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CHAPTER 1 

 

INTRODUCTION 

 

1.1 MOTIVATION 

Designing control systems that are capable to deal with system uncertainties, environmental 

disturbances and perform optimally has gained great attention in past few decades. In order to 

deal with these design tasks numerous robust control theories have been proposed such as H∞ 

theory, H2 theory and ℓ1 theory etc. The design objectives of a controller for MIMO system 

are mostly conflicting and posing the objective in term of single norm is generally not 

enough. Therefore mixed norm formulation has great interest for control community. It is the 

motivation that let me to study multi-objective controller synthesis problem for MIMO 

system. 

 

1.2 CONTROLLER DESIGN GOALS 

A control system should be well-designed in order to get desirable performance. Furthermore 

a well-designed control system will be tolerant of uncertainty in the model or changes that 

occur in the system, this significant feature of a control system is called robustness [6]. Major 

tasks for controller are given below: 

 

1.2.1 PERFORMANCE SPECIFICATION 

Performance specifications of the system are measures which reflect how well closed loop 

system is performing.  Examples are given below: 

 

• Good  Regulation  

Disturbances are noises that affect some critical variables of system and there action on 

system may cause some undesirable performance. The capability of system to abate the 

effects of disturbances is known as regulation.    

 

• Desirable Response 

System variables should respond in desirable way to commands inputs. For example in pitch 

attitude control of an aircraft, the aircraft should attain the commanded pitch attitude 

smoothly, should not oscillate etc. 
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• Critical Signals remains in limit 

There are various signal in control loop that are critical, in particular the actuator signals are 

very important. It is necessary that these signals should be remain in limit and do not touch 

there saturation level. 

 

1.2.2 ROBUSTNESS SPECIFICATION  

Robustness specifications limit the variation in performance of the closed loop system that 

can be caused by variations in the system to be controlled or differences between the system 

to be controlled and its model [6]. A robust system should control the perturbations in system 

due to drift in system components, or in temperature coefficients etc. It is also possible that 

system is inaccurately modeled or intentionally ignored some frequency modes or 

nonlinearities. 

    

1.2.3 CONTROL LAW SPECIFICATION 

Along with other goals and design specification mentioned above, some time it is also case 

that, there are some constraints for control law. These control law specifications are often 

related to the realization of the controller [6]. For examples specification of controller can be 

order of controller, time invariant or time variant controller and linear on nonlinear controller 

etc [7]. 

 

The control literature is evident of the fact that controller deign goals are conflicting and it is 

merely impossible to achieve all specification by using single norm optimization problem. In 

order to achieve these multiple tasks, it is essential to make a multi-objective control problem 

which includes more than one norm optimization with some time domain constraints. 

 

1.3 SCOPE OF THE WORK 

The aim of this work is to study and understanding of multi-objective optimization problem. 

In this work the optimization problem includes H∞ and H2 of some closed-loop transfer 

function with Pole placement constraints. Multi-objective H∞/H2 state feedback control with 

constraints on pole placement is an approach to synthesize multi-objective controller for 

MIMO system. In this technique design task such as disturbance rejection, robust 

stabilization of systems can be expressed by H∞/H2 performance and by placing the closed-

loop poles in some region of left-Half plane one can achieve desired transient response. This 
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thesis covers synthesizing multi-objective controller for pitch attitude hold autopilot of an 

aircraft. MATLAB software is used for simulation and verification of performance.    

 

1.4 CHAPTERS ORGANIZATION  

This thesis is structured as follows: 

Chapter 2 briefly discusses the literature review of the work done in multi-objective 

controller design. 

Chapter 3 is titled as background material, as its name suggests, it contains related material 

which can be taken as the pre requisites for this thesis.   

Chapter 4 discusses the problem setup for multi-objective controller synthesis in detail.  

In chapter 5 the different terminologies and concepts related aircraft is briefly discussed. This 

chapter also includes the simulation results of Pitch attitude hold autopilot.  

Finally the chapter 6 concludes the thesis work and contains the future recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

In this chapter we will discuss the literature review of work done in related field. In fact many 

books and research papers were consulted, details are given in references, but here few 

research papers discuss briefly.  

 

2.2 BRIEF STUDY UNDERTAKEN 

Control systems design is accomplished in order to make the closed-loop system attains some 

performance indices. The final design is always a trade off among several conflicting control 

objectives, related with the system physical characteristics. The multi-objective control 

design can be viewed as the search for a suitable trade off among distinct objectives as, for 

instance, the control effort minimization versus the achievement of some strict performance 

specifications [4]. 

 

Another research paper “Mixed ℓ1/H∞ Control for MIMO systems via Convex Optimization” 

by M. Snzaier and J. Bu [3] discusses drawback of single norm control. “Clearly, a single 

norm is usually not enough to capture different, and often conflicting, design specifications, 

such as  simultaneous rejection of disturbances having different characteristics (white noise, 

bounded energy, persistent); good tracking of classes of inputs; satisfaction of bounds on 

peak values of some outputs; closed-loop bandwidth, etc” [3]. 

 

“Multi-objective control: An overview” a research paper by B. Vroeman and B.D. Jager [2] 

discusses the various approaches for multi-objective control problem. “Several important 

controller synthesis problems have been formulated as optimization problems. Notably, LQG 

or H2, H∞ and ℓ1 control theory have provided us with basic synthesis tools. The underlying 

premise behind these theories is that all the design objectives can be translated into 

minimizing a suitably weighted norm of a closed-loop transfer function matrix” [2]. This 

paper in detail converses the limitation of single norm optimization problem. “The LQG 

approach proved particularly suited to meet performance specifications while guaranteeing 

closed-loop stability in the presence of disturbances. Despite of this, LQG control was shown 

to possess no guaranteed robustness margins if applied in conjunction with an observer or 

Kalman filter” [2]. H∞ control is suitable to address the system robust stability in the presence 
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of system uncertainty but it does not directly deal with time domain specifications. This paper 

highlights many mixed norm optimization problem and there solutions such as ℓ1/H∞ and 

ℓ1/H2 using linear programming approach, ℓ1/H∞ using Youla parameterization and H2/H∞ 

using Matrix Inequalities (MI) and Algebraic Riccati Equation (ARE).  

 

In [1] it is described that, “H∞, design deals mostly with frequency-domain aspects and 

provides little control over the transient behavior and closed-loop pole location. In contrast, 

satisfactory time response and closed-loop damping can often be achieved by forcing the 

closed-loop poles into a suitable sub region of the left-half plane”. 

 

“General multiobjective control problems are difficult and remain mostly open to this date. 

By multiobjective control, we refer to synthesis problems with a mix of time- and frequency 

domain specifications ranging from H2 and H∞ performance to regional pole placement, 

asymptotic tracking or regulation, and settling time or saturation constraints” [5]. 

 

It is nice to include all three norms in optimization problem, but two norms (H2 and H∞) 

optimization problem is focused by most approaches. From the literature reviewed, it is clear 

that above mention norms is not giving guarantee regarding time domain response of closed-

loop system therefore it is important to include time domain constraints in optimization 

problem. 

 

2.3 SUMMARY  

In this chapter brief overview of the work done in the field of multi-objective control 

synthesis for MIMO systems was discussed. It can be concluded that single norm based 

controller schemes are not sufficient to cover all design requirements. Therefore a mixed 

norm design technique is required. It is also important for a multi-objective problem setup 

that it include some time domain constraints in order to get desired time domain response of 

closed loop system.     
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CHAPTER 3 

 

BACKGROUND MATERIAL 

 

3.1 INTRODUCTION 

This chapter covers the material required as a pre-requisite to understand the multi-objective 

control problem. First we briefly discuss about signals and system norm, some fundamental 

concepts of convex set and convex function. This chapter also includes general optimization 

problem, convex optimization problem, Linear Matrix Inequalities (LMI) and other related 

topics.  

    

3.2 NORM 

Norm is a function which provides a single number which reflects an overall size of vector or 

a matrix, or of a signal or a system [8]. The properties of norms are articulated in vector space 

framework.  

A norm of e (which may be a signal, system vector or matrix,) is a real number denoted  ∥ � ∥   

that satisfy following properties [8] 

 
• Non-negative   ∥ � ∥ ≥ 0   ∀ � ∈ �     

 
• Positive   ∥ � ∥ = 0 ⟺  � = 0 

 
• Homogeneity   ∥ �. � ∥ =  │�│ . ∥ � ∥   ∀ � ∈ �  

 
• Triangular Inequality  ∥ �� + �� ∥ ≤ ∥ �� ∥ + ∥ �� ∥   ∀ ��, �� ∈ � 

 
Where V is a vector space defined over complex field C. 

 

3.2.1 SCALAR SIGNALS NORMS 

This section discusses few common scalar signal norms. 

 

3.2.1.1 PEAK NORM 

If u is any signal then its peak L∞ norm is defined as its maximum or peak value. The peak 

norm of a signal is used to specify a firm limit on the absolute value of signal [6]. 

Mathematically 

( )
0

sup (3.1)
t

u u t
∞

≥

=  



7 

 

Figure 3.1 shows signal u and its peak norm ‖�‖�  

 
Figure 3.1: Signal u(t) and its peak norm ‖�‖� [6]   

 

3.2.1.2 ROOT MEAN SQUARE NORM 

Root mean square (RMS) of a signal is a measure that reflects its eventual average size; it is 

defined by [6] 

( )

1

2
2

0

1
lim (3.2)

T

rms T

u u t dt
T→∞

 
 
 

∫≜  

 
It is essential that the RMS norm is a steady state measure of a signal, any transient in signal 

doesn’t affect the RMS value of signal. In particular a signal with small RMS value can be 

very large for some initial time period [6]. Figure 3.2 shows signal u(t) and its rms norm 

‖�‖���  
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Figure 3.2: (a) A signal u and its RMS value ‖�‖��� (b) ‖�‖���

�  is the average area under u2 

 
 

3.2.1.3 AVERAGE ABSOLUTE NORM 

Average absolute norm is less affected by large value of signal it is given as 

( )
0

1
lim (3.3)

T

aa
T

u u t dt
T→∞
∫≜  

 
The average absolute norm  ‖�‖�� is useful in measuring average fuel or resource use when 

the fuel or resource consumption is proportional to |�	
�|. Figure 3.3 shows the signal u(t) 

and its average absolute norm ‖�‖��. 

 

 
Figure 3.3: (a) A signal u and its RMS value ‖�‖�� (b) ‖�‖�� is the average area under 

|�	
�| 
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3.2.1.4 L2 NORM : SQUARE ROOT TOTAL ENERGY 

This norm is the appropriate analog of the RMS norm for decaying signals i.e., signals with 

finite total energy as opposed to finite steady state power [6]. L2 norm is defined as  

( )( )
1

2 2

2 0

(3.4)u u t dt
∞

∫≜  

3.2.1.5 L1 NORM  

Just as L2 norm measures total energy in a signal, while the RMS norm measures its average 

power, the L1 norm of a signal can be thought as measure of total resource consumption, 

while the average absolute norm measures a steady state average resource consumption [6]. It 

is defined as 

( )
1 0

(3.5)u u t dt
∞

∫≜  

 
3.2.2 VECTOR SIGNALS NORMS 

Few important norms of vector signals are briefly explained in this section.  

 
3.2.2.1 PEAK NORM 

Maximum peak of any component of vector signal is known as the Peak or L∞ norm of vector 

signal. 

1 1
0

max supmax (3.6)
i i

i n i n
t

u u u
∞ ∞

≤ ≤ ≤ ≤
≥

=≜  

3.2.2.2 RMS NORM 

The RMS norm of vector signals is given as 

( ) ( )

1

2

0

1
lim (3.7)

T

T

rms T

u u t u t dt
T→∞

 
 
 

∫≜  

It is provided that the limit exists. 
 
3.2.2.3 AVERAGE ABSOLUTE NORM 

The average absolute norm of a vector signal is defined as 

( )

1

2

0
1

1
lim sup (3.8)

n
T

aa iT
i

u u t dt
T→∞

=

 
 
 

∑∫≜  

 
It is measure average total resource consumption of all the components of u [6].  
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3.2.2.4 L2 AND L1 NORM  

L2 and L1 norm of the vector signals is defined as  

( ) ( )

( ) ( )

1 1

2 222

2 20
1 1

1 10
1 1

(3.9)

(3.10)

n n
T

i i

i i

n b

i i

i i

u u t dt u t

u u t dt u t

= =

∞

= =

   
=   

   

=

∑ ∑∫

∑ ∑∫

≜

≜

 

 

3.2.3 SYSTEM NORMS 

System norms are measured in terms of its input and output signal norms. This section 

emphasize on general method of finding different system norms of a LTI system having input 

w, output z and transfer function matrix H, shown in fig. 3.4.    

 

Figure 3.4: A LTI system with output z and input w  

3.2.3.1 H2 NORM  

The H2 norm of an LTI system is defined as, “the square root of average power (RMS value 

or ‘Power norm’) of the response to a white input signal with unit spectral density” [2]. The 

H2 norm of a stable system is given as 

( )

1

22

2

1
(3.11)

2
H H j dω ω

π

∞

−∞

 
 
 

∫≜  

 

Lyapunov equations are used to compute the 2-norm [2]: 

 
2

2
[ ] [ ] (3.12)T T

H tr SC C tr PBB= =  

Where P is the observability gramian and S is the controllability gramian solving 

 

B B
T
 + S A

T
 + A S = 0 

 

A
T 

P + P A + C
T
 C = 0 

 
Another interpretation can be given to H2 norm, by the Parseval theorem  
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( )( )
1

2 2

2 20

(3.13)H h t dt h
∞

= =∫  

 
the L2 norm of the impulse response h of the LTI system. Thus H2 norm of LTI system can be 

interpreted as L2 norm of its response to the unit impulse input.    

 

3.2.3.2 ℓ1 NORM  

The ℓ1 norm of the LTI system is actually its peak gain. It can be defined as the induced norm 

from L∞ to L∞.   

1
0

sup (3.14)
w

Hw
H

w
∞

∞

≠

∞

≜  

The L1 norm of impulse response is equal to peak gain of a transfer function [6]. 

( )
1 10

(3.15)H h t dt h
∞

= =∫  

 
 
Stable transfer function has finite peak gain [6]. 

 

3.2.3.3 H∞ NORM  

The H∞ norm of the system is defined as the highest singular value of the system 

( )( )sup (3.16)H H j
ω

σ ω
∞

∈

=

ℝ

 

The H∞ norm of system can be interpreted as the RMS gain of the system or it can also define 

as induced norm from L2 to L2.  

2

2

0
2

sup (3.17)
w

Hw
H

w
∞

≠

≜  

For unstable system ‖�‖� =  ∞ 

 

3.3 CONVEX SET 

A convex set Co is defined as if the line section between any two points in Co lies in Co, i.e., 

if for any x1, x2 ∈ Co and any φ with 0 ≤ φ ≤ 1, we have  

 
φx1 + (1 − φ)x2 ∈ Co     (3.18) 
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Figure 3.5: Some convex and non-convex sets. Right Not Convex Middle Not Convex and 

Left Convex [9] 
 
Generally speaking, in a convex set every point in the set can be seen by every other point, 

along a clear direct path between them, where clear means within the set. Some 

straightforward convex and non convex sets in R
2 are illustrated in figure 3.6. In left the 

hexagon included the boundary is convex, kidney like shape in the middle is not a convex set 

because the line segment shown between two dots is not within the set and in right the 

rectangular shape is not convex because some of its boundary points do not lie in the set. 

 

3.4 CONE 

A set Co is a cone, if for every x ∈ Co and φ ≥ 0 we have φx ∈ Co. A set Co is a convex cone if 

it is convex and a cone, which means that for any x1, x2 ∈ Co and φ1, φ2 ≥ 0, along with 

φ1 x1 + φ2 x2 ∈ Co     (3.19) 

“Points of this form can be described geometrically as forming the two-dimensional pie slice 

with apex 0 and edges passing through x1 and x2” [9]. 

 

Figure 3.6: All points of the form φ1x1 + φ2x2 [9] 

 

3.5 GENERALIZED INEQUALITIES 

A cone X ∈ Rn is known a proper cone if it fulfills the conditions given below: 



 

• X is convex. 

• X is closed. 

• X is solid, i.e. its interior is 

• X is pointed, i.e. it includes no line 

 

Generalized inequality can be described using a

R
n
 that has number of the characteristics

 

Partial ordering on R
n
 given below 

 

We also write � ≽� � for  � ≼

 

and write x ≻X y for y ≺X x.  

 

3.6 CONVEX FUNCTION 

If domain of function f : R
n

 → 

≤ φ ≤ 1, then function is called convex function. 

 

f (φx + (1 − 

 

Looking the geometry of this inequality 

(y, f(y)), which is the chord from 

inequality gives strict convex 

Figure 3.7: Convex function plot. The chord 
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interior is nonempty. 

i.e. it includes no line  

Generalized inequality can be described using a proper cone X, which is a 

characteristics of normal ordering on R. 

given below related with the proper cone X   

� ≼� � ⟺ � � � ∈ 	 

 

≼� �. Similarly, we state an related strict partial

� ≺� � ⟺ � � � ∈ int 	 

 

→ R  is a convex set and if for all x,y ∈ domain of

1, then function is called convex function. Mathematically  

 φ)y) ≤ φf(x) + (1 − φ)f(y)   

this inequality it reflects that the line section between (

), which is the chord from x to y, lies above the graph of f shown in figure 3.7

convex when x ≠ y and 0 < θ < 1. 

Convex function plot. The chord between two points on the graph lies above the 

plot [9]. 

 

, which is a partial ordering on 

strict partial ordering by 

ain of f, and φ with 0 

  (3.20) 

between (x, f(x)) and 

shown in figure 3.7. Strict 

 

n the graph lies above the 
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3.6.1 EXAMPLES 

In this section few examples of convex functions are discussed for further detail refer [9]. It is 

mentioned earlier that affine and linear functions are convex function few other function are 

given below; 

• Exponential Functions. ebx on R is convex, for any b ∈ R 

• Powers of absolute value Functions. |x|
q, for q ≥ 1, on R is convex  

• Norms Functions. Every norm if defined on Rn is convex  

• Maximum Functions. f(x) = max{x1, . . . , xn} on Rn is convex  

 

3.7 OPTIMIZATION PROBLEM 

An optimization problem has the form 

 

minimize    f0(x) 

subject to   fi(x) ≤ bi, i = 1, . . . , m   (3.21) 

           hi(x) = 0, i = 1, . . . ,  p 

 

Here the vector x = (x1, . . . , xn) is the optimization variable of the problem, the function f0 : 

R
n
 → R is the objective function, the functions fi : Rn

 → R, i = 1, . . . , m, are the (inequality) 

constraint functions, and the constants b1, . . . , bm are the limits, or bounds, for the 

constraints. The equations hi(x) = 0 are called the equality constraints, and the functions hi : 

R
n
 → R are the equality constraint functions [9]. 

 

The optimization domain (�) is defined as the set of points for which objective and 

constraints functions are defined. A point � ϵ � which satisfies all constraints functions i.e. 

equality as well as inequality constraints functions, is called feasible point.  

 

The smallest objective value (x*) among all vectors that satisfy the constraints is called 

optimal value, if it has for any y with f1(y) ≤ b1, . . . ,  fm(y) ≤ bm, we have f0(y) ≥ f0(x*) [9].  

 

It can be said that x is locally optimal if there is R > 0 and x solve the following optimization 

problem with variable z 

minimize    f0(z) 

subject to   fi(z) ≤ bi, i = 1, . . . ,m   (3.22) 

           hi(z) = 0, i = 1, . . . , p 
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          ║z – x ║2 ≤ R 

 

this means x minimizes f0 over nearby points in the feasible set. Optimization problems are 

classified or categorized on the basis of characteristics of objective and constraints functions. 

 

3.7.1 LINEAR OPTIMIZATION PROBLEM 

When the objective and constraint functions are all affine, the problem is called a linear 

program (LP). A general linear program has the form 

 

minimize    ��� + � 
 
               subject to   �� ≼ ℎ    (3.23) 
             �� = 	 
 

Where G ∈ R
m×n and A ∈ R

p×n. Linear programs are, of course, convex optimization 

problems. It is common to omit the constant d in the objective function, since it does not 

affect the optimal (or feasible) set [9]. 

 

3.7.2 CONVEX OPTIMIZATION PROBLEM 

One form of convex optimization problem is given as 

 

( )

( )

0
minimize

subject to 0 1,2,............, (3.24)

1,2,............,

i

T

i i

f x

f x i m

a x b i p

=

= =

≺  

 

Where f0, . . . , fm are convex functions. Comparing convex optimization problem with the 

general standard form problem, the convex problem has three additional requirements: 

 

• the objective function must be convex 

• the inequality constraint functions must be convex 

• the equality constraints functions hi(x) = 
i

T

i
bxa = must be affine 

 

It is also important to note that the feasible set of convex optimization problem is convex set 

because it is the intersection of domain of constraints functions. A primary property of 

convex optimization problems is that any locally optimal point is also (globally) optimal. 
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3.7.3 QUADRATIC OPTIMIZATION PROBLEM 

The convex optimization problem is called a quadratic program (QP) if the cost function is 

(convex) quadratic, and the constraint functions are affine. A quadratic program can be 

expressed in the form 

 

1
minimize

2

subject to (3.25)

T T
x Px q x r

Gx h

Ax b

+ +

=

≺

 
 

Where P ∈ 
�
� , G ∈ R

m×n, and A ∈ R
p×n. In a quadratic program, we minimize a convex 

quadratic function over a polyhedron [9]. 

 

3.7.4 SECOND ORDER CONE PROGRAMMING 

Second order cone programming (SOCP) is closely related to quadratic programming: 

  

minimize

subject to 1,2,........., (3.26)

T

T

i i i

f x

A x b c x d i m

Fx g

+ ≤ + =

=

 

Where optimization variable is x ∈ R
n , Ai ∈ �����, and F ∈ Rp×n. We call a constraint of the 

form  

i

T

ii
dxcbxA +≤+  

Where A ∈ R
k×n, a second-order cone constraint, since it is similar to required the affine 

function (Ax + b, c
T
x + d) to include in the second-order cone in Rk+1 [9]. 

 

3.7.5 VECTOR OPTIMIZATION 

The general vector optimization problem can be denoted as 

  

( )

( )

( )

0
minimize (w.r.t )

subject to 0 1,2,............, (3.27)

0 1,2,............,

i

i

K f x

f x i m

h x i p

< =

= =  

 

Here x ∈ R
n is the optimization variable, K ⊆ R

q is a proper cone, f0 : R
n
 → R

q is the 

objective function, fi : Rn
 → R are the inequality constraint functions, and hi : Rn

 → R are the 

equality constraint functions. The only difference between this problem and the standard 
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optimization problem is that here, the objective function takes values in Rq, and the problem 

specification includes a proper cone K, which is used to compare objective values [9]. 

 

3.7.5.1 OPTIMAL POINTS AND VALUES  

Consider the set of objectives values of feasible points 

� = �����|∃ � � �, ����� ≤ 0, � = 1, … ,�, ℎ���� = 0, � = 1, … , �� ⊆ R�   (3.28) 

This is called the set of achievable objective values. If this set has a minimum element i.e., 

there is a feasible x such that f0(x) ≼	 f0(y) for all feasible y, then we say x is optimal for this 

problem, and refer to f0(x) as the optimal value of the problem. (When a vector optimization 

problem has an optimal value, it is unique.) If �∗ is an optimal point, then f0(�
∗), the objective 

at �∗, can be compared to the objective at every other feasible point, and is better than or 

equal to it. Roughly speaking, �∗ is unambiguously a best choice for x, among feasible points 

[9]. A point �∗ is optimal if and only if it is feasible and 

 

� ⊆  ����
∗� + � 

 

 
Figure 3.8: The set � of achievable values for a vector optimization with objective values in 
R

2, with cone K = ��

 , is shown shaded. f0(�

∗) is the optimal value of the problem, and �∗ is 
an optimal point [9]. 

 

3.7.5.2 PARETO OPTIMAL POINTS AND VALUES  

Now consider the case in which the set of achievable objective values does not have a 

minimum element, so the problem does not have an optimal point or optimal value. In these 

cases minimal elements of the set of achievable values play an important role. We say that a 

feasible point x is Pareto optimal (or efficient) if f0(x) is a minimal element of the set of 

achievable values �. In this case we say that f0(x) is a Pareto optimal value for the vector 
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optimization problem. Thus, a point x is Pareto optimal if it is feasible and, for any feasible y, 

f0(y)≼	 f0(x) implies f0(y) = f0(x). In other words: any feasible point y that is better than or 

equal to x (i.e., f0(y)≼	 f0(x)) has exactly the same objective value as x [9].  

 

A point x is Pareto optimal if and only if it is feasible and 

 

    ������ − �� ∩ � = {�����}    (3.29) 

 

A vector optimization problem can have many Pareto optimal values (and points). The set of 

Pareto optimal values, denoted P, satisfies 

 

    � ⊆ � ∩ �� �      (3.30) 

 

i.e., every Pareto optimal value is an achievable objective value that l within the boundary of 

the set of achievable objective values [9]. 

 
 

Figure 3.9: The set � of achievable values for a vector optimization with objective values in 
R

2, with cone K = ��

 , is shown shaded. Pareto optimal points, whose corresponding values 

are shown as the darkened curve on the lower left boundary of �. The point labeled f0(x
po

) is 
a Pareto optimal value, and xpo is a Pareto optimal point [9]. 

 

3.8   SCALARIZATION 

Scalarization is a standard technique for finding Pareto optimal (or optimal) points for a 

vector optimization problem, based on the characterization of minimum and minimal points 

via dual generalized inequalities. Choose any λ ≻	�  0, i.e., any vector that is positive in the 

dual generalized inequality. Now consider the scalar optimization problem  
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( )

( )

( )

0
minimize 

subject to 0 1,2,........, (3.31)

0 1,2,........,

T

i

i

f x

f x i m

h x i p

λ

< =

= =

 

 

and let x be an optimal point. Then x is Pareto optimal for the vector optimization problem. 

This follows from the dual inequality characterization of minimal points, and is also easily 

shown directly. If x were not Pareto optimal, then there is a y that is feasible, satisfies f0(y)≼	 

f0(x), and f0(x) ≠ f0(y). Since f0(x) − f0(y) ≽	 0 and is nonzero, we have λT
 (f0(x) − f0(y)) > 0, 

i.e., λT
f0(x) > λT

f0(y). This contradicts the assumption that x is optimal for the scalar problem 

[9]. Involve  

 

3.9   MULTICRITERION OPTIMIZATION 

A multicriterion or multi-objective optimization problem is a vector optimization problem 

involves the cone K = q
R
+

, it is called. The components of f0, say, F1, . . . , Fq, can be 

interpreted as q different scalar objectives, each of which we would like to minimize. We 

refer to Fi as the ith objective of the problem. A multicriterion optimization problem is convex 

if f1, . . . , fm are convex, h1, . .   , hp are affine, and the objectives F1, . . . , Fq are convex. 

In a multicriterion problem, an optimal point x* satisfies 

 

    ( ) ( )* 1,2,........, (3.32)
i i

F x F y i q≤ =  

for every feasible y. In other words x* is simultaneously optimal for each of the scalar 

problems 

    

( )

( )

( )

jminimize 1,2,............,

subject to 0 1,2,............., (3.33)

0 1,2,..............,

i

i

F x j q

f x i m

h x i p

=

< =

= =  
 
When there is an optimal point, we say that the objectives are noncompeting, since no 

compromises have to be made among the objectives; each objective is as small as it could be 

made, even if the others were ignored [9]. 

 

A Pareto optimal point xpo satisfies the following: if y is feasible and Fi(y) ≤ Fi(x
po

) for i =  , . 

. . , q, then Fi(x
po

) = Fi(y), i = 1, . . . , q. This can be restated as: a point is Pareto optimal if 

and only if it is feasible and there is no better feasible point. In searching for good points, 

then, we can clearly limit our search to Pareto optimal points. 
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3.9.1 SCALARIZING MULTICRITERION OPTIMIZATION 

Scalarizing a multicriterion problem by forming the weighted sum objective 

     ( )
1

( ) (3.34)
q

T

o i i

i

f x F xλ λ

=

=∑  

Where λ ≻ 0, we can interpret λi as the weight we attach to the ith objective. The weight λi 

can be thought of as quantifying our desire to make Fi small (or our objection to having Fi 

large). In particular, we should take λi large if we want Fi to be small; if we care much less 

about Fi, we can take λi small [9]. 

 

3.10  LINEAR MATRIX INEQUALITY (LMI) 

Constraints of the form given below is called a linear matrix inequality (LMI) 

 

( ) 0 1 1
0 (3.35)

n n
A x A x A x A= + + + <⋯⋯⋯⋯  

Where 

 
• x= (x1, ………, xn) is a vector of optimization variable 

• A0, ………, An are provided symmetric matrices  

• <0 represents for “negative definite”  [11]  

 

The LMIs are involved in analysis of dynamical system for 100 of years. In year 1890, 

Lyapunov presented his influential work introducing what we call Lyapunov theory. He 

proved that the differential equation 

( )
( ) (3.36)

dx t
Ax t

dt
=  

is stable iff we have a P matrix which is positive-definite 

0 (3.37)T
A P PA+ <  

The requirement P > 0, AT
P +PA < 0 is what we call a Lyapunov inequality on P, that is a 

particular form of an LMI. Lyapunov also showed that this first LMI could be unambiguously 

solved. Indeed, we can pick any Q = Q
T > 0 and then solve the linear equation AT

P+PA = -Q 

for the matrix P, if the system is stable it is guaranteed to be positive-definite [10].  

 

The LMI is a convex constraint on x, therefore the solution set, called as feasible set is a 

convex subset of RN. The solution of this LMI is actually a convex optimization problem. The 
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convexity of a LMI is very important characteristics because even though if it does not have 

analytical solution, it can be solved numerically.  

 

In the majority of applications in control, LMIs don’t naturally occur in canonical form but 

rather in the form given below  

  ����, … … … , ��� < �(��, … … … ,��)    (3.38) 

Where M(.) and L(.) are affine functions of variable ��, … … … ,��. Lyapunov inequality is 

most straightforward example 

0 (3.39)T
A X XA+ <  

Many problems in control and design specifications have LMI formulations [10]. This is 

especially true for Lyapunov-based analysis and design, but also for optimal LQG control, H∞ 

control, covariance control, etc. Further LMIs applications occur in estimation, identification, 

optimal design, structural design matrix scaling problems, and so on [11]. 

 

3.10.1 THREE GENERIC LMI PROBLEMS 

There are three basic problem of LMI which are briefly discussed below. 

 

• Feasibility Problem   

Finding an answer x to LMI system 

  

A(x) < 0                 (3.40) 

This is known as feasibility problem. 

 

• Linear objective minimization 

It is widely used optimization problem and its play very important role in LMI based design. 

Minimizing convex cost function under LMI constraints is also convex problem [11]. The 

linear objective minimization problem is denoted as 

    

minimize c
T
x 

subject to A(x) < 0    (3.41) 

 

• Generalized Eigenvalue minimization 
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It is in fact quasi-convex optimization problem but similar techniques can be used for solving 

this problem.  

minimize λ 

subject to A(x) <  λB(x)    (3.42) 

      B(x) > 0 

      C(x) < 0 

 

3.11  CHAPTER SUMMARY 

This chapter briefly discussed background material which is required to understand the 

concepts of multi-objective control. It described various system and signals norm with 

mathematical details. This chapter also covered material related to the convex optimization 

and linear matrix inequalities. 
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CHAPTER 4 

 

MULTIOBJECTIVE CONTROL SYTHESIS SETUP 

 

4.1 INTRODUCTION 

In a practical design problem, one is generally not just confronted with a single objective 

problem but one has to render a mixture of objectives fulfilled [7]. Mostly the design 

objectives considered in controller designing are conflicting and addressing all objectives 

with equal efficiency is quite impossible. Thus, there is an inevitable trade off between design 

objectives, for example, between the output performance objective and robust stability or 

between the control efforts and/or regulation and these considerations have led to the study of 

multi-objective optimization (MO) methods for control systems [7]. H2/H∞ with pole 

constraints optimization is very special case in multi-objective control which is discussed in 

this chapter. 

 

4.2 PLANT DESCRIPTION  

The general control configuration is shown in figure 4.1, where P is generalized plant and K 

is generalized controller.  The prime control objective is to minimize some norm (ℓ1, H2 or 

H∞) of transfer function from w to z. 

“Find a controller K, which is based on the information in v, generates a control signal u, 

which counteracts the influence of w on z, thereby minimizing the closed-loop norms from w 

to z and w to u [7].” 

  

 

Figure 4.1: General control configuration without model uncertainty 
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4.2.1 OBTAINING GENERALIZED PLANT 

In order to find the generalized plant P and controller K for any specific case, it is necessary 

to have block diagram representation and identify the signal w, u, v and z to drive P. One 

should note that it is an open loop system and remember to break all loops entering and 

exiting the controller K.  

Consider one degree of freedom feedback control configuration, conventional block diagram 

of system is shown in figure 4.2.  

 

Figure 4.2: One degree of freedom feedback control conventional configuration  

First step is to identify the signals of generalized control configuration. 
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3

2

1

 

With this choice of v, the controller only has information about the deviation r – ym. Also note 

that z = y – r which means that performance is specified in terms of the actual output y and 

not in terms of the measured output ym [8]. The block diagram in Figure 4.3 then yields 

 

)2.4(
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And the P which represents the transfer function from [w u]T to [z v]T will be 

 

K G 
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Figure 4.3: Generalized control configuration of figure 4.2 

 

4.2.2 PARTITIONING OF GENERALIZED PLANT P 

The partition of P can be made as 

)4.4(
2221

1211









=

PP

PP
P  

Such that its parts are compatible with the signals w, u, v and z in the generalized control 

configuration. 

)6.4(
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For one degree of freedom feedback control configuration the P11, P12, P21 and P22 would be 
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4.3 PROBLEM STATEMENT 

This thesis work emphasis on H∞/H2 design with pole placement constraints using state 

feedback. The control structure for this problem is shown in figure 4.4. 

 

Figure 4.4: State feedback control 

P(s) is known Linear Time Invariant (LTI) system and it is assumed that all its states x are 

measurable. Consider the linear time invariant (LTI) system expressed by  

1 2

11 12

2 2 21 22

(4.11)

x Ax B w B u

z C x D w D u

z C x D w D u

∞ ∞

= + +

= + +

= + +

ɺ

 

Let T2(s) and T∞(s) are the transfer functions (closed loop) from w to z2 and w to z∞ 

respectively. The aim is to find a feedback law u=Kx that  

• Retains the H∞ norm of T∞(s) below given value γ0 > 0 maintain  

• Retains the H2 norm of T2(s) below given value ν0 > 0 

• Minimization of H∞/H2 norms trade off  

2 2
( ) ( ) (4.12)a T s b T s
∞ ∞

+  

• Putting the poles of closed-loop system in a given region of the left-half plane. 

 

Where a and b are penalizing factors. There are various practical situations which can be 

encompassed by this theoretical formulation. For example a problem involving regulation 

having d disturbance, n  white noise and e  is the regulation error. By taking 
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2

(4.13)

(4.14)

(4.15)

d
w

n

z e

x
z

u

∞

 
=  
 

=

 
=  
 

  

Disturbance rejection feature and the LQG feature can be formulated using mixed H∞/H2. 

Placement of closed loop poles in stable left-half plane gives transient responses with well-

damping [11]. 

  

4.4 POLE PLACEMENT IN LMI REGION 

It is a fact that the location of poles has great impact on the transient response of a linear 

system [13], [1]. The basic condition for the system stability is that, the closed loop poles of 

the system must lie in the left half of s-plane. Consider a second order system whose poles 

are λ, given as; 

)16.4(
dn

jωζωλ ±−=  

It can be seen that second order system step response can be completely characterized in 

terms of natural frequency ωn = |λ|, the damping ratio ζ ,and the damped natural frequency 

ωd. By constraining λ to lie in the prescribed region, to obtain a suitable transient response 

specific limits can be put on these quantities [1]. The different regions in s-plane which have 

great interest are α-stability region Re(s) < -α, disks, vertical strips, conics sectors etc as well 

as any intersection of these regions. 

 

Another appealing region of control purpose is the set S(α, r, θ) of complex numbers x + jy 

such that  

)17.4(tan,,0 yxrjyxx −<<+<−< θα   

As shown in figure 4.5. 
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Figure 4.5: Region S(α, r, θ) [1] 

 
Minimum decay rate α, a maximum undamped natural frequency ωd = rsinθ and a minimum 

damping ratio ζ = cosθ is guaranteed if closed loop poles placed in this region. This definitely 

limits the maximum overshoot, the delay time, the frequency of oscillatory modes, the rise 

time, and the settling time [13].   

 

LMI region concept is very helpful to formulate the objectives of pole placement in LMI 

terms. Let � be a subregion in complex left-half plane [1]. The existence of a symmetric 

matrix α = [αkl] ∈ Rm x m
 and a matrix  β = [βkl] ∈ Rm x m ensures that � the subset of complex 

plane is LMI region  

 

( ) )18.4(}0:{ <∈= zfCzD  
with 

( ) (4.19)][
1,1 lkklklkl

T

D
zzzzzf

≤<
++=++= ββαββα  

The characteristic function  fD takes the value in space of m x m Hermitian matrices and that 

“< 0” represents negative definiteness [1]. An LMI region that can be characterize by a 

Linear Matrix Inequality in z and �̅, or evenly, a Linear Matrix Inequality in y = Im(z) and x = 

Re(z) which shows, Linear Matrix Inequality section are convex.  
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Few very important Linear Matrix Inequality section and characteristics functions are given 

below [11] 

 

• Disk Region 

Disk with centre (-q, 0) and radius r 

 
Figure 4.6: LMI Disk Region 

 

The characteristic function of LMI disk region 

  

( ) )20.4(
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=
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• Conic Region 

Conic region with centered at origin and internal angle is θ  

 
Figure 4.7: Conic LMI region 

 

The characteristic function of conic sector is  

 



30 

 

( )
( ) ( )

( ) ( )
)21.4(

2
sin

2
cos

2
cos

2
sin

















−−

−−+
=

zzzz

zzzz
zf

D θθ

θθ

 

Poles within this sector have damping ratio at least cos
�

�
 . 

 

• Vertical Strip Region 

The vertical strip region with h1 < x < h2 

 
Figure 4.8: Vertical Strip LMI region 

The characteristics function is  
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4.5 LMI FORMULATION 

Consider a LTI system P whose state space representation is below 

 

1 2

11 12

2 2 21 22

(4.23)

x Ax B w B u

z C x D w D u

z C x D w D u

∞ ∞

= + +

= + +

= + +

ɺ

 

 

If control law is defined as u=kx then the state space realization of the closed loop system 

will be  
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2 1

12 11

2 2 22

( )

( ) (4.24)

( )

x A B K x B w

z C D K x D w

z C D K x

∞ ∞

= + +

= + +

= +

ɺ

Now we take three design objectives separately, there LMI formulation is given below   

 

4.5.1 H∞ PERFORMANCE 

The closed-loop root mean square gain from w to z∞ does not surpass if and only if there 

exists a symmetric X∞ such that [5] 

 

( ) ( ) ( )

( )

2 2 1 1 12

1 11

2

1 12 11

0 (4.25)

0

T T

T T

A B K X X A B K B X C D K

B I D

C D K X D I

X

γ

∞ ∞ ∞

∞

∞

 + + + +
 

− < 
 + −
 

>

 

 

4.5.2 H2 PERFORMANCE 

If T2(s) is transfer function of closed loop from w to z2 then it H2   can be taken as 

 

( ) ( ) ( )( )
2

2 2 22 2 222
(4.26)

T
T s Trace C D K P C D K= + +

 

Solution of Lyapunov equation gives P   

( ) ( )1 2 1 2 1 1
0 (4.27)

T TA B K P P A B K B B+ + + + =  

Hence the H2 norm of closed loop T2(s) doesn’t surpass the ν if we have 2 symmetric 

matrices Q0 and X2  
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( )

( )
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1
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2

0

0

0 (4.28)

T

T

T

A B K X X A B K B

B I

Q C D K X

X C D K X

Trace Q ν

 + + +
< 

−  

 + 
> 

+  

<

 

4.5.3 POLE PLACEMENT 

The close loop poles lie in the LMI region  

 

{ } )29.4(0: <++∈= zMMzLCzD T  

Where 

 

 L = L
T
={αij}1<i,j<m    

M = M
T
={βij}1<i,j<m   

 

Existence of a symmetric matrix Xpol satisfying below equation is only condition  

  

( ) ( )2 2 1 ,
[ ] 0 (4.30)

0

T

ij pol ij pol ij pol ij pol i j m

pl

X A B K X X X A B K

X

α β β β
≤ ≤

+ + + + + <

>

 

Three sets of condition sum up to an non-convex optimization problem involving variables 

X2, K,Q0,, X∞, and Xpl [11]. In order to get LMI structure tractability, only one Lyapunov 

matrix is required  

 

2
(4.31)plX  = X  = X  = X

∞
 

 

which imposes all discussed objectives. By changing variable Y=KX, “this give the 

suboptimal LMI formulation multi-objective state feedback synthesis problem” [1], [11]. 
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Minimize αγ
2 

+ β Trace(Q0) over X, Y, Q0 and γ2  

 

subject to 
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0 (4.32)

0 (4.33)

0 (4.34)

(4.35)

(4.36)

T T T T T T

T T

T T T

T
T T T

ij ij pol ij
i j m

o

o

AX XA B Y Y B B XC Y D

B I D

C X D Y D I

Q C X D Y

XC Y D X

AX B Y X XA Y B

Trace Q

γ

α β β

ν

γ γ

≤ ≤

 + + + +
 

− < 
 + −
 

+ 
> + 

 + + + + <
  

<

<

 

If the optimal solution is denoted by (X*
, Q

*
, Y

*
, γ

*) the feedback gain would be specified as  

 

)37.4()( 1*** −

= XYK  

Guaranteed worst case performance by this gain  

( )

*

*

2 02

(4.38)

(4.39)

T

T Trace Q

γ
∞ ∞

≤

≤

  

 

4.6 CHAPTER SUMMARY 

This chapter discussed the setup for multi-objective control. It describes in detail about the 

generalized plant, H2 and H∞ performance calculation and there LMI formulation. It also 

includes the formulation of different LMI region in complex plane. This chapter helps to 

understand the problem statement and makes ready to use this control scheme for any real 

system.   
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CHAPTER 5 

 

MULTI-OBJECTIVE PITCH ATTIUDE HOLD AUTOPILOT   

 

5.1 INTRODUCTION 

In previous chapters we have studied the multi-objective problem setup. Now we are ready to 

implement this control scheme to a real system and analyze its results. In this chapter we will 

study the mathematical model of an aircraft. This chapter also includes the design H2/H∞ 

multi-objective state feedback controller with poles constraint for Pitch Attitude Hold 

Autopilot of an aircraft.  

 

5.2 AIRCRAFT SYSTEM MODEL 

Model building is a fundamental process [14]. The modeling of an aircraft is an iterative 

process. A mathematical model based on the laws of physics will suggest what experimental 

data should be taken, and the model may then undergo considerable refinement in order to fit 

the data [14]. This section briefly discusses the aircraft system modeling. 

 

5.2.1 REFERENCE AXES 

To discuss the aircraft system dynamics, it’s necessary to define a system of reference axes or 

coordinate system. There are three basic systems, each one consisting three mutually 

perpendicular axes.   

 

The body axes or inertial axes system is rigidly fixed in the airplane and is the system of 

mutually perpendicular axes passing through the aircraft’s center of gravity and whose x-axis 

is parallel to thrust axis, in the direction of the nose of airplane, y-axis is positive to right of x-

axis and z-axis is positive downward, perpendicular to the XY plane.  

 

The wind axes system differs from the body axes system in that the x-axis is parallel to the 

relative wind. The y-axis is positive to right and z-axis is positive downward, perpendicular to 

XY plane.   
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In Earth axes system x-axis is positive in the direction of north, y-axis is positive in the 

direction of east and z-axis is positive towards the center of Earth, perpendicular to the XY-

plane. 

 

5.2.2 FORCES AND MOMENTS 

Relative motions of aircraft with respect to the air which depend on orientation of aircraft 

with respect to air flow produce the aerodynamic moments and forces [14]. 

 

5.2.2.1 LIFT  

The component of the resultant aerodynamic forces on an aeroplane normal to the airplane’s 

velocity vector is called Lift [15]. Lift sustains the weight of the airplane and mostly directed 

upward. Wing is the major lift producing component of airplane. 

 

( )

)1.5(

2/
2

L

L

SCqL

SCVL

∞

∞

=

= ρ

 
Where 

 

L  = Lift (Force) 
q∞ = Dynamic pressure 
S = Wing Area 
CL = Dimensionless lift coefficient 

 

5.2.2.2 DRAG  

The component of the resultant aerodynamic forces on an airplane parallel to the airplane’s 

velocity vector is called Drag. It is a continuing struggle for the practicing aerodynamicist is 

that of minimizing drag [15]. 

 

)2.5(
d

SCqD
∞

=′  
Where 
 

D’ = Drag (Force) 
Cd = Dimensionless drag coefficient 
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5.2.2.3 MOMENTS 

Rotational forces produced by surface pressure and shear stress distribution is called 

Moment. It is given as   

)3.5(
m

SCCqM
∞

=′

Where 

 M’ = Moment (Force) 

 Cm = Dimensionless Moment Coefficient 

 C = Chord length    

 

5.2.2.4 THRUST 

The thrust is defined as the power available to propel the aircraft. It is given as 

)4.5(PP
A
η=

Where 

 P  = Shaft brake power 

 η  = Propeller efficiency η>1  

 PA = Thrust 

 

5.2.3 AIRCRAFT MOTION 

Aircraft performance is directed by the forces along and perpendicular to the flight path. The 

translational motion of the airplane is a reaction to these forces [17]. The aircraft motion has 

six degree of freedom. It has three degrees of freedom motion in translational motion along 

the body axes as shown in figure 5.1. 



 

Figure 5.1: Airplane translational degrees of freedom [21]

 

Aircraft motion has three degrees of freedom in rotation motion as shown in figure 5.2. These 

rotational angles are called pitch, yaw and roll. These are very important flight dynamics 

parameters. In flight dynamics

angles (relative to the North

equilibrium orientation of the aircraft.

 

• Pitch Angle  

Rotation around body y-axis, 

body x-axis and horizon.   

 

• Yaw Angle 

Rotation around body z-axis, positive when nose right. It can also define as the angle between 

body x-axis and north.  

 

• Roll Angle 

Rotation around body x-axis, positive when right wing is down. It can also define as the angle 

between body y-axis and horizon.  
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Figure 5.1: Airplane translational degrees of freedom [21]

Aircraft motion has three degrees of freedom in rotation motion as shown in figure 5.2. These 

rotational angles are called pitch, yaw and roll. These are very important flight dynamics 

dynamics, roll, pitch and yaw angles measure not only

lative to the North/Horizon) but also changes in attitude angles, relative to the 

equilibrium orientation of the aircraft. These angles can be defined as  

 positive when nose up. It can also define as the angle between 

axis, positive when nose right. It can also define as the angle between 

axis, positive when right wing is down. It can also define as the angle 

axis and horizon.   

 

Figure 5.1: Airplane translational degrees of freedom [21] 

Aircraft motion has three degrees of freedom in rotation motion as shown in figure 5.2. These 

rotational angles are called pitch, yaw and roll. These are very important flight dynamics 

and yaw angles measure not only absolute attitude 

changes in attitude angles, relative to the 

positive when nose up. It can also define as the angle between 

axis, positive when nose right. It can also define as the angle between 

axis, positive when right wing is down. It can also define as the angle 



 

Figure 5.2: 

 

5.2.3.1 LONGITUDINAL MOTION

The motion of aircraft around the lateral axis is called longitudinal motion. The primary 

control surface is elevator for longitudinal motion. Various formulation of Linearized 

equations of motion are in used [16]. The variables involved in longitudinal motion are 

shown in figure 5.3. 

Figure 5.3: Longitudinal Motion of Aircraft [21]   

u(t): Axial velocity, along the vehicle centerline

w(t): normal velocity, perpendicular to centerline 

V(t): Velocity magnitude, along net direction of flight
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Figure 5.2: Airplane rotational degrees of freedom [21]

LONGITUDINAL MOTION 

The motion of aircraft around the lateral axis is called longitudinal motion. The primary 

control surface is elevator for longitudinal motion. Various formulation of Linearized 

motion are in used [16]. The variables involved in longitudinal motion are 

Figure 5.3: Longitudinal Motion of Aircraft [21]    

Axial velocity, along the vehicle centerline 

: normal velocity, perpendicular to centerline  

: Velocity magnitude, along net direction of flight 

 

 

The motion of aircraft around the lateral axis is called longitudinal motion. The primary 

control surface is elevator for longitudinal motion. Various formulation of Linearized 

motion are in used [16]. The variables involved in longitudinal motion are 
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α(t): Angle of attack, angle between centerline and direction of flight 

γ(t): Flight path angle, angle between direction of flight and local horizon 

θ(t): Pitch Angle, angle between centerline and local horizon  

The dynamics of the transport aircraft model in a level flight cruise condition at 25,000 ft, 

500 ft/s true airspeed and xcg =0.25 c�, are given by [14]  
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(5.5) 

vT : Incremental velocity  

α : Angle of attack 

θ : Pitch angle or attitude 

q : Pitch rate 

h : Altitude   

We will use this aircraft model for designing a pitch attitude hold autopilot in this thesis 

work. 

 

5.3 AUTOPILOT 

An autopilot is an electrical, hydraulic, or mechanical system used to steer a vehicle without 

human aid. An autopilot can refer particularly to aircraft, missiles, self-steering gear for 

boats, or auto guidance of spacecraft. Autopilot designing has long history and has many 

milestones. In current age of technology a modern autopilot is a computer program or 

software. The computer software receives the aircraft data and controls the flight control 

system to guide an aircraft.     
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Most of the flying-qualities specifications do not apply directly to autopilot design [14]. In 

case of pilot relief modes, the autopilot must be designed to meet specification on steady state 

error and disturbance rejection, with less emphasis on dynamic response [14]. There are 

many types of autopilots used in different aircraft. Design of Pitch attitude hold autopilot is 

discussed in this thesis work. 

 

5.3.1 PITCH ATTITUDE HOLD AUTOPILOT 

The pitch attitude hold mode prevents pilots from constantly having to control the pitch 

attitude. Especially in turbulent air, this can get demanding for the pilot. This autopilot is 

normally used only when the aircraft is in wing level flight [14]. The controlled variable is θ 

= γ + α, pitch attitude hold tries to keep the current pitch attitude. This system uses the data 

from the vertical gyroscope as input (feedback), which produce the error signal proportional 

to the deviation from preset orientation in inertial frame of reference. It then controls the 

aircraft through the elevators.   

 

5.4 DESIGNING OF MULTI-OBJECTIVE PITCH ATTITUDE HOLD AUTOPILOT 

The aircraft model described in sec. 5.2.3.1 is used here for designing a multi-objective 

autopilot. Minimization of the affect of disturbance w on the pitch attitude θ  is a prime 

purpose of autopilot design. This goal is articulated through subsequent objectives: 

• Obtain a fine trade-off between H2 norm of transfer function from w to [�  �]�and H∞ 

norm of on transfer function from w to θ. 

  

• Obtain guaranteed minimum closed-loop damping and decay rate by placing poles of 

system in the section shown in Figure 5.4 
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Figure 5.4: Poles Placement region 

Where u is the control force and w is disturbance in control force.  LMI control toolbox is 

used to solve, thus the first step is to write down the problem in a proper setup as discussed in 

sec. 4.3. 
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The matrix A is given in Eq. 5.5 and remaining matrices can be found by comparing the Eq. 

5.1 with Eq. 4.11. 
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Optimization problem is solved by using LMI control toolbox (MATLAB code is given in 

Appendix A). The MATLAB function msfsyn() provides the facility of optimizing H2/H∞ 

performance with pole placement constraints. For further detail of msfsyn() refer [11]. 

 

5.5 SIMULATION RESULTS 

We consider four different cases in simulation which accommodates most of the possible 

combination of this multi-objective optimization problem. In all cases region for pole 

placement constraints is left-half plane x < -0.1 in order to have minimum decay rate of 0.1 

see sec. 4.4. The simulation results include the impulse response of close loop system from w 

to θ, close loop poles and controller output. Impulse response of any system is described by 

two characteristics one is peak response and other is settling time. In all these cases we will 

consider peak response and settling time as performance criteria.  

 

• Case 1: Only pole placement constraints  

In this case we don’t have any constraints on the system norms. Pole placement region is left-

half plane x < -0.1. 
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Figure 5.5: Pitch attitude response  

 

Figure 5.6: Controller output signal u 
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Figure 5.7: Closed loop Poles plot  

Results Pitch Attitude Controller Output 

Peak Response (rad) 0.0274 976 
Settling Time (sec) 1.69 0.63 

 

Table 5.1: Results summary of case 1 

 

• Case 2: H∞ Optimization with Pole Placement Constraints 

In this case we minimize the H∞ norm from w to θ without having any constraints on H2 norm 

and keeping the closed loop poles in region x < -0.1. In this case it is desired that disturbance 

influence on the pitch attitude should be minimum no matter what the controller output.    
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Figure 5.8: Pitch Attitude response 

 

Figure 5.9: Controller output signal u 
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Figure 5.10: Closed loop Poles plot  

Results Pitch Attitude Controller Output 

Peak Response (rad) 0.00828 3910 

Settling Time (sec) 0.338 0.261 

 

Table 5.2: Results summary of case 2 

 

• Case 3: H2 Optimization with Poles Placement constraints  

In this case we are minimizing the H2 norm, without having any constraints on H∞ norm and 

keeping the closed loop poles in region x < -0.1. By doing this, it is desired to reject the 

disturbance with minimum controller efforts. 
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Figure 5.11: Pitch Attitude response 

 

Figure 5.12: Controller output signal u 

Impulse Response

Time (sec)

A
m
p
lit
u
d
e

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

System: sys

Peak amplitude: 0.496

At time (sec): 0.948

System: sys

Settling Time (sec): 28.7

Impulse Response

Time (sec)

A
m
p
lit
u
d
e

0 5 10 15 20 25 30 35 40 45
-5

0

5

10

15

20

System: sys

Settling Time (sec): 28.3

System: sys

Peak amplitude: 19.7

At time (sec): 0



48 

 

 

Figure 5.13: Closed loop poles plot 

Results Pitch Attitude Controller Output 

Peak Response (rad) 0.496 19.7 
Settling Time (sec) 28.7 28.3 

 

Table 5.3: Results summary of case 3 

 

• Case 4: Mix norm Optimization 

This case involves optimization of both H∞ and H2 norm simultaneously with weighting 

factor of 1 and keep the closed loop poles in region x < -0.1. If T2 and T∞ are the closed-loop 

transfer function from w to z2 and w to z∞ respectively then the cost function will be 

2 2

2 2
(5.7)T Tα β

∞ ∞

+   

Where α and β are weighting are penalizing factors, which are equal to 1 in this simulation.     
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Figure 5.14: Pitch Attitude response 

 

Figure 5.15: Controller output signal u 

Impulse Response

Time (sec)

A
m
p
lit
u
d
e

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

System: sys

Peak amplitude: 0.489

At time (sec): 0.945

System: sys

Settling Time (sec): 28.2

Impulse Response

Time (sec)

A
m
p
lit
u
d
e

0 5 10 15 20 25 30 35 40
-5

0

5

10

15

20

25

System: sys

Peak amplitude: 20.8

At time (sec): 0

System: sys

Settling Time (sec): 19



50 

 

 

Figure 5.16: Closed loop poles plot 

Results Pitch Attitude Controller Output 

Peak Response (rad) 0.489 20.8 
Settling Time (sec) 28.3 19 

 

Table 5.4: Results summary of case 4 

 

 

 

 

 

 

 

-0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05
-10

-8

-6

-4

-2

0

2

4

6

8

10

Pole Plot



51 

 

 

 

Results comparison of all simulation cases is shown in table 5.1.  

 Pitch Attitude Controller Output  

Case 1 

Peak Response 

(rad) 
0.0274 976 

Settling Time 

(sec) 
1.69 0.63 

Case 2 

Peak Response 

(rad) 
0.00828 3910 

Settling Time 

(sec) 
0.338 0.261 

Case 3 

Peak Response 

(rad) 
0.496 19.7 

Settling Time 

(sec) 
28.7 28.3 

Case 4 

Peak Response 

(rad) 
0.489 

20.8 

 

Settling Time 

(sec) 
28.3 19 

 

Table 5.5: Results summary of all simulation cases 

From the above simulation cases we can conclude that, in H∞ minimization we have good 

disturbance rejection but on the cost of very large controller output. On the other hand with 

H2 minimization we have small controller signal but we don’t have good disturbance 

rejection. Therefore there is trade-off between H∞ and H2 performance. We simulate many 

cases in which we minimize the H∞ performance with having constraints on H2 performance. 

The trade-off curve between H∞ and H2 performances is shown in figure 5.16. It is clear from 

the curve that improvement in H2 performance cause degradation in H∞ performance. For a 

optimum performance we need to compromise in both performances.        
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Figure 5.17: Trade off curve between H∞ and H2 performance 

 

5.6 SIMULINK MODEL 

The simulation of pitch attitude autopilot is also done using MATLAB Simulink tool. The 

feedback gain matrix K is the input for this model which it takes from workspace after 

executing the MATLAB code (given in appendix A). Simulink model is shown in figures 

below. 

 
Figure 5.18: Simulink Model of Pitch Attitude Hold Autopilot 
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Figure 5.19: Simulink model of Closed-loop system
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Simulation results of Case 4 (mix norm optimization with Pole placement constraints) is 

shown in figures below, 

 

Figure 5.20: Results plot of Simulink Model 

5.7 SUMMARY 

In this chapter briefly discussed the various terminologies and concept related to the aircraft, 

such as forces and moments of an aircraft, aircraft motion, linear model for longitudinal 

motion etc. It also discussed the designing of pitch attitude hold autopilot. The simulation 

results of various cases are also presented in this chapter. Finally the autopilot is designed and 

analyzed by using MATLAB Simulink tool.       
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CHAPTER 6 

 

CONCLUSION AND FUTURE RECOMMENDATION    

 

6.1 CONCLUSION 

In this thesis work H∞/H2 multi-objective state feedback controller with Pole placement 

constraints for Pitch attitude hold of an aircraft is designed. Results are obtained by using 

MATLAB simulation. Various cases were simulated, including only pole placement 

constraints, H∞ optimization with pole placement constraints, H2 optimization with pole 

placements constraints and H2/H∞ mix norm optimization with pole placement constraints. 

Minimizing the H∞ norm of transfer function from w to θ, it is tried to diminish the affect of 

disturbance w on pitch attitude θ. By minimizing the H2 norm, it is attempted to minimize the 

controller efforts.        

From the simulation results it is very much clear that, In case of H∞ optimization with pole 

placement constraints the Pitch attitude hold autopilot rejects the disturbance very quickly but 

for achieving this quick transient behavior controller puts extremely high effort, in contrary 

H2 optimization with pole placement constraints rejects the disturbance very slowly but uses 

minimum controller efforts. Therefore there is trade-off between H2 and H∞ performance.  

  

6.2 FUTURE WORK 

Multi-objective controller synthesis is very vast field and it is still open for researchers and 

engineers. The prime objective of this thesis work was to study and understand multi-

objective optimization problem, which is done up to great extent. This thesis provides 

fundamentals of multi-objective optimization and also discussed case study problem. 

Therefore there are many directions in which one can continue his research, such as 

 

• Inclusion of ℓ1 norm in optimization problem with H2 and H∞ 

 

• In order to control the time domain response of the system, use directly Time Domain 

Constrains (TDC) instead of pole placement constrains. 

 

• Blending the modern control techniques such as Sliding Mode Control (SMC) or 

Fuzzy Logic Control (FLC) with these design techniques. 
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• Mixed objective problem is highly complex and nonlinear constraints optimization 

problem. Most of the solution techniques involve convex optimization. But it is 

extremely open research area to use evolutionary optimization techniques for finding 

the solution of nonlinear constraints problem.   
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Appendix A 

MATLAB Codes 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MATLAB Program  
% State Feedback Controller for Aircraft Pitch Attitude Hold 
% Auther: Muhammad Bilal  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
close all 
clear all 
clc 
echo off 
  
  
disp('                      Muhammad Bilal Nirban'); 
disp('                      *********************'); 
disp('  '); 
disp('  '); 
disp('          STATE-FEEDBACK CONTROL OF AIRCRAFT PITCH ATTITUDE HOLD'); 
 
  
echo on 
pause  % Strike any key to continue... 
clc 
  
a=[-0.0082354   18.938   -32.17   0        5.9022e-5 
   -0.00025617  -0.56761  0.0     1        2.633e-6 
   0.0           0.0      0.0     1        0 
   1.3114e-5    -1.4847   0.0    -0.47599  -1.4947e-7 
   0.0          -500      500     0.0      0.0] 
  
b=[0 0 0 1 0; 0 0 0 -0.01978 0]' 
  
c1 = [0 0 1 0 0] 
c2 = [0 0 1 0 0;0 0 0 0 0] 
c=[c1;c2]; 
d11= 0;d12=0; d21 =[0 0]';d22=[0 1]'; 
d=[d11 d12;d21 d22]; 
  
P = ltisys(a,b,c,d) 
  
region = lmireg 
  
[gopt hopt K Pcl] = msfsyn(P,[2 1],[0 0 0 0],region) 
  
figure 
splot(ssub(Pcl,1,1),'im');  
figure 
plot(spol(ssub(Pcl,1,1)),'*') 
hold on 
y=[-10:1:10]; plot(-0.1*ones(size(y)),y,'r'); 

title(‘Pole Plot’) 
figure 
splot(ssub(Pcl,1,3),'im' 
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