3.18)

Take p3(y) = —(y* = 1) (* + 1)* (2 + y*) y7™* ¢3(y). From Equations (3.17) and (3.18), we see
that g3(y) < Oforeach 0 <y < 1 and ¢g3(y) > O for y > 1. Thus p3(y) < 0 foreach 0 <y < co.

Now Part 2 of Lemma 3.4 with g = s + 2 gives

ED; [s+4,2]) - &O[s + 6,5 + 4])

\%

E(D; [s,2]) — EO[s + 2,s])

\%

ED,[s—4,2]) - EO[s - 2,5 —4])

v

&(D; [8,2]) — &£(V[10, 8])

> 0,

for each s > 8. Therefore &(@[q, s]) < &(D;,[q — 2,2]). As &(D;,[8,2]) — £(O[10,4]) > 0, so

the case s = 4 follows from Equation (3.16) and the result is proved.
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(4). If g = 2(mod 4) and s = 1(mod 4) then

Yergsil® — Yerg.sl” = 0, (3.19)

for each 0 < y < oo . Hence by Part 1 of Lemma 3.4 and Proposition 2.5 [58], we get
&(©lg,s]) < &(D,

m

[g — 2,2]). The proof is completed. O

The proofs of next propositions are similar to the proofs of Propositions 3.6 ~ 3.9, Proposi-

tions 2.3 and 2.5 [58] and are thus omitted.
Proposition 3.10. If g > 3, then &(0lq, q]) < &(D; g — 1,2]).
Proposition 3.11. Let g > 5,22. Then &(0lq, s]) < &(D;,[q — 2,2]).

Now we will find the sidigraphs with maximal energy in 8;, and to do this, two results are

required, which we compute using MATLAB.

Lemma 3.12. The following inequalities hold:

(). Ifg+s—1 < 43 then £(O[q, s]) < &(D:,[41,2]), £@lq, s]) < ED:[41,2]) and £(O[q, s]) <
&(D:[41,2)).

Q). Ifg+r+1t—1< 43 then £Wg,r,t]) < EDL[41,2]), EWg.r,t]) < EDE[41,2]) and
EW(g.r, t]) < ED[41,2]).

Theorem 3.13. Let m > 43 and let S € B,,.

(1). For each m = O(mod 4), S has the largest energy if it has D;,[m —2,2] as its strong compo-

nent.

(2). For each m = 2(mod 4), S has the largest energy if it has D; [m — 2,2] as its strong com-

ponent.

(3). For each m = 1(mod 2), S has the largest energy if it has D;,[m —2,2] or D; [m — 2,2] as

m

its strong component.
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Proof. We consider three posibilities:

(7). When S has a strong component in the set D; [q, s] with ¢g,s > 2 and ¢ + s < m. Let
‘H € D; g, s]. Then by Theorem 3.3, &(S) = &(H) < &(D;,[m — 2,2]) for m = O(mod 4) or
m = 1(mod 2) and &(S) = &(H) < &(D;,[m — 2,2]) for each m = 2(mod 4).

(if). When S has a strong component in the set @[q, s]withg>s>2andg+s—-1<m If

q + s — 1 <43 then by Part 1 of Lemma 3.12 and Theorem 3.2, we have

&(©lg, s]) < &(D,,[m - 2,2]),
&(0lg,s]) < £(D,,[41,2]) < £D;,[m - 2,2]),
(3.20)
&(0lg, s]) < &(D,,[41,2]) < £D;,Im - 2,2]),
&(Blg,s]) < &(D,,[41,2]) < &(D;,[m - 2,2]).
Now assume that ¢ + s — 1 > 43. Then g > 22 as g > 5. Thus by Proposition 3.6 ~3.11 and

Theorem 3.2, we have

&(S) = £(0Blg, s])

IA

A

&(S) = &(0B[q,s]) < g(Dfn[q - 1,2 < 5(Dfn[m -2,2]), 321)
£(S) = EOIq.s) < EDLIg—1,2] < ED%Im—2,2]), |

- m m

&(S) = £(Blg, s

A

byreasonofg—1<m—-s<m-2.

Let H € 6[(], s]. Now using Equations (3.20), (3.21) and Theorem 3.3, &(S) = &(H) <
E(D;,[m—=2,2])foreachm = 0 (mod 4)orm = 1 (mod 2) and &(S) = &(H) < &(D;,[m - 2,2])
for each m = 2(mod 4).

(7ii). When S has a strong component in the set E[g, r,t], where g, r and ¢ are positive integers

withg>r,(g,r) #(1,1)and g+r+t—1 <m. Since 41 <m -2, thereforeif g+r+1—1 <43
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then by Theorem 3.2 and Lemma 3.12 (2), it holds

(Og. r.1])

&g, r.t])

IA

&(D,,lm - 2,2)),

IA

&(D; [41,2]) < &(D; [m —2,2]),

&g, rt])

IA

&(D, [41,2]) < &(D; [m —2,2]),

&g, r, t])

IA

&(D,,[41,2]) < &(D; [m —2,2]).

m

Now suppose that g + r+ ¢t — 1 > 43. Then g + ¢t > 22. Since g > r, therefore if g + ¢ < 22
then r—1 > 21. This implies g < 22 and r > 21, which is a contradiction. Therefore by Lemma

3.5, Proposition 3.6 ~ 3.11 and Theorem 3.2, we have

EWD;lg+t—-1,2]) ifg=r
&(D:

m

E(S) =& g,r t]) <
[g+1-2,2]) ifg>r,

& (D? —1’2 if o =
£(S) = 6@lar.) <] CPms I LD g =r
EDLlg+1-2,2]) ifg>r,

&(Ds ~1,2]) ifg=
£(S) = EWlg.r.1]) < (D;[g +1 D ifg=r

EWDlg+t-2,2]) ifg>r,

&(S) = EWNg, r1]) < E(D;,[Im = 2,2]).
Nowifg>rthenm>g+r+t—1>g+tandthus g +7—-2 <m—-2. Hence Theorem 2.1
implies &(D; [g +t —2,2]) < &(D;,[m—2,2]).
If g = rthenr > 2. Thus g+1—1 < m—r < m—2. Again by Theorem 2.1, &(D; [g+t—1,2]) <
&(D;,Im—2,2]).
Let H € 5[g, r,t]. Using Theorem 3.3 and all above facts, it holds that &(S) = &(H) <
E(D;,[m — 2,2]) for m = 0(mod 4) or m = 1(mod 2). If m = 2(mod 4) then &(S) = &(H) <

&(D;,Im — 2,2]) and we are done. O
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3.3 Equienergetic bicyclic sidigraphs

Two sidigraphs with same spectrum are called cospectral sidigraphs, otherwise non-cospectral.
Two sidigraphs with equal energy are called equienergetic sidigraphs. Two isomorphic sidi-
graphs are always cospectral and thus are equienergetic. In this section, we will find few classes

of non-cospectral equienergetic bicyclic sidigraphs.

Figure 3.2: Equienergetic bicyclic sidigraphs.

Example 3.14. Let S be the sidigraph on left side and H be the sidigraph on right side of
the Figure 3.2. The dotted lines represent negative arcs and solid ones represent positive arcs.

Their A-characteristic polynomials are:

Ps) = (E+D(E +1),
() = E+DE -1,
Thus
l+i —1+i 1++3i
spec4(S) = {—1, 5 v 2 } (3.22)
spec(H) = {1, 1\21,—1\/;—112@} (3.23)

From (3.22) and (3.23), S and H are non-cospectral equienergetic bicyclic sidigraphs.

Theorem 3.15. Let ¢ = O(mod 2) and s = 1(mod 2). Let S| and S, be m-vertex bicyclic
sidigraphs which contain O|q, s| and O[q, s], respectively. Take m-vertex bicyclic sidigraphs
H, and H, which contain O|gq, s] and O|q, s], respectively. Then S; and H, are non-cospectral

equienergetic sidigraphs. Similarly, S, and H, are non-cospectral equienergetic sidigraphs.
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Proof. By Theorem 1.11, A-characteristic polynomials of S§; and H, are, respectively, given

by

BUS 1 (f)
P51, (£)

é;m _ fm—q _ é;m—s’
é_-m _ é_-m—q + gm—.v.

Similarly, A-characteristic polynomials of S, and H, are, respectively, given by

(D32 (‘f)
q)‘Hz (é: )

é:_-m +§m—q +é~;m—s’
é'_am + é'_am—q _ é_‘m—s‘

It is evident that the zeros of polynomials for §; and H, are not the same. Thus S; and H, are
non-cospectral.

The strong components of S; are ®[q, s|] and m — (¢ + s — 1) isolated vertices and the strong
components of H; are O[g,s] and m — (¢ + s — 1) isolated vertices. Therefore by Theorem
2.3, 8(S)) = &g, s]) and &(H,) = &(Blgq, s]). The sidigraphs O[g, s] and B[q, s] are non-
cospectral. Also

Yergsl” = ergsl® = 0,
for each 0 < y < co. Hence by Part 1 of Lemma 3.4, we have &(0l[q, s]) = &(0O[q, s]). Thus
E(S1) = E(H)).

Similarly, one can show that S, and H, are non-cospectral equienergetic sidigraphs. O

In Theorems 3.16 ~ 3.19, we give few classes of pair of non-cospectral equienergetic bi-
cyclic sidigraphs. The proofs of these theorems are same as the proof of Theorem 3.15 and are

thus neglected.

Theorem 3.16. Let ¢ = 1(mod 2) and s = 1(mod 2). Let S; and S84 be m-vertex bicyclic
sidigraphs which contain Olq, s| and O|q, s], respectively. Take m-vertex bicyclic sidigraphs
H; and H, which contain ®[gq, s] and O|q, s, respectively. Then S; and H; are non-cospectral

equienergetic sidigraphs. Also, S4 and H, are non-cospectral equienergetic sidigraphs.
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Theorem 3.17. Let g = O(mod 2) and s = 1(mod 2). Let Ss, S¢, Hs and Hg be m-vertex
bicyclic sidigraphs which contain D5 [q, s], D; [q,s], D; [q,s] and D; [q, s], respectively. Then

Ss, Hs and Sg, Hg are non-cospectral equienergetic sidigraphs.

Theorem 3.18. Let g = 1(mod 2) and s = O(mod 2). Let S;, Sg, H; and Hg be m-vertex
bicyclic sidigraphs which contain D; |q, sl, D;,1q,s], D;,1q, s] and D; |q, s], respectively. Then

S7, H; and Sg, Hg are non-cospectral equienergetic sidigraphs.

Theorem 3.19. Let g = 1(mod 2) and s = 1(mod 2). Let So, S10, Ho and Hyy be m-vertex
bicyclic sidigraphs which contain D5 [q, s], D; [q,s], D; [q,s] and D; [q, s], respectively. Then
So, Hy and Sy, Hio and Sy, S19p and Sy, Hiy and S0, Hy and Hy, H,o are non-cospectral

equienergetic sidigraphs.
Using Theorem 3.16 and Lemma 3.5, one can easily prove the following two theorems.

Theorem 3.20. Let g + t = O(mod 2) and r + t = 1(mod 2) such that g > r and (g,r) # (1, 1).
Let 811, S15, Hi1 and Hy, be m-vertex bicyclic sidigraphs which contain 9(g,r,t], 9[g,r, t],
INg,r, t] and 9\ g, r,t], respectively. Then Sy, Hi, and 81,5, H,, are non-cospectral equiener-

getic sidigraphs.

Theorem 3.21. Let g+t = 1(mod 2) and r + t = 1(mod 2) such that g > r and (g,r) # (1, 1).
Let 813, S14, Hi3 and Hy4 be m-vertex bicyclic sidigraphs which contain 9(g,r,t], 9g,r, t],
g, r, t] and 9(g,r, t], respectively. Then S5, Hiz and Sy4, Hy4 are non-cospectral equiener-

getic sidigraphs.

3.4 Conclusion

In the current chapter, we determine the largest energy of sidigraphs in 8;,, where 8B, represents
the set of m-vertex bicyclic sidigraphs with m > 4. We also construct few classes of non-

cospectral equienergetic sidigraphs.
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Chapter 4

On energy ordering of vertex-disjoint

bicyclic sidigraphs

Recently, Yang and Wang [75] find the energy ordering of digraphs in D,, and compute the
maximal energy and iota energy. In the current chapter, we investigate the energy ordering of

sidigraphs in the class of O; and find extremal energy.

4.1 Some results and notations

Let g,s > 2. For any § € 9;, its strong components are: a sidigraph from the set D, [g, s]
and few isolated vertices. Therefore using Theorem 2.3, we can only use the energy of strong
components to find the energy ordering in D, .

Using Theorem 2.3, we give the following equations.

&Dylg,sl) = &E(Cy + E(Cy),

&(D,,lq, s
&E(Dylg, s = &(Cy + E(Cy),

&(Cy) + &(Cy),

&(D:

m

[q.s]) = &(Cy + &E(Cy).
Let m > 4. In Lemmas 4.1~ 4.9, we gave some results about the monotonicity of some
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functions which will be used to find the energy ordering of sidigraphs in D;,.

Lemma 4.1 (Farooq et al. [23]). Suppose f(z) = 2(cot’;’ + cot mi_z) For 7 € [2, %] f(2) is

increasing and for 7 € [%, m— 2], f(z) is decreasing.

Lemma 4.2 (Yang and Wang [75]). Let f(z) = 2(csc g + cot mL_Z) Forz e [2,m—-2], f(2)is

decreasing.

Lemma 4.3 (Yang and Wang [75]). Suppose f(z) = 2 (csc’;’ + csc mL_Z) For z € [2, %] f(z)is

decreasing.
Lemma 4.4 (Farooq et al. [23]). Suppose f(z) = zsin f For z € [2,0), f(2) is increasing.

Lemma 4.5 (Yang and Wang [75]). Suppose f(z) = Z% cos 7Zr csc? f Forz e [2,m—-2], f(2)is

increasing.
Next lemma has same proof as of Lemma 4.5 and is thus omitted.

Lemma 4.6. Suppose f(z) = 5 cos 3 csc” 5 and g(z) = 5 cos £ csc £. For z € [2,00), f(2) and

g(z) are increasing.
Now we prove the following results.
Lemma 4.7. Suppose f(z) =2 (Cotf + csc mL_Z) For z € [2,m — 2], f(2) is increasing.

Proof. To prove the result, we will show that for all z € [2,m — 2], f'(z) > 0.

Now

fl)= 2(;2 A ¢ cot—= )

4.1
z (m—z)2CS m-z m-z “.D

Divide the interval in two parts. Firstly, let z € [%, m— 2]. Then z > m — z. By Lemma 4.5, we

know that for z € [2,m — 2], Z% cos ’—ZT csc? ’;T is increasing. Therefore

/4 Vg /4 bis , T bis
5 CSC cot = 5 CSC cos
(m-12) m-—z m-—z (m-12) m-—z m-—z

T, s
< —5CsC”—Cos—
Z Z Z
T LT
< osc -
Z Z
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Using Equation (4.1), f’(z) > 0 forz € [ ,m— 2]

Next, letz € [2, 3]. Then z < m—z. By Lemma 4.4, we know that z sin 7 is strictly increasing

on [2, ). We have zsin Z < (m—z) sin 2. From this, we get £ csc Z—~L csc - > 0. Consider

T LT T , T 1 V4 1 o\l V4 1 T
—csc” — - 5 CSC =nm|l—-csc—+ Ccsc —Ccsc— — CcscC .
Z z (m-2) m-—z z Z m—-z m-z/)\z Z m—-z m-z
Clearly cscl +—csc—>0and csc———csc >O Hence 2c:sc I > csc? >
z (mz) mz
0. This implies that
n Vi n Vi Vi , T
5 Cs¢C cot = 5 €Os CSC
(m-12) m—-z m-z (m-2) m-—z m-—z
Vg m
20502 4.2)
(m-2) m-—z
T ,T
< ceset -
z Z

Using Equations (4.1) and (4.2), f’(z) > 0 forz € [2, %] Thus f’(z) > 0 for z € [2,m — 2]. This

proves the result. 0

Lemma 4.8. Let z € [2,m — 2]. The following holds.

(1) Suppose f(z) = csc I-+csc - Forz e [ ] f(z) is decreasing and for 7 € [ m— 2]

(
f(2) is increasing.
(2) Suppose f(z) = 2csc E + csc ﬁ For 7 € [2, %’"], f(2) is is decreasing and for 7 €

[2;11 ,m — 2] f(2) is increasing.

(3) Suppose f(z) = 5 (m’i 5 Forz € [2,%], f(z) is decreasing and for z €

[ > M — 2] f(z) is increasing.

Proof. (1). To show that f(z) is decreasing on [2, %], it is sufficient to prove f’(z) < 0.
Since z < (m—z) forz € [2, %], therefore using Lemma 4.6, we get

1 CSC 1 COS 1 — il CSC2 n COS il
272 2z 27 2(m - z)? 2(m —7) 2(n-2)

dl CSC2 dl Cos dl - dl CSC2 d Cos dl =
2m—-2?"" 2Am-2) 2Am-2) 2Am-2?7 " 2Am-2)  2m-2)

'@
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Hence f(z) is decreasing on [2, %]

Now we will show that f'(z) > 0. Since z > (m — z) for z € [%m - 2], therefore using
Lemma 4.6, we obtain

T oese? Zocos X T " cos =
272 2z 2z 2(m-2)? 2(m —z) 2(n—2)

T s cos— T s — cos— =
2(m — z)? 2(m —2) 2m—2z) 2(m - z)? 2(m —2) 2(m —z)

1 @)

Therefore f(z) is increasing on [%, m— 2].

(2). To show that f(z) is decreasing on [2, ZT’"], we will prove that f’(z) < 0.

Since z < 2(m —z) for z € [2, %], therefore using Lemma 4.6, we get

2r L, V4 4 , T m
— €sc” —cos — — 5 Cse cos
z z oz 2(m-g) 2m-z) 2m-72)

2n CSC2 dl COS dl - dl CSC2 dl COS dl =
4m-22 " 2Am-2)  2Am-2) 2Am-2? 2Am-z)  2Am-2)

@

<

Hence f(z) is decreasing on [2, %’"]

2m

Now we will show that f’(z) > 0. Since z > 2(m — z) for z € [T’ m— 2], therefore using
Lemma 4.6, we obtain

2 ,m w V4 , T Vs
— CSC™ — COS — — CSC COS
z z 7z 2m-z)p 2(m—z)  2(m-2)

27T C802 il COS il — il CSC2 il COS il =
4(m — 2)? 2(m - z2) 2m—z) 2(m - z)? 2(m - z2) 2m-z7)

@

Hence f(z) is increasing on [22, m — 2].
Analogously (3) can be proved. O

Pis
2(m-z)"

Lemma 4.9. Suppose f(z) = 2cot? +csc For z € [2,m - 2], f(2) is increasing.

Proof. We will prove that f’(z) > 0 forz € [2,m — 2].

Since cos g <landz>2(m-z)forze [%’", m-— 2], therefore by Lemma 4.6, we have

7) = —cCs¢c”— — csc coS
F@ b z 2(m-2z)? 2m—-2z)  2(m-2)
> 2—” csc? I cos r_ dl csc? dl cos d
4 .z 2m-2)? 2m—-z)  2(m-—72)
2r , T r r , T V4

\%

Am-22 " 2m=2 P 2m-2 2m-22"F 2m-2 2m-2

41



Also — cos ’;r >—-landz<2(m—-z)forz e [2, %’“] Thus by proof of Lemma 2.4 [23], we see

that
@ = n es? T T 2T cos— "
e z 2m-2z*  2Am-z)  2(m-2)
2r . m r , T
> Zcsct - - > 0.
z 2 csc - 2(m_z)zcsc =2 >
Therefore f(z) is increasing on [2,m — 2]. O

Lemma 4.10 (Farooq et al. [23]). For0 <z <7,

1 1
S _04297<cotz < - — =,
Z z 3
For 0 < z < 7, we have
3
z- % <sinz<z (4.3)

Khan et al. [49] prove the following result.

Lemma 4.11 (Khan et al. [49]). Suppose z,d,e € Rwithz > d > 0 and e > 0. Then

nz nd

< .
ez? —n? " ed? —n?

4.2 Energy ordering

Sidigraphs in 9;, are classified into three categories: the sidigraphs whose cycles are of even
length, the sidigraphs whose cycles are of odd length and the sidigraphs whose one cycle is
of even length and one is of odd length. In the following section, we investigate separately
energy ordering in all three categories and find maximal energy. Throughout this section, we

take b € [2,m — 2] and m > 5.

4.2.1 Both cycles are of even length

S

Yang and Wang [76] gave the following energy ordering of bicyclic sidigraphs in D

m?

where

each cycle is of even length.
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Theorem 4.12 (Yang and Wang [76]). Let m > 5 and b € [2,m — 2]. Also let the two directed

even cycles are both positive or negative.
(i) If m =2 (mod 4) then we have the following energy ordering:

(a) When 3 —1=0 (mod 4).

EWDE[2,m—2]) > EWD: [, m—4]) > EDE[6,m—6])> - > & (D;; ["’—_2 m;’ 2

2
. 5(D;[m_2,m+2

|

m

2 2

)> o> &(D; Im—4,4]) = &, [2,m — 4]) > &(D,,[4, m — 6])

> EWDE[6,m—8]) > > é”(Dfn ["’T_Z mT_Z] ) > &(D5[m - 2,2))
> & (Dj; [mT—z mT—z] ) > o> EDE[m - 6,4]) = EDE[2,m — 6]) > E(D%[4,m — 8])
> EDL[6,m—10]) > - > g’(Dfn [’"T_6 m-2 ) > &(D%[m — 4,2])

> éa(DS

)>--->£(Dfn[m—8,4]):£(Dfn[2,m—8])

> £(D;[4,m—10])><f(D;[6,m—12])>"'>5(D31[m2_6’m2_6})

> & (D, [m-6,2])>&|\D;

m

[mT‘ﬁ,’”T‘ﬁ])>...>£(D;[m—1o,4])

= &(D5[2,m-10])> &(D: [4,m=12])> & (D5, [6,m—14]) > ...

> 5(1);1[”"10,’"'6 )>£’(Df;1[m—8,2])>é”(Dfn[m_10 ’"—_6])

2 2 2 72
> > & (D) Im=12,4]) = (D5, [2,m = 12]) > --- > & (D}, [4,4])

= &(D;,[2.4]) = £ (D, [2,2]) > & (D;,[6.2]) > E(D;,[2.2)).
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(b) When 5 —1 =2 (mod 4).

[2,m=2) > ED%[4,m—4]) > ED[6,m—6]) > - > 5(13; [mT—z m; 2

& (D,

m

|

m—-2 m+2 ) > > E(D;Im —4,4]) = £(D;,[2,m — 4]) > &(D;,[4, m — 6])

=
2 2

m

2 m-2
> £(D;[6,m—8])>--->£(D5[m n

) > ... > &(D, [m—6,4]) = &D; [2,m - 6]) > &(D,,[4,m — 8])

m-2 m-2
2 72

> EDL6,m—10]) > - > 5(1);‘;1 [”’T_‘s mT—z] ) > &(D%[m — 4,2])

> @@(D‘f’ T_,T_])>--->@@(Dfn[m—s,4]):g(Dfn[z,m—S])

> g(D;[4,m-101)>g(D;;[6,m-12])>-.->£(D;l”’T‘6,”’T‘6D

> g(D;[m—6,2])>g(D;[mT_6,mT_6])>~-->£(Dfn[m—1o,4])

= &((D5[2,m—10])> & (D% [4,m—12]) > & (D
m—10 m—-6

s [6,m—14]) > ...

s . |m—-10 m—-6
> @“’(Dm[ 7 ,T})>£‘(Dm[m—8,2])>£’(Dm[ SRR ])
> & (D) [Im—-12,4]1) =& (D), [2,m—12]) > --- > &(D;, [4,4])

\

&(D; [2,4]) = & (D;,[2,2]) > &(D;, [6,2] ) > &(D; [2,2]).

m

(ii) If m = 3(mod 4) then the following energy ordering holds:
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(a) When

2l —1=0 (mod 4).

EWDL2,m—3]) > EDE[d,m—5]) > EDL[6,m—T]) > - > @@(D; ['"T_‘?’ m;’ 1

|

& (Dfn [mT_3 m; 1] ) > o> E(DL[m—5,4]) = ED5[2,m - 5]) > ED%[4,m —T))

"2 72

£(D;[6,m_9])>...>g(l)s [m—s m-3

) > &(D,,[m - 3,2])

) > o> EDLIm—1,4]) = EDL[2,m —T)) > ED:[4, m - 9))

m-3 m-3
2 7 2

EWDE[6,m—11]) > -+ > 5(1); [’"T”’”T”

) > &5, m - 5,2])

g(Ds[m—7 m-3 .

2 72

)>---><§(D5 [m—9,4]) = &(D:, [2,m—9])

& (D5 [4,m—111) > & (D5, [6,m — 13]) > - -- >5(D31lm2_7’m2_7])

& (D, Im=12])>& D;[mTJ,mTJ])>~-><5"(D;[m—11,4])

&E(D:[2,m—111)> & (D, [4,m —13]) > & (D%, [6,m —15]) > ...
Jm=-11 m—-7] . | m=11 m-=17

o@(Dm[ T3 _)>£(Dm[m—9,2])>éa(Dm[ 5 T])

o> & (D) [Im—-13,4]1) =& (D}, [2,m—13]) > --- > &(D;, [4,4])

&(D; [2,4]) = & (D;,[2,2]) > &(D;,[6,2] ) > &(D; [2,2]).
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(b) When ’”T‘l -1 =2 (mod 4).

[2,m—3]) > ED:[4,m=5]) > ED:6,m—T]) > - > 5(13; [mT_3 m; !

& (D,

m

|

m-3 m+1 ) > o> E(DLm - 5.4]) = D5 [2.m — 51) > E(DL 4, m = T))

=
2 2

m

> 5(1);”;1 ["’T_z' ”’T'3 ) >0 > EDEm—1,4]) = ED5[2,m - 7)) > EWD5[4, m — 9])
> EDL6,m—11]) > - > 5(0;; [mTJ mT_S] ) > &(D:[m - 5,2])
> £(Dfn[mT_7,mT_3])>--->@@(D;[m—9,4]):5(Dfn[2,m—9])

> (g’(D;[4,m—11])>c§’(D§l[6,m—13])>...>£(D;[’”2—7’m2—7})

> g(D;[m—7,2])>5(D;[mT_7,mT_7])>~-- > & (D% Im—11,4])

= & 2,m-111)> & (D5, [4.m=13]) > & (D:, [6,m — 15]) > ...

s 5 c(m=-11 m-17
> @“’(Dm[ 7 ,T})>£‘(Dm[m—9,2])>£’(Dm[ SRR ])
o> & (D) Im—-13,4]1) =& (D}, [2,m—13]) > --- > &(D;, [4,4])

m-11 m-17

\

&(D; [2,4]) = & (D;,[2,2]) > &(D;, [6,2] ) > &(D; [2,2]).

m

(@ii) If m =0 (mod 4) then we have the following energy ordering:
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(a) When 5 =0 (mod 4).

EDE[2,m=2]) > ED[dm—4]) > ED[6,m—6]) > > & (Dfn [% %] )
> & (D; [% g] ) > o> EDm— 4,4]) = ED5[2,m - 4]) > E(DE 4, m — 6])
> EDL6,m—8]) > > (E’(D; [”17_4 %] ) > &(DE[m - 2,2])
> & (Dfn [% mT"'] ) > o> EDE[m - 6,4]) = EDE[2,m — 6]) > E(D% [4,m — 8))
> EDL6,m—10]) > --- > é"(Dfn [mT_‘l mT_‘l] ) > E(D%[m — 4,2])

> oo |

)>...>5(D;[m_8,4]):g(D;';,[z,m—S])

> g(D:,,[4,m—10])><f(D,i[6,m—12])>"'>£(Df"[mz_8’m2_4})

> 5(1)5,,[m-6,2])>5(1);[m7_8,”17_4
= &(D;,[2,m-10])> &(D;,[4,m—12]) > &(D;, [6,m—14]) > ...
|m=8 m-38 : |m—-8 m-8
> éa(Dm[ ) ])>£(Dm[m—8,2])>é"(Dm[ IR ])
> o> &(D5[m-12,4]) =& (D5, [2,m—12]) > --- > &(D;, [4,4])

)>---><§(Dfn[m—10,4])

= &(D:[2,4]) = &(D5,[2,2]) > £(D,[6,2]) > ED5[2,2]).
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(b) If 5 =2 (mod 2).

ED[2,m=2]) > ED [ m—4]) > ED[6,m—6]) > > & (D; [% g] )

> g(Dfn [% %] ) > o> E(DEIm - 4,4]) = EDL[2,m — 4]) > ED%[4, m — 6])

> EDE[6,m—8]) > - > (E’(D; [mT_“ %] ) > &(D5Im - 2,2))

> & (Dfn [% mT_“] ) > o> E(DLm - 6,4]) = ED[2,m — 6]) > E(D%[4,m — 8])
> EWDL6,m—10]) > - > g(D; [”’T_“ ’"T"'] ) > &(D%[m — 4,2])

> g(D;[mT_é‘mT_LL])> o> & (D), Im-8,4]) =& (D;,[2,m—8])

> (f(Df,,[4,m—10])><f(D,i[6,m—12])>"'>£(Dfn[m2_8’m2_4])

> g(p;[m-6,21)>5(1);["’7'8,"’7_4
= &(D;,[2,m—-10])> & (D, [4,m—12]) > &(D;, [6,m —14]) > ...
c(m—-8 m—28 . . |m—-8 m-8

> & (D Im—=12,41) =& (D, [2,m—12]) > --- > & (D;, [4,4])

)>--->£(D;[m—10,4])

Vv

&(D; [2,4]) =& (D,,[2,2]) > &(D;,[6,2] ) > &(D; [2,2]).

(iv) If m =1 (mod 4) then the following energy ordering holds:
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(a) When ’"T_l =0 (mod 4).

[2,m—3]) > D[4, m = 5) > EDL[6,m—T) > - > 5(13; ['"—_1 m—_l] )

& (D,
2 2

m

> & (Df” [mT_l mT_l] ) > o> EDE[m - 5,41) = D5 [2,m - 5]) > E(D% [4,m = 7))

m

~5 m—1
> é"(D;[6,m—9])>-~>£(DS [m S m

> & (Dj; ) > oo > EDEIm—17,4]) = EDL[2,m—T]) > ED5,[4, m - 9])

m

m-1 m-4
2 72

> ED6,m—11])> -+ > g(D;; [mT_SmT_S

) > &(D:[m - 5,2])

. g(D‘B[m_S m-5 .

2 72

)>---><§(D5 [m—9,4]) = &(D:, [2,m—9])

> (g’(D;[4,m—11])>c§’(D§l[6,m—13])>...>£(D;[’”2—9’m2—5})

> g(D;[m—7,2])>5(D;[mT_9,mT_5])>~-- > & (D% Im—11,4])

= & 2,m-111)> & (D5, [4.m=13]) > & (D:, [6,m — 15]) > ...

m

(m=-9 m-9 . cm=-9 m-9
> @@(Dm[T,T )>£’(Dm[m—9,2])>éa(Dm[ ) ])

> > & (D5 m—13,4]) = &(D;,[2,m—13]) > -+ > &(D;, [4,4])

= &(D;,[2,4]) = €(D;,[2,2]) > & (D5, [6,2]) > £(D;,[2.2)).

m
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(b) When ’"T‘l =2 (mod 2).

EWDE[2,m—3]) > EWD: [, m=5]) > ED[6,m—T) > > & (D; [mT_l mT_l] )

> & (Dfn ["’T_l mT_l] ) > o> E(DL[m = 5,4]) = EDL[2,m - 51) > ED[4, m = T])

m

—5m-1
> EWDE[6,m=9]) > - > éa(Df’ [stmT

) > &(D,,[m - 3,2])

> 5(1);;1 [mT_l ’"T_4 ) > o> EWDE[m —T,4]) = EDE[2,m —T]) > E(D%[4,m — 9])
> EDL6,m—11]) > - > 5(0;; [mT_S mT_S] ) > &(D:[m - 5,2])
> g(D;[mT_S,mT_S])>--->£(Dfn[m—9,4]):g(Dfn[z,m—9])

> g(D;[4,m—11])>5(D;[6’m—13])>"‘>‘°@(Dilm2_9’m2_9])

> g(D;[m—7,2])>£(D;[mT_9,mT_5])>~- > & (D5 [m—11,4])

= & 2,m—111)> & (D5, [4.m=13]) > & (D:, [6,m — 15]) > ...

s [m-9 m-9 . [m-9 m-9
R EEE OO A T

o> & (D) [Im—-13,4]1) =& (D}, [2,m—13]) > --- > &(D;, [4,4])

\

&(D; [2,4]) = & (D;,[2,2]) > &(D;,[6,2] ) > &(D; [2,2]).

Theorem 4.13 (Yang and Wang [76]). Let m > 5 and b € [2,m — 2]. Also let that one of the

even cycle is positive and one of the even cycle is negative.

(@) If m =2 (mod 4) then we have the following energy ordering:
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(a) When 3 —1=0 (mod 4).

m-2 m+2

& (D,

m

2,m = 21) > ED%[4,m — 41) > ED%[6,m = 6]) > -+ > g(Dfn[ =2

. g(Dfn[m—Z’m+2
2 2

> &(D:[6,m - 8]) > --~>é"(D5

2 7 2

m

[m—6 m+2

) > &(D,,[m —2,2])

m+2 m—6

)

> g(Df;

> ED:6,m—10]) > --- > éa(D;; [mT_6 mT—z] ) > &(D:[m — 4,2])

> £(D5

)>--.>5(D;[m-s,4]):g(p;[z,m-s])

> g(D;[4,m—10])>£(D;[6,m—12])>-~->5(D31[m;10’_m2_2])

m_zlo,—mz_z])>.-->£(D;;[m—10,4])

> &(D;, [m-6,2])>& Dfn[

“ [6,m—14]) > ...

= &5 12,m=10]) > &(D: [4,m—12]) > & (D,
m—10 m—6] m— 10 m—6])

> g(p;;[ > <)>5(D;[m—8,21)>@@(1);1[ 5
> > 8Dy m=-12,4]) = & (D, [2,m-12]) > --- > & (D;, [4,4])

= &(D[2.4]) > & (D, [6.2]) > £(D;[2.2)).
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(b) When 5 —1 =2 (mod 4).

& (D, —_—
( 2 72

m

[2,m-2]) > &0, [4,m—4]) > ED, [6,m—6]) > --- > é"(Dfn

)

m;— 2, mT—2] ) >..->&(D; [m—-4,4]) = &, [2,m - 4]) > &£(D; [4,m — 6])

> éa(Df”

m+2 m—=6

2 7 2

> &(D:[6,m - 8]) > --~>é"(D5

> g(D;[M,m+2

) > &(D5[m —2,2))

) >...> & (D, [m-6,4]) = &(D,,[2,m — 6]) > &(D,,[4,m — 8])

2 2
> &3 [6,m—10]) > --- > éa(D;; [mT—z mT_‘S] ) > &(D%[m - 4,2))
> @@(D;[’"Tz mT6 )>--->5(D;[m-s,4]):g(D;[z,m-S])

> g(D;[4,m—10])>£(D;[6,m—12])>-~->5(D31[—m2_2’m_210])

m—2 m-10

272
= E(DL12,m—101)> & (D% [4,m—12]) > & (D, [6,m —14] ) > ...

. [m=6 m-10] . . [m-6 m-10
> @@(Dm[T, 3 <)>£’(Dm[m—8,2])>@@(Dm[T, > ])

> E(DEIm—12,4]) = £ (D5, [2,m = 12]) > --- > & (D5, [4,4])

> &(D;, [m-6,2])>& Dfn[ ])>~--><§’(Dj1[m—10,4])

\

& (D5, 12.4]) > & (D;,[6.2]) > &(D;,[2,2)).

(ii) If m = 3(mod 4) then the following energy ordering holds:
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(a) When

2l —1=0 (mod 4).
EDE[2,m—3]) > ED:[4,m—5]) > EDE[6,m—T)) > - > é"(Dfn ["’T_:" m; ! )
g(Dfn [mT_?} m;’ ! ) > .o > EDLm - 5,4]) = E(D%[2,m — 51) > E(D%[4,m - 7))

2 7 2

m

- 1
&(D%[6,m - 9]) > --~>é"(D5 [m 7om+

) > &(D,,[m —3,2])

m+1 m-=17

)

g(D;‘; ) >...>&(D, [m-"1,4]) = &D,,[2,m - T]) > &(D,,[4,m — 9])

EDE[6,m—11]) > - - > éa(D;; [mTJ de] ) > &(D%[m - 5,2])

(o

)>--.>5(D;[m-9,4]):g(p;[z,m-m)

& (D}, [4,m—11]) > & (D;, [6,m = 13]) > --- >5(D;lm;11’m2—3])

mgll,mT_3’])>~-->£(D;[m—11,4])
&D:12,m=111) > & (D5 [4,m —13]) > & (D

&(D5Im—-17,2])> & Dfn[

S [6,m—15]) > ...
L[m=11 m=7] . Jm=-11 m=7
@“’(Dm[ : ,TA)>£’(Dm[m—9,2])>@@(Dm[ . T])

> (D5 Im—13,4]) = £ (D5, [2,m = 13]) > --- > & (D5, [4,4])

& (D5, 12.4]) > & (D;,6.2]) > E(D;,[2,2)).
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(b) When

\

’”T‘l —1=2 (mod 4).

& (D, —_—
( 2 72

m

[2,m-3]) > &D,,[4,m—5]) > ED, [6,bm—=T]) > - > é"(Dfn

)

m;— 1,mT_3])> --> & (D, lm—-5,4]) = &, [2,m - 5]) > &(D; [4,m —T])

(o

m+1 m-=17

2 7 2

EWDE[6,m=9])> - > é"(DS

- 1
g(qu[m 7,m+

) > &(D5[m - 3,2))

5 5 ) > o> EDLm = 17,4]) = &DE[2,m = T]) > &D[4,m - 9])

EDE[6,m—11]) > - - > éa(D;; [mT_3 mTJ] ) > &(D%[m - 5,2])

(o

)>--.>5(D;[m-9,4]):g(p;[z,m-m)

m—-3 m-11
2 2

<§’(D,"‘n[4,m—11])>£’(Df‘n[6,m—13])>--->6"(Df;1[—,

m-3 m-11
272

E(D:2,m=111) > & (D, [4,m—13]) > & (D

&D:Im—-1,2]1)> & Dfn[ ])>~-->£(D;[m—11,4])

> [6,m—15]) > ...

s . c|m=7 m-11
@“’(Dm[T 7 A)>£‘(Dm[m—9,2])>£’(Dm[T, > ])
> E(DEm=13,4]) = £(D, [2,m = 13]) > --- > & (D5, [4,4] )

m-—7 m—-11]

& (D5, 12.4]) > & (D;,[6.2]) > &(D;,[2,2)).

(@ii) If m = 0 (mod 4) then we have the following energy ordering:
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(a) When 5 =0 (mod 4).

EWDE[2,m=2]) > ED:[4,m—4]) > ED[6,m—6]) > - > & (Dfn [mT_“ m;’ 4

|

> & (D; [% g] ) > o> E(DIm - 4,4]) = E(DL[2,m — 4]) > E(D%,[4,m — 6])

> EDi6,m=8)> > & (D;-; [mT_“ %] ) > &(DIm - 2,2])

> & (Dfn [% ’"T_“] ) > o> E(DLm — 6,4]) = E(D%[2, m — 6]) > E(D-,[4,m — 8])
> EDE[6,m=10]) > - > g(Dfn ["’T_S g] ) > (D [m — 4,2])

> £’(D5

)>--->£’(Dfn[m—8,4]):é?(Dfn[2,m—8])

> @@(D;m,m—101)>£(Dfn[6,m—12])>--->@”(Dfn[mT_8’mz_4])

> &(D:[m-6,21)> &|D;

m

2 2
= &(D;,[2,m-10])> & (D, [4,m—12]) > & (D, [6,m—14]) > ...
|m=-12 m—4) . Lm—-4 m-12
> éa(Dm[ > ’T_)>£(D”’[m_8’2])>g(Dm[T’ 3 ])

> --->&(D;, [m-12,4])=&(D;,[2,m—12]) > --- > &(D;,[4,4])

[m—S m-4

)>--->£(Dfn[m—10,4])

= &(D:[2.4]) > &(D:,[6,2]) > E(D5[2,2)).

m
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(D) If 5 =2 (mod 4).

[2,m = 2]) > ED[4,m - 4]) > EDE[6,m = 6]) > -+ > g(Dfn[mT_“, m;4

] ) > o> EDL[m = 4,4]) = ED,[2, m — 4]) > E(D%[4,m — 6])

& (D,

m

|

s |m o m
g g(D’"[z’ 2
> EDE[6,m=8]) > - > (5’(Dfn [mT_“ ;] ) > ED5Im - 2,2])
> g(Dfn [% mT_él] ) > o> EDLm — 6,4]) = ED[2,m — 6]) > E(D%[4,m — 8])

m

> EDE[6,m—10]) > - > g(DS [m—_g m

7 E] ) > & (D, [m —4,2])

> £’(D5 [—T‘])> > & (D: [m—8,4]) = & (D, [2,m —8])

> @@(D;M,m—10])>5(Dfn[6,m-12])>"'>£(D;[m2_8’mz_4])

> &(D:[m-6,21)> &|D;

m

55
= &(D;,[2,m-10])> & (D, [4,m—12]) > & (D;, [6,m—14]) > ...

L |m=12 m—4] . L m—-4 m—-12
> éa(Dm[ 5 ’T_)>3(D”7[m_8’2])>g(Dm[T’ 3 ])
> E(D2 Im=12,4]) = & (D;, [2.m = 12]) > -+ > & (D, [4,4])

[m—8 m—4

)>--->£(Dfn[m—10,4])

Vv

&(D:[2,4]) > & (D5, [6,2]) > D [2,2)).

m

(iv) If m =1 (mod 4) then the following energy ordering holds:
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(a) When ’"T_l =0 (mod 4).

EWDE[2,m—3])> ED:[d,m—5]) > ED6,m="T]) > > & (Dfn [mT_S m;’ 3 )
> & (Df” ["’T_l mT_l] ) > o> E(DiIm — 5,4]) = EDE[2,m - 5]) > E(D,[4,m — 1)

m 2 ’ 2

5 m-1
> éf’(D;[6,m—9])>--~>£’(Ds [m > m

) > &(D5[m - 3,2))

> g(Df;

) >...>&(D, [m-"1,4]) = &D,,[2,m - T]) > &(D,,[4,m — 9])

m—1 m-=5
2 7 2

> EDL6,m=11]) > > éa(D;; ["’T_g mT_l} ) > &(D3[m - 5,2])

> £(D5

)>--.>5(D;[m-9,4]):g(p;[z,m-m)

> (5’(13;[4,;”—11])>5(D;[6,m-13])>-.->@@(D;l’”T‘9,mT‘5D
> &5 [m-1,2])> & Dfn[mT_g,mT_s])>~-->£(Dfn[m—11,4])
= &5 2,m—=11]) > & (D, [4,m—13]) > & (D

m—13 m—>5]

° [6,m—15])> ...

. . c|m=5 m-13
> @“’(Dm[ 7 ’T<)>£(Dm[m_9’2])>£)(l)m[ 7 T ])

> > & (D) m-13,4])= & (D, [2,m-13]) > --- > &(D;, [4,4])

= &(D,[2.4]) > & (D, [6.2]) > £(D;[2.2)).

57



(b) When ’”T‘l =2 (mod 4).

&, [2,m = 3]) > &, [4,m—5]) > &D, [6,bm—=T]) > - > é(’(D; [mT—S m; 3

|

> & (Ds ) > o> D5 m - 5,4]) = D2, m = 5]) > ED[4,m — 7))

m 2 > 2

> éa(Dfn[6,m—9])>---><53(D5 [m—S m— 1

)> E(D% [m — 3,2])
. (f(Dfn[m_l,m_S
2 2

) >..->& (D, [m-"1,4]) = &D,,[2,m - T]) > &D,,[4,m — 9])

> EDi6,m=11]) > - > g(D;-; [’"T_g ’"T'l] ) > (D Im — 5,2])
> g(Ds [m—_l,mTJ])>--->£(Dfn[m—9,4]):£(D;[2,m—9])
> g(D;[4,m—11])>£’(D;[6,m-13])>.~->£(Dfn[mT_9,mT_5])

> &(D:[m-1,21)> &|D:

m

m—-9 m-5
2 7 2
= &, [2,m-11])> & (D;, [4,m—-13]) > & (D;, [6,m —15]) > ...

> g(D;;[”’_B,m—_S )>g(D;[m—9,2])>£(D;[”’—‘5,m_13])

)>--->£(Dfn[m—11,4])

2 2 2 2
> (D [m=13,4]) = E (D52, m=13]) > --- > & (D%, [4,4])

V

&(D:[2,4]) > & (D5, [6,2]) > (D [2,2]).

Xang and Yang prove the following theorem about the extremal energy of those bicyclic

sidigraphs in the class 9 whose both cycles are of even length.
Theorem 4.14 (Xang and Yang [76]). Suppose a sidigraph S € D;, has even directed cycles.
(i) Form =0 (mod 4), the largest energy of S is obtained if S = D; [2,m — 2].
(i) Form =1 (mod 4), the largest energy of S is obtained if S = D;,[2, m — 3].
(iii) Form =2 (mod 4), the largest energy of S is obtained if S = D;, [2,m — 2].
(iv) For m =3 (mod 4), the largest energy of S is obtained if S = D;, [2,m — 3].
(v) The smallest energy of S is obtained for S = D;, [2,2].
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4.2.2 Both cycles are of odd length

In this subsection, we find energy ordering of those bicyclic sidigraphs in 9;, that contain cycles
of odd length. Note that for b = 1 (mod 2), &(C,) = &(C;). Hence we only consider the case

when both cycles are positive.

Lemma 4.15. Suppose m = 0 (mod 4) and b = 1 (mod 2). Then &(D; [b,m — b]) attains

)

largest value at b = 3. Therefore the following energy ordering holds:

EWDE[B3,m—=3]) > EDE[S,m—5]) >+ > g(Dfn [m_—Z m+2

2 2
Proof. Using Equation (2.2), we get
& (D, [b,m — b]) = csc 27T_b + csc ﬁ
By Part (1) of Lemma 4.8, we see that csc 77 + csc 2(;_17) is decreasing on [2, 2] and increasing

m

On[za

m—2]. Therefore the smallest odd number in [2, %] where & (D}, [b, m —b]) has maximum
value is b = 3 and the largest odd number in [, m — 2] where &'(D;,[b, m — b]) has maximum

value is b = m — 3. Thus we have

EDE[3ym=3]) > EDL[5,m—5]) > --- > 5(1);‘;1 [%- 12+ 1])

The proof is completed. O

Similar to Lemma 4.15, the following result can be proved.

Lemma 4.16. Suppose m = 2 (mod 4) and b = 1 (mod 2). Then &(D;,[b,m — b]) attains

largest value at b = 3. Therefore the following energy ordering holds:

& (D,

m

B.m—3])> ED:5,m=5])> > @@(Dm[%%])

Lemma 4.17. Suppose m = 1 (mod 4) and b = 1 (mod 2). Then &(D;,[b,m — b — 1]) has

)

largest value at b = 3. Therefore the following energy ordering holds:

E(DE[3,m—4]) > EDE[5,m—6]) > - > @f"(D,; lmT% m; !
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Proof. Since b = 1 (mod 2) and m = 1 (mod 4), therefore m — b — 1 = (mod 2). Using

Equation (2.2), we have

m n
ED; [b,m—-b—-1] = — +CSC —m—.
(D,,[b,m ] CSCZb CSCZ(m—b—l)

Hence by changing m to m — 1 is Lemma 4.15, we get the desired result. O

By changing m with Lemma 4.16 to m — 1, the following result is obtained.

Lemma 4.18. Suppose m = 3(mod 4) and b = 1(mod 2). Then &(D;,[b,m — b — 1]) has

maximum value at b = 3. Therefore the following energy ordering holds:

-1 m-1
EWD:[B3,m—4]) > EWDE[S,m—6]) > - > é"(Dfn [mT mT] )
Combining Lemmas 4.15 ~ 4.18, the following corollary is obtained.

Corollary 4.19. Suppose b =1 (mod 2).

(i) For eachm =0 (mod 2),

&(D:[3,m - 31) = EWD%,[b, m — b]).

(if) For eachm =1 (mod 2),

E(D[3,m—4]) > D [b,m — b — 1]).

Now we give the extremal energy of those bicyclic sidigraphs in the class ©O; whose both

cycles are of odd length.
Theorem 4.20. Suppose the sidigraph S € D;, has odd directed cycles.
(i) Form =0 (mod 2), the largest energy of S is attained if S = D; [3,m — 3].
(i) Form =1 (mod 2), the largest energy of S is attained if S = D;,[3,m — 4].
(iii) The smallest energy of S is attained if S = D; [3, 3].
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Proof. The proof of Parts (i) and (ii) follows from Corollary 4.19.
(iii). As for odd integers b, and b, with by > b, > 3, it holds that &(Cy,) > &(Cy,). Hence the

smallest energy of S is attained if S = D [3, 3]. O

In next theorem, we give complete energy ordering of those bicyclic sidigraphs in ©; whose

both cycles are of odd length.
Theorem 4.21. Suppose m > S and b € [2,m — 2].

(@) Ifm =0 (mod 4) then

ED:B,m=3]) > EDLS,m=5))> > & (DS

cm=-6 m+2 c(m=10 m+2
oo [25E 2 o[ 2

m 2
m-—2 m-—=6
D® _— D® _—

[m—Z m+2

=)
o oo m22)

) > ... > &(D,[3,3)).

(@) If m =1 (mod 4) then

&, [3,m—4]) > &, [5,m—6]) > > é“‘(D5

m=11 m+1
> &\ D: ,
) oa |55

2
|, m=7
) oo

[m—3 m+ 1

)
)l

) > o> (D3, 3)).

. (g)(D;[mz—7’m+1

m-—3
&\D: |13, ——
o3

(@ii) If m =2 (mod 4) then

ED 3, m=3]) > ED:[5,m=5]) > > 5( m[gg])
R G et | R C e | R CA )

> g(Dfn [3, mT_‘l] ) > é“'(Dfn [3, mT_S] ) > > EDLI3,3)).
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(iv) If m =3 (mod 4) then

E(D;,[3,m—4]) > D, [5,m=6]) > --- > & (D;; [m__l m_‘ll )

2 2
el e ) e

> 5(1); [3, mT_S] ) > 5(1); [3, mT—9] ) > > E(D[3,3)).

Proof. We know that csc z and cot z are decreasing for z € (O, g] Therefore we get the required

energy ordering of bicyclic sidigraphs in 9; when both cycles are of odd length. |

4.2.3 One cycle is of odd length and one cycle is of even length

In this subsection, we find energy ordering of those bicyclic sidigraphs in 9; whose one cycle
is of even length and one is of odd length. Form = 0 (mod 2),ifb =1 (mod 2) thenm—-b =1
(mod 2) and if » = 0 (mod 2) then m — b = 0 (mod 2). So we only have to consider the case
whenm =1 (mod 2). Note thatif b = 0 (mod 2) andm—b = 1 (mod 2) then &(D;,[b, m—b]) =
&(D; [b,m — b]). Hence we only have to give the energy ordering of those bicyclic sidigraphs
in O; whose both cycles are positive or both cycles are negative.

Now we give the energy ordering of those bicyclic sidigraphs in O;, whose both cycles are

positive.

Lemma 4.22. Suppose m is odd with m = 0 (mod 3) and b = 0 (mod 2). Then the following

energy ordering holds:
(i) Let b =2 (mod 4).

(a) Ifb € [2,%] then

ED;[2,m—=2]) > ED, [6,m—6])>--->& (Df;1 [2?’% %] )
(b) Ifbe |2, m—-2|andm -3 =2 (mod 4) then
EWDE[m=3,3]) > EDE[m—T1,7]) > -+ > & (D,-; [2?'" %] )
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(c) Ifbe|%,m-2|andm—3=0 (mod 4) then
EWD:Im—5,5)> EDIm—-9,9]) > - > & (Dfn [2’" %] ) .
(ii) Letb =0 (mod 4).
(@) Ifm—3 =2 (mod 4) then
E(D%[m—5,51) > EWD5[m—9,91) > - > E(D5,[4,m — 4]).
(b) Ifm—3 =0 (mod 4) then
E(D3[m—3,51) > EWD%Im—1,91) > -+ > ED5,[4,m — 4]).

m

Proof. (i). Suppose b =2 (mod 4) thenm — b =1 (mod 2). Using Equation (2.2), we have

Vg Vg

& (D, [b,m —b]) =2csc 5 + csc m
By Part (2) of Lemma 4.8, we see that 2¢csc % + csc 3 ”_b) is decreasing on [2, zﬂ] So the
smallest even number where 2 csc 7 + csc 57— attains maximum value is b = 2. Therefore we
have

im0 606m - > > (o[ .5]).

Also Part (2) of Lemma 4.8, we see that 2 ¢sc 7 + €s¢ 52— is increasing on [2’" m— 2] So the

( —b)

largest even number where 2 csc 7 + ¢sc 57— attalns maximum valueisb=m—-3ifm-3=2

2(
(mod 4)and b =m—-5ifm—-3 =0 (mod 4). Therefore we have

o ]
EWD:Im—-3,3) > ED%m—T,7]) > - > @@(Dfn %"% )
and
.
EDE[m —5,50) > ED%[m—9,9]) > - > 5(1);‘;1 Tm ? )
Analogously one can prove Part (ii). O

Next two lemmas have same proofs as of Lemma 4.22 and thus proofs are omitted.
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Lemma 4.23. Suppose m is odd with m = 1 (mod 3) and b = 0 (mod 2). Then the following
energy ordering holds:

(i) Let b =2 (mod 4).

(a) Ifb € [2,%] then

2m—-8 m+8
3 7 3

m

EWD5[2,m—=2]) > EDL[6,m—6]) > -+ > 5(1)5 [

)

2m+4 m—4])

(b) Ifbe |2, m—2|andm -3 =2 (mod 4) then

"l 3 73

ED:Im=3,3]) > EDIm=7,7]) > -+ > é"(D"’

(c) Ifb e [%’",m—Z] andm —3 =0 (mod 4) then

m m 3 ’ 3

&(D; [m—-5,5]) > &D;,[m—9,9]) > --- > (5"(D5

2m+4 m—4])

(ii) Letb =0 (mod 4),
(@) Ifm—3=2 (mod 4) then
EDEIm - 5,5]) > EDLIm—9,9]) > - - - > (D[4, m — 4]).
(b) Ifm—3=0 (mod 4) then
EWDEm - 3,5]) > EDLIm—T1,9]) > --- > ED,[4,m — 4]).

Lemma 4.24. Suppose m is odd with m = 2 (mod 3) and b = 0 (mod 2). Then the following

energy ordering holds:
(i) Letb =2 (mod 4).

(a) Ifb € [2,%] then

ED:[2,m—2]) > ED5[6,m—6]) > - > éa(Df’

m

2m—-4 m+4
373

)
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(b) Ifbe |2, m—2|andm -3 =2 (mod 4) then

2 _
g(D;[m—3,3]) > g(Dfn[m—7,7]) > e > (g)(Dfn m3+8,m3 8])
(©) Ifbe |2 m~2|andm~3 =0 (mod 4) then
2 -
E(D; Im—5,5]) > &WD; [m—9,9]) > - - >£(Dfn I’I’I3+ S,m3 8])

(ii) Letb =0 (mod 4).
(@ Ifm—3=2 (mod 4) then
ED:Im—5,51) > ED5Im—9,9]) > - -+ > ED5,[4,m — 4]).
() Ifm—3 =0 (mod 4) then
ED:[m=3,51) > EDIm—7,9]) > -+ > ED[4,m — 4]).

Now we give the energy ordering of those bicyclic sidigraphs in D;, whose both cycles are

negative.

Lemma 4.25. Suppose m is odd with m = 0 (mod 3) and b = 0 (mod 2). Then the following

energy ordering holds:
(i) Let b =0 (mod 4).

(a) Ifb € |2, 2] then

m ’

EWD[4,m—4]) > ED:[8,m—8]) > - > 5(1)5 [2m3— 6 m;6

)

(b) Ifbe|%.m—-2|andm -3 =2 (mod 4) then

ED:[m—=5,5])> ED5Im—=9,9) > - > 5(1)‘3

(c) Ifbe|%.m—2|andm-3=0 (mod 4) then

D, [m-3,3])> &D, [m-1,7])>---> éa(Df;1
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(i) Letb =2 (mod 4),
(@) Ifm—3=2 (mod 4) then
EWDEm=3,3) > EDm=17,7)) > --- > ED.,[2,m = 2]).
(b) Ifm—3=0 (mod 4) then
(D5 m = 5,5) > ED:[m—9,9]) > - > EDS,[2,m = 2]).

Proof. (i). Suppose b = 0 (mod 4) thenm — b =1 (mod 2). Using Equation (2.3), we get

& (D, [b,m — b)) = 2cscg + csc 2(mﬂ_ D)

Part (2) of Lemma 4.8 tells us that 2 csc 7 + csc 57— is decreasing on [2, 2—’”] So the smallest

2(m b

even number where 2 csc 7 + ¢sc 57— has largest value is b = 4. Therefore we have

2(m b)

is increasing on [ = m— 2] So the

2m—6 m+6
3 73

&(D; [4,m —4]) > &, [8, m — 8]) > >£’(Df’n[

Also Part (2) of Lemma 4.8, we see that 2 csc 7 + ¢s¢ 57— 2(m 5

largest even number where 2 csc § + cs¢ 52— attams largest valueisb =m—-3iftm-3 =0

(
(mod 4)andb=m—-5itm—-3 =2 (mod 4). Therefore we have

@@(D,;[m—3,3])>£(Djn[m_7,7])>__,>£(Djn 2m+6 m—6 )

3 3
and
|2 -
E(D%[m = 5,5]) > E(D%[m=9,9]) > --- > 5(0;, "’3* 6 ’”3 6 )
Similarly, Part (i7) can be proved. O

Next two lemmas has same proof as of Lemma 4.25 and are thus neglected.

Lemma 4.26. Suppose m is odd with m = 1 (mod 3) and b = 0 (mod 2). Then the following

energy ordering holds:
(i) Let b =0 (mod 4).
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(a) Ifb € |2, %] then

2m -2 m+2
3 3

EDD,[4,m—4])> ED, [8,m—8]) > - > é"(Dfn[

)

2m + 10 m—l()])

(b) Ifbe |2, m—2|andm -3 =2 (mod 4) then

m

céa(Df,,[m—S,S])>éa(Dfn[m—9,9])>--->(§°‘(D5 T 3

(c) Ifbe|%.m—2|andm-3=0 (mod 4) then

&D; [m-3,3])> &D, [m-1,7])>---> g(D‘5

m

2m + 10 m—lﬂ])
3 3 .

(ii) Letb =2 (mod 4),
(@) Ifm—3=2 (mod 4) then
EWDEm=3,3) > ED:m=17,7)) > -+ > ED,[2,m = 2]).
(b) Ifm—3=0 (mod 4) then

&D:[m—5,5) > &D:[m—9,9) > --- > D3 [2,m - 2)).

Lemma 4.27. Suppose m is odd with m = 2 (mod 3) and b = 0 (mod 2). Then the following

energy ordering holds:
(i) Let b =0 (mod 4).

(a) Ifb € |2, 2] then

2m—-10 m+ 10
3 7 3

ED;[4,m—4])> &D, [8,m—8])>---> déa(DS [

m

)

(b) Ifbe|%.m=2|andm -3 =2 (mod 4) then

&(D:lm —5,5)) > &D:[m—9,9]) > - > cs’(D;
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(c) Ifbe|%,m-2|andm—3=0 (mod 4) then

EMD:m=3,3)> ED:[m=17,7)> -+ > é"(D‘fn

(ii) Let b =2 (mod 4),
(@ Ifm—3 =2 (mod 4) then
&ED:m=3,3) > EDLm=1,7) > --- > ED%[2,m = 2)).
() Ifm—3 =0 (mod 4) then

&D:[m—5,5) > &D:[m—9,9) > --- > D3, [2,m - 2)).

m

Now we give the extremal energy of those bicyclic sidigraphs in the class 9; whose one

cycle is of even length and one is of odd length.

Theorem 4.28. Suppose a sidigraph S € D;, has one cycle of even length and one of odd
length.

(i) Form =1 (mod 2), the largest energy of S is attained if S = D; [2,m — 2].
(iii) The smallest energy of S is attained if S = D; [2, 3].

Proof. (i). For proof, see Theorem 7 [50].
(i1). Since for odd integers b; and b, with b; > b, > 3, it holds that &(Cp,) > &(Cp,) and

&(C,) = 0. Hence the minimal energy of S is attained if S = D, [2, 3]. O

In next theorem, we give the complete energy ordering of those bicyclic sidigraphs in D;,

whose one cycle is of even length and one is of odd length.
Theorem 4.29. Letm > 5 is odd and b € [2,m — 2].
(1) Suppose m =0 (mod 3).
(i) Let b =2 (mod 4).
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(a) Ifb € |2, %] then

EDE[2,m—2]) > EDE[6,m—6]) > -+ > (5’(135 [2—’" ﬂ])

c[2m—-12 m c[2m-24 m [, m
>£’(Dm[ 3 ,§)>£’(Dm[ 3 ,3])> >£’(Dm[2,3])

-6 m—12
2,2 D;, |2

(b) Ifb |2, m—2|andm -3 =2 (mod 4) then

m

) -> &(D; [2,3]).

EWDE[m=3,3]) > ED5[m—1,7]) > -+ > 5(1),,,[%’"%])

oo e[ o2

3 37 3
> cg’(D;[zm;12,3])>£(Dfnl2m;24,3])>--->(§’(Dfn[2,3]).

(c) Ifbe[ m— 2]andm 3 =0 (mod 4) then

&(D,,lm - 5,5]) > £(D;, [m—9,9])>---><§(D5 [_ _D

ol ) o

> 5(1)31[2 %6])><5"(D5[ n- ])>--->£(D;[2,3]).

(d) Ifm—3=2 (mod 4) then

ED:Im=3,3) > EDLm=17,7) > - > ED[2,m = 2])

m

> & [2,m—-4])> &WD;[2,m—-6])>--->&ED,I[2,3]) > D, [2,2]).
(e) If m—3 =0 (mod 4) then

E(D, [m-35,5]) > &D, [m—=9,9]) > ---> &, [2,m - 2])

> & [2,m—4])> &WD;[2,m—-6])>--->&ED,I[2,3]) > (D, [2,2]).

(i) Let b =0 (mod 4).
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(@) Ifm—3 =2 (mod 4) then

E(D; [m—-5,5]) > &(D,,[m—9,9]) > --- > &, [4,m —4])

> &(D; [4,m—-6])> &) [4,m—-8]) > -->&D; [4,3]) > &D,,[2,3]).
(b) If m—3 =0 (mod 4) then

&(D, [m—3,5]) > &D, [m—1,9]) >--- > ED, [4,m—4])

(c) Ifb e |2,%] then

m

) ( 5[2m—30 m+6
> &\ Dy, ,
3 3

> E(DL[4,m—6]) > EDL[4,m—8]) > -+ > E(DL[4,3]) > E(DE[2,3]).
[Zm -6 m+6

3’3)

I

ED: 4, m—4) > ED:[8,m—8])> - > @@(DS

2m—-18 m+ 6 m+6

3 3

|

X

> éa(D5 [4,ﬂ])><§’(D;[4,m—_6
3 3

m

) >..->&(D,[4,3]) > £(D;,,[2,3]).

m

(d) Ifbe|%,m—-2|andm—3 =2 (mod 4) then

E(D5[m —5,5)) > &D:[m—9,9]) > - > @@(Ds

2m+ 6 m—6])

m 3 ’ 3
. 5(D1[2m_6,m_6])>@’°’(Df;1[2m_18,m_6])>--->£(Df,l[4,m_6])
3 3 3 3 3
m-—12

> & (Dfn [4,

)><§(Dfn[4,m;18

() Ifbe|%.m—2|andm~3=0 (mod 4) then

) >..->&(D, [4,3]) > £(D;,,[2,3]).

T2 _
EDLm—3,3]) > ED:m=T1,7) > > @@(D;’n ’"3+ 6 m3 6])
. 5(Dfn 2m3+6’m;12])>@@(D21 2m3+6,m;18])>--->£’(D; 2m+6,3 )

> 5(1); [2’"3_ 6,3] ) > @@(D;; [2’"3_ 18 5

(2) Suppose m =1 (mod 3).

) >..->&(D,[4,3]) > £, [2,3]).

(i) Let b =2 (mod 4).
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(a) Ifb € |2, %] then

2m—-8 m+8
3 7 3

)>--->@~“’(D5 [z,m:-;S

m

&, [2,m—-2]) > &D, [6,m—6]) > --- > é”(Dfn[

2m—32 m+8
&|p ,

2m—-20 m+ 8
> &\D? ,
[on 5225

m+2 )>@@(D’5n[2’mT_4

(b) Ifb |2, m—2|andm -3 =2 (mod 4) then

|

> & (Dfn [2,

) > .- > &(D; [2,3)).
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. [2m—-8 m—4 c[2m—-20 m—-4 |, m—4
S e | A o e | RESR Gl )
> @@(D;[z,m;lo])>5(D;[2,m;16])>--->£(D;[2,3]).

(c) Ifbe|%.m-2|andm-3=0 (mod 4) then

m

&, [m-3,3]) > &WD,,Im—17,7]) > -+ > dg’(D5

2m+4 m—4])

E(D;[m =5.5]) > ED}m —9.9]) > - > 5(D:; 2m3+4,—m3_4])
) 2m+4 m—10 s 2m+4 m-16 s 2m+4
> 5(Dm 3 7 3 ])>£’(Dm 3 3 ])> >(gf>(Dm - 3])

(d) Ifm—3=2 (mod 4) then

EWDsm=3,3) > ED:m=1,7) > - > EDL[2, m = 2])

m

> & [2,m—4]) > &D,[2,m—-6])>--->&D,I[2,3]).
(e) If m—3 =0 (mod 4) then

&E(D[m —5,5]) > D5, [m —9,9]) > - > D5 [2,m - 2)])

> & [2,m—4])) > &D,[2,m—-6])>--->&D,I[2,3]).

(ii) Let b =0 (mod 4).

71



(@) Ifm—3 =2 (mod 4) then

&(D, [m—5,5]) > &D;,[m—9,9]) > --- > ED, [4,m —4])
> &(D; [4,m—6]) > &D; [4,m—8]) > &(D; [4,3]) > £(D,,[2,3]).
(b) If m—3 =0 (mod 4) then
&(D; m-3,5]) > &D; [m—1,9]) >--- > &, [4,m—4])
> &(D;[4,m—-06]) > &(D;[4,m—-8]) > &, [4,3]) > &D;,[2,3)).

(c) Ifb 2,2 then

ED: 4, m—4) > ED:[8,m—8])> - > @@(DS

2m - 14 2 2m -2 2
>£(Dfn[m3 ,m;- )>®@(D21[m 6 m+

3 73
> 5(1);[4,”'—_4 )><§’(D;;[4,m_10
3 3

[2m—2 m+2 )
3 3

)>--->£(Dfn[4,m;2

) s> EDY4,3]) > E(D[2,3]).

|

(d) Ifbe|%,m—-2|andm-3 =2 (mod 4) then

m

E(D5[m —5,5)) > &D:[m—9,9]) > - > @@(Ds

2m + 10 m—l()])
3 3
. g(D;[Zm—Z’m—10])>£)(D21[2m—14,m—10])>'_.>£(D;1[4,m;10])

3 3 3 3
> £(D;[4,m;16])><§(Df;1[4,m;22

() Ifbe|%.m—2|andm~3=0 (mod 4) then

) >..->&(D, [4,3]) > £(D;,,[2,3]).

ED:m=3,3)> ED:m=17,7)> - > @@(Dfn

2m+10,m—16])>£)(D21

2m + 10 m—l()])
3 73
2
m+10’3])
3

2m + 10’m—22}) . é”‘(D*"
) >..->&(D,[4,3]) > £, [2,3]).

> é“‘(Dfn

3 3
> 5(1);[2’"3_ 2,3] ) > 5(1);[2"'3_ 14 4

(3) Suppose m =2 (mod 3).

3 3 m

(i) Let b =2 (mod 4).
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(a) Ifb € |2, %] then

2m—4
3

)>

) > &(D5,[2,3)).

&, [2,m—-2]) > &D, [6,m—6]) > --- > é”(Dfn[

2m—16 m+4 2m—28 m+4
> &|D; , > & | D; ,
" 3 3 " 3 3

m-—38
D2, ——

(b) Ifb |2, m—2|andm -3 =2 (mod 4) then

m-—2

D2, ——
> @@( m[ 3

2m+ 8
3

[2m—-4 m-38 [2m—-16 m—28
S R e ea

m—314])>®@(D;[2’m—20

(c) Ifbe|%.m-2|andm-3=0 (mod 4) then

m

&, [m-3,3]) > &WD,,Im—17,7]) > -+ > dg’(D5

> & (Dfn [2,

2m + 8

&(D 3

m

[m—5,5])>5(1)5,,[m—9,9])>--->5‘(D;;
2m+8 m—14 .
T 3 ])>£’(Dm
> g(Dfn[2m3_4,3])>@@(Dfn[2m3_l6,

(d) Ifm—3=2 (mod 4) then

> cg’(Dfn

37 3

&ED;lm - 3,3]) > &D;lm = 1,7]) > - --

m

> &(D;[2,m—4]) > EWD;[2,m—6])> -
(e) Ifm—3 =0 (mod 4) then

ED;[m - 5,51) > ED;Im = 9.9]) > -

> &(D;[2,m—4]) > ED;[2,m—6])> -

(ii) Let b =0 (mod 4).
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m+4
3
..>£(Dfn[2,m;4 )

2m+ 8 m—20])
>..

=)
>g(Dm[2mT_8])

])>---><§"(Df;1[2,

3]).

=)

->c§"(Df;1

2m + 8

)

3] ) > > E(D5[2,3)).

> (D32, m - 2])

> &(D[2,3)).

> (D512, m - 2])

> &(D:[2,3)).



(@) Ifm—3 =2 (mod 4) then

ED:Im—5,51) > ED5Im—=9,9]) > -+ > ED5,[4,m — 4])

> &(D, [4,m—-06])> &D;[4,m—8]) > ED, [4,3]) > &(D,,[2,3]).

(b) If m—3 =0 (mod 4) then

ED:Im = 3,5]) > &D5m—7,9]) > -+ > &5 [4,m — 4])

> &(D,[4,m—-06])> &D;[4,m—8]) > &, [4,3]) > &(D,,[2,3]).

(c) Ifbe[2.2] then

2m—-10 m+ 10

2

E(D:[d,m —4]) > D8, m—8]) > - > @“’(Df’n

|

3 3
S Cg)(l)lSﬂ 2m—22,m+10 )>£(Dfn 2m—34’m+10 )>"'>£)(D,Sn 4’m+10 )
3 3 3 3 3
N g(p;[4,”’+4 )>£(D§n[4,”’T'2 )>--->£<D;[4,3]>>£<D;[2,31>.

(d) Ifbe|%.m—-2|andm—3 =2 (mod 4) then

E(D;,lm = 5,51) > ED;,m=9,9) > - > @@(D’s” 2ms+ - 3 2])
N g(D;[Zm—IO,m—Z])>g(D; 2m—22,m—2])>éa(1)’5n[4,m__2])
3 3 3 3 ’

> 5(13; [4, ’"T_S] ) > g’(D;; [4, ’"‘T“] ) > > E(DL[4,3]) > E(D12, 3.

() Ifbe|%.m—2|andm-3=0 (mod 4) then

3 3
2m+2’m—14])>.”>£,(D};

&5 m=3,3)> ED:m=1,7]) > - > g(Dfn

2 2 - .
m+ ’m3 8])>@‘"(D:‘n

2m + 2 m—Z])

2m + 2

,3

3

> & (Dfn
3 3

|

> g(D; [2’”3‘ 10,3] ) > g(D; [2"’3‘ 22,3] ) > > E(D[4,3]) > E(DL[2,3)).

Proof. We know that csc z and cot z are decreasing for z € (O, g] Therefore we get the required

energy ordering of bicyclic sidigraphs in ©;, when both cycles are of odd length. O
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4.3 Conclusion

Vertex-disjoint bicyclic sidigraphs are classified into three categories: the sidigraphs whose
cycles are of even length, the sidigraphs whose cycles are of odd length and the sidigraphs
whose one cycle is of even length and one is of odd length. In the current chapter, we separately
investigated the energy ordering in each category. We also find largest and smallest energy in

each category.
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Chapter 5

Inverse sum indeg energy of graphs

In this chapter, we discuss about graph energy which is based on ISI matrix and study few prop-
erties of the ISI matrix. The ISI energy formula for some well-known graphs are determined.
Some bounds for ISI energy of graphs are obtained. We also give integral representation of ISI
energy of graphs. In the end, we give some noncospectral equienergetic graphs with respect to

inverse sum indeg energy.

5.1 Inverse sum indeg energy

Let G = (Vg,Eg) be a graph. Zangi et al. [77] defined the ISI matrix Asi(G) = [apqlmxm of an

m-vertex graph G as:

dg(w[;) dg(w,i)

—G e i wpw, € Bg,
apq = G G

0 otherwise.

The Ajsi-characteristic polynomial of G is given by:
Pe(@) = det(As(G) — 01,) 5.1
Let6y,...,6, be the Ag-eigenvalues of G. Then Zangi et al. [77] define ISI energy of G as

si(G) = D 10, (5.2)

q=1
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For convenience, we define some notations. Let

d(Wp)d(Wq)
B=2 Z ( (wp)+d(wq)) T = det(As1(G)). (5.3)

1<p<g<m

Theorem 5.1. Suppose G, is a simple connected graph. Then

(A (G) < tr( A (K)),
where the inequality becomes equality for G, = K.

. First, let H # %,. Then d, ™) < m—1 for every vertex

Proof. For convenience, write H = G, .

w,of H, p =1,...,m. Therefore

A N T
w wg) 1 I
d;( Dy dq({ ) o + o0 mel * o 2
Now
d(Wp)d(Wq)
(A () = 2 (d(W") d%))
1<p<g<m
2r (m—1)? _r(m— 1)?
= 4 —_ 2 .
As H # K, it holds that r < @ Consequently
r(m —1)? mm—-1) (m-1)>*
tr( A (H)) < 5 < 5 X —
= %(m— 1.

Now let H = %K,,. Lemma 2.16 implies

mm—-1) (m—-1)>?
2 T4

_ m 3
—4(ml).

tr(Ay (%K) = 2

Hence tr(ﬂISI(W)) < tr(ﬂlSI(‘Km)). This proves the result. O

A square diagonal matrix whose diagonal elements are square matrices and the non-diagonal
elements are O is called a block diagonal matrix.

Next theorem determines the relationship among ISI energy of graph components and a

graph.
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Theorem 5.2. Suppose a graph G has components Q,Q,, . .., Q. Then &i51(G) = ZS] Eis1(Qy).
q=1

Proof. Since Q;,@,,...,Q; are the components of G, we can write G = Q UQ, U --- U Q.

Then Ajs1(G) is a block diagonal matrix with diagonal elements A5 (Q)), As1(Qz), . . . As1(Qy).

Therefore
specis|(G) = specig(Q1) U specis (@) U - - - U specg (Qy).
Hence )
Sisi(G) = Z Esi(Qy).
=1
The proof is complete. O

Following result follows directly from ISI matrix of K.
Lemma 5.3. Suppose G is a graph with ng = m. Then &i51(G) = 0 for G = %m

Theorem 5.4. If a graph G # %m and 8is1(G) is an integer then &is1(G) be an even positive

integetr.

Proof. With no loss of generality, suppose that 6, ..., 6 are positive and 6,1, ..., 6, are non-

negative. From Lemma 2.16, we have

Db+ Y =216, =0
q=1 =1

g=s+1 q
This gives
Do==> 0,
gq=1 g=s+1
Now
Gs@) = ) 164
q=1
= Zeq + Z 6,
q=1 g=s+1
= 2> 6,
g=1
Therefore &is1(G) is an even integer. O
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A matrix M is irreducible if the digraph associated with M is strongly connected. A matrix

is non-negative if its all entries are non-negative.

Theorem 5.5 (Perron-Frobenius). Let A # 0 be an irreducible matrix. Then A has a positive
eigenvalue v with corresponding eigenvector y > 0. If w is another eigenvalue for A, then

v > |w)

In the following two results, we determine some properties of the Ajs-eigenvalues of a

graph G. The idea of proof is taken from proof of Lemma 1.1 [17]

Lemma 5.6. Suppose G is a simple connected graph with ng = m, m > 2, and Ajsi-eigenvalues

01> 6, >--->0,. If G has diameter at least 3, then 6, > 6, > 0.

Proof. Since the graph G is connected therefore A5 (&) is an irreducible non-negative square
matrix of order m. By Perron-Frobenius theorem, we have 6, > 6,. Since the diameter of G
is at least 3, P, is the subgraph of G. So 6,(G) > 6,(Py) = % > 0, where 6,(G) is the second
largest Ajsi-eigenvalue of G and 6,(P4) is the second largest Ajsi-eigenvalue of $, . Hence

6, > 06, > 0. O

Lemma 5.7 (Brouwer and Haemers [7]). Suppose a connected graph G has its largest A-

eigenvalue Ay. Then —A, is an eigenvalue of G if and only if it is bipartite.

Theorem 5.8. Suppose G is a graph with ng = m, m > 2 and let its A-spectrum and Ajs;-
spectrum are symmetric about the origin. Then |0, = |6, = --- = 16,| > 0 (q > 2) and rest of
the Aisi-eigenvalues are zero (if exist) if and only if Ltj K,.s = G, where t(r + s) = m and one of
the r or s is greater than 1. &

Proof. First assume that

161 = 16| = --- =16, > 0 (g = 2), (5.4)

and rest of the Ajgj-eigenvalues are zero (if exist). Then each component of G has atmost three
distinct Ajgi-eigenvalues. Let Q be a component of G. From Equation (5.4) and Lemma 5.7,

we see that Q is bipartite. The diameter of Q is at least 3 if Q is not a complete bipartite graph.
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Therefore using Lemma 5.6 and Equation (5.4), we get a contradiction. Hence Q is a complete

t
bipartite graph. As Q is arbitrary component of G, therefore G = | J K, ;, where #(r + 5) = m.
j=1
The converse statement is easy to prove. O

5.2 ISI energy of some graphs

Now we prove ISI energy formula for some classes of graphs.

The A-spectrum of K, and K, , is, respectively, given by

spec(n) = {(=1)""", (m - 1)},

spec 4(Knn) = {(0)™"2, + \/mn).
Using Theorem 2.17, we get the following results.

Theorem 5.9. &i51(C,,) = &(C,).
Theorem 5.10. &isi(%,,) = (m — 1)%.

Remark 5.11. Let m = 2(mod 4). Then from energy formula of cycle C,, [4], one can see that
(gaISI(Cm) = Z&SI(C%)

Now we obtain the ISI energy formula for a complete bipartite graph.

Theorem 5.12. &is51(Kn) = 2mm)?

m+n

Proof. Let B be an m X n matrix and C be an n X m matrix, where each entry of B and C is equal

to % Let O be a zero matrix of order m X m and O’ be a zero matrix of order n X n. Now

0]

Aist(Konn) = .

cC O

That is,
mn
ﬂISI(Wm,n) = ﬂ(«m,n)
m+n
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Hence

mn)3 e mn)3
specisi(Kinn) = {—( ) Q=2 ——( ) }

m+n’ m+n

Therefore

m+n

ISI
2,1
g=1

(mn): ‘ . ' _ (mn)? ‘

&SI(«m,n)

m+n m+n
3

2(mn)2

m+n’

The proof is complete. ]

Next corollary is easily obtained from Theorem 5.12 .
3
Corollary 5.13. &i(S,,) = 22-0-,

Remark 5.14. By Theorem 5.2 and Theorem 5.10), it is easily seen that &igi(K,.,,) = m? + n® —
2(m -1+ n).

Let F' = (f;;) be a p X p matrix with eigenvalues A, and B be a g X ¢ matrix with eigenvalues
B i, jk=1,....,p,1 =1,...,q. The Kronecker product of F and B, represented by F' ® B,
gives the matrix which is formed by substituting each entry f;; of F' by f;; B. The eigenvalues
of F ® B are A; 3.

Suppose G(Vg, Eg) be a graph and V’ be the set such that Vg N V' = ¢, [Vg| = [V’ and
n: Vg — V'isabijection. For w € Vg, we write m(w) = w’. The duplication of G, represented
by G*, is the graph with the property that Vg« = Vg UV’ and its edges are as follows: In G,
wz € Eg if and only if wz’ € Eg« and zw’ € Egx.

Let H,, ..., H;, be the d copies of G with vertex sets V et Vf;{d and let V;’{q = {Wigs- s Wing)s
q=1,...,dand wj, represents the j-th vertex of the g-th copy of G, j = 1, ..., m. The d-double
graph G? of G is the graph with the property that Vg: = Vi, U--- U V§ and its edges are as
follows: In G, wiw, € Eg if and only if wi;wo, € Ege withi # kand k = 1,...,d. See Figure
5.1.

Now we give the relation between &is1(G) and &i51(G*).
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Figure 5.1: P5 and its 2-double graph P3.

Theorem 5.15. &i51(G*) = 2 &is1(G) for a graph G with ng = m.

Proof. Let O be an m X m zero matrix. By proper labelling of the vertices in G*, we get
Asi(G)

) [O |
Asi(G) @) 10

Thus the spectrum of As((G”) is +6,>", ¢ = 1,...,m. Hence &isi(G*) = 2 &1s1(G).

® Asi(G).

Asi(G*) = l

Theorem 5.16. &i51(GY) = d* &is1(G) for a graph G with ng = m.

Proof. Let J; be a d X d matrix whose every entry is equal to 1. By proper labeling of the

vertices in G%, we have

_dﬂISI(g) dAs(G) ... dﬂISI(g)_
dA dA e, dA

A (G) = s1(G) 1s1(G) 151(G)
»dﬂlsl(g) dﬂ]s}(g) e dﬂISI(g)—dmxdm

Therefore A1(GY) = d (Asi(G) ® J4), where A-spectrum of J,; is dV and 0D, By property

of Kronecker product of matrices, the Asi-spectrum of G¢ is 0 with multiplicity d — 1 and

Arsi-spectrum of G. Therefore we get &is1(G?) = d? &is1(G).
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5.3 Bounds and integral representation of ISI energy

In this section, few bounds on ISI energy of graphs are given. Das et al. [21] prove the following

theorem for eigenvalues of degree-based energies of graphs.

Theorem 5.17 (Das et al. [21]). For the eigenvalues f1 > f> > - -+ > f,, of a matrix Ar;/(G), the

Jfollowing inequalities hold.

O \/(m— ) 1,6

mm-1) ~ 17 m ’
i \/(m— DITGG) [

m m = m(m — 1) 5

(k= 1) tr(A2(G)) (m — k) tr(A%(G))
- fie < ,

mm-—k+1) km

foreachk=2,...,m—1.
Next result is obtained by using Theorem 5.17.

Theorem 5.18. For the eigenvalues 6, > 6, > --- > 0, of As1(G), the following inequalities

hold.
/ B < 0 < [(m—1) B,
m(m—1) m
_Jom-vs B
m m(m—1)

B / k-18B < g < /(m—k)B’
mm—k+1) km

foreachk =2,...,m—1 and B is defined in Equation (5.3).

IA

Next result is obtained using Theorem 5.1 and Theorem 5.18.

Theorem 5.19. For Ag-eigenvalues 6, > 6, > --- > 0, of a connected graph G, the following
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inequalities hold.

B
\/n/l(m:—l) < 91 < éﬁiSI(qcm),
B
On < = \/ m(m—1)’

_Jm—nm—m S&SJm—mw—m,
4m—k+1) 4k

foreachk=2,...,m—1.

_giSI(q(m)

IA

In next theorem, we find bounds for ISI energy using tr(ﬂfSI(Q)) and det(A1(G)).
Theorem 5.20. Suppose G be a simple graph with ng = m, m > 2. Then
m[|" < &a(G) < Vm B,
where I’ and B are defined in Equation (5.3).

Proof. We know that arithmetic mean is always less than quadratic mean. Therefore

Ss(G) = )16
q=1

< 16,2
V"2
= \m Zm:%: Vm B.
g=1

Quadratic-Geometric mean inequality gives

|

g=1

2
m m 5

m [ﬂ |eq|] = m ||
g=1

[Sis1(@)]

m

W%

16,1°

v

This completes the proof.
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Now we have the following theorem. The proof is similar to the proof of Theorem 3 [21]

and is thus excluded.

Theorem 5.21. Suppose G be a simple graph with nwg = m > 2.Then

VB4 m Yl (m - 1) < (@) < Nm—1) B+ m Y],
where I’ and B are defined in Equation (5.3).

In Theorem 5.22, we obtain bounds for ISI energy using size, smallest and largest degrees

of a simple graph.

Theorem 5.22. Suppose H = G(m, r,Vg,dg) be a graph. Then

\/—+m(m— 1) |T|E
\/r(m— 1) 7 +m|T|m

Proof. For each vertex w, of H, 64 < dg”) < Vg, p=1,2,...m. Using this fact, we get

giSI (7_{)

v

Sisi(H)

IA

1 1 Vo
1 1 =1 1 I
d;;vp) d;{w”) Vo + Vo 2
1 1 _ On
11 =1 1T
o + v * oo
Hence ) o)
dy"d, " 2 Vi rV2
8=2 3 (dhm) <=5t
1<p<q<m d P + d a
d (Wp) d (Wq) 63_( ré?}_{
B=2 Z (w) (W))zer: 7
1<p<g<m d ! d !
Now using Theorem 5.21, we obtain the desired result. O

An analogue of Theorem 1.2 is Theorem 5.23.

85



Theorem 5.23. Suppose G be a simple graph with wg = m and Aysi-characteristic polynomial

V(0. Then 3 3
1 0 i Y’é(i@) .
giSI(g) = ; j:w (m - W)d@,

where ¥((0) = £¥5(0) and i = V-1.
Corollary 5.24. Suppose G be a graph with ng = m. Then

1 | o i -
Es1(G) = ~ f Eln(Wg(g))de.

T 0

Next result is similar to graph energy.

Theorem 5.25. Let G be a graph with ng = m and Asi-characteristic polynomial Yg(6) =
6" + hIy b,0"4. Then

7]

L
1 <1 -
5516) = - f = log [ (-1 by () B

L7]
()1 bogui(G) P | i

q=0

q=0

5.4 Api-Equienergetic graphs

Two graphs with same Ajg;-spectrum are said to be Ajsj-cospectral, otherwise Ajs;-noncospectral.
Two Ajsi-equienergetic graphs are the graphs with same ISI energy. Two isomorphic graphs are
always Ajg;-cospectral and thus are Ajg-equienergetic. In this section, we construct few classes
of Asi-noncospectral Ajsi-equienergetic graphs.

Suppose G be a b-regular graph with ng = m. Let (@) = £(G), L (G) = L (L TV(G)),
qg = 1,2,..., be the iterated line graphs of G. Ramane et al. [65] prove the following energy
formula for Z2(G).

ELP(G)) = 2mb(b - 2). (5.5)

Theorem 5.26. Suppose H, and H, are two b-regular m-vertex A-noncospectral graphs. Then

LOD(H,) and LP(H,) are Agi-noncospectral Aisi-equienergetic graphs.
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Proof. For an m-vertex b-regular G, Z?(G) is %mb(b — 1)-vertex (4b — 6)-regular graph. By
Theorem 2.17 and Equation (5.5), we get

Esi(:L?(G)) (2b - 3) E(L?(G))

2mb(2b - 3)(b - 2).

Hence &isi(L @ (H))) = Eisi(LD(HL)).
Since A(LP(G)) = 2b-3)A(LP(G)) and L P (H,) and, L P (H,) are A-noncospectral
graphs, therefore @ (H,) and P (H,) are also As-noncospectral graphs. O

Corollary 5.27. Suppose H, and H, are two b-regular m-vertex and A-noncospectral graphs.

Then for any q > 2, L P(H,) and L V(H,) are Aigi-noncospectral Asi-equienergetic.

Theorem 5.28. Suppose H, and H, are two m-vertex Ajs;-noncospectral Aisi-equienergetic.

Then H, U %, and H, U %r are Asi-noncospectral Ajsi-equienergetic.

Proof. By Theorem 5.2, we have

Eisi(H, U %r) = Ssi(H) + 5181(%0

Eisi(Hy) + Esi(K))
Esi(Hy UK,).

Since H; and H, are Ajs-noncospectral, therefore H; U 7_(, and H, U 7_(, are also Ajgs-

noncospectral. O

Corollary 5.29. Suppose H, and H, are two b-regular m-vertex A-noncospectral graphs. Then

forany g > 2, LD(H;) U 7_(, and LD (H,) U 7_(, are Asi-noncospectral Asi-equienergetic.
The following two theorems give some more classes of Agj-equienergetic graphs.

Theorem 5.30. Let G be any m-vertex graph and d = O(mod 2). Also let é be the graph which
is the union of d_22 copies of G*. Then &s1(GY) = Esi(G).
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Proof. By definition of é and proof of Theorem 5.2, note that ﬂISI(é) is a block diagonal
matrix with diagonal elements Ajs;(G*) and Ajg-spectrum of é is iéq each with multiplicity
%, q = 1,...,m. Also in proof of Theorem 5.16, we see that the Ajg;-spectrum of G%is 0
with multiplicity d — 1 and d? éq, q =1,...,m. Therefore G and G° are Asi-noncospectral and

Ajsi-equienergetic graphs. O

Theorem 5.31. Let G be an m-vertex graph whose at least one component is a cycle. Take
another m-vertex graph H with same components as of G except for the component which is
cycle. Corresponding to each cycle (say C,) in G, where r = 2(mod 4), the graph H has
two cycles of half the order of C, (say Cz, C:). Then G and H are As-noncospectral and

Asi-equienergetic graphs.

Proof. Using Theorem 5.2 and Remark 5.11, one can get the desired result.

5.5 Conclusion

The energy of a graph has wide range of applications in chemistry. Energy of many types of
graphs can be found by using inverse sum indeg energy of those graphs. We present some
properties of ISI energy and Ajg;-spectra of graphs. We also find relation of ISI energy of some

graphs with graph energy.

88



Chapter 6

On generalized inverse sum indeg index

and energy of graphs

In this chapter, we introduce generalized inverse sum indeg index and generalized inverse sum
indeg energy of graphs. Our strong motivation to define generalized ISI index and energy is
the fact that the degree based topological indices and energies are derived from them by giving
the specific values to the parameters involved. We study the generalized inverse sum indeg
index and energy from an algebraic point of view. Extremal values of this index for some graph
classes are determined. Some spectral properties of generalized inverse sum indeg matrix are
studied. We also find Nordhaus-Gaddum-type results for generalized ISI index spectral radius

and energy.

6.1 Basic results

Let G = (Vg,Eg) be a graph. We define generalized inverse sum indeg index as

20 g0\
Sus@ =3 ") , 6.1

wpwg € Eg (d(wp) + d(Wq))B
G G

where @ and 8 are real numbers.
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We define generalized IST matrix As, ,(G) = [@pglmxm Of an m-vertex graph G as

@
wp) ,(wq)

7 ifw,w, € Eg,
Apg = (dg(w”>+dqu))

0 otherwise.

The As, ,-characteristic polynomial of G is given by:

Ps(0) det(As, ,(G) — 01,,)

7+ > e, 0, (6.2)
g=1

where [, is an m X m identity matrix. The As, , -eigenvalues of G are the roots of polynomial
in Equation (6.2).
Let 6,,...,0, be the As, , -eigenvalues of G. Then we define the generalized ISI energy of
graph G as .
8p (@)= D 10l (6.3)
g=1

We list here few degree-based topological indices and energies of a graph G. These types of
degree based indices and energies can be derived from generalized ISI index and energy by only

giving specific values to @ and .

I. If « = 0and g = —1, then S, 3(G) = M;(G) and matrix Ay _1(G) is the first Zagreb

matrix. The energy corresponding to A -(G) is the first Zagreb energy &y, (G). Note that
ém,(G) = 6o, -1(G).

2. If e =0and B = 1/2, then S, 3(G) = x(&) and matrix Ay 1,2(G) is the sum-connectivity
matrix. The energy corresponding to A ,2(G) is the sum-connectivity energy &,(G).

Now see that &,(G) = &0, 12(G).

3. If « = 0and B = —a then S, s(G) = x.(G) and matrix Ay _,(G) is the general sum-

connectivity matrix. The energy corresponding to Ay _,(G) is the general sum-connectivity

energy &,,(G). Note that &, (G) = &) -.(G).
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4. If @ = 1 and B = O then S, s(G) = My(G) and matrix A, o(G) is the second Zagreb

matrix. The energy corresponding to A; o(G) is the second Zagreb energy &y, (G). Note
that ém,(G) = &10(G).

5. If @« = -1/2 and B = 0 then S, s(G) = R(G) and matrix A_;,,(G) is the Randi¢ ma-
trix. The energy corresponding to A_;,,(G) is the Randi¢ energy &r(G). Observe that
ER(G) = E120(G)-

6. If B = 0 then S, s(G) = R,(G) and matrix A, o(G) is the general Randi¢ matrix. The
energy corresponding to A, o(G) is the general Randi¢ energy &k (G). Note that &g (G) =
(g{)ar,O(g)-

7. If @« = 1 and B = 1 then S, s(G) = ISI(G) and matrix A, ;(G) is the inverse sum indeg
matrix. The energy corresponding to A; (&) is the inverse sum indeg energy &isi(G).

Note that &is1(G) = &1,1(G).

For study of more degree-based topological indices, see [28] and references therein.
Under certain conditions, we now determine the monotonicity of the generalized ISI index

of a graph G when new edges are added in G.

Lemma 6.1. Let w and 7 be two non-adjacent vertices of a graph G. Also let G + {wz} is the
graph formed from G by joining w and z by an edge wz. If o, 8 € R with @ > 0 and a > 3, then
Sa.p(G +{wz}) > So p(G).

Proof. If @, € R with @ > 0 and @ > S, then for any real numbers x,y > 1, we have

@ ﬁ 1(7 Q 1 ('3 (3
(1+§) 2(“%) . This implies &0 > 2 Hepee (" 5 @)

(x+y+1¥ = (x+y)f” (x+y+1) = (x+y)P°
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Let Ng(w) = {wy,...,w,} and Ng(z) = {zi,...,z]}. Then

((dg”) 1)@ + 1))a

Se. (G +{wz}) —So p(G) = A
(dg(””) +d+ 2)

[ W) (wp) “ w) 3(wp) “
(@ e nagn) (dag)

+ B8 B
= w) (WI’) (w) (Wp)
Pl (d +d +1) (dg +d )

@ ) @ ;e\
((dz+1)d “) (dgZ dgq)
+ —

B B
= ), @) @ g)
g=1 (dz+d +1) (dgz+(dg )

~

((dg%l) (dg>+ 1))

B
(dg(‘”') +dg>+2)

Next corollary is obtained from Lemma 6.1.

where > 0. Therefore S, s(G + {wz}) > S, (G). O

Corollary 6.2. Suppose o, € R witha > 0 and a > 5. Also suppose T is a spanning tree of a
graph Gwithng =mand G £ T . Then S, 3(G) > Sq p(T).

Next theorem relates S, g(G) with x5(G).

Theorem 6.3. Suppose H = G(m,r,Vg,dg) is a graph.
2621

(1). Ifa >0, then S, sg(H) > v (H)

2 V2(y

(2). Ifa <0, then S, s(H) 2~
In both cases, the inequality becomes equality if H is a regular graph.

Proof. By arithmetic mean-harmonic mean inequality, we have

s
(Wp) (Wq)
(g + iy

r r 1
Sap(H) =7 ) v\
w W W7 w
a,B (d;{p>d;(vq)) wpwg € By (dﬂl d’Hq)
ZE Y
WpWy € gy (WP> (Wq)
(d,H +dﬂ
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Now if @ > 0, then (dq(;v » dg ")) > 63¢. Therefore

B B
(d ) d;,w‘f)) (d ) d,}}“”)

1 D 7 L Y " _XH)
r ( d(:vp) dq(;vq))“ - o3 rog?
r25a
Hence S, s(H) > Xﬁ(—;{’). Now the above inequality becomes equality if and only if for every
w,ow, € Egy, (fi{zp:iii:)g = bz;_ﬁ, where b is some positive constant. This is possible if and only

if H is a b-regular graph.

Analogously, one can prove (2). O
Now we give relationship between S, 3(G) and R, (G).
Theorem 6.4. Suppose H = G(m,r,Vg,0g) is a graph. Then

Ry (H) Ry (H)
(1). IfB =0, then ol < Sep(H) < S E

o(H JH
(2). If B <0, then %@) < Sq.p(H) < };ﬁ(vf;)'

In both cases, the inequality becomes equality if H is a regular graph.

S B
Proof (1). 165 > 0, then (djy” +dgi") < @V and (dgy” + dyy*'| = (263 Hence

) )" @
da,.”d, " ) (wp) 7 (wg)
R, (H) WPW!IEEW( W " < (d(Hp d(Hq )
B B = B
2V, 2V, Wpwe € Bt ( d(gvp) N d?(;vq))
wp) e \"
s (a4 )
=S (7_() < wpwy € By H H _ Ra(q_{)
— Vap = 5 - 5
2665, 2665,

Clearly the inequality becomes equality if H is a regular graph.

Part (2) can be proved analogously. O

By direct computation, the following results are obtained.

Theorem 6.5. Suppose a graph G has componenets Q;, @, ..., Q. Then &, 5(G) = 3, & s(Qy).
g=1
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Theorem 6.6. Suppose G is an m-vertex and b-regular graph. Then &, 3(G) = bzn &(G).

Theorem 6.7. &, 3(K,.,) = ZEZT;;Q'

Lia
Proof. Since As, ,(Kn,) = (f:fr)l)ﬁﬂ(wm,n), therefore &, s(Knn) = (fq’ffr)l)ﬁ E(Knn) = % O

The following two results are obtained using Theorem 6.6.
Theorem 6.8. &, 5(C,,) = 4* P& (Cy).

Theorem 6.9. &, 4(K,,) = 2" (m — 1)?*7F+1,

6.2 Extremal values of generalized ISI index

In the current section, we find extremal values of graphs with respect to generalized ISI index

in some graph classes.

Theorem 6.10. Suppose T is a tree withny =m. Ifa = Band 0 < a < 1, then

—Dm-1y
S p(7) 2 DD

where the inequality becomes equality if T = S,,.

Proof. The result is proved by induction on m.

For m € {1,2,3}, the only tree is the star graph S,,. So the statement follows trivially for
m < 3. Now assume that the statement holds true for m > 4.

Suppose 7 is a tree with n- = m. Let wz be a pendent edge of 7~ with d,;z) =1 and d,;w) =t
As m > 4, we have 2 < t < m. Further, since 7 is not isomorphic to a star, we have that there
exists at least one neighbor u of w in 7~ with dr(u) > 2. Let Nr-(W)\{z, u} = {wy, ... w2}

LetT =7 ~ {z}. Then n= = m — 1. By induction hypothesis

~ (m—=2)(m—-2)"
Se > .
BT ——

Hence

(u) (u) -2 (Wq) (wg)

_ t\ [ df e d - d; @« d " (t—1)\
Sa,B(T)_Sa,ﬁ(T):( )+[( w ) ( W ) * () (=& ) '
t+1 d’ +1) \dP +1- el AT A A
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Let & > 0 and define

i) ()

A f—1 \et!
(é:) _(§+t—1) ]
E+ 2 -0 — &+ -1 - &)
(E+ )t (E+1— 1)+ :

Ast >2 0<a < land ¢ > 0, we have (£ + H)®' > 0 and (£ +1 - 1)*' > 0. Also

s© =

Then

a,é';a—l

g'é)

Cl’é:a_l

Et+12—1) > (Et+ 12—t —&). Therefore (£t + 12 — 1)*™ > (&t + 2 — 1t — &) Hence g'(¢) > 0
and thus g(¢) is strictly increasing for € > 0. Also2* > 1 forO < a <1, d,ﬁw") > 1 and dﬁ‘) > 2,

we have

\%

t—l))

Sa.p(T) = S p(T) —

—+

() [T - B | ) - (5]
> () [ -] - () 2
) ) (e - A L)

\Y%
—_
-~
‘|
\®)

Since ¢t > 2, we have

Su f(T) — Su pg(T) > 2(%) 51
(m—D(m—-1D*  (m=2)(m=2)"

me (m — 1 )(1

= Sa,ﬁ(Sm) - Sa,ﬂ(Sm—l)

Therefore by induction hypothesis S, (7)) — Sa, 5(Sw) > S, ﬁ(‘? ) =S¢, 3(Sm-1) = 0. This con-

cludes the proof by induction and clearly equality holds if 7~ = S,,,. O

Next theorem gives the minimal graph with respect to generalized ISI index in the set of all

connected graphs with smallest degree 2.

Theorem 6.11. Among all connected graphs H = G, with smallest degree 2, we have
(1. Ifa>0andB <0, then S, s(H) > r4*>.
(2). Ifa =20, then Sy g(H) > r
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In both cases, the inequality becomes equality for H = C,,.

a

Proof. (1). If @ > 0 and B < 0, then for any w,,w, € Vg, we have (dq(f”) d;{w")) > 4% and
2% + a9\ < 48 Theref
y et < 4P, Therefore
wp) S \*
(" a5)

0= 3
wpwg € By (d(}(-;Vp) n d(](-[wq))

Now S, s(H) = r4*# if and only if d;;v P = d;‘f ? =2 for every edge w,w, € Eg. Therefore the
inequality becomes equality for H = C,,.
(2). Since 04 = 2, therefore (d(gv ) d(zv q)) > (d(;f Py d,;:v @ ). Hence
wWp) 5 (wy)
(27 ")

Sep(H)= > —E
wpwg € BEqy (d(HP +d(Ht1)

[07

Similar to the proof of Part (1), the inequality becomes equality for H = C,,. O
Next theorem has same proof as of Theorem 3.2 [2] and thus neglected.

Theorem 6.12. Suppose o, € R with a > 0 and a > B. Also let m > 4 and G be a connected

graph with ng = m and independence number o. Then

m-o)m-1*Fm-o-1) B m—-o0)*(m-1)"
25+ to = ey

where the inequality becomes equality when G = 7_(0_ A Ko

6.3 On spectral radius and spread of the generalized ISI ma-
trix

In this section, we give bounds on spectral radius and spread of graphs with respect to general-
ized ISI matrix. For any complex m X m matrix M with eigenvalues u;, . .., i, the spread s(M)

of M is introduced in [57] and is defined as s(M) = max |u, — u,|.
p.q
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Let w; > -+ > w, be the A, ,-eigenvalues of a simple graph G. Then spread of As, ,(G)
is defined as s(As, ,(G)) = w1 — Wy, since the eigenvalues w > - -+ > w,, are all real.
For convenience, we define some notations. Let

(dg(wp) dg(wq))Z(x
- Z d(Wp) d(Wq) 2ﬁ’
(dg " +dg ")

1<p<g<m

Q = det(As, ,(9)). (6.4)

We first give some lemmas that are used for proving our main results.

Lemma 6.13. Let G be an m-vertex graph and wy, . . ., wy, be its As, ;-eigenvalues. Then
(1. X w, =0,
g=1

2). 2 wé =2J9.
gq=1
Proof. The proof is straight forward. O

Lemma 6.14 (Zhang [81]). Suppose y € R™ with y # 0. For any m X m symmetric matrix C

with eigenvalues n, > - -+ > n,,, it holds that,

y'Cy <nmiyly,

where YT is the transpose of y. The inequality becomes equality if and only if y is an eigenvector

of C corresponding to n.

Lemma 6.15 (Horn and Johnson [44]). Let A| = [a,qlmxm and Ay = [b gl mxm be mXm symmetric

and non-negative matrices. If Ay > A, that is, a,, > b,, for each p,q = 1,...,m, then

M (A1) = n1(Ay), where n1(Ay), k = 1,2 is the greatest eigenvalue of the respective matrix.

Theorem 6.16 (Hong [43]). Suppose G, is a connected graph having A-eigenvalues 1, > - - - >
A Then

A< N2r—m+ 1.

The inequality becomes equality if and only if G, = S,, or G, = K.

m
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Theorem 6.17 (Cao [11]). Let H = G(m,r,Vg,0g) be a graph with A-eigenvalues Ay > --- >
A and 644 > 1. Then

AL < A28 = 6p(m = 1) + (64 — D)V
Now we give bounds on largest As, ,-eigenvalue of a graph.

Theorem 6.18. Let m >

2. Also let H = G(m,r,Vg,6g) be a connected graph with As, 5
eigenvalues w, > -+ > w,, and a,B € R.

(1). Ifa, B =0 then

R, (H) <o <(m—1)2“\/2r—m+1
s = = '
m2P vV, »
(2). If o, B <0 then
R, (H) < < V2r—-m+1
m¥p, T Pm-1p

3). Ifa 2 0and B <0 then

Ro(H) _ _ (m— 1P NDr =1
m256’f;{_ b= 26 .

4. Ifa <0and B > 0 then
R, (H) < < V2r—-m+1

S W) =S
B B
m2f5'VW 2

Proof. (1).Lety € R™ such that y = (y1,y2,...,ym)’. Then

a
Wp) 5 (wg)
(@5 a5”)

) oY
WPWqEEﬂ(d . +d(Hq)

2

¥ As, ,(H) y

YpYq

wp) v\
(@57 43;”)

B
wpwy € Egy 2 V'H

\%

YpYq-

. I

Taking y = (

a
1 T 1 wp) 5 (wg) _ Ro(H)
L \/ﬁ""’\/_ﬁ) , we get o ZE (d(H” d(H") Yodg = —eF Therefore by
H WpWq € Bgy H
Ro(H)
>
Lemma 6.14, w; > eI

98



Now for any vertex w, € Vg, p = 1,...,m, we have 1 < 0y < dq(f”) < Vy < (m-1).

Therefore N
Wp) 5 (wg)
(d P d g ) 2a
H  “H V: — 1)2
jet < o
(wp) (wg) 25
(g + ") H

If 7, is the spectral radius of a matrix %ﬂ(?’( ), then by Lemma 6.15 and Theorem 6.16, we

obtain

m-0D*4 m-D*V2r—-m+1

where A is the spectral radius of A(H).

(2). Let y € R™ such that y = (y1, y2, ..., ym)!. Then

) S oep\*
) (g7 dyy?)
y As, (H)y = Z 5 YpYq

WwpWq € By (d(](;)p) + d(]({wq))

wp) v\
— % YpYq
»

\%

wpwy € By

: 01 Ry 1 o) v\ _ R
Taking y = («F T W) , we get 7, wpw,,ZeEH (dﬂ d, ) VpYg = e Therefore by
Ry (H)
Lemma 6.14, w; > TR
Now for any vertex w, € Vg, p =1,...,m, we have 1 < 6y < dg”) <Vg < (m-1). Since

@, < 0, therefore 62 < 1 and V4, > (m — 1)°. Now

wp) e\
(d‘H] dq_{q) 52(1/ 1

< <
B 08wP - B m— 1%
wp) ) 28V (m—1)»
(dw +dy, ) H

If 1, is the spectral radius of a matrix mﬂ(ﬂ), then by Lemma 6.15 and Theorem 6.16,

we obtain

A <V2r—m+1
Bm-1¥8" Pm-1»"

where A; is the spectral radius of A(H).

wp <m =

Parts (3) and (4) can be proved analogously. O
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Next theorem gives bounds on the smallest As, ,-eigenvalue of a graph.

Theorem 6.19. Let H = G(m,r,Vg,dg) be a graph with As, ,-eigenvalues wy > ---

\/2j+(m—1)(171—2)92/’"‘1 [2m-1)T
2 S(f‘)m < Ta

where a,3 € R and [ is defined in Equation (6.4).

\%
g
3

Then

Proof. By Part (1) of Lemma 6.13, we get
m—1 2 m—1
wi:(—qu) :Za)§+2 Z W) Wy.
q=1 g=1 1<p<q<m—1

Now by arithmetic-geometric mean inequality, we get

2/(m=1) (m-2)
)

\%

2 m-— m— m—
(m—-1)(m-2) Z Wp Wy (w12w2 2w

1<p<g<m—1

2/m-1
( det(A,, ﬁ(ﬂ))) = Q¥

_ 5\ O2/m-1
Hence w2, >2 . — w2 + (m—1) (m—2) Q™! and w,, > \/23—”’" D2

Again using Part (1) of Lemma 6.13 and Cauchy-Schwartz inequality, we have

m—1

Wy <m=-1)) w2=m-1)Q2J - o}).
g=1

Hence w,, < ,/W O

In the following theorem, we give bounds on spread of the generalized ISI matrix of a graph.

Theorem 6.20. Suppose H = G(m,r,Vg,dg) be a graph having As, ﬁ—eigenvalues w; =2

Wy

(1). Ifa,B > 0 then

Ry (H) (m-17>% [2r(m-1)
(s, (H)) 2 — T N

(m—12V2r—m+1  2r+2% (m— 1)+ (m — 2) Q2/m-1
28 254 (m — 1) '

$(As, ,(H)

IA
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(). If a,B < 0 then

R, (H) 1 \/m
S(As, ,(H) > ¥, Pm-1PN m

V2r—-m+1 \/Zr (m—-1D*+22%m-1)(m—2)Q%m1
26 (m— 1y 23+B '

s(As, ,(H) <

3). Ifa 2 0and B <0 then

Ry(H) (m—-12F [2rm=1)
S(ﬂsmﬁ(q'{)) 2> m2ﬁ(5€{_ B " 5

(m—=12P\N2r—m+1  2r+2% (m— 1) (m—2) Q2/m-1
28 2348 '

s(As, ,(H)) <

4). Ifa <0and B = 0 then

R (H) 1 2r(m—1)
R L A I

V2r—m+1  2r (m—1)% + 228 (m — 1)!1+28 (m — 2) Q2/m-1
2 2:*B(m — 1)f ’

s(As, ,(H)) <

Proof. (1). We have 1 < 64 < d(}(y”) < Vg < (m—1) for any vertex w, € Vg, p = 1,...,m.

Using Equation (6.4), we get

) 5 v\
P q
(dg d )

29 =2 zﬂ
<p<g<m (wp) (wg)
s (dg +dg ) (6.5)

da —
>2 Z O > rat
- 26VE T (m— ¥

1<p<g<m

Also

) )\
P q
(457 d5")

29 =2

(wp) (wg) +
1<p<q<m (dg » 4 dg q ) (6.6)

da

E H 1-28 4o
< < —_
= 2 22ﬁ B = r2 (m 1) .

1<p<g<m
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Hence using Theorem 6.18, Theorem 6.19 and Equations (6.5) and (6.6), we get

$(As, ,(H) = wi—wn
(m—l)z‘“/2r—m+1 _ 2j+(m—1) (m_Z)QZ/m—l

= 28 2
- 1)*V2r - 1 1 2
c mzDPNVIrema L 12T gy 2y Qo
2B 2\ Qm - 1))%
_ m=-D2V2r—m+ 1 2r+2% (m— 1% (m - 2) Q!
- 2% 238 (m — 1)8 '
Also
S(ﬂa,ﬁ(ﬂ)) = W) — Wy
Ro(H)  [2(m-1DF
m 28 Vf;{ m
R,(H) (m-1)* [2r(m-1)
m 28 Vg{ 2F m '
(2). We have 1 < 64 < dq(f”) < Vg < (m — 1) for any vertex w, € V¢, p = 1,...,m. Since

@, B < 0, therefore V3, > (m — 1)* and 6‘;{ < 1. Using Equation (6.4), we obtain

2a
Wp) 5 (wg)
(45" 45™)

29 =2 -
<p<qg<m (wp) (wg)
= (dg +dg ) (6.7)

me
>2 Z M > 2 -y
H

2% §

1<p<g<m

Also

2a
wp) 3 (wg)
(25" 45"

29 =2 %
<p<a<m | 1 0¥p) (wq)
s (dg +dg” ) (6.8)

4o 1-28
<9 Z 6.7_( _ r2 '
- 2BVE  (m=1D¥

1<p<g<m

102



Hence using Theorem 6.18, Theorem 6.19 and Equations (6.7) and (6.8), we get

s(As, ,(H) = w1 —wy
V2r-m+1 29 +(m-1)(m—2)Q¥"!

= Fm-1p 2
V2r—-m+1 1\/2r(m—1)4“ )
- -~ — — /m—1
< Fm-1p 2 7% +(m—-1)(m-2)Q
_ N2r=m+1 N2r(m =1+ 2% (m— 1) (n = 2) Q2]
2 (m- 1) 2 i+p ‘
Also
$(Awp(H)) = wi—wp

R(H)  [2m-DT

mQﬁéﬁ( m

Ry, (H) _ 1 [2r (m—1)
m2/35§( 28 (m— 1) m .

Similarly, one can prove Parts (3) and (4).

The proof is complete. ]

6.4 Bounds on generalized ISI energy

In the current section, some bounds for the generalized ISI energy of graphs are given. We

would like to mention that the idea of proof of next theorem is taken from Theorem 13 [20].

Theorem 6.21. Let H = G(m,1,Vg,dg) be a connected graph having As, ,-eigenvalues wy >

s> wpand a,B e R

(1). Ifa,B = 0 then

2! Ry(H) (m = 1)

m < éaa”g(ﬂ) < T 2mr.
(2). If a,B <0 then

2B R (H) 1
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3). Ifa 2 0and B <0 then

21 R, — 1)2eB
T(% < & p(H) < % 2mr.
). If @ <0andp > 0 then
2P Ro(H) | —
— = (gaa < — V2mr.
m(@m-—1y — #(H) op
Proof. (1). With no loss of generality, suppose that wy, ..., w, are positive and w;1, . . ., Wy, are

negative. Using Theorem 6.18, we get

m t

Doyl =2 w,
q=1

q=1

éoa,ﬁ(q{)

2R(H) 2" Ry(H)

> 2w > > .
S Ve T mn— 1y

Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 6.13 and Equation (6.6), we

have
EupH) = D lwgl < \m D> @} = \2mT
g=1 g=1
2mr (m— D% (m— 1)% 5
< 7% = % mr.
(2). With no loss of generality, suppose that wy, ..., w, are positive and w1, ..., w, are nega-

tive. Since a, 8 < 0 therefore 6’;{ < 1. Now using Theorem 6.18 (2), we get

gzl,ﬁ(ﬂ) = i|wq| = 220)(1
gq=1 gq=1

2R(H) _ 2" Ra(H)

> 2 > >
@i mzﬁég’{ m

Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 6.13 and Equation (6.8), we

have

nglwa < mZm;wé = \2m9J
q= q=

2mr 1
N = \2mr.
m—1D%2%  Pm—-1p
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One can prove Parts (3) and (4) in a similar manner.

The result is proved. O

Theorem 6.22. Let H = G(m,r,Vg,0g) be a connected graph with As, ﬁ-eigenvalues w; >

c 2 Wy

(1). Ifa, B =0 then

1-p _ 2a ) _ o
2 \/;Sga,ﬁ(ﬂ)fu{m+\/Zr(m_l)_R”(ﬂ)(m 1)1-28-4 }
(m—1)8 B —

(2). If a, B <0 then

CRA(H) (m— 1)1+ ]

1
1-B(,.,  1\2 - _ _
2P (m=1)*" \r < & p(H) < 2ﬂ(m—1)ﬂ[ 2r—m+1+ \/Zr(m 1) 2 o

3). Ifa 2 0and B <0 then

_ 1)2a—p 2 _ +2B-4a
21 VF < 6 ) < L [m+ \/2r 1)~ RO D ]

28 m2 535

4. Ifa <0and B > 0 then

R,2(H) (m — 1) ] |

1
1-8 _ 2a—f3 _ _ _ _
2P (m = 1P Nr < & p(H) < Zﬁ[ 2r—m+1+ \/2r(m 1) - Vif

Proof. (1). By Part (1) of Lemma 6.13, we have f wfl = -2 ) w,w, Using Part (2) of
g=1

1<p<g<m
2
(21

q:
m
2
qu+2 Z lw, wgl
g=1

1<p<g<m

Lemma 6.13, we obtain

(Ga, p(H))?

iPVgs

\%

29421 ) wywl = 44.

1<p<g<m

Now

2a
(Wp) (Wq)

asle o
— H
45 =4 ) > 22ﬁvifz(m—1)2ﬁ'

28 —
1<p<q<m (d(]({wp) + d(]({wq)) 1<p<q<m
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218 fr
Hence &, s(H) > P

To prove inequality on the right side, we apply Cauchy-Schwartz inequality to obtain (3 |w,[)* <
q=2

(m-1) f wﬁ. Therefore using Part (2) of Lemma 6.13, (&, g(H) — w)?<@m-1) QT - w%).
q=2

Hence by Theorem 6.18 (1), we get

ga, B(H)

IA

o1+ \Jm = 1) 2T ~ )

m—-1)*V2r-m+1
- 28

R, (H) ]

+ \/(m -1 [F 2173 (m — 1)t — m? 228 (m — 1)%8

(m—1)
28

m2

2 _2B-4a
V2r—m+ 1+ \/2r(m—1)—R“ F)m ~ 797 }

(2). Using Equation (6.7), we get
AT =2029) 2 2% r(m-1*

Hence &, s(H) > 2" (m — 1)** /1.
Now using Theorem 6.18 (2) and Equation (6.8), we get

EupH) < w1+ \Jm=1) QT - )

VT 1
Fm—1p T\m D

r21-%  R,(H)
m—1% 22857

2 +
- ——i——¢VZT%?T+Vqu—n—R“ﬂmm_Dlml

— 2B
28 (m— 1) m? 6.,
This gives the required result.

Analogously, one can prove Parts (3) and (4). O

6.5 Nordhaus-Gaddum-type results for generalized ISI spec-
tral radius and energy

Suppose the As, ﬁ—eigenvalues of é arev, q=1,2,...,m.

We first present bounds on w; + v.

106



Theorem 6.23. Let H = G(m,r, Vg, dg) be a connected graph and a, 3 € R.

(1). IfB > 0 then B
R, (H) R, (H)

m—10¢ " (m—1-opp

1
w1 +v >
1 1 Y

(2). If B <0 then .
Ro(H) N R.(H)

6{3 (m—l—V(H)B

H

1
w) +vu >
m 2P

Proof. (1).Lety € R™ such that y = (y1,y»,...,ys)". Then

(04
(Wp) (Wq)
(7 457

)

H H

Z 6 5 YpYq
wywy € By (d,;;vp) + d(wq)) wpwg € Egr (dq(:’p) + d((ﬁwq))

wp) o\ wp) v\
3 (d‘H A ) . (dﬁ I )
YpYq YpYq-
B Z B
ot PV ¥V

Y | As, ,(H) + As, ,(H)|y

a,

\%

Since Viz = m — 1 — 64 and Vgy < m — 1 therefore taking y = (ﬁ, \/LE’ e, L\F)T and using

m

Lemma 6.14, we obtain

w; t+u =

L[ R(?) R, (H)
m2|(m—-1¥ (m-1-06x)P

Similarly Part (2) can be proved. O

Theorem 6.24. Let H = G(m,r,Vg,dg) be a connected graph and H, is a connected compo-

nent 0f7T( with vy = w;(H)).
(1). Leta, B>0.
(@. If Vg =m—10r Vg =m—1, then

1
w1+ v < 5 [m = D V2 = T+ (g = D e =gy + 1.

D). If Ve <m—2and Vg <m— 2, then

(m _ 2)2{1

w) +vu; <
1 1S o

| V2r—m+ 1+ 2 =2m = 2r + 1) + 6442 + Vg — m)|.
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2) Leta, p<0.

(@. fVyy=m—-TlorVg=m-—1, then

1| V2r—m+1  2eq, —ngy +1
w) +v; £ — + s
221 (m-1)yp (ngy, — 1)8

D). If Ve <m—2and Vg <m—2, then

w; +u < [‘/2r—m+1+ \/(m2—2m—2r+1)+6(H(2+V«H—m)l.

2P (m—2)8
3). Leta>0andB <0.

(@. fVyy=m—-1lorVg=m-—1, then

1
w;tv < ? [(m - 1)2a_ﬁ V2r—-m+ 1+ (n'Hl — 1)2a—ﬁ \/2@7{1 — Mgy, + ]] ,

D). If Vg <m—2and V7 <m— 2, then

(I’l’l _ 2)2(1—[5’

w; v <
1 1 %

| V2r—m+ 1+ Nen? = 2m = 2r + 1) + 62 + Vg — m)|.

4) Leta <0andp > 0.

(@. fVyy=m—-1lorVg=m-—1, then

1
w1+v1§§[\/2r—m+l+ \/Zeq{l—nﬂl+1],

D). If Ve <m—2and Vg < m— 2, then

1
a)1+vlsﬁ[\/2r—m+l+ \/(m2—2m—2r+1)+5(H(2+V(H—m)].

Proof. (1).

(a). Assume that Voy = m — 1. From Theorem 6.18, we have

< (m—-1V2r—-m+1
wy < )
‘ »

(6.9)
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Let H,,H,, ..., H,; be connected components of 7. With no loss of generality, assume that
wi(H) = wi(H>) = -+ = wi(H;). Also note that v; = w;(H;). Therefore using Theorem 6.18,

we get

Mgy, — 12 eqr — gy + 1
<(w. )7y 2eq — Mgy, . 6.10)

U = Zﬁ

The desired result is obtained by adding equations (6.9) and (6.10).

(b). If Voy <m —2 and Vz; < m — 2, then 67; > 1. From Theorem 6.18, we have

< (m-2V2r—-m+1

w1 = ZB

6.11)

Now using inequalities 677 = m — 1 — Vgy and Vo7 < m — 2, Theorem 6.17 and proof of Theorem

6.18, we get

-2 V2(3) - 2r = 85 m— D) + Gz~ D) Vg

U

B 266
H
_(m— 2)% > (6.12)
= %—(SEJ(m —2m—=2r+ 1)+ 640 2+ Vyr —m)
) 2a
< %\/(mz—Zm—2r+ D) + 05 2+ Vo —m).
By adding Equations (6.11) and (6.12), we get the result.
Now similarly using Theorem 6.17 and Theorem 6.18, one can prove Parts (2) ~ (4). O

We now give bounds on &, s(G(m, 1, Vg,85)) + &, p(G(m, 1, Vg, 5)).
Theorem 6.25. Let H = G(m,r,Vg,dg) be a connected graph and H, is a connected compo-
nent 0f7_‘[ with vy = w(H).
(D). Ifa, B =0 then

(@. IfVyy =m—10r Vg =m—1, then

— S D
&y g(H) + Ey y(H) < % U+ (g, = 12 \2ep, =g, + 1+ W],

D). IfVyy <m—2and Vg <m— 2, then

(m—2)> U,+(m—l—6rH)2"Vm2—m—2r
28 28 (m—1-Vy)

25

&y p(H) + &, s(H) <
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(). If a, B <0 then

(@). IfVyy=m—10r Vg =m-1, then

H 2eq — gy, + 1 R
éaa,ﬁ(ﬂ)'i'gmﬁ(?‘{) < ;Ul_i_i H, Ny, N W3 m |
B(m-1F"" 22|  (ngy =10 =1 =030 (m—1—Vprp

D). If Vg <m—2and V7 <m— 2, then

1 (m—1=V) Vm? —m - 2r
aﬁ(?{)'i'éaaﬁ(?{)—%( )ﬁU'i' QIB(m—l—(S(H)ﬁ W4.

3). Ifa 2 0and B <0 then

(@). IfVyy=m—10r Vg =m-—1, then

—  (m—1)F 1 o m? —m-—2r
S, p(H)+E4 p(H) < 2—U2+§ V2eq, — gy + 1(ngy, — 1)**7F + W52—ﬁ

D). If Vo <m—2and Vg < m—2, then

m—=22F  (m—1-061)*PNm? —m-2r

&y p(H) + &y g(H) <

4. Ifa <0and B > 0 then
(@). If Vyy =m—10rVoz =m— 1, then

05(7‘()+éaaﬂ((H)<iUg+%[\/26(Hl—nq{]+1+W7\/m2—m—2r],

D). If Vo <m—2and Vg < m— 2, then

—_ 1 — V 20— ﬁ 2 _ 2
Gy f(H) + &y p(H) < ﬁ Us + (m #) - Vm? —m = 2r e
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where

U,

Uy

Us

W,

W,

V2r—m+ 1+ \/Zr(m—l)

R (H) (m = 1)

m2

’

, V2r—-m+1+ \/Zr(m—l)—

V2r—-m+1+ \/2r(m—1)—

V2r—-m+ 1+

V2r—-m+ 1+

V2r—-m+1+

R, (H) (m 1)

m2 (m _ 2)4a+2ﬁ ?

R, (H) (m = )%

2 28
méﬂ

b

TR (H) (= 1) (m = 2)%

2r(im—-1)

2 2B
méﬂ

2

2§28
de

2r(m—1) -

R, (H) (m—=1)

2 _ 9Vda-28 528’
m? (m —2)%=28 5,

R, (H) (m=1)

2rim-1) —

2 —da+
V2r—m+1+ \/zr(m—l)—R" () m —

2 2B
mV(H

’

\/(m—l)[

(m—1—(5q{)4“(m2—m—2r)_(m—1—V71)4‘Y(m2—m—2r)2

(m —-1- V(H)Zﬁ

dm* (m— 1 — 64)*8 ]’

Ji+

1-m+6y 2+ Vg —m)

m?2 —m-—"2r

+ \/(m—l)

m—=1)m—1-Vg)* 2B (m2 —m—2r)
4m? (m — 1 — 64y )Pt

\/(m - 1) [(m — 1 = V)2 —

(m—1—=64)**28 (m? —m - 2r)

4m? ]’

Jie

I —-m+ 030y 2+ Vg —m)

m2—m—2r

+ \/(m— 1)

(m—1)(m—1—64)%*2 (m> —m—2r)
4m? (m — 1 — Vg )2h+aa ’

\/(m - 1) [(m — 1 = 6y —

(m—1-Vg)* 28 (m2 —m—2r)

4m? ]’

Jo

1—m+5ﬂ(2+V(H—m)

m2—m-—2r

+ \/(m— 1)

(m—=1)(m—1-=Vg)* 2 (m2-m-2r)
dm* (m — 1 — Sgy)*e=2

\/(m - 1) [(m — 1 = Vy)la=2$ —

(m—1—=384)%* 28 (m2 —m—2r)

4m? ]’

Ji+

1-m+06y 2+ Vg —m)

m2 —m—"2r

+ \/(m—l)
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Adm* (m — 1 — Vg )*e=28 '

b
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Proof. (1). Note that Voz = m — 1 — 64 and 67; = m — 1 — Vg Using Part (2) of Lemma 6.13

on H, we see that

2
( 40 cﬂvq)) “
H H

2 }
v (a7 4 a2
H H

29

5 (m _ ) (m—1—-064)%
2] ) 28 =1 = V)

(m—1—=38x)* (m> —m —2r)
226 (m—1—-Vqu)?#

Similar to the proof of Theorem 6.18, we get

(O (> =m=2r)  (m—1~Vy)** (m*> —m - 2r)
m2PH(Va)p m 2P (m— 1 = 5y)P

(6.13)

U]Z

Applying Cauchy-Schwartz inequality we obtain (Y} [v,[)* < (m — 1) 3 vf[. Therefore using
q=2 q=2
Part (2) of Lemma 6.13, (&, s(H) —v1)* < (m— 1) QF - v}).

(a). From Theorem 6.22, we see that

— 2a 2 — —2p-4a
waKMl 2r—m+1+ \/2r(m—1)—R" (Hem — } (6.14)

28 m?

If Voy = m — 1 or V37 = m — 1, then by using inequality (6.10), we obtain

EupHD) S w1+ \Jm=1) QT =)
< (TI(HI — 1)20 2€(Hl — Nyy, +1
< o
\/ [(m—l—dw)‘*“ M2 —m—2r)  (m—1— Vo) (m? —m — 2r)
+ =1 -

2%(m — 1 — V) m? 2742 (m — 1 — §4¢)%

1
= ﬁ [(n(Hl - 1)Za \/26«}(1 — Mgy, + 1+ W]] .

(6.15)

By adding Equations (6.14) and (6.15), we get the desired result.
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(D). From proof of Theorem 6.22 (1), we see that

_ 2a 2 _
& 5(H) < u[ r—m+1+ \/2r (m—1)- R F)m 1)}. (6.16)

26 m2 (m — 2)¥P+ia

If Voy <m —2 and V3 < m — 2, then using Lemma 6.17 and proof of Theorem 6.18, we get

Eup D) S 1+ \Jm=1) QT =)
L m=1-8™
T2 (m—1—Vy)
N N (m—=1=0¢)* (m>*=m=2r) (m—1=Vg)* (m>—m=2r)?
(m 2% (m—1-Vg)# m? 22572 (m — 1 — 64)%#
_(m—=1-=64)*"VNm?> —m —2r
B B(m—1-Vy)P

N2 =2m=2r + 1) + 6542 + Vg — m)

2

(6.17)

The desired result is obtained by adding Equations (6.16) and (6.17).

Similarly, one can prove Parts (2) ~ (4). O
Theorem 6.26. Let H = G(m,r,Vg,dg) be a connected graph and «, B are real numbers.

(1). Ifa, B> 0 then

28 \F A2 —m = 2r) (m— 1 — Vg%

Sa,p(H) + S, p(H) 2 (m— 1) + 22 (m—1-6u)P

(2). If o, B <0 then

V2 (m2 —m—=2r) (m—1— 84>

- 1-B8 _ 2a
o p(H) + & p(H) 2 2777 (m = 1)* Nr + 2 (m—1— V)

3). Ifa 2 0and B <0 then

V2 (m2 —m—2r) (m— 1 — V)2 P
26 '

&y p(H) + &y g(H) 2 2! fr +

4). Ifa <0and B = 0 then

D28 \r + \/2 m-m-2ry(m-1- 671,)20—5.

G g(H) + Ey g(H) 2 217 (m — o
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Proof. (1). From Theorem 6.22 (1), we see that
215 \fF

Eq.p5(H) > . 6.18

s(H) 1y (6.18)

By Part (1) of Lemma 6.13, we have Z v =-2 3 v,v, Using Part (2) of Lemma 6.13,
q=1 1<p<q<m

we obtain

(& p(H))?

(Sl
Zv +2 >0 W,y

1<p<g<m

29 +21 ). vyl =47

1<p<g<m

We know that Voz = m — 1 — 64 and 67; = m — 1 — V. Now

o)

2

46" 2B (P -m -2 — 1= Vg
49 =4 H Z 2,3( )2,3: (m~—m r)(mzﬁ H) .
1<p<q<m (d(Wp) + d(Wq)) 1<p<g<m 2 (Vq_() (m - 1 - 67_()
Hence
—  (m=1=Vg)? \2(m2—m-— 2r)

En g(H) = 6.19
A1) 26 (m—1—6x) (©.19)

The result is obtained by adding equations (6.18) and (6.19).
Now using Theorem 6.22, one can prove Parts (2) ~ (4) in a similar manner. O

6.6 Conclusion

We introduce generalized inverse sum indeg index and energy of graphs. Under certain con-
ditions, we discuss the monotonicity of generalized ISI index by adding edges to a graph. We
find extremal graphs with respect to generalized ISI index in class of trees, a class of connected
graphs with smallest degree 2 and a class of graphs with given independence number. Bounds
on spectral radius and spread of generalized ISI matrix are determined. We also find bounds on
generalized ISI energy and Nordhaus-Gaddum-type results for generalized inverse sum indeg

index spectral radius and energy.
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Chapter 7

Some open problems

In the current chapter, we discuss about some open problems related to energy of graphs and
digraphs. We also give few conjectures that are based on our numerical computation and proof

of which are so far not available.

7.1 Energy of digraphs

The iota energy of a digraph & (sidigraph S) is defined as the sum of absolute values of imag-
inary parts of its eigenvalues, represented by &.(2) (&.(S)). Recall that B,, represents the set
of all m-vertex bicyclic digraphs and D; [q, s] = C, U C,. Also recall that {g, r, f] represents
a ¥-sidigraph with parameters g, r and ¢ whose both cycles are positive and ©[g, s] represents
a O-sidigraph in which both cycles are positive. Khan et al. [23] determine the extremal iota
energy in the class of vertex-disjoint bicyclic digraphs. Since &.(D;,[2,2]) = 2cot 7 = 0, there-
fore, the digraph having minimal iota energy in 8,, is D; [2,2]. We mention here a related iota
energy problem.
Problem 1: Find the bicyclic digraphs with maximal iota energy in the class of all bicyclic
digraphs.

Based on our numerical computation we give following conjectures about Problem 1. The

results are obtained using MATLAB. The validity of these conjectures up to m = 20 was ver-
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ified by computing the values of iota energy for these bicyclic digraphs. Assuming that the
results also hold for m > 20, we arrived at these given conjectures. We give here some of the
computational results which prove the validity of the given conjectures. See Table 7.1 and Table

7.2.
Conjecture 7.1. If ¢ > s > 2 then &.(®lg, s]) < &.(D;,[q, s]).

Conjecture 7.2. Letg > r, (g, r) # (1,1)and g+r+1—1 < m. Then &.(9g, r, t]) < &.(9[3, 1, m—
3D.

Conjecture 7.3. Let m > 8. Then &,.(¢[3, 1,m — 3]) is greater than the maximal value of iota

energy of the vertex-disjoint bicyclic digraph for each m.

For study of maximal iota energy in class of vertex-disjoint bicyclic digraphs see [23].

By proving the Conjectures 7.1 ~ 7.3, one can obtain the the following result.

Conjecture 7.4. Let m > 8 and Z € B,,. Then &.(2) < &.(9[3,1,m — 3]).

Table 7.1: Values of Iota energy of bicyclic digraphs.

q s &e(Dylg; s1) &:(0lg, s]) q s ée(D;,1g, s1) &.(0lg; s])
2 6 3.4641 2.9104 2 8 4.8284 4.2118
3 5 4.8097 3.2254 3 7 6.1133 4.4503
4 4 4 2.3784 4 6 5.4641 3.4999
2 7 4.3813 3.6979 5 5 6.1554 3.5353
3 6 5.1962 3.5088 2 9 5.6713 4.9650
4 5 5.0777 2.8729 3 8 6.5605 4.8490
4 7 6.3813 4.1906
5 6 6.5418 3.4762

Now we give some more problems related to iota energy of digraphs (sidigraphs).
Problem 2: Find the bicyclic sidigraphs with extremal iota energy in class of all bicyclic sidi-

graphs.

116



Table 7.2: Values of Iota energy of bicyclic digraphs.

mo| g r t E(1g, r.1]) mo| g r t Ee(91g,r.1])
8 2 1 6 4.8056 9 2 1 7 5.5378
2 2 5 4.8373 2 2 6 5.2654
3 1 5 4.9414 3 1 6 5.8449
3 2 4 4.2326 3 2 5 4.8056
3 3 3 3.8883 3 3 4 4.8373
4 1 4 4.8646 4 1 5 5.5608
4 2 3 4.5503 4 2 4 4.9414
4 3 2 3.4762 4 3 3 4.2326
4 4 1 3.5353 4 4 2 3.8883
5 1 3 4.7635 5 1 4 5.7662
5 2 2 4.1906 5 2 3 4.8646
5 3 1 3.4999 5 3 2 4.5503
6 1 2 4.8490 5 4 1 3.4762
6 2 1 4.4503 6 1 3 5.4695
7 1 1 4.2118 6 2 2 4.7635
7 1 2 5.7035
7 2 1 4.8490
8 1 1 4.9650

Problem 3: Give the lower bounds for iota energy energy of sidigraphs and find extremal sid-
graphs satisfying these lower bounds.
Problem 4: Determine the extremal iota energy in the class of those digraphs which contain no
even cycles.

Khan et al. [47] find the digraphs having equal iota energy and these digraphs contains
cycles as their strong components. Therefore we suggest the following problem.

Problem 5: Find the equienergetic digraphs with respect to iota energy that are not regular.
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In Chapter 4, we determine the energy ordering of vertex-disjoint bicyclic sidigraphs and
Yang and Wang [75] determine the energy and iota energy ordering of vertex-disjoint bicyclic
digraphs. The following two problems are not solved yet.

Problem 6: Determine the energy ordering of all digraphs in 8, and all sidigraphs in 8 .
Problem 7: Determine the iota energy ordering of all digraphs in 8,, and all sidigraphs in 5;,.

Hafeez and Mehtab [39] find the extremal energy of those vertex-disjoint bicyclic weighted
digraphs whose weights of both cycles are between —1 and 1. One may consider the following
problem.

Problem 8: Compute the extremal energy of all those bicyclic weighted digraphs whose weights

of both cycles are between —1 and 1.

7.2 Degree-based topological index and energy of graphs

In this section, we give some open problems related to inverse sum indeg energy and generalized
inverse sum indeg index and energy of graphs.

We mention here a problem related to the ISI energy of trees.
Problem 9: In class of trees, find the graphs having minimal and maximal ISI energy.

Now we give the following conjecture about Problem 9 which is based on our numerical
testing. To prove the conjecture using the Coulson-type integral expressions was (so far) not

0‘0 /00/./00 /\.0

1 2

Figure 7.1: All trees of order 5.

Conjecture 7.5. In the class of m-vertex trees, S,, has the smallest ISI energy and #,, has the

largest ISI energy.
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Figure 7.2: All trees of order 6.

The validity of Conjecture 7.5 up to m = 10 was verified by computing the &is; values of all
trees with 10 vertices. Assuming that the conjecture holds also for m > 10, we arrived at a most
likely guess about the structure of the extremal trees with respect to ISI energy. We give here
some of the computational results about ISI energy which shows the validity of Conjecture 7.5

for all trees with m = 5 and m = 6. See Figure 7.1, 7.2 and Table 7.3.

Table 7.3: ISI energy values.

Tree 7 Eisi(T) Tree 7 é1s1(T)
1 4.4602 6 5.7546
2 34118 7 4.8948
3 3.2 8 5.1962
4 5.8703 9 3.7268
5 5.0698

One may also consider the following problems.
Problem 10: In class of chemical trees, unicyclic graphs and bicyclic graphs, find the graphs
having minimal and maximal ISI energy.
Problem 11: Find the extremal ISI energy in the class of graphs with fixed minimum or maxi-

mum degree or with fixed pendant vertices and fixed diameter.
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In Chapter 5, we determine some classes of graphs having same ISI energy. The following
problem can also be considered.
Problem 12: Find some more classes of graphs having same ISI energy.

We now give some problems related to generalized ISI index.
Problem 13: In the class of trees, compute the extremal value of generalized ISI index and
finds the corresponding graphs.

The following result about minimal value of generalized ISI index in class of trees as stated
in Problem 11 is based on our numerical testing. To prove the conjecture using the technique as

in Theorem 6.10 was not so far successful.

Conjecture 7.6. Suppose 7 is a tree with ny- = m. If « = S and @ > 1, then

g ﬁ(T)>(m—1)(m—1)"

m(l

where the inequality becomes equality if 7~ = S,,.

The validity of Conjecture 7.6 in the class of treesup tom = 10 and 1 < o < 10 was verified
by computing the values of generalized ISI index. Assuming that the conjecture holds also for
m > 10, we arrived at a most likely guess about the structure of the minimal tree with respect
to generalized ISI index. We give here some of the computational results about generalized ISI
index for all trees with m = 5 and m = 6 which shows the validity of Conjecture 7.6. We take

a € [1,4] with a difference of 0.5. See Figure 7.1, 7.2 and Table 7.4.

The following problems can also be considered.
Problem 14: Find the extremal value of generalized ISI index in class of chemical trees, uni-
cyclic graphs, bicyclic graphs or in the class of graphs with fixed pendant vertices, fixed diam-
eter and fixed independence number etc.
The total transformation graph denoted by 7(G) is a graph with vertex set Vg U Eg, such that
two vertices are adjacent in 7(G) if and only if they are either adjacent or incident in G.
Problem 15: Compute the extremal value of generalized ISI index of total transformation

graphs.
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Table 7.4: Values of generalized ISI index of trees.

Sa.5(T)
a=1 a=15 a=2 a=25 a=3 a=35 a=4
Tree 7

1 3.3333 3.0887 2.8889 2.7258 2.5926 2.4838 2.3951
2 3.3667 3.1579 3.0094 2.9146 2.8680 2.8656 2.9039
3 3.2000 2.8622 2.5600 2.2897 2.0480 1.8318 1.6384
4 4.3333 4.0887 3.8889 3.7258 3.5926 3.4838 3.3951
5 4.2833 4.0527 3.8914 3.7904 3.7425 3.7421 3.7851
6 4.4833 4.3672 4.3314 4.3678 4.4705 4.6351 4.8587
7 4.4000 4.2306 4.1422 4.1330 4.2027 4.3528 4.5868
8 4.5000 4.4352 4.5000 4.7042 5.0625 5.5949 6.3281
9 4.1667 3.8036 3.4722 3.1697 2.8935 2.6414 24113

We now give some problems related to generalized ISI energy.

Problem 16: Compute the graphs that are equienergetic with respect to generalized ISI energy.

Problem 17: Find the extremal value of generalized ISI energy in class of trees, chemical trees,

unicyclic graphs, bicyclic graphs or in the class of graphs with fixed pendant vertices, fixed

diameter and fixed independence number etc.
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