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ABSTRACT 

The low bandwidth cellular link from the cellular handset to the cell base station 

when used for VoIP suffers from a problem. There is a disproportionately high 

header overhead as IP telephony speech data will be transferred encapsulated in 

RTP/UDP/IP. A voice packet along with link framing layer will be appended with 

IPv4 header (20 bytes), a UDP header (8 bytes) and an RTP header (12 bytes) 

which makes a total header of 40 bytes. If IPv6 header is used instead of IPv4 

then IP header would be of 40 bytes making a total of 60 bytes of header. 

Payload size depends on frame sizes and speech coding being used and it can 

be as low as 15-20 bytes for certain audio codecs. Hence for VoIP header, 

overhead can be as high as 60% to 80%. To alleviate this problem the IETF has 

standardized header compression techniques under the umbrella of Robust 

Header Compression (ROHC).  

This project involves the integration of Robust Header Compression with Linux 

Kernel using Netlink Socket which is the interface between ROHC user space 

library and kernel module. The netfilter module passes all specified incoming 

packets to ROHC library for decompression and all specified outgoing packets 

for compression.  Robust Header Compression Library is built to compress the 

headers of internet packets using official Internet standards specified in various 

relevant RFCs. We have created a ROHC daemon which runs an infinite loop 

listening on a Netlink Socket and calling ROHC compression and decompression 

functions on each packet received from the Linux kernel. The daemon maintains 

state for all outgoing packets and sends them out using RAW sockets. The 

incoming packets use a packet type identifier for ROHC and are passed on to the 

ROHC decompressor which generates packets with full UDP/IP headers. The 

decompressed packets are re-injected into the Linux kernel networking stack and 

are passed on to the recipient application. A VOIP application is tested over a low 

bandwidth link and the utility of the Robust Header Compression is 

demonstrated. 
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Chapter 1 

 

 

INTRODUCTION 

 

1.1 Overview 

During the last decade, cellular telephony and Internet have become part and 

parcel of our everyday life. The Internet protocol based telephony also known as 

Voice over IP (VOIP) using SIP and RTP was launched back in 1990’s and is 

improving day by day since then.  SIP or Session Initiation Protocol is an 

application layer protocol that may run over TCP or UDP transport layers and is 

used for signaling messages which are used to set up voice and video calls and 

associated value added services. The actual transmission of voice and video 

data takes place using RTP, the Real time Transport Protocol. RTP runs over 

UDP. VOIP has come to replace the circuit switched PSTN and ISDN [1]. Cellular 

telephony is also set to adopt VOIP in the 4G cellular networks. VOIP based 

telephony adds significant header to each unit of sampled packetized voice in the 

form of RTP, UDP and IP headers. For low bandwidth links such as the cellular 

link between handset and base station a significant portion of the link bandwidth 

is wasted due to headers. Most of the header is in fact redundant and can be 

compressed for the low bandwidth link to create more room for voice data. The 

Internet Engineering Task Force (IETF) has defined a number of standard 
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methods to compress headers under the umbrella of ROHC. 

 

Figure 1.1: VOIP Transmission using SIP and RTP 

Historically, there have been a number of attempts to compress protocol headers 

to increase link efficiency on the Internet starting way back in the 1980s. Some of 

the earlier approaches and their short comings are discussed below. 

For low bandwidth links such as PSTN in order to increase IP/TCP flows 

performance Van Jacobson [6] compression scheme was introduced. 

Compression of IP/UDP was not supported by this scheme as UDP use was not 

common then. Compression of 40 bytes to an average 4 bytes is obtained via 

this scheme. State of TCP connection is saved at both link ends, and sending 

header field differences which changes. Van Jacobson compression is not 

suitable for wireless links and applications containing multimedia data which are 

predominantly UDP based. 

Later, UDP as well as RTP traffic compression was achieved via IPHC and the 

CRTP schemes. Like Van Jacobson they use delta compression technique. They 

have their own feedback mechanism to recover from error conditions rather than 

depending on the TCP recovery mechanisms. They achieve compression of 
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header up to 2 bytes. For wireless links it is suitable with checksum link layer that 

is not much robust to deal high bit error rates, high RTT times and greater losses. 

On 2.5G and 3G links high BER and long RTT are common; a proficient and 

strong compression scheme was required. In order to meet these criteria’s 

ROHC scheme was developed. This framework can be expanded to various 

packet stream profiles like IP/UDP/RTP, IP/ESP, IP/UDP and Uncompressed. 

New profile like IP/TCP can be easily added to this. A comparison of various 

header compression scheme developed on the Internet is given in Table 1.1 [18]. 

Table 1.1: IETF Header Compression Standards Comparative Analysis 

IETF standard 
VJ, CTCP 

(RFC 1144) 
IPHC 

(RFC 2507) 
CRTP 

(RFC 2508) 
ROHC 

(RFC 3095) 

Headers IPv4/TCP 

IPv4 (options & 
fragments 

included), IPv6 
(extension 
headers 

included), AH, 
Minimal Encap-
sulation header, 

Tunnelled IP 
headers, TCP 

(options 
included),UDP 

IPv4, IPv6 
(extension 
headers 

included), 
AH, Minimal 

Encapsulation 
header, 

Tunnelled 
IP headers, 

UDP, 
RTP 

IPv4 (options 
and fragments 
included), IPv6 

(extension 
headers 

included), AH, 
Minimal  

Encapsulation 
headers, GRE, 
Tunnelled IP 

headers, UDP, 
RTP 

Minimum 
Header 

Compressed 
Two bytes Two bytes Two bytes One byte 

Link Type 
(BER/RTT) 

Dial up 
(Low/Short) 

Dial up & 
wireless 

(Low to medium/ 
Short to medium) 

Dial up & 
wireless(Low 
to medium/ 

Short to 
medium) 

Wireless 
(High/ Long) 

Encoding Differential Differential Differential 
Window-based 

Least 
Significant Bit 

Error recovery 
(Feedback) 

TCP based 
(No) 

Twice 
(Yes) 

Twice 
(Yes) 

Local repair 
(Yes) 

Recommended 
in (standards) 

-- 

UMTS 
Release99 

onward 
CDMA2000 
Release B 
onwards 

-- 

UMTS 
Release4 
onward 

CDMA2000 
Release B 

onward 
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1.2  Thesis Scope 

The low bandwidth cellular link, when used for VOIP, from the cellular hand to the 

cell base station suffers from a problem. The disproportionately high header 

overhead IP telephony speech data will be transferred by RTP mostly. A packet 

along with link framing layer will be appended with IPv4 header of 20 bytes, a 

UDP header of 8 bytes and an RTP header of 12 bytes. This makes a total of 40 

bytes of header. If IPv6 header is used instead of IPv4 then IP header would be 

of 40 bytes making a total of 60 bytes.  Payload size depends on frame sizes and 

speech coding being used as it can be as low as 15-20 bytes for certain audio 

codecs. 

As the main problem is disproportionately large header sizes, the reduction in 

header size is essential to ensure efficient link utilization. The performance of 

header compression is fairly low in case of IP Header Compression and 

Compressed Real Time Protocol. In addition a bit error rate of around the value 

of 0.01 to 0.001 is acceptable, as long as the resources to be utilized efficiently; 

furthermore, it can take around 100 to 200 milliseconds round trip time. The high 

BER increases the chance of erroneous data transmission without even 

detecting of error by receiver. The header compressor system for the cellular 

links should cater for the losses incurring in the pre compression and also in the 

compression and decompression stages. Cost wise analysis of resources 

established the fact that the bandwidth being the highest and processing is 

relatively low cost option. Hence ROHC is an efficient technique that works in a 

bandwidth limited environment. 

ROHC achieves robustness by feedback mechanism. 1 byte compression of 

header can be achieved by this. It is complex when analyzed with other 

schemes. It is beneficial in wireless links where the radio spectrum resource is 

very expensive. To quote from RFC3095 [9], “Bandwidth is the most costly 

resource in cellular links. Processing power is very cheap in comparison. 

Implementation or computational simplicity of a header compression scheme is 
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therefore of less importance than its compression ratio and robustness.” 

1.3 Thesis Organization 

This thesis is organized in terms of chapters. Chapter 1 with the title of 

"Introduction" intends to familiarize with the background knowledge and overview 

of the topic. It guides with the thesis organization for the upcoming chapters. 

Chapter 2 with the title of "Robust Header Compression" contains the details of 

various protocols. In this chapter we have discussed about the Robust Header 

Compression technique that how the packet header is compressed and 

decompressed. It also discuss about the states and operation of ROHC. Some 

benefits and Encoding Techniques of ROHC are also covered in the chapter to 

show the efficiency of Robust Header Compression. 

Following is the chapter 3 with the title "Linux Kernel".  This chapter deals with 

the Kernel space and User space and the inter process communication between 

the Kernel space and User space. Kernel being the core component of the Linux 

is responsible for the major communication functionalities. 

Chapter 4 relates to "Netlink Sockets" which explains this special IPC for 

transferring data between processes running in Kernel and User space. The 

chapter also discusses the advantages that Netlink Socket offers as compared to 

the other IPC methods. 

Chapter 5 explains the "Implementation" of the thesis in a detailed manner. In 

this chapter there is a main diagram for the implementation. It tells about the 

techniques and how the coding technique works for ROHC. 

Chapter 6 with the title of "Results" is comprised of the results achieved from the 

implementation of this project. 

Finally, in chapter 7 we provide conclusions and some recommendations for 

future work. 
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Chapter 2 

 

 

ROBUST HEADER COMPRESSION 

 

2.1 Introduction 

In this chapter we discuss the operational model used by IETF Robust Header 

Compression. This discussion provides a clear conceptual understanding of 

ROHC on our part. 

Robust Header Compression (ROHC) [2,3], a  method for IP, UDP, RTP, and TCP 

headers compression method. Figure 2.1 shows how each protocol adds up to 

form a 40 byte header for each packet. Some of the fields of these headers are 

static while others are not. 
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Figure 2.1: IP/UDP/RTP Headers 

In applications which involve streaming, the overhead 40 bytes is added on every 

packet for IPv4 or 60 bytes for IPv6. It makes 60% of total sent data especially 

for VOIP [5]. They can be tolerated with the wired links as there capacity is not a 

problem but it definitely an issue for wireless links as bandwidth is not that much. 

40 bytes or 60 bytes of overhead compression into 1 or 3 bytes can be done if 

we place compressor before the sending link that has narrow capacity and after 

link decompressor can be used. Larger overhead is compressed to only a few 

bytes, while decompressor creates original packet by reversing process at 

compressor. 

2.2 Compression and Decompression States 

The two state machines interact with each other, a compressor machine and a 

decompressor machine, each of them is used in a context just one time, this is as 

specified by ROHC Header compression. There are three states in each of the 
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compressor and the decompressor and they are linked with each other, these 

remains valid even if the meaning of the states between two is slightly different 

for compressor and decompressor. Starting of state machines is done at the 

compression state that is lowest then it slowly goes to the higher states. 

The compressor and decompressor transitions do not necessarily synchronize.  

Normally, lower states are where the compressor comes back while if context 

damage is identified then decompressor would transit back. 

2.2.1   Compressor States 

The three compressor states for ROHC compression are: Initialization and 

Refresh (IR), First Order (FO), and Second Order (SO) states [2,3]. Operation of 

compressor starts in the level of IR which further on increases to higher state. 

Function carried out in the highest compression state that it can achieve; under 

constraint that compressor is sure enough that decompressor has relevant 

information for header compression and decompression required in that state. 

The transitions between the compression states are made by the compressor 

based on the following considerations: 

 variation in packet headers 

  positive feedback from the decompressor(Acknowledgments - ACKs) 

  negative feedback from decompressor (Negative ACKs - NACKs) 

 Unidirectional mode operation such as timeouts occurring periodically like 

occurring over simplex channels or where feedback mechanism is not 

enabled. 
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IR FO SO

 

Figure 2.2: Compressor State Diagram 

2.2.1.1   Initialization and Refresh (IR) State 

Initialization and Refresh state function is to initialize the static parts of the 

context in the decompressor or recovery after failure. The compressor sends 

entire header information in this state, which comprises that field which is static 

and non-static when uncompressed with additional information. Waiting is done 

by the compressor when it is in IR state up to the point where the correct static 

information has been achieved by decompressor. 

2.2.1.2   First Order (FO) State 

The First Order state function is to communicate irregularities in the packet 

stream, in this state the compressor infrequently sends information about all the 

dynamic fields, and information transmitted is compressed minimally to some 

extent. The updating can be done for the field that is static. 

The compressor goes from the Initialization and Refresh state into the First Order 

state and from the Second Order state whenever the headers of the packet 

stream do not conform to the previous pattern, the compressor stays in the First 

Order state till the time it is certain that the decompressor has obtained all the 

new pattern parameters. Changes in fields which are irregular are communicated 

in all packets and are part of a uniform pattern. 

Detecting the corruption occurred in packets that are sent in the First order state 

having context updating information is must to avoid from invalid updates and 

inconsistency in the context. 
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2.2.1.3   Second Order (SO) State 

The maximum compression can be achieved in the Second Order state. When 

header which is to be reduced is expected given the Real Time Transport 

Protocol Sequence Number (SN) and the compressor is determined that 

decompressor has gained all function parameters like Sequence Number to other 

fields, the compressor enters the Second Order state. Correct decompression of 

packets settle on correct decompression of the Sequence Number when they are 

sent in the Second Order state, however, correct information is required to be 

delivered at the decompressor for its success when sent in the preceding FO 

state packets. 

When the headers do not conform to the uniform pattern and cannot be 

compressed individually on the basis of previous context information, the 

compressor goes back to the First Order state and leaves this state. 

2.2.2   Decompressor States 

The decompressor initializes from "No Context" state which is the state at the 

lowest level of compression and then transfer to states that are higher than this. 

Once the decompressor has entered the “Full Context” state, it never leaves this 

state normally. 

The decompressor, initially in "No Context" state has not decompressed a 

packet. The decompressor transfers to the "Full Context" state when the packet 

has been decompressed perfectly by the reception of static and dynamic 

information in the initialization packet, and transmit back to lower states upon 

repeated failures. However, when the failure occurs, initially it transmit again to 

the "Static Context" state where packet reception is capable to allow transfer to 

the "Full Context" state again. The decompressors go back to the "No Context" 

state in the case when the FO state packets sent decompression doesn't get 

success in "Static Context” state. 
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Figure 2.3: Decompressor State Diagram 

2.2.3   Modes of operation 

ROHC scheme consists of three modes named Unidirectional mode, 

Bidirectional Optimistic mode and Bidirectional Reliable mode. All 

implementations of ROHC must support these three modes of operation. These 

modes are described briefly as follows: 

2.2.3.1   Unidirectional mode (U-mode) 

A path from compressor to decompressor in one dimension is followed by 

packets in the U-mode so when the return path from decompressor to 

compressor is not present then ROHC is used over links through this mode. 

In Unidirectional mode, only due to intermission and irregularity in header modify 

pattern in stream of compressed package, shift between compressor states are 

accomplished. Compression in the U-mode will be less efficient because of the 

timely refresh and lack of feedback for beginning of error recovery.  

Compression with ROHC should begin in the U-mode. When the packet arrives 

at decompressor and a feedback is generated as an indication of change of 
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mode is required, transition to one of the modes that are bidirectional can be 

executed. 

IR FO SO

Optimistic

Timeout

Optimistic
Optimistic

Timeout/Update

Timeout

 

Figure 2.4: State Diagram for U mode 

2.2.3.2   Bidirectional Optimistic mode (O-mode) 

The O-mode the difference to unidirectional is that error recovery requests are 

sent through feedback channel and important context updates are acknowledged 

when received at the decompressor to the compressors and not only for 

sequence number modifications, however, refreshes that are according to a 

specified period are not applied in O-mode. 

The objective of bidirectional optimistic mode is to compression efficiency 

maximization and feedback channel minimization. Due to residual errors or 

invalid context the Bidirectional Optimistic mode reduces the damaged headers 

being transmitted to the upper layers. When long error bursts occur, the 

recurrence of invalid context can be higher than the Bidirectional Reliable mode. 
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IR FO SO

Optimistic/ACK

NACK/UpdateStatic NACK

Optimistic/ACK
Optimistic/ACK

Static NACK

ACK

 

Figure 2.5: State Diagram for O mode 

2.2.3.3   Bidirectional Reliable mode (R-mode) 

The R- mode differences from unidirectional mode and Bidirectional Optimistic 

mode are the use of feedback channel more comprehensively and a strict logic 

which prevent synchronization loss of context between compressor and 

decompressor with the exception of excessive residual bit error rates. All context 

updates as well as sequence number field updates are acknowledged through 

feedback but context updates is not done by every packet. 

Bidirectional Reliable mode’s objective is to increase robustness for the 

prevention of damage and loss; it reduces invalidation under header loss or 

conditions of error stream. O-mode has a higher possibility of context invalidation 

than R-mode; consequently a greater quantity of corrupted headers can be 

transmitted by R-mode when context invalidation occurs. 
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IR FO SO

ACK

NACK/UpdateStatic NACK

ACK
ACK

Static NACK

ACK

 

Figure 2.6: State Diagram for R mode 

2.3 Encoding Techniques 

There are several techniques that is used for the compression of ROHC. The 

purpose of applying this technique is significant byte saving and the idea is, it is 

not necessary to send full value with every packet. One of these techniques is 

Least Significant Bit (LSB) encoding which involves transmission of k least 

significant bit where k is a positive integer. With this value and the value received 

earlier the decompressor derives the reference value. Another method Window 

based Least Significant Encoding (WLSB) is used. In this method compressor 

may not be able to determine reference value of decompressor. It provides 

robustness to the LSB technique. Hence window of all possible values is used.     

2.4 CRC Techniques 

For initial packets an 8 bit CRC is appended by ROHC on all packet fields 

excluding the payload data. This is applied according a polynomial which is in 

Eq.1 [8] 

     1 + x + x
2
 + x

8
              (1) 
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In Compressed headers CRC is calculated on the original packet overhead. 

Some fields of header are changing and some are not so CRC is calculated in 

two parts CRC static and CRC dynamic. Transmission bit errors and context id 

related issues. In order to uniquely identify CRC for context updates two CRC 

widths are used. Compressed headers polynomials are in Eq.2 and Eq.3 [8]: 

     1 + x + x
3
                  (2) 

     1 + x + x
2
 + x

3
 + x

6
 + x

7
           (3) 

2.5 ROHC Benefits 

The ROHC compression can be achieved in most of common links, network and 

transport layer protocols as shown in Table 2.1 taken from [19]. 

Table 2.1: Header Compression Gains 

Protocol Header 
Total header size 

(bytes) 

Min. compressed 
header  size 

(bytes) 

Compression gain 
(%) 

IP4/UDP 28 1 96.4 

IP4/UDP/RTP 40 1 97.5 

IP6/UDP 48 3 93.75 

IP6/UDP/RTP 60 3 95 

Table 2.2 shows the advantages of using ROHC in wireless networks. The table 

is taken from [19]. It simulates a VoIP environment in which flow of packet is 

done using IPv6/UDP/RTP profiles. Flow of 31 bytes after every 20 milliseconds 

(ms) over a simulated wireless channel with BER level of 10-3 and used an 

uncorrelated BER model. 
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Table 2.2: Advantages of ROHC 

 Without ROHC With ROHC 

Total Packets 
Transmitted 

6000 6000 

Packets Lost 3125 (52%) 1448 (24%) 

Call Bandwidth (Kbps) 35.5 12.9 

Average Header Size 60 3.1 

Packets Lost Due to 
Error 

in Header 
2309 (38%) 188 (3%) 

Codecs that are able to handle payload bit errors ROHC are apparently able to 

benefit more from ROHC. ROHC has the capability to reduce packet loss by 

approximately 50% even without using such a codec. The compressed packets 

can be sent on certain wireless links in a single link frame. By this way the radio 

resources can be used effectively. These features make ROHC use in wireless 

networks possible to incorporate high-quality VOIP [4] services. 
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Chapter 3 

 

 

LINUX KERNEL 

 

3.1 Introduction 

Linux is an open source operating system used in all sorts of computing and 

communications platforms. A large number of cell phones, PDA’s, Tablet PCs, 

laptops, desktop PCs, servers, clusters, routers, and firewalls are now running 

the Linux operating system. Linux operating system is designed using the 

philosophy and principles of UNIX operating system. This design approach 

separates the system software into the kernel and user space. 

The kernel is the core component of the operating system and serves as a link 

between the hardware level data processing and the end user applications. 

Managing resources which includes communication between hardware and 

software is one of the major responsibilities of a kernel. Serving basic component 

of a operating system, kernel provides for resources lowest layer such as 

processors and I/O devices that must be controlled by the application software to 

perform its duties well.  These facilities are available via system calls and 

interprocess communication mechanisms. 
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Figure 3.1: Linux Architecture Overview [22] 

Operating system such as Linux which is an open source system gives good 

environment for application development as it is used in various platforms such 

as small embedded devices to large scale devices. Basic architecture or Linux is 

shown in figure 3.2 using kernel and user spaces. Different kernels do operating 

systems tasks differently. This is because every kernel is designed and 

implemented differently. As for example most of the operating system are run by 

microkernel which are in user space and act as servers which intends operating 

system maintainability improvement and  monolithic kernels achieve goals by 

executing operating system code in the same address space aiming to increase 

system service. 
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Concept of kernel [10] is adopted in various operating systems. Kernel existence 

is result of computer system design with abstraction layers series, where each of 

them relying on layers beneath functions. Viewing kernel from this point it can be 

seen that it is software lowest level of abstraction. Avoiding kernel means 

designing software on system instead of the abstraction layer. By this design 

complexity will be increased. However this will definitely increase the design 

complexity to such an extent that implementation of simplest system would only 

be possible. 

 

Figure 3.2: Layers of Software Running on Linux 

3.2 Kernel Space 

Kernel space runs with the help of kernel. Kernel was also referred to as the core 

or nucleus. This terminology for kernel was adopted due to the fact that early 

computers used memory form called core memory. This is called core because it 

contains important operating system support characteristics.  
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Figure 3.3: Linux Kernel Space Components 

Execution of kernel starts in the supervisory mode via the boot loader. After 

kernel initialization the first process starts, this generally is the init process. After 

doing this kernel doesn't execute directly normally, it executes only in response to 

external events. These external events can be via system calls to kernel in order 

to service requests made by applications through hardware interrupts to notify 

kernel of real world events.  Kernel provides loop when processes are not 

available to execute; called idle process. 

The crucial and complex programming task in a kernel space is the kernel 

development. For good performance its central position in operating system is 

necessary which demands its efficient design and implementation. It may be 

possible sometimes that a kernel will not use the abstraction mechanism. 

Reason being the memory management concerns and one reason for further 

difficulty of its difficulty in development is lack of reentrancy. 

Kernel Space provides following features: 
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1) Processes low level scheduling (dispatching)            

2) Communication between processes                       

3) Synchronization in  process,        

4) Process control blocks manipulation,              

5) Context switching,                                       

6) Handling of Interrupts,                          

7) Creation and destruction of process,                       

8) Suspension and resumption of process. 

3.2.1 Basic Facilities  

Basic function of a kernel is management of computer resources and allowing 

the other programs to use and run on it. Resources are: 

 The Central Processing Unit. Central part of a computer system, 

responsible for execution or running programs on it. Kernel has the 

decision power to decide at which time how many programs should run 

and how they are allocated to the processor or processors. 

 The computer's memory. Memory stores both program instructions and 

data. For program execution they both should be present. Different 

programs access memory frequently may want to demands more than 

available memory in computer. Kernel decides which memory each 

process can use and what to do when enough of it is not available.  

 Any Input/output (I/O) devices present in the computer, such as keyboard, 

mouse etc. Kernel allocates requests from applications to perform I/O 

request to a suitable device and provides well-suited methods for using 

the device. 

These features can be implemented by kernel or on by relying upon other 

processes. Although if it is relying on other process some IPC means is required 

for allowing the processes to access those services that is provided by each 
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other. 

Kernel must be providing running programs with a method to make requests to 

access these facilities. 

3.2.2 Process Management 

Kernel [11] major task is to allowing application execution and facilitating them 

with features like hardware abstractions. Memory applications can access is 

called as a process. Equipment built in for protection of memory must be taken in 

account by the kernel process manager. 

Kernel sets up an address space for application in order to run an application. It 

loads file in memory that contain application code may be via demand paging. A 

queue for the program is set up by this and refers to location that is given in a 

program hence execution starts. These types of kernels are multitasking kernels. 

They can give a false impression that running process is higher than maximum 

processes that can simultaneously run physically.   

Processes a system can run concurrently is equivalent to number of CPUs 

installed (if processors support simultaneous multithreading then it can change). 

3.2.3 Memory Management 

Full access to system memory allowing processes to access memory safely 

when they require it. First step for this is usually virtual addressing, achieved via 

paging and/or segmentation. Virtual address spaces are different for different 

processes. The memory that one process access at a particular address may be 

different from what another process access at that address [21]. 

On many systems, virtual address of program refers to data not in memory. 

Indirection layer provided by virtual addressing allows operating system to use 

other data stores, like hard drive, to store what would otherwise have to remain in 
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main memory (RAM). As a result, operating systems can allow programs to use 

more memory than the system has physically available. A scheme known as 

demand paging is when program needs data not in RAM currently. In that case 

CPU signals happening of the event and kernel gives response by writing 

inactive memory chunk on disk and replacement by the data requested by 

program. Program can be resumed from the point where it was stopped.  

3.2.4 Device Management 

In order the processes access the peripherals that are attached to a computer 

that are controlled via kernel with the help of device drivers. For example 

showing something on screen requires application request to kernel which would 

display request to device driver which is responsible for character/pixel plotting.  

 A list of available devices is at the kernel. This list may be known in advance, 

configured by user (from the earlier PC and systems not for personal use) or 

detected at run time by the operating system (known as plug and play). 

3.3 User Space 

All application software runs in user space. User space refers to libraries and 

programs that operating system use for kernel interaction. Each user space 

program has a virtual memory of its own. Unless requested other program 

memory cannot be used. In today`s world memory protection is main stream of 

today`s operating system. If in case of debugger and depending upon privileges 

kernel can be requested by the processes to take another process memory. 

Shared memory regions between other processes can also be requested [7]. 

Another approach taken in experimental operating systems is to have a 

single address space for all software, and rely on the programming 

language's virtual machine to make sure that arbitrary memory cannot be 

accessed - applications simply cannot acquire any references to the objects that 

they are not allowed to access 
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3.4 Communication between Kernel and User Space 

Performance of a useful work depends upon the kernel provided services 

access. Each kernel implements it differently but mostly a C library or API that 

invokes kernel related functions is invoked. 

Kernel function invoking method varies in every kernel. For instance it is not 

possible for a process running in user space to call kernel directly [14], as in this 

case processor access control rules violation. A few possibilities for kernel 

invoking methods: 

 Interrupt simulated by software: 

 It is a very common method and is available on most of the hardware. 

 Call gate 

It is a special address that kernel stores in memory of a kernel at such a 

location which is known to the processor in the form of a list. On detection 

of a call to that address by processor it instead redirects without causing 

an access violation to targeted location. Hardware support is required 

which is available normally. 

 Special systems call instruction 

Special hardware support is required which may be lacked in common 

architectures (notably, x86) however they are added in the recent models 

of x86 processors. It is worth to mention that not all PCs operating 

systems when provided with this use this. 

 Memory-based queue 

This method generates large number requests but does not wait for each 

one result. Request details can be added to memory area that is scanned 

after a specified time period by kernel to find requests. 
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Chapter 4 

 

 

NETLINK SOCKETS 

 

4.1 Background 

During the development of Linux 1.3 kernel Alan Cox added netlink sockets. It 

was added like a interface that aims to provide user and kernel multiple 

bidirectional links. It was later extended by Alexey Kuznetsov [20] during Linux 

1.2 kernel development intends to extend this messaging interface with flexibility 

to transform it with the infrastructures required advanced routing. Since then 

Netlink Sockets became main interface of Linux for user and kernel space 

communication. Netlink design formulation is the same as Linux. Quoting Linus 

Torvalds [11] ”Linux is evolution, not intelligent design”. Neither its design 

document nor its specification is available. The only thing we are left with is the 

source code. 

4.2 Introduction 

The mechanism of Netlink is socket based for kernel and user space, between 

user space and different kernel and user space processes communication. These 
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type of sockets cannot go out of host edges as their processes addresses are 

from (inherently local) PIDs.  

 

Figure 4.1: Netlink Socket Purpose 

Netlink [12] as described is a messaging service that can be compared with a 

datagram type service for Interprocess Communication (IPC) system. Its design 

method is same as that of the BSD type and it uses methods like socket(), bind(), 

sendmsg() and recvmsg() similar to other methods of socket polling. 

Jamal Hadi Salim [15,16] in 2001 at the ForCES IETF group tried to make a 

standard protocol between Forwarding Engine Component and a Control Plane 

Component. But this was not completed and other than this a protocol that is 

domain specific came in to existence. The Forwarding Engine Component is the 

router part responsible for forwarding while the other one is responsible for 

forwarding engine management and configuration.  
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Like iproute2, to communicate with user space to Linux kernel many networking 

utilities use netlink. A socket-based interface required for user space processes 

and kernel module internal API is what a Netlink comprised of. Instead of ioctl it is 

made more flexible. 

Full duplex communication is provided in netlink.  Compared to AF_INET address 

family which TCP/IP socket, netlink socket uses the family AF_NETLINK 

address. include/linux/netlink.h is the kernel header file. Each netlink socket 

features explains protocol type of its own. 

The following is a subset of protocol types and their features of Netlink [13]: 

 NETLINK_ROUTE: BGP, OSPF, RIP user-space routing daemons, 

between and kernel packet forwarding module communication channel. It 

is responsible for kernel routing table updation by user-space. 

 NETLINK_FIREWALL: Packets by IPv4 firewall code is received by this. 

 NETLINK_NFLOG: netfilter module in kernel-space and user-space 

iptable management tool communication channel. 

 NETLINK_ARPD: User space arp table management is its responsibility. 

These above features were missing in system calls, proc file systems and ioctls. 

Adding new features is a non trivial task when communication method between 

kernel and user space is other than netlink socket. In that case there is a fear of 

damaging system stability by polluting kernel. Simplicity is added feature of 

netlink socket, for the type of protocol a constant is added to header file. The 

application can talk to kernel module using socket style APIs immediately. 

However the netlink socket in comparison to other methods is described in the 

next section. 
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4.3 Netlink Sockets vs. Other IPCs 

The various kernel and user space IPC methods [7], like ioctl, system call, proc 

file system or netlink socket. Comparisons of these are as under. 

4.3.1    Asynchronous 

Providing a socket queue for smoothing the message burst, netlink is 

asynchronous.  For sending the message, system call The system call for 

sending a netlink message make a queue of message to the queue of receiver 

after which the reception handler receiver is invoked. In reference to the context 

of reception handler, receiver may choose either immediately process the 

message or leave it for processing in different context later on. Synchronous 

processing is what the system calls require unlike netlink. Therefore, to pass a 

message from kernel to the user space if system call is used, Kernel scheduling 

refinement can be affected if message processing is long. 

4.3.2 No Compilation Time Dependency 

System call if included in loadable module, which is in device drivers mostly, is 

not that appropriate. In compilation time code implementing a kernel`s system 

call is linked with the kernel statically. No time dependency in compilation exists 

in netlink socket, between application in loadable kernel modules in Linux kernel 

netlink core and netlink. 

4.3.3 Multicasting 

A near perfect event distribution mechanism from kernel to user space is 

provided in netlink sockets. It supports multicast and hence it is an add on benefit 

over ioctls, proc and system calls. The multicasting of message can be done by a 

process to the address of netlink group and any process can hear to that 

particular group address. These processes can be any in number. 
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Figure 4.2: Multicasting Technique of Netlink Socket  

4.3.4 Full Duplex 

In a user-space application if there is an urgent message for kernel module then 

using  system call and ioctl we cannot do the communication as they are simplex 

IPCs and only be initiated by user space program. Despite the fact that intensive 

polling is expensive, normally kernel is polled by applications to achieve changes 

in state. Netlink allows kernel to initiate sessions too and this is called full duplex 

characteristic of netlink socket. 
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4.3.5   Provides BSD style socket 

BSD stands for Berkeley Software Distribution (BSD), it comprises on application 

programming interface (API) which is a library for developing applications in the 

C programming language to perform inter-process communication, most 

commonly for communications across a computer network. Finally, a BSD 

socket-style API that is provided by netlink socket is understandable by the 

software development community, so the cost of training is minimum with respect 

to other APIs. 

. 
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Chapter 5 

 

 

OUR IMPLEMENTATION 

 

5.1 Overview 

The complete architecture of our implementation is shown in figure 5.1. It 

involves the integration of ROHC with Linux kernel using Netlink Socket which is 

the interface between ROHC user space library and kernel module. The kernel 

passes all incoming packets to ROHC library for decompression and all outgoing 

packets for compression. 

For making this project we have taken different steps to achieve our target. We 

have made project development environment to initiate the project. We have built 

Robust Header Compression Library to compress the headers of internet packets 

and run test programs. We have built Netlink socket examples and we have 

studied how user space and kernel space communicate using Netlink sockets 

[23]. We have created a ROHC Compressor within ROHC daemon which creates 

an infinite loop listening on the Netlink Socket and calling ROHC compression 

functions on each packet received from a kernel module. Similarly, we have 

created ROHC decompressor within ROHC daemon which calls ROHC 
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decompressor functions. To get the packets to the ROHC daemon we have used 

the facilities of the Linux library netfilter and used the target QUEUE. 

For capturing the packets we have used Wireshark and some screen shots have 

been taken to show the compression and decompression results. We have also 

tested with a VoIP application over a Null-Modem link. 
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Figure 5.1: Main Process Diagram of the Project 
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5.2 Creating Development Environment for Project 

Firstly we build the kernel code and user code and run it separately and then 

send message from kernel space to user space to check whether they are 

sending or receiving messages and can communicate with each other or not. 

The result shows that the kernel says hello and the user-space receives the 

message. After that various steps have been taken to build the ROHC library. 

Command "sudo dpkg-configure -a" was run. Security updates were applied 

using command "sudo aptitude update" and "sudo aptitude safe-upgrade". 

5.3 Building the ROHC Library 

Building the ROHC library requires some pre-requisite software. We need the C-

compiler and a number of other libraries. 

Rohc-1.3.1 was installed and rohc library was configured using ./autogen.sh 

command. Then autotools were installed and libtools were installed in which 

autoconf was run and then netfilter is built which is a library for applications 

dealing with netlink sockets. We added the following command to build ROHC 

library. 

$ sudo apt-get install automake autoconf libtool build-essential 

Then for building and running ROHC tests the libpcap, libpcap-dev were installed 

using 

$ sudo apt-get install libpcap libpcap-dev  

Then we downloaded the source code and extracted it using command 

$ tar xvjf rohc-1.3.1.tar.bz2 

For running library tests, we extracted the traffic captures 

$ tar xvjf rohc-test-1.3.1.tar.bz2 
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Inside the source directory $ cd rohc-1.3.1, we configured the library 

$ ./configure --prefix=/usr 

Then we built the code by using $ make all 

Then we installed the library using make install command. 

5.4 ROHC Compression 

ROHC Compression and Decompression is achieved by doing following process. 

The implementation was done with the help of a code obtained from [17]. 

For the compression, first an RTP packet is generated. This packet is then sent 

to the ROHC engine for the packet compression. As ROHC compression process 

runs in the user space, the packet is sent to the IP table routine whose basic 

function includes picking packet coming from a specified IP and sending it to 

NFQUEUE. NFQUEUE is a routine that lies in the stream compressor code and 

its basic purpose is to redirect the incoming packets. Nfqueue is the library of 

netlink socket which sends packet pulled from the kernel and sends it to arpping 

where it retrieves the MAC address using libnet library and then we prepare the 

ethernet header and header is compressed using ROHC library then we 

encapsulate the packet with ethernet header and send to the network. There is a 

source MAC address and destination MAC address and eth type. Then we send 

the packet to link layer which forwards it. We finalize the packet which consists of 

the ROHC header packet and then send it to a raw socket. A raw socket sends or 

receives the raw datagram excluding link level headers. It is the kind of socket in 

which no standard protocol is required instead it is being developed by the user. 

Then the packet is sent to the network. 

The implementation flow is shown in figure 5.2. For the implementation purposes 

the programs are implemented in a set of files and run and the result is obtained 

which is captured with Wireshark. 
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Figure 5.2: ROHC Sender Machine 

5.5 ROHC Decompression 

The packet is then received for decompression in the ROHC decompressor 

daemon which reads from raw socket. It then checks the Ethernet type and 

forwards the ROHC packets to remove the Ethernet header. Then the packet is 
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decompressed and the packet is pushed through socket to local host. The packet 

is read at port by rtp utility. The implementation flow is shown in figure 5.3. 

 

Figure 5.3: ROHC Receiver Machine 

5.6 Testing Scenario 

For testing the ROHC daemon operations a testing scenario is created via code 

routines such as RTP_Play() and RTP_dump(). The RTP play code sends the 

data on the network. It sends a packet and provides the following information 

related to a RTP packet. 
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Typically a voice packet size is of 30 bytes. When RTP_Play() program is run 

headers are added with each voice chunk. The screen shot in figure 5.4 shows 

the mp3 file which is taken as a VOIP application for testing and is converted to 

rtp stream using wav2rtp software and then the headers of packet is 

compressed. 

 

Figure 5.4: Generating Stream of Packet 

In addition to the RTP_Play() program there is a supportive code of RTP_dump() 

that is used for testing the ROHC implementation. RTP_play() is at the sender`s 

side whereas RTP_dump() is at the Receiver`s side. The function of RTP_dump() 

is to capture and analyze RTP packets. 
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Chapter 6 

 

 

RESULTS 

The code has been simulated for header compression of different packets. This 

chapter summarizes the achieved results and shows the runtime process of 

various profiles, compression and decompression of packets using wireshark and 

compression gain of various header compression profiles.  

The screenshot in Figure 6.1 shows the uncompressed packets obtained via 

wireshark. In this figure the header size is of 40 bytes. It is worth mentioning that 

the 40 bytes of header is obtained when the packet is passed through the 

transport and the IP layer. On this we didn’t apply the implemented compressed 

scheme. The data is routed to the network. The total length of the packet is 124 

bytes including 14 bytes of ethernet header. So the data is of 70 bytes and 

header size is of 40 bytes making a total of 110 bytes.  
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Figure 6.1: Result of Uncompressed Packet using Wireshark 
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6.1 Achieved Results 

Figure 6.2 shows the runtime process of ROHC compression using IP profile in 

which the size of packet is 110 bytes. It shows that 17 bytes of header is 

compressed out of 20 bytes, so now header size in IP profile is 3 bytes. In this 

figure you can see that the packet at the IP level is compressed. When the IP 

header is compressed the packet length is now compressed to 93 bytes, from 

which payload size is 90 and header size is 3 bytes. 

 

Figure 6.2: Runtime Process of Compressed IP Packet 
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The result of compression shown in figure 6.3 is captured using Wireshark. The 

figure shows IP compressed packets in which the header size is compressed to 3 

bytes. In actual the header size was 20 bytes of IP. The total size of packet was 

of 110 bytes and when the IP header is compressed the length of packet now 

becomes 93 bytes. 

 

Figure 6.3: Result of IP Compressed Packet using Wireshark 
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Figure 6.4 shows the runtime process of ROHC compression using IP/UDP 

profile in which the size of packet is same of 110 bytes. It shows that 23 bytes of 

header is compressed out of 28 bytes (20 bytes of IP and 8 bytes of UDP), so 

now header size in IP/UDP profile is 5 bytes. In this figure you can see that the 

packet at the UDP level is compressed. When the IP/UDP header is compressed 

the packet length is now compressed to 87 bytes, from which payload size is 82 

and header size is 5 bytes. 

 

Figure 6.4: Runtime Process of Compressed IP/UDP Packet 

The screenshot in Figure 6.5 shows IP/UDP compressed packets obtained via 
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wireshark. In this figure the header size is compressed to 5 bytes when IP 

header is also included. In actual the header size was 20 bytes of IP + 8 bytes of 

UDP. The total size of packet was of 110 bytes and when the IP and UDP header 

is compressed the length of packet is now 87 bytes. 

 

Figure 6.5: Result of IP/UDP Compressed Packet using Wireshark 
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Figure 6.6 shows the runtime process of ROHC compression using IP/UDP/RTP 

profile in which the size of packet is same of 110 bytes. It shows that 35 bytes of 

header is compressed out of 40 bytes (20 bytes of IP, 8 bytes of UDP and 12 

bytes of RTP), so now header size in IP/UDP/RTP profile is 5 bytes. In this figure 

you can see that the packet at the RTP level is compressed. When the 

IP/UDP/RTP header is compressed the packet length is now compressed to 75 

bytes, from which payload size is 70 and header size remains 5 bytes. 

 

Figure 6.6: Runtime Process of Compressed IP/UDP/RTP Packet 
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The screenshot in Figure 6.7 shows IP/UDP/RTP compressed packets obtained 

via wireshark. In this the header size is compressed to 5 bytes when IP and UDP 

headers are also included. In actual the header size was 20 bytes of IP + 8 bytes 

of UDP + 12 bytes of RTP. The total size of packet was of 110 bytes and when 

the IP, UDP and RTP header is compressed, the length of packet is now 75 

bytes. 

 

Figure 6.7: Result of IP/UDP/RTP Compressed Packet using Wireshark 



56 

 

6.2 Comparison of Obtained Results 

Following shows the obtained results of header compression in various profiles in 

table 6.1. It can be seen that ROHC header compression ratio increases as the 

header size increases or we can say that when data is passed from more 

protocols serially the more headers are compressed. It shows that the total 

header size is of 40 bytes. When ROHC compression is applied using IP profile, 

the compressed headers are 17 bytes and uncompressed headers are 23 bytes. 

When compression is applied using IP/UDP profile, the compressed headers are 

23 bytes and uncompressed headers are 17 bytes. When compression is applied 

using IP/UDP/RTP profile, the compressed headers are 35 bytes and 

uncompressed headers are only 5 bytes. This shows that 40 bytes headers are 

now compressed to 5 bytes. 

Table 6.1: Header Compression in Various Profiles 

Header Compression 
Profiles 

Compressed 
Headers (bytes) 

Uncompressed 
Headers 
(bytes) 

Uncompressed 40 40 

IP 17 23 

IP/UDP 23 17 

IP/UDP/RTP 35 5 
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The bar graph in Figure 6.8 shows the percentage reduction in header sizes in a 

graphical form. The Uncompressed profile is 100% as there is no compression. 

When ROHC compression is applied on IP profile then headers are compressed 

to 57.50%. Similarly, when ROHC compression is applied on IP/UDP profile then 

headers are compressed to 42.50% and when ROHC compression is applied on 

IP/UDP/RTP profile then headers are compressed 12.50%. This shows the 

percentage reduction in header size from 100% to 12.50%.  

 

Figure 6.8: Percentage Reduction in Header Size 
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Figure 6.9 shows the runtime process of ROHC decompression using IP profile. 

It shows that the payload size is of 90 bytes and the header size is of 3 bytes 

making a total of 93 bytes. Now the packet of 93 bytes is decompressed using 

ROHC decompressor. The figure shows uncompressed packet length received 

after decompression.  

 

Figure 6.9: Runtime Process of Decompressed IP Packet 
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Figure 6.10 shows the runtime process of ROHC decompression using IP/UDP 

profile. It shows that the payload size is of 82 bytes and the header size is of 5 

bytes making a total of 87 bytes. Now the 87 bytes packet is decompressed 

using ROHC decompressor. The figure shows uncompressed packet length 

received after decompression. 

 

Figure 6.10: Runtime Process of Decompressed IP/UDP Packet 
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Figure 6.11 shows the runtime process of ROHC decompression using 

IPUDP/RTP profile. It shows that the payload size is of 70 bytes and the header 

size is of 5 bytes making a total of 75 bytes. Now the 75 bytes packet is 

decompressed using ROHC decompressor. The uncompressed packet length 

received after decompression is of 110 bytes. The Ethernet header of 14 bytes is 

added to it making a total of 124 bytes which is received. 

 

Figure 6.11: Runtime Process of Decompressed IP/UDP/RTP Packet 
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This result shows that the packets are decompressed using various profiles and 

total packets size of 75 bytes which was compressed is now decompressed and 

total of 110 bytes with 14 bytes of Ethernet headers are achieved and the voice 

of mp3 which was taken as a VOIP application has now gain its original position. 
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Chapter 7 

 

 

CONCLUSIONS 

 

7.1 Concluding Remarks 

The low bandwidth cellular link when used for VoIP suffers from a problem of 

large header overhead. High header overhead IP telephony speech data will be 

transferred encapsulated in RTP/UDP/IP. A voice packet along with link framing 

layer will be attached with IPv4, UDP and RTP headers of 40 bytes. Payload size 

depends on frame sizes and speech coding being used and it can be as low as 

15-20 bytes for certain audio codecs. Hence for VoIP header, overhead can be 

as high as 60% to 80%. To improve this problem the IETF has standardized 

header compression techniques under the umbrella of ROHC. Project comprises 

of Robust Header Compression integration with Linux Kernel using Netlink 

Socket. Robust Header Compression Library is built to compress the headers of 

internet packets using official Internet standards specified in various relevant 

RFCs. A VoIP application is tested over a low bandwidth link and the utility of the 

Robust Header Compression is demonstrated. 

The results we have been able to achieve are that the VOIP packet header is 
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compressed from 40 to 5 bytes as shown in figure 7.1. This implies that the 

reduction of each VOIP packet is from 110 bytes to 75 bytes.  

Header

40 bytes

Data

70 bytes

Header

40 bytes

Data

70 bytes

Data

70 bytes

ROHC Compression

Header

5 bytes

Data

70 bytes

Header

5 bytes

 

Figure 7.1: ROHC Compression of VOIP Packet 

The performance of the ROHC based communication link is good. A lot of 

bandwidth can be saved to transmit data. The ROHC implementation is found to 

be most efficient when the data is encapsulated in large number of protocols, as 

each protocol will have a header itself. From this work we have been able to get 

a lot of knowledge about Linux and programming with it. This work builds a 

strong capability of socket programming and header compression techniques in 

our skill set. 

7.2 Future Work 

Based on the experience and progress we have made during this work, we can 

recommend following possibilities for future work: 
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 Development of a user interface for configuring and managing the ROHC 

capabilities by an end user. 

 Porting the software we have developed to android and other PDA 

systems for use on wireless links. 

 Enhancements to ROHC library to incorporate newer compression profiles 

being standardized by IETF such as TCP/IP. 
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APPENDIX 

 

Nfqueue 

 

#ifndef _nfqueue_header_ 

#define _nfqueue_header_  

 class NFQueue 

 { 

  public:    

   NFQueue(int dataPacketSize_, int queueNumber_); 

   ~NFQueue(); 

   /* 

   The return values can be one of the following: 

   0: Queue successfully initialized 

   1: error during nfq_open() 

   2: error during nfq_bind_pf() 

   3: error during nfq_create_queue() 

   4: can't set packet_copy mode 

   */ 

   int initializeQueue(int (*callbackFunction)(/*void* pt2Object,*/  

     struct nfq_q_handle *qh, struct nfgenmsg 

*nfmsg, 

                    struct nfq_data *nfa, void *data)); 

   //5: socket generated an error  

   int  readQueue(); 

   int getQueueNumber(); 

   void destroyQueue();    

  private: 

   struct nfq_handle *h; 

   struct nfq_q_handle *qh; 

   struct nfnl_handle *nh; 
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   int fd; 

   int rv; 

   char *buf;   

   int dataPacketSize; 

   int queueNumber; 

 }; 

#endif 

 

ROHC Compdaemon 

 

#ifndef _rohc_compd_header_ 

#define _rohc_compd_header_ 

        class ROHCCompDaemon: public ROHCDaemon 

        { 

                public: 

                        ROHCCompDaemon(int dataPacketSize, int queueNumber_); 

                        static int callbackFunctionRTPImplementation(struct 

nfq_q_handle *qh,     

  struct nfgenmsg *nfmsg,struct nfq_data *nfa, void *data); 

                        static uint32_t processRTPPacket (struct nfq_data *tb); 

        }; 

#endif 

 

ROHC Daemon 

 

#ifndef _rohcd_header_ 

#define _rohcd_header_ 

 class ROHCDaemon: public NFQueue 

 { 

 public:  

  ROHCDaemon(int dataPacketSize, int queueNumber_);   
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  static ROHCEngine* getROHCEngine();  

 }; 

#endif 

 

ROHC Engine 

#ifndef _ROHCEngine_header_ 

#define _ROHCEngine_header_ 

using namespace std; 

/* includes for using ROHC library */ 

extern "C" { 

} 

    struct flowTableEntry 

    { 

        uint32_t flowID; 

        uint32_t ttl; 

        string   src_ip; 

        string   dst_ip; 

        char *src_mac_address; 

        char *dst_mac_address; 

    }; 

 class ROHCEngine 

 { 

  public:     

                ROHCEngine();\ 

  //General Utility Functions 

  bool fileExists(const char *filename); 

  void printFlowTable();   

  void updateTimeToLive(); 

                unsigned char atoh (unsigned char data); 

  //Flow Specific Utility Functions 

                uint32_t static calculateFlowID(uint32_t,uint16_t); 
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  bool flowExists(uint32_t flowID); 

  void updateFlow(uint32_t flowID); 

  bool noActiveFlows(); 

  //Flow Management Functions 

                char* getFlowSrcMacAddress(uint32_t flowID); 

                char* getFlowDstMacAddress(uint32_t flowID); 

  uint32_t getFlowIDAtIndexNum(uint32_t index);   

  flowTableEntry * getFlowTableRowPointer(uint32_t flowID); 

  int * getFlowMutex(uint32_t flowID);   

   

  //0: Flow added successfully 

  //1: Flow could not be added 

                int addFlow(uint32_t flowID , string src_ip, string dst_ip, char* 

src_mac_address); 

                //ROHC functions 

                void initializeROHCLibrary(); 

                void setCompressionProfile(int profileID); 

                /* Profile IDs 

                  * 1: IP 

                  * 2: IP/UDP 

                  * 3: IP/UDP/RTP 

                  * 4: Uncompressed 

                  */ 

                int compressPacket(char* uncompressedPacket, char* rohcPacket, 

                                   int uncompressedPacketLength); 

                //Packet processing functions 

                unsigned char* createEthernetHeader(char *src_mac, char *dst_mac, 

int protocol); 

                int sendPacketOnRawSocket(unsigned char* packet, int packetSize); 

 private: 
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                /* the ROHC compressor */ 

                struct rohc_comp *compressor; 

 //A flowTableEntry is a structure used to manage the states of a flow. 

  flowTableEntry * flowTable; 

 //The rowLockArray is a set of mutexes to manage thread-safety among 

flows. 

  int *rowLockArray;    

 }; 

#endif 

 

Stream Compressor 

#ifndef _rohc_header_ 

#define _rohc_header_ 

        class StreamCompressor : public PThread 

 { 

  public: 

   StreamCompressor(); 

   ~StreamCompressor(); 

   static ROHCEngine* getROHCEngine(); 

   friend void *runROHCCompDaemonStream(void *t); 

//   friend void *runSIPDaemonForSBCStream(void *t); 

   friend void *runROHCEngine(void *t);    

   static ROHCEngine * rohc_engine; 

 static ROHCCompDaemon *  

staticROHCCompressorDaemonHandle; 

//   static SIPDaemonForPhone * 

staticSIPDaemonHandleForPhone; 

  private: 

//   bool keepSIPDaemonForPhoneAlive; 

   bool keepROHCCompDaemonAlive; 



72 

 

   bool keepROHCEngineDaemonAlive; 

 }; 

#endif  

Stream Decompressor 

#ifndef _rohc_header_2 

#define _rohc_header_2 

        class StreamDecompressor : public PThread 

 { public: 

                         StreamDecompressor(); 

                              ~StreamDecompressor(); 

   static ROHCEngine* getROHCEngine(); 

                         friend void *runROHCDecompDaemonStream(void *t); 

   friend void *runROHCEngine(void *t);    

   static ROHCEngine * rohc_engine; 

static ROHCDecompDaemon 

*staticROHCDecompressorDaemonHandle; 

  private: 

                         bool keepROHCDecompDaemonAlive; 

   bool keepROHCEngineDaemonAlive; 

 }; 

#endif 

  

ROHC Decompressor Daemon 

#ifndef _rohc_decompd_header_ 

#define _rohc_decompd_header_ 

class ROHCDecompDaemon 

{ 

    public: 

        static void processROHCStream(); 

        static ROHCEngine* getROHCEngine(); 

}; #endif 


