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Summary 
 
 

In case of wind turbine Induction generators which are directly connected to grid a 

control problem arises when the wind speed increases above the rated wind speed, some 

measure needs to be taken to limit the aerodynamic torque of the wind turbine in order to 

keep the output power at its rated value. For this purpose various controlling variables 

may be chosen, like generator speed and generator power and wind speed. One of the 

popular approach is to use PI controller because it is easy to implement and has been 

widely used in the industry. Problem with PI controller is that over the period of time 

with the variation in plant parameters, gains of the PI controller needs manual tuning. 

Here we have tried to implement self-learning neuro-fuzzy controller proposed by (W.W. 

Tan, 1999) to control the pitch angle of the wind turbine when the wind speed is above 

the rated speed. The self-learning neuro-fuzzy logic control strategy has the potential 

when the system contains strong non-linearity, such as wind turbulence is strong.  

The self-learning neuro-fuzzy model will try to develop the inverse plant model of the 

system and will use that to generate the required control action in order to keep the output 

at its rated value. In order to carry out this comparison we have used WTIG (wind turbine 

induction generator) from Simulink distributed resources.  The design of the self-learning 

neuro-fuzzy control and its comparison with the PI controller has been carried out in 

different wind profiles and overall results show that self-learning neuro-fuzzy controller 

can give better results in presence of strong wind disturbances.  
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CHAPTER-1  

INTRODUCTION 
 

1.1 Objective     
 

The wind turbine is an energy conversion device that takes energy from the wind and 

converts it into useful work (Muyeen, 2010). Almost all of the wind energy conversion 

systems are connected to the grid of electric power networks. Although the main 

objective of wind turbine operation is to optimize energy capture, other technical and 

environmental Objectives should also be satisfied such as mechanical loads, power 

quality standards, acoustic emission and obstruction. These objectives are actually a 

tradeoff among each other. Thus, the WECS (Wind energy conversion system) should 

find a well-balanced compromise among them. Due to the requirement in speed control, 

different wind velocities separate the operation into three operating regions as shown in 

Fig. 1-1, which represents a typical power curve of a wind turbine. The cut-in velocity 

(vcut-in) is defined as the wind speed at which the turbine starts to generate the power. 

Below this wind speed, it is not efficient to turn on the turbine. The rated velocity 

(vrated) is the wind speed at which the turbine reaches its rated turbine power. The cut-

out velocity (vcut−out) is the maximum wind speed at which the wind turbine can still 

operate. Beyond this wind speed, the rotor has to be locked to keep the blades, the 

electrical generator and other components from reaching damage (Muyeen, 2010). 

 

Region I covers a wind speed range between vcut−in and vrated and is referred as the 

below rated wind speed region. The control objective in region I is to extract the 

maximum power from the wind. Region II covers a wind speed range between vrated and 

vcut−out and is referred as the above-rated wind speed region. As the mechanical power 
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generated by the rotor is limited, the main task of a controller in this region is to keep 

output at its rated power. Our region of interest is region II.  

 

 

 

 

 

 

 
 

Figure 1-1 Regions Of Operation Of Wind Turbine (Muyeen, 2010). 
 
 
 
 

1.2 Research motivation  
 

About fifteen thousand billion kWh of electricity   are generated each year worldwide 

(Ari Reeves, 2003). Out of  this  about  sixty five  percent  is  produced  by  burning  

fossil  fuels  and  the  remainder  is  obtained  from  other  sources, including  nuclear, 

hydropower, geothermal, biomass, solar  and  wind  energy (Ari Reeves, 2003).
 

About  

0.3%  of  this  power  is  produced  by  converting the  kinetic  energy  in  the  wind  into  
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electrical  energy (Ari Reeves, 2003).
 

However,  the  use  of  wind  for  electricity  

generation  has  been  expanding  rapidly in  recent  years, due largely to technological  

improvements, industry  maturation  and  an  increasing  concern  with  the  emissions  

associated  with  burning  fossil  fuels. There is still more room to grow, as only a small 

portion of the useable wind resource is being tapped. Government and electrical industry 

regulations, as well as government  incentives, play  a  large  role  in determining  how  

quickly  wind  power  is  adopted (Ari Reeves, 2003). Effective  policies will help level 

the playing  field  and  ensure  that  wind  can  compete fairly  with  other  fuel  sources  

in  the  electricity  market. The wind energy market has flourished because of the 

environmental advantages of acquiring a clean and inexhaustible energy source and 

because of the economic benefits supplied by several governments (Abdulsada, 

2010).However; there are still many open challenges in expanding wind power. The 

standard controls as well as recently developed advanced controls for pitch control of 

wind turbine induction generator have been investigated. 

 

1.3 Benefits of wind power   

Wind  power  has  many benefits  that  make  it  an  attractive  source  of power for both 

utility-scale and small  distributed  power  generation applications. The beneficial 

characteristics of wind power include (Ari Reeves, 2003).  

 

•   Inexhaustible and Clean  fuel  

       Wind  power  has  no  emissions  and  is  not  depleted  over time. A single  

one  megawatt (1 MW) wind  turbine  operating  for  one  year  can  displace  

over 1,500 tons of carbon  dioxide, 6.5  tons  of  sulfur  dioxide, 3.2 tons  of  

nitrogen oxides, and 60 pounds of mercury (based  on  the  U.S.  average 

utility  generation  fuel  mix) (Ari Reeves, 2003). 
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•    Economic  development  

      Wind  plants    provide  a  steady  flow  of  income  to     owners  who  lease  

their  land  for  wind  development, while  increasing  property  tax  revenues  

for  local  communities (Ari Reeves, 2003).  

 

•    Modular  and  scalable  technology  

      Wind  applications  can  take many  forms, including  large  wind  farms, 

distributed  generation, and  single  end-use  systems. Utilities  can  use  wind  

resources strategically  to  help  reduce  load  forecasting  risks  and  stranded 

costs (Ari Reeves, 2003).  

 

• Price & Energy  stability  

By  further  diversifying  the  energy mix, wind  energy  reduces  dependence  

on   conventional  fuels  that  are  subject  to  price  and  supply  volatility (Ari 

Reeves, 2003).  

 

Reduced  dependence  on  imported  fuel  wind  energy  expenditures  are  not  used  to  

obtain  fuels  from  abroad, keeping  funds  closer  to  home, and  lessening  dependence  

on foreign  governments  that  supply  these  fuels. 

 

1.4 Emphasis on renewable energy resources in Pakistan and 

international   market  

 

Government of Pakistan is putting greater emphasis on Renewable Energy and has set a 

target of 10% renewable energy or 2700 MW in the Country's energy mix by 2015” 

(Power and Alternative Energy Asia). Pakistan, like other developing countries of the 

region, is facing a serious challenge of energy deficit. Renewable Energy resources can 

play an important role in bridging this deficit. More importantly, Renewable Energy can 

take electricity to remote rural areas, where power transmission becomes too expensive. 

The Government of Pakistan aims that all localities not planned to be connected with 
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national grid in next 20 years, be earmarked for Alternative Renewable Energy resources 

and the solar/wind energy related technologies be indigenized in next decade through 

international collaboration (Power and Alternative Energy Asia).  

 

As need for energy increase around the world, renewable energy sources that will not 

harm the environment are highly desirable. Some analysis indicate that the global energy 

demand will be almost threefold by 2050.Renewable energy resources currently supply 

about  15% and 20% of total world energy demand (Abdulsada, 2010). WECS is a 

rapidly-growing interdisciplinary field that encompasses many different branches of 

engineering and science. American Wind Energy Association states that the installed 

capacity of wind grew at an average rate of 29% per year (Abdulsada, 2010).In 2009, the 

installed capacity of wind energy was about 159MW. The prediction capacity for 2010 

was over 203 MW (Abdulsada, 2010). The wind energy market has flourished because of 

the environmental advantages of acquiring a clean and inexhaustible energy source and 

because of the economic benefits supplied by several governments (Abdulsada, 2010). 

Pakistan has a considerable potential of wind energy in the coastal belt of Sindh, 

Baluchistan  and  as  well  as  in  the  desert  areas  of  Punjab  and Sindh. This renewable 

source of energy has however, not so far been utilized significantly.  

 

The Wind Data of all Pakistan has been collected from Pakistan Metrological Department 

and analyzed by AEDB. As per the collected data, the coastal belt of Pakistan is blessed 

with a God gifted wind corridor that is 60 km wide (Gharo ~ Kati Bandar) and 180 km 

long up to Hyderabad (Khalil, 2004-05). This corridor has the exploitable potential of 

50,000 MW of electricity generation through wind energy (Khalil, 2004-05). In addition 

to that there have been some other wind sites have been exploited in coastal area of 

Balochistan and some Northern areas. Most of the remote villages in the south can be 

electrified through micro wind turbines. It is estimated that more than 5000 villages can 

be electrified through wind energy in Sindh, Balochistan and Northern areas. With the 

efforts of AEDB, aggressive lobbying for investment has been done with national and 

international investors to make them realize the potentials of renewable particularly the 

wind energy. Working papers with national and international companies have been 
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signed. Till date, 34 Location of interest have been issued for 1700 MW wind power 

generation projects (Khalil, 2004-05).  

 

About seven companies have already applied for the generation licenses of 50 MW each 

through wind energy (Khalil, 2004-05). Also, for the indigenous production of various 

components of wind turbines in Pakistan WTMC (Wind Turbine Manufacturing 

Consortium )  has been formed. The Board is negotiating with international companies to 

start micro wind turbine manufacturing and manufacturing of parts of large wind turbines 

in this consortium. So far, large wind turbines for power generation have not been 

installed in Pakistan. However, about 30 wind mills for pumping water have been 

installed for experimental purposes in different parts of Sindh and Balochistan (Khalil, 

2004-05). In addition to the development activities in wind energy field for on grid 

electricity production, the wind energy is also being used for the electrification of remote 

off grid villages in the southern coastal areas of  Pakistan. So far more than 18 villages 

have been electrified using micro wind turbines. Indigenous development of micro wind 

turbines has also commenced in Pakistan (Khalil, 2004-05). 

 

 

 
 

Figure 1-2    Wind stations in Balochistan 
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Figure 1-3    Wind Stations in Sindh 

 

 

 

 
Table 1-1 Wind Power Generation Plan in Pakistan 

 

 
YEAR GENERATION  PLAN COMMULATIVE OF WIND 

ENERGY IN PAKISTAN 

2011  200   900 MW  

2012  200  1100 MW  

2013  150  1250 MW  

2014  200  1450 MW  

2015  250  1700 MW  

2016  250  1950 MW  

2017  400  2350 MW  

2018  400  2750 MW  

2019  500  3250 MW  

2020  500  3850 MW  
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1.5 A note from wind turbine industry   

The pitch (Angle at which wind contacts the blade of the wind turbine) control of wind 

turbines is based today on PID controllers. Due to the non-linear behavior of the turbines, 

the design of these controllers is usually a very time-consuming affair. The use of fuzzy 

controllers in future promises a faster and more efficient procedure. Nils Johannes, who 

works in the Wind Turbine Application Software Department at the Beck off Wind 

Expertise Centre in Lübeck/Germany, presents an overview of fuzzy pitch control 

(BecKhoff, 2011).  

Modern wind turbines control the power extracted from the wind by changing the rotor 

blade angle (BecKhoff, 2011). The wind generates a lift force at the rotor blades which 

results in a rotary movement of the rotor. However, from a wind speed of approx 12 m/s , 

the power taken up as a result by the rotor would be larger than the rated output of the 

wind turbine and must therefore be limited. To this end the inflow angle of the wind is 

modified by adjusting the rotor blades, thereby reducing the rotor output. This method of 

regulating the speed via the blade angle is usually called pitch control. The associated 

control loop is highly non-linear, primarily as a result of the aerodynamic behavior of the 

rotor blades. In modern wind turbines, therefore, the PID controller employed is 

supplemented by filters and further additional functions such as gain scheduling 

(BecKhoff, 2011). 

In designing the mechanical construction of a wind turbine, the loads acting on the 

turbine are decisive. They form a spectrum of extreme loads and fatigue loads. The 

former can be reduced through intelligent operational management, the latter through 

careful parameterization of the speed controller (BecKhoff, 2011). 

The pre-configuration of the controller parameters takes place as part of the load 

calculation for a wind turbine (BecKhoff, 2011). A turbine computer model is subjected 

to standardized wind profiles in simulation runs. Competing optimization criteria have to 

be taken into account in the controller design. The optimization process can, therefore, be 

complex and protracted, since several iteration loops are required before the optimum can 
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be determined. The “optimum” determined in this way is still only a best possible 

compromise. In addition to this pre-configuration, it is usually necessary to optimize the 

parameters determined in the simulation during commissioning of the turbine. This 

process can also be rather complex, since the required wind speeds are not available 'on 

tap' and, moreover, only occur for a limited period of time, depending on the site 

(BecKhoff, 2011). 

Unlike the PID controllers that are predominantly used today, fuzzy controllers are  non-

linear state controllers with a reputation for great robustness. It is known from other 

applications with similar boundary conditions that the use of fuzzy controllers in highly 

non-linear systems leads to better control characteristics (BecKhoff, 2011). 

The difficult stability check and the lack of a systematic design procedure are often 

mentioned as disadvantages of fuzzy controllers. In order to check the stability, a model 

would be required, which could in turn be used for the adjustment of a PID controller. 

However, the fuzzy controller needs only an indistinct mathematical model and not a 

detailed one. In the case of wind turbines the model is always only a reproduction, since 

the real conditions of the wind, turbulence and aerodynamics can only ever be 

approximated. Changes in the air density, the rotor blades and the inertia in the drivetrain 

are already enough to cause great changes in the aerodynamic behavior of the rotor 

(BecKhoff, 2011). 

PID controllers are based on the model of the turbine, to which the parameters are 

oriented. If the model changes, the control quality is automatically reduced. Fuzzy 

controllers, conversely, are based on rules. Even if the model were to change strongly, the 

fundamental process would still be the same and the rules would still be fully valid. The 

control value is calculated on the basis of these rules, for which reason no exact 

information about the system needs to be available. The controller reflects the human 

behavior of the expert who designed these rules and enables an individual reaction to 

each state. As a result, fuzzy controllers are considerably more robust in relation to 

changes of the turbine, the set point or faults. In addition, parameterization is 
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considerably simplified, because cognitive, not mathematical knowledge is required 

(BecKhoff, 2011). 

1.6 An introduction to fuzzy logic 

 

Fuzzy Logic was initiated in 1965 (ZADEH, 1965), by Lotfi A.Zadeh, Professor for 

computer science at the University of California in Berkeley. Basically, Fuzzy Logic (FL) 

is a multivalued logic that allows intermediate values to be defined between conventional 

evaluations like true/false, yes/no, high/low, etc. Notions like rather tall or very fast can 

be formulated mathematically and processed by computers, in order to apply a more 

human-like way of thinking in the programming of computers (Hellmann). 

A block diagram of a fuzzy control system is shown in Figure 1-4. The fuzzy controller 

is composed of the following four elements 

 

1. A rule-base 

 A set of If Then rules, which contains a fuzzy logic quantification of the expert’s 

linguistic description of how to achieve good control (Kevin M. Passino, 1998). 

 

2. An inference mechanism 

 Also called an “inference engine” or “fuzzy inference” module, which emulates the 

expert’s decision making in interpreting and applying knowledge about how best to 

control the plant (Kevin M. Passino, 1998). 

 

3. A fuzzification interface 

 It converts controller inputs into information that the inference mechanism can easily 

use to activate and apply rules (Kevin M. Passino, 1998). 

 

4. A defuzzification interface 

 It converts the conclusions of the inference mechanism into actual inputs for the 

process. (Kevin M. Passino, 1998) 
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Figure 1-4    Fuzzy Logic controllers 

                                      

1.7 Types Of fuzzy controllers 

 

Fuzzy Models can be broadly classified into Linguistic fuzzy models, Rule Based fuzzy 

models and the Fuzzy Relational models (R.Babuska and H. B. Verbruggen).In our thesis  

we will be emphasizing on rule based controllers.  

1) Mamdani  Controllers  

In case of Mamdani models inputs are associated with the rule antecedents and 

the outputs with the rule consequents. Both the antecedent and the consequent are 

fuzzy propositions. The affine form of Mamdani Fuzzy model can be represented 

by 

                                               k                                             (1.1) 

 

Where      = [                  ]  is a vector whose elements are the antecedents 

variable  Ai  is a multi-dimensional fuzzy set, Bi is a one-dimensional fuzzy set, and Yi is 

the consequent variable of the i
th

  rule. 
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2) Takagi Sugeno Models (Takagi and Sugeno 1985) 

Takagi Sugeno Fuzzy model is a special case of a functional fuzzy system (Kevin M. 

Passino, 1998) . In this type of system the rule consequents are defined as functions. 

Therefore the rule consequent does not have associated membership functions and is a 

crisp value. The affine form of the T-S Fuzzy model consists of rules Ri with the 

following structure. 

                       
    

   
                                                  (1.2) 

where, X is a crisp input, Ai is a multidimensional fuzzy set, Yi  is the scalar output of the 

ith rule, ai  is a parameter vector, bi is a scalar constant and  k  is  the  number of rules in 

the rule base. The output of multi input single output (MISO) TS Model can be described 

by 

                                                   ( )  
∑   ( )  

 
   

∑   ( )
 
   

                                                   (1.3)                                              

 

Where bi is the weight vector, ai(x)    is the degree of membership of x in the multi-

dimensional fuzzy set Ai, Y(x) is the crisp output. 
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1.8 Thesis Outline  

 

This thesis report is divided into five distinct chapters. A brief description of each chapter 

is as follows. 

Chapter 1 – This chapter provides objective of our control scheme, overview and 

benefits of wind power and emphasis of renewable energy in Pakistan. 

Chapter 2 – This  chapter  describes  the  adaptive fuzzy  control  approach proposed by 

(W.W. Tan, 1999) which we have used  to  control  the  pitch  angle  of  the  wind  

turbine. 

Chapter 3 – This chapter describes the wind turbine plant from Simulink distributed 

resources which we will be using for testing our controller. 

Chapter 4 – This chapter describes the simulation results of the adaptive fuzzy control in 

comparison to PI controller. 

Chapter 5 – This chapter describes the conclusion and future additions which we plan to 

do on the basis of our current work.                              
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CHAPTER-2  

STRUCTURE OF SELF LEARNING 

NEURO-FUZZY CONTROLLER 
 

2.1  Inverse plant modeling 
 

The simplest way to control a process, when an inverse model is available, is to use this 

inverse model in an open loop configuration. Considering the model M mapping the 

control actions u to the systems outputs y, the control actions are simply given by u=M
-1

 

r, where r are the references to be followed.  

 

                           r                                         u                                              y 

 

 

 

                             

Figure 2-1 Mapping and perfect Inversion of the system.  

 

If an Ideal model of the process is available, i.e. the model is equal to the process and 

both model and controller (Inverse model) are input-output stable, the control is perfect, 

and input output stable (Economou, et al . 1986).This situation of perfect control is 

impossible to achieve because an exact inverse of the process can only be found in some 

special situation, and the model is never equal to the process. Resulting in model plant 

mismatches. Moreover, the variables of the process can be subjected to level and rate 

constraint, and disturbances acting on the process are present and not taking into account 

in the controller. Further when the system has a delay of d steps inverse must be done d 

steps ahead. All these problems must be overcome, in order to apply inverse model 

control in practice. Fuzzy modeling is often used to model complex and nonlinear control 

M
-1 

M 
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processes, giving good approximations of nonlinear systems. More over special type of 

fuzzy models can be analytically inverted and used for control processes. 

 

Two of the control processes for which the exact inversion of the process is possible are  

1. Singleton fuzzy models. This type of model belong to general class of function 

approximations (Friedman, 1991), which is at least as accurate as a linguistic 

fuzzy model.  

2. Takagi-Sugeno fuzzy models with affine input u(k) . 

Several methods can be applied to obtain the inverse model of a given process 

(Boullart,et al.1992;Hunt,et al . 1992),but the following two are the most utilized. 

1. Identification of the inverse model from input-output data.  

2. Inversion of the original model.  

The first method may seem an intuitive approach to inverse modeling, and it tries to fit 

the data in an inverse function. There are two methods used under this approach direct 

inverse learning and specialized inverse learning (Fischer and Isermann, 1996).  In case 

of direct inverse learning the process is excited with a training signal and the fuzzy 

system reconstructs the input signal of the process from the given output signal. Two 

major drawbacks were found in this approach.  First, the dynamics of the system can be a 

many-to-one mapping, and several values for u are possible for the same output of the 

process. If a least squares approach is used, the identification algorithm maps y to the 

mean value of all the u which can lead to meaningless inverse model .Secondly, it is 

difficult to obtain an appropriate training signal for direct inverse signal, because the 

inverse model is supposed to work over a wide range of input amplitudes on y and for a 

large bandwidth.  

 

Both the drawbacks of the direct inverse modeling can be overcome by using specialized 

inverse learning,  see e.g. Jordan and Rumlhart(1992).  The inverse model is cascaded 

with the process or with forward plant model. The parameters of the inverse model M
-1 

are adapted in order to minimize the deviation between the reference r and the output y. 

Thus, the adaptation is a goal oriented scheme. 
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Although specialized inverse learning overcomes the problems of excitation and possible 

non-inevitability, it is still difficult to use this inverse model in a control scheme due to 

model plant mismatches and the influence of disturbances. A scheme proposed by 

(Fischer and Isermann, 1996) can be implemented, but this scheme needs some parameter 

tuning and uses the linearization of inverse model at certain point. Therefore exact 

inversion of the nonlinear fuzzy model is not obtained.  

Another possibility is to invert a feed forward fuzzy model numerically when it is 

invertible, i.e. when a unique mapping from the output to the inputs of process is possible 

to obtain.  The inverted model can be obtained with desired accuracy, depending on the 

chosen number of discretized points. However, even for a small number of points, the 

computational costs are too high, and this solution cannot be considered as a feasible one. 

Therefore, the best solution seems to invert a fuzzy model exactly, by using some 

analytical technique. If this inversion is possible, the computational operations can be 

done by using standard matrix operations and linear interpolations, apart from 

computation of degree of fulfillment. Thus, the inversion is computationally very fast, 

making it suitable for applications in real-time control.  

2.2 Inversion of the singleton fuzzy model         
 

The inversion of the singleton fuzzy models was introduced by (Babuska, 1995). It is 

developed in (Babuska, 1997), a special structure of the singleton fuzzy model, which is 

presented in this section, is necessary to perform this inversion.  

Assume that a SISO singleton model of the process is available. Such a model can be 

constructed directly from process measurements. A general rule Ri   has the following 

form.  

                Ri :  ( )               (     )            

 ( )                    (     )               ̂(   )       

    Let a state vector x(k) containing the m-1 past inputs , the p-1 past outputs and 

the current output  i.e. all the antecedents variables  except u(k), be defined as.  

                   ( )    ( )  (     )  (   )     (     ) 
T                  (2.1) 



17 

 

The fuzzy sets of  x(k) are aggregated into multidimensional fuzzy set x, by 

applying the Cartesian product . 

                                                                                                                      (2.2) 

By introducing the formal substitution of B1 by U in order to simplify the notation,  

The fuzzy rule can be written as .  

If   ( )           ( )           ̂(   )      

Let  N denote the number of different fuzzy sets Xi  defined for the state x(k) and M the 

number of different fuzzy sets UJ defined for the input u(k). If the rule base consists of all 

possible combination of Xi  and UJ ( the rule base is complete).  The total number of rules 

is K=N.M. The entire rule base can be represented as a table.  

 

Table 2.1 Rule Base 

 

X(k) U(k) 

U1  U2  ……………..UM 

X1 C11  C12 ……………………..C1M 

X2 C21  C22………………………C2M 

XN CN1   CN2 …………………….. CNM 

 

 

The degree of fulfillment of the rule antecedent    (k)=   (x(k)).     (u(k)), 

Where μxi(x(k))  is the membership degree of an input u(k) in the fuzzy set UJ. The 

predicted output of the model is computed by fuzzy mean defuzzification. The rule based 

model shown in table 2.1 corresponds to a nonlinear regression model  

 

    ̂(   )   ( ( )  ( )).                                          (2.3) 
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shown schematically in Fig 2.2a. The model inputs are the current state x and the current 

input   ( )  and the output is the system predicted output at the next sampling instant  

  ̂(   ) 

 

 

f

u(k)

Ŷ(k+1)

x(k)

 

 
(a) Model of the system. 

 

  

f

r(k+1)

u(k)

x(k)

-1

 
 

(b) Derived controller. 

 
Figure 2-2 Fuzzy model and controller based on the model inverse 

 
Given the current system state x(k) and the  reference  at the next sampling time r(k+1) 

.The objective of the control algorithm is to find u(k)  such that the system output 

 (   ) Is as close as possible to the reference   (   ).This can be achieved by 

inverting the plant model  as indicated in Fig 2.2(b), substituting the reference  

substituting the reference  (   )  for   ̂(   )    in the static function . 
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                                                 ( )     ( ( )  (   ))                             (2.4) 
 

2.3 General structure of the control scheme. 

 
In this section we will describe the structure of the controller proposed by (W.W. Tan, 

1999).Broadly the controller is composed of the feed forward controller and Reference 

model as shown in Fig 2-3. As for as the structure of the controller is concerned  it 

contains the fuzzy system defined according to the structure of  the  neural  network, that  

merges the linguistic reasoning  framework  of  fuzzy  models with the learning ability of 

neural  network.  Feed forward controller basically approximates the inverse plant model 

and uses that to generate the appropriate control signal to minimize the error.  

  

For  instance  assume  that  each  input  universe  of   discourse  is  characterized  by  pj  

fuzzy  sets  ( triangular membership functions with a partition  of  unity  are used)  and  

the  fuzzy  system  contains  the  following  rules.   

 

RULE 1 : IF X1  IS    ,  X2   IS    ,   ,……….. And   Xn   IS     ,     then       is    W1  

 

RULE 2 : IF X1  IS    ,  X2   IS     ,……….. And   Xn   IS       ,   then         is     W2  

 

RULE i : IF X1  IS     ,  X2   IS       ,……….. And   Xn   IS       ,   then       is      Wi  

 

For P no of rules. 

 

RULE p : IF X1  IS     ,  X2   IS      ,……….. And   Xn   IS      
  then        is     Wp  

 
 

The output of neuro-fuzzy feed forward controller is given by 
 

                                                           (t) = ∑   ( ( ))  
 
    

 

                                                =   ( ) ̂ (t)                                                                   (2.5) 
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Where uf(t) is the feed forward control action at time t , 

 ( )     ( )   ( )     ( ) 
 is input vector at time  t                                     

    (   ( ) )         
( ( ))         

( ( ))            
( ( )) Is the product of 

membership grades in the fuzzy sets of the antecedents of the ith  rule     ( )  

              is the transformed input vector at time t,   ( )                Is 

the parameter vector at time  t.  

 

Reference

model

Proportional 

Controller
Plant

Fuzzy Identification 

Algorithm

Feed Forward 

Controller

Ub

Uf

U

e

w

-

+

+

+
r

Measurable Disturbances

Un measurable 

Disturbances

 

                           
                                Figure 2-3    General structure of the adaptive fuzzy control scheme. 

 

 

Following goals are to be achieved   

  

1) To identify  entries  in  the  parameter   vector   w(t)   so  that  the  neuro-

fuzzy  model  represents  the  mapping  between  the   input vector, 

containing the filtered  set point  and  measurable  disturbances, and  the  

control  signal  that  is required  to  drive  the  output  of  the  plant  to  the  

desired value.  
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2)When  properly  trained, the  feed forward  controller  should approximate  

the  inverse        plant  model. Since  an  exact  inverse  mapping is difficult, 

if not impossible, to obtain practically, the neuro-fuzzy  feed forward  

controller  will exhibit  finite  modeling  errors. A simple  feedback  strategy  

should  suffice  since  the  on-line training    algorithm  should  ensure  

accurate  set point  tracking. The total control action applied to the system at 

the sampling instant t is, therefore, defined by    

 

                                               ( )    (t)       ( )                                                                 (   ) 

  Another essential component of the self-learning controller is the reference model. It  is  

used  to  filter  the  desired  changes  in  the  plant  output, w, in order to provide a  set 

point  trajectory, r, which  can  be  followed by the plant, given the  physical  constraints  

and  the  plant  dynamics. 

2.4 Online learning mechanism  

(W.W. Tan, 1999)  proposed  that   Identification  of   neuro-fuzzy   model   can  be  done  

by feeding a recursive  identification  algorithm  with input  output  data. Here  the input  

to  the  neuro-fuzzy  model , x(t)  is  a  vector  containing  the  time history  of  the  set 

point  trajectory  and  the  measureable  disturbances , while  output  is  the  pitch  angle  

control  signal. Practically control signal is unknown initially. The  online  learning  

mechanism  must , therefore , estimate  the  desired  control  action  before  presenting  

the data  to  the  identification  algorithm  which  updates  the  parameters  of  the  neuro-

fuzzy model. First  the  strategy  for  computing  the required  control  signal  is  

described .  

Suppose the control action    ( )  is applied to the plant at time t, because of the inherent 

system delay, the plant will respond to the control action    sampling intervals later. 

Since a nonzero feedback error is caused by an incorrect feed forward control action, the 

system error reflects the control error at     . 

Hence a new estimate of the control action needed to derive the output along the 

reference trajectory,   ̃ ( ), may  be derived by adding a fraction of the feedback error to 

the control signal ,   (    )  i.e .  
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  ̃ ( )    (    )      ( )                                                     (2.7) 

 

Where     is the on-line learning rate. The strategy of using the feedback signal as a 

modeling error is known as the feedback error learning scheme (Kawato, 1998), 

(Tan, 1997) and is essentially an iterative search for the control action that will derive 

the output to the set point. 

Since  the  output  of  the  neuro-fuzzy  model  is  linear-in-the parameters, 

identification  techniques  which  minimize  the  sum  of error  squared  may  be  

used  to  update  the  parameter  vector.  

The approach which we are using was basically proposed by Tan  and Dexter  which  

utilizes  an  algorithm which  combines  aspects  of  a recursive fuzzy  identification  

scheme  with  the  well-known  Normalized Least-Mean-Square (NLMS) update rule. 

The NLMS algorithm is attractive because it is computationally undemanding. However, 

the NLMS learning  rule  uses  only  the  current  input  output  data  to  reduce  the 

instantaneous  modeling  error  and  it  may  corrupt  values  of  the  parameters  that  

have  previously  been  correctly  estimated, destroying  the  knowledge  stored  in  the  

neuro-fuzzy  model. A fuzzy least-mean-square (FLMS)  update  rule  has  been  

developed (Tan, 1997)that alleviates  this  learning  interference  problem  by  taking  

account  of the  strength  and  frequency  of  particular  combinations  of  the  input 

values  that  have  occurred  in  the  training  data. 

At  each  sampling  instant, the new  estimate  of  the  parameter  vector  is  given  by 

 

                  ̂ (t)=   ̂ (t-1) + δ 
 (   ) (    )

  (    ) (   ) (    )
ε(t)                                         (2.8) 

 

Where   ( )      *     …          },      ∏   ( )
 
    and   ( )     (   ) +   ( ). 

 

Measures  the  strength  and  frequency  at  which  the  ith  rule  is  fired by  data  that  

have  been  presented  to  the  algorithm  (Fi has an upper bound of 5000 and is initialized 

to unity)     is  a  user-selected  constant  that  determines the update rate                                

,   ( )    ̃( )    ̂ ( )     ̂ ( )      (    )  ̂(   ) is the feed forward  control  

action  estimated  from the  current  weight  vector.   
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2.5 Sequence of Task’s performed by the Controllers 
 

 

In summary, the  sequence  of  tasks  performed  by  the  self-learning  control  scheme  

at  the  sampling instant t  is   

 

(i) Estimate  the  desired  control  action   ̃ ( )  using  the  feedback  error  

learning  scheme  given by  Eq. (2.7).  

(ii) Update  the  parameters  of  the  feed-forward controller by presenting  the  

data  {x(t),  ̃ ( )}  to the FLMS update rule given by Eq. (2.8) .  

    (iii)    Calculate the feed forward control action,     (t) by substituting the input            

vector   and the modified parameter vector   ̂ (t) into Eq. (2.5).                

 

          (iv)      Determine the total control action applied to the plant using Eq. (2.6).   
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CHAPTER – 3 

SYSTEM MODEL AND 

EXPERIMENTAL SETUP  
    

3.1 Wind Distribution  
 

The most commonly used probability density function to describe the wind speed is the 

Weibull functions (PETERSSON, 2005). The Weibull distribution is described by the 

following probability density function.  

               

                                               ( )  
 

 
(   )     (   )                                               (3.1)                                                                                         

Where k is a shape parameter, c is a scale parameter and w is a wind speed. If the shape 

parameter equals 2, the Weibull distribution is known as the Rayleigh distribution. the 

wind speed probability density function of the Rayleigh distribution is shown in Fig 3-1 

 

 
 

Figure 3-1     Probability density of Rayleigh distribution 
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Nominal wind speed or rated wind speed refers to the wind speed at which the nominal 

power of the turbine is reached. When the wind speed becomes very high, the energy 

contained in the airflow and the structural loads on the turbine become too high and the 

turbine is taken out of operation. Depending  on whether the wind turbine is optimized 

for low or high wind speeds. In case of stall control Design the rotor blades in such a way 

that their efficiency inherently decreases when the wind speed increases to values above 

nominal. In case of Pitch control, the control objective is to reduce the aerodynamic 

efficiency of the rotor by turning the blades out of the wind using hydraulic mechanisms 

or electric motors. In our case the nominal wind speed is 8 m/s, at which the wind turbine 

generates 2 MW, in this scenario pitch angle is kept at zero. However when  the wind 

speed exceeds the nominal value, output power exceeds the reference value of 2 MW and 

fuzzy controller increases the pitch angle in order to decrease the    . The fact that    

decreases with the increase in pitch angle β is evident from Fig. 4-1 and Fig. 4-2. 

3.2. Wind Turbine Induction Generator (WTIG) 
 

Fig. 3-2 illustrates WTIG (wind turbine induction generator) . The stator winding is 

connected directly to the 60 HZ grid and the rotor is driven by a variable pitch wind 

turbine. The power captured by the wind turbine is converted into electrical power by the 

induction generator and is transmitted to the grid by the stator winding. The pitch angle is 

controlled in order to limit the generator output power to its nominal value for high wind 

speeds. The pitch angle controller regulates the wind turbine blade pitch angle β, 

according to the wind speed variations. Hence, the power output of  WTIG depends on 

the characteristics of the pitch controller in addition to the turbine and generator 

characteristics. This control guarantees that, irrespective of the voltage, the power output 

of the WTIG for any wind speed will be equal to the designed value for that speed. This 

designed power output of the WTIG with wind speed is provided by the manufacturer in 

the form of a power curve. Since the parameters of the turbine and generators varies for 

different wind turbines. For obtaining simulation results for different power settings, GUI 

provides user with the flexibility to enter different parameters of turbine and generator 
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like stator and rotor resistances, nominal output power, pith angle , base wind speed and 

PI controller gains as shown in  Fig.3-6 and 3-7. 

 

The pitch angle β is controlled in order to limit the generator output power at its nominal 

value for winds exceeding the nominal speed. β is controlled by a Fuzzy controller in 

order to limit the electric output power to the nominal mechanical power. When the 

measured electric output power is under its nominal value, β is kept constant at zero 

degree. When it increases above its nominal value the fuzzy controller increases β to 

bring back the measured power to its nominal value. The pitch angle control system is 

shown in Fig. 3-2.  

3-3 Simulink Wind Turbine Block  
 
The wind turbine model employed in the present study is based on the steady-state power 

characteristics of the turbine. The stiffness of the drive train is infinite and the friction 

factor and the inertia of the turbine are combined with those of the generator coupled to 

the turbine. The wind turbine mechanical power output is a function of rotor speed as 

well as the wind speed and is expressed as: 

 
 

                                                   (λ,β) 
  

 
   

                        (3.2) 

 

Pm      Mechanical output power of the turbine  

Cp    Performance Coefficient of the turbine  

ρ      Air density (kg/m3)  

A     Turbine swept area   

V      Wind speed in m/s .  
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Figure 3-2     Wind Turbine Induction generator 

 

 
Figure 3-3     Simulink Wind Turbine block 

 
 

The Simulink wind turbine block shown in Fig.3-3 requires pitch angle, wind speed and 

generator speed for the producing the mechanical power at its output as specified in 

Eq.(3.2).  All the values are in per unit system.   

 
 

 



28 

 

 
Figure 3-4     Internal Dynamics of  Simulink wind Turbine Block 

 

 

 

 

A generic equation is used to model Cp(λ,β). This equation, based on the modeling 

turbine characteristics is (Description of Wind turbine Induction generator from 

Simulink distributed resources) 

 
 

                              (   )    ( 
  

  
       ) 

  
λ   +    λ            (3.3) 

 

 

                           
 

  
 

 

         
 

     

    
                     (3.4) 
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3.4 Asynchronous Machine 

Model the dynamics of three-phase asynchronous machine, also known as induction 

machine.  Electrical power is produced when mechanical power output from the Simulink 

wind turbine block is applied at the three-phase asynchronous machine Tm  terminal.   

 
 

Figure 3-5     Asynchronous Machines 
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GUI  For  Generator  Data. 

 
 

 

 

 

 
 

Figure 3-6     GUI for generator data 
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GUI For Turbine Data 
 

 

 
 

 

 

 
 

 

 
 

Figure 3-7     GUI for turbine data 
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3.5 Model Description  
 

Fig.3-8 shows 3MW 575 V 60 Hz wind turbine is connected to a step up 

transformer(575V/25KV) which is connected to a  25 km  transmission  line  which  is  

then  connected  to  a  distribution  system which  exports 120KV. 

 

 
Figure 3-8      Experimental Setup in Simulink 

 

 

 
 

Fig.3-9  shows  that  the wind turbine induction generator is composed of the wind 

turbine, output  Mechanical  power  from  wind  turbine  is  fed  into  induction  

generator, which in turn give us 3-Phase  electrical  power.  This 3-phase electrical Power 

has been normalized.Fig.3-9 also shows a self-learning neuro fuzzy pitch angle 
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controller. The inputs to self-learning neuro fuzzy controller are normalized feedback 

signal, the reference signal and the error signal.    

 
 

 
 

 

 
Figure 3-9      Subsystem of  wind turbine in Simulink 

 

 

 
 

Basically  wind  Turbine  Generator  Block  is  Composed  of  several  subsystems. One  

Of  the  subsystem  is  a block  which  simulates  the  dynamics  of  the  wind  turbine. 

Output  mechanical  power  from  the  shaft  of  the  wind  turbine  is  transferred  to  the   
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generator   through  drive  trains. Three  phase  electrical  power  generated  from  the  

generator  is  fed  to  the output, also it  has  been  normalized  so that it can be fed  into 

the  neuro fuzzy  controller  for  the  purpose  of  pitch  angle  controlling. Inputs to the 

neuro-fuzzy   controller  are  normalized output power, reference output power. Based  on  

these  inputs   neuro-fuzzy   controller   controls   the  parameter  β which  is  the  pitch  

angle  of  the  wind  turbine   in order  to  keep  the  output  power   at  its  rated  value. 

3.6     How Self Learning Neuro Fuzzy Controller Works 
 

As discussed before in section 2.5, the sequence of task’s performed by the controller are 

achieved by using Simulink user defined functions  in the following manner. 

 

i. Desired control action   ̃ ( )  is acquired through feedback error learning scheme 

as specified by Eq. (2.7). 

ii. Updating  the  parameters  of  the  feed-forward controller by presenting  the  data  

{x(t),  ̃ ( )}  to the FLMS update rule given by Eq. (2.8) . Where  x(t) is 

composed of normalized reference signal and normalized output power. 

iii. Calculate the feed forward control action,     (t) by substituting the input            

vector   and the modified parameter vector   ̂ (t) into Eq. (2.5). 

iv. Determine the total control action applied to the plant using Eq. (2.6). 
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CHAPTER- 4     

SIMULATION  RESULTS  

 

In order  to  compare the performance of the Fuzzy and PI controller we applied an 

identical wind signal on both fuzzy and PI based wind turbines as shown in Fig 3-8. 

 

Case 1 :  In in Fig-4-3 we can see that at the time when 0<=time <=50 sec  magnitude of 

wind speed is 10 m/s, initially Power has exceeded to 3.7 MW it is also evident from the 

power   characteristics(at pitch angle 0
0
  Fig.4-1)  that at a wind speed of 9.6 m/s the 

value of generated power is above the rated value of the wind turbine as well as it is 

above the reference value of 2 MW or 0.63 pu. Now in order to bring it back to the 

reference value the pitch angle of 10
0
 is required as is evident from the power 

characteristics of wind turbine Fig.4.2 Pitch angle is 10
0
. At this pitch angle of 10

0 
we can 

see that if the wind speed is approx. 9.6 m/s than output power will be 0.6 pu or 2 MW. 

Than at Time=50 Sec there is wind gust and wind speed has suddenly jumped to  12 m/s 

again power has exceeded the reference value so both the controllers has jumped to 15 

Deg. At time=70 secs we can see there is wind gust at time=70 sec and at time=80 sec 

wind is again back to normal. During this wind gust we can see that fuzzy has performed 

well both in terms of bringing output power back to reference in less time as compared to 

PI and also there are fewer ripples in  case of fuzzy controller. 

 

 

Case 2 :  In Fig-4-4 we can see that at time   0 <=  time <= 30     wind speed is blowing 

at rated wind speed of 8 m/s at this speed we are getting rated output power of 2 MW. At 

time t=30 a wind gust hits the wind turbine and we can observe from Fig-4-4 that output 

power has suddenly exceeded the rated output power. During this phase we observed that 

fuzzy controller has managed to increase the pitch timely and has successfully brought 

the output power to its reference value in next 10 sec. However during this phase we 
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observed that PI controller has not been able to control the pitch angle and the system has 

got destabilized.    

 

4.1 Power Characteristics of  wind turbine at pitch angle β =0
o  

 

 
Figure 4-1      Turbine Power characteristics 

 

 

4.2 Power Characteristics of wind Turbine at pitch angle β =10
o 

 

 
 

Figure 4-2      Turbine Power characteristics at 10
o
 Pitch angle. 
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4.3  Results  for  Case-1 

 

 
 

 
                   Figure 4-3  Results and comparison of fuzzy and PI controller for case 1 
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4.4 Results for Case- 2 
 

 
 

                   Figure 4-4       Results and comparison of fuzzy and PI controller for case 2 
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CHAPTER 5  

FUTURE WORK & CONCLUSION 
 

 

 

The on-line learning mechanism is able to train the neuro fuzzy controller to provide 

good quality control using a set of parameters. Moreover, unlike the algorithms for 

automatically tuning a PI controller, learning and output regulation can be achieved 

simultaneously. From the simulation results presented in this thesis, we observed that in 

areas where abrupt increase occurred in the wind speed, as compared to PI controller, 

fuzzy controller efficiently controlled the pitch angle in order to minimize the error. 

   

In this thesis we have focused on the pitch angle control of wind turbine induction 

generator which is directly connected to the grid using fuzzy logic. In future we would 

like to extend this approach to Doubly fed Induction generator wind turbines. Also we 

will try to implement the self learning fuzzy controller on embedded system and will try 

to control a real wind turbine.    
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Glossary 

 
Abbreviations 

 

WTIG     Wind Turbine Induction Generator.   

WECS    Wind  Energy Conversion  System. 

NLMS     Normalized Least Mean Square. 

FLMS     Fuzzy Least Mean Square.   
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