

INTEGRATION OF ROHC USER SPACE LIBRARY WITH

LINUX KERNEL USING NETLINK SOCKET

Submitted by:

Javed Raza

Supervised by:

Assoc Prof Dr Athar Mahboob

Thesis

Submitted to:

Department of Electronics and Power Engineering

Pakistan Navy Engineering College

National University of Sciences and Technology, Islamabad

In fulfillment of requirements for the award of the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

With Specialization in Communications

March 2012

IN THE NAME OF ALLAH,

THE MOST BENEFICENT, THE MOST MERCIFUL

ABSTRACT

The low bandwidth cellular link from the cellular handset to the cell base station

when used for VoIP suffers from a problem. There is a disproportionately high

header overhead as IP telephony speech data will be transferred encapsulated in

RTP/UDP/IP. A voice packet along with link framing layer will be appended with

IPv4 header (20 bytes), a UDP header (8 bytes) and an RTP header (12 bytes)

which makes a total header of 40 bytes. If IPv6 header is used instead of IPv4

then IP header would be of 40 bytes making a total of 60 bytes of header.

Payload size depends on frame sizes and speech coding being used and it can

be as low as 15-20 bytes for certain audio codecs. Hence for VoIP header,

overhead can be as high as 60% to 80%. To alleviate this problem the IETF has

standardized header compression techniques under the umbrella of Robust

Header Compression (ROHC).

This project involves the integration of Robust Header Compression with Linux

Kernel using Netlink Socket which is the interface between ROHC user space

library and kernel module. The netfilter module passes all specified incoming

packets to ROHC library for decompression and all specified outgoing packets

for compression. Robust Header Compression Library is built to compress the

headers of internet packets using official Internet standards specified in various

relevant RFCs. We have created a ROHC daemon which runs an infinite loop

listening on a Netlink Socket and calling ROHC compression and decompression

functions on each packet received from the Linux kernel. The daemon maintains

state for all outgoing packets and sends them out using RAW sockets. The

incoming packets use a packet type identifier for ROHC and are passed on to the

ROHC decompressor which generates packets with full UDP/IP headers. The

decompressed packets are re-injected into the Linux kernel networking stack and

are passed on to the recipient application. A VOIP application is tested over a low

bandwidth link and the utility of the Robust Header Compression is

demonstrated.

ACKNOWLEDGEMENT

Today, I am very much thankful to Almighty Allah, the All Knowing and Everlasting

for His sympathies and blessings that He has always shower upon all His

creatures and to cherish me with this great success. Indeed, He is the Guide

without Whose blessings; I would not have had this moment of achievement.

I would also like to thank my parents and my family members for their all-out love

and continuous support throughout my period of studies. It is their prayers which

have made me whatever I am today and rescued me at times when I could easily

stumble.

I am unable to find suitably fitting words to literally express my profound gratitude

to my Thesis Advisor Assoc Prof Dr. Athar Mahboob, who is not only an ocean of

knowledge within himself, but also a thorough gentleman. His patience and

guidance, besides keeping me motivated to achieve the desired outcome have

remained the sole contributors in timely and effective completion of the work. I

would also like to thank Mr. Faraz Haider for his guidance in clarification of many

concepts related to my work.

Last but definitely not the least; I would convey my appreciation to all the

honorable members of the Guidance Committee, whose timely direction on

various aspects of this work has kept me on track without getting astray.

TABLE OF CONTENTS

1. INTRODUCTION ………………………………………………...…….... 11

1.1 Overview …………………….………………………………...…… 11

1.2 Thesis Scope ……………………………………………………….. 14

1.3 Thesis Organization ……………………………………………….. 15

2. ROBUST HEADER COMPRESSION ………………………………… 16

2.1 Introduction …………………………………………………........... 16

2.2 Compression and Decompression States …………………....... 17

2.2.1 Compressor States …………………………….…………. 18

2.2.2 Decompressor States …………………………………….. 20

2.2.3 Modes of Operation ………………………………………. 21

2.3 Encoding Techniques ..………………………..………………….. 24

2.4 CRC Techniques ….….……….…………………………………… 24

2.5 ROHC Benefits ……….………….………………………………... 25

3. LINUX KERNEL ………..………………………….…………………….. 27

3.1 Introduction ………………………………………………………… 27

3.2 Kernel Space ……………………..………….….………………… 29

3.2.1 Basic Facilities …………………........…….…..………….. 31

3.2.2 Process Management ……………………………………. 32

3.2.3 Memory Management …….……………………….……... 32

3.2.4 Device Management ………………..…………...……….. 33

3.3 User Space …………………………………..…….………………. 33

3.4 Communication between Kernel and User Space …………….. 34

4. NETLINK SOCKETS …………………………..…….….……............... 35

4.1 Background ………..……....………………………………………. 35

4.2 Introduction …………………………………………….................. 35

4.3 Netlink Sockets vs Other IPCs ...………………………………… 38

4.3.1 Asynchronous …………………………………………....... 38

4.3.2 No Compilation Time Dependency …...…….…………... 38

4.3.3 Multicasting ………………………………………………... 38

4.3.4 Full Duplex ………………………….……………………... 39

4.3.5 Provides BSD Style Socket ………………………………. 40

5. OUR IMPLEMENTATION ……………………….……………………… 41

5.1 Overview ………………………………..………..……..…………. 41

5.2 Creating Development Environment for Project ……...………... 43

5.3 Building of ROHC Library ………………………….……............. 43

5.4 ROHC Compression ……………………………………………… 44

5.5 ROHC Decompression ……………………………..…..………… 45

5.6 Testing Scenario …………………………………………………... 46

6. RESULTS ………………………..…………………………….…………. 48

6.1 Achieved Results ………………………………………………...... 50

6.2 Comparison of Obtained Results ……………..…….…………… 56

7. CONCLUSIONS .…………………..…………….…….………………… 62

7.1 Concluding Remarks ……………………………..……................ 62

7.2 Future Work ……………………………….….……………………. 63

REFERENCES ……………………………………………………………..... 65

APPENDIX ………………………………………………….......................... 67

LIST OF TABLES

Table 1.1 IETF Header Compression Standards Comparative Analysis ….. 13

Table 2.1 Header Compression Gains ……………………………………….. 25

Table 2.2 Advantages of ROHC ………………………………………………. 26

Table 6.1 Header Compression in Various Profiles .………………………... 56

LIST OF FIGURES

Figure 1.1 VOIP Transmission using SIP and RTP ………….............. 12

Figure 2.1 IP/UDP/RTP Headers ………..……….…………………………. 17

Figure 2.2 Compressor State Diagram …….……..……………………….. 19

Figure 2.3 Decompressor State Diagram …….……………..…………….. 21

Figure 2.4 State Diagram for U mode ……….....………………………….. 22

Figure 2.5 State Diagram for O mode ……..……………………..………... 23

Figure 2.6 State Diagram for R mode …….….………………………......... 24

Figure 3.1 Linux Architecture Overview ….……….………….……………. 28

Figure 3.2 Layers of Software Running on Linux .…………….......……… 29

Figure 3.3 Linux Kernel Space Components .………………..….………… 30

Figure 4.1 Netlink Socket Purpose ..……..……………….......................... 36

Figure 4.2 Multicasting Technique of Netlink Socket ……………………... 39

Figure 5.1 Main Process Diagram of the Project …….............................. 42

Figure 5.2 ROHC Sender Machine .………………………......................... 45

Figure 5.3 ROHC Receiver Machine ………………………… 46

Figure 5.4 Generating Stream of Packet ….....………….......................... 47

Figure 6.1 Result of Uncompressed Packet using Wireshark 49

Figure 6.2 Runtime Process of Compressed IP Packet …...…….. 50

Figure 6.3 Result of IP Compressed Packet using Wireshark ...………… 51

Figure 6.4 Runtime Process of Compressed IP/UDP Packet ……...……. 52

Figure 6.5 Result of IP/UDP Compressed Packet using Wireshark ……. 53

Figure 6.6 Runtime Process of Compressed IP/UDP/RTP Packet ……... 54

Figure 6.7 Result of IP/UDP/RTP Compressed Packet using Wireshark .. 55

Figure 6.8 Percentage Reduction in Header Sizes 57

Figure 6.9 Runtime Process of Decompressed IP Packet 58

Figure 6.10 Runtime Process of Decompressed IP/UDP Packet 59

Figure 6.11 Runtime Process of Decompressed IP/UDP/RTP Packet …... 60

Figure 7.1 ROHC Compression of VOIP Packet …………………………. 63

GLOSSARY

2.5G 2.5 Generation wireless networks

3G 3rd Generation wireless networks

CRTP Compressed Real-Time Transport Protocol

CTCP Compressed Transport Control Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPCP The PPP Internet Control Protocol (RFC1332)

IPHC Internet Protocol Header Compression (RFC 2507)

IPC Inter Process Communication

MAC Media Access Control

RFC Request For Comments

ROHC Robust Header Compression (RFC3095)

RTP Real-Time Transport Protocol

SIP Session Initiation Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

BER Bit Error Rate

API Application Programming Interface

RTT Round Trip Time

PSTN Public Switched Telephone Network

AMR Adaptive Multi Rate

BSD Berkeley Software Distribution

11

Chapter 1

INTRODUCTION

1.1 Overview

During the last decade, cellular telephony and Internet have become part and

parcel of our everyday life. The Internet protocol based telephony also known as

Voice over IP (VOIP) using SIP and RTP was launched back in 1990’s and is

improving day by day since then. SIP or Session Initiation Protocol is an

application layer protocol that may run over TCP or UDP transport layers and is

used for signaling messages which are used to set up voice and video calls and

associated value added services. The actual transmission of voice and video

data takes place using RTP, the Real time Transport Protocol. RTP runs over

UDP. VOIP has come to replace the circuit switched PSTN and ISDN [1]. Cellular

telephony is also set to adopt VOIP in the 4G cellular networks. VOIP based

telephony adds significant header to each unit of sampled packetized voice in the

form of RTP, UDP and IP headers. For low bandwidth links such as the cellular

link between handset and base station a significant portion of the link bandwidth

is wasted due to headers. Most of the header is in fact redundant and can be

compressed for the low bandwidth link to create more room for voice data. The

Internet Engineering Task Force (IETF) has defined a number of standard

12

methods to compress headers under the umbrella of ROHC.

Figure 1.1: VOIP Transmission using SIP and RTP

Historically, there have been a number of attempts to compress protocol headers

to increase link efficiency on the Internet starting way back in the 1980s. Some of

the earlier approaches and their short comings are discussed below.

For low bandwidth links such as PSTN in order to increase IP/TCP flows

performance Van Jacobson [6] compression scheme was introduced.

Compression of IP/UDP was not supported by this scheme as UDP use was not

common then. Compression of 40 bytes to an average 4 bytes is obtained via

this scheme. State of TCP connection is saved at both link ends, and sending

header field differences which changes. Van Jacobson compression is not

suitable for wireless links and applications containing multimedia data which are

predominantly UDP based.

Later, UDP as well as RTP traffic compression was achieved via IPHC and the

CRTP schemes. Like Van Jacobson they use delta compression technique. They

have their own feedback mechanism to recover from error conditions rather than

depending on the TCP recovery mechanisms. They achieve compression of

13

header up to 2 bytes. For wireless links it is suitable with checksum link layer that

is not much robust to deal high bit error rates, high RTT times and greater losses.

On 2.5G and 3G links high BER and long RTT are common; a proficient and

strong compression scheme was required. In order to meet these criteria’s

ROHC scheme was developed. This framework can be expanded to various

packet stream profiles like IP/UDP/RTP, IP/ESP, IP/UDP and Uncompressed.

New profile like IP/TCP can be easily added to this. A comparison of various

header compression scheme developed on the Internet is given in Table 1.1 [18].

Table 1.1: IETF Header Compression Standards Comparative Analysis

IETF standard
VJ, CTCP

(RFC 1144)
IPHC

(RFC 2507)
CRTP

(RFC 2508)
ROHC

(RFC 3095)

Headers IPv4/TCP

IPv4 (options &
fragments

included), IPv6
(extension
headers

included), AH,
Minimal Encap-
sulation header,

Tunnelled IP
headers, TCP

(options
included),UDP

IPv4, IPv6
(extension
headers

included),
AH, Minimal

Encapsulation
header,

Tunnelled
IP headers,

UDP,
RTP

IPv4 (options
and fragments
included), IPv6

(extension
headers

included), AH,
Minimal

Encapsulation
headers, GRE,
Tunnelled IP

headers, UDP,
RTP

Minimum
Header

Compressed
Two bytes Two bytes Two bytes One byte

Link Type
(BER/RTT)

Dial up
(Low/Short)

Dial up &
wireless

(Low to medium/
Short to medium)

Dial up &
wireless(Low
to medium/

Short to
medium)

Wireless
(High/ Long)

Encoding Differential Differential Differential
Window-based

Least
Significant Bit

Error recovery
(Feedback)

TCP based
(No)

Twice
(Yes)

Twice
(Yes)

Local repair
(Yes)

Recommended
in (standards)

--

UMTS
Release99

onward
CDMA2000
Release B
onwards

--

UMTS
Release4
onward

CDMA2000
Release B

onward

14

1.2 Thesis Scope

The low bandwidth cellular link, when used for VOIP, from the cellular hand to the

cell base station suffers from a problem. The disproportionately high header

overhead IP telephony speech data will be transferred by RTP mostly. A packet

along with link framing layer will be appended with IPv4 header of 20 bytes, a

UDP header of 8 bytes and an RTP header of 12 bytes. This makes a total of 40

bytes of header. If IPv6 header is used instead of IPv4 then IP header would be

of 40 bytes making a total of 60 bytes. Payload size depends on frame sizes and

speech coding being used as it can be as low as 15-20 bytes for certain audio

codecs.

As the main problem is disproportionately large header sizes, the reduction in

header size is essential to ensure efficient link utilization. The performance of

header compression is fairly low in case of IP Header Compression and

Compressed Real Time Protocol. In addition a bit error rate of around the value

of 0.01 to 0.001 is acceptable, as long as the resources to be utilized efficiently;

furthermore, it can take around 100 to 200 milliseconds round trip time. The high

BER increases the chance of erroneous data transmission without even

detecting of error by receiver. The header compressor system for the cellular

links should cater for the losses incurring in the pre compression and also in the

compression and decompression stages. Cost wise analysis of resources

established the fact that the bandwidth being the highest and processing is

relatively low cost option. Hence ROHC is an efficient technique that works in a

bandwidth limited environment.

ROHC achieves robustness by feedback mechanism. 1 byte compression of

header can be achieved by this. It is complex when analyzed with other

schemes. It is beneficial in wireless links where the radio spectrum resource is

very expensive. To quote from RFC3095 [9], “Bandwidth is the most costly

resource in cellular links. Processing power is very cheap in comparison.

Implementation or computational simplicity of a header compression scheme is

15

therefore of less importance than its compression ratio and robustness.”

1.3 Thesis Organization

This thesis is organized in terms of chapters. Chapter 1 with the title of

"Introduction" intends to familiarize with the background knowledge and overview

of the topic. It guides with the thesis organization for the upcoming chapters.

Chapter 2 with the title of "Robust Header Compression" contains the details of

various protocols. In this chapter we have discussed about the Robust Header

Compression technique that how the packet header is compressed and

decompressed. It also discuss about the states and operation of ROHC. Some

benefits and Encoding Techniques of ROHC are also covered in the chapter to

show the efficiency of Robust Header Compression.

Following is the chapter 3 with the title "Linux Kernel". This chapter deals with

the Kernel space and User space and the inter process communication between

the Kernel space and User space. Kernel being the core component of the Linux

is responsible for the major communication functionalities.

Chapter 4 relates to "Netlink Sockets" which explains this special IPC for

transferring data between processes running in Kernel and User space. The

chapter also discusses the advantages that Netlink Socket offers as compared to

the other IPC methods.

Chapter 5 explains the "Implementation" of the thesis in a detailed manner. In

this chapter there is a main diagram for the implementation. It tells about the

techniques and how the coding technique works for ROHC.

Chapter 6 with the title of "Results" is comprised of the results achieved from the

implementation of this project.

Finally, in chapter 7 we provide conclusions and some recommendations for

future work.

16

Chapter 2

ROBUST HEADER COMPRESSION

2.1 Introduction

In this chapter we discuss the operational model used by IETF Robust Header

Compression. This discussion provides a clear conceptual understanding of

ROHC on our part.

Robust Header Compression (ROHC) [2,3], a method for IP, UDP, RTP, and TCP

headers compression method. Figure 2.1 shows how each protocol adds up to

form a 40 byte header for each packet. Some of the fields of these headers are

static while others are not.

17

Figure 2.1: IP/UDP/RTP Headers

In applications which involve streaming, the overhead 40 bytes is added on every

packet for IPv4 or 60 bytes for IPv6. It makes 60% of total sent data especially

for VOIP [5]. They can be tolerated with the wired links as there capacity is not a

problem but it definitely an issue for wireless links as bandwidth is not that much.

40 bytes or 60 bytes of overhead compression into 1 or 3 bytes can be done if

we place compressor before the sending link that has narrow capacity and after

link decompressor can be used. Larger overhead is compressed to only a few

bytes, while decompressor creates original packet by reversing process at

compressor.

2.2 Compression and Decompression States

The two state machines interact with each other, a compressor machine and a

decompressor machine, each of them is used in a context just one time, this is as

specified by ROHC Header compression. There are three states in each of the

18

compressor and the decompressor and they are linked with each other, these

remains valid even if the meaning of the states between two is slightly different

for compressor and decompressor. Starting of state machines is done at the

compression state that is lowest then it slowly goes to the higher states.

The compressor and decompressor transitions do not necessarily synchronize.

Normally, lower states are where the compressor comes back while if context

damage is identified then decompressor would transit back.

2.2.1 Compressor States

The three compressor states for ROHC compression are: Initialization and

Refresh (IR), First Order (FO), and Second Order (SO) states [2,3]. Operation of

compressor starts in the level of IR which further on increases to higher state.

Function carried out in the highest compression state that it can achieve; under

constraint that compressor is sure enough that decompressor has relevant

information for header compression and decompression required in that state.

The transitions between the compression states are made by the compressor

based on the following considerations:

 variation in packet headers

 positive feedback from the decompressor(Acknowledgments - ACKs)

 negative feedback from decompressor (Negative ACKs - NACKs)

 Unidirectional mode operation such as timeouts occurring periodically like

occurring over simplex channels or where feedback mechanism is not

enabled.

19

IR FO SO

Figure 2.2: Compressor State Diagram

2.2.1.1 Initialization and Refresh (IR) State

Initialization and Refresh state function is to initialize the static parts of the

context in the decompressor or recovery after failure. The compressor sends

entire header information in this state, which comprises that field which is static

and non-static when uncompressed with additional information. Waiting is done

by the compressor when it is in IR state up to the point where the correct static

information has been achieved by decompressor.

2.2.1.2 First Order (FO) State

The First Order state function is to communicate irregularities in the packet

stream, in this state the compressor infrequently sends information about all the

dynamic fields, and information transmitted is compressed minimally to some

extent. The updating can be done for the field that is static.

The compressor goes from the Initialization and Refresh state into the First Order

state and from the Second Order state whenever the headers of the packet

stream do not conform to the previous pattern, the compressor stays in the First

Order state till the time it is certain that the decompressor has obtained all the

new pattern parameters. Changes in fields which are irregular are communicated

in all packets and are part of a uniform pattern.

Detecting the corruption occurred in packets that are sent in the First order state

having context updating information is must to avoid from invalid updates and

inconsistency in the context.

20

2.2.1.3 Second Order (SO) State

The maximum compression can be achieved in the Second Order state. When

header which is to be reduced is expected given the Real Time Transport

Protocol Sequence Number (SN) and the compressor is determined that

decompressor has gained all function parameters like Sequence Number to other

fields, the compressor enters the Second Order state. Correct decompression of

packets settle on correct decompression of the Sequence Number when they are

sent in the Second Order state, however, correct information is required to be

delivered at the decompressor for its success when sent in the preceding FO

state packets.

When the headers do not conform to the uniform pattern and cannot be

compressed individually on the basis of previous context information, the

compressor goes back to the First Order state and leaves this state.

2.2.2 Decompressor States

The decompressor initializes from "No Context" state which is the state at the

lowest level of compression and then transfer to states that are higher than this.

Once the decompressor has entered the “Full Context” state, it never leaves this

state normally.

The decompressor, initially in "No Context" state has not decompressed a

packet. The decompressor transfers to the "Full Context" state when the packet

has been decompressed perfectly by the reception of static and dynamic

information in the initialization packet, and transmit back to lower states upon

repeated failures. However, when the failure occurs, initially it transmit again to

the "Static Context" state where packet reception is capable to allow transfer to

the "Full Context" state again. The decompressors go back to the "No Context"

state in the case when the FO state packets sent decompression doesn't get

success in "Static Context” state.

21

No Context
Static

Context

Full

Context

success

success

No dynamic

context
Context not

established

Repeated

Faliure to

decompress

Repeated

Faliure to

decompress

Successful

decompression

of packets

Figure 2.3: Decompressor State Diagram

2.2.3 Modes of operation

ROHC scheme consists of three modes named Unidirectional mode,

Bidirectional Optimistic mode and Bidirectional Reliable mode. All

implementations of ROHC must support these three modes of operation. These

modes are described briefly as follows:

2.2.3.1 Unidirectional mode (U-mode)

A path from compressor to decompressor in one dimension is followed by

packets in the U-mode so when the return path from decompressor to

compressor is not present then ROHC is used over links through this mode.

In Unidirectional mode, only due to intermission and irregularity in header modify

pattern in stream of compressed package, shift between compressor states are

accomplished. Compression in the U-mode will be less efficient because of the

timely refresh and lack of feedback for beginning of error recovery.

Compression with ROHC should begin in the U-mode. When the packet arrives

at decompressor and a feedback is generated as an indication of change of

22

mode is required, transition to one of the modes that are bidirectional can be

executed.

IR FO SO

Optimistic

Timeout

Optimistic
Optimistic

Timeout/Update

Timeout

Figure 2.4: State Diagram for U mode

2.2.3.2 Bidirectional Optimistic mode (O-mode)

The O-mode the difference to unidirectional is that error recovery requests are

sent through feedback channel and important context updates are acknowledged

when received at the decompressor to the compressors and not only for

sequence number modifications, however, refreshes that are according to a

specified period are not applied in O-mode.

The objective of bidirectional optimistic mode is to compression efficiency

maximization and feedback channel minimization. Due to residual errors or

invalid context the Bidirectional Optimistic mode reduces the damaged headers

being transmitted to the upper layers. When long error bursts occur, the

recurrence of invalid context can be higher than the Bidirectional Reliable mode.

23

IR FO SO

Optimistic/ACK

NACK/UpdateStatic NACK

Optimistic/ACK
Optimistic/ACK

Static NACK

ACK

Figure 2.5: State Diagram for O mode

2.2.3.3 Bidirectional Reliable mode (R-mode)

The R- mode differences from unidirectional mode and Bidirectional Optimistic

mode are the use of feedback channel more comprehensively and a strict logic

which prevent synchronization loss of context between compressor and

decompressor with the exception of excessive residual bit error rates. All context

updates as well as sequence number field updates are acknowledged through

feedback but context updates is not done by every packet.

Bidirectional Reliable mode’s objective is to increase robustness for the

prevention of damage and loss; it reduces invalidation under header loss or

conditions of error stream. O-mode has a higher possibility of context invalidation

than R-mode; consequently a greater quantity of corrupted headers can be

transmitted by R-mode when context invalidation occurs.

24

IR FO SO

ACK

NACK/UpdateStatic NACK

ACK
ACK

Static NACK

ACK

Figure 2.6: State Diagram for R mode

2.3 Encoding Techniques

There are several techniques that is used for the compression of ROHC. The

purpose of applying this technique is significant byte saving and the idea is, it is

not necessary to send full value with every packet. One of these techniques is

Least Significant Bit (LSB) encoding which involves transmission of k least

significant bit where k is a positive integer. With this value and the value received

earlier the decompressor derives the reference value. Another method Window

based Least Significant Encoding (WLSB) is used. In this method compressor

may not be able to determine reference value of decompressor. It provides

robustness to the LSB technique. Hence window of all possible values is used.

2.4 CRC Techniques

For initial packets an 8 bit CRC is appended by ROHC on all packet fields

excluding the payload data. This is applied according a polynomial which is in

Eq.1 [8]

 1 + x + x
2
 + x

8
 (1)

25

In Compressed headers CRC is calculated on the original packet overhead.

Some fields of header are changing and some are not so CRC is calculated in

two parts CRC static and CRC dynamic. Transmission bit errors and context id

related issues. In order to uniquely identify CRC for context updates two CRC

widths are used. Compressed headers polynomials are in Eq.2 and Eq.3 [8]:

 1 + x + x
3
 (2)

 1 + x + x
2
 + x

3
 + x

6
 + x

7
 (3)

2.5 ROHC Benefits

The ROHC compression can be achieved in most of common links, network and

transport layer protocols as shown in Table 2.1 taken from [19].

Table 2.1: Header Compression Gains

Protocol Header
Total header size

(bytes)

Min. compressed
header size

(bytes)

Compression gain
(%)

IP4/UDP 28 1 96.4

IP4/UDP/RTP 40 1 97.5

IP6/UDP 48 3 93.75

IP6/UDP/RTP 60 3 95

Table 2.2 shows the advantages of using ROHC in wireless networks. The table

is taken from [19]. It simulates a VoIP environment in which flow of packet is

done using IPv6/UDP/RTP profiles. Flow of 31 bytes after every 20 milliseconds

(ms) over a simulated wireless channel with BER level of 10-3 and used an

uncorrelated BER model.

26

Table 2.2: Advantages of ROHC

 Without ROHC With ROHC

Total Packets
Transmitted

6000 6000

Packets Lost 3125 (52%) 1448 (24%)

Call Bandwidth (Kbps) 35.5 12.9

Average Header Size 60 3.1

Packets Lost Due to
Error

in Header
2309 (38%) 188 (3%)

Codecs that are able to handle payload bit errors ROHC are apparently able to

benefit more from ROHC. ROHC has the capability to reduce packet loss by

approximately 50% even without using such a codec. The compressed packets

can be sent on certain wireless links in a single link frame. By this way the radio

resources can be used effectively. These features make ROHC use in wireless

networks possible to incorporate high-quality VOIP [4] services.

27

Chapter 3

LINUX KERNEL

3.1 Introduction

Linux is an open source operating system used in all sorts of computing and

communications platforms. A large number of cell phones, PDA’s, Tablet PCs,

laptops, desktop PCs, servers, clusters, routers, and firewalls are now running

the Linux operating system. Linux operating system is designed using the

philosophy and principles of UNIX operating system. This design approach

separates the system software into the kernel and user space.

The kernel is the core component of the operating system and serves as a link

between the hardware level data processing and the end user applications.

Managing resources which includes communication between hardware and

software is one of the major responsibilities of a kernel. Serving basic component

of a operating system, kernel provides for resources lowest layer such as

processors and I/O devices that must be controlled by the application software to

perform its duties well. These facilities are available via system calls and

interprocess communication mechanisms.

28

Figure 3.1: Linux Architecture Overview [22]

Operating system such as Linux which is an open source system gives good

environment for application development as it is used in various platforms such

as small embedded devices to large scale devices. Basic architecture or Linux is

shown in figure 3.2 using kernel and user spaces. Different kernels do operating

systems tasks differently. This is because every kernel is designed and

implemented differently. As for example most of the operating system are run by

microkernel which are in user space and act as servers which intends operating

system maintainability improvement and monolithic kernels achieve goals by

executing operating system code in the same address space aiming to increase

system service.

29

Concept of kernel [10] is adopted in various operating systems. Kernel existence

is result of computer system design with abstraction layers series, where each of

them relying on layers beneath functions. Viewing kernel from this point it can be

seen that it is software lowest level of abstraction. Avoiding kernel means

designing software on system instead of the abstraction layer. By this design

complexity will be increased. However this will definitely increase the design

complexity to such an extent that implementation of simplest system would only

be possible.

Figure 3.2: Layers of Software Running on Linux

3.2 Kernel Space

Kernel space runs with the help of kernel. Kernel was also referred to as the core

or nucleus. This terminology for kernel was adopted due to the fact that early

computers used memory form called core memory. This is called core because it

contains important operating system support characteristics.

30

System Call Interface

Architecture Dependent Cell

Hardware

Device Drivers Process Manager

Interprocess

Communication

Management

Network

Manager
File Systems

Memory

Manager

Figure 3.3: Linux Kernel Space Components

Execution of kernel starts in the supervisory mode via the boot loader. After

kernel initialization the first process starts, this generally is the init process. After

doing this kernel doesn't execute directly normally, it executes only in response to

external events. These external events can be via system calls to kernel in order

to service requests made by applications through hardware interrupts to notify

kernel of real world events. Kernel provides loop when processes are not

available to execute; called idle process.

The crucial and complex programming task in a kernel space is the kernel

development. For good performance its central position in operating system is

necessary which demands its efficient design and implementation. It may be

possible sometimes that a kernel will not use the abstraction mechanism.

Reason being the memory management concerns and one reason for further

difficulty of its difficulty in development is lack of reentrancy.

Kernel Space provides following features:

31

1) Processes low level scheduling (dispatching)

2) Communication between processes

3) Synchronization in process,

4) Process control blocks manipulation,

5) Context switching,

6) Handling of Interrupts,

7) Creation and destruction of process,

8) Suspension and resumption of process.

3.2.1 Basic Facilities

Basic function of a kernel is management of computer resources and allowing

the other programs to use and run on it. Resources are:

 The Central Processing Unit. Central part of a computer system,

responsible for execution or running programs on it. Kernel has the

decision power to decide at which time how many programs should run

and how they are allocated to the processor or processors.

 The computer's memory. Memory stores both program instructions and

data. For program execution they both should be present. Different

programs access memory frequently may want to demands more than

available memory in computer. Kernel decides which memory each

process can use and what to do when enough of it is not available.

 Any Input/output (I/O) devices present in the computer, such as keyboard,

mouse etc. Kernel allocates requests from applications to perform I/O

request to a suitable device and provides well-suited methods for using

the device.

These features can be implemented by kernel or on by relying upon other

processes. Although if it is relying on other process some IPC means is required

for allowing the processes to access those services that is provided by each

32

other.

Kernel must be providing running programs with a method to make requests to

access these facilities.

3.2.2 Process Management

Kernel [11] major task is to allowing application execution and facilitating them

with features like hardware abstractions. Memory applications can access is

called as a process. Equipment built in for protection of memory must be taken in

account by the kernel process manager.

Kernel sets up an address space for application in order to run an application. It

loads file in memory that contain application code may be via demand paging. A

queue for the program is set up by this and refers to location that is given in a

program hence execution starts. These types of kernels are multitasking kernels.

They can give a false impression that running process is higher than maximum

processes that can simultaneously run physically.

Processes a system can run concurrently is equivalent to number of CPUs

installed (if processors support simultaneous multithreading then it can change).

3.2.3 Memory Management

Full access to system memory allowing processes to access memory safely

when they require it. First step for this is usually virtual addressing, achieved via

paging and/or segmentation. Virtual address spaces are different for different

processes. The memory that one process access at a particular address may be

different from what another process access at that address [21].

On many systems, virtual address of program refers to data not in memory.

Indirection layer provided by virtual addressing allows operating system to use

other data stores, like hard drive, to store what would otherwise have to remain in

33

main memory (RAM). As a result, operating systems can allow programs to use

more memory than the system has physically available. A scheme known as

demand paging is when program needs data not in RAM currently. In that case

CPU signals happening of the event and kernel gives response by writing

inactive memory chunk on disk and replacement by the data requested by

program. Program can be resumed from the point where it was stopped.

3.2.4 Device Management

In order the processes access the peripherals that are attached to a computer

that are controlled via kernel with the help of device drivers. For example

showing something on screen requires application request to kernel which would

display request to device driver which is responsible for character/pixel plotting.

 A list of available devices is at the kernel. This list may be known in advance,

configured by user (from the earlier PC and systems not for personal use) or

detected at run time by the operating system (known as plug and play).

3.3 User Space

All application software runs in user space. User space refers to libraries and

programs that operating system use for kernel interaction. Each user space

program has a virtual memory of its own. Unless requested other program

memory cannot be used. In today`s world memory protection is main stream of

today`s operating system. If in case of debugger and depending upon privileges

kernel can be requested by the processes to take another process memory.

Shared memory regions between other processes can also be requested [7].

Another approach taken in experimental operating systems is to have a

single address space for all software, and rely on the programming

language's virtual machine to make sure that arbitrary memory cannot be

accessed - applications simply cannot acquire any references to the objects that

they are not allowed to access

34

3.4 Communication between Kernel and User Space

Performance of a useful work depends upon the kernel provided services

access. Each kernel implements it differently but mostly a C library or API that

invokes kernel related functions is invoked.

Kernel function invoking method varies in every kernel. For instance it is not

possible for a process running in user space to call kernel directly [14], as in this

case processor access control rules violation. A few possibilities for kernel

invoking methods:

 Interrupt simulated by software:

 It is a very common method and is available on most of the hardware.

 Call gate

It is a special address that kernel stores in memory of a kernel at such a

location which is known to the processor in the form of a list. On detection

of a call to that address by processor it instead redirects without causing

an access violation to targeted location. Hardware support is required

which is available normally.

 Special systems call instruction

Special hardware support is required which may be lacked in common

architectures (notably, x86) however they are added in the recent models

of x86 processors. It is worth to mention that not all PCs operating

systems when provided with this use this.

 Memory-based queue

This method generates large number requests but does not wait for each

one result. Request details can be added to memory area that is scanned

after a specified time period by kernel to find requests.

35

Chapter 4

NETLINK SOCKETS

4.1 Background

During the development of Linux 1.3 kernel Alan Cox added netlink sockets. It

was added like a interface that aims to provide user and kernel multiple

bidirectional links. It was later extended by Alexey Kuznetsov [20] during Linux

1.2 kernel development intends to extend this messaging interface with flexibility

to transform it with the infrastructures required advanced routing. Since then

Netlink Sockets became main interface of Linux for user and kernel space

communication. Netlink design formulation is the same as Linux. Quoting Linus

Torvalds [11] ”Linux is evolution, not intelligent design”. Neither its design

document nor its specification is available. The only thing we are left with is the

source code.

4.2 Introduction

The mechanism of Netlink is socket based for kernel and user space, between

user space and different kernel and user space processes communication. These

36

type of sockets cannot go out of host edges as their processes addresses are

from (inherently local) PIDs.

Figure 4.1: Netlink Socket Purpose

Netlink [12] as described is a messaging service that can be compared with a

datagram type service for Interprocess Communication (IPC) system. Its design

method is same as that of the BSD type and it uses methods like socket(), bind(),

sendmsg() and recvmsg() similar to other methods of socket polling.

Jamal Hadi Salim [15,16] in 2001 at the ForCES IETF group tried to make a

standard protocol between Forwarding Engine Component and a Control Plane

Component. But this was not completed and other than this a protocol that is

domain specific came in to existence. The Forwarding Engine Component is the

router part responsible for forwarding while the other one is responsible for

forwarding engine management and configuration.

37

Like iproute2, to communicate with user space to Linux kernel many networking

utilities use netlink. A socket-based interface required for user space processes

and kernel module internal API is what a Netlink comprised of. Instead of ioctl it is

made more flexible.

Full duplex communication is provided in netlink. Compared to AF_INET address

family which TCP/IP socket, netlink socket uses the family AF_NETLINK

address. include/linux/netlink.h is the kernel header file. Each netlink socket

features explains protocol type of its own.

The following is a subset of protocol types and their features of Netlink [13]:

 NETLINK_ROUTE: BGP, OSPF, RIP user-space routing daemons,

between and kernel packet forwarding module communication channel. It

is responsible for kernel routing table updation by user-space.

 NETLINK_FIREWALL: Packets by IPv4 firewall code is received by this.

 NETLINK_NFLOG: netfilter module in kernel-space and user-space

iptable management tool communication channel.

 NETLINK_ARPD: User space arp table management is its responsibility.

These above features were missing in system calls, proc file systems and ioctls.

Adding new features is a non trivial task when communication method between

kernel and user space is other than netlink socket. In that case there is a fear of

damaging system stability by polluting kernel. Simplicity is added feature of

netlink socket, for the type of protocol a constant is added to header file. The

application can talk to kernel module using socket style APIs immediately.

However the netlink socket in comparison to other methods is described in the

next section.

38

4.3 Netlink Sockets vs. Other IPCs

The various kernel and user space IPC methods [7], like ioctl, system call, proc

file system or netlink socket. Comparisons of these are as under.

4.3.1 Asynchronous

Providing a socket queue for smoothing the message burst, netlink is

asynchronous. For sending the message, system call The system call for

sending a netlink message make a queue of message to the queue of receiver

after which the reception handler receiver is invoked. In reference to the context

of reception handler, receiver may choose either immediately process the

message or leave it for processing in different context later on. Synchronous

processing is what the system calls require unlike netlink. Therefore, to pass a

message from kernel to the user space if system call is used, Kernel scheduling

refinement can be affected if message processing is long.

4.3.2 No Compilation Time Dependency

System call if included in loadable module, which is in device drivers mostly, is

not that appropriate. In compilation time code implementing a kernel`s system

call is linked with the kernel statically. No time dependency in compilation exists

in netlink socket, between application in loadable kernel modules in Linux kernel

netlink core and netlink.

4.3.3 Multicasting

A near perfect event distribution mechanism from kernel to user space is

provided in netlink sockets. It supports multicast and hence it is an add on benefit

over ioctls, proc and system calls. The multicasting of message can be done by a

process to the address of netlink group and any process can hear to that

particular group address. These processes can be any in number.

39

Process X Process Y Process Z

Subsystem A Subsystem B

USER SPACE

NETLINK

KERNEL SPACE

Queue1 Queue2 Queue3

Figure 4.2: Multicasting Technique of Netlink Socket

4.3.4 Full Duplex

In a user-space application if there is an urgent message for kernel module then

using system call and ioctl we cannot do the communication as they are simplex

IPCs and only be initiated by user space program. Despite the fact that intensive

polling is expensive, normally kernel is polled by applications to achieve changes

in state. Netlink allows kernel to initiate sessions too and this is called full duplex

characteristic of netlink socket.

40

4.3.5 Provides BSD style socket

BSD stands for Berkeley Software Distribution (BSD), it comprises on application

programming interface (API) which is a library for developing applications in the

C programming language to perform inter-process communication, most

commonly for communications across a computer network. Finally, a BSD

socket-style API that is provided by netlink socket is understandable by the

software development community, so the cost of training is minimum with respect

to other APIs.

.

41

Chapter 5

OUR IMPLEMENTATION

5.1 Overview

The complete architecture of our implementation is shown in figure 5.1. It

involves the integration of ROHC with Linux kernel using Netlink Socket which is

the interface between ROHC user space library and kernel module. The kernel

passes all incoming packets to ROHC library for decompression and all outgoing

packets for compression.

For making this project we have taken different steps to achieve our target. We

have made project development environment to initiate the project. We have built

Robust Header Compression Library to compress the headers of internet packets

and run test programs. We have built Netlink socket examples and we have

studied how user space and kernel space communicate using Netlink sockets

[23]. We have created a ROHC Compressor within ROHC daemon which creates

an infinite loop listening on the Netlink Socket and calling ROHC compression

functions on each packet received from a kernel module. Similarly, we have

created ROHC decompressor within ROHC daemon which calls ROHC

42

decompressor functions. To get the packets to the ROHC daemon we have used

the facilities of the Linux library netfilter and used the target QUEUE.

For capturing the packets we have used Wireshark and some screen shots have

been taken to show the compression and decompression results. We have also

tested with a VoIP application over a Null-Modem link.

ROHC

Library

ROHC

Daemon

Linux Kernel

Kernel

Module

Kernel

Networking

Code

Netlink

Socket Based on Kernel

IP Routing Table

Physical

Interface

VoIP

Application

VoIP Packets (VoIP

+ RTP + UDP + IP)

User Space

Kernel Space

Netlink

Socket

Figure 5.1: Main Process Diagram of the Project

43

5.2 Creating Development Environment for Project

Firstly we build the kernel code and user code and run it separately and then

send message from kernel space to user space to check whether they are

sending or receiving messages and can communicate with each other or not.

The result shows that the kernel says hello and the user-space receives the

message. After that various steps have been taken to build the ROHC library.

Command "sudo dpkg-configure -a" was run. Security updates were applied

using command "sudo aptitude update" and "sudo aptitude safe-upgrade".

5.3 Building the ROHC Library

Building the ROHC library requires some pre-requisite software. We need the C-

compiler and a number of other libraries.

Rohc-1.3.1 was installed and rohc library was configured using ./autogen.sh

command. Then autotools were installed and libtools were installed in which

autoconf was run and then netfilter is built which is a library for applications

dealing with netlink sockets. We added the following command to build ROHC

library.

$ sudo apt-get install automake autoconf libtool build-essential

Then for building and running ROHC tests the libpcap, libpcap-dev were installed

using

$ sudo apt-get install libpcap libpcap-dev

Then we downloaded the source code and extracted it using command

$ tar xvjf rohc-1.3.1.tar.bz2

For running library tests, we extracted the traffic captures

$ tar xvjf rohc-test-1.3.1.tar.bz2

44

Inside the source directory $ cd rohc-1.3.1, we configured the library

$./configure --prefix=/usr

Then we built the code by using $ make all

Then we installed the library using make install command.

5.4 ROHC Compression

ROHC Compression and Decompression is achieved by doing following process.

The implementation was done with the help of a code obtained from [17].

For the compression, first an RTP packet is generated. This packet is then sent

to the ROHC engine for the packet compression. As ROHC compression process

runs in the user space, the packet is sent to the IP table routine whose basic

function includes picking packet coming from a specified IP and sending it to

NFQUEUE. NFQUEUE is a routine that lies in the stream compressor code and

its basic purpose is to redirect the incoming packets. Nfqueue is the library of

netlink socket which sends packet pulled from the kernel and sends it to arpping

where it retrieves the MAC address using libnet library and then we prepare the

ethernet header and header is compressed using ROHC library then we

encapsulate the packet with ethernet header and send to the network. There is a

source MAC address and destination MAC address and eth type. Then we send

the packet to link layer which forwards it. We finalize the packet which consists of

the ROHC header packet and then send it to a raw socket. A raw socket sends or

receives the raw datagram excluding link level headers. It is the kind of socket in

which no standard protocol is required instead it is being developed by the user.

Then the packet is sent to the network.

The implementation flow is shown in figure 5.2. For the implementation purposes

the programs are implemented in a set of files and run and the result is obtained

which is captured with Wireshark.

45

Figure 5.2: ROHC Sender Machine

5.5 ROHC Decompression

The packet is then received for decompression in the ROHC decompressor

daemon which reads from raw socket. It then checks the Ethernet type and

forwards the ROHC packets to remove the Ethernet header. Then the packet is

46

decompressed and the packet is pushed through socket to local host. The packet

is read at port by rtp utility. The implementation flow is shown in figure 5.3.

Figure 5.3: ROHC Receiver Machine

5.6 Testing Scenario

For testing the ROHC daemon operations a testing scenario is created via code

routines such as RTP_Play() and RTP_dump(). The RTP play code sends the

data on the network. It sends a packet and provides the following information

related to a RTP packet.

47

Typically a voice packet size is of 30 bytes. When RTP_Play() program is run

headers are added with each voice chunk. The screen shot in figure 5.4 shows

the mp3 file which is taken as a VOIP application for testing and is converted to

rtp stream using wav2rtp software and then the headers of packet is

compressed.

Figure 5.4: Generating Stream of Packet

In addition to the RTP_Play() program there is a supportive code of RTP_dump()

that is used for testing the ROHC implementation. RTP_play() is at the sender`s

side whereas RTP_dump() is at the Receiver`s side. The function of RTP_dump()

is to capture and analyze RTP packets.

48

Chapter 6

RESULTS

The code has been simulated for header compression of different packets. This

chapter summarizes the achieved results and shows the runtime process of

various profiles, compression and decompression of packets using wireshark and

compression gain of various header compression profiles.

The screenshot in Figure 6.1 shows the uncompressed packets obtained via

wireshark. In this figure the header size is of 40 bytes. It is worth mentioning that

the 40 bytes of header is obtained when the packet is passed through the

transport and the IP layer. On this we didn’t apply the implemented compressed

scheme. The data is routed to the network. The total length of the packet is 124

bytes including 14 bytes of ethernet header. So the data is of 70 bytes and

header size is of 40 bytes making a total of 110 bytes.

49

Figure 6.1: Result of Uncompressed Packet using Wireshark

50

6.1 Achieved Results

Figure 6.2 shows the runtime process of ROHC compression using IP profile in

which the size of packet is 110 bytes. It shows that 17 bytes of header is

compressed out of 20 bytes, so now header size in IP profile is 3 bytes. In this

figure you can see that the packet at the IP level is compressed. When the IP

header is compressed the packet length is now compressed to 93 bytes, from

which payload size is 90 and header size is 3 bytes.

Figure 6.2: Runtime Process of Compressed IP Packet

51

The result of compression shown in figure 6.3 is captured using Wireshark. The

figure shows IP compressed packets in which the header size is compressed to 3

bytes. In actual the header size was 20 bytes of IP. The total size of packet was

of 110 bytes and when the IP header is compressed the length of packet now

becomes 93 bytes.

Figure 6.3: Result of IP Compressed Packet using Wireshark

52

Figure 6.4 shows the runtime process of ROHC compression using IP/UDP

profile in which the size of packet is same of 110 bytes. It shows that 23 bytes of

header is compressed out of 28 bytes (20 bytes of IP and 8 bytes of UDP), so

now header size in IP/UDP profile is 5 bytes. In this figure you can see that the

packet at the UDP level is compressed. When the IP/UDP header is compressed

the packet length is now compressed to 87 bytes, from which payload size is 82

and header size is 5 bytes.

Figure 6.4: Runtime Process of Compressed IP/UDP Packet

The screenshot in Figure 6.5 shows IP/UDP compressed packets obtained via

53

wireshark. In this figure the header size is compressed to 5 bytes when IP

header is also included. In actual the header size was 20 bytes of IP + 8 bytes of

UDP. The total size of packet was of 110 bytes and when the IP and UDP header

is compressed the length of packet is now 87 bytes.

Figure 6.5: Result of IP/UDP Compressed Packet using Wireshark

54

Figure 6.6 shows the runtime process of ROHC compression using IP/UDP/RTP

profile in which the size of packet is same of 110 bytes. It shows that 35 bytes of

header is compressed out of 40 bytes (20 bytes of IP, 8 bytes of UDP and 12

bytes of RTP), so now header size in IP/UDP/RTP profile is 5 bytes. In this figure

you can see that the packet at the RTP level is compressed. When the

IP/UDP/RTP header is compressed the packet length is now compressed to 75

bytes, from which payload size is 70 and header size remains 5 bytes.

Figure 6.6: Runtime Process of Compressed IP/UDP/RTP Packet

55

The screenshot in Figure 6.7 shows IP/UDP/RTP compressed packets obtained

via wireshark. In this the header size is compressed to 5 bytes when IP and UDP

headers are also included. In actual the header size was 20 bytes of IP + 8 bytes

of UDP + 12 bytes of RTP. The total size of packet was of 110 bytes and when

the IP, UDP and RTP header is compressed, the length of packet is now 75

bytes.

Figure 6.7: Result of IP/UDP/RTP Compressed Packet using Wireshark

56

6.2 Comparison of Obtained Results

Following shows the obtained results of header compression in various profiles in

table 6.1. It can be seen that ROHC header compression ratio increases as the

header size increases or we can say that when data is passed from more

protocols serially the more headers are compressed. It shows that the total

header size is of 40 bytes. When ROHC compression is applied using IP profile,

the compressed headers are 17 bytes and uncompressed headers are 23 bytes.

When compression is applied using IP/UDP profile, the compressed headers are

23 bytes and uncompressed headers are 17 bytes. When compression is applied

using IP/UDP/RTP profile, the compressed headers are 35 bytes and

uncompressed headers are only 5 bytes. This shows that 40 bytes headers are

now compressed to 5 bytes.

Table 6.1: Header Compression in Various Profiles

Header Compression
Profiles

Compressed
Headers (bytes)

Uncompressed
Headers
(bytes)

Uncompressed 40 40

IP 17 23

IP/UDP 23 17

IP/UDP/RTP 35 5

57

The bar graph in Figure 6.8 shows the percentage reduction in header sizes in a

graphical form. The Uncompressed profile is 100% as there is no compression.

When ROHC compression is applied on IP profile then headers are compressed

to 57.50%. Similarly, when ROHC compression is applied on IP/UDP profile then

headers are compressed to 42.50% and when ROHC compression is applied on

IP/UDP/RTP profile then headers are compressed 12.50%. This shows the

percentage reduction in header size from 100% to 12.50%.

Figure 6.8: Percentage Reduction in Header Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100%

57.50%

42.50%

12.50%

Header Profiles

Percentage Reduction in Header Size

Uncompressed Profile

IP Profile

IP/UDPProfile

IP/UDP/RTP Profile

58

Figure 6.9 shows the runtime process of ROHC decompression using IP profile.

It shows that the payload size is of 90 bytes and the header size is of 3 bytes

making a total of 93 bytes. Now the packet of 93 bytes is decompressed using

ROHC decompressor. The figure shows uncompressed packet length received

after decompression.

Figure 6.9: Runtime Process of Decompressed IP Packet

59

Figure 6.10 shows the runtime process of ROHC decompression using IP/UDP

profile. It shows that the payload size is of 82 bytes and the header size is of 5

bytes making a total of 87 bytes. Now the 87 bytes packet is decompressed

using ROHC decompressor. The figure shows uncompressed packet length

received after decompression.

Figure 6.10: Runtime Process of Decompressed IP/UDP Packet

60

Figure 6.11 shows the runtime process of ROHC decompression using

IPUDP/RTP profile. It shows that the payload size is of 70 bytes and the header

size is of 5 bytes making a total of 75 bytes. Now the 75 bytes packet is

decompressed using ROHC decompressor. The uncompressed packet length

received after decompression is of 110 bytes. The Ethernet header of 14 bytes is

added to it making a total of 124 bytes which is received.

Figure 6.11: Runtime Process of Decompressed IP/UDP/RTP Packet

61

This result shows that the packets are decompressed using various profiles and

total packets size of 75 bytes which was compressed is now decompressed and

total of 110 bytes with 14 bytes of Ethernet headers are achieved and the voice

of mp3 which was taken as a VOIP application has now gain its original position.

62

Chapter 7

CONCLUSIONS

7.1 Concluding Remarks

The low bandwidth cellular link when used for VoIP suffers from a problem of

large header overhead. High header overhead IP telephony speech data will be

transferred encapsulated in RTP/UDP/IP. A voice packet along with link framing

layer will be attached with IPv4, UDP and RTP headers of 40 bytes. Payload size

depends on frame sizes and speech coding being used and it can be as low as

15-20 bytes for certain audio codecs. Hence for VoIP header, overhead can be

as high as 60% to 80%. To improve this problem the IETF has standardized

header compression techniques under the umbrella of ROHC. Project comprises

of Robust Header Compression integration with Linux Kernel using Netlink

Socket. Robust Header Compression Library is built to compress the headers of

internet packets using official Internet standards specified in various relevant

RFCs. A VoIP application is tested over a low bandwidth link and the utility of the

Robust Header Compression is demonstrated.

The results we have been able to achieve are that the VOIP packet header is

63

compressed from 40 to 5 bytes as shown in figure 7.1. This implies that the

reduction of each VOIP packet is from 110 bytes to 75 bytes.

Header

40 bytes

Data

70 bytes

Header

40 bytes

Data

70 bytes

Data

70 bytes

ROHC Compression

Header

5 bytes

Data

70 bytes

Header

5 bytes

Figure 7.1: ROHC Compression of VOIP Packet

The performance of the ROHC based communication link is good. A lot of

bandwidth can be saved to transmit data. The ROHC implementation is found to

be most efficient when the data is encapsulated in large number of protocols, as

each protocol will have a header itself. From this work we have been able to get

a lot of knowledge about Linux and programming with it. This work builds a

strong capability of socket programming and header compression techniques in

our skill set.

7.2 Future Work

Based on the experience and progress we have made during this work, we can

recommend following possibilities for future work:

64

 Development of a user interface for configuring and managing the ROHC

capabilities by an end user.

 Porting the software we have developed to android and other PDA

systems for use on wireless links.

 Enhancements to ROHC library to incorporate newer compression profiles

being standardized by IETF such as TCP/IP.

65

REFERENCES

[1] ZENG Ye,SHEN Yi,HUANGs Jun-qiao(Department of Control Science and

Engineering, Huazhong University of Science and Technology, Wuhan

430074,China); VoIP Gateway Design based on Embedded Linux

System[J];Journal of Chongqing Institute of Technology;2006-05

[2] Hong S. Jung and P. Park. Effect of Robust Header Compression (ROHC)

and Packet Aggregation on Multi-hop Wireless Mesh Networks. In Proc.

IEEE CIT’06, Seoul, Korea, September 2006.

[3] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L.-

E.Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A.

Miyazaki, K. Svanbro, T. Wiebke, T. Yoshimura, and H. Zheng, “RObust

Header Compression (ROHC): Framework and Four Profiles: RTP, UDP,

ESP, and Uncompressed,” IETF RFC 3095, July 2001

[4] S. Rein, F.H.P. Fitzek, and M. Reisslein. Voice Quality Evaluation for

Wireless Transmission with ROHC. In Proc. IMSA, pages 461–466,

Honolulu, USA, August 2003.

[5] R. Pries, A. Mader, and D. Staehle. Performance of header compression

for VoIP in wireless LANs. Technical report, University of Wurzburg,

Institute of Computer Science, April 2007

[6] Casner,S. and Jacobson, V., "Compressing IP/UDP/RTP Headers for Low

Speed Serial Links", February 1999.

[7] B.Wang Q.Xiong W. Res,” The comparison of communication methods

between user and Kernel space in embedded Linux”, IEEE Conf, ICCP

2010.

[8] D. Taylor, A.Herkersdorf, A. D¨oring, G.Dittmann," Header Compression

(ROHC) in Next-Generation Network Processors", Applied Research

Laboratory, Department of Computer Science and Engineering

,Washington University in Saint Louis, 2002

[9] Bormann, C., Editor, "Robust Header Compression (ROHC)", RFC 3095,

June 2001.

[10] Love R. Linux Kernel Development, 2nd edition, Novell Press, 2003.

[11] Torvalds L. et al. The Linux kernel. Web pages at: http://www.kernel.org

[10 December 2010].

66

[12] Kaichuan He K. Why and How to Use Netlink Socket. Linux Journal, 2005.

Web pages at: http://www.linuxjournal.com/article/7356 [10 December

2010].

[13] Dhandapani G., Sundaresan A. Netlink sockets: An overview Web pages

at: http://qos.ittc.ku.edu/netlink/html/ [6 December 2009]

[14] Linux man-pages project. Netlink - Communication between kernel and

userspace. Web pages at: http://www.kernel.org/doc/man-

pages/online/pages/man7/netlink.7.html [6 December 2009].

[15] Salim J., Khosravi H., Kleen A., Kuznetsov A. RFC 3549 - Linux Netlink as

an ip services protocol. Webpages at:

http://www.faqs.org/rfcs/rfc3549.html [6 December 2009].

[16] Salim J., Haas R., Blake S. Netlink2 as ForCES Protocol (Internet-Draft),

2004. Web pages at: http://tools.ietf.org/html/draft-jhsrha-forces-netlink2-

02 [6 December 2009].

[17] Robust Header Compression (ROHC) library at https://launchpad.net/rohc/

[12 September 2010].

[18] Concept of Robust Header Compression (ROHC) at

http://www.effnet.com/sites/effnet/pdf/uk/Whitepaper_Robust_Header_Co

mpression.pdf [12 September 2010].

[19] Effnet ROHC (Robust Header Compression) Performance on Intel® Core

Microarchitecture - Based Processors. Webpages at

www.effnet.com/19350_EFFNET_Final.pdf [12 September 2010].

[20] Kuznetsov A. iproute: advanced routing tools for Linux. Web pages at:

http://linux-foundation.org [6 December 2009].

[21] Linux Forum at http://www.linuxforums.org/forum/kernel/167412-how-

send-data-kernel-module-user application-netlink-sockets.html [6

September 2009].

[22] Micheal Opdenacker, GNU/Linux and Free Software at http://free-

electrons.com [12 September 2010].

[23] Kernel Space - User Space Interfaces. Webpages at

http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html. [6

December 2009].

67

APPENDIX

Nfqueue

#ifndef _nfqueue_header_

#define _nfqueue_header_

 class NFQueue

 {

 public:

 NFQueue(int dataPacketSize_, int queueNumber_);

 ~NFQueue();

 /*

 The return values can be one of the following:

 0: Queue successfully initialized

 1: error during nfq_open()

 2: error during nfq_bind_pf()

 3: error during nfq_create_queue()

 4: can't set packet_copy mode

 */

 int initializeQueue(int (*callbackFunction)(/*void* pt2Object,*/

 struct nfq_q_handle *qh, struct nfgenmsg

*nfmsg,

 struct nfq_data *nfa, void *data));

 //5: socket generated an error

 int readQueue();

 int getQueueNumber();

 void destroyQueue();

 private:

 struct nfq_handle *h;

 struct nfq_q_handle *qh;

 struct nfnl_handle *nh;

68

 int fd;

 int rv;

 char *buf;

 int dataPacketSize;

 int queueNumber;

 };

#endif

ROHC Compdaemon

#ifndef _rohc_compd_header_

#define _rohc_compd_header_

 class ROHCCompDaemon: public ROHCDaemon

 {

 public:

 ROHCCompDaemon(int dataPacketSize, int queueNumber_);

 static int callbackFunctionRTPImplementation(struct

nfq_q_handle *qh,

 struct nfgenmsg *nfmsg,struct nfq_data *nfa, void *data);

 static uint32_t processRTPPacket (struct nfq_data *tb);

 };

#endif

ROHC Daemon

#ifndef _rohcd_header_

#define _rohcd_header_

 class ROHCDaemon: public NFQueue

 {

 public:

 ROHCDaemon(int dataPacketSize, int queueNumber_);

69

 static ROHCEngine* getROHCEngine();

 };

#endif

ROHC Engine

#ifndef _ROHCEngine_header_

#define _ROHCEngine_header_

using namespace std;

/* includes for using ROHC library */

extern "C" {

}

 struct flowTableEntry

 {

 uint32_t flowID;

 uint32_t ttl;

 string src_ip;

 string dst_ip;

 char *src_mac_address;

 char *dst_mac_address;

 };

 class ROHCEngine

 {

 public:

 ROHCEngine();\

 //General Utility Functions

 bool fileExists(const char *filename);

 void printFlowTable();

 void updateTimeToLive();

 unsigned char atoh (unsigned char data);

 //Flow Specific Utility Functions

 uint32_t static calculateFlowID(uint32_t,uint16_t);

70

 bool flowExists(uint32_t flowID);

 void updateFlow(uint32_t flowID);

 bool noActiveFlows();

 //Flow Management Functions

 char* getFlowSrcMacAddress(uint32_t flowID);

 char* getFlowDstMacAddress(uint32_t flowID);

 uint32_t getFlowIDAtIndexNum(uint32_t index);

 flowTableEntry * getFlowTableRowPointer(uint32_t flowID);

 int * getFlowMutex(uint32_t flowID);

 //0: Flow added successfully

 //1: Flow could not be added

 int addFlow(uint32_t flowID , string src_ip, string dst_ip, char*

src_mac_address);

 //ROHC functions

 void initializeROHCLibrary();

 void setCompressionProfile(int profileID);

 /* Profile IDs

 * 1: IP

 * 2: IP/UDP

 * 3: IP/UDP/RTP

 * 4: Uncompressed

 */

 int compressPacket(char* uncompressedPacket, char* rohcPacket,

 int uncompressedPacketLength);

 //Packet processing functions

 unsigned char* createEthernetHeader(char *src_mac, char *dst_mac,

int protocol);

 int sendPacketOnRawSocket(unsigned char* packet, int packetSize);

 private:

71

 /* the ROHC compressor */

 struct rohc_comp *compressor;

 //A flowTableEntry is a structure used to manage the states of a flow.

 flowTableEntry * flowTable;

 //The rowLockArray is a set of mutexes to manage thread-safety among

flows.

 int *rowLockArray;

 };

#endif

Stream Compressor

#ifndef _rohc_header_

#define _rohc_header_

 class StreamCompressor : public PThread

 {

 public:

 StreamCompressor();

 ~StreamCompressor();

 static ROHCEngine* getROHCEngine();

 friend void *runROHCCompDaemonStream(void *t);

// friend void *runSIPDaemonForSBCStream(void *t);

 friend void *runROHCEngine(void *t);

 static ROHCEngine * rohc_engine;

 static ROHCCompDaemon *

staticROHCCompressorDaemonHandle;

// static SIPDaemonForPhone *

staticSIPDaemonHandleForPhone;

 private:

// bool keepSIPDaemonForPhoneAlive;

 bool keepROHCCompDaemonAlive;

72

 bool keepROHCEngineDaemonAlive;

 };

#endif

Stream Decompressor

#ifndef _rohc_header_2

#define _rohc_header_2

 class StreamDecompressor : public PThread

 { public:

 StreamDecompressor();

 ~StreamDecompressor();

 static ROHCEngine* getROHCEngine();

 friend void *runROHCDecompDaemonStream(void *t);

 friend void *runROHCEngine(void *t);

 static ROHCEngine * rohc_engine;

static ROHCDecompDaemon

*staticROHCDecompressorDaemonHandle;

 private:

 bool keepROHCDecompDaemonAlive;

 bool keepROHCEngineDaemonAlive;

 };

#endif

ROHC Decompressor Daemon

#ifndef _rohc_decompd_header_

#define _rohc_decompd_header_

class ROHCDecompDaemon

{

 public:

 static void processROHCStream();

 static ROHCEngine* getROHCEngine();

}; #endif

