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ABSTRACT 

 
Nighat Jamil 

  

Under the supervision of Professor Dr. Arshad Aziz at the National University of 

Sciences and Technology. 

 

Efficient algorithms for computing the Discrete Fourier Transform have enabled 

widespread access to Fourier transformation in numerous fields. One of those efficient 

algorithms is the fast Fourier Transform for computing the transformation of time-

domain signals. Fast Fourier transform covers a wide span of diverse applications such as 

applied mechanics and structural modeling to bio medical engineering. In the signal 

processing arena, FFT has been widely used for signal recognition, estimation and 

spectral analysis. Similarly in the field of communication, FFT is used for echo 

cancellation, filtering, coding and compression. The ability to compute FFT in real time 

and with minimal hardware is the key to successful implementation of these complex 

systems. 

The aim of this thesis is to optimize the area and throughput of FFT core for high 

performance. For high throughput, we have designed our architecture in such a way that 

it exploits the main features of Virtex-5 family that are high-tech XtremeDSP slices. 

Further the FPGA‟s dedicated embedded memories BRAM are ideal in implementing the 

FFT algorithm efficiently on FPGA. 

Finally we have compared the performance of our design with other architectures. Our 

results show the optimized results. 

Dr. Arshad Aziz
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Chapter 1 

 

Introduction 

Fourier related transforms have central importance in the field of science, 

engineering and technology. It is signal processing tool that converts the time domain 

signal into frequency domain. The discrete Fourier transform enjoys extremely important 

position in the area of frequency analysis. The Fast Fourier transform takes the discrete 

signal in the time domain as an input and after processing it, the time domain signal is 

being transformed into discrete frequency domain signal. This conversion is important to 

perform the Fourier transform on Digital Signal Processor based system.  

The Fast Fourier Transform is considered to be faster and efficient version of the 

Discrete Fourier Transform (DFT). The FFT utilizes algorithm to perform the same 

transformation of DFT, but in much less time. The event of progression of this algorithm 

accelerated the development of DSP. 

Fast Fourier transform (FFT) was first given by Cooley and Tukey in 1965 which 

is a discrete Fourier transform algorithm which reduces the number of computations 

needed for N points from 2N
2
 to 2NlogN, where log is the base-2 logarithm [15]. As Fast 

Fourier is considered to be an efficient algorithm to compute discrete Fourier transforms, 

it reduces the computational complexity to O (N log N) from O (N
2
). FFT is also used in 

the real world scenarios to process any given set of data from its time domain to 

frequency domain components. A simple modification in the algorithm can be used to 

evaluate the inverse Fourier transform i.e. reconstructing a signal from frequency to time 

domain. The importance of FFT lies in various applications that include digital signal 

processing, digital image processing, filter analysis, solving partial differential equations 

and quick multiplication of large integers. 

http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/Algorithm.html
http://mathworld.wolfram.com/Lg.html
http://mathworld.wolfram.com/Logarithm.html
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Apart from this, the Fourier transform imposes its application in the world of 

physical sciences as well. With the passage of time, Fourier series and transform are 

making remarkable achievements in engineering, physics, applied mathematics, and 

chemistry. 

Field Programmable Gate Arrays (FPGAs) are integrated circuits containing 

programmable logic components and interconnectors that used to create complex logic 

functions. The reconfiguration ability of FPGA enables the user to use it as an effective 

solution as compared to ASIC. They are characterized by the unique capability to be 

updated or changed depending on current requirements.  

In this thesis we have tried to implement the FFT using Xilinx FPGAs: Spartan 

3E and Virtex 5. We have utilized the main features of FPGA to implement FFT 

efficiently regarding the speed and resources. The algorithm which is being used for the 

fast Fourier transform is given by Cooley and Tukey. This is considered to be 

computationally efficient method and is widely used. We have compared the results of 

various devices of FPGAs with recent published papers. FPGAs are found to be ideal for 

the fast Fourier Transform due to their property of reconfiguration and whenever its 

performance is compared with ASICs, FPGA always provide time and cost effective 

solutions.  

The thesis has been organized as follows: Chapter 2 gives the introduction of Fast 

Fourier Transform. In this chapter the number of calculations required to compute the fast 

Fourier Transform has been explained. Number of additions and multiplications required 

for the manipulation of various points FFT has also been given. 
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Chapter 3 presents the details of architectural view of those hardware devices that 

are used in our thesis to implement the Fourier Transform effectively. The structural 

description with build-in features of Spartan 3E and Virtex 5 are explained in this chapter 

highlighting the high-tech XtremeDSP slices structure of Viretx-5. 

Chapter 4 outlines our approach to implement the FFT in Xilinx FPGAs. Our 

design has been discussed in this chapter and highlights the better throughput and low 

area implementations by utilizing the special feature of FPGA. Different parameters of 

optimization, that formulated the efficient implementation of FFT on FPGA, have also 

been discussed. 

Chapter 5 presents all of our implementation results and its comparison with other 

FPGA implementations of FFT are given in the Chapter 5.The results have also been 

compared within two families of Xilinx FPGAs. Conclusion with further future 

discussion is briefed in Chapter 6.  
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Chapter 2 

 

Fast Fourier Transform 

 

2.1 Introduction 

The world of signal processing widely utilizes Discrete Fourier transforms which 

is used to process the information stored in computers as well as from the real world 

applications. From solving partial differential equations to performing convolutions, they 

have covered a wide area of application. Several ways has been suggested to calculate the 

Discrete Fourier Transform (DFT) such as solving simultaneous linear equations or 

the correlation method. Many algorithms have been developed so far to implement the 

discrete Fourier algorithm efficiently on the software. The Fast Fourier Transform (FFT) 

is another method for calculating the DFT. While it produces the same result as the other 

approaches, it is incredibly more efficient, often reducing the computation time 

by hundreds. 

FFT eliminates certain redundancies in the DFT by multiplying the input vector 

by fixed complex terms and thus reducing the number of computations (additions and 

multiplications) from the order of N
2

to the order of NlogN, N being the number of data 

points. Whenever there is larger value of N, it shows remarkable improvements. 

 

2.2 Family of FFT Algorithms 

The FFT algorithm family is very large encompassing different types of algorithms for 

different data formats: 

 Algorithm for different radices such as radix-2, radix-4 and mixed radices. 

 Decimation-In-Time and Decimation-In-Frequency algorithms. 
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 Real and complex algorithms. 

  Every algorithm follows the same basic principle of FFT of divides and conquers 

that is decomposing the large point FFT into smaller DFTs. We have implemented the 

same logic of divide and conquer rule in our algorithm. The FFT becomes faster not only 

due to the preceding dividing process but also due to the symmetry property of twiddle 

factor. The main interesting property of some twiddle factors is having its real or 

imaginary parts equal to 1or 0 and these factors don‟t require any multiplication [5]. 

 

2.3 Decimation in time Radix-2 FFT Algorithm 

This section of the chapter describes how the decimation in time makes the DFT 

algorithm efficient when the sequence is of the length of power of 2(i.e. N=2 M  where M 

is a positive integer) decimation in time follows the same technique of splitting x (n) into 

smaller sequence. 

 

The N-point DFT of an N point sequence x (n) is given by 

 

nk

N

N

n

WnxkX
1

0

)()(

                                                                                      

 

Because x (n) may be either real or complex, X (k) is evaluated on the order of N 

complex multiplications and additions for each value of k. Hence computing N point 

DFT requires N 2 complex multiplications and additions. 

In 1965, an algorithm was developed by Cooley and Tukey for the Radix-2 

decimation in time FFT. The basic strategy that is used in FFT algorithm is one of the 

„divide and conquer‟ method that decomposes the N point DFT into successively smaller 
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DFTs. Suppose that the length of x(n) is even (i.e. N is divisible by 2) and  is split into 

two sequences, each of length N/2,one is odd-indexed and one is even-indexed [10]. 
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The computation of each term requires 2x (N/2)
2

 multiply and add operations. In 

addition to that, the computation of 
1)2/(

0

)2(
N

m

o

k

N mxW  requires another (N/2) multiply and 

add operations. The result is (N
2

+N)/2 operations, which is almost a 50% reduction over 

the N- point DFT if N is large. This process is known to be decimation in time because in 

this time samples are alternately rearranged and a Radix-2 algorithm mainly because it 

has samples which are power of two and there are two groups in the decomposition [6]. 

Figure 2.1 illustrates the basic computation of an N point FFT through a signal 

flow graph which is known to be a butterfly diagram because of its shape. 

 

 

 

 

 

 

Figure 2.1 Basic Butterfly Diagram 
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The Radix-2 decimation in time saves computational time by recursively 

performing the two lengths 
2

N
DFTs. The algorithm divides the length into halves and 

performs DFT until a shorter DFTs is reached which is of length 2. [6]. 

The Table 2.1 shows the number of operations with the Radix-2 FFT as compared 

with direct computation of DFT. 

Table 2.1 Computations of DFT versus FFT 

Number of 

points 

Direct computation of DFT Computations using FFT 

Complex 

multiplications 

Complex 

additions 

Complex 

multiplications 

Complex 

additions 

N N
2

 N
2

- N (N/2)log N N log N 

4 16 12 4 8 

16 256 240 32 64 

64 4096 4032 192 384 

256 65536 65280 1024 2048 

1024 1048576 1047552 5120 10240 
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2.4 Decimation in time Radix-4 FFT Algorithm 

When the number of data points N in the DFT is a power of 4, Radix-2 algorithm 

can readily be used for the computation. However when the number of FFT points is 

large, employing the Radix-4 FFT algorithm can be more efficient in terms of 

computation. 

 Like Radix-2 algorithm, Radix-4 decimation-in-time and decimation-in-

frequency fast Fourier transforms are computationally fast by dividing the large number 

of samples into smaller one and performing the transform on these groups. The results of 

smaller and intermediate computations are then reused to perform multiple DFT 

frequency outputs. The Radix-4 decimation-in-time algorithm rearranges the discrete 

Fourier transform (DFT) equation into four parts: sums over all groups of every fourth 

discrete-time index n. If x (n) is the given input sequence then the four subsequences are 

x(4n), x(4n+1), x(4n+2), x(4n+3), n = 0, 1, ... , N/4-1. Thus due to the division of input 

vectors in a group of four and rearranging of samples in an alternate fashion the 

algorithm is known as decimation in time  Radix-4 FFT algorithm. [7] 

  The outputs of the shorter FFTs are reused to compute many outputs; this 

operation greatly reduces the total computational cost. The Radix-4 decimation-in-

frequency FFT groups every fourth output sample into shorter-length DFTs to save 

computations. The Radix-4 FFTs require only 75% of the total complex multiplication as 

the Radix-2 FFTs i.e. number of complex multiplication is given by 
8

3
Nlog2N where as 

the number of complex additions remains same as Radix-2 i.e Nlog2N. 

 

 

 

http://cnx.org/content/m12016/latest/
http://cnx.org/content/m12018/latest/
http://cnx.org/content/m12018/latest/
http://cnx.org/content/m12026/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12019/latest/
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Chapter 3  

Field Programmable Gate Array 

 

3.1 Introduction 

Fast Fourier Transform algorithm can be implemented in various software like 

MATLAB and C languages as well its hardware implementations utilize hardware 

description languages such as Verilog HDL and VHDL using two major application 

environments: Application Specific Integrated Circuits (ASICs) and Field Programmable 

Gate Arrays (FPGA). 

Most digital signal processing algorithms are based mainly on multiply and 

accumulate (MAC) operations. Field Programmable Gate Arrays can easily be used to 

implement MAC cells. As FPGA technology can provide more bandwidth through 

multiple MAC cells on one chip, it is highly effective to implement in various high-

bandwidth signal-processing applications such as wireless, multimedia, or satellite 

transmission [12]. 

Field Programmable Gate Arrays (FPGAs) are a member of devices called field-

programmable logic (FPL). These logics are defined as programmable devices containing 

repeated fields of small logic blocks and elements.  

A field-programmable gate array (FPGA) is an integrated circuit designed to be 

configured by the customer or designer after manufacturing. The FPGA configuration is 

generally specified using a hardware description language (HDL), similar to that used for 

an application-specific integrated circuit (ASIC).Thus the ability of FPGA to update the 

functionality after shipping, partial re-configuration of the portion of the design and the 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Partial_re-configuration
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low non-recurring engineering costs relative to an ASIC design , offer advantages for 

many applications. Latest versions of FPGA have added special features which accelerate 

the performance of digital system. 

Almost all of the FPGAs in Xilinx family consist of configurable logic blocks 

(CLBs), the I/O pads, LUTs, RAMs, embedded multipliers, DCM etc. The configurable 

logic block is the basic logic unit in FPGA having a switch matrix with either 4 or 6 

inputs. 

3.2 Basic FPGA Features 

Modern day FPGAs have evolved many basic features that advanced the 

capabilities of FPGA. They have incorporated basic functionality such as Random Access 

Memory, clock management and other signal processing aspects. Next section explains 

the basic components in an FPGA. 

3.2.1 Configurable Logic Block (CLBs) 

The CLB is considered to be the basic logic unit in an FPGA. There are different 

numbers of configurable logic blocks in every device of FPGA featuring different 

properties. However, there are some characteristics like configurable switch matrix 

having 4 or 6 inputs, flip-flops and some selection circuitry (MUX, etc) are available in 

every device. The switch matrix is highly flexible and configurable. 

3.2.2 Interconnect 

The flexible interconnect are another main feature FPGA whose basic purpose is 

to routes the signals between Configurable logic blocks and among I/Os. The user 
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designs the routing task in such a way that it remains hidden to him. Once designed 

efficiently it reduces the design complexity of the architecture. Thus significantly 

reducing design complexity. 

3.2.3 SelectIO (IOBs) 

Modern FPGAs supports several I/O standards that provide the ideal interface 

bridge in a system. 

3.2.4 Memory 

Embedded Block RAM memory is available in most FPGAs, which allows on- 

chip memory. In Xilinx FPGAs there is a provision of on-chip memory up to 10 Mbits in 

36 kbit blocks. These memory chips can also be used to support true dual-port operation. 

The 16 x 1 bit distributed RAM and ROM configuration can also be achieved by using 

slice LUTs. 

3.2.5 Complete Clock Management 

All Xilinx FPGA provides the feature of Digital clock management. Xilinx 

FPGAs have built in digital clock management system. It also offers phase-looped 

locking that reduces the jitter and filtering with precise clock signals. [11] 

 

3.3 Overview of Spartan 3E Family 

3.3.1 Introduction 

The Spartan-3E family of Field-Programmable Gate Arrays (FPGAs) is specific 

family which fulfills the demand of high volume requirement in the market. Electronic 
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applications with cost-sensitive consumer ship have higher demand of this reconfigurable 

platform whose system gates range from 100,000 to 1.6 million. 

 The Spartan-3E family is considered to an alternative to ASICs. The major 

drawback of conventional ASIC is high initial cost, the lengthy development cycles and 

the inherent inflexibility which is avoided in FPGA. It is impossible to upgrade the 

program design in ASIC without replacing any hardware component, whereas this facility 

is available in FPGA. 

3.3.2 Spartan-3E Architectural Overview 

The Spartan-3E family architecture consists of five fundamental programmable 

functional elements that are very useful in implementing the FFT in Xilinx: 

• Configurable Logic Blocks (CLBs): This element is responsible for performing 

different variety of logical function as well as to store the data. It contains various look 

up tables which implements logic plus various storage elements used as flip-flops or 

latches. 

• Input/output Blocks (IOBs): This element is responsible to control the basic flow of 

data between internal logic of the device and the Input and output pins. With each IOB 

data flow can be directed in both the directions. 

 • Block RAM: The fundamental block of the device stores the data in the form of 18-

Kbit dual-port blocks. 

• Multiplier Blocks: This basic block performs the main operation that is involved in 

every signal processing i.e. it accepts the two 18-bit binary numbers as inputs and 

calculate the product of those two numbers. 
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• Digital Clock Manager (DCM) Blocks: This block provides the self-calibrating digital 

clock management system. The clock signals are required to be distributed, delayed, 

divided, multiplied and phase-shifted, all of these solutions are provided by this block. [3] 

 

Figure 3.1 Spartan 3E Family Architecture [3]. 

 

3.4 Overview of Virtex-5 family: 

 

3.4.1 Introduction 

 

The Virtex-5 family provides the newest features which makes it one of the most 

powerful in the FPGA market. The Virtex-5 family comprises of five distinct sub-
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families. Each family has different features providing specific and advanced logic design 

required for different application. The logic fabric of Virtex 5 is considered to be 

advanced giving high performance. Virtex 5 family encompasses several hard-IP system 

level blocks [4].   

3.4.2 Virtex-5 Architectural overview  

Following are the basic blocks of Virtex-5 architecture. 

 Input/output blocks: 

Virtex-5 have Input/output blocks which are the main building blocks and a source to 

provide the interface between package pins and the internal configurable logic. There are 

programmable input/output blocks which supports many important and leading-edge i/o 

standards. 

• Configurable Logic Blocks (CLBs) 

Like every Xilinx FPGA, Configurable Logic Blocks (CLBs) are considered to be the 

basic logic elements for Xilinx FPGAs. These CLBs have the ability to be configured as 

SRL32 shift register or distributed memory. These CLBs are based on the look up table 

with real 6-input. The performance and capabilities are incomparable with the previous 

versions of programmable logic.  

 Block RAM modules 

BRAM modules are main blocks of Virtex-5 architecture that can be cascaded 

together to form large memory blocks. They are flexible RAMs with 36 Kbit true dual 

ports. The built in option for programmable FIFO logic, that increases the utilization of 
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the device, is due to these block RAMs. There are several designs in which there is a 

requirement of smaller RAM blocks; BRAM can be configured as two independent 18 

Kbit true dual-port RAM blocks. 

 Embedded DSP48E slices 

The high performance ability of Virtex-5 is met by the cascadable embedded DSP48E 

slices. This ability is due to the presence of 25 x 18 two‟s complement multipliers and 

48-bit adders. The same sized subtracter or accumulator is also present to perform many 

operations of signal processing. Performance ability is increased by the provision of 

parallel support of various DSP algorithms. Moreover, each DSP48E slice can be 

configured to perform bitwise logical functions. 

 Clock Management Tile (CMT)  

Every Virtex-5 FPGA has high-performance and flexible clocking system provided 

by the block known as Clock management tile. This tile comprises of two different types 

of self calibrating blocks i.e. two Digital Clock Manager (DCM) blocks which are fully 

configured as digital and one PLL block which is analog. The main purpose of these 

blocks is to provide delay compensation for clock distribution. [4] 
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Chapter 4 

 

Our work: Design Implementation Details of FFT on Xilinx FPGA 

 

4.1 Introduction 

This chapter focuses on the design implementation of the FFT on Xilinx FPGA which 

is the main aim of our thesis. The key to successful implementation of Fast Fourier 

Transform is the ability to compute it in the real time with minimal hardware. Fast 

Fourier Transform has become almost ubiquitous and most important in high speed signal 

processing for recognition of signals and spectral analysis. When considering the various 

implementations, the FFT architecture should be chosen according to the specification 

and application which takes into account the execution speed hardware complexity and 

flexibility. 

In our thesis, we have implemented the FFT through two different architectures on 

two different families of Xilinx i.e. Spartan 3E and Virtex5 FPGA and then compared the 

results within these two families and among previous work in terms of speed and 

resources. These two architectures are: 

1. Radix- 4 FFT Architecture: this option loads and processes the input data vector 

separately and using Radix-4 algorithm, the FFT transformation is carried out 

through an iterative approach. 

2. Radix-2 FFT Architecture: this option loads and processes data separately but 

uses a smaller butterfly of Radix-2. The transformation time for Radix-2 is longer 

than the Radix-4. 
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We have used Spartan 3E and Virtex-5 FPGA to analyze the FFT implementing 

operation. The results are verified at the MATLAB platform. However, we have utilized 

the high-tech feature available in Virtex-5 FPGAs which are the XtremeDSP slices to 

optimize the FFT in terms of speed and resources. It has been used to implement the 

Adders, subtractors, control unit, and complex multipliers. We have noticed that the 

provision of embedded DSP48E slices reduces overall power consumption and increases 

maximum frequency. It can implement 25x18-bit multipliers, with add, subtract, 

accumulate, and bit-wise logic. 

4.2 Architectural Considerations 

There are several keys to consider regarding the architecture before we had 

designed our structure for FPGA. The basic step is to select the radix according to the 

memory system available. There are many ways to structure the computation while 

implementing FFT. The radix of the operation determines the number of data to be 

combined at any stage.  

In this section, we have discussed the two main architectures that are employed to 

implement the FFT algorithm i.e. Radix-2 and Radix-4 decompositions. For these 

architectures, the decimation-in-time (DIT) method is used which is elaborated in 

Chapter 2. Implementing the Radix-4 decimation in time algorithm for the N-point FFT, 

the process involves log4 (N) stages. In each stage there are N/4 Radix-4 butterflies. 

Similarly for N-point FFT using Radix-2 decimation in time algorithm, the 

transformation is being completed in log2 (N) stages, with every stage containing N/2 

Radix-2 butterflies. Radix-2 architecture is being chosen because of its simplicity and 

smallest butterfly unit while radix-4 increases the complexity of operation but at the same 

time it reduces the total number of operations. [14] 
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4.2.1 Radix-4 FFT Architecture: 

With the radix -4 algorithms, the designed architecture uses one Radix-4 butterfly 

processing engine. During the transformation process, the input is being loaded 

separately. It implies that the data input and the processing is not simultaneous. 

Our designed algorithm has used Radix-4 architecture which has lower resources 

as only one butterfly is used but due to this low resource a longer transform is required to 

process the data. When the transformation begins, the data enters into the BRAM and get 

loaded. The data can only be unloaded once the computation has finished. [1].  

The advantage of our algorithm is using the Radix-4 architecture is that it utilizes 

lower resources than the pipelined architecture which have several butterfly engines 

instead of one. We have used BRAM in our design to store the data and phase factors. 

 

 

 

 

 

 

 

Figure 4.1 Diagram for Radix-4 Architecture. 
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4.2.2 Radix-2 FFT Architecture 

With the Radix-2, our designed architecture utilizes one Radix-2 butterfly 

processing engine. Due to this hardware constraint the loading or unloading of the 

data is separate from executing the Fast Fourier transform similar to Radix-4 

architecture. It implies that the data input and the processing are not simultaneous [1]. 

The architecture has lower resources as only one butterfly is used but due to this 

low resource a longer transform is required to process the data. But still the 

architecture is smaller than the Radix-4. 

The basic radix-2 butterfly stage operates on a pair of results from the previous 

stage. Each basic butterfly computation consists of a single complex multiplication 

and two complex additions [14] as shown in the butterfly diagram in Figure 2.1.  

 

 

 

 

 

 

 

Figure 4.2 Diagram for Radix-2 Architecture 
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4.3 Optimization Parameters 

We have exploited following properties of FFT and available features of Xilinx 

FPGAs to implement the FFT algorithm efficiently. Using these parameters effectively 

reduced the number of resources and increased the maximum frequency. These 

parameters are: 

 Bit/digit reversal order 

 Scheme for number representation 

 RAM for storing the data inputs 

 Phase factor width 

 Complex Multipliers 

 CLB logic 

 3-multiplier Structure 

 4-multiplier Structure 

 Butterfly arithmetic 

 CLB logic 

 Xtreme DSP slices 

4.3.1 Bit /Digit reversal Order 

The inherent nature of the decimation in time algorithm of FFT, the order of the 

output is in bit reversed order. In case of Radix-4 architecture, this reversal order is 

referred to as Digit reversal order. We have optimized our architecture by ordering the 

output data in the reversed order. The algorithm is designed in such a way that whenever 

the input data array is being in natural order the output is in the bit digit reversal order. 

Output data in the natural order imposes extra cost in terms of architecture i.e. additional 
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numbers of BRAM. As the output data index is along with the output data so there is no 

requirement to place the output in the natural order.  

4.3.2 Scheme for number representation: 

 The basic factor in optimizing the FFT in Xilinx FPGA is selecting the 

appropriate scheme for number representation. The storage requirement of Xilinx 

depends on the number representation. As the numbers are stored in the on chip memory 

therefore even if a few bits are saved in storing these numbers, minimal hardware 

resources will be required [13]. 

 As the FPGA hardware is designed to store the input, intermediate values and 

final results therefore fixed point implementation is selected to keep the level of precision 

high. The speed of operation is observed to be high with fixed point number 

representation with utilization of few resources. 

4.3.4 RAM for storing the data inputs:  

 The data inputs in the Radix-4 and Radix-2 architecture can be stored in RAM. As 

we have two options available therefore either block RAM or distributed RAM can be 

used for this purpose. We have stored our input data in the BRAM. 

4.3.5 Complex Multipliers: 

FFT requires complex multiplications in their operation. We have observed a tradeoff 

between resources and performance optimization. 

 CLB logic: using these CLB logic slices all complex multipliers can be 

constructed. Applications that doesn‟t require high performance can easily make 
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use of the CLB logic to execute the complex multiplication. Similarly, it can be 

used in those devices in which there are few or no XtremeDSP slices or 18 x 18 

multiplier. 

 3-multiplier structure for optimization of the resources: If the optimization of 

the resource is of prime importance then the three real multiply and five add or 

subtract structure is used. Multiplier structure is constructed using XtremeDSP 

slices or 18x18 multiplier. Although this structure reduces the number of DSP 

slices used but some slice logics are also used for this purpose. Some devices can 

utilize the XtremeDSP slice pre-adder which eliminates the requirement of extra 

logic cells. 

 4-multiplier structure for optimization of the performance: in order to 

optimize the performance , the complex multiplier are designed in such a way that 

it utilizes the complex multipliers utilizing four real multiply and  two add or 

subtract structure. It uses XtremeDSP slices or Multiplier 18x18. Highest 

performance of clock can be achieved using this structure but the resources are 

increased as dedicated multipliers are increased. Virtex-5 devices are equipped 

with XtremeDSP slices which are used to execute the addition and subtraction 

operations.  Spartan 3E have Mult18x18s so the addition and subtraction 

operations are carried out through slice logic. 

 

4.3.6 Butterfly Arithmetic: Implementing two different types of logic to our designs 

resulted in dynamic utilization of the resources. 

 CLB logic: the arithmetic which is carried out inside the butterfly stages utilizes 

slice logic. 
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 XtremeDSP Slices: Butterfly arithmetic is carried out with XtremeDSP slices, the 

addition in all the butterfly stages of FFT is executed with these DSP slices inside 

Virtex-5.  

4.4 FFT on Spartan-3E 

We have started implemented our design specification in the Spartan-3E.It is  one 

of those family of Field-Programmable Gate Arrays which provides high volume 

application in comparative low cost. We have selected this family as it reduces the cost 

per logic cell. The implementation in this device was easy and their results provided a 

benchmark for comparsion with other previous work. 

4.4.1 Various point FFT on Spartan 3E: 

Our designed architecture have been used to implement the various lengths FFT 

(i.e. 16, 64, 256, 512 and 1024 points FFT) on Spartan 3E, using Verilog and analyze the 

performance of this FPGA on speed and frequency and number of resources used. We 

have executed different number of points through different architectures. We have used 

the platform of Xilinx ISE project navigator 12.4 for the efficient implementation of FFT. 

Starting with the relatively smaller number of FFT point, device xc3s1600e-

5fg320 is selected for its execution. The summary after place and route shows that this 

device utilizes only 2% of the total flips flops available and 1% of the total LUTS 

available. This resource consumption is very low.Radix-2 architecture is being utilized 

for this assignment. 

For the implementation of 16 point FFT, the Spartan device xc3s1600-4fg400 has 

been selected. When 16 point FFT with radix-2 FFT is being executed, it has been found 
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that consuming approximately 181 MHz frequency, this utilizes 3% of the total available 

flip flops and 2% of the total available input LUTS. 

Similarly increasing the number of points of FFT to 256 and using Radix-2 

architecture, it has been observed that there was a slight decrease in the frequency but the 

utilization of the resources was still very low. Approximately 7-8% of the available flips 

flops and LUTS are being used in the computation. 

FFT is found to be more efficient when the value of N is large. Now for the 512 

and 1024 points FFT, xc3s1600e-4fg400 is being used. 

We have summarized our results in the next chapter. The result explicitly shows 

that with Radix-4 FFT architecture, the frequency required to perform the implementing 

operation is 173.34 MHz with the utilization of almost 10% of the available slices only 

which clearly shows that Radix-4 provides faster computation even with the larger N. 

4.5 FFT on Virtex-5  

Another targeted family to implement various sizes FFT is Virtex-5. Virtex-5 

FPGAs are equipped with most advance and high performance logics that efficiently 

meet the requirement to optimize the FFT algorithm. 

4.5.1 XtremeDSP 48 Slice 

The main advantage of using the high-tech Virtex-5 is using their embedded high 

performance XtremeDSP DSP48 slice that uses time-multiplexing method. Due to this 

time multiplexing it is convenient for the designer to implement multiple slower 

operations. Following are the advantages provided by the XtremeDSP slices:  
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 FPGAs have become more flexible and full device utilization. 

 Different applications are being implemented with improved efficiency. 

 Performance consumes less power. 

 Maximum frequency is being increased with these slices. 

 The main operation in DSP operation is multiply accumulate (MACC), multiply 

add, this feature is readily supported with XtremeDSP slices. 

 Many DSP filters and complex arithmetic can be performed by using the slices 

alone.  It supports multiple DSP48s slices which when cascaded can implement 

wide math functions. 

 

Figure 4.3 Structure of XtremeDSP Slice 

With the invention of DSP48E slices and its availability in all Virtex-5 devices, many 

algorithms are accelerated. This enabled the integration of DSP at higher level with low 

power consumption. This efficiency was absent in the previous generation of Virtex 

devices.  
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This family supports several operating modes which are controlled dynamically. The 

different modes are required for different applications like multiplier, multiplier-

accumulator, multiplier-adder/subtractor, three input adder, barrel shifter, wide bus 

multiplexers, wide counters, and comparators. 

Virtex-5 family also has the ability to perform complex math efficiently and to 

implement high-performance filters with efficient adder-chain architecture. [8] 

4.5.2 Various points FFT on Virtex-5 

We have executed different points of FFT on Virtex-5 devices and compared the 

results with that of the Spartan 3E.with the availability of the XtremeDSP slices there 

was a drastic increase in the maximum frequency which was obtained after place and 

route step. 

Using the device Xc5vlx110-3ff676, 64 points FFT is executed with Radix-2 

architecture which processes the given size of input data array. Utilizing only 5 out of 64 

available DSP48slices the maximum frequency increased from 181 MHz in Spartan 3E to 

408MHz in Virtex 5. The same device of Virtex-5 is being used and Radix-2 architecture 

256 and 512 points FFT is also being calculated. 

Radix-4 architecture is used to calculate another vector of 256 points data with the 

Xc5vsx35t-3ff65. The absence of DSP48E slices in Spartan-3E was a basic drawback in 

the performance and hence resulted in low frequency operation although the numbers of 

points for Fourier transform were only 64, whereas using Virtex 5 with only 13.5% 

utilization of DSP slices gives the frequency of 409.165 MHz.  
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In next chapter, the results are tabulated giving analysis of different points FFT 

(i.e. 64,256,512, 256, and 1024) on Virtex-5 FPGA architectures. 

Hence we can summarize that the 256-point FFT is implemented through both the 

architecture i.e. Radix-2 FFT and Radix-4 FFT. The results clearly show that the 

performance of Radix-4 FFT is better than the Radix-2 architecture in terms of frequency. 

But as there is a tradeoff between the resource and transformation time, the Radix-4 

architecture required more slices that were used as LUTS and registers and hence more 

embedded DSP48 slices. 
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Chapter 5 

Result Comparisons 

In this thesis, we have presented the optimized approach to implement the FFT 

algorithm. The results have been tabulated and compared with previous conventional 

FPGA based implementation of FFT. Our design has successfully been implemented 

using Xilinx ISE 12.4 tool. All executions are first coded in Verilog and then synthesized 

using the Xilinx XST synthesis tool. Moreover Synthesis and place and route were 

achieved successfully for each design. Various sizes of input test vectors are given and 

the behavior is verified by ISE Simulator. 

5.1 Comparison between Spartan 3E and Virtex-5 

Different points FFT operations were implemented in Spartan3E and Virtex 5 

FPGA. Table 5.1 shows the analysis of FFT of different points on Spartan 3E. The first 

architecture is Radix-2 in Spartan 3E. The absence of DSP48E slices resulted in low 

frequency operation in every experiment. We have tried to optimize the resources by 

using 3 multiplier structures. But the resource optimization had a constraint on the 

performance. We have observed that increasing the number of points decreases the 

maximum frequency. 
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Table 5.1 Implementation of various point FFT on Spartan-3E 
 

  

Device 

 

FFT 

size 

 
Architecture 

No. of slices 

registers/ 

available 

No. of slices 

LUTS/ 

available 

Frequency 

1 Xc3s1600e

-5fq320 

16 Radix-2 797/29504 565/29504 185.87MHz 

2 Xc3s1600e

-4fg400 

64 Radix-2  758/29504 847/29504 181.15 MHz 

3 Xc3s1600e

-4fg400 

256 Radix-4  2543/29504 2331/29504 166.97 MHz 

4 Xc3s1600e

-4fg400 

512 Radix-4  2635/29504 2440/29504 169.86 MHz 

5 Xc3s1600e

-4fg400 

1024 Radix-4  2353/21760 1659/21760 173.34MHz 

Similarly, different points of FFT are implemented on the Virtex-5 device with 

different implementation option i.e. Radix-2 and Radix-4 and then analysis is carried out 

regarding the number of slices utilized as registers and LUTS. As devices of Virtex-5 are 

equipped with XtremeDSP slices then additional information of their utilization are given 

in the Table 5.2. 256 points FFT is being implemented by using Radix-4 architecture as 

well as radix-2 architecture. If we compare the resource utilization then Radix-4 has 

taken more slices and DSP at the cost of the increased frequency. 
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Table 5.2 Implementation of various point FFT on Virtex-5 

 

5.2 Comparison with other related work 

There are three relevant papers that discuss the design and implementation 

improvements of FFT algorithm in a FPGA. Each of them provides important advice 

concerning the structure of the design considered in this thesis. In the first paper, the 

device used by Bin Zhou and David Hwang [2] is Spartan 3 and Virtex E. They had used 

the pipelined FFT architectures. The results comparison with their thesis is tabulated in 

the Table 5.3. 

 Device Size 

of  

FFT 

Impleme

ntation 

option 

No. of 

slices 

registers/ 

available 

No. of slices 

LUTS/avail

able 

No. of 

DSP 

48Es 

Frequen

cy 

1 Xc5vlx110

-3ff676 

64 Radix-2  921/69120 645/69120 5/64 408.16 

MHz 

2 Xc5vlx110

-3ff1760 

256 Radix-2  1868/69210 1430/69120 12/64 444.44 

MHz 

3 Xc5vlx110

-3ff676 

512 Radix-2 1844/69120 1256/69120 16/64 451.875

MHz 

4 Xc5vsx35t-

3ff665 

256 Radix-2 1007/21760 712/21760 8/192 347.947

MHz 

5 Xc5vsx35t-

3ff665 

256 Radix-4  2353/21760 1659/21760 26/192 409.165

MHz 

6 Xc5vsx35t-

3ff665  

1024  Radix-4  2163/21760  1797/21760  9/192  449.035

MHz  
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Table 5.3 Performance Comparison Results on Virtex-5 devices 

 

 

Point 

Size 

Input 

data 

width 

 

DSP

48 

 

Slices 

 

BRAM 

Max 

speed 

(MHz) 

 

Throughput/ area 

R4SDC [2] 

16 16 4 530 1 236.7 0.447 

64 16 8 803 2 236.4 0.294 

256 16 12 1370 3 218.9 0.160 

1024 16 16 3064 8 219.2 0.072 

R2
2
SDF [2] 

16 16 4 517 1 237.9 0.460 

64 16 8 779 2 236.7 0.304 

256 16 12 1234 3 236.7 0.192 

1024 16 16 2256 8 235.6 0.104 

Our design in Xilinx Virtex-5 

 

16 16 5 832 2 523.1 0.629 

64 16 5 921 6 408.2 0.443 

256 16 12 1868 5 444.4 0.237 

1024 16 9 2163 5 449.0 0.207 

 

 

Our designed architecture that implements 1024-point FFT utilizes 9 DSP48 

slices that gives a throughput of 0.207 which is better than the architecture suggested in 

[2]. Our design has also provided the smaller area than R4SDC and R2
2
SDF. The better 

throughput and smaller area can be observed in every implementation. 

 Similarly, another comparison is carried out with Spartan 3 devices. The results in 

Table 5.4 shows that although the absence of DSP48 slices in Spartan devices resulted in 

lower frequency but still a better throughput is achieved with lower consumption of 

slices. 
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Table 5.4 Performance Comparison Results on Spartan 3 devices. 

 

Point 

Size 

Input 

data 

width 

Twiddle 

factor 

width  

Slices BRAM Max speed 

(MHz) 

Throughput/ area 

R4SDC [2] 

16 16 16 468 2 108.20 0.231 

64 16 16 952 2 107.23 0.113 

256 16 16 1990 3 111.98 0.056 

1024 16 16 4409 8 123.84 0.028 

R2
2
SDF [2] 

16 16 16 427 2 121.4 0.284 

64 16 16 810 2 98.14 0.121 

256 16 16 1303 3 98.73 0.076 

1024 16 16 2802 8 95.25 0.034 

Our design in Xilinx Spartan 3 

16 16 16 797 2 185.87 0.233 

64 16 16 758 6 181.15 0.239 

256 16 16 2543 5 166.97 0.065 

1024 16 16 2353 5 173.34 0.074 

 

 

5.3 Comparison with FFT on other FPGAs 

 A comparison is done between FFT processor in [9] and our design to implement 

the FFT. Our design using the Virtex family achieves the highest operating frequency 

while implementing the FFT on FPGA. In [9] FPGA implementation of a 256 complex 

data point in pipeline Split Radix FFT processor. They had used the Altera Stratix-II 

family. Following Table 5.5 highlights the results. 
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Table 5.5 Performance Comparison of FFT on other FPGAs 

 No. of 

points 

 

Data Width 

 

FPGA family 

 

Frequency(MHz) 

SRFFT 

processor [9] 

256 16 Altera Stratix-II 350 

Our design 

 

256 16 Xilinx Virtex-5 444.44 
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Chapter 6  

 

Conclusion and Future Work 
 

This chapter discusses the concluding remarks and further future direction for the 

advancement in this field. 

 

6.1 Conclusion 

While implementing the FFT on the Xilinx FPGA, we have tried to present the 

better design that give better throughput while utilizing smaller area as we have observed 

a tradeoff between the area and throughput. To achieve our goal we have studied the FFT 

operation in detail and its implementation in two different families of Xilinx FPGAs i.e. 

Spartan 3E and Virtex-5. 

Our design was based on Radix-4 and Radix-2 architectures. The primary goal of 

optimizing our design is achieved by exploiting the special feature of Virtex 5 which is 

XtremeDSP slices. These slices increased the operational frequency in Virtex-5. 

We have experimented with various points of FFT and analysed their results. 

Various sizes of FFT architectures were implemented through synthesizable verilog code 

and verified with simulation through ISIM simulator against Matlab. Xilinx Synthesis 

tool is used to synthesize the code. 

6.2 Future Work 

The design which is being implemented by us gives an easy way to increase the 

size of FFT. Also a little modification in the design can easily make it to use it for the 
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inverse Fourier Transform. The future work includes the exploration of new embedded 

features in modern FPGAs so throughput improvement and area utilization can be 

improved. 
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