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Abstract 

 

The “Prediction by Partial Matching” (PPM) data compression scheme is a state of the art 

compression scheme developed by Cleary and Witten. This scheme is capable of achieving very 

high compression rates proven to be as low as 2.2 bits/character for English test. 

The nature of the PPM scheme is such that it is based on two stages heavily dependent on 

each. The first is the context modeling whereas the second being the encoding stage. Both 

these stages involve excessive looping, searching and data sharing. These peculiar natures 

makes PPM scheme perform quite slow at processing time as compared to some others well 

know compression schemes.  

In this work different parallel implementations of a variant of PPM (PPMC) is shown so as to 

achieve a much faster processing time. The results drawn show that parallelization significantly 

assist reducing processing time for PPMC to as low as one fourth of the sequential processing 

time. This work also introduces a few new parallel architectures that can be considered suitable 

for any process which may require parallel speed up. 
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Chapter 1: Introduction 

 

1.1 Introduction 

One of the fastest penetrating instruments in our lives is computers. Computers process data to 

get information and exchange information. With the passage of time, the amount of data which 

is processed by computers has increased significantly causing a need to realize the importance 

of data compression. 

Data compression essentially revolves around the problem of efficiently  compressing 

computer’s data. The modern field of software based data compression came into existence in 

the late 1970s. The field of data compression addresses data compression schemes and there 

use in compressing data. All data compression schemes that efficiently compress data add 

length to processing time. This lengthy processing time by these schemes is because on the fact 

that such schemes reprocess data multiple times to produce efficient compressed output. One 

such scheme is “Prediction by Partial Matching” (PPM). The PPM data compression scheme is 

an entropy coder capable of coding symbols close to their entropy. 

The work here makes use of parallel computing to address the problem of processing time 

speed up for the PPM (method C) data compression scheme. 

 

1.2 Thesis Scope 

A lot of research has been done on the PPM data compression schemes. These works address 

efficient implementation, optimization and processing time speed up for the sequential 

implementation of PPM schemes. No work on parallel implementation of any PPM schemes has 

been done till date. This work is the first in line to address the use of parallel computing for a 

PPM scheme. 

The work here is mainly concerned with the parallelization of PPM (method C) data 

compression scheme so as to achieve a shorter and better processing time. It does not involve 
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any efficiently implementation or optimization of the stated data compression scheme. This 

work makes use of software environment to implement, test and analyze the parallelization of 

PPM (method C). The software environment is composed on C# programming language and the 

.Net framework. All the functionalities used are part of the core C# and .Net framework. The 

implementation does not depend upon any external or third party ISVs (Independent Software 

Vendors) libraries. The hardware underneath which is called by the software environment is a 

quad core (Intel core i5) system. 

Parallel software implementation of PPM (method C) data compression scheme analyses four 

different parallel implementations of PPMC and compares them with the sequential 

implementation of PPMC to observe parallel speed up. It also introduces two new parallel 

architectures and a name based identification for all parallel architectures. 

1.3 Chapters Organization 

Chapters in this thesis report are organized as follows: 

 Chapter2 begins with introduction to data compression field.  

 Chapter3 is based on PPM data scheme and related knowledge.  

 Chapter4 introduces parallel computing.  

 Chapter5 discusses parallelism in data compression.  

 Chapter6 introduces the software and hardware environments used for parallelization 

of PPMC. 

 Chapter7 completes test and results.  

 Chaptere8 adds concluding remarks and suggested future work for this thesis. 

Appendix A is on information theory concepts related to data compression theory. It may be 

handy if require some prerequisite knowledge on related concepts of chapter2. 

Appendix B describes some probability concepts related to chapter3. 
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Chapter 2: Data Compression 

 

2.1 Data Compression 

Data compression is a process of removing redundancies or the extra data from data. This 

process revolves around processing of raw data in such a manner so that it loses its actual size 

when compressed and regains it when decompressed. 

The field of data compression is concerned with the finding, study and development of novel 

and efficient data compression techniques. The modern software based data compression field 

is quite new as it got recognized around 30 years back. Over this short period, a huge amount of 

research and developments have been accomplished in this field. This field has penetrated 

computer’s data to such an extent that a number of its algorithms have become a standard 

data file types such as mp3, pdf, jpg and many more. Nowadays a lot of computer processes 

speak to each another in terms of compressed data. 

 

Figure 1: Comparison between a compressed and uncompressed image file. 

An uncompressed image in .tiff format 
File size is 134 KB 

A compressed image in .jpg format 
File size is 16.2 KB 
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Figure 1 (above) shows two images, one uncompressed and the other as a compressed file. 

Notice here that the file size has reduced significantly in the compressed version. 

During the process of compression, a file (data stream) is subjected to a compression algorithm. 

This algorithm checks for repetitive patterns or redundancies that can be safely removed from 

this stream and later recovered when reprocessed (backward operation). This reprocessing of 

data is called decompression.  

The whole process of compressing and decompressing takes time; usually compression 

algorithms which produce high quality compression are restricted to more time consuming 

computing. This leads to classification and categorizing of compression algorithms. 

 

2.2 Classification of Data Compression Schemes 

Data compression schemes, algorithms or techniques can be classified and group together in a 

number of way. Most common classification and grouping is based on similar characteristics 

that are observed by these schemes. Some of the most common and known classifications are 

as follows: 

The following is based on how correctly a compression scheme performs: 

 Lossless and lossy types 

The most common classification is to group compression methods as either lossless 

or lossy. Lossy types give better compression at the price of losing some 

information. When their output compressed stream is decompressed, the result is 

not identical to the original data stream [1]. If the loss of data is small the difference 

may be negligible. Lossy compression methods are commonly used to compress 

images, video, or audio. However in executable, source, text and other similar files 

no loss can be tolerated as it will alter the content of such files, here the use of 

lossless methods are best suited. Lossless methods return complete file on 

decompression without altering or losing any of the original file contents. 
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Examples include: 

Lossy type: JPEG, mp3, etc. 

Lossless type: PPM, LZW, etc. 

 

Another classification is based on how a compression scheme processes data, these includes: 

 Statistical methods 

A statistical method populates the statistical records of all unique symbols in a data 

stream and later on these assign compression bits. 

Examples include: Huffman coding, Arithmetic coding, PPM, etc. 

 Dictionary methods 

Dictionary based methods makes a storage (dictionary) marking the occurrence of 

unique symbols during compression, any symbol marked previously is not restored. 

Examples include: LZW, LZ77, LZMA, GIF images, etc. 

 

Another well-known classification of compression techniques is based on files types, these 

includes: 

 

 Text compression methods 

These are usually associated with compressing of text files. 

Examples include: Shannon-Fano coding, Huffman coding, etc. 

 Image compression methods 

These methods are for image files compression. 

Examples include: JPEG, JPEG 2000, PNG, GIF, WEBP, etc. 

 Audio compression methods 

Associated with audio files. 

Examples include: WAVE Audio Format, FLAC, ACC, Dolby AC-3, mp3, etc. 

 Video compression methods 

Used for video formats compression. 

Examples include: MPEG, MPEG-4, VC-1, H.264, etc. 
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Figure 2: Data Compression types 

Figure 2 gives the diagrammatic chart representation of all the data compression types. All 

these methods are aimed at reducing data size. The principles related to data compression 

suggest that any compression algorithm capable of reducing data to about half its size is 

considered as a good compression algorithm. The measure of this efficiency is defined by 

compression ratio. 

 

2.3 Compression Ratio 

Compression ratio is a simple and effective method of measuring how good a compression 

scheme can perform. It is defined as: 

 

                   
                         

                        
            

This measurement for a given data or data set determines the ratio between the compressed 

data output bits to the raw data input bits of the data set. A ratio of half or less is considered as 

good compression. Over the past many years some standard data sets have been adopted to 

Data Compression types 

Lossy  Lossless  

Statistical Dictionary   

Text  Video   Audio   Image   

Statistical Dictionary   

Text  Video   Audio   Image   
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measure the effectiveness of compression schemes. These standards data sets are referred to 

as “corpus”. 

 

2.4 Data Compression Corpora 

A corpus is a distinct set of files, used for evaluating the practical performance of different 

compression schemes [2]. The compression rate is measured in bits per symbol (bps) and is the 

resulted ratio of the size of the output bytes to the size of the input bytes. A value of 8 bps 

means no compression; smaller ratio values represent better (stronger) compression. [2] 

There are different corpora for different data types. Some corpora contain smaller files whereas 

others have larger files. Some corpora put the emphasis on text files, others on picture, video, 

sound or other data type files.  

The following is a list of some known available corpus: 

 The Calgary Corpus 

Authors: Ian Witten, Timothy Bell and John Cleary 

Year: 1987 

Location: University of Calgary, Canada. 

The Calgary Corpus is a set of 18 files traditionally used to test data compression 

algorithms and implementations. They include text, image, and object files [1]. The 

Calgary corpus is a standard for text based and lossless compressions methods. This 

corpus is available at [3]. The work here uses this corpus for testing and analyzing. 

 

 The Canterbury Corpus  

Authors: Ross Arnold and Timothy Bell 

Year: 1997 

Location: University of Canterbury, New Zealand. 

The Canterbury corpus came as an alternative to the Calgary corpus. The design of 

Canterbury corpus follows the new era of file’s types which were not present at the 



13 
 

time of Calgary corpus. There are two editions of Canterbury corpus; these are 

“Standard Canterbury corpus” and “large Canterbury corpus”. This corpus can be found 

at [4]. This work also uses Large Canterbury corpus for testing and evaluation.  

 

 Lukas Corpus  

Author: Jurgen Abel 

Year: 2006 

Location: Germany. 

The Lukas corpus is a set of medical images mostly considering of two-dimensional (2D) 

radiographs in different image files format. These files are used to evaluate the practical 

performance of lossless compression algorithms in the medical imaging field. This 

corpus is available at [2] and [5]. 

 

 The Protein Corpus  

Authors: Craig Nevill-Manning and Ian Witten 

Year: 1999 

Location: Paper from the IEEE Data Compression Conference 1999, Snowbird, Utah,  

United States of America. 

The Protein Corpus is a set of 4 files, which were used in the article "Protein is 

incompressible" by Craig Nevill-Manning and Ian Witten from the DCC 1999. 

Compressing such files is difficult so this corpus provides a good evaluation ground. The 

corpus is available at [2]. 

 

 The Silesia Corpus  

Author: Sebastian Deorowicz 

Year: 2003 

Location: Silesian University of Technology, Poland. 

The Silesia corpus can be considered as a modern file based corpus. This corpus involves 

large files ranging up to 50 MB for evaluation. This corpus is available at [6].  
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2.5 Data Compression Today 

With the rise and advancement of computer technology, data compression has evolved into an 

art of its own. Today almost every file in a home user computer is in some compressed form. 

Today’s modern data compression schemes and software can easily compress a billion bytes of 

data to about a quarter of its size or even less. Some of these well-known schemes and 

software are listed here. 

 

List of Compression Schemes: 

 Run-Length Encoding (RLE) 

 Shannon-Fano Coding 

 Huffman Coding 

 Arithmetic Coding 

 Prediction by Partial Matching (PPM) 

 LZ77 

 LZW 

 UNIX Compression (LZC) 

 GIF Images 

 Deflate: Zip and Gzip 

 LZMA and 7-Zip 

 PNG 

 JPEG 

 DjVu 

 MPEG 

 MP3 

 OGG 

 The Burrows-Wheeler Transform Method 
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 ACB 

 Portable Document Format (PDF) 

 

List of Compression Software: 

 WinRAR 

 WinZip 

 WinAce 

 Stuffit 

 WinUHA 

 7-Zip 

 ALZip 

 BitZipper 

 The Unarchiver 

 PeaZip 

 IZArc 
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Chapter 3: PPM Data Compression Scheme  

 

This work parallelizes the PPM data compression scheme. PPM is a two stage data compression 

scheme that makes efficient use of Arithmetic Coding. The Arithmetic Coding is a statistical 

lossless data compression scheme often referred to as entropy encoder. Understanding of 

Arithmetic Coding is a prerequisite to the understanding of PPM data compression scheme. 

 

3.1 Arithmetic Coding 

Arithmetic coding is a compression technique that is capable of achieving excellent 

compression on raw data. Its principle strength lies in the fact that it can generate code of 

length close to Shannon’s entropy [7]. Arithmetic coding is a lossless compression technique 

and part of the statistical methods family. 

The principle of arithmetic coding goes back to the early 1960s when it was first proposed by 

Peter Elias [1]. In 1987 Ian Witten, Timothy Bell and John Cleary came with a practical software 

implementation of Arithmetic coding that has become well known [8]. 

Arithmetic coding overcomes the problem of assigning integers codes to individual symbols (or 

bytes from a data stream) [1]; it does this by assigning a large code to the file. This technique 

works in two-passes; first it calculates the probabilities of each occurring symbol. The second 

pass involves the coding of these symbols respective to their probabilities. This two-pass 

method is illustrated here with some description: 

i. Consider a data stream of three reoccurring symbols. 

Let the symbols be s1, s2 and s3. 

 

ii. Divide these symbols along a number line [0, 1). 

Initially all symbols are assigned equal probabilities as shown in figure 3. 
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Figure 3: Arithmetic Coding 

  

iii. If a symbol occurs and needs to be coded, use the interval respective to its assigned 

interval on the number line. 

To code a symbol say s2 (reference figure 4), its probability range interval is used to 

redefine the complete number line and all respective probabilities, the occurrence 

of this symbols s2 also means that now it may have a higher probability. Similarly if 

another symbol s1 is to be coded (reference figure 5), its new probability range 

interval is used, every symbol is redefined in this range as before and the probability 

of this symbol is increased. 

 

Figure 4: Arithmetic Coding 

 .0000 

0.6667 

0.3333 

0.0000 

Pr 𝑠1   /3 

Pr 𝑠2   /3 

Pr 𝑠3   /3 

 .0000 

0.6667 

0.3333 

0.0000 

Pr 𝑠1   /3 

Pr 𝑠2   /3 

Pr 𝑠3   /3 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠2 
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Figure 5: Arithmetic Coding 

 

iv. Any value that can exist between the final interval ranges gives the arithmetic code 

for the data stream. 

After coding all the symbols the final probability interval is used which in this case is 

[0.5834, 0.6667), any value in-between this range can be used to define the 

complete coded stream. 

 

v. To reverse this process and get the original data stream from the coded 

(compressed) file, a (similar to forward) backward operation is implemented. 

The coded value is used again and again to redefine the complete probability 

number line [0, 1) until the complete original data stream is achieved. 

 

Although the above method illustrates the concept behind arithmetic coding, in actual practical 

implementation it is not feasible as it produces a very large decimal value which even today’s 

modern computers can’t handle. To overcome this problem the practical implementation uses 

integer computations. For this, instead of using probabilities it works with frequencies and to 

represent the current state of a symbol its frequency range is used which in the previous case 

considering symbols s1 at the beginning of the coding process is: 

Low count = 0 &    high count = 3 

0.6667 

0.5834 

0.4 67 

0.3333 

Pr 𝑠1   /3 

Pr 𝑠2  2/3 

Pr 𝑠3   /3 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠1 
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The following pseudo code show steps involved in practical implementation of Arithmetic 

coding (Referenced from [7]): 

 Read symbol from data stream 

 Calculate low_count, high_count and total (this is the equal to all symbols read so 

far) 

 

 Code (Encode) the symbol as: 

 Set r   range / total 

 Set low   low   r   low count 

 If high count < total then 

 Set range   r   (high count   low count) 

 Else  

 Set range   range   r   low count 

 

 While range    One_Quarter 

 If low   range   One_Half 

 bit_plus_follow(0) 

 Else If  One_Half   low 

 bit_plus_follow(1) 

 Set low   low   One_Half 

 Else 

 Set bits_outstanding   bits_outstanding   1 

 Set  low   low   One_Quarter 

 set  low   2   low and range   2   range 

 

 bi_plus_follow(b): 

 put_one_bit(b) 

 While  bits_outstanding   0  do 

 put_one_bit(1   b) 

 set bits_outstanding   bits_outstanding   1 
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 Decode as: 

 State variables range and diff: value   low are maintained. 

 Set r    range / total 

 Set target    min { total   1, diff div range } 

 search for symbol (s) such that low count   target   high_count 

 Set diff   diff   r   low_count 

 If high_count   total 

 Set range    r   (high_count   low_count) 

 Else 

 Set range    range   r   low_count 

 

 While range   One_Quarter 

 Set range    2   range 

 Set diff    2   diff   get_one_bit() 

 Output s 

Altogether Arithmetic Coding is a good compression scheme which can be used as a solo 

encoder/decoder or as a combination with others useful data compression schemes. One such 

scheme is PPM which invokes the Arithmetic Coder in an excellent manner. 

 

3.2 Prediction by Partial Matching (PPM) 

The prediction by partial matching (PPM) is a sophisticated, state of the art compression 

scheme originally developed by J. Cleary and I. Witten (1984) [10]. This scheme is based on an 

encoder that maintains a statistical model of the text [1]. PPM falls in the statistical 

compression methods and is a lossless type data compression scheme. 

In PPM, the encoder inputs the next symbol, assign it a probability and send this symbol to an 

arithmetic encoder so that it can be coded. In simpler words PPM alters the symbol’s 
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probabilities that are used by an arithmetic coder. It improves the symbol’s probabilities to 

such an extent that they may be coded as close as their entropy. 

The arithmetic coder has a drawback; it restricts itself to one context length. On the other hand 

PPM uses finite context length models (usually up to 3, 4 or more). During encoding, at each 

stage the symbol to be coded is first searched in the longest context and if it is available it is 

encoded using this context probability, else an escape symbol which is a special symbol to 

represent a context order is encoded and the model switches to a lower length context to 

search again for the symbol. In PPM the model can switch to as low as context order “-1”, here 

all the symbols are available and are assigned an equal probability distribution. This lowest 

context order encodes a symbol in its original size. In the decode phase, PPM reads the 

compressed stream, here if it finds an escape symbol it switches to a lower context order else it 

uses the current context to decode the symbol. 

Similar to an arithmetic coder; PPM is also a two-pass method, first includes the probabilistic 

modeling of finite length context models and next is the encoding based on these models. For 

this second pass there is no fix restriction of using arithmetic coder, any other method which 

may require a good statistical model can be used. Suitable coding methods that can replace 

arithmetic coder in PPM includes Huffman coding and range coding, however some special 

variants of dictionary based LZ schemes also make useful use of PPM. 

One critical issue that effects a PPM implementation is how and what probability should be 

assigned when an escape event occurs. To address this issues various mechanisms have been 

suggested, these are known as variants of PPM. 
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3.2.1 PPM Variants 

Each PPM variant approach the problem of assigning probabilities to escape events. Currently 

there are ten (10) variants of PPM. 

 PPMA (Method A) 

 PPMB (Method B) 

John G. Cleary and Ian H. Witten, 1984 [10]. 

 

 PPMC (Method C) 

Alistair Moffat, 1990 [11]. 

 

 PPMD (Method D) 

Howard, 1993 [12]. 

 

 PPMII 

Dmitry Shkarin, 2002 [13]. 

 

 PPMP ( Poisson Distribution) 

Ian H. Witten and T. C. Bell, 1991 [14]. 

 

 PPMX (Poisson Distribution Approximate) 

Ilia Muraviev, 2008 [15]. 

 

 PPM* 

John G. Cleary, W. J. Teahan and Ian H. Witten, 1993 [16]. 

 

 PPMZ (Method Z) 

Charles Bloom, 1996 [17]. 
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 Fast PPM 

Paul G. Howard and Jeffery Scott Vitter, 1994 [18]. 

 

3.2.2 PPM method C (PPMC) 

PPMC a variant of PPM (Prediction by Partial Matching) data compression scheme comes in line 

after the original PPM (method A and B). PPMC also known as PPM method C was suggested by 

A. Moffat in his 1990 paper [11]. 

Like other PPM variants PPMC also solves the problem of assigning probabilities to the escape 

events. PPMC assigns a probability of one to an escape symbol every time it sees a new symbol 

in a particular context. When an escape event is called it uses this (escape symbol) probability 

to encode the event and move to a lower context order. Every new symbol occurrence 

increases the escape symbol probability by one. The maximum probability that an escape 

symbol can attain in PPMC is equal to the number of unique distinct symbols in that context. 
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Chapter 4: Parallel Computing 

 

4.1 Parallel Computing 

Parallel Computing is a computational form where many executions or process are carried out 

side by side. It implies simultaneous execution of multiple instructions. It is based on the 

principle that large problems can often be divided into smaller ones, which can then be solved 

concurrently (in parallel) [19+ that is a simple “divide and conquer” strategy. Parallelism in 

computing has been employed for many years, mainly where high-performance computing is 

needed. Interest and developments in Parallel Computing has grown lately due to the easily 

availability of today’s multicore/multiprocessor based personal computers. 

Parallelism (as in parallel computing) can be achieved at several different stages, including: 

 Bit level 

 Instruction level 

 Data level 

 Task level 

The central idea behind parallel computation is to achieve a faster computation environment. 

Parallelism slays the processing time when multiple process are run as processes are no more 

dependent on one processing unit, and depending on the amount of processing hardware 

available no queue may be necessary. But as with many other good things this faster 

computation and lesser processing time come at a price of greater usage of the following: 

 power consumption 

 processing units (hardware) 

 memory consumption 
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Compared to sequential computer programs, parallel computer programs are difficult to write 

as concurrency introduces several new classes of potential software bugs [20]; among these 

communication and synchronization between the subtask are the most common ones which 

restricts good parallel performance. 

Modern parallel programs and software uses data and task level parallelism, with data level 

being the most common. Data level parallelism is mostly achieved from multithreading whereas 

task level through task parallelism (process parallelism). In multithreading the threads (parts or 

instructions of a process) share hardware resources. In task parallelism resources are discrete. 

Classification of parallel computing falls under parallel architectures. 

 

4.2 Parallel Architectures 

The word parallel architectures correspond to the parallel models used in the parallelization of 

PPM data compression scheme. A total of four different parallel models have been 

implemented in this work. Self-authored names are used for all these parallel models. Some 

parallel architectures are similar to the ones describe in many literatures on parallel computing, 

whereas others use a new approach to parallelism. The parallel models show the flow of data 

through the processing elements (cores). These models are illustrated with some description as 

below: 

 

4.2.1 Parallel Lines 

This model is the simplest and the most common known parallel implementation that can be 

used for almost any process. Although named here as “Parallel Lines” in many literature this has 

often been mentioned as “task parallelism” or simply “task parallel”. The model work in a 

simple straight forward manner, it divides the large input data into smaller (input) data chunks 

and sends each chunk to a separate processing element which runs a copy of the original 

process. 



26 
 

 

Figure 6: Parallel Lines Model 

 

The figure above (figure 4) depicts Parallel Lines model. Core1 processes data chunk-1, core2 

processes data chunk-2 and so forth. This model produces two outputs. The first contains the 

intermediate output data chunks of each core (processing element) and their respective 

header, whereas the second final output is the merger of all the first stage output’s chunks. In 

this architecture the processing of multiple chunks of original data by multiple processing 

elements at the same time makes execution faster. 

 

4.2.2 Sequential Pipes 

The “Sequential Pipes” is a simple sequential (serial) pipeline model that uses multicores. Many 

Processes can be divided into a two stages or more; therefor this model uses two cores or more 
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in a pipeline manner to complete the task. Such pipeline architecture is often referred to as 

“data message passing parallelism”. 

 

 

Figure 7: Sequential Pipes Model 

 

The figure above (figure 5) shows Sequential Pipes model. In this data is fetched by the first 

core which processes it and passes it to the second core which reprocesses it. In this 

implementation the second core purposely lags the first core by a minimum time of t+1 unit 

(here t depicts first core start time). The output is obtained from the second core. A number of 

data passing (message passing) stages can be used depending on the task to be accomplished. 

This architecture saves time only when the original process can be divided into multiple 

pipeline stages. 
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4.2.3 Parallel Pipes 

The Parallel Pipes model is the task parallelization of the Sequential Pipes model. It combines 

the features of both Parallel Lines (task parallel) and Sequential Pipes (pipeline or data message 

passing) models in one. Parallel Pipes divides the larger input data file into smaller chunks and 

then on these chunks applies multicore pipeline processing model. 

 

Figure 8: Parallel Pipes Model 

The figure above (figure 6) shows Parallel Pipes model. This model follows both task parallelism 

and data parallelism. First the large data stream is divided in to equal smaller chunks and then 

separately processed in a pipeline style data (message) passing manner. The number of parallel 

pipeline stages is equal to the number of data chunks. 
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4.2.4 Hybrid Tree 

This model is also similar to a multicore pipeline model with a key difference that it uses 

multiple (in parallel) processing elements in the first stage. This model is based on “decision 

tree” model where the final stage is been driven by the results of the previous.  

 

Figure 9: Hybrid Tree Model 

Figure 7 shows a Hybrid Tree Model. In implementation, first a copy of data is passed to all the 

parallel processing elements (cores) in the first stage whose processed output is used to drive 

the final stage. These intermediate outputs can also be used in a decision-making manner by 

the final stage. Note that the processing elements in the first stage are in parallel and not 

dependent on one another; any dependencies of the first stage elements on one another can 

cause a parallel deadlock. Also to be noted here is that each processing element in the first 

stage forms a pipeline model with the final stage processing element. 
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Chapter 5: Parallel Data Compression 

 

Parallelism in data compression involves the use of parallel computing methodologies on 

compression schemes to reduce processing time. It has been observed that mostly lossless data 

compression schemes and methods which outperforms in compression (that is have a very low 

compression ratio) usually performs lazy at processing time. This laziness is inherited from the 

compression method’s algorithm which usually involves excessive looping, searching and data 

access.  

The goal of parallelization is to overcome the critical processing phases which add time to a 

process execution. In data compression these phases involves (a few common phases) 

accessing data stream, searching, sorting, storing, looping and memory access. 

In general, data compression algorithms and software are not designed to work concurrently; 

parallel data compression is only applied for very large data streams. Operating a compression 

method sequentially on a very large file can be quite slow. Often large files can take several 

minutes to compress. Usually these large files are divided into smaller chunks and send to 

separate processing units where each processing unit runs through a copy of the applied 

compression method. This sort of parallel processing is governed by Amdahl’s law [21] which 

states: 

“Theoretically, by doubling processing elements, execution time should halve and with the 

second doubling, execution time should halve again.” 

Practically, in data compression, a very few parallel implemented methods achieve this optimal 

speed up and that to when doubling is applied once or a couple of times (not more). Another 

fact associated with compression methods is that fine-tuning an algorithm to squeeze out the 

last remaining bits of redundancy from the data gives diminishing returns [1]. Modifying an 

algorithm to improve compression by 1% may increase the run time by 10% and the complexity 
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of the program by more than that [1]. So theoretically it can be said that parallel data 

compression can indeed work out good for data compression schemes. 

 

5.1 Parallel Implementation of Compression Methods  

Over the past few years a number of researches have been conducted to examine the 

possibilities of parallelism in data compression. Not every attempt made resulted in success. 

Here a few of them have been reviewed. 

Parallelism to lossless dictionary based compression methods is the most common. Several 

researchers have worked on parallel implementation of dictionary base LZ variants. In [22] the 

author decodes LZ2 in a parallel environment. In [23] the BZip2 method is parallelized by 

dividing the input data into chunks and using the same copy of the compression method on 

available processors in parallel. Similar parallel environment is seen in [24] parallel image 

compression. The authors in [25] also applies this data chunks based task parallel architect on 

lossless textual data compression methods, including statistical based Huffman, Arithmetic 

coding and dictionary based LZ78 and LZW. All these approach the processing speed up 

problem by using dividing the larger data chunk into smaller and then applying parallel 

processing. This approach speeds up processing time in resemblance to Amdahl’s law, but in 

many cases degrades the compression and adds a permanent header to output. 

However many have approached this processing problem differently so as to avoid header and 

degrading of compression. In [26] the authors uses cooperative dictionary for their LZ77 parallel 

implementation to secure the compression ratio. In [27] parallel Suffix Sorting implementation 

is applied to improve processing time. In paper [28] on parallel BWT compression also 

successfully test message passing (multiple stage pipeline architecture) in parallel environment. 
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5.2 Parallel PPM (method C)  

PPM and any of it variants can be considered as a two-pass (two stages) based compression 

methods. The first pass starts modeling and the second deals with encoding. In any adaptive 

implementation of PPM both these stages are heavily dependent on each another. Processing 

speed up can be and has been achieved in both these stages in a well designed and 

implemented sequential environment but no speed up through the use of parallel processing 

elements have yet been done.  

This works deals with processing speed up of PPMC using parallel architect. A total of four (4) 

different parallel implementations have been described and compared with the sequential 

architecture. Some parallel architectures are similar to the ones describe in the previous, 

whereas other uses a new approach to parallelism. Not all of these parallel implementations 

achieve similar results; also the results may vary for different variants of PPM and for different 

compression schemes. For the ease of use, self-authored names have been proposed for these 

parallel architectures. 
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Chapter 6: Parallel Software Implementation of 

PPM (method C) Data Compression Scheme 

 

The PPM (method C) is lossless data compression scheme. Practical implementation of PPMC is 

quite resource hungry in both memory and processing time. Parallel software implementation 

of PPMC data compression scheme works on the latter issue by parallelization of the said data 

compression scheme. This research work implements the previously mentioned parallel 

architectures for the PPMC method. Various internal and external parameters are studied 

which effects the parallelization process of PPMC. At the end, the results obtained (of all 

parallel architectures) are compared. This work utilizes software environment for testing the 

PPMC’s parallel architectures. The tools used are divided into two categories: 

 Software Environment 

 Hardware Environment 

The following topics describe the software n hardware tools/environment and how these have 

been used for the parallel implementation of PPMC data compression scheme. 

 

6.1 Software Environment 

The software environment is comprised of the followings: 

 C# (Programming Language) 

 .Net 4.0 Framework 

 Task Parallel Library 

 Visual Studio 2010 

 Windows 7 
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6.1.1     C# Programming Language 

C# (pronounced as C - sharp) is Microsoft’s premier language for .NET development. It 

leverages time-tested features with cutting-edge innovations and provides a highly usable, 

efficient way to write programs for the modern enterprise computing environment. It is one of 

the languages that is use to create applications that will run in the .NET CLR. It is an evolution of 

the C and C++ languages and has been created   specifically to work with the .NET platform. 

C# was created at Microsoft late in the 1990s and was part of Microsoft’s overall .NET strategy. 

It was first released in its alpha version in the middle of 2000 [29]. C# 1.0 made its public debut 

in 2001. The advent of C# 2.0 with Visual Studio 2005 saw several important new features 

added to the language, including Generics, Iterators, and anonymous methods. C# 3.0 which 

was released with Visual Studio 2008, added extension methods, lambda expressions, and most 

famously of all, the Language Integrated Query facility, or LINQ. The latest incarnation of the 

language, C# 4.0, provides further enhancements that improve its interoperability with other 

languages and technologies. These features include support for named and optional arguments, 

the dynamic type which indicates that the language runtime should implement late binding for 

an object, and variance which resolves some issues in the way in which generic interfaces are 

defined. C# 4.0 takes advantage of the latest version of the .NET Framework (also version 4.0). 

There are many additions to the .NET Framework in this release, but arguably the most 

significant are the classes and types that constitute the Task Parallel Library (TPL). The TPL 

makes it possible to use C# for building highly scalable applications that can take full advantage 

of multi-core processors quickly and easily. 

 

6.1.2 .Net Framework  

The .NET Framework (now at version 4, version 4.5 available as developers preview) is a 

revolutionary platform created by Microsoft for developing applications [30]. The .NET 

Framework consists primarily of a gigantic library of code that can be used from client 
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languages (such as C#) using object-oriented programming (OOP) techniques [30]. This library is 

categorized into several different modules. A new key feature to .Net (4.0) is Parallel Extensions 

to improve support for parallel computing, which target multi-core or distributed systems. 

 

6.1.3 Relation between C# and .Net Framework 

Although C# is a computer language that can be studied on its own, it has a special relationship 

to its runtime environment, the .NET Framework. The reason for this is twofold. First, C# was 

initially designed by Microsoft to create code for the .NET Framework. Second, the libraries 

used by C# are the ones defined by the .NET Framework. Thus, even though it is theoretically 

possible to separate C# the language from the .NET environment, the two are closely linked. 

(Referenced from [29]) 

 

6.1.4 Task Parallel Library (TPL) 

The Task Parallel Library (TPL) is a set of public types and APIs in the System.Threading and 

System.Threading.Tasks namespaces in the .NET Framework version 4. The purpose of the TPL 

is to make developers more productive by simplifying the process of adding parallelism and 

concurrency to applications. 

The Task Parallel Library is designed to make it much easier to write managed code that can 

automatically use multiple processors. Using this library, one can conveniently express potential 

parallelism in existing sequential code, where the exposed parallel tasks will be run 

concurrently on all available processors. Usually this results in significant speedups. 

 

6.1.5 Visual Studio 

Visual studio is a development tool, an integrated development environment (IDE) by Microsoft 

that supports coding of Microsoft CLR languages including C#. It is a development tools from 

which simple command-line applications to more complex project types like Microsoft’s Office 
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suite can be designed. The current complete release available is Visual Studio 2010; however a 

recent Visual Studio Express 2011 as developer’s preview is also available. 

 

6.1.6 Windows 7 

Windows 7 is the latest release of Microsoft Windows (although currently Windows 8 as 

developer’s preview is also available), a series of operating systems produced by Microsoft for 

use on personal computers, including home and business desktops, laptops, netbooks, tablet 

PCs, and media center PCs. Windows 7 was released in late 2009. Windows 7 includes a number 

of new features, such as advances in touch and handwriting recognition, support for virtual 

hard disks, improved performance on multi-core processors, improved boot performance, 

direct access, and kernel improvements. 

A Key added feature to Windows 7 is its better support to parallel processing. A note from 

Computex 2009 says; Intel has revealed that Windows 7 features new and improved multi-

threading, which will help to improve power consumption and battery life. Previous versions of 

Windows often swapped threads around cores, which prevented them from entering lower 

power states and caused cache thrashing as separate cores raced to grab data processed by 

others. The Windows 7 kernel changes this by improving thread affinity, locking threads to 

particular cores in order to allow unused CPU cores to enter low power C-states when they’re 

not in use (called thread parking) providing the CPU and motherboard supports this of course.  

Windows 7 automates and scales all running tasks and applications in accordance with the 

underneath available hardware architecture. On a multicore hardware, Windows 7 by default 

uses the available cores to start multithread activity so that best performance can be attained. 

 

6.2 Hardware Environment 

The hardware environment containing the parallel processing elements is: 
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6.2.1 Intel Core i5  

The Intel core i5 is a multicore (multiple processors) based CPU on the Nehalem 

microarchitecture. Nehalem processors use the 45 nm process. The core i5 series were 

introduced in the late 2009. Some of these series processors at the end line are comparable to 

the core i7 series. The core i5 (750) used in this work is a quad core processor. With four CPUs 

this is comparable to some similar quad core (4 CPUs) core i7 series and is even consider being 

faster at performance comparatively. 

 

6.3 PPMC Implementation 

The PPMC implemented for this work uses arithmetic coder for symbols encoding/decoding, 

whereas context modeling uses a maximum count of two (2) for context orders due to limited 

amount of processing elements available within the core i5 hardware. The source code for the 

PPMC algorithm is written in C#. The context modeling portion source code is based on the 

theoretical representation of PPMC, whereas the encoder portion uses a self-modified (for 

PPMC) C# version of “Eric Bodden” arithmetic coder. The original C# version of Eric Bodden’s AC 

is written by “Sina Momken”. Eric Bodden’s AC work is based on the 1987 original work of “Ian 

Witten, Timothy Bell and John Cleary” *8+ which modify the original work to allow processing of 

larger data streams.  

 All the implementations (sequential and parallel) are based on strict OOP (object oriented 

programming) and C# syntax. No external libraries or data types are used; all data types and 

structures defined and used are part of the present C# and .Net framework.  

The context orders are based on classes (objects) that can uses either arrays or dictionary 

(similar to hash tables) for storing context that have been occurred. The symbols frequencies 

are stored as integers (32 bits) data type. Data is read byte by byte so a total of 257 (256 for 

each individual byte and 1 for the escape symbol) symbols at the most may occur. In C#, an 

array’s length needs to be defined when initializing the array. Lower orders are less memory 

hungry therefore for these arrays are suitable as arrays perform fast at runtime. 
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6.3.1 Context Orders 

The implementations of these orders are as follows: 

i. Order -1 

This is the lowest order in any PPM implementation. In this order all symbols are 

present and are assigned an equal probability. As there are a total of 257 symbols so an 

integer type array of 257 elements initialized to 1 for all elements can be used. But to 

save memory and make processing faster a simple fact can be used that the low count 

and high count assigned to a symbol (byte) in this context order is always equal to that 

byte and byte + 1. Whereas the total for this order remains constant, which in this case 

is 257. If implemented like this no array may be required to store order -1, low and high 

counts can be directly computed at runtime. The escape symbol in this context order is 

used to only specify the EOF (end of file) symbol. 

ii. Order 0 

Order 0 is based on the occurrences of the symbol followed by the same symbol. This 

order uses an integer type array of 257 elements. If a same symbols occurs followed by 

itself the frequency (count of that element in the array) is increased. The total count for 

this order can be stored as a separate integer type or as part of the array. In the latter 

case the array length is increased by one to accommodate for this total count. In this 

manner the total memory allocated at runtime to this order is 258 x 32 (bits) which are 

1032 bytes. 

iii. Order 1 

This order stores the occurrence of a symbol followed by any other symbol. For such an 

operation a two-dimensional (2D) array is ideal. This order uses a 2D integers array of 

256 x 258 elements. The total memory used by this order is 256 x 258 x 32 (bits), which 

equals to 264,192 bytes. 
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iv. Order 2 

Order 2 uses two previous contexts to predict the next symbol. An integer’s array based 

implementation of this can become resource hungry and slow down the processing if 

enough memory is not available at runtime. An array based storage uses three-

dimensional (3D) array of 256 x 256 x 258 x 32 bits, this amounts equal to approximately 

65 MB (Mega Byte) of memory usage. This could become a hurdle where less memory is 

available. An alternative method is to use Dictionary or Hash tables to store only the 

contexts that have been occurred. This saves memory consumption and makes 

implementation of higher context orders possible. 

The C# Dictionary is similar to Hash tables which offer a managed solution without the 

use of object casting as usually seen with the usage of Hash tables. For higher orders 

nested dictionaries can be used as a single dictionary cannot store previous contexts. In 

case of three stages nested dictionary, the total memory usage per symbol is 16 bytes. If 

the total occurring symbols in this order is less; then this order (dictionary version) saves 

a very good amount of memory compared to 3D array version for this context order. 

The arithmetic coder used for the encoding/decoding part does not require any large memory 

storage. It only needs to store the range, low and high of every previous operation at runtime. 

Modification to the arithmetic coder includes a version that uses memory stream to store the 

compressed output stream. Other modifications are to the data types used by the low, high, 

total count and the arguments and references passed to the arithmetic coder (applies to both 

file stream and memory stream version). The difference between file stream and memory 

stream version of Arithmetic Coder is that the latter version stores complete output data in 

memory first before writing it to a file on disk. 
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6.3.2 Pseudo Code 

The following is the pseudo code of the PPMC implemented: 

 Initialize: 

 Arithmetic coder (file stream OR memory stream) 

 Symbol (an object type to hold the symbol read, its low, high and total count) 

 Context Order -1 

 Context Order  0 

 Context Order  1 

 Context Order  2 

 File stream OR Memory stream (for input / output) 

 

 Encoder: 

o While (read symbol from file != EOF) 

o Start from highest order 

 Order 2 (search symbol) 

 If found  

 send symbol to arithmetic encoder for encoding 

 Else  

 send escape to arithmetic encoder for encoding 

 switch Order (to lower order) 

 Update Order 

 

 Order 1 (search symbol) 

 If found  

 send symbol to arithmetic encoder for encoding 

 Else  

 send escape to arithmetic encoder for encoding 

 switch Order (to lower order) 

 Update Order 
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 Order 0 (search symbol) 

 If found  

 send symbol to arithmetic encoder for encoding 

 Else  

 send escape to arithmetic encoder for encoding 

 switch Order (to lower order) 

 Update Order 

 

 Order -1 (search symbol) 

 If found  

 send symbol to arithmetic encoder for encoding 

 

 Decoder: 

o Start from highest order 

o Switch (Order) 

 

 Case 2: 

 Symbol   decode compressed stream 

 Order 2 (search symbol) 

 If found 

 send symbol to arithmetic decoder for decoding 

 Output   symbol 

 update Order 2 

 update Order 1 

 update Order 0 

 switch Order  to highest order 

 Else  

 send escape to arithmetic decoder for decoding 

 switch Order (to lower order) 
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 Case 1: 

 Symbol   decode compressed stream 

 Order 1 (search symbol) 

 If found 

 send symbol to arithmetic decoder for decoding 

 Output   symbol 

 update Order 2 

 update Order 1 

 update Order 0 

 switch Order  to highest order 

 Else  

 send escape to arithmetic decoder for decoding 

 switch Order (to lower order) 

 

 Case 0: 

 Symbol   decode compressed stream 

 Order 0 (search symbol) 

 If found 

 send symbol to arithmetic decoder for decoding 

 Output   symbol 

 update Order 2 

 update Order 1 

 update Order 0 

 switch Order  to highest order 

 Else  

 send escape to arithmetic decoder for decoding 

 switch Order (to lower order) 

 

 Case -1: 

 Symbol   decode compressed stream 

 Order -1 (search symbol) 
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 If found 

 send symbol to arithmetic decoder for decoding 

 Output   symbol 

 update Order 2 

 update Order 1 

 update Order 0 

 switch Order  to highest order 

 

All the PPMCs in this work including the sequential and parallel implementations use this above 

pseudo code with exception to some modifications in the letter case. The maximum context 

order used in all implementations is two ‘2’. Time performance is measured using the standard 

C# .Net “System.Diagnostics” namespace’s stopwatch time class. The following describe all 

these PPMC’s implementation. 

 

6.3.3 Sequential PPMC 

The sequential PPMC is used as a benchmark to compare every parallel implementation. The 

time factor of this implementation is compared with the parallel implementations time to note 

the speed up if any. The sequential PPMC is a non-multicore and non-multithread based 

version. It is the same as the pseudo code given previously. It uses file stream version of the 

arithmetic coder along with all the context model orders mentioned previously. 

 

6.3.4 Parallel Lines PPMC 

This is a parallel PPMC implementation based on the Parallel Lines architecture as defined 

before. This PPMC accommodates for two, three and four (2, 3 and 4) parallel processing 

elements (in line with the core i5 architecture) or parallel lines at the same time. The 

implementation of Parallel Lines PPMC uses memory-mapping to map the input data stream to 

the memory. This is necessary as multiple accesses to a same file on disk at the same time are 
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not possible; there is only one read head to a disk drive which cannot be shared at the same 

time.  

 

Figure 10: Parallel Lines PPMC 

The memory-mapping or the memory mapped file class is introduced with the .Net 4.0 

framework. Memory mapped files maps a file from the disk to the memory so that multiple 

process can access it. Using memory mapping multiple access of input data stream at the same 

time becomes possible for the parallel lines PPMC. This PPMC uses Memory stream version of 

arithmetic coder to store the intermediate output of each parallel element. The final output is a 

merger of this previous output. 

The merged output (compressed) file size is more than the sequential PPMC compressed 

output size. One reason for this is the addition of header to the compressed data. 

Note that the usage of memory mapping and memory stream adds up to the memory in use 

during runtime. Typically this amount for memory mapping is approximately equal to the input 
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file (or input buffer size) and for memory stream equals to the compressed output of each 

processing element. 

The following is the pseudo coding for Parallel Lines PPMC encoder: 

 Initialize: 

 Arithmetic coder (memory stream) 

 Symbol (an object type to hold the symbol read, its low, high and total 

count) 

 Context Order -1 

 Context Order  0 

 Context Order  1 

 Context Order  2 

 File stream and Memory stream (for input / output) 

 Memory mapped file (pointed to complete input stream) 

 Memory mapped file assessors (equal to the number of parallel tasks) 

 

 Encoding: 

 Divide input mapped file to chunks 

 Call parallel tasks (equal to the number of chunks) 

 Pass data chunks (one to each task) 

 Run PPMC on each task 

 Store compress output as separate memory streams 

 Wait for all tasks to finish 

 Add header to all (sub) outputs 

 Combine outputs 

 Write output to file 
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6.3.5 Sequential Pipes PPMC 

The Sequential Pipes PPMC in this implementation use just one pipeline stage. It is based on the 

fact that PPMC like other PPMs is a two-pass scheme. The pipeline stage starts from the 

modeling and ends at the encoder. Both these stages use separate processing elements (cores) 

and the latter stage lags the first by a time of t+1 unit.  

The second processing elements use the results of the first. If a direct communication is made 

between the two parallel units a deadlock can occur. To avoid parallel deadlock a buffer is used. 

The result of first gets stored in the buffer, the second processor then fetches data from this 

buffer.  

 

 

Figure 11: Sequential Pipes PPMC 
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The Sequential Pipes PPMC uses the file stream for input access and memory stream to 

temporary handle output until the disk drive head becomes available for the file write 

operation. The usage of buffer to pass data between processes adds up to the total memory 

usage. At the most without any restriction, the buffer size approximates to: 

                       r             r  r  4                               

The compressed output file size in this case is same as that achieved using Sequential PPMC. 

The following is the pseudo code for Sequential Pipes PPMC encoder:  

 Initialize: 

 Arithmetic coder (memory stream) 

 Symbol (an object type to hold the symbol read, its low, high and total 

count) 

 Context Order -1 

 Context Order  0 

 Context Order  1 

 Context Order  2 

 File stream and Memory stream (for input / output) 

 Initialize buffer (having appropriate length to hold all symbols) 

 

 Encoding: 

 Call two parallel tasks 

 Assign task 1 to read data from input and output to buffer (use PPMC 

context model) 

 Assign task 2 (t-1 seconds) delay and read from buffer and output to 

memory (use Arithmetic coder) 

 Wait for all tasks to finish 

 Write output from memory to file 
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6.3.6 Parallel Pipes PPMC 

The Parallel Pipes PPMC is a combination of both Parallel Lines and Sequential Pipes PPMC. This 

implementation splits the input data stream so that multiple instances of pipeline PPMCs can 

work on the data chunks.  

 

Figure 12: Parallel Pipes PPMC 
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consumed by memory mapping, buffer and memory streams, this memory count can go up to 

(if no restriction is impose on the inherited features): 

                                           r             r  r 

 4                               

           r            r                         

The compressed output file size of Parallel Pipes PPMC measures more than Sequential PPMC 

but less than Parallel Lines PPMC for the same number of cores used. 

The following is the pseudo code for Parallel Pipes PPMC encoder 

 Initialize: 

 Arithmetic coder (memory stream) 

 Symbol (an object type to hold the symbol read, its low, high and total 

count) 

 Context Order -1 

 Context Order  0 

 Context Order  1 

 Context Order  2 

 File stream and Memory stream (for input / output) 

 Memory mapped file (pointed to complete input stream) 

 Memory mapped file assessors (equal to the number of parallel tasks) 

 Initialize buffer (having appropriate length to hold all symbols) 

 Encoding: 

 Divide input mapped file to chunks 

 Call parallel tasks inside call pipeline PPMC tasks 

 Wait for all tasks to finish 

 Add header to all (sub) outputs 

 Combine outputs 

 Write output to file 
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6.3.7 Hybrid Tree PPMC 

Hybrid Tree PPMC implementation use the Hybrid Tree (parallel) architecture as describe 

previously. In this implementation it takes advantage of the multiple context orders of PPMC 

and processes them separately. The result of modeling stages is fetched and used by the 

encoder which acts as if a pipeline stage to the modeler. 

 

Figure 13: Hybrid Tree PPMC 

The entire context modeling stages reads the input data stream at the same time. The input 

data stream is not fragmented but is memory mapped so that multiple processes can access it 

at the same time. This implementation assigns one processing element (core) to each context 

model. No communication exists between the context models. This is necessary to avoid any 

possible parallel deadlock. The modeling stages output is stored separately in a buffer which is 

then fetched by the encoder processor. One buffer is assigned to each parallel context 

modeling stage, again this is a necessary precaution use to avoid parallel deadlock. The startup 

time for the encoder processor is “t (last) +1” where “t (last)” signifies the startup time for the 
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C1 
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Memory Mapped File 

Buffer (1 per each core) 
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last started context modeling processor.  Additional memory storage at runtime includes 

memory mapping and buffers, this if no restriction can be equal to: 

                                         r             r  r  4                        

The output file size in Hybrid Tree PPMC is better from all other task parallelism based 

implementations. In this case the compressed file size is same as that of sequential PPMC. 

The following is the pseudo code for Hybrid Tree PPMC encoder:  

 Initialize: 

 Arithmetic coder (file stream) 

 Symbol (an object type to hold the symbol read, its low, high and total 

count) 

 Context Order -1 

 Context Order  0 

 Context Order  1 

 Context Order  2 

 File stream (for input / output) 

 Memory mapped file (pointed to complete input stream) 

 Memory mapped file assessors (equal to the number of parallel tasks) 

 Initialize buffer (having appropriate length to hold all symbols) 

 

 Encoding: 

 Call parallel task and assign order 0 

 Call parallel task and assign order 1 

 Call parallel task and assign order 2 

 Call parallel task and assign encoder 

 Wait for all tasks to finish 

 Write output to file 
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Chapter 7: Test Analysis and Results 
 

The PPMCs implemented are tested for time speed up. All implementations (as previously 

describe) are tested on quad core architecture. At test time, the test environments 

specifications are: 

 Windows 7 (operating system) 

 Intel core i5 750 (quad core) 

 2 GB physical memory (RAM) 

Before testing the system was completely checked for any malfunctioning; including physical 

memory, cores, motherboard and hard disk malfunctioning. No hardware components are over 

clocked, all cores run at their default specifications. The operating system is also tested for the 

presence of software bugs, viruses and malfunctioning. At testing time all unnecessary process 

running through the operating system were shut off. Same environment is sustained for all 

PPMC’s implementations testing. 

As the goal of this work is to measure parallel time speed up, therefore no memory restrictions 

are imposed on any PPMC under test. Hard disk access is limited to the hard disk default 

read/write rate. For read/write operations only the standard primary hard disk (containing the 

operating system) is used no other secondary disk storage medium is used. 

The parallel PPMC implementations uses memory mapping, memory streams, and parallel task 

library, therefore as a prerequisite time based measurements of these are taken. Note that 

memory mapping, memory stream and task parallel library are part of C# and .Net framework. 

Perquisite measurements: 

i. Memory mapping 

In C# programming language (through .Net framework) memory mapping of a file on 

disk implies creating an image of the file in memory that points to the original file. 

The memory mapped file can be of the same size (as that of the original file) or can 

be custom size. Initializing a memory mapped files requires time. In general the 

average approximate time can be: 

 

(Test performed on file name “world192.txt” available as part of the large 

Canterbury Corpus. File size is 2.35 MB) 

Initialization time: 375 milliseconds 
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Read access time: 42 milliseconds 

Total time (approx.): 417 milliseconds 

 

Compared to file stream that is direct file access: 

Unit = milliseconds Memory Mapped File File Stream 

Initialization time 375 210 

Access time 42  27  

Total time 417 237 

 

ii. Memory stream 

Memory stream which although is much similar to file stream resides only in 

physical memory. The average approximate time to initialize and perform a 

read/write access to a memory stream is: 

 

Test 1: 

(Test performed on custom made file having same length as that of “world192.txt” 

from the large Canterbury Corpus. File size is 2.35 MB) 

 

Initialization time: 0.0123 milliseconds 

Write time: 29 milliseconds 

Read time: 13 milliseconds 

 

Test 2: 

Reading from file to memory and writing from memory to file. 

(Test performed on file name “world192.txt” available as part of the large 

Canterbury Corpus. File size is 2.35 MB) 

 

Initialization time: 0.2325 milliseconds 

Write time: 59 milliseconds 

Read time: 51 milliseconds 

 

Comparison between file stream and memory stream: 

Unit = milliseconds Memory Stream File Stream Composite 

Initialization time 0.0123  

(write access)  
0.3941  

(read access)   
0.2105  

0.2325  

Write time 29  33 59 

Read time 13 27  51  
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iii. Task parallelism 

Starting a parallel processing task takes time. The time taken to initialize a parallel 

task is: 

 

(Task chosen is to print “Hello World!” to console window) 

Parallel task time: 2.1946 milliseconds 

 

Compared to sequential processing: 

 Sequential Parallel 

Time (seconds) 0.3241  2.1946  

 

 

Parallel PPMCs test 

The actual test, analysis results for the PPMCs are as follows. Large Calgary corpus and 

Canterbury corpus which offers larger size files is used during all PPMC’s test. The results drawn 

are based on time and compression efficiency offered by each implementation. 

 

i. Sequential PPMC 

File name File size (KB) Time (seconds) Compression (KB) 

book2 597 1.2801761 283 

world192.txt 2,416 3.8991613 985  

E.coli 4,530 8.1521292 1,118  
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ii. Parallel Lines PPMC 

File name File size (KB) Number of 
Cores 

Time (seconds) Compression (KB) 

book2 597 2 0.8910034 308 

book2 597 3 0.7439570 329 

book2 597 4 0.6733790 343 

     

world192.txt 2,416  2 2.3077443 1,051 

world192.txt 2,416  3 1.8322877 1,100  

world192.txt 2,416  4 1.5327735 1,141  

     

E.coli 4,530  2 4.6493431 1,123  

E.coli 4,530  3 3.4909464 1,127  

E.coli 4,530  4 2.7048271 1,131  
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The above comparison graph shows that Parallel Lines PPMC cuts the processing time 

down to half for 2-Cores, however for more cores the time is not half but is rather cut 

down to quarter of the previous stage. 
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iii. Sequential Pipes PPMC 

File name File size (KB) Time (seconds) Compression (KB) 

book2 597 1.2108961 283 

world192.txt 2,416  3.6066420 985  

E.coli 4,530  7.8152796 1,118  
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The test shows that Sequential Pipes PPMC does reduce time. This processing speed up 

increases gradually with the input file size.   

 

 

iv. Parallel Pipes PPMC 

File name File size (KB) Time (seconds) Compression (KB) 

book2 597 0.8505831 308 

world192.txt 2,416 2.1899484 1,051 

E.coli 4,530 4.3799399 1,123  
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The Parallel Pipes PPMC reduces time to half, but this reduction comes at a very high 

hardware cost which in this case is 4-Cores. Comparatively 2-Cores based Parallel Lines 

PPMC shows also similar results.   

 

v. Hybrid Tree PPMC 

File name File size (KB) Time (seconds) Compression (KB) 

book2 597 1.2542444 283 

world192.txt 2,416 3.8353077 985  

E.coli 4,530 8.1442850 1,118  

 

0

1

2

3

4

5

6

7

8

9

book2 world192.txt E.coli

Ti
m

e
 (

se
co

n
d

s)
 

 
Sequential PPMC vs Parallel Pipes PPMC 

Sequential

Parallel Pipes



60 
 

 

 

 

The model give constant speed gain no matter what the input file size may be. Hybrid 

Tree PPMC also uses 4-Cores (in our case). The speed gain is very less compared to the 

amount of hardware in use. 
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Results Comparisons: 

 File 
size 
(KB) 

Sequential 
PPMC 

Parallel Lines 
PPMC 

Sequential 
Pipes PPMC 

Parallel Pipes 
PPMC 

Hybrid Tree 
PPMC 

Time Size Time Size Time Size Time Size Time Size 

book2 597 1.280 283 0.891 308 1.210 283 0.850 308 1.254 283 

0.743 329 

0.673 343 

 

world192
.txt 

2,416 3.899 985 2.307 1,051 3.606 985 2.189 1,051 3.835 985 

1.832 1,100 

1.492 1,141 

 

E.coli 4,530 8.152 1,118 4.649 1,123 7.815 1,118 4.379 1,123 8.144 1,118 

3.490 1,127 

2.704 1,131 
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Chapter 8: Conclusion 

 

8.1 Concluding Remarks 

All the PPMC implementations describe previously have been tested and compared. No two 

PPMC’s implementation shows similar results. Test results comparison shows that usage of one 

or more parallel processing unit diminishes computational time. However each parallel 

implementation diminishes this time varyingly. 

The Parallel Lines PPMC shows the most suitable results for time speed up. It utterly half the 

processing time of sequential implementation on first doubling. However each addition of 

parallel element after the first doubling doesn’t reduces time to half rather it reduces time by 

“half time of the previous stage”. Due to the nature of PPMC algorithm, Parallel Lines PPMC 

does not produce good compression compared to sequential implementation. With a header 

attached, in the worst case it nearly doubles the compression ratio achieved by the sequential 

PPMC. 

The Sequential Pipes PPMC seems to be a good compromise between the sequential and 

Parallel Lines PPMC. It does reduce time but not as clearly as parallel lines implantation. 

However compared to Parallel Lines, it produces exact compression ratio as that of sequential 

PPMC. The processing speed up achieved by this implementation increases exponentially with 

the file size. 

The Parallel Pipes PPMC also half the sequential implementation’s time. But it gives this output 

at a very high hardware cost. Comparatively almost this same time and compression can be 

achieved with Parallel Lines PPMC for only two (2) processing elements. 

The Hybrid Tree PPMC show similar results as that of Sequential Pipes PPMC in both timings 

and compression, but this applies only to smaller file size. Hybrid Tree PPMC also comes with 

this speed up at a very high hardware (memory usage) cost. The memory consumption at 

runtime by Hybrid Tree PPMC is nearly that of Parallel Pipes PPMC. 
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In order to keep a compromise between speed and hardware use; the Parallel Lines PPMC 

model is the best choice to consider. 

 

8.2 Future Works 

The subject Parallel Computing is quite vast. A lot of development is occurring in it with the 

easy multicore systems availability to end users. As mentioned before; this work is the first in 

line which applies parallel computing to a “Prediction by Partial Matching” (PPM) method 

therefor a lot of work can be done considering this as a guideline. The following is a list of some 

suggested possible future works that can benefit from this parallel implementation: 

 This work uses context orders of length up to two (2). A parallel implementation and 

analysis of the same based on higher context orders should be considered. 

 Parallel implementation, tests and analysis of others variants of PPM using the 

architectures define here. 

 Increasing the number of cores (processing elements) and the effect of such on parallel 

PPMC and/or other variants of PPM. 

 Using controlled environment (by imposing restrictions on memory usage etc.) testing 

parallel PPM schemes. This would also lead to efficient parallel PPM schemes design. 

 Using C/C++ based software environment for parallel PPM schemes. C# code works at 

an average of five times slower than C/C++ code. 

 For fast parallel processing using GPGPUs (General Purpose Graphics Processing Unit) 

along cores. Already a research [34] showing Arithmetic Coding implementation on this 

has been done. PPM can be considered just one step ahead. 
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Appendix A 

 

Information theory behind compression 

Understanding data compression must start with understanding information, because the 

theme of former is based on the latter. This appendix provides a brief introduction to 

information theory. 

We constantly receive and send information; this information is in the form of verbal 

conversation, text, sound, and images. We also feel that information is an elusive 

nonmathematical quantity that cannot be precisely defined, captured, or measured [1]. 

Information is a stimulus that has meaning in some context for its receiver. Information in its 

most restricted technical sense is a message or collection of messages in an ordered sequence 

that consists of symbols. When information is entered into and stored in a computer, it is 

generally referred to as data. After processing (such as formatting and printing), output data 

can again be perceived as information. 

Information theory forms the mathematical basis of both lossy and lossless compression. The 

theory of information is developed by Claude Shannon in the 1940s [22, 23]. This theory 

provides a statistical way to measure information. Information theory measures the quantities 

of all kinds of information in terms of bits (binary digit). Information theory is the foundation of 

many data compression techniques. The two most important terms in information theory are 

entropy and redundancy. 

A.1 Entropy 

Shannon tried to develop means for measuring the amount of information stored in a symbol 

without considering the meaning of the information. He discovered the connection between 

the logarithm function and information, and showed that the information content (in bits) of a 

symbol with probability p is −log2 p [3]. 
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Shannon used the term entropy to encapsulate the measure of information. The term is used 

widely in physics to describe the amount of order or disorder in a system. In information 

theory, a system with a high degree of disorder is also one that contains a great deal of 

information. Entropy is a number which is small when there is a lot of order and large when 

there is a lot of disorder. 

Mathematically: 

The entropy is defined as 

     ∑     2   

 

  1

 

Here H is for entropy which equals to the negative sum of the products of symbol’s     2   , 

where P is the symbol’s probability and i is the current symbol. 

 

Example:  

The entropy of “data_compression” is? 

 

In above the symbol probabilities are, 

          6⁄        2  6⁄          6⁄          6⁄  

          6⁄        2  6⁄          6⁄          6⁄  

          6⁄          6⁄        2  6⁄          6⁄  

          6⁄  

 

 Hence entropy H is: 
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                     3.625     /      . 

A.2 Redundancy 

Redundancy is another concept which has arisen from information theory. Redundancy is the 

opposite of information. Something that is redundant adds little, if any, information to a 

message. Redundancy in information theory is the number of bits used to transmit a message 

minus the number of bits of actual information in the message. Informally, it is the amount of 

wasted "space" used to transmit certain data. Data compression is a way to reduce or eliminate 

unwanted redundancy. 

Example: 

 Identify redundancies in the following string that contains consecutive repeating 

characters: 

  “BAAAAAAAAAC”? 

Here the redundancy is the 9 repeating symbols ‘A’ which can be replaced by a shorter 

string such as (r9)A. 

A.3 Relation between entropy and redundancy 

The two qualities “Entropy” and “Redundancy” has an inversely proportional relation with each 

another which is reflected by the fact that when the entropy is at its maximum, the redundancy 

is zero and the data cannot be compressed any further. 
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Appendix B 

 

Prediction and Probability theory concepts  

This appendix serves as a brief introduction to Prediction and Probability theory concepts. Both 

prediction and probability concepts are fundamentals to the understanding of PPM (prediction 

by partial matching) and Arithmetic coding data compression schemes. 

 

B.1 Prediction 

A prediction is a statement about the way things will happen in the future. Predictions are the 

connecting links between prior knowledge and new information [33+. It’s the interaction 

between these two processes that make readers (both human and machine) predict. Although 

all proficient readers can make predictions, some readers seem to predict more explicitly than 

others which is mainly concerned with their prior knowledge experience.  

Prediction is closely related to uncertainty. We predict outcomes, events or actions that are 

confirmed or contradicted; the first is based on authentic information whereas in the latter 

case one can say that guaranteed information about the information is also impossible. The 

whole intuition of probability theory is based on predictions. 

 

B.2 Probability 

Probability is a mathematical prediction about the likelihood of an event occurring. It simply is a 

measure of the frequency of outcomes (events) that is assigning "density" to each possible 

event within some interval. The word ‘event’ refers to the predicted outcome. These events or 

prediction outcomes can be categorized in the following four states: 

 Certain 

 Likely 
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 Unlikely 

 Impossible 

Probability is used to mean the chance that a particular event (or set of events) will occur 

expressed on a linear scale from 0 (impossibility) to 1 (certainty), also expressed as a 

percentage between 0 and 100%. The analysis of events governed by probability is called 

statistics. 

 

B.3 Number line (probability line) concept in probability 

Probabilities are expressed on a number line having range from 0 to 1. This number line often 

referred to as probability line acts as a graphical representation for expressing probabilistic 

events. The figure below shows a probability number line: 

 

On this number line: 

 Events that are impossible have a probability of 0. 

 Events that are certain have a probability of 1. 

 Events having even chances of occurrence have a probability of  2⁄ . 

Expressed another way: 

 A probability closer to 1 express higher frequency or occurrence. 

 A probability closer to 0 express lower frequency or occurrence. 

 A probability of 1 expresses maximum frequency or occurrence. 

 A probability of 0 expresses no occurrence or frequency. 

0 1 𝟏
𝟐⁄  

Fig. Probability number line 
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Example: The following shows occurrence of symbols ‘a’ and ‘b’ on the number line while 

reading the text “aabba”. 

 Read first symbol ‘a’ and assign it a probability of   ⁄    as it is the first and only 

symbol occurred so far. 

 

 Read second symbol ‘a’, probability assigned is 2 2⁄    as frequency of ‘a’ is now two 

and only two symbols has occurred so far. 

 

 Read third symbol ‘b’. Now the total symbols are three, frequency of ‘a’ is two and 

frequency of ‘b’ is one. Hence new probabilities are   2
3⁄         

3⁄  

 

 Read fourth symbol ‘b’, now the total is four, frequency of ‘b’ is two whereas frequency 

of ‘a’ is still two. Hence new probabilities are   2
4⁄        2

4⁄  

 

 Read fifth symbol ‘a’, new total is five and new probabilities are   3
5⁄        2

5⁄  

 

0 

 

𝑃 𝑎    

0 

 

𝑃 𝑎    

0 

 

𝑃 𝑎  2
3⁄  𝑃 𝑏   

3⁄    

  

0 

 

  𝑃 𝑎  2
4 ⁄  

𝑃 𝑏  2
4 ⁄  

0 

 

  
𝑃 𝑎  3

5⁄  𝑃 𝑏  2
5 ⁄  
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