
PARALLEL SOFTWARE IMPLEMENTATION OF PPM (METHOD C)

DATA COMPRESSION SCHEME

Submitted by:

Nabeeg Mukhtar

Supervised by:

Assoc Prof Dr Athar Mahboob

THESIS

Submitted to:

Department of Electronics and Power Engineering,

Pakistan Navy Engineering College Karachi,

National University of Sciences and Technology, Islamabad

In fulfillment of requirements for the award of the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

With Specialization in Communication

March 2012

1

ACKNOWLEDGMENTS

First of all, with a deep and profound gratitude, I am grateful to almighty ALLAH (ever

Merciful and Beneficent) for his blessing upon me and giving me wisdom, knowledge and

understanding without which I would not have been able to successfully complete this thesis

work.

It is a great honor for me that after an extensive coursework related to the subject; I have

completed this research work. I would like to express my sincere gratitude and acknowledge the

guidance of all those who were helpful to me in the course of this work.

My special thanks to Dr Athar Mahboob, Associate Professor Department of Electronic

and Power Engineering at PN Engineering College, who is my Supervisor for this thesis work.

The able guidance and support, at every step of the research work played a vital role in

accomplishment of this work.

In addition to above, I am also thankful to the guidance committee comprising of

following faculty members who professionally led me to achieve my target:

 Professor Dr Pervez Akhter

 Associate Professor Dr Arshad Aziz

 Associate Professor Dr. Sameer Qazi

At the end I would pay my sincere gratitude to my parents whose wish I begin this post

graduate degree and with whom I am looking forward to share this Degree.

2

Abstract

The “Prediction by Partial Matching” (PPM) data compression scheme is a state of the art

compression scheme developed by Cleary and Witten. This scheme is capable of achieving very

high compression rates proven to be as low as 2.2 bits/character for English test.

The nature of the PPM scheme is such that it is based on two stages heavily dependent on

each. The first is the context modeling whereas the second being the encoding stage. Both

these stages involve excessive looping, searching and data sharing. These peculiar natures

makes PPM scheme perform quite slow at processing time as compared to some others well

know compression schemes.

In this work different parallel implementations of a variant of PPM (PPMC) is shown so as to

achieve a much faster processing time. The results drawn show that parallelization significantly

assist reducing processing time for PPMC to as low as one fourth of the sequential processing

time. This work also introduces a few new parallel architectures that can be considered suitable

for any process which may require parallel speed up.

3

Table of Contents

Abstract ... 2

Table of Contents .. 3

List of Figures .. 5

Chapter 1: Introduction .. 6

1.1 Introduction .. 6

1.2 Thesis Scope .. 6

1.3 Chapters Organization .. 7

Chapter 2: Data Compression ... 8

2.1 Data Compression ... 8

2.2 Classification of Data Compression Schemes ... 9

2.3 Compression Ratio .. 11

2.4 Data Compression Corpora ... 12

2.5 Data Compression Today .. 14

Chapter 3: PPM Data Compression Scheme ... 16

3.1 Arithmetic Coding ... 16

3.2 Prediction by Partial Matching (PPM) ... 20

3.2.1 PPM Variants ... 22

3.2.2 PPM method C (PPMC) ... 23

Chapter 4: Parallel Computing .. 24

4.1 Parallel Computing .. 24

4.2 Parallel Architectures .. 25

4.2.1 Parallel Lines ... 25

4.2.2 Sequential Pipes .. 26

4.2.3 Parallel Pipes ... 28

4.2.4 Hybrid Tree.. 29

Chapter 5: Parallel Data Compression .. 30

5.1 Parallel Implementation of Compression Methods .. 31

5.2 Parallel PPM (method C) ... 32

Chapter 6: Parallel Software Implementation of PPM (method C) Data Compression Scheme 33

4

6.1 Software Environment .. 33

6.1.1 C# Programming Language ... 34

6.1.2 .Net Framework .. 34

6.1.3 Relation between C# and .Net Framework ... 35

6.1.4 Task Parallel Library (TPL) ... 35

6.1.5 Visual Studio .. 35

6.1.6 Windows 7 .. 36

6.2 Hardware Environment ... 36

6.2.1 Intel Core i5 ... 37

6.3 PPMC Implementation .. 37

6.3.1 Context Orders .. 38

6.3.2 Pseudo Code ... 40

6.3.3 Sequential PPMC .. 43

6.3.4 Parallel Lines PPMC ... 43

6.3.5 Sequential Pipes PPMC ... 46

6.3.6 Parallel Pipes PPMC .. 48

6.3.7 Hybrid Tree PPMC ... 50

Chapter 7: Test Analysis and Results .. 52

Chapter 8: Conclusion ... 62

8.1 Concluding Remarks .. 62

8.2 Future Works .. 63

Appendix A .. 64

Information theory behind compression .. 64

A.1 Entropy .. 64

A.2 Redundancy... 66

A.3 Relation between entropy and redundancy ... 66

Appendix B .. 67

Prediction and Probability theory concepts ... 67

B.1 Prediction .. 67

B.2 Probability ... 67

B.3 Number line (probability line) concept in probability .. 68

References .. 70

5

List of Figures

Figure 1: Comparison between a compressed and uncompressed image file. 8

Figure 2: Data Compression types .. 11

Figure 3: Arithmetic Coding .. 17

Figure 4: Arithmetic Coding .. 17

Figure 5: Arithmetic Coding .. 18

Figure 6: Parallel Lines Model ... 26

Figure 7: Sequential Pipes Model ... 27

Figure 8: Parallel Pipes Model .. 28

Figure 9: Hybrid Tree Model ... 29

Figure 10: Parallel Lines PPMC .. 44

Figure 11: Sequential Pipes PPMC .. 46

Figure 12: Parallel Pipes PPMC ... 48

Figure 13: Hybrid Tree PPMC .. 50

6

Chapter 1: Introduction

1.1 Introduction

One of the fastest penetrating instruments in our lives is computers. Computers process data to

get information and exchange information. With the passage of time, the amount of data which

is processed by computers has increased significantly causing a need to realize the importance

of data compression.

Data compression essentially revolves around the problem of efficiently compressing

computer’s data. The modern field of software based data compression came into existence in

the late 1970s. The field of data compression addresses data compression schemes and there

use in compressing data. All data compression schemes that efficiently compress data add

length to processing time. This lengthy processing time by these schemes is because on the fact

that such schemes reprocess data multiple times to produce efficient compressed output. One

such scheme is “Prediction by Partial Matching” (PPM). The PPM data compression scheme is

an entropy coder capable of coding symbols close to their entropy.

The work here makes use of parallel computing to address the problem of processing time

speed up for the PPM (method C) data compression scheme.

1.2 Thesis Scope

A lot of research has been done on the PPM data compression schemes. These works address

efficient implementation, optimization and processing time speed up for the sequential

implementation of PPM schemes. No work on parallel implementation of any PPM schemes has

been done till date. This work is the first in line to address the use of parallel computing for a

PPM scheme.

The work here is mainly concerned with the parallelization of PPM (method C) data

compression scheme so as to achieve a shorter and better processing time. It does not involve

7

any efficiently implementation or optimization of the stated data compression scheme. This

work makes use of software environment to implement, test and analyze the parallelization of

PPM (method C). The software environment is composed on C# programming language and the

.Net framework. All the functionalities used are part of the core C# and .Net framework. The

implementation does not depend upon any external or third party ISVs (Independent Software

Vendors) libraries. The hardware underneath which is called by the software environment is a

quad core (Intel core i5) system.

Parallel software implementation of PPM (method C) data compression scheme analyses four

different parallel implementations of PPMC and compares them with the sequential

implementation of PPMC to observe parallel speed up. It also introduces two new parallel

architectures and a name based identification for all parallel architectures.

1.3 Chapters Organization

Chapters in this thesis report are organized as follows:

 Chapter2 begins with introduction to data compression field.

 Chapter3 is based on PPM data scheme and related knowledge.

 Chapter4 introduces parallel computing.

 Chapter5 discusses parallelism in data compression.

 Chapter6 introduces the software and hardware environments used for parallelization

of PPMC.

 Chapter7 completes test and results.

 Chaptere8 adds concluding remarks and suggested future work for this thesis.

Appendix A is on information theory concepts related to data compression theory. It may be

handy if require some prerequisite knowledge on related concepts of chapter2.

Appendix B describes some probability concepts related to chapter3.

8

Chapter 2: Data Compression

2.1 Data Compression

Data compression is a process of removing redundancies or the extra data from data. This

process revolves around processing of raw data in such a manner so that it loses its actual size

when compressed and regains it when decompressed.

The field of data compression is concerned with the finding, study and development of novel

and efficient data compression techniques. The modern software based data compression field

is quite new as it got recognized around 30 years back. Over this short period, a huge amount of

research and developments have been accomplished in this field. This field has penetrated

computer’s data to such an extent that a number of its algorithms have become a standard

data file types such as mp3, pdf, jpg and many more. Nowadays a lot of computer processes

speak to each another in terms of compressed data.

Figure 1: Comparison between a compressed and uncompressed image file.

An uncompressed image in .tiff format
File size is 134 KB

A compressed image in .jpg format
File size is 16.2 KB

9

Figure 1 (above) shows two images, one uncompressed and the other as a compressed file.

Notice here that the file size has reduced significantly in the compressed version.

During the process of compression, a file (data stream) is subjected to a compression algorithm.

This algorithm checks for repetitive patterns or redundancies that can be safely removed from

this stream and later recovered when reprocessed (backward operation). This reprocessing of

data is called decompression.

The whole process of compressing and decompressing takes time; usually compression

algorithms which produce high quality compression are restricted to more time consuming

computing. This leads to classification and categorizing of compression algorithms.

2.2 Classification of Data Compression Schemes

Data compression schemes, algorithms or techniques can be classified and group together in a

number of way. Most common classification and grouping is based on similar characteristics

that are observed by these schemes. Some of the most common and known classifications are

as follows:

The following is based on how correctly a compression scheme performs:

 Lossless and lossy types

The most common classification is to group compression methods as either lossless

or lossy. Lossy types give better compression at the price of losing some

information. When their output compressed stream is decompressed, the result is

not identical to the original data stream [1]. If the loss of data is small the difference

may be negligible. Lossy compression methods are commonly used to compress

images, video, or audio. However in executable, source, text and other similar files

no loss can be tolerated as it will alter the content of such files, here the use of

lossless methods are best suited. Lossless methods return complete file on

decompression without altering or losing any of the original file contents.

10

Examples include:

Lossy type: JPEG, mp3, etc.

Lossless type: PPM, LZW, etc.

Another classification is based on how a compression scheme processes data, these includes:

 Statistical methods

A statistical method populates the statistical records of all unique symbols in a data

stream and later on these assign compression bits.

Examples include: Huffman coding, Arithmetic coding, PPM, etc.

 Dictionary methods

Dictionary based methods makes a storage (dictionary) marking the occurrence of

unique symbols during compression, any symbol marked previously is not restored.

Examples include: LZW, LZ77, LZMA, GIF images, etc.

Another well-known classification of compression techniques is based on files types, these

includes:

 Text compression methods

These are usually associated with compressing of text files.

Examples include: Shannon-Fano coding, Huffman coding, etc.

 Image compression methods

These methods are for image files compression.

Examples include: JPEG, JPEG 2000, PNG, GIF, WEBP, etc.

 Audio compression methods

Associated with audio files.

Examples include: WAVE Audio Format, FLAC, ACC, Dolby AC-3, mp3, etc.

 Video compression methods

Used for video formats compression.

Examples include: MPEG, MPEG-4, VC-1, H.264, etc.

11

Figure 2: Data Compression types

Figure 2 gives the diagrammatic chart representation of all the data compression types. All

these methods are aimed at reducing data size. The principles related to data compression

suggest that any compression algorithm capable of reducing data to about half its size is

considered as a good compression algorithm. The measure of this efficiency is defined by

compression ratio.

2.3 Compression Ratio

Compression ratio is a simple and effective method of measuring how good a compression

scheme can perform. It is defined as:

This measurement for a given data or data set determines the ratio between the compressed

data output bits to the raw data input bits of the data set. A ratio of half or less is considered as

good compression. Over the past many years some standard data sets have been adopted to

Data Compression types

Lossy Lossless

Statistical Dictionary

Text Video Audio Image

Statistical Dictionary

Text Video Audio Image

12

measure the effectiveness of compression schemes. These standards data sets are referred to

as “corpus”.

2.4 Data Compression Corpora

A corpus is a distinct set of files, used for evaluating the practical performance of different

compression schemes [2]. The compression rate is measured in bits per symbol (bps) and is the

resulted ratio of the size of the output bytes to the size of the input bytes. A value of 8 bps

means no compression; smaller ratio values represent better (stronger) compression. [2]

There are different corpora for different data types. Some corpora contain smaller files whereas

others have larger files. Some corpora put the emphasis on text files, others on picture, video,

sound or other data type files.

The following is a list of some known available corpus:

 The Calgary Corpus

Authors: Ian Witten, Timothy Bell and John Cleary

Year: 1987

Location: University of Calgary, Canada.

The Calgary Corpus is a set of 18 files traditionally used to test data compression

algorithms and implementations. They include text, image, and object files [1]. The

Calgary corpus is a standard for text based and lossless compressions methods. This

corpus is available at [3]. The work here uses this corpus for testing and analyzing.

 The Canterbury Corpus

Authors: Ross Arnold and Timothy Bell

Year: 1997

Location: University of Canterbury, New Zealand.

The Canterbury corpus came as an alternative to the Calgary corpus. The design of

Canterbury corpus follows the new era of file’s types which were not present at the

13

time of Calgary corpus. There are two editions of Canterbury corpus; these are

“Standard Canterbury corpus” and “large Canterbury corpus”. This corpus can be found

at [4]. This work also uses Large Canterbury corpus for testing and evaluation.

 Lukas Corpus

Author: Jurgen Abel

Year: 2006

Location: Germany.

The Lukas corpus is a set of medical images mostly considering of two-dimensional (2D)

radiographs in different image files format. These files are used to evaluate the practical

performance of lossless compression algorithms in the medical imaging field. This

corpus is available at [2] and [5].

 The Protein Corpus

Authors: Craig Nevill-Manning and Ian Witten

Year: 1999

Location: Paper from the IEEE Data Compression Conference 1999, Snowbird, Utah,

United States of America.

The Protein Corpus is a set of 4 files, which were used in the article "Protein is

incompressible" by Craig Nevill-Manning and Ian Witten from the DCC 1999.

Compressing such files is difficult so this corpus provides a good evaluation ground. The

corpus is available at [2].

 The Silesia Corpus

Author: Sebastian Deorowicz

Year: 2003

Location: Silesian University of Technology, Poland.

The Silesia corpus can be considered as a modern file based corpus. This corpus involves

large files ranging up to 50 MB for evaluation. This corpus is available at [6].

14

2.5 Data Compression Today

With the rise and advancement of computer technology, data compression has evolved into an

art of its own. Today almost every file in a home user computer is in some compressed form.

Today’s modern data compression schemes and software can easily compress a billion bytes of

data to about a quarter of its size or even less. Some of these well-known schemes and

software are listed here.

List of Compression Schemes:

 Run-Length Encoding (RLE)

 Shannon-Fano Coding

 Huffman Coding

 Arithmetic Coding

 Prediction by Partial Matching (PPM)

 LZ77

 LZW

 UNIX Compression (LZC)

 GIF Images

 Deflate: Zip and Gzip

 LZMA and 7-Zip

 PNG

 JPEG

 DjVu

 MPEG

 MP3

 OGG

 The Burrows-Wheeler Transform Method

15

 ACB

 Portable Document Format (PDF)

List of Compression Software:

 WinRAR

 WinZip

 WinAce

 Stuffit

 WinUHA

 7-Zip

 ALZip

 BitZipper

 The Unarchiver

 PeaZip

 IZArc

16

Chapter 3: PPM Data Compression Scheme

This work parallelizes the PPM data compression scheme. PPM is a two stage data compression

scheme that makes efficient use of Arithmetic Coding. The Arithmetic Coding is a statistical

lossless data compression scheme often referred to as entropy encoder. Understanding of

Arithmetic Coding is a prerequisite to the understanding of PPM data compression scheme.

3.1 Arithmetic Coding

Arithmetic coding is a compression technique that is capable of achieving excellent

compression on raw data. Its principle strength lies in the fact that it can generate code of

length close to Shannon’s entropy [7]. Arithmetic coding is a lossless compression technique

and part of the statistical methods family.

The principle of arithmetic coding goes back to the early 1960s when it was first proposed by

Peter Elias [1]. In 1987 Ian Witten, Timothy Bell and John Cleary came with a practical software

implementation of Arithmetic coding that has become well known [8].

Arithmetic coding overcomes the problem of assigning integers codes to individual symbols (or

bytes from a data stream) [1]; it does this by assigning a large code to the file. This technique

works in two-passes; first it calculates the probabilities of each occurring symbol. The second

pass involves the coding of these symbols respective to their probabilities. This two-pass

method is illustrated here with some description:

i. Consider a data stream of three reoccurring symbols.

Let the symbols be s1, s2 and s3.

ii. Divide these symbols along a number line [0, 1).

Initially all symbols are assigned equal probabilities as shown in figure 3.

17

Figure 3: Arithmetic Coding

iii. If a symbol occurs and needs to be coded, use the interval respective to its assigned

interval on the number line.

To code a symbol say s2 (reference figure 4), its probability range interval is used to

redefine the complete number line and all respective probabilities, the occurrence

of this symbols s2 also means that now it may have a higher probability. Similarly if

another symbol s1 is to be coded (reference figure 5), its new probability range

interval is used, every symbol is redefined in this range as before and the probability

of this symbol is increased.

Figure 4: Arithmetic Coding

 .0000

0.6667

0.3333

0.0000

Pr 𝑠1 /3

Pr 𝑠2 /3

Pr 𝑠3 /3

 .0000

0.6667

0.3333

0.0000

Pr 𝑠1 /3

Pr 𝑠2 /3

Pr 𝑠3 /3

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠2

18

Figure 5: Arithmetic Coding

iv. Any value that can exist between the final interval ranges gives the arithmetic code

for the data stream.

After coding all the symbols the final probability interval is used which in this case is

[0.5834, 0.6667), any value in-between this range can be used to define the

complete coded stream.

v. To reverse this process and get the original data stream from the coded

(compressed) file, a (similar to forward) backward operation is implemented.

The coded value is used again and again to redefine the complete probability

number line [0, 1) until the complete original data stream is achieved.

Although the above method illustrates the concept behind arithmetic coding, in actual practical

implementation it is not feasible as it produces a very large decimal value which even today’s

modern computers can’t handle. To overcome this problem the practical implementation uses

integer computations. For this, instead of using probabilities it works with frequencies and to

represent the current state of a symbol its frequency range is used which in the previous case

considering symbols s1 at the beginning of the coding process is:

Low count = 0 & high count = 3

0.6667

0.5834

0.4 67

0.3333

Pr 𝑠1 /3

Pr 𝑠2 2/3

Pr 𝑠3 /3

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠1

19

The following pseudo code show steps involved in practical implementation of Arithmetic

coding (Referenced from [7]):

 Read symbol from data stream

 Calculate low_count, high_count and total (this is the equal to all symbols read so

far)

 Code (Encode) the symbol as:

 Set r range / total

 Set low low r low count

 If high count < total then

 Set range r (high count low count)

 Else

 Set range range r low count

 While range One_Quarter

 If low range One_Half

 bit_plus_follow(0)

 Else If One_Half low

 bit_plus_follow(1)

 Set low low One_Half

 Else

 Set bits_outstanding bits_outstanding 1

 Set low low One_Quarter

 set low 2 low and range 2 range

 bi_plus_follow(b):

 put_one_bit(b)

 While bits_outstanding 0 do

 put_one_bit(1 b)

 set bits_outstanding bits_outstanding 1

20

 Decode as:

 State variables range and diff: value low are maintained.

 Set r range / total

 Set target min { total 1, diff div range }

 search for symbol (s) such that low count target high_count

 Set diff diff r low_count

 If high_count total

 Set range r (high_count low_count)

 Else

 Set range range r low_count

 While range One_Quarter

 Set range 2 range

 Set diff 2 diff get_one_bit()

 Output s

Altogether Arithmetic Coding is a good compression scheme which can be used as a solo

encoder/decoder or as a combination with others useful data compression schemes. One such

scheme is PPM which invokes the Arithmetic Coder in an excellent manner.

3.2 Prediction by Partial Matching (PPM)

The prediction by partial matching (PPM) is a sophisticated, state of the art compression

scheme originally developed by J. Cleary and I. Witten (1984) [10]. This scheme is based on an

encoder that maintains a statistical model of the text [1]. PPM falls in the statistical

compression methods and is a lossless type data compression scheme.

In PPM, the encoder inputs the next symbol, assign it a probability and send this symbol to an

arithmetic encoder so that it can be coded. In simpler words PPM alters the symbol’s

21

probabilities that are used by an arithmetic coder. It improves the symbol’s probabilities to

such an extent that they may be coded as close as their entropy.

The arithmetic coder has a drawback; it restricts itself to one context length. On the other hand

PPM uses finite context length models (usually up to 3, 4 or more). During encoding, at each

stage the symbol to be coded is first searched in the longest context and if it is available it is

encoded using this context probability, else an escape symbol which is a special symbol to

represent a context order is encoded and the model switches to a lower length context to

search again for the symbol. In PPM the model can switch to as low as context order “-1”, here

all the symbols are available and are assigned an equal probability distribution. This lowest

context order encodes a symbol in its original size. In the decode phase, PPM reads the

compressed stream, here if it finds an escape symbol it switches to a lower context order else it

uses the current context to decode the symbol.

Similar to an arithmetic coder; PPM is also a two-pass method, first includes the probabilistic

modeling of finite length context models and next is the encoding based on these models. For

this second pass there is no fix restriction of using arithmetic coder, any other method which

may require a good statistical model can be used. Suitable coding methods that can replace

arithmetic coder in PPM includes Huffman coding and range coding, however some special

variants of dictionary based LZ schemes also make useful use of PPM.

One critical issue that effects a PPM implementation is how and what probability should be

assigned when an escape event occurs. To address this issues various mechanisms have been

suggested, these are known as variants of PPM.

22

3.2.1 PPM Variants

Each PPM variant approach the problem of assigning probabilities to escape events. Currently

there are ten (10) variants of PPM.

 PPMA (Method A)

 PPMB (Method B)

John G. Cleary and Ian H. Witten, 1984 [10].

 PPMC (Method C)

Alistair Moffat, 1990 [11].

 PPMD (Method D)

Howard, 1993 [12].

 PPMII

Dmitry Shkarin, 2002 [13].

 PPMP (Poisson Distribution)

Ian H. Witten and T. C. Bell, 1991 [14].

 PPMX (Poisson Distribution Approximate)

Ilia Muraviev, 2008 [15].

 PPM*

John G. Cleary, W. J. Teahan and Ian H. Witten, 1993 [16].

 PPMZ (Method Z)

Charles Bloom, 1996 [17].

23

 Fast PPM

Paul G. Howard and Jeffery Scott Vitter, 1994 [18].

3.2.2 PPM method C (PPMC)

PPMC a variant of PPM (Prediction by Partial Matching) data compression scheme comes in line

after the original PPM (method A and B). PPMC also known as PPM method C was suggested by

A. Moffat in his 1990 paper [11].

Like other PPM variants PPMC also solves the problem of assigning probabilities to the escape

events. PPMC assigns a probability of one to an escape symbol every time it sees a new symbol

in a particular context. When an escape event is called it uses this (escape symbol) probability

to encode the event and move to a lower context order. Every new symbol occurrence

increases the escape symbol probability by one. The maximum probability that an escape

symbol can attain in PPMC is equal to the number of unique distinct symbols in that context.

24

Chapter 4: Parallel Computing

4.1 Parallel Computing

Parallel Computing is a computational form where many executions or process are carried out

side by side. It implies simultaneous execution of multiple instructions. It is based on the

principle that large problems can often be divided into smaller ones, which can then be solved

concurrently (in parallel) [19+ that is a simple “divide and conquer” strategy. Parallelism in

computing has been employed for many years, mainly where high-performance computing is

needed. Interest and developments in Parallel Computing has grown lately due to the easily

availability of today’s multicore/multiprocessor based personal computers.

Parallelism (as in parallel computing) can be achieved at several different stages, including:

 Bit level

 Instruction level

 Data level

 Task level

The central idea behind parallel computation is to achieve a faster computation environment.

Parallelism slays the processing time when multiple process are run as processes are no more

dependent on one processing unit, and depending on the amount of processing hardware

available no queue may be necessary. But as with many other good things this faster

computation and lesser processing time come at a price of greater usage of the following:

 power consumption

 processing units (hardware)

 memory consumption

25

Compared to sequential computer programs, parallel computer programs are difficult to write

as concurrency introduces several new classes of potential software bugs [20]; among these

communication and synchronization between the subtask are the most common ones which

restricts good parallel performance.

Modern parallel programs and software uses data and task level parallelism, with data level

being the most common. Data level parallelism is mostly achieved from multithreading whereas

task level through task parallelism (process parallelism). In multithreading the threads (parts or

instructions of a process) share hardware resources. In task parallelism resources are discrete.

Classification of parallel computing falls under parallel architectures.

4.2 Parallel Architectures

The word parallel architectures correspond to the parallel models used in the parallelization of

PPM data compression scheme. A total of four different parallel models have been

implemented in this work. Self-authored names are used for all these parallel models. Some

parallel architectures are similar to the ones describe in many literatures on parallel computing,

whereas others use a new approach to parallelism. The parallel models show the flow of data

through the processing elements (cores). These models are illustrated with some description as

below:

4.2.1 Parallel Lines

This model is the simplest and the most common known parallel implementation that can be

used for almost any process. Although named here as “Parallel Lines” in many literature this has

often been mentioned as “task parallelism” or simply “task parallel”. The model work in a

simple straight forward manner, it divides the large input data into smaller (input) data chunks

and sends each chunk to a separate processing element which runs a copy of the original

process.

26

Figure 6: Parallel Lines Model

The figure above (figure 4) depicts Parallel Lines model. Core1 processes data chunk-1, core2

processes data chunk-2 and so forth. This model produces two outputs. The first contains the

intermediate output data chunks of each core (processing element) and their respective

header, whereas the second final output is the merger of all the first stage output’s chunks. In

this architecture the processing of multiple chunks of original data by multiple processing

elements at the same time makes execution faster.

4.2.2 Sequential Pipes

The “Sequential Pipes” is a simple sequential (serial) pipeline model that uses multicores. Many

Processes can be divided into a two stages or more; therefor this model uses two cores or more

 Input Data

Data chunk 1 Data chunk 2 Data chunk 4 Data chunk 3

Core

1

Core

2
Core

3
Core

4

H1 | D1 H2 | D2 H3 | D3 H4 | D4

Headers + Output Data

Original Data

Data

Segmentation

Parallel

Processing

Output Data

Segments

Merged Output

27

in a pipeline manner to complete the task. Such pipeline architecture is often referred to as

“data message passing parallelism”.

Figure 7: Sequential Pipes Model

The figure above (figure 5) shows Sequential Pipes model. In this data is fetched by the first

core which processes it and passes it to the second core which reprocesses it. In this

implementation the second core purposely lags the first core by a minimum time of t+1 unit

(here t depicts first core start time). The output is obtained from the second core. A number of

data passing (message passing) stages can be used depending on the task to be accomplished.

This architecture saves time only when the original process can be divided into multiple

pipeline stages.

 Input Data

Core

1

Core

2

Output Data

Original Data

Parallel

Processing

Output

28

4.2.3 Parallel Pipes

The Parallel Pipes model is the task parallelization of the Sequential Pipes model. It combines

the features of both Parallel Lines (task parallel) and Sequential Pipes (pipeline or data message

passing) models in one. Parallel Pipes divides the larger input data file into smaller chunks and

then on these chunks applies multicore pipeline processing model.

Figure 8: Parallel Pipes Model

The figure above (figure 6) shows Parallel Pipes model. This model follows both task parallelism

and data parallelism. First the large data stream is divided in to equal smaller chunks and then

separately processed in a pipeline style data (message) passing manner. The number of parallel

pipeline stages is equal to the number of data chunks.

Original Data Input Data

Core

1

Core

2

Header + Output Data

Parallel

Processing

Merged Output

Data chunk 1 Data chunk 2

Core
3

Core

4

H1 | D1 H2 | D2

Data

Segmentation

29

4.2.4 Hybrid Tree

This model is also similar to a multicore pipeline model with a key difference that it uses

multiple (in parallel) processing elements in the first stage. This model is based on “decision

tree” model where the final stage is been driven by the results of the previous.

Figure 9: Hybrid Tree Model

Figure 7 shows a Hybrid Tree Model. In implementation, first a copy of data is passed to all the

parallel processing elements (cores) in the first stage whose processed output is used to drive

the final stage. These intermediate outputs can also be used in a decision-making manner by

the final stage. Note that the processing elements in the first stage are in parallel and not

dependent on one another; any dependencies of the first stage elements on one another can

cause a parallel deadlock. Also to be noted here is that each processing element in the first

stage forms a pipeline model with the final stage processing element.

 Input Data

Core

1

Core

3

Output Data

Original Data

Parallel

Processing

Output

Core

2

Core

4

30

Chapter 5: Parallel Data Compression

Parallelism in data compression involves the use of parallel computing methodologies on

compression schemes to reduce processing time. It has been observed that mostly lossless data

compression schemes and methods which outperforms in compression (that is have a very low

compression ratio) usually performs lazy at processing time. This laziness is inherited from the

compression method’s algorithm which usually involves excessive looping, searching and data

access.

The goal of parallelization is to overcome the critical processing phases which add time to a

process execution. In data compression these phases involves (a few common phases)

accessing data stream, searching, sorting, storing, looping and memory access.

In general, data compression algorithms and software are not designed to work concurrently;

parallel data compression is only applied for very large data streams. Operating a compression

method sequentially on a very large file can be quite slow. Often large files can take several

minutes to compress. Usually these large files are divided into smaller chunks and send to

separate processing units where each processing unit runs through a copy of the applied

compression method. This sort of parallel processing is governed by Amdahl’s law [21] which

states:

“Theoretically, by doubling processing elements, execution time should halve and with the

second doubling, execution time should halve again.”

Practically, in data compression, a very few parallel implemented methods achieve this optimal

speed up and that to when doubling is applied once or a couple of times (not more). Another

fact associated with compression methods is that fine-tuning an algorithm to squeeze out the

last remaining bits of redundancy from the data gives diminishing returns [1]. Modifying an

algorithm to improve compression by 1% may increase the run time by 10% and the complexity

31

of the program by more than that [1]. So theoretically it can be said that parallel data

compression can indeed work out good for data compression schemes.

5.1 Parallel Implementation of Compression Methods

Over the past few years a number of researches have been conducted to examine the

possibilities of parallelism in data compression. Not every attempt made resulted in success.

Here a few of them have been reviewed.

Parallelism to lossless dictionary based compression methods is the most common. Several

researchers have worked on parallel implementation of dictionary base LZ variants. In [22] the

author decodes LZ2 in a parallel environment. In [23] the BZip2 method is parallelized by

dividing the input data into chunks and using the same copy of the compression method on

available processors in parallel. Similar parallel environment is seen in [24] parallel image

compression. The authors in [25] also applies this data chunks based task parallel architect on

lossless textual data compression methods, including statistical based Huffman, Arithmetic

coding and dictionary based LZ78 and LZW. All these approach the processing speed up

problem by using dividing the larger data chunk into smaller and then applying parallel

processing. This approach speeds up processing time in resemblance to Amdahl’s law, but in

many cases degrades the compression and adds a permanent header to output.

However many have approached this processing problem differently so as to avoid header and

degrading of compression. In [26] the authors uses cooperative dictionary for their LZ77 parallel

implementation to secure the compression ratio. In [27] parallel Suffix Sorting implementation

is applied to improve processing time. In paper [28] on parallel BWT compression also

successfully test message passing (multiple stage pipeline architecture) in parallel environment.

32

5.2 Parallel PPM (method C)

PPM and any of it variants can be considered as a two-pass (two stages) based compression

methods. The first pass starts modeling and the second deals with encoding. In any adaptive

implementation of PPM both these stages are heavily dependent on each another. Processing

speed up can be and has been achieved in both these stages in a well designed and

implemented sequential environment but no speed up through the use of parallel processing

elements have yet been done.

This works deals with processing speed up of PPMC using parallel architect. A total of four (4)

different parallel implementations have been described and compared with the sequential

architecture. Some parallel architectures are similar to the ones describe in the previous,

whereas other uses a new approach to parallelism. Not all of these parallel implementations

achieve similar results; also the results may vary for different variants of PPM and for different

compression schemes. For the ease of use, self-authored names have been proposed for these

parallel architectures.

33

Chapter 6: Parallel Software Implementation of

PPM (method C) Data Compression Scheme

The PPM (method C) is lossless data compression scheme. Practical implementation of PPMC is

quite resource hungry in both memory and processing time. Parallel software implementation

of PPMC data compression scheme works on the latter issue by parallelization of the said data

compression scheme. This research work implements the previously mentioned parallel

architectures for the PPMC method. Various internal and external parameters are studied

which effects the parallelization process of PPMC. At the end, the results obtained (of all

parallel architectures) are compared. This work utilizes software environment for testing the

PPMC’s parallel architectures. The tools used are divided into two categories:

 Software Environment

 Hardware Environment

The following topics describe the software n hardware tools/environment and how these have

been used for the parallel implementation of PPMC data compression scheme.

6.1 Software Environment

The software environment is comprised of the followings:

 C# (Programming Language)

 .Net 4.0 Framework

 Task Parallel Library

 Visual Studio 2010

 Windows 7

34

6.1.1 C# Programming Language

C# (pronounced as C - sharp) is Microsoft’s premier language for .NET development. It

leverages time-tested features with cutting-edge innovations and provides a highly usable,

efficient way to write programs for the modern enterprise computing environment. It is one of

the languages that is use to create applications that will run in the .NET CLR. It is an evolution of

the C and C++ languages and has been created specifically to work with the .NET platform.

C# was created at Microsoft late in the 1990s and was part of Microsoft’s overall .NET strategy.

It was first released in its alpha version in the middle of 2000 [29]. C# 1.0 made its public debut

in 2001. The advent of C# 2.0 with Visual Studio 2005 saw several important new features

added to the language, including Generics, Iterators, and anonymous methods. C# 3.0 which

was released with Visual Studio 2008, added extension methods, lambda expressions, and most

famously of all, the Language Integrated Query facility, or LINQ. The latest incarnation of the

language, C# 4.0, provides further enhancements that improve its interoperability with other

languages and technologies. These features include support for named and optional arguments,

the dynamic type which indicates that the language runtime should implement late binding for

an object, and variance which resolves some issues in the way in which generic interfaces are

defined. C# 4.0 takes advantage of the latest version of the .NET Framework (also version 4.0).

There are many additions to the .NET Framework in this release, but arguably the most

significant are the classes and types that constitute the Task Parallel Library (TPL). The TPL

makes it possible to use C# for building highly scalable applications that can take full advantage

of multi-core processors quickly and easily.

6.1.2 .Net Framework

The .NET Framework (now at version 4, version 4.5 available as developers preview) is a

revolutionary platform created by Microsoft for developing applications [30]. The .NET

Framework consists primarily of a gigantic library of code that can be used from client

35

languages (such as C#) using object-oriented programming (OOP) techniques [30]. This library is

categorized into several different modules. A new key feature to .Net (4.0) is Parallel Extensions

to improve support for parallel computing, which target multi-core or distributed systems.

6.1.3 Relation between C# and .Net Framework

Although C# is a computer language that can be studied on its own, it has a special relationship

to its runtime environment, the .NET Framework. The reason for this is twofold. First, C# was

initially designed by Microsoft to create code for the .NET Framework. Second, the libraries

used by C# are the ones defined by the .NET Framework. Thus, even though it is theoretically

possible to separate C# the language from the .NET environment, the two are closely linked.

(Referenced from [29])

6.1.4 Task Parallel Library (TPL)

The Task Parallel Library (TPL) is a set of public types and APIs in the System.Threading and

System.Threading.Tasks namespaces in the .NET Framework version 4. The purpose of the TPL

is to make developers more productive by simplifying the process of adding parallelism and

concurrency to applications.

The Task Parallel Library is designed to make it much easier to write managed code that can

automatically use multiple processors. Using this library, one can conveniently express potential

parallelism in existing sequential code, where the exposed parallel tasks will be run

concurrently on all available processors. Usually this results in significant speedups.

6.1.5 Visual Studio

Visual studio is a development tool, an integrated development environment (IDE) by Microsoft

that supports coding of Microsoft CLR languages including C#. It is a development tools from

which simple command-line applications to more complex project types like Microsoft’s Office

36

suite can be designed. The current complete release available is Visual Studio 2010; however a

recent Visual Studio Express 2011 as developer’s preview is also available.

6.1.6 Windows 7

Windows 7 is the latest release of Microsoft Windows (although currently Windows 8 as

developer’s preview is also available), a series of operating systems produced by Microsoft for

use on personal computers, including home and business desktops, laptops, netbooks, tablet

PCs, and media center PCs. Windows 7 was released in late 2009. Windows 7 includes a number

of new features, such as advances in touch and handwriting recognition, support for virtual

hard disks, improved performance on multi-core processors, improved boot performance,

direct access, and kernel improvements.

A Key added feature to Windows 7 is its better support to parallel processing. A note from

Computex 2009 says; Intel has revealed that Windows 7 features new and improved multi-

threading, which will help to improve power consumption and battery life. Previous versions of

Windows often swapped threads around cores, which prevented them from entering lower

power states and caused cache thrashing as separate cores raced to grab data processed by

others. The Windows 7 kernel changes this by improving thread affinity, locking threads to

particular cores in order to allow unused CPU cores to enter low power C-states when they’re

not in use (called thread parking) providing the CPU and motherboard supports this of course.

Windows 7 automates and scales all running tasks and applications in accordance with the

underneath available hardware architecture. On a multicore hardware, Windows 7 by default

uses the available cores to start multithread activity so that best performance can be attained.

6.2 Hardware Environment

The hardware environment containing the parallel processing elements is:

37

6.2.1 Intel Core i5

The Intel core i5 is a multicore (multiple processors) based CPU on the Nehalem

microarchitecture. Nehalem processors use the 45 nm process. The core i5 series were

introduced in the late 2009. Some of these series processors at the end line are comparable to

the core i7 series. The core i5 (750) used in this work is a quad core processor. With four CPUs

this is comparable to some similar quad core (4 CPUs) core i7 series and is even consider being

faster at performance comparatively.

6.3 PPMC Implementation

The PPMC implemented for this work uses arithmetic coder for symbols encoding/decoding,

whereas context modeling uses a maximum count of two (2) for context orders due to limited

amount of processing elements available within the core i5 hardware. The source code for the

PPMC algorithm is written in C#. The context modeling portion source code is based on the

theoretical representation of PPMC, whereas the encoder portion uses a self-modified (for

PPMC) C# version of “Eric Bodden” arithmetic coder. The original C# version of Eric Bodden’s AC

is written by “Sina Momken”. Eric Bodden’s AC work is based on the 1987 original work of “Ian

Witten, Timothy Bell and John Cleary” *8+ which modify the original work to allow processing of

larger data streams.

 All the implementations (sequential and parallel) are based on strict OOP (object oriented

programming) and C# syntax. No external libraries or data types are used; all data types and

structures defined and used are part of the present C# and .Net framework.

The context orders are based on classes (objects) that can uses either arrays or dictionary

(similar to hash tables) for storing context that have been occurred. The symbols frequencies

are stored as integers (32 bits) data type. Data is read byte by byte so a total of 257 (256 for

each individual byte and 1 for the escape symbol) symbols at the most may occur. In C#, an

array’s length needs to be defined when initializing the array. Lower orders are less memory

hungry therefore for these arrays are suitable as arrays perform fast at runtime.

38

6.3.1 Context Orders

The implementations of these orders are as follows:

i. Order -1

This is the lowest order in any PPM implementation. In this order all symbols are

present and are assigned an equal probability. As there are a total of 257 symbols so an

integer type array of 257 elements initialized to 1 for all elements can be used. But to

save memory and make processing faster a simple fact can be used that the low count

and high count assigned to a symbol (byte) in this context order is always equal to that

byte and byte + 1. Whereas the total for this order remains constant, which in this case

is 257. If implemented like this no array may be required to store order -1, low and high

counts can be directly computed at runtime. The escape symbol in this context order is

used to only specify the EOF (end of file) symbol.

ii. Order 0

Order 0 is based on the occurrences of the symbol followed by the same symbol. This

order uses an integer type array of 257 elements. If a same symbols occurs followed by

itself the frequency (count of that element in the array) is increased. The total count for

this order can be stored as a separate integer type or as part of the array. In the latter

case the array length is increased by one to accommodate for this total count. In this

manner the total memory allocated at runtime to this order is 258 x 32 (bits) which are

1032 bytes.

iii. Order 1

This order stores the occurrence of a symbol followed by any other symbol. For such an

operation a two-dimensional (2D) array is ideal. This order uses a 2D integers array of

256 x 258 elements. The total memory used by this order is 256 x 258 x 32 (bits), which

equals to 264,192 bytes.

39

iv. Order 2

Order 2 uses two previous contexts to predict the next symbol. An integer’s array based

implementation of this can become resource hungry and slow down the processing if

enough memory is not available at runtime. An array based storage uses three-

dimensional (3D) array of 256 x 256 x 258 x 32 bits, this amounts equal to approximately

65 MB (Mega Byte) of memory usage. This could become a hurdle where less memory is

available. An alternative method is to use Dictionary or Hash tables to store only the

contexts that have been occurred. This saves memory consumption and makes

implementation of higher context orders possible.

The C# Dictionary is similar to Hash tables which offer a managed solution without the

use of object casting as usually seen with the usage of Hash tables. For higher orders

nested dictionaries can be used as a single dictionary cannot store previous contexts. In

case of three stages nested dictionary, the total memory usage per symbol is 16 bytes. If

the total occurring symbols in this order is less; then this order (dictionary version) saves

a very good amount of memory compared to 3D array version for this context order.

The arithmetic coder used for the encoding/decoding part does not require any large memory

storage. It only needs to store the range, low and high of every previous operation at runtime.

Modification to the arithmetic coder includes a version that uses memory stream to store the

compressed output stream. Other modifications are to the data types used by the low, high,

total count and the arguments and references passed to the arithmetic coder (applies to both

file stream and memory stream version). The difference between file stream and memory

stream version of Arithmetic Coder is that the latter version stores complete output data in

memory first before writing it to a file on disk.

40

6.3.2 Pseudo Code

The following is the pseudo code of the PPMC implemented:

 Initialize:

 Arithmetic coder (file stream OR memory stream)

 Symbol (an object type to hold the symbol read, its low, high and total count)

 Context Order -1

 Context Order 0

 Context Order 1

 Context Order 2

 File stream OR Memory stream (for input / output)

 Encoder:

o While (read symbol from file != EOF)

o Start from highest order

 Order 2 (search symbol)

 If found

 send symbol to arithmetic encoder for encoding

 Else

 send escape to arithmetic encoder for encoding

 switch Order (to lower order)

 Update Order

 Order 1 (search symbol)

 If found

 send symbol to arithmetic encoder for encoding

 Else

 send escape to arithmetic encoder for encoding

 switch Order (to lower order)

 Update Order

41

 Order 0 (search symbol)

 If found

 send symbol to arithmetic encoder for encoding

 Else

 send escape to arithmetic encoder for encoding

 switch Order (to lower order)

 Update Order

 Order -1 (search symbol)

 If found

 send symbol to arithmetic encoder for encoding

 Decoder:

o Start from highest order

o Switch (Order)

 Case 2:

 Symbol decode compressed stream

 Order 2 (search symbol)

 If found

 send symbol to arithmetic decoder for decoding

 Output symbol

 update Order 2

 update Order 1

 update Order 0

 switch Order to highest order

 Else

 send escape to arithmetic decoder for decoding

 switch Order (to lower order)

42

 Case 1:

 Symbol decode compressed stream

 Order 1 (search symbol)

 If found

 send symbol to arithmetic decoder for decoding

 Output symbol

 update Order 2

 update Order 1

 update Order 0

 switch Order to highest order

 Else

 send escape to arithmetic decoder for decoding

 switch Order (to lower order)

 Case 0:

 Symbol decode compressed stream

 Order 0 (search symbol)

 If found

 send symbol to arithmetic decoder for decoding

 Output symbol

 update Order 2

 update Order 1

 update Order 0

 switch Order to highest order

 Else

 send escape to arithmetic decoder for decoding

 switch Order (to lower order)

 Case -1:

 Symbol decode compressed stream

 Order -1 (search symbol)

43

 If found

 send symbol to arithmetic decoder for decoding

 Output symbol

 update Order 2

 update Order 1

 update Order 0

 switch Order to highest order

All the PPMCs in this work including the sequential and parallel implementations use this above

pseudo code with exception to some modifications in the letter case. The maximum context

order used in all implementations is two ‘2’. Time performance is measured using the standard

C# .Net “System.Diagnostics” namespace’s stopwatch time class. The following describe all

these PPMC’s implementation.

6.3.3 Sequential PPMC

The sequential PPMC is used as a benchmark to compare every parallel implementation. The

time factor of this implementation is compared with the parallel implementations time to note

the speed up if any. The sequential PPMC is a non-multicore and non-multithread based

version. It is the same as the pseudo code given previously. It uses file stream version of the

arithmetic coder along with all the context model orders mentioned previously.

6.3.4 Parallel Lines PPMC

This is a parallel PPMC implementation based on the Parallel Lines architecture as defined

before. This PPMC accommodates for two, three and four (2, 3 and 4) parallel processing

elements (in line with the core i5 architecture) or parallel lines at the same time. The

implementation of Parallel Lines PPMC uses memory-mapping to map the input data stream to

the memory. This is necessary as multiple accesses to a same file on disk at the same time are

44

not possible; there is only one read head to a disk drive which cannot be shared at the same

time.

Figure 10: Parallel Lines PPMC

The memory-mapping or the memory mapped file class is introduced with the .Net 4.0

framework. Memory mapped files maps a file from the disk to the memory so that multiple

process can access it. Using memory mapping multiple access of input data stream at the same

time becomes possible for the parallel lines PPMC. This PPMC uses Memory stream version of

arithmetic coder to store the intermediate output of each parallel element. The final output is a

merger of this previous output.

The merged output (compressed) file size is more than the sequential PPMC compressed

output size. One reason for this is the addition of header to the compressed data.

Note that the usage of memory mapping and memory stream adds up to the memory in use

during runtime. Typically this amount for memory mapping is approximately equal to the input

 Input Data

D1

C 1

H1 | cD1

Headers + Compressed Data

D2

C 2

H2 | cD2

D3

C 3

H3 | cD3

D4

C 4

H4 | cD4
Memory Stream

Memory Mapped File

45

file (or input buffer size) and for memory stream equals to the compressed output of each

processing element.

The following is the pseudo coding for Parallel Lines PPMC encoder:

 Initialize:

 Arithmetic coder (memory stream)

 Symbol (an object type to hold the symbol read, its low, high and total

count)

 Context Order -1

 Context Order 0

 Context Order 1

 Context Order 2

 File stream and Memory stream (for input / output)

 Memory mapped file (pointed to complete input stream)

 Memory mapped file assessors (equal to the number of parallel tasks)

 Encoding:

 Divide input mapped file to chunks

 Call parallel tasks (equal to the number of chunks)

 Pass data chunks (one to each task)

 Run PPMC on each task

 Store compress output as separate memory streams

 Wait for all tasks to finish

 Add header to all (sub) outputs

 Combine outputs

 Write output to file

46

6.3.5 Sequential Pipes PPMC

The Sequential Pipes PPMC in this implementation use just one pipeline stage. It is based on the

fact that PPMC like other PPMs is a two-pass scheme. The pipeline stage starts from the

modeling and ends at the encoder. Both these stages use separate processing elements (cores)

and the latter stage lags the first by a time of t+1 unit.

The second processing elements use the results of the first. If a direct communication is made

between the two parallel units a deadlock can occur. To avoid parallel deadlock a buffer is used.

The result of first gets stored in the buffer, the second processor then fetches data from this

buffer.

Figure 11: Sequential Pipes PPMC

Context Modeling

Encoding

 DATA

C1

Compressed Data

C2

Buffer

Memory Stream

47

The Sequential Pipes PPMC uses the file stream for input access and memory stream to

temporary handle output until the disk drive head becomes available for the file write

operation. The usage of buffer to pass data between processes adds up to the total memory

usage. At the most without any restriction, the buffer size approximates to:

 r r r 4

The compressed output file size in this case is same as that achieved using Sequential PPMC.

The following is the pseudo code for Sequential Pipes PPMC encoder:

 Initialize:

 Arithmetic coder (memory stream)

 Symbol (an object type to hold the symbol read, its low, high and total

count)

 Context Order -1

 Context Order 0

 Context Order 1

 Context Order 2

 File stream and Memory stream (for input / output)

 Initialize buffer (having appropriate length to hold all symbols)

 Encoding:

 Call two parallel tasks

 Assign task 1 to read data from input and output to buffer (use PPMC

context model)

 Assign task 2 (t-1 seconds) delay and read from buffer and output to

memory (use Arithmetic coder)

 Wait for all tasks to finish

 Write output from memory to file

48

6.3.6 Parallel Pipes PPMC

The Parallel Pipes PPMC is a combination of both Parallel Lines and Sequential Pipes PPMC. This

implementation splits the input data stream so that multiple instances of pipeline PPMCs can

work on the data chunks.

Figure 12: Parallel Pipes PPMC

As parallel pipes PPMC is a combination of parallel lines and sequential pipes PPMC it uses the

features of both implementations. For multiple accesses to the input data stream it uses

memory mapped file feature of parallel lines PPMC and to store the outputs of first and second

stages processors it uses buffer and memory stream feature of sequential pipes PPMC.

The parallel pipes PPMC implementation in this work uses only two stage task parallelism that

is only two parallel lines. Additional memory usage at runtime is proportional to the memory

Context Modeling

Encoding

 DATA

C1

Header + Compressed Data

C2

Buffer

Memory Stream

C3

C4

D1 D2

H1 | cD1 H2 | cD2

Memory Mapped File

49

consumed by memory mapping, buffer and memory streams, this memory count can go up to

(if no restriction is impose on the inherited features):

 r r r

 4

 r r

The compressed output file size of Parallel Pipes PPMC measures more than Sequential PPMC

but less than Parallel Lines PPMC for the same number of cores used.

The following is the pseudo code for Parallel Pipes PPMC encoder

 Initialize:

 Arithmetic coder (memory stream)

 Symbol (an object type to hold the symbol read, its low, high and total

count)

 Context Order -1

 Context Order 0

 Context Order 1

 Context Order 2

 File stream and Memory stream (for input / output)

 Memory mapped file (pointed to complete input stream)

 Memory mapped file assessors (equal to the number of parallel tasks)

 Initialize buffer (having appropriate length to hold all symbols)

 Encoding:

 Divide input mapped file to chunks

 Call parallel tasks inside call pipeline PPMC tasks

 Wait for all tasks to finish

 Add header to all (sub) outputs

 Combine outputs

 Write output to file

50

6.3.7 Hybrid Tree PPMC

Hybrid Tree PPMC implementation use the Hybrid Tree (parallel) architecture as describe

previously. In this implementation it takes advantage of the multiple context orders of PPMC

and processes them separately. The result of modeling stages is fetched and used by the

encoder which acts as if a pipeline stage to the modeler.

Figure 13: Hybrid Tree PPMC

The entire context modeling stages reads the input data stream at the same time. The input

data stream is not fragmented but is memory mapped so that multiple processes can access it

at the same time. This implementation assigns one processing element (core) to each context

model. No communication exists between the context models. This is necessary to avoid any

possible parallel deadlock. The modeling stages output is stored separately in a buffer which is

then fetched by the encoder processor. One buffer is assigned to each parallel context

modeling stage, again this is a necessary precaution use to avoid parallel deadlock. The startup

time for the encoder processor is “t (last) +1” where “t (last)” signifies the startup time for the

Context Modeling

Encoding

DATA

C1

Compressed Data

C2 C3

C4

Memory Mapped File

Buffer (1 per each core)

51

last started context modeling processor. Additional memory storage at runtime includes

memory mapping and buffers, this if no restriction can be equal to:

 r r r 4

The output file size in Hybrid Tree PPMC is better from all other task parallelism based

implementations. In this case the compressed file size is same as that of sequential PPMC.

The following is the pseudo code for Hybrid Tree PPMC encoder:

 Initialize:

 Arithmetic coder (file stream)

 Symbol (an object type to hold the symbol read, its low, high and total

count)

 Context Order -1

 Context Order 0

 Context Order 1

 Context Order 2

 File stream (for input / output)

 Memory mapped file (pointed to complete input stream)

 Memory mapped file assessors (equal to the number of parallel tasks)

 Initialize buffer (having appropriate length to hold all symbols)

 Encoding:

 Call parallel task and assign order 0

 Call parallel task and assign order 1

 Call parallel task and assign order 2

 Call parallel task and assign encoder

 Wait for all tasks to finish

 Write output to file

52

Chapter 7: Test Analysis and Results

The PPMCs implemented are tested for time speed up. All implementations (as previously

describe) are tested on quad core architecture. At test time, the test environments

specifications are:

 Windows 7 (operating system)

 Intel core i5 750 (quad core)

 2 GB physical memory (RAM)

Before testing the system was completely checked for any malfunctioning; including physical

memory, cores, motherboard and hard disk malfunctioning. No hardware components are over

clocked, all cores run at their default specifications. The operating system is also tested for the

presence of software bugs, viruses and malfunctioning. At testing time all unnecessary process

running through the operating system were shut off. Same environment is sustained for all

PPMC’s implementations testing.

As the goal of this work is to measure parallel time speed up, therefore no memory restrictions

are imposed on any PPMC under test. Hard disk access is limited to the hard disk default

read/write rate. For read/write operations only the standard primary hard disk (containing the

operating system) is used no other secondary disk storage medium is used.

The parallel PPMC implementations uses memory mapping, memory streams, and parallel task

library, therefore as a prerequisite time based measurements of these are taken. Note that

memory mapping, memory stream and task parallel library are part of C# and .Net framework.

Perquisite measurements:

i. Memory mapping

In C# programming language (through .Net framework) memory mapping of a file on

disk implies creating an image of the file in memory that points to the original file.

The memory mapped file can be of the same size (as that of the original file) or can

be custom size. Initializing a memory mapped files requires time. In general the

average approximate time can be:

(Test performed on file name “world192.txt” available as part of the large

Canterbury Corpus. File size is 2.35 MB)

Initialization time: 375 milliseconds

53

Read access time: 42 milliseconds

Total time (approx.): 417 milliseconds

Compared to file stream that is direct file access:

Unit = milliseconds Memory Mapped File File Stream

Initialization time 375 210

Access time 42 27

Total time 417 237

ii. Memory stream

Memory stream which although is much similar to file stream resides only in

physical memory. The average approximate time to initialize and perform a

read/write access to a memory stream is:

Test 1:

(Test performed on custom made file having same length as that of “world192.txt”

from the large Canterbury Corpus. File size is 2.35 MB)

Initialization time: 0.0123 milliseconds

Write time: 29 milliseconds

Read time: 13 milliseconds

Test 2:

Reading from file to memory and writing from memory to file.

(Test performed on file name “world192.txt” available as part of the large

Canterbury Corpus. File size is 2.35 MB)

Initialization time: 0.2325 milliseconds

Write time: 59 milliseconds

Read time: 51 milliseconds

Comparison between file stream and memory stream:

Unit = milliseconds Memory Stream File Stream Composite

Initialization time 0.0123

(write access)
0.3941

(read access)
0.2105

0.2325

Write time 29 33 59

Read time 13 27 51

54

iii. Task parallelism

Starting a parallel processing task takes time. The time taken to initialize a parallel

task is:

(Task chosen is to print “Hello World!” to console window)

Parallel task time: 2.1946 milliseconds

Compared to sequential processing:

 Sequential Parallel

Time (seconds) 0.3241 2.1946

Parallel PPMCs test

The actual test, analysis results for the PPMCs are as follows. Large Calgary corpus and

Canterbury corpus which offers larger size files is used during all PPMC’s test. The results drawn

are based on time and compression efficiency offered by each implementation.

i. Sequential PPMC

File name File size (KB) Time (seconds) Compression (KB)

book2 597 1.2801761 283

world192.txt 2,416 3.8991613 985

E.coli 4,530 8.1521292 1,118

55

ii. Parallel Lines PPMC

File name File size (KB) Number of
Cores

Time (seconds) Compression (KB)

book2 597 2 0.8910034 308

book2 597 3 0.7439570 329

book2 597 4 0.6733790 343

world192.txt 2,416 2 2.3077443 1,051

world192.txt 2,416 3 1.8322877 1,100

world192.txt 2,416 4 1.5327735 1,141

E.coli 4,530 2 4.6493431 1,123

E.coli 4,530 3 3.4909464 1,127

E.coli 4,530 4 2.7048271 1,131

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential PPMC

56

The above comparison graph shows that Parallel Lines PPMC cuts the processing time

down to half for 2-Cores, however for more cores the time is not half but is rather cut

down to quarter of the previous stage.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Parallel Lines PPMC

2 Cores

3 Cores

4 Cores

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential PPMC vs Parallel Lines PPMC

Sequential

Parallel Lines (2 Cores)

Parallel Lines (3 Cores)

Parallel Lines (4 Cores)

57

iii. Sequential Pipes PPMC

File name File size (KB) Time (seconds) Compression (KB)

book2 597 1.2108961 283

world192.txt 2,416 3.6066420 985

E.coli 4,530 7.8152796 1,118

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential Pipes PPMC

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential PPMC vs Sequential Pipes PPMC

Sequential

Sequential Pipes

58

The test shows that Sequential Pipes PPMC does reduce time. This processing speed up

increases gradually with the input file size.

iv. Parallel Pipes PPMC

File name File size (KB) Time (seconds) Compression (KB)

book2 597 0.8505831 308

world192.txt 2,416 2.1899484 1,051

E.coli 4,530 4.3799399 1,123

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Parallel Pipes PPMC

59

The Parallel Pipes PPMC reduces time to half, but this reduction comes at a very high

hardware cost which in this case is 4-Cores. Comparatively 2-Cores based Parallel Lines

PPMC shows also similar results.

v. Hybrid Tree PPMC

File name File size (KB) Time (seconds) Compression (KB)

book2 597 1.2542444 283

world192.txt 2,416 3.8353077 985

E.coli 4,530 8.1442850 1,118

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential PPMC vs Parallel Pipes PPMC

Sequential

Parallel Pipes

60

The model give constant speed gain no matter what the input file size may be. Hybrid

Tree PPMC also uses 4-Cores (in our case). The speed gain is very less compared to the

amount of hardware in use.

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Hybrid Tree PPMC

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential PPMC vs Hybrid Tree PPMC

Sequential

Hybrid Tree

61

Results Comparisons:

 File
size
(KB)

Sequential
PPMC

Parallel Lines
PPMC

Sequential
Pipes PPMC

Parallel Pipes
PPMC

Hybrid Tree
PPMC

Time Size Time Size Time Size Time Size Time Size

book2 597 1.280 283 0.891 308 1.210 283 0.850 308 1.254 283

0.743 329

0.673 343

world192
.txt

2,416 3.899 985 2.307 1,051 3.606 985 2.189 1,051 3.835 985

1.832 1,100

1.492 1,141

E.coli 4,530 8.152 1,118 4.649 1,123 7.815 1,118 4.379 1,123 8.144 1,118

3.490 1,127

2.704 1,131

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)

Sequential Parallel Lines (2 Cores) Parallel Lines (3 Cores)

Parallel Lines (4 Cores) Sequential Pipes Parallel Pipes

Hybrid Tree

62

Chapter 8: Conclusion

8.1 Concluding Remarks

All the PPMC implementations describe previously have been tested and compared. No two

PPMC’s implementation shows similar results. Test results comparison shows that usage of one

or more parallel processing unit diminishes computational time. However each parallel

implementation diminishes this time varyingly.

The Parallel Lines PPMC shows the most suitable results for time speed up. It utterly half the

processing time of sequential implementation on first doubling. However each addition of

parallel element after the first doubling doesn’t reduces time to half rather it reduces time by

“half time of the previous stage”. Due to the nature of PPMC algorithm, Parallel Lines PPMC

does not produce good compression compared to sequential implementation. With a header

attached, in the worst case it nearly doubles the compression ratio achieved by the sequential

PPMC.

The Sequential Pipes PPMC seems to be a good compromise between the sequential and

Parallel Lines PPMC. It does reduce time but not as clearly as parallel lines implantation.

However compared to Parallel Lines, it produces exact compression ratio as that of sequential

PPMC. The processing speed up achieved by this implementation increases exponentially with

the file size.

The Parallel Pipes PPMC also half the sequential implementation’s time. But it gives this output

at a very high hardware cost. Comparatively almost this same time and compression can be

achieved with Parallel Lines PPMC for only two (2) processing elements.

The Hybrid Tree PPMC show similar results as that of Sequential Pipes PPMC in both timings

and compression, but this applies only to smaller file size. Hybrid Tree PPMC also comes with

this speed up at a very high hardware (memory usage) cost. The memory consumption at

runtime by Hybrid Tree PPMC is nearly that of Parallel Pipes PPMC.

63

In order to keep a compromise between speed and hardware use; the Parallel Lines PPMC

model is the best choice to consider.

8.2 Future Works

The subject Parallel Computing is quite vast. A lot of development is occurring in it with the

easy multicore systems availability to end users. As mentioned before; this work is the first in

line which applies parallel computing to a “Prediction by Partial Matching” (PPM) method

therefor a lot of work can be done considering this as a guideline. The following is a list of some

suggested possible future works that can benefit from this parallel implementation:

 This work uses context orders of length up to two (2). A parallel implementation and

analysis of the same based on higher context orders should be considered.

 Parallel implementation, tests and analysis of others variants of PPM using the

architectures define here.

 Increasing the number of cores (processing elements) and the effect of such on parallel

PPMC and/or other variants of PPM.

 Using controlled environment (by imposing restrictions on memory usage etc.) testing

parallel PPM schemes. This would also lead to efficient parallel PPM schemes design.

 Using C/C++ based software environment for parallel PPM schemes. C# code works at

an average of five times slower than C/C++ code.

 For fast parallel processing using GPGPUs (General Purpose Graphics Processing Unit)

along cores. Already a research [34] showing Arithmetic Coding implementation on this

has been done. PPM can be considered just one step ahead.

64

Appendix A

Information theory behind compression

Understanding data compression must start with understanding information, because the

theme of former is based on the latter. This appendix provides a brief introduction to

information theory.

We constantly receive and send information; this information is in the form of verbal

conversation, text, sound, and images. We also feel that information is an elusive

nonmathematical quantity that cannot be precisely defined, captured, or measured [1].

Information is a stimulus that has meaning in some context for its receiver. Information in its

most restricted technical sense is a message or collection of messages in an ordered sequence

that consists of symbols. When information is entered into and stored in a computer, it is

generally referred to as data. After processing (such as formatting and printing), output data

can again be perceived as information.

Information theory forms the mathematical basis of both lossy and lossless compression. The

theory of information is developed by Claude Shannon in the 1940s [22, 23]. This theory

provides a statistical way to measure information. Information theory measures the quantities

of all kinds of information in terms of bits (binary digit). Information theory is the foundation of

many data compression techniques. The two most important terms in information theory are

entropy and redundancy.

A.1 Entropy

Shannon tried to develop means for measuring the amount of information stored in a symbol

without considering the meaning of the information. He discovered the connection between

the logarithm function and information, and showed that the information content (in bits) of a

symbol with probability p is −log2 p [3].

65

Shannon used the term entropy to encapsulate the measure of information. The term is used

widely in physics to describe the amount of order or disorder in a system. In information

theory, a system with a high degree of disorder is also one that contains a great deal of

information. Entropy is a number which is small when there is a lot of order and large when

there is a lot of disorder.

Mathematically:

The entropy is defined as

 ∑ 2

 1

Here H is for entropy which equals to the negative sum of the products of symbol’s 2 ,

where P is the symbol’s probability and i is the current symbol.

Example:

The entropy of “data_compression” is?

In above the symbol probabilities are,

 6⁄ 2 6⁄ 6⁄ 6⁄

 6⁄ 2 6⁄ 6⁄ 6⁄

 6⁄ 6⁄ 2 6⁄ 6⁄

 6⁄

 Hence entropy H is:

66

 []

 6
 2

 6

2

 6
 2

2

 6

 6
 2

 6

 6
 2

 6

 6
 2

 6

2

 6
 2

2

 6

 6
 2

 6

 6
 2

 6

 6
 2

 6

 6
 2

 6

2

 6
 2

2

 6

 6
 2

 6

 6
 2

 6

 3.625 / .

A.2 Redundancy

Redundancy is another concept which has arisen from information theory. Redundancy is the

opposite of information. Something that is redundant adds little, if any, information to a

message. Redundancy in information theory is the number of bits used to transmit a message

minus the number of bits of actual information in the message. Informally, it is the amount of

wasted "space" used to transmit certain data. Data compression is a way to reduce or eliminate

unwanted redundancy.

Example:

 Identify redundancies in the following string that contains consecutive repeating

characters:

 “BAAAAAAAAAC”?

Here the redundancy is the 9 repeating symbols ‘A’ which can be replaced by a shorter

string such as (r9)A.

A.3 Relation between entropy and redundancy

The two qualities “Entropy” and “Redundancy” has an inversely proportional relation with each

another which is reflected by the fact that when the entropy is at its maximum, the redundancy

is zero and the data cannot be compressed any further.

67

Appendix B

Prediction and Probability theory concepts

This appendix serves as a brief introduction to Prediction and Probability theory concepts. Both

prediction and probability concepts are fundamentals to the understanding of PPM (prediction

by partial matching) and Arithmetic coding data compression schemes.

B.1 Prediction

A prediction is a statement about the way things will happen in the future. Predictions are the

connecting links between prior knowledge and new information [33+. It’s the interaction

between these two processes that make readers (both human and machine) predict. Although

all proficient readers can make predictions, some readers seem to predict more explicitly than

others which is mainly concerned with their prior knowledge experience.

Prediction is closely related to uncertainty. We predict outcomes, events or actions that are

confirmed or contradicted; the first is based on authentic information whereas in the latter

case one can say that guaranteed information about the information is also impossible. The

whole intuition of probability theory is based on predictions.

B.2 Probability

Probability is a mathematical prediction about the likelihood of an event occurring. It simply is a

measure of the frequency of outcomes (events) that is assigning "density" to each possible

event within some interval. The word ‘event’ refers to the predicted outcome. These events or

prediction outcomes can be categorized in the following four states:

 Certain

 Likely

68

 Unlikely

 Impossible

Probability is used to mean the chance that a particular event (or set of events) will occur

expressed on a linear scale from 0 (impossibility) to 1 (certainty), also expressed as a

percentage between 0 and 100%. The analysis of events governed by probability is called

statistics.

B.3 Number line (probability line) concept in probability

Probabilities are expressed on a number line having range from 0 to 1. This number line often

referred to as probability line acts as a graphical representation for expressing probabilistic

events. The figure below shows a probability number line:

On this number line:

 Events that are impossible have a probability of 0.

 Events that are certain have a probability of 1.

 Events having even chances of occurrence have a probability of 2⁄ .

Expressed another way:

 A probability closer to 1 express higher frequency or occurrence.

 A probability closer to 0 express lower frequency or occurrence.

 A probability of 1 expresses maximum frequency or occurrence.

 A probability of 0 expresses no occurrence or frequency.

0 1 𝟏
𝟐⁄

Fig. Probability number line

69

Example: The following shows occurrence of symbols ‘a’ and ‘b’ on the number line while

reading the text “aabba”.

 Read first symbol ‘a’ and assign it a probability of ⁄ as it is the first and only

symbol occurred so far.

 Read second symbol ‘a’, probability assigned is 2 2⁄ as frequency of ‘a’ is now two

and only two symbols has occurred so far.

 Read third symbol ‘b’. Now the total symbols are three, frequency of ‘a’ is two and

frequency of ‘b’ is one. Hence new probabilities are 2
3⁄

3⁄

 Read fourth symbol ‘b’, now the total is four, frequency of ‘b’ is two whereas frequency

of ‘a’ is still two. Hence new probabilities are 2
4⁄ 2

4⁄

 Read fifth symbol ‘a’, new total is five and new probabilities are 3
5⁄ 2

5⁄

0

𝑃 𝑎

0

𝑃 𝑎

0

𝑃 𝑎 2
3⁄ 𝑃 𝑏

3⁄

0

 𝑃 𝑎 2
4 ⁄

𝑃 𝑏 2
4 ⁄

0

𝑃 𝑎 3

5⁄ 𝑃 𝑏 2
5 ⁄

70

References

[1] Salomon D, Motta G, Bryant DCON. Handbook of data compression: Springer-Verlag New

York Inc; 2009.

[2] http://www.data-compression.info/Corpora/index.htm

[3] ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

[4] http://corpus.canterbury.ac.nz/

[5] http://www.juergen-abel.info/

[6] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

[7] Witten IH, Moffat A, Bell TC. Managing gigabytes: compressing and indexing documents and

images: Morgan Kaufmann; 1999.

[8] Ian H. Witten, Radford M. Neal, and John G. Cleary. 1987. Arithmetic coding for data

compression. Commun. ACM 30, 6 (June 1987), 520-540.

[9] Alistair Moffat, Radford M. Neal, and Ian H. Witten. 1998. Arithmetic coding revisited. ACM

Trans. Inf. Syst. 16, 3 (July 1998), 256-294.

[10] Bell T, Cleary J, Witten I. Data compression using adaptive coding and partial string

matching. IEEE Transactions on Communications. 1984;32(4):396-402.

[11] Moffat A. Implementing the PPM data compression scheme. Communications, IEEE

Transactions on. 1990;38(11):1917-21.

[16] J. G. Cleary, W. J. Teahan, and I. H. Witten. 1995. Unbounded length contexts for PPM. In

Proceedings of the Conference on Data Compression (DCC '95). IEEE Computer Society,

Washington, DC, USA, 52-.

[17] Charles Bloom "Solving the Problems of Context Modeling",(March, 1998).

http://www.cbloom.com

71

[18] G P Howard and Scott J Vitter. 1994. Design and Analysis of Fast Text Compression Based

on Quasi-Arithmetic Coding. Technical Report. Duke University, Durham, NC, USA.

[19] Almasi, G.S. and A. Gottlieb. Highly Parallel Computing: Benjamin-Cummings publishers,

Redwood City, CA.; 1989.

[20] Patterson, David A. and John L. Hennessy. Computer Organization and Design, Second

Edition, Morgan Kaufmann Publishers.; 1998.

[21] A. Grama, G. Karypis, V. Kumar. Introduction to parallel computing: Addison-Wesley

Longman Publishing Co., Inc.; 2002.

[22] Sergio De Agostino, A parallel decoding algorithm for LZ2 data compression, Parallel

Computing, Volume 21, Issue 12, December 1995, Pages 1957-1961, ISSN 0167-8191,

10.1016/0167-8191(95)01030-0.

[23] Gilchrist J, editor. Parallel data compression with bzip2. 2004.

[24] Cinque L, Agostino S, Lombardi L, editors. Speeding up lossless image compression:

Experimental results on a parallel machine. 2008.

[25] Martinovic G, Livada C, Zagar D. Analysis of parallelization effects on textual data

compression. Proceedings of the 11th WSEAS international conference on Automation \&\#38;

information; Iasi, Romania. 1863304: World Scientific and Engineering Academy and Society

(WSEAS); 2010. p. 128-32.

[26] Franaszek P, Robinson J, Thomas J, editors. Parallel compression with cooperative

dictionary construction. 1996: IEEE.

[27] Kitzman J, Fujiwara G. Parallel file compression. Technical Report 18.337 J, 2005.

[28+ Gilchrist, J. and Cuhadar, A. (2008) ‘Parallel lossless data compression using the Burrows-

Wheeler Transform’, Int. J. Web and Grid Services, Vol. 4, No. 1, pp.117–135.

[29] Schildt H. C# 4.0 The Complete Reference: McGraw-Hill Osborne Media; 2010.

72

[30] Watson K, Nagel C, Pedersen JH, Reid JD, Skinner M. Beginning Visual C# 2010: Wrox Press

Ltd.; 2010.

[31+ Shannon, Claude E. (1948), “A Mathematical Theory of Communication,” Bell System

Technical Journal, 27:379–423 and 623–656, July and October.

[32+ Shannon, Claude (1951) “Prediction and Entropy of Printed English,” Bell System Technical

Journal, 30(1):50–64, January.

[33] Gillet, J. and C. Temple (1990). Understanding Reading Problems: Assessment and

Instruction, Boston: Allyn and Bacon.

[34] Ana Balevic, Lars Rockstroh, Marek Wroblewski, and Sven Simon. 2008. Using Arithmetic

Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs. In

Proceedings of the 15th European PVM/MPI Users' Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface, Alexey Lastovetsky, Tahar Kechadi, and

Jack Dongarra (Eds.). Springer-Verlag, Berlin, Heidelberg, 295-302.

