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Abstract 

Cryptographic hash function takes any arbitrary input and produces a fixed length output. It is 

use for integrity protection, conventional message authentication and digital signatures. The 

advantage is that if there is change in message bits the receiver will comes to know that message 

has been altered. A good cryptographic hash function must have strong collision property. 

Secure hash algorithm (SHA – 3) is a group of cryptographic hash algorithm publishes by 

National Institute of Standards and Technology (NIST). The category of SHA – 1 were 

vulnerable to Hash Collision attack and series of attacks was carried out on SHA – 1. 

Implementation of cryptographic hash function on reconfigurable devices such as field 

programmable gate array (FPGA) provides efficient features of both hardware and software. 

The aim of this thesis is to implement one of the SHA – 3 candidates “KECCAK” on FPGA. We 

will be implementing the algorithm efficiently on FPGA. For optimization of the algorithm we 

use external memory block with main logic block. The advantage of using external memory 

block is that we can share this memory block with other algorithms in order to optimize the 

overall area of Chip on which these algorithms are burned. 
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Chapter # 01 

1 Introduction  

1.1 Background 

In recent years the algorithms which were not approved by National Institute of Standards and 

Technology were successfully attacks and it was found that they were vulnerable to Hash 

Collision. Series of attack was publishing against secure hash algorithm – 1 (SHA – 1). NIST 

decided to develop one or more hash algorithm through a public competition. The selected 

algorithm of the competition will be finalized in spring 2012.  

Implementing algorithm in efficient manner means to efficiently utilize the software algorithms 

and the underneath hardware environment. Our efficient implementation utilizes less hardware 

area on Field Programmable Gate Array (FPGA). 

1.2 Secure Hash Algorithm (SHA) 

Secure Hash Algorithm (SHA) stands for Secure Hashing Algorithm is a group of hash functions 

published by the National Institute of Standards and Technology as a US Federal Information 

Standard. All of the current SHA algorithms are developed by the NSA [1]. 

SHA-0: A 160-bit hash function published in 1993. It was quickly withdrawn due to an 

undisclosed flaw. It was replaced by SHA-1[2].  

SHA-1: A 160-bit hash function that is similar to the earlier MD5 algorithm but more 

conservative. It is developed by the National Security Agency to be a part of the Digital 

Signature Algorithm. It is the most widely used SHA algorithm [2].  

SHA-2: It has two similar hash functions. It comes with four different sizes for the output, 224, 

256, 384, and 512-bit. The 224-bit and 384-bit versions of SHA-2 are simply the 256-bit and 

512-bit versions with truncated outputs [2].  



SHA-3: This future hashing function is still under evaluation. The algorithm will be developed 

by choosing different algorithms to a public competition. The final decision is expected to be 

announced in 2012 [2]. 

The evolution of SHA – 3 came into existence when in 2005; Prof. Wang was able to find a hash 

collision in SHA 1 [3]. Crypt attacks were not as effective on SHA 2. NIST decided to develop 

one or more hash functions as the transition from SHA-1 to the approved SHA-2 family is made. 

NIST chose to develop the new hashing algorithm through a public competition. The competition 

will accept algorithms from any person or organization [4]. By the end of 2008, 64 algorithms 

was submitted out of which 51 was selected for first round. 

In the second quarter of 2009, candidates that advanced to the second round were announced.   

Three broad categories of the evaluation criteria were used to evaluate the first round candidates: 

security, cost and performance, and algorithm and implementation characteristics in software. 

Five candidates were selected among the 14 competitors to qualify to third round. The winner of 

the third round will be selected in 2012 [2]. 

1.3 Aim of thesis 

The aim of this thesis is to implement one of the SHA – 3 candidates “KECCAK” on FPGA. We 

will be implementing the algorithm efficiently on FPGA. For optimization of the algorithm we 

use external memory block with main logic block. The advantage of using external memory 

block is that we can share this memory block with other algorithms in order to optimize the 

overall area of IC on which these algorithms are burned. 

1.4 Thesis outline 

In chapter 2 we will be discussing about cryptographic hash functions. In chapter 3 we will 

present KECCAK algorithm in detail. In chapter 4 an overview of FPGA will be discuss. 

Chapter 5 we will be discussing about our work. In chapter 6 results of our thesis will be 

provided. Chapter 8 deals with the conclusion and future work. 
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2 Cryptographic Hash Function  

2.1 Hash Function 

2.1.1 Description 

A cryptographic hash function is a deterministic procedure that receives a variable size data and 

produces a fix size block of data often called digest. For generating hash value we use the 

function of the form: 

            Equation 2.1 

Where M is the variable length message and H (M) is fixed length hash value. 

If any accidental or intentional change in data occurs during the transmission, the hash computed 

on receiver side will be completely change and hence the receiver comes to know that any error 

has occur in data during transmission or data is alter during transmission.  

 

 

 

  

 

 

    

 

Figure 2.1: A cryptographic hash function.  
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A slight change in data results in drastic change in hash output As we can see in figure 2.1; a 

slight change in data results in complete change in hash output so if any deliberately or 

accidently change in data occurs the receiver will come to know. 

2.2 Requirement for hash Function 

The following are the requirements for good hash function. 

 H can be applied to a block data of any size. 

 H produces a fixed length output. 

 H (M) is easy to compute for any M, making both hardware and software implementation 

practical. 

 For any given h it is computationally infeasible to find M such that H (M) = h sometime 

also known as one way hash function. 

 It is computationally infeasible to find two different messages M and N such that their 

hash digests are same. Sometimes as strong collision resistance. 

2.3 Applications 

The following are the application of cryptographic hash functions 

2.3.1 Password protection 

One of the most common uses of secure hash is the password protection. Almost all modern 

computers requires password for authentication. User has to first setup the password that 

password is stored on hard drive as a text message for cross referencing the password next time 

when user log on to the system. The problem is that if someone physically removes the hard 

drive and extract the password from the hard drive later on then the system is compromise. To 

prevent this cryptographic hash function must be use. The password is run through hash function 

first and the hash is stored on hard drive when next time the same person try to access the system 

the password is first run through the cryptographic hash function and then cross reference to 

initial hash stored on hard drive. In whole process the actual password is never stored on hard 

drive actually it‟s the hash value which is stored on hard drive. 



2.3.2 Data integrity 

Another application of cryptographic hash is in data integrity. This is to ensure that data of 

interest is not altered during the transmission. If so then the hash value will be completely 

changed and user will be able to indentify that the data has been altered or any error has occurred 

in data during the transmission. For this the cryptographic hash must have strong collision 

resistance property in order to avoid collision that means that two different message does not 

have same hash value. 
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3 KECCAK Algorithm 

3.1 Overview of KECCAK Algorithm 

KECCAK make use of sponge construction, hence belongs to sponge construction family. 

KECCAK was design by designed by Guido Bertoni, Joan Daemen, Gilles Van Assche 

(STMicrosystems) and Michaël Peeters (NXP Semiconductors). The construction of KECCAK 

is based on permutation ƒ from a set of seven permutations that should not have any structural 

distinguishers. The version we choose of KECCAK operates at 1600 bit state.  

3.2 The Sponge Construction 

The sponge construction (Figure 3.1) is simple iterative procedure for building function ƒ with 

variable length input and arbitrary length output with fixed length transformation of ƒ operating 

at fixed number of bits [7]. The sponge construction operates at b = r + c. where r is the number 

of bits and c is the capacity. The input message is first padded and divided into r number of bits 

before inputting into the sponge function. The sponge construction proceeds in two stages, the 

absorbing phase and squeezing phase.  

1. In absorbing phase the r bits of input message is XORED with r bits of the state and 

passes through function ƒ and this process continues until all input message is not entered 

into absorbing phase, after that it switches to squeezing phase. 

2. In squeezing phase the first r bits of state are returned as output interleaved with function 

ƒ. The number of output bits are selected at user will. 

    

 

  

 

Figure 3.1: the sponge construction 



3.3 Bit padding 

Bit padding is done to make the size of the data equivalent to the input state of the machine for 

example in case of KECCAK we know that input data must be of 1600 bits well what if the data 

is less than 1600 bits, the solution is bit padding in this we add a single bit „1‟ at the end of the 

message bits and then followed by a series of „0‟ in order to complete the size of the data or 

message. 

 Original message = [10101111 10110110 0111100]   (23 bits)  

Padded message = [10101111 10110110 01111001 00000000] (32 bits) 

As we can see in above example also that our requirement was 32 bit input data but the size of 

input message was 23 bits so here according to bit padding „1‟ bit was add and the followed by 

eight „0‟ bits in order to complete the block of the message. 

For SHA 384 and SHA 512 the padded message is 1024 bits [8]. The message should be padded 

before entering into KECCAK algorithm. In our case message should be in the multiple of 1024 

bits before passing through the KECCAK rounds. 

3.4 Some terminology of KECCAK 

 

  

 

 

 

 

 

Figure 3.2: terminology of KECCAK 



In figure 3.2 some terminology of KECCAK are illustrated. A state consists of 1600 bits. A 

plane consists of 320 bits in x and z axis. A slice consists of 25 bits in x and y axis. A sheet 

contains 320 bits in y and z axis. A row contains 5 bits in x axis. A column contains 5 bits in y 

axis. A lane contains 64 bits in z axis. 

3.5 KECCAK Algorithm 

KECCAK make use of sponge construction, hence belongs to sponge construction family. The 

version we choose of KECCAK operates at 1600 bit state. Keccak ƒ consist of 24 simple rounds. 

Each round has 5 steps (theta Ɵ, Rho ƿ, Pi π, Chi χ, Iotaι). The input and output of keccak round 

is 5 x 5 matrices whose entries are 64 bit words [6]. The steps of KECCAK are as follows; 

1. Theta (Ɵ) 

2. Chi (χ) 

3. Rho (ƿ) 

4. Pi (π) 

5. Iota (ι) 

3.5.1 Theta (Ɵ) step 

The operation perform in theta step is as follows; 

                                                                Equation 3.1 

           –                                                           Equation 3.2 

                                                                                                 Equation 3.3 

In Ɵ step S denotes complete permutation state where R[x] and T[x] are used to store 

intermediate values, S [x, y] represents the lane. First each lane is XORED with other lane as we 

can see above in mathematical form; results are stored in intermediate register name R[x]. Then 

intermediate values are first rotated one bit the XORED with pervious value of array and result is 

stored in T[x]. Finally theta output is produced by XORING initial value of lane S[x, y] with 

intermediate value stored in T[x]. Note that all operations in x, y plane are in modulo 5. In theta 

step 50 bitwise XOR and 5 rotations are performed. Theta step is illustrated in figure 3.3. 



 

Figure 3.3: The theta step [9] 

3.5.2 Chi (χ) step 

The operation performed in χ step is as follows; 

                                                         Equation 3.4 

The output from Ɵ step is used as input for chi step. In this a particular column is XORED with 

result of AND operation performed with next column and negation of next column as you can 

see in mathematical form above. χ step is illustrated in figure 3.4 

 

Figure 3.4: The Chi step [9] 

 

 



3.5.3  Rho (ƿ) step 

The mathematical expression for ƿ step is as follows 

                       –                       Equation 3.5 

Where t satisfying 0 < t < 24 and t = -1 if x = y =0 

Output from χ step is used as input for ƿ step. The ƿ step is basically the shifting of the bits in z 

direction. The shifting of the bits are stated in table 3.1 given below 

Table 3.1: transformation of bits in z direction 

XY 

values 

X = 3 X = 4 X = 0 X = 1 X = 2 

Y = 2 25 39 3 10 43 

Y = 1 55 20 36 44 6 

Y = 0 28 27 0 1 62 

Y = 4 56 14 18 2 61 

Y = 3 21 8 41 45 15 

    

3.5.4 The Pi (π) step 

Π step can be mathematically expressed as follows; 

                              Equation 3.6 

The output from ƿ step is used as input for π step. Π step is basically cyclic shifting of lanes 

according to equation 3.6. Π step is illustrated in figure 3.5 we can see clearly the shifting of the 

lanes. 

 

 

 



 

    

 

 

 

 

 

 

Figure 3.5: The pi step [9] 

3.5.5 The Iota (ι) step 

Ι step can be mathematically expressed as follows 

                              Equation 3.7 

The ι step is just basically the XORING a round constant with lane S [0, 0] received from π step. 

There are 24 round constant, one round constant for each round. Round constant are expressed in 

table 3.2 below 

Note that order of the step is not important you can perform any step first, output of the 

KECCAK function does not depend on the order of the step. 

 

 

 

 



Table 3.2: Round constants and their values 

      S. No Round constant 

value 

S. No Round constant value 

RC [1] 0000000000000001 RC [13] 000000008000808B 

RC [2] 0000000000008082 RC [14] 800000000000008B 

RC [3] 800000000000808A RC [15] 8000000000008089 

RC [4] 8000000080008000 RC [16] 8000000000008003 

RC [5] 000000000000808B RC [17] 8000000000008002 

RC [6] 0000000080000001 RC [18] 8000000000000080 

RC [7] 8000000080008081 RC [19] 000000000000800A 

RC [8] 8000000000008009 RC [20] 800000008000000A 

RC [9] 000000000000008A RC [21] 8000000080008081 

RC [10] 0000000000000088 RC [22] 8000000000008080 

RC [11] 0000000080008009 RC [23] 0000000080000001 

RC [12] 000000008000000A RC [24] 8000000080008008 

  

3.6 Summary 

In this chapter KECCAK algorithm is discuss in detail. KECCAK algorithm uses sponge 

construction. Input to the KECCAK algorithm must be first padded then enter to the algorithm. 

The KECCAK ƒ consist of 24 rounds. Each round has 5 steps (Theta, Chi, Rho, Pi and Iota). 

Input data is passed through these 5 steps 24 times. The order of the step is not important you can 

perform any step first. 
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4 Field Programmable Gate Array (FPGA) 

4.1 Introduction 

Field-Programmable Gate Array (FPGA) is an FPD featuring a general structure that allows very 

high logic capacity [10]. FPGA is a reconfigurable device in which user can reconfigure the 

program whenever he wants. It‟s give the flavor of Application specific integrated circuit (ASIC) 

but with additional feature of upgrading the program stored in it whenever user want. 

4.2 Advantages of FPGA 

FPGA offer a cost effective solution compared to ASIC due to their reconfigurable nature with 

added benefits of short time to market [11]. Implementing the program on a programmable 

device gives advantage of upgrading your program whenever you need in order to increase 

performance and efficiency. 

 Upgrading cost for FPGA based system is negligible as compared to upgrading cost of ASIC. 

More over it consumes less power than ASIC. 

4.3 XILINX FPGA 

The platform we choose to implement our program is the Xilinx FPGA. Xilinx holds the largest 

market share of FPGA. Most researchers preferred Xilinx FPGA for implementing their program 

as it has more features and it is friendlier to use. XILINX has two main FPGA families; high 

volume Spartan series and high performance Virtex series. 

4.4 Virtex Series 

Virtex series includes Virtex, Virtex E, Virtex EM, Virtex II, Virtex II Pro, Virtex 4, Virtex 5 

and Virtex 6 series. The virtex family is focused on system on a chip (SOC) concept, they 

includes up to two Embedded IBM PC cores. Some members of virtex 5, virtex 4 and virtex II 

pro contains power PC cores.  



4.5 Virtex 5 FPGA 

Virtex 5 offers more optimize logic in four domains that provide wide selection of devices with 

I/Os, hardened IP blocks for logic intensive, embedded processing, serial connectivity 

applications, optimal mix of logic and digital signal processing (DSP) [12]. It contains 6 input 

LUT with dual output capability [13], means that you can use one 6 input LUT to apply the logic 

of two 5 input LUTs.  

4.5.1 Virtex-5 Family Devices 

 Virtex-5 LX for high performance logic. 

 Virtex-5 LXT for high performance logic with serial connectivity. 

 Virtex-5 SXT for high performance DSP with serial connectivity. 

 Virtex-5 FXT for embedded processing with serial connectivity. 

4.5.2 Architecture over view 

The Virtex 5 family consists of six fundamental elements; 

 Configurable logic blocks (CLBs) 

 Input output blocks (IOBs) 

 Block RAM (BRAM) 

 Clock resources. 

 Digital clock manager (DCM) 

 Digital signal processing slice (DSP48E) 

4.5.2.1 Configurable logic blocks (CLBs) 

In a CLB there are two slices arrange in different column. Slices are not interconnected with 

each other they are connected to switching matrix to access general routing matrix (GRM). Each 

slice has independent carry chain logic. One slice contains four 6 inputs LUTs, 4 storage 

elements, multiplexers and carry chain. The arrangements of Slices are illustrated in figure 4.1. 

 



 

 

 

 

 

 

 

   Figure 4.1: Virtex 5 CLB and Slice [14] 

Each LUT can implement 6 input Boolean functions. Some slices are called SLICEM used as 

RAM. SLICEM can be implemented as single port 32 X 1 RAM, Dual port 32 X 1 RAM, quad 

port 32 X 2 RAM simple dual-port 32 X 6 bit RAM, single-port 64 X 1 bit RAM, dual-port 64 X 

1 bit RAM, quad-port 64 X 1 bit RAM, simple dual port 64 X 3 bit RAM, single-port 128 X 1 bit 

RAM, dual-port 128 X 1 bit RAM and single-port 256 X 1 bit RAM. Some slices are called 

SLICEL used for implementing logic.  

4.5.2.2 Input Output Cell (I/O) 

I/O cell contain two IOBs, two ILOGICs, two OLOGICs, and two IODELAYs. ILOGIC include 

storage element (register). IODELAY introduces delay in incoming signal on individual basis. 

OLOGIC has two major blocks, one is used to configure output data other is used to configure 3 

– state control path. IOB provide interface between package pins and configurable blocks. 

4.5.2.3 Block RAM (BRAM) 

Block RAM can be configurable as either one 36 kb or two 18 kb RAM. Block RAM can also be 

configurable as 18 kb or 36 kb FIFO. Each 36 K memory can be configured as 16k X 2, 8k X 4, 

4k X 9, 2k X 18 or 1k X 36 memory. The depth of the RAM can be increased by cascading two 

36 K RAMs to make one 64 k X 1 RAM. 



4.5.2.4 Clock recourses 

For clock the Virtex 5 is divided into 8 to 24 regions [14] and also have 32 global clock lines. 

The clock resources dimension are fixed to 20 CLBs. Clock regions contains 4 clock nets. Clock 

resources are used to serve localized I/O serialize / de serialize circuits. 

4.5.2.5 Digital Clock manager (DCM) 

The features of digital clock manager are clock deskew, frequency synthesis and coarse/fine 

grained phase shifting. Clock deskew feature provide zero propagation delay between source 

clock and output clock. Frequency synthesis produces frequency in multiple of one frequency. 

Coarse/fine grained provide output DCM clock to be in phase with input clock.    

4.5.2.6 Digital signal processing slice (DSP48E) 

DSP slice provides dedicated DSP operation. It is valuable with respect to DSP functionality 

because it reduces significantly the area occupies on FPGA when it comes to DSP functionality. 

There are two DSP48E. The DSP slice is based on 25 X 18 bit multiplier. DSP slice provides 

wider multiplication capability because the slices can be cascaded to form  

4.6 XILINX ISE 

ISE is the design suit provided by XILINX for coding, implementing, simulating and automating 

the designs for FPGA. It provides many features, synthesizing the design, implementing the 

design by post and route. It provides ideal platform to implement the design on almost every 

FPGA of your liking and simulating it in order to see the desire results. In this thesis we use 

XILINX ISE 12.4 [16]. 

4.7 Summary 

In this chapter an overview of field programmable gate array (FPGA) was given and its 

fundamental elements were discussed. Various advantages of FPGA were highlighted. Virtex 5 

FPGA components and architecture were described related to our thesis. 
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5 Our Work 

5.1 Introduction  

Cryptographic hash algorithms are widely used for data integrity, password protection and for 

message authentication. “KECCAK” is one of the SHA – 3 candidates whom we choose to 

implement over FPGA. KECCAK uses sponge construction for building up the permutation sets.  

Sponge construction has two phases, absorbing phase and squeezing phase. In absorbing phase 

the input data is first padded and then XORED with the state bits and passes through permutation 

and this process repeat until whole block of input data is not entered into the system. Padding 

means to convert the data into an appropriate block set for instance we know that input bits of 

KECCAK is 1024 bits of actual data what if the data is smaller than 1024 bits, we have to add 

additional bits according to bit padding. The next phase of sponge construction is squeezing 

phase in which the data passed through permutation rounds are output at user will. User will 

mean that user decides that which output bits are to be selected. 

KECCAK consist of 24 rounds, each round consist of 5 steps (theta, chi, rho, pi and iota). Input 

state of the KECCAK is 1600 bits. In 1600 bits the actual data bits are 1024 and 574 bits are for 

capacity. These bits are passed through 5 steps 24 times to form a hash output. Order of the steps 

is not important we can perform any step first. The input bits of KECCAK are arranged in 5 X 5 

matrixes whose entries are 64 bits wide [6]. The architecture of KECCAK is shown in figure 5.1 

 

 

 

     

Figure 5.1: KECCAK ƒ (1600) 



There were many applications of KECCAK on FPGA using different techniques. We got the 

idea from the paper “Use of embedded FPGA resources in implementations of five round three 

SHA – 3 candidates” malik umar sharif, rabia shahid, marcin rogawski, kris gaj. In this paper the 

implementation of KECCAK was done by using embedded FPGA resources such as Digital 

Signal Processing (DSP) units and Block Memories [17]. For reducing the area further on FPGA 

we decided to implement the algorithm using separate memory block. The whole idea was that 

there must be one logic unit which generates address and control signal for retrieving values 

from memory block.  

5.2 Initial implementation 

At first we implement the KECCAK algorithm by using the raw commands in order to see how 

much resources it occupies. As we already know that the order of the steps are not important so 

we start with the theta (Ɵ) step first.  

                                                                Equation 5.1 

           –                                                           Equation 5.2 

                                                                                                 Equation 5.3 

Theta step is performed by using equation 5.1, 5.2 and 5.3. In equation 5.1, the lanes are XOR 

with their adjacent lane and the result is stored in register T. We use “for” loop with limit 0 < x < 

4 and “^‟ operator for performing XOR operation. In equation 5.2, the results store in array 

register R is XOR with its array elements. The next array element is first rotated one bit and then 

XOR with previous array element and the result is stored in array register T. We use bits position 

for rotating the bits for example R [63:0] was rotated by using (R [62; 0], R [63]) and for XOR 

operation “^” operator was used. In equation 5.3, the results stored in array register T is XOR 

with initial input of theta step. We use two “for” loops with limits 0 < x, y < 4 and “^” operator 

for XOR operation. The result of theta step was passed to Rho and Pi step. 

We implemented Rho (ƿ) and Pi (π) Step simultaneously by using equation 5.4. 

                                       Equation 5.4 



Rho step is just the rotation of bits in a lane in z direction; the operation is in modulo 64. Pi step 

is the rotation of the lane according to equation 5.4. The rotation of bits in z direction is given in 

table 5.1. 

Table 5.1: transformation of bits in z direction 

XY 

values 

X = 3 X = 4 X = 0 X = 1 X = 2 

Y = 2 25 39 3 10 43 

Y = 1 55 20 36 44 6 

Y = 0 28 27 0 1 62 

Y = 4 56 14 18 2 61 

Y = 3 21 8 41 45 15 

 

We implemented by using same bit position technique use in theta step for rotating the bits in z 

direction and for Pi step we specific lane array for example U[1][3] = ({S[0][1][63-36:0], 

S[0][1][63:(63-36+1)]}) and so on. The result was passed to Chi step. 

The Chi (χ) is stated in equation 5.5 

                                                         Equation 5.5 

In Chi step first the next lane is inverted means that “NOT” operation is performed then it is 

“AND” with its immediate lane and the overall result is XOR with first lane. This process 

continues for 0 < x, y < 4.  We use “~” operator for “NOT” operation, “&” operator for “AND” 

operation and “^” operator for XOR operation. The result from Chi step was passed to Iota step. 

 The Iota (ι) step is stated in equation 5.6 

                              equation 5.6 

In Iota step a 64 bit round constant is XOR with first lane only. There are 24 rounds constant, 

each for one round. We implement the Iota step by XORING the round constant with the first 

lane of the output of Chi step. 

These five steps were iterated 24 times in order to implement the complete KECCAK ƒ set. We 

initially don‟t use any clock; we just replicate the module 24 times. 



5.3 Observations 

The results obtained from initial implementation were analyzed. The whole KECCAK was 

occupying 53000 LUTs on FPGA and it was taking 3200 input output blocks (IOBs) which was 

too much because there is not such IC in FPGA which has 3200 pins. We further note that only 

one round was taking 2240 LUTs for executing in which only theta step was taking about more 

than half of the resources. 

After looking at initial results we realize that we can perform following improvements in order to 

make the code perfectly synthesizable. 

1. Design a serial interface 

2. Clocking the module 

3. Use separate memory block for storing intermediate values 

5.3.1 Serial interface 

In order to reduce the IOBs it was needed that input must be taking serially rather than parallel. 

Parallel input was taking double IOBs, 1600 IOBs for input and 1600 IOBs for output. So the 

total count was 3200 IOBs. So to reduce the IOBs we design a serial interface which takes data 

serially on the clock. There was confusion that how much bits the serial interface could take on 

one clock cycle. We decided that the width of the serial interface should be equal to lane width 

that is it would take 64 bits of data on one clock cycle. In this way the number of IOBs was 

minimized to 120 for the data. Figure 5.2 shows the generalize block diagram of serial interface 

in which we can see that at the clock signal only 64 bits are output.   

 

 

 

 

 



 

 

 

 

 

Figure 5.2: Block diagram of serial interface 

5.3.2 Clocking the module 

There was serious need for clock for synchronizing the serial interface with the module. The 

advantage of clock is that on one clock cycle only one step is performed so it reduces 

significantly the area occupy by algorithm because we are using only one module space to 

implement the whole algorithm. We need multiple clock cycles to execute the KECCAK 

algorithm using the same resources on FPGA before clock when we was just iterating the 

module so on FPGA actually that module was replicating 24 times it was not good approach 

when we clock the module, the area on FPGA is reduce because only one module was taken to 

execute whole KECCAK algorithm only clock cycles increases. Figure 5.3 shows the generalize 

block diagram of clocking the module. 

 

 

 

 

 

Figure 5.3: Clocking the Module 

Serial Interface 

EN 1 bit 

Clk 1 bit 

Sel 1 bit 

Data in (1600 bits) 

Data out 64 bits 

Module 

EN 1 bit 

Clk 1 bit 

WR 1 bit 

Data in 64 bits 

Data out 64 bits 



5.3.3  Separate Memory 

We come with an idea that we should use separate memory block. In KECCAK algorithm when 

permutation operation is in progress large space is needed to store the intermediate values for 

future use. Initially we were storing those intermediate values in internal registers and those 

registers were occupying too many resources. The idea of implementing separate memory block 

is illustrated in figure 5.2 

5.4 Optimized implementation 

Our optimized implementation of KECCAK algorithm consists of two modules as illustrated in 

figure 5.4; one module is purely used for logic implementation and another module is used for 

storing intermediate value it just acts like a simple memory block. We can characterized our 

design as follows 

1. Logic Module (KECCAK) 

a. Module for generating address and control signal 

b. Module for data. 

2. Memory Module (Memory block) 

 

 

 

 

 

   Figure 5.4: Our implementation of KECCAK 
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5.4.1 Logic Module (KECCAK) 

The logic module performs the operation for KECCAK algorithm. In this module the equation of 

KECCAK is implemented. Well from initial implementation results we concluded that the theta 

step was occupying too many resources alone and the rest of the steps were occupying much less 

resources than theta step. It is mainly due to the XOR operation present in equation 5.1 occupies 

too many resources. We implement equation 5.1 using addition operation in modulo 2 fields. We 

add lanes in modulo 2 field rather XORING with each other and the result was stored in memory 

block. Than the remaining theta operation are performed. After the theta step the output lanes are 

rotated according to Rho step. For rotation of lane we use same technique as it was discussed in 

initial implementation. Then Pi step is performed according to table 5.1. The Pi step is basically 

the rotation of bits in z direction in modulo 64. We implement Rho and Pi step simultaneously, 

the lanes which was rotated according to Rho step is used for Pi step. The 64 bits present in lane 

is rotated in Pi step. So Rho and Pi step was performed simultaneously. Then the Chi step was 

performed. For Chi step we used three internal registers. The lane is read from the memory and 

stored in these there registers. As we know that in Chi step first the second lane is “NOT” and 

then “AND” by third lane and the result is XOR with first lane. The same technique is used and 

the result is stored in memory block. In last the Iota Step is performed. In Iota step just a 64 bit 

round constant is XOR with first lane of the state. There are 24 different rounds constant each for 

a single round. 

The whole above implementation is done by using two modules. One module is purely dedicated 

for generating address and control signal to memory block and other module is used as data path 

for performing operations. 

5.4.1.1 Module for address and control signal 

This module is used to store and write the data. First the input data is stored in dedicates part of 

memory in form of Lanes and address is given to each lane. When start bit is enabled, module 

begins generating address and control signal in a sequential manner. Generation of address and 

control signal are implemented using a switch case statement. 



Some brief description about the working of module is that it starts with the reset register. If reset 

register goes to 0 all values store in register goes to 0 and module passes to initial state, in initial 

state all register are re initialize to their default values which is 0. If start register goes on 1 then 

the working starts enread register is on 1 which means that module is reading the data from 

memory at first memory location 0 is read and command 0 is generated than memory location 1 

is read and command 1 is generated then memory location 2 is read and command 10 is 

generated then memory location 3 is read and command 10 is generated then memory address 4 

is read and command 10 is generated at this point the module passes through if else statement. 

Basically what we have done above is that we read a complete column and passes to data 

module. In if else statement is counter_sheet is not equal to 4 then whole process repeats until its 

value becomes 4 then module pass to next stage. Then memory address 54 is read and command 

1 is generated then memory address 4 is read and command 1001 is generated then only 

command 1100 is generated then memory address 14 is read and command 100 is generated. 

Then module progress to if else statement. If counter plane == 4 and counter sheet == 4 the 

module passes to next stage in which memory address 25 is read and command 0 is passed and 

counter plane and counter sheet register is re-initialize to 0 value. Then memory address 27 and 

command 1001 is passed. Then the only command 1001 is passed. Then the value is written to 

memory on address 0 and module progress to next stage. In next stage number of round register 

is used in if else statement. If it is less than 23 whole than process is repeated again and if it is 

equal to 23 then in done register 1 value is passed indicating that the process of hash function is 

complete. 

Basically what we are doing in this module is that we are generating address for memory to pass 

a single bit in data module and along with a particular command. In this way whole Ɵ values and 

χ values are mapped in the three registered in data module. These combinations of address are 

chosen according to sheets and plane.  

5.4.1.2 Module for data 

This module performs calculation according to KECCAK equations. This module is used for 

calculating data. The data extracted from the memory according to control signal generated from 



memory is used in this module for operation. In this module Chi, Rho, Pi and Iota operations are 

performed on data. 

A briefly working about this module is that the commands generated from first module are used 

here for performing calculations. For instance if command first bit is 1 then the data from 

memory is directly pass to register r1 otherwise if command 2
nd

 bit is 1 then data from memory 

is XORED with r2 and then pass to register r1. If command 3 bit is at 1 then data from memory 

is XORED with register r3 and the overall result is XORED with one bit cyclic shift of register 

r2 and result is assigned to r1 if none of the condition is valid the register r1 is assigned the same 

value. For register r2, command 3
rd

 bit is looked if it is 1 then value of register r1 is assigned to 

register r2 otherwise same value is retained. Same goes for register r3 also if command‟s 3
rd

 bit 

is on high position value from register r2 is assigned to r3 otherwise same value is retained. Then 

the χ step is performed. Then according to values of counter_plane and counter_sheet the π step 

is perfomed. According to nr_round value a round constant is pass to iota register. Then 

commad’s 4th bit is observed if it is 1 then register r1 value is written into the memory. If 

command 5th bit is 1 then value from rho register is written to the memory. Is command 6th bit 

is 1 then value from register chi_out is written to the memory and if command 7th bit is 1 then 

register chi_out is XORED with iota and written to the memory. 

Basically the data module operated only on command generated from the first module. 

5.4.2 Memory Module (Memory Block) 

The memory module is used for storing intermediate values. Each memory locations is assigned 

a particular address for storing and retrieving the data. It is basically 64 X 64 RAM. The memory 

module is not integrated with logic module it is used separately only for storing the intermediate 

values. Just like our personal computer that it has hard disk for storing data and processor and 

other things for computing the data. The same approach was taken over hear also. 

 

 



5.5 Advantages  

The advantage of placing memory block separate is that other resources can also share the 

memory when it is not in used by the KECCAK. Suppose in an IC there are many hash functions 

that requires memory for saving their values so this memory can be share with them and hence 

over all resources can be optimized because only one memory block is shared by several 

algorithms. In figure 5.5 the concept of placing memory block separate is illustrated, that many 

algorithms are sharing the memory block so when we look at over all IC there is significant 

resources optimize tales place. Instead of having separate memory for every algorithm we just 

share one memory block to every algorithm. 

 

 

 

 

 

 

 

  Figure 5.5: Memory sharing by several algorithms 

The memory sharing technique is quite efficient is reducing the area occupied by algorithm on 

FPGA or an IC. Suppose in an IC there are multiple algorithm which requires memory for saving 

the values, when we look at conventional implementation and compare with our implementation 

so in conventional implementation every algorithm need its memory for storing their values 

hence the area occupied on an IC increases. While in our implementation we use same memory 

as shared memory for all algorithms in an IC which results in area reduction.  
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CHAPTER # 06 

6 Results 

6.1 Implementation of Results. 

The KECCAK algorithm is implemented using Verilog HDL language using XILINX ISE 12.4. 

We first coded the KECCAK algorithm and then use XILINX XST tool for synthesizing the 

code. ISE Simulator is use for verifying our design by giving test vectors. 

Table 6.1: Implementation results of Logic module 

 Target Device Virtex 5 - 5vlx30ff324-2  

S.No   

a. Number of slices 432 

b. Number of LUTs 1209 

c. Maximum Clock frequency 264.236 MHz 

 

Table 6.2: implementation results of memory block 

 Target Device Virtex 5 - 5vlx30ff324-2  

S.No   

a. Number of slices 1641 

b. Number of LUTs 5505 

c. Maximum Clock frequency 942.774 MHz 

 

Table 6.1 shows the implementation result of logic block and table 6.2 shows the implementation 

results of memory block. In these two tables device utilization, input output utilization and 

timing summary is discussed. 

 



6.2 Comparison with papers 

We compare out implementation result with the following papers as illustrated in table 6.3.  In 

our implementation only logic block is occupying 432 slices. Basically we implemented 

KECCAK on a concept of memory sharing. If there are multiple algorithms on an IC which 

required memory for storing their intermediate value so our memory block can be shared. In our 

implementation the whole calculation of KECCAK is performed in logic block, memory block is 

just used for storing intermediate value during the calculation.   

Table 6.3: Comparison with papers 

Comparison with papers 

Resource 

utilization (Slices) 

Clock frequency 

(MHz) 

Logic Memory Logic Memory 

Our results 432 1641 264 942 

[10] Malik Umar 2011 el.al. 1338 
1 36k 

BRAMs  
242 

[20] Brian Baldwin 2010 el.al. 1971  195 

[24] Kobayashi, K 2010 el.al. 1433 205 

    

 

 

 

 

 

 



CHAPTER # 07 

7 Conclusion and Future Work  

7.1 Conclusion 

We have successfully implemented KECCAK algorithm using different approach in order to 

minimize the area occupied on FPGA. The optimization was done by separating the memory 

block because it was occupying too many resources. Our implementation consists of two 

modules; logic module and memory module. The main module is logic module in which it is 

further divided into two sub modules, one for generating address and control signals and another 

used as for calculating data.  Memory module is only used to store intermediate values. The 

advantage of this approach is that we can share memory module with other algorithms also so in 

broader sense overall area of IC on which other all algorithms are implemented is optimized. 

7.2 Future Work 

The future work includes sharing the memory block which we separate from our logic module 

with other algorithms. It can be share with other algorithms in order to save their intermediate 

values. Basically our memory block is 64 X 64 bit RAM and it can be used as shared memory 

with any algorithms which requires that much space to store its data or values. 
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