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ABSTRACT 

Cryptographic hash functions are used to protect information integrity and authenticity in a wide 

range of applications. Serious attacks have been reported in recent years against cryptographic 

hash algorithm, including SHA-1, and SHA-2 family, which is currently used as standard, 

developed by National Institute of Standards and Technology (NIST).Therefore, NIST has 

decided to issue a Call for a New Cryptographic Hash Algorithm (SHA-3) Family. Five Secure 

Hash Algorithms were selected after Round-3 of SHA-3 competition. A basic evaluation 

criterion for selection SHA-3 standard is based on the strength of security and efficiency in 

Hardware implementation for wide verity of platforms. Blake is one of the candidates of round 

three of SHA-3 competition. Performance evaluation of Blake algorithm on FPGA is depends on 

the type of architecture implemented. The core of the design is based on compression function, 

which includes G-Function calculation. Due to the symmetric nature of compression function of 

Blake Algorithm, different design architectures can be implied based on serialization of common 

procedures. These design variations resulted in low to high area and speed results. 

In this research work, we have implemented three design architectures of Blake algorithms on 

FPGA based on number of G-Functions execution at a time. The initialization and finalization 

step are same for all designs and variation is based only on round function execution. In the first 

design we have used 8 G-Functions in parallel, second design used hardware of 4 G-Functions 

and the third design is based on 2 half-G Functions in parallel with pipeline registers between 

them. Pros and cons of these architectures are discussed in this thesis. In fully autonomous 

design implementation, common I/O interface is provided and only Slice resources of FPGA are 

used for design implementation for fair comparison. For tradeoff analysis, each design is 

implemented using three different optimization strategies, these are “Area”, “Speed” and 

“Balance” design approaches. We have implemented both Blake-256 and Blake-512 designs on 

Virtex 5 FPGA. For Blake-256, maximum throughput of 2.6 Gbps is achieved for 8G design. 1G 

design gives most efficient results in terms of number of slices utilized i.e. 416 slices. The 

optimized delay path is utilized in 4G design with respect to Virtex 5 architecture. That‟s gives 

maximum TPA of 2.1. On the other hand, Blake-512 design implementation gives throughput of 

4.7 Gbps when applying 8G design. 4G design gives the best TPA of 1.904 and least area of 801 

slices resulted when 1G design is implemented. The evaluation concluded that 4G design gives 
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best results in terms of TPA. Overall research suggests that selection of architecture is dependent 

upon type of application either high speed requirements or low area constraints, suitable 

optimization could be performed in a particular domain to achieve best design results. 
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CHAPTER 1: INTRODUCTION 

The aim of cryptography is to secure information so that only the intentional parties can read the 

data. Cryptography is deployed with cryptographic algorithms. These are based on mathematical 

functions used for converting messages into a form that cannot be retrieved by formal means. 

Cryptosystems today are used in many areas like banking systems, identification systems and 

entertainment systems using encrypted storages and even in electronic car locks. There are 

mainly three types of cryptography algorithms. These are secret key, public key, and hash 

functions. Unlike secret key and public key algorithms, hash functions called as one-way 

encryption and there is no key involved in Hash Function calculation.  

A secure hash function is a cryptographic primitive. It is a transformation in which variable-size 

input is taken and fixed-size string is returned, which is called as hash value. A fixed-length hash 

value is computed based on the plaintext that makes it impossible for either the contents or 

length of the plaintext to be recovered [1].The prime application of hash functions in 

cryptography is message integrity. The hash value provides a digital fingerprint of a message, 

which ensures that the message has not been altered by an intruder, virus, or by any other means. 

Other applications of Hash Functions are message authentication codes, digital signatures and 

password protection. [2] 

Secure Hash Algorithm (SHA) family of hash functions developed by the National Institute of 

Standards and Technology (NIST) is currently used as standard for Hash Functions [3]. Serious 

attacks have been reported in recent years against cryptographic hash algorithm, including SHA-

1, and SHA-2 family[4][5]. NIST has decided to standardize new hash algorithm to augment the 

ones currently specified in FIPS 180-2 [5]. NIST issued a Call for a New Cryptographic Hash 

Algorithm (SHA-3) Family in a Federal Register Notice on Nov. 2, 2007[6].In this regard 64 

entries were submitted in which only 14 were selected for the second round of the competition. 

Based on the public feedback and internal reviews of the second-round candidates, NIST 

selected five SHA-3 finalists - BLAKE, Grøstl, JH, Keccak, and Skein to advance to the third 

and final round of the competition on December 9, 2010. The result of the contest is expected to 

be announced at the end of 2012[7]. 
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1.1 Motivation 

Blake is one of the candidates of round three of SHA-3 competition [7]. Blake algorithm consists 

of family of four hash functions BLAKE-224, BLAKE-256, BLAKE-384 and BLAKE-512. A 

basic evaluation criterion for selection SHA-3 standard is based on the strength of security and 

efficiency in Hardware implementation for wide verity of platforms [7]. 

Due to reconfigurable characteristic of FPGA, sufficient logic and storage elements availability, 

complex algorithms can be built on FPGA platform. Therefore, FPGAs are widely used for 

evaluation of Hash Function algorithms.  In order to implement the same algorithm on FPGA, 

different architectures could be implied to achieve different design objectives. One of the most 

important issues is the cost-performance tradeoffs. Cost in FPGA hardware design can be 

interpreted in different ways like logic area in terms of slices, memory elements in terms of 

Block RAMs and Distributed RAMs. Another commonly concern faced in hardware design is 

the parallel and serial design tradeoff.  

One way to implement the design in which different procedures executed in parallel to complete 

the algorithm in just one or few cycles, on the other hand pipeline architectures use many cycles 

under a fast clock to complete the algorithm. The facility provided by FPGA, to implement 

different types of design architectures to find most efficient design in terms of low area and high 

speed performances and capability of Blake algorithm to execute for variety of design 

architectures motivate us to work in this area. 

1.2 Research Goals and Objective 

The objective of this research work is to analyze various design architectures of Blake algorithm 

best suited for FPGA device architectures. Evaluation of three types of design architectures 

based on High Speed, Low Area and Highest TPA (Throughput per Area) is goal of this 

research. Various pros and cons of all architectures have discussed to conclude the performance 

evaluation of each design. Testing and simulation of all design is performed using test vectors 

given in design specification document of Blake and output results are compared with the results 

given in specification document for verification. 
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Design implementation is focused on FPGA Device architecture. Two versions of Blake 

algorithm based on internal data bus have been implemented on FPGA. These are Blake-256 and 

Blake-512. Performance evaluation each design has been performed to find out most efficient 

design results. Objective of this work is to find optimized architecture in three areas for Blake 

algorithms, one for highest throughput, second for resource constrain environment and final 

which gives most efficient results in terms of Throughput per Area on Xilinx Virtex 5 FPGA. 

1.3 Approach 

In this research work, we have implemented three design architectures of Blake algorithms based 

on number of G-Functions execution at a time. The initialization and finalization step are same 

for all designs and variation is based only on round function execution. In the first design we 

have used 8 G-Functions in parallel, second design used hardware of 4 G-Functions and the third 

design is based on 2 half-G Functions in parallel with pipeline registers between them. In fully 

autonomous design implementation, common I/O interface is provided and only Slice resources 

of FPGA are used for design implementation for fair comparison. Mechanism for selection of 

message and constant values for each round is also discussed for all three architectures. 

Verilog HDL is used for designing of Blake algorithms. Two versions of this algorithm based on 

internal data bus are implemented on FPGA. These are Blake-256 which generates 256-bits Hash 

value for 512-bits input message and Blake-512 which generates 512-bits Hash value for 1024-

bits messages value. Internal 64-bits wide bus is used in Blake-512 while internal word size of 

Blake-512 architecture is 64-bits wide.  

Design for three architectures for both versions is implemented on Xilinx Virtex 5 xc5vlx-110t 

FPGA[8]. Selection is based on the fact that most of the evaluations work for SHA-3 candidate 

has been performed on these devices. Blake algorithm architecture is design to optimize the 

performance based on Slice architecture of Virtex 5. 

For synthesis and implementation purpose, Xilinx ISE tool is used. Tradeoff analysis is 

performed by implementing each design using three different optimization strategies. These are 

“Area optimization without IOB packing”, “Timing Performance with physical synthesis” and 

“balanced design approach” this is default in ISE Tool. Testing of designs consists of functional 

and timing simulation i.e. post-route simulation will be performed to verify the design results. 
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1.4 Organization 

Rest of the thesis is organized as follows. In chapter 2, detail design specification of Blake 

algorithm is discussed with the background of Hash Functions and Blake algorithm emergence 

for NIST competition. Chapter 3 thoroughly describes the different design methodologies for 

implementation of Blake algorithm on FPGA performed by various researchers so far. Analysis 

of different design approaches used by other researchers related to the both compact and high 

throughput designs is primary focus of this chapter. Chapter 4 describes our design methodology 

in detail.  It describes detail architecture, common interfaces and performance metrics along with 

wrapper design of three proposed architectures of 8G, 4G and 1G design. In chapter 5, Post-

Route implementation results are given. Comparison tables and graphs are shown to analyze and 

compare various design approaches with respect to device platform used for both Blake-256 and 

Blake-512 versions.  Comparison of our proposed design results with other designs is also given 

in this chapter. Finally in Chapter 6 conclusion is drawn for this research work with future 

recommendations and outcomes of overall research phase.  

1.5 Summary 

In this chapter we have discussed about basic introduction to cryptography, hash functions and 

brief summary of the overall thesis work. The aim of cryptography is to secure information. 

Hash Functions are one of the three types of Cryptography. It is a transformation of variable-size 

and fixed-size Hash Value string is returned. SHA-2 Hash algorithm is current standard for Hash 

Function. Due to currently revealed weakness in SHA-2,NIST announced a competition for 

SHA-3 for selecting next Hash Function algorithm on November 2007. Five finalists are selected 

for Round-3 of this competition. In this research work, Blake algorithm included in these 

finalists, is implemented on FPGA hardware. Motivation behind its implementation is the fast 

evaluation of design algorithm on reconfigurable FPGA and the symmetric nature of Blake The 

objective of this research work is to find out best design architectures of Blake-256 and Blake-

512 with respect to „Area‟, „Speed‟ and „Balanced‟ design objectives. The approach used to meet 

the research goals is based on number of G-Function execution at a time. Finally, organization of 

this thesis report given in this chapter that briefly described the contents of each chapter. In next 

chapter, we will thoroughly discuss the Blake algorithm and its architecture details.  
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CHAPTER 2: BLAKE ALGORITHM 

2.1 Hash Functions 

A hash function is a cryptographic algorithm that takes an arbitrary block of data and returns a 

bit string of fixed length, the hash value, such that a deliberate change to the data with very high 

probability will modifies the hash value. The encoded data is called as "message," and the hash 

value is called as message digests or simply digests. 

2.2 Applications of Hash Functions 

Cryptographic hash functions are very important for many security applications, especially for 

the authentication related applications, such as message authentication codes, digital signatures 

and password protection. Digital fingerprint of a message ensures that the message has not been 

altered by an interloper, virus, or by any other means [1].  

For example, in modern operating systems user ask to enter a password that which will be store 

on hard disk. Next time when user accesses the account, password will be given by the user, the 

entered password will be compared with the previously stored password and access will be 

granted. If the password is stored in the form of plaintext in hard-drive, security problem may be 

aroused because someone could remove the hard disk and extract user‟s password data from it. 

The solution of the problem is to use a cryptographic hash function as shown in Figure 2.1. 

When the user enters the password, its Hash value is calculated using Hash Function. This Hash 

value is used for reference in future authentication process. Instead of actual password, its 

encrypted value is stored in Hard disk rather than its actual form. Next time when user enter 

password, Hash value is generated again and this Hash value is compared with reference Hash 

value already stored in hard disk. Using this way if some unauthorized person access the hard 

disk data, he could not get access to the user‟s password [9]. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
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user
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Figure 2.1 Password Authentication example 

2.3 Standard Hash Functions 

Secure Hash Algorithm (SHA) is a group of hash functions published by the NIST as a US 

Federal Information Standard [3]. Brief description of each SHA algorithm evolution with time 

is given in Table 2.1. 

Table 2.1 SHA Algorithms Evolution 

Standard Description 

SHA-0 Based on 160-bit hash function. It was published in 1993. It was quickly 

withdrawn due to an unrevealed flaw and replaced by SHA-1 later.  

SHA-1 Based on 160-bit hash function, developed by the National Security 

Agency. Published by NIST in 1995.SHA-1 is very similar to SHA-0. In 

February 2005, an attack by et. al. was announced [4]. The attacks can find 

collisions in the full version of SHA-1, requiring fewer than 269 operations.  

SHA-2 Four additional hash functions in the SHA family were published by NIST: 

SHA-224, SHA-256, SHA-384, and SHA-512, collectively known as SHA-

2. The 224-bit and 384-bit versions of SHA-2 are simply the 256-bit and 

512-bit versions with truncated outputs. The algorithms were first published 

in 2001 in the draft FIPS PUB 180-2. 

SHA-3 New standard for Secure Hash Algorithm is still under development. The 

algorithm will be selected by choosing different algorithms to a public 

competition [7]. The final decision is expected to be announced in 2012. 

 

 

http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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2.4 NIST Competition for SHA-3 

Due to substantial weakness found in SHA-1 standard in 2005[4][5]and possible future attacks 

on SHA-2, NIST decided that it was discreet to develop new hash functions to replace SHA-2 

standard. New algorithm will be developed through a public competition announced by NIST. 

The competition was open for any person or organization. The initial information of the 

competition, evaluation criteria and its minimum requirements was published in 2007[6]. For 

evaluation of the algorithm all the candidates had been submitted to NIST by the end of 2008. 

Among 64 algorithms, 51 submissions qualified for the first round of SHA-3 competition [7]. 

In the year 2009, the First Hash Function Candidate Conference was hosted by NIST and 

qualified candidates advanced to the second round were announced. Second Hash Function 

Candidate Conference was held in 2010 by NIST and the winners of the second round were 

announced. Five selected candidates among the 14 competitors were advanced into the third 

round of SHA-3.At this stage, the evaluation criteria had been extended to the hardware domain. 

Winner of the SHA-3 competition will be announced later in 2012 and selected as a new 

standard for Hash Function named as “SHA-3” [7].  

2.5 Blake SHA-3 Candidate 

Blake algorithm is one of the five finalists of Round-3 of NIST SHA-3 contest [7]. Construction 

of Blake algorithm is based on Hash Iterative Framework (HAIFA) considering its iteration 

mode[10]. HAIFA produces digests value which is not only based upon input message and 

internal state of the algorithm, just like Merkle-Damgard construction [11], but also depends on 

the number of processed bits, recorded by a counter. BLAKE is a family off our hash functions, 

namely BLAKE-128, BLAKE-256, BLAKE-448, and BLAKE-512. In this research, we have 

focused on BLAKE-256 and Blake-512. The main difference is in the length of words and in 

some constants involved in the algorithm.  

The Blake hash function proposal for SHA-3 was submitted to NIST by Jean-Philippe 

Aumasson, Luca Henzen, Willi Meier and Raphael C.-W. Phan [12]. The original submission 

was made in October 2008 and a revision with some tweaks for the final round of the SHA-3 

competition was submitted in January 2011. The names of the modified versions of Blake after 
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Round-3 are changed to BLAKE-224, BLAKE-256, BLAKE-384 and BLAKE-512. In the 

subsequent sections, we have described the architecture of Blake-256 in details since, only 

difference is in size of data words and other architecture details are similar. Another difference is 

number of rounds which is 14 for BLAKE-128 and BLAKE-256, and 16 for BLAKE-448 and 

BLAKE-512. 

2.6 Blake-256Algorithm IO Interfaces 

IO interfaces of Blake-256 are shown in Figure 2.2. The main input to the hash function is the 

message block input and the main output is the 256-bits digest or hash value. The message block 

input takes in a 512-bit message. Other input signals are salt and counter, one of which is 512-

bits optional. 

BLAKE-256

HASH ALGORITHM

512-bits

128-bits

64-bits

256-bits

Input Message

Salt

Counter

Hash Value

 

Figure 2.2 Blake-256 Algorithm IO Interfaces 

 

The salt input is an optional input that the user may utilize to introduce a user-controlled 

parameter to compression of each message block. The salt is useful for randomized hashing. If 

the salt is not used, its value is simply set to 0. The counter input adds an extra security layer to 

the hash function [12].  

Blake works in an iterative manner, the hash code of the previous message block is feedback to 

the input of the hash function for the compression of the next message block. It follows the Hash 

Iterative Framework (HAIFA) method proposed by Biham and Dunkelman[10]. HAIFA is an 

improved version of the MD construction [11]. The main ideas behind HAIFA are the 



9 
 

introduction of the counter, a special initial value (IV) for each digest size and a salt to the input 

of the compression function.  

Blake's internal structure is called a local-wide pipe structure in which the internal state of the 

hash function is much larger than the hash value. In local-wide pipe, the large internal state is 

initialized from an initial value (or chain value), a salt and a counter. The advantage of the local-

wide pipe structure is that it makes „local‟ collisions impossible [12]. Blake's compression 

function makes use of Daniel J Bernstein's stream cipher named "chacha"[13]. Blake's 

compression function is actually a modified version of “chacha”. The designers of Blake added 

the input of a message word and a constant to the original chacha function. Chacha's 

performance was found to be excellent during the analysis and it was found to be strongly 

parallelizable [12].  

2.7 Blake Architecture 

Figure 2.3 shows fully autonomous design architecture of Blake algorithm. Overall algorithm is 

divided into three stages; Initialization, Round Function and Finalization. 

Initialization

MUX

Memory

Finalization

MUX

Round 

Function

MSG

CONST

IV

Hash Output

 

Figure 2.3 Blake algorithm autonomous design architecture 
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2.8 Padding 

A message is padded before hashing. First of all, the message is padded so that it can be divided 

into an integral number of blocks [12]. For example, if a message has 602 bits, without padding 

the first 512 bits of the message can be placed in a block but then 100 bits are left „hanging‟. The 

message is padded to make it a 1024 bit message. Now it can be divided into 2 blocks. Padding 

is done by appending a number of zero and one bits at the end of the message.  

2.9 Counter 

The counter is an input that arrives from the HAIFA iteration mode specification. Compression 

functions have to be iterated such as randomized hashing and the enveloped Merkle-Damgard 

construction can all be instantiated as part of HAIFA. The counter is based on the sum of the 

number of message bits that have been hashed so far and the number of message bits in the 

current block to be hashed. HAIFA makes the compression of each block a function of the 

counter [12]. For example, we have a message with 1010 bits. After padding, this will be broken 

into 3 blocks of 512, 498 and 0 message bits. The counter value for the first block is 512; for the 

second block it is 512+498 = 1010. For the third block, the counter value is set 17 to 0 

(irrespective of the number of bits that were previously hashed). Thus, for the third block in our 

example, the counter value is set to 0. 

2.10 Initialization 

The internal state of Blake has a local-wide pipe structure. The state is a 4x4 matrix of 32 bit 

state variables for Blake-256. Thus the state has 16 32-bit variables (or words). The internal state 

is a core component of the Blake-256 hash function. The inputs (apart from the message block) 

are used to determine the initial value of the state variables. The initialization of some state 

variables is done by simply assigning the corresponding value of the initial or chain value to the 

state variables[12]. For some other state variables, the initialization is shown in Figure 2.4. The 

initial values h1… h7 is given in Table2.4. 

 



11 
 

𝑉0 =  𝑕0 𝑉1 =  𝑕1 𝑉2 =  𝑕2 𝑉3 =  𝑕3 

𝑉4 =  𝑕4 𝑉5 =  𝑕5 𝑉6 =  𝑕6 𝑉7 =  𝑕7 

𝑉8 =  𝑠0 𝑥𝑜𝑟 𝑐0 𝑉9 =  𝑠1  𝑥𝑜𝑟 𝑐1 𝑉10 =  𝑠2 𝑥𝑜𝑟 𝑐2 𝑉11 =  𝑠3 𝑥𝑜𝑟 𝑐3 

𝑉12 =  𝑡0 𝑥𝑜𝑟 𝑐4 𝑉13 =  𝑡0 𝑥𝑜𝑟 𝑐5 𝑉14 =  𝑡1 𝑥𝑜𝑟 𝑐5 𝑉15 =  𝑡1 𝑥𝑜𝑟 𝑐7 

Figure 2.4 Internal State Initialization [12] 

2.11 Round Function 

 

Figure 2.5 Round Function (a) Column Step (b) Diagonal Step [12] 

Once it has been initialized, the algorithm of Blake updates the internal by performing some 

operations on the state. These operations performed on the state change the values of the state 

variables. The state update employs words of input message block performed by a compression 

function. It involves operations like addition, rotations and XORing. The compression function 

perform these operations is called the G-function. Eight G-Functions are calculated in each 

iteration i.e. one round. Since the state is a 4x4 matrix; it has 4 rows and 4 columns. Each round 

of a state update can be broken down into the update of the state‟s columns and diagonals. 

Column step is shown in left while diagonal step is shown right of figure. The state columns are 

first updated starting from the first column on the left as indicated by the index of the G-function 

in the Figure 2.5 After all the columns have been updated, the four diagonals are updated. In 
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Blake-256, a full or complete state update consists of 14 rounds of state update. A G-function 

operation on a state column or diagonal uses 2 message words. Thus, each round of state update 

utilizes 16 message words i.e. 512 bits message block [12]. 

2.12 Permutation Table 

The permutation table is shown in Table 2.2. Permutation table σ[12]is used to identify the index 

value for message and constant given input to G-function for each round. Message block 

represented as an array of message words m(0) to m(15); similarly, the constants employed in the 

G-function are represented as an array of constant words c(0) to c(15). The notation mσr (2i) 

represents a message word whose array index is determined by the permutation σr (2i). For 

example, if the current round of the state update, round r = 2 and the second column of the state 

is being updated (i = 1) then σr (2i) = σ2; from permutation table this gives a value of 12. Thus, 

mσr (2i) = m (12). Similarly, for cσr (2i+1), σr (2i+1) = σ3; from permutation table this gives a 

value of 0. Thus, cσr (2i+1) = c (0). In this way, sigma values of each round can be found. 

Table 2.2 Permutation Table[12] 

 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 

 2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 

 3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 

 4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 

 5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 

 6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 

 7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 

 8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 

 9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 

 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 11 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 

 12 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 

 13 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 

 14 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 

 15 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 
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2.13 G-Function 

The architecture of G-function is given in Figure 2.6. The G-function has inputs of 4 state 

variables, 2 message words and 2 constant words. It has 4 outputs which are same 4 inputted 

state variables [10]. It mainly includes three operations: the modular adder of 2n , the bit-by-bit 

XOR on n-bit words and right rotation operation of k-bits. The G-function performs operations 

such as addition, rotation and XOR on the state variables.  

In the operations described in Figure 2.6 symbol “ >>> ” represents a rotation to the left and 

symbol “ ^ ” represents a bitwise XOR operation. a, b, c and d are state variables. From figure 3, 

the state column or diagonal denoted by the subscript i in the notation Gi is evident. The message 

words (m) and constants (c) utilized for G-function calculation are determined by a 

permutationatable named σ. 

 

Figure 2.6G-Function Architecture[12] 

The constants utilized in the G-function (such as (2i)) are determined in a similar manner. The 

array of 16 constants is given in Table 2.3 below: 

Table 2.3Blake-256 Constants[12] 

c0 243F6A88 c1 85A308D3 

c2 13198A2E c3 03707344 

c4 A4093822 c5 299F31D0 

c6 082EFA98 c7 EC4E6C89 

c8 452821E6 c9 38D01377 

c10 BE5466CF c11 34E90C6C 

c12 C0AC29B7 c13 C97C50DD 

c14 3F84D5B5 c15 B5470917 
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Table 2.4 Blake-256 Initialization Value[12] 

IV0 6A09E667F3BCC908 IV1 BB67AE8584CAA73B 

IV2 3C6EF372FE94F82B IV3 A54FF53A5F1D36F1 

IV4 510E527FADE682D1 IV5 9B05688C2B3E6C1F 

IV6 1F83D9ABFB41BD6B IV7 5BE0CD19137E2179 

2.14 Finalization 

The finalization stage is the last process in the computation of the hash value of a message block. 

After the rounds execution, the new chain value 𝑕′= 𝑕0′,…,𝑕7′ is extracted from the state 

v0, . . . , v15 with input of the initial chain value h =  h0,… , h7 and the salt s =  s0 , … , s3as 

shown in Table 2.5. This hash value may be a chain value or the digest of the message. 

Table 2.5 Finalization (Hash Value calculation)[12] 

𝑕0′ 
𝑕0 ⊕𝑠0⊕𝑣0⊕𝑣8, 

𝑕1′ 
𝑕1⊕𝑠1⊕𝑣1⊕𝑣9, 

𝑕2′ 
𝑕2 ⊕𝑠2⊕𝑣2⊕𝑣10, 

𝑕3′ 𝑕3 ⊕𝑠3⊕𝑣3⊕𝑣11 

𝑕4′ 𝑕4 ⊕𝑠0⊕𝑣4⊕𝑣12, 

𝑕5′ 𝑕5 ⊕𝑠1⊕𝑣5⊕𝑣13 

𝑕6′ 𝑕6 ⊕𝑠2⊕𝑣6⊕𝑣14, 

𝑕7′ 𝑕7 ⊕𝑠3⊕𝑣7⊕𝑣15 

 

When the salt input is not used, its value is set to 0 and it simply functions as a constant. 

Table2.4gives the initial values used for the first block of a message (referred to as the 

initialization vector) in both the state initialization and the finalization processes. For subsequent 

message blocks the initial value is given by the hash code (chain value) of the previous message 

block.  
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2.15 Summary 

Detail specifications and complete architecture of Blake algorithm is discussed in this chapter 

along introduction of hash functions and NIST competition for SHA-3. Hash function is a 

transformation that takes a variable-size input m and returns a fixed-size string. Secure Hash 

Algorithm (SHA-2) family of hash functions developed by the National Institute of Standards 

and Technology (NIST) is currently used as standard for Hash Functions. Serious attacks have 

been reported in recent years against cryptographic hash algorithm, including SHA-1, and SHA-

2 family, NIST issued a Call for a New Cryptographic Hash Algorithm (SHA-3). Five Secure 

Hash Algorithms were selected after Round-3 of SHA-3 competition. Blake is one of the 

candidates of round three of SHA-3 competition, based on Haifa iteration mode. Internal 

structure of Blake is the local wide-pipe and its compression algorithm is a modified version of 

Bernstein‟s stream cipher „ChaCha‟. Blake algorithm consists of family of four hash functions. 

The core of the design is based on compression function, which includes G-Function calculation. 

The compression function involves 8 instances of G-function. G function consists of addition, 

XOR and rotation operations. Blake algorithm is divided into three stages Initialization, Round 

Function and Finalization. After initialization the compression function iterates a series of 14 

rounds. A round is a transformation of the state v that includes G-function execution on v state 

values firstly column wise and secondly in diagonal in each round. After, finalization process 

based on state registers results of round function, initial value and salt value, final hash value is 

calculated. In the next chapter, we will discuss the various design methodologies and 

optimization techniques of Blake algorithm implementation on FPGA used by various 

researchers.  
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CHAPTER 3: BACKGROUND AND LITERATURE REVIEW 

3.1 Design Methodologies 

Different design methodologies are used for the implementation of Blake algorithm on FPGA. 

These methodologies can the divided into two broad categories; High Speed and Low Area 

implementations. The division is based on the extent of serialization involved in their 

implementation. Those architectures used for high speed implementations, based on parallel 

design in which number of processes executed at a same time. While, in low area 

implementations, process is executed serially with same hardware in iterative mode. In full 

parallel design of Blake architecture, 8 G-Functions is implemented in parallel with a feedback 

registers. In serial design of Blake algorithm, 1 or part of G-Function is used with state resisters 

to stores intermediate state and execute in iterative mode to calculate overall hash value and4G 

design constitutes 4 G-Functions uses both the features of parallel and serial architecture. Brief 

description of optimization techniques used for the implementation of Blake algorithm is given 

below. 

3.1.1 Folding 

The widely used approach for the low area implementation of Blake algorithm is folding [14]. 

Data-path width is reduced in vertical folding, while horizontal folding reduces the size of 

processing elements while maintaining the width of data-path. Using this technique, Processing 

elements are reused and area resources are reduced, while numbers of clock cycles are increased.  

3.1.2 Efficient use of Slice architecture 

Each slice of Virtex 5 FPGA consists of four 6-input LUTs and a carry chain with a series of 

four multiplexers and four XOR gates, collectively known as CARRY4 primitive. Modulo-32 

addition is performed during G-Function calculation.  Exploiting 6-input LUT along with 

CARRY4 primitive gives fast implementation of modulo-32 addition. These LUTs can be used 

as single 6-input LUT or two 5-input LUTs with same inputs. Thus, selecting a logic such that 

large number of LUTS could be used as dual 5-input LUTS. This certainly reduces the slice 

count of the design. Also, use of intermediate registers and feedback registers are recommended 



17 
 

to implement using Distributed memory slice architecture because using LUT as DRAM reduces 

the delay path and hence, faster design implementation could be achieved [14]. 

3.1.3 Multi-Stage Pipelining& Rescheduling 

Another optimization technique, mostly used for Blake algorithm optimization on FPGA is 

Pipelining and rescheduling of G-Function sequence. These design techniques are useful for low-

area architecture. Round function of Blake algorithm is symmetric in nature, it can be split into 

various sub-processes and intermediate registers are added to introduce pipe-lines. This 

remarkably reduces the critical path but more clock cycles are required for round completion. 

Considering LUT-based FPGAs, additional registers do not require a large area, because these 

registers can be mapped together with the logic resources in the same slice. Also, pipelined 

computation of the complete compression function basically does not require additional clock 

cycles and the maximum operating clock frequency will be higher. Therefore, the throughput-

area ratio increases. 

Blake G-Function constitutes two similar halves, with a difference of only rotation constants. In 

this regard, most famous design is based on single Half-G Function where appropriate registers 

are added to introduce pipe-line stages. Instead of calculating G-Functions in a sequence, 

rescheduling is applied and G-functions are calculated in order such that after G0, G1, G2, G3 

calculation, G7, G4, G5, G6 are calculated to avoid pipeline install. Feedback registers are 

required to store intermediate values of each half function calculation. In this way, design can be 

implemented with least hardware, least critical path and with efficient pipeline stage 

implementation overall TPA can be improved. 

3.1.4 Using Dedicated FPGA Resources 

Instead of using slice architecture, dedicated FPGA resources could be used for optimization like 

Block RAM, DSP Slices and Multipliers. Use of dedicated resources not only reduces the slice 

count but also increase the speed due to internal fast propagation of these hardware resources. 

Permutation Table used for sigma value calculation during each round can be stored in Block 

RAM of FPGA. Also, intermediate registers can be utilized using dedicated Block Memory. 

Internal G-Function of Blake algorithm is based on addition and multiplication operation, these 
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operations could be performed on dedicated Multiplier and DSP resources to overall reduce the 

slice count of FPGA. 

3.2 Related Work 

Various design techniques are used for both high-speed and compact design implementations for 

Blake algorithm as discussed in previous section. Kris et al. [15]implemented different 

architectures of Blake algorithm based on folding and pipelining technique. Detail analysis of 

Vertical and Horizontal Folding with different factor has been performed in his work. Horizontal 

folding with factor of 2 is similar to our 4G design, horizontal folding with the factor of 4 is 

similar to 1G and x1 basic iterative design is similar to our 8G design.  

Baldwin et al. [16]design is based on older version of Blake algorithm submitted in second round 

of SHA-3 competition.  In this version only 10 rounds are required for Hash value calculation. In 

his implementation, compression function is divided into two identical sections where round 

completion takes 4 cycles and counter, salt and message values are stored in BRAM of FPGA. 

Kerchof et al. [17] used two implementation strategies; one with timing performance and other 

with area reduction. Fully autonomous architecture is implemented in his design where 

pipelining mechanism is used and rescheduling is performed to avoid pipeline stall. Baldwin et 

al. [16]and Kerchof et al. [17]used the similar approach as we used in our 1G design. 

Benhard[18]used 2 half G-Functions in parallel with pipelining in his design. Rescheduling is 

applied to avoid pipeline stall. This design is comparable with our 1G design.  Nikolas et al. 

[19]used a compression function where all message, state, constant; salt and count values are 

stored in Block RAM of FPGA. Kaps et al. [20] proposed two design architectures; one with 

block RAM and other one used logic resources. Instead of using full G function, one Half G-

Function with Quasi pipelined stages are used in their design for compression function.  

Kashif et al. [21] implemented both 256- and 512- variants of Blake algorithm on FPGA 

hardware. In his implementation, Blake algorithm is designed on Verilog HDL using LUT 

primitives of FPGA. In their design, 4 G-Functions were executed in parallel and each round is 

calculated in 2 clock cycles which is similar to our 4G design.Virtex 5, Virtex 6 and Virtex 7 

FPGAs were used as hardware platform for implementation.  
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Beauchat et al. [22] used the approach of co-processor for the calculation of compression 

function of Blake algorithm. Pipelined architecture was used with interleaving of four 

compression functions. The design is based on Block RAM of FPGA. Both design 

implementations are based on Round-2 version of Blake algorithm. Miroslav et al. [23]design 

was also based on Round-2 of SHA-3 competition. In his fully autonomous implementation, 

analysis of IO interface on overall design performance is discussed. 

Vaibhav et al. [24]used 4 G-Functions in their design.Blake-32 design is implemented on Virtex 

5 FPGA which is based on round-2 submission of Blake algorithm.  

Most of the design work for the implementation of Blake algorithm on FPGA was focused on 

Round Function design. Other important factors that affect overall implementation performance 

are also discussed in this work. These factors are message and constant value storage and 

selection mechanism, Finite state machine for controlling operation and efficient multiplexer 

implementation which greatly affects the area and timing results of the design. Lot of work has 

been done so far by proposing optimized architecture of Blake algorithm, but no such effort has 

been performed to evaluate various design architectures of Blake algorithm at the same time. 

Comprehensive comparison of different design techniques used by various contributors based on 

8G, 4G and 1G design along with implementation results is given in Table 3.1.  

For Blake-512, Table 3.1shows that Vaibhav et al. [24]gives most efficient results in terms of 

throughput when comparing 4G Designs.  Highest throughput per area (TPA) is obtained by 

Kashif et al. [21].They use 4-G design technique. Lowest slice count is achieved by Kirchof et al. 

[17]by applying 1G design methodology. 

For Blake-256, Aumasson et al. [12] gives most efficient results in terms of throughput when 

utilizing 8G Design.  Highest throughput-per-Area (TPA) is obtained by Benhard et al. [18] for 

1-G design technique. Also, Aumasson et al. [12] gives lowest slice count by applying 1G design 

methodology. 
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Table 3.1 Blake Implementation Results 

References Version Slices Frequency (MHz) TP (Gbps) TPA 

 
8G 

Kris et al. [15] Blake-256 2306 
 

2561 1.11 

Aumasson et al. [12] Blake-32 1694 67 3103 1.83 

Kris et al. [15] Blake-512 3984 
 

3401 0.85 

Aumasson et al. [12] Blake-64 4329 35 2389 0.55 

 
4G 

Kris et al. [15] Blake-256 1691 
 

2253 1.33 

Kashif et al. [21] Blake-256 1382 
 

2290 1.66 

Vaibhav et al. [24] Blake-32 1301 50 1280 0.98 

Aumasson et al. [12] Blake-32 1217 100 2438 2.00 

Kris et al. [15] Blake-512 3337 
 

3159 0.95 

Kashif et al. [21] Blake-512 2582 100.02 3210 1.24 

Vaibhav et al. [24] Blake-64 11800 27 9804 0.83 

Aumasson et al. [12] Blake-64 2389 50 1766 0.74 

 
1G 

Kris et al. [15] Blake-256 1547 
 

1770 1.14 

Baldwin et al. [16] Blake-32 1118 118.1 1169 1.05 

Benhard et al. [18] Blake-256 374 163 725 1.94 

Kirchof et al. [17]-area Blake-32 192 240 183 0.95 

Kirchof et al. [17]-speed Blake-32 215 304 232 1.08 

Aumasson et al. [12] Blake-32 390 91 575 1.47 

Kris et al. [15] Blake-512 2935 
 

2287 0.78 

Baldwin et al. [16] Blake-64 1718 90.9 1299 0.76 

Aumasson et al. [12] Blake-64 939 59 533 0.57 

 

3.3 Summary 

In this chapter, we have discussed various design techniques and methodologies used for Blake 

implementation on FPGA. There are mainly three types of architectures use for implementation 

of cryptographic Hash Function on FPGA. We have implemented fully autonomous design in 
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which all design features are implemented on slice resources of FPGA. Fair comparison with 

other contribution is assured by using similar implementation technology and platform used by 

various researchers. The performance metric to analyze the efficiency of the design is based on 

maximum design frequency, maximum throughput and number of slice count of FPGA. 

Different design methodologies used for the implementation of Blake algorithm on FPGA. These 

methodologies constitute High speed and Low Area implementations. The division is based on 

the extent of serialization involved in their implementation.  Other optimization techniques 

includes Folding data path and process, efficient use of slice resources, multi-stage pipelining 

and rescheduling and using dedicated FPGA resources. Lot of efforts based on these design 

techniques are performed by various researchers for efficient design implementation of Blake 

algorithm on FPGA. Next chapter will describe the detail of our design methodology for 

implementation of Blake algorithm.  
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CHAPTER 4: DESIGN APPROACH 

4.1 BLAKE Implementation on FPGA 

In our design we have implemented Full Autonomous architecture of Blake algorithm which 

include initial function, round function and finalization where all design logic is implemented on 

Slice architecture of FPGA. All of the intermediate values in registers during the hashing process 

are stored in Distributed Memory (DRAM) of FPGA and no external memory or Block RAM 

(BRAM) is utilized. 

Considering the different design methodologies for the implementation of Blake algorithm on 

FPGA, as discussed in previous chapter, we have implemented three design architectures of 

Blake algorithm named as 8G, 4G and 1G in this research work and optimization is performed 

each design architecture. These architectures are based on extent of serialization of different 

processes performed in Round Function calculation of Blake algorithm. Initialization and 

Finalization process is same for all these schemes and optimization of Round Function is the 

core objective of our design. Round Function of Blake Algorithm is based on G-Functions as 

discussed in chapter 2. In the first design we have used 8 G-Functions in parallel, second design 

used hardware of 4 G-Functions and the third design is based on 2 half-G Functions in parallel 

with pipeline registers between them.  

4.2 Performance Evaluation 

In addition to security, performance is one of the main criteria for evaluating the SHA-3 

candidates [7]. To evaluate the hardware efficiency of different architectures of Blake algorithm, 

we have fixed certain features of design implementation. Since, different designers used different 

hardware platforms, synthesis and implementation tools and different I/O interfaces, fair 

comparison is difficult to perform. We have used the features which are mostly used in research 

contributions andour design used only Slice resources of FPGA. Virtex 5 is used in most of the 

evaluation work done so far for the implementation of Blake algorithm. Therefore, we have used 

same device family in our implementation. 
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4.3 Performance Metrics 

To compare different architectural designs of Blake algorithm, metrics are required for the 

evaluation of design architecture. The evaluation is characterized by the following three primary 

metrics.  

Area: The area of a design on an FPGA is calculated in terms of the number of logic cells it 

occupies. Basic logic cell of FPGA architecture is known as slice. Area metrics indicates of the 

resource utilization of a design calculated in term of number of slices used.  

Maximum Frequency: The timing information is extracted from the Xilinx TRACE reports 

generated after Place and Route operation. It indicates the design capacity at what maximum 

frequency the design can operate without any fault. This is based on the timing of critical path 

delay and measured usually in MHz. 

Maximum Throughput: The throughput of a design is the measure of the maximum data rate of 

the design at the output of the core. It is calculated using maximum frequency results generated 

after place and route operation. The formula for calculating maximum throughput is given in 

Equation 4.1 where the block size is the amount of data the hashing algorithm will process at a 

time. 

𝑇𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 ×  
𝑀𝑎𝑥 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠
                                           [4.1] 

For Blake-256 it is of size 512 bits and for Blake-512 it is 1024 bits. As Hash functions have 

iterative nature, the number of clock cycle indicates the total time required to calculate the 

complete Hash value.  Apart from these performance metrics, other factors like Power and 

Energy are also used as performance metrics of the algorithm. But, here in this work, we will 

focus only on first three parameters as these are enough for fair comparison of the different 

architectures and with other research contributions. 

4.4 Common Design Features 

Implementation of Blake algorithm on FPGA constitutes Initial Function, Round Function and 

Finalization process. Wrapper Module is required to provide input and output interfaces of Blake 
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algorithm and Finite state machine controller is performed all the control operation of the design. 

Round function calculation require sigma values generated through message and constant select 

mechanism from the input array of message and constant values for each round. Wrapper design, 

finite state machine controller and strategy for the selection of input message and constant values 

are similar for all three architectures and their description is given below, while the detail 

descriptions of each architecture is given in subsequent sections. 

4.4.1 Wrapper Design 

We cannot directly implement Blake Algorithm design on Virtex 5 FPGA due limited IO 

resources. It input message size for Blake-256 will be 512-bits and output hash value is 256-bits, 

which cannot be directly mapped to FPGA IOs. Similarly, for Blake-512, input message size will 

be 1024-bits and output hash value is 512-bits. Therefore, a wrapper is required to implement the 

algorithm on FPGA. Wrapper includes 64-bits input interface while 256-bits hash value is 

directly connected to the output port of FPGA. The wrapper consists of input FIFO as shown in 

Figure4.1, while padding function is considered to be performed outside the wrapper design. 

Blake-256 

Hash Function

Core

FIFO
64-Bits

256-Bits512 Bits

Control 

Interface

Input Message

Output 

Hash Value

Output valid

Clock, enable,reset

512 bits 

message

 

Figure 4.1 Blake-256 wrapper architecture 

4.4.2 Message/Constant Select Mechanism 

Blake algorithm requires permutation table to calculate the index value of message and round 

constants. Permutation table is implemented on distributed memory of FPGA and counter is used 

for memory addressing. Multiplexers are used for message and constant value selection. The 
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sigma value calculated for each round is buffered to reduce the critical path.  The general 

structure of message and constant value selection mechanism for each design is shown in Figure 

4.2. 
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Figure 4.2 Message and Constant Select Mechanism 

4.4.3 FSM Controller 

Finite state machine is used to control the overall operation of Blake algorithm. Basic function of 

state machine is to control round counter and controlling of counter for permutation table 

indexing on DRAM. ROM-based FSMs are more efficient in terms of area consumption and 

speed compared to conventional FSM based on BRAM implementation and their maximum 

frequency is independent of the complexity [9]. The area required to implement ROM-based 

FSMs is determined by the number of control signals and states. We have used Moore state 

machine with one-hot encoding for state register. Minimum state approach is used to reduce the 

hardware cost.  

4.5 8G Design 

4.5.1 Round Function 

The architecture of 8G design is given in Figure 4.3. It is consist of 8 G-Functions. 4x4 initial 

vector given to the round function through input Multiplexer in first cycle. The output generated 

in first cycle will be stored in a 4x4 32-bits register matrix. The register matrix values will be 

given back to input through input multiplexer. Since, all G-Functions are connected in parallel; 
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each round will be executed in one cycle. Sigma values are calculated from message and 

constant values for each round through mechanism given in Figure 4.4. 

The major advantage of 8G architecture is only one cycle is required for one round and whole 

algorithm is computed in 14 clock cycles for Blake-256. No additional multiplexers are required 

for order variation between column and diagonal step and signals are directly connected as 

shown in Figure 4.1 and also no additional registers are required between column and diagonal 

step. Major disadvantage of this design is largest path delay and hence, it is difficult for synthesis 

and implementation tool to optimize such a large data path. 
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Figure 4.3 8G Design Architecture 

 

4.5.2 Message/Select Mechanism 

Since, 8 G-Functions are executed at a time, sigma a0, sigma b0,.., sigma7,.., sigmab7 values 

required as shown in Figure 4.3, will be generated using counter, distributed memory, 

multiplexer and xor gates as shown in Figure 4.4. The permutation table is stored in distributed 

memory of FPGA. 

16x32-bits 
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Figure 4.4 8G Design message and constant selection 

The memory will act like ROM and two ROM cores are generated having sizes of 14x32bits 

each. 3216x1 Multiplexers are used for message and constant value selection and Xoring 

operation is performed according to the Equations 4.2 and 4.3.  Registers are used to separate the 

critical path of round function with this DRAM chain. 

Sigma ai =    𝑐𝜎𝑟2𝑖+1   + 𝑚𝜎𝑟2𝑖        [4.2] 

Sigma bi = 𝑐𝜎𝑟2𝑖 + 𝑚𝜎𝑟2𝑖+1         [4.3] 

4.6 4G Design 

4.6.1 Round Function 

The architecture of 4G design is given in Figure 4.5. It is consist of 4 G-Functions and 4x4 initial 

vectors given to the round function through input Multiplexer in first cycle. The column step 
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output generated in first cycle will be stored in a 4x4 32-bits register matrix. The register matrix 

values will be given back to input through input multiplexer and signal router will re-order the 

state values according to the diagonal step sequence. Since, one cycle is required for column step 

execution and one cycle is required for diagonal step execution; each round will be calculated in 

two clock cycles. Sigma values calculated from message and constant values for each round 

through mechanism given in Figure 4.4. For column step calculation the signal router will route 

the signal directly in straight order, while for diagonal step order will be change depending upon 

the „col_diag_sel‟ signal value i.e. „0‟ for column step and „1‟ for diagonal step.  
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Figure 4.5 4G Design Architecture 

The major advantage of this architecture is reduction in critical path to half as compared to 8G 

architecture. Two cycles are required for one round thus whole algorithm is computed in 28 

clock cycles. Since, 8 sigma values are required for one cycle thus reduces the number of 

multiplexers required for message and constant values selection as given in Figure 4.3.  

Additional resources will be required for signal routing and slightly complex state machine will 



29 
 

be required for its control. Overall design methodology best suited the Virtex 5 architecture and 

hence, best results obtained in terms of TPA. 

4.6.2 Message/Select Select Mechanism 

For 4G architecture, 4 G-Functions are used, only column or diagonal step will executed at a 

time, thus sigma a0, sigma b0, .., sigma3, sigmab3 values required as given in Figure 4.3.These 

values are generated using the same methodology described for 8G architecture but only one 

ROM instance of size 28x32bits is used and 16 multiplexers are used for message and constant 

values selection as shown in Figure 4.4. Xoring operation is performed according to the 

Equations 4.4 and 4.5. 

Sigma ai =    𝑐𝜎𝑟2𝑖+1   + 𝑚𝜎𝑟2𝑖        [4.4] 

Sigma bi = 𝑐𝜎𝑟2𝑖 + 𝑚𝜎𝑟2𝑖+1        [4.5] 

4.7 1G Design 

4.7.1 Round Function 
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Figure 4.6 1G Architecture Design 

The architecture of 1G design is shown in Figure 4.6.  It includes two half-G Functions, four 

input multiplexers, four intermediate registers and 4x4 feedback register array. Input 

multiplexers will be responsible for selection of inputs for Half-G Function A. At first round, 

column step, initial state vector will be given to its input through input multiplexer. In diagonal 

step of first round input to the Half-G Function „A‟ is given through feedback register array. 
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Intermediate registers will be act as pipeline registers, thus, two clock cycles will be require for 

one G-function calculation. 

In first cycle first part of G-Function i.e. G0a is calculated and filled up the pipelined register as 

shown in Figure 4.7.  In the next clock cycle, remaining part of G0 i.e. G0b will be calculated at 

the same time the G1a will be calculated too. In this way after five clock cycles, column step of 

first round has completed and its output will be stored in 4x4 feedback register.  

For diagonal step of round 1, inputs to Half-G Function A is selected through input multiplexer 

from 4x4 feedback register matrix in a sequence required by diagonal step. Each output of Half-

G Function B is connected with 4 Registers simultaneously. The „en‟ signal of the register will 

determine that selection of the output register to store intermediate state value. The critical path 

of the design consist of input multiplexer and five operations between points „a‟ to „b‟ of Half-G 

Function represented in Figure 4.6. The Xoring operation of message and count values will not 

be included in critical path as the two registers have been used for σa  and σb  as mentioned in 

Figure 4.8. Therefore, total 10 clock cycles are required for each round calculation. Thus, 10*14 

= 140 clock cycles are required for complete hash value calculation for Blake-256 and 10*16 = 

160 clock cycles are required for complete hash value calculation for Blake-512. 

 

G0 a G0 b G2 a G2 b

G1 a G1 b G3 a G3 b

G4 a G4 b G6 a G6 b

G5 a G5 b G7 a G7 b

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Round 1

 

Figure 4.7 1G Design Flow (1 Round) 

 

4.7.2 Message/Select Mechanism 

The mechanism for message and counter values selection is shown in Figure 4.8 and similar to 

the 8G and 4G designs. Two ROM primitives with the size of (8x14) x 4-bits i.e. 56 bytes have 

been used and 7-bit Counter is used for address generation of two ROMs and it will be controlled 
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by FSM controller. The selection for message and count values for each round can be 

represented as given in Equation 4.6 and 4.7. 

𝐹𝑜𝑟 𝐻𝑎𝑙𝑓𝐺 𝐹𝑛 𝐴:    𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡:𝑐𝜎𝑟2𝑖+1   ; 𝑚𝑒𝑠𝑠𝑎𝑔𝑒: 𝑚𝜎𝑟2𝑖     [4.6] 

𝐹𝑜𝑟 𝐻𝑎𝑙𝑓𝐺 𝐹𝑛 𝐵:   𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡:𝑐𝜎𝑟2𝑖        ; 𝑚𝑒𝑠𝑠𝑎𝑔𝑒: 𝑚𝜎𝑟2𝑖+1     [4.7] 

It can be seen from above equations that same permutation index value for Half-G Function B 

will be given to Half-G Function B in next clock cycle. Hence, we have used registered/delayed 

ROM output to the multiplexer for message b and constant b as shown in Figure 4.8. 
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Figure 4.8 1G Design message and constant selection 

 

 

4.8 Summary 

In this chapter detail design approach for three proposed architecture of Blake algorithm. In other 

to evaluate the hardware efficiency of different architectures, certain features of design 

implementation have been fixed like I/O interface, FSM controller, wrapper, initialization 
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module and finalization modules. Three proposed designs include 8G which is consisting of 8 G-

Functions. Only one cycle is required for one round. Major disadvantage is largest path delay 

and hence hard to optimize by the tool. Second one is 4G-Design. It is consist of 4 G-Functions. 

Each round is calculated in two clock cycles. It has half critical path as compared to 8G 

architecture. Additional resources will be required for signal routing and slightly complex state 

machine will be required but overall efficiency is best in terms of TPA. Last one, 1G-Design 

architecture, includes two half-G Functions, four input multiplexers, four intermediate registers 

and 4x4 feedback register array. 10 clock cycles are required for each round calculation. It gives 

best results in terms of hardware utilization. Therefore, 8G design best suited for High 

throughput application, 1G design for least hardware and 4G gives best results in terms of TPA. 

In the next chapter, implementation results of these architectures are given with the performance 

analysis in terms of area, speed and TPA. 
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CHAPTER 5: IMPLEMENTATION AND RESULTS 

5.1 Optimization Strategies 

Synthesis and implementation of the design is performed on Xilinx ISE 13.1. There are different 

design optimization techniques built-in in ISE software based on various Synthesis, Place, Map 

and Route properties. Applying one strategy gives very different results from other. These 

strategies mainly based on “Speed”, “Area” and “Balance” optimization. Three different design 

strategies selected in ISE software are given in Table4.1.  

Table 5.1Design optimization strategies 

Speed Timing Performance without IOB packing 

Area Area Reduction with Physical Synthesis 

Balance Xilinx Default 

 

5.2 Post Place and Route Implementation Results 

Three design architectures 8G, 4G and 1G have been implemented using these three optimization 

strategies discussed above one by one. The post-route implementation results for Blake-256 are 

given in Table 1. Implementation results shows that maximum throughput of 2.62 Gbps is 

obtained from 8G design using “Speed Optimization” strategy. 4G design implementation with 

“Speed Optimization strategy” gives maximum TPA of 2.1. 1G design is best suited for low-area 

design implementation that gives slice count of 412 when using “Area Optimization” strategy as 

highlighted in Table 5.2.  

The post-route implementation results for Blake-512 are given in Table 5.3. Implementation 

results shows that maximum throughput of 4.78 Gbps is obtained from 8G design using “Speed 

Optimization” strategy. 4G design implementation with “Area Optimization strategy” gives 

maximum TPA of 1.90. 1G design is best suited for low-area design implementation that gives 

slice count of 814 when using “Area Optimization” strategy as highlighted in Table 5.3.  

file:///D:\research\Thesis\Area%20Reduction%20with%20Physical%20Synthesis%3f&DataKey=Strategy
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Table 5.2 BLAKE-256 Post place and route implementation results on Virtex 5 FPGA 

Strategy Slices Frequency (MHz) TP (Gbps) TPA 

 
8G 

Area 1450 61.767 2.259 1.558 

Speed 2275 71.633 2.620 1.152 

Balance 2653 63.816 2.334 0.880 

 
4G 

Area 929 98.232 1.796 1.934 

Speed 900 105.263 1.925 2.139 

Balance 1429 112.740 2.062 1.443 

 
1G 

Area 412 157.480 0.576 1.398 

Speed 416 193.424 0.707 1.700 

Balance 569 173.913 0.636 1.118 

 

 

Table 5.3 BLAKE-512 Post place and route implementation results on Virtex 5 FPGA 

Strategy Slices Frequency (MHz) TP (Gbps) TPA 

 
8G 

Area 2602 54.318 3.476 1.336 

Speed 3206 74.794 4.787 1.493 

Balance 4556 52.632 3.368 0.739 

 
4G 

Area 1478 87.951 2.814 1.904 

Speed 1993 100.503 3.216 1.614 

Balance 2172 99.900 3.197 1.472 

 
1G 

Area 814 142.857 0.914 1.123 

Speed 801 161.290 1.032 1.289 

Balance 1057 149.254 0.9555 0.904 
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The comparisons for Blake-256 implementation with other contributions are given in Table 5.4.  

Table 5.4 BLAKE-256 Place and route results comparison (VIRTEX 5) 

References Version Slices Frequency (MHz) TP (Gbps) TPA 

 
8G 

Kris et al. [15] Blake-256 2306 
 

2.561 1.11 

Aumasson et al. [12] Blake-32 1694 67 3.103 1.83 

This Work Blake-256 1450 61.76 2.258 1.56 

 
4G 

Kris et al. [15] Blake-256 1691 
 

2.253 1.33 

Kashif et al. [21] Blake-256 1382 
 

2.290 1.66 

Vaibhav et al. [24] Blake-32 1301 50 1.280 0.98 

Aumasson et al. [12] Blake-32 1217 100 2.438 2.00 

This Work Blake-256 900 105.3 1.925 2.14 

 
1G 

Kris et al. [15] Blake-256 1547 
 

1.770 1.14 

Baldwin et al. [16] Blake-32 1118 118.1 1.169 1.05 

Benhard et al. [18] Blake-256 374 163 0.725 1.94 

Kirchof et al. [17]-area Blake-32 192 240 0.183 0.95 

Kirchof et al. [17]-speed Blake-32 215 304 0.232 1.08 

Aumasson et al. [12] Blake-32 390 91 0.575 1.47 

This Work  Blake-256 416 193.4 0.707 1.70 

 

The Table5.4 shows that our design results have much better improvements as compare to other 

contributions. For 8G-Design, our design shows the TPA of 1.56 while Aumasson et al. [12] 

gives the TPA of 1.83. But, later one is based on Blake-32 which is older version and requires 

only 10 clock cycles for round completion. If TPA is calculated after considering 14 clock cycles 

for Aumasson, it will give TPA of 1.4 which is less than our design results. For 4G Design, our 

design result shows best performance for lowest slice count and highest TPA. 1G design results 

gives better performance as compare to all other design except Benhard. et al. [18], who used 

multiple pipeline approach with G-Function reorganization. 
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The comparisons for Blake-512 implementation with other contributions are given in Table 2. Our 

design results show much better improvements as compare to other contributions. 

Table 5.5 BLAKE-512 Place and route results comparison (VIRTEX 5) 

References Version Slices Frequency (MHz) TP (Gbps) TPA 

 
8G 

Kris et al. [15] Blake-512 3984 
 

3.401 0.85 

Aumasson et al. [12] Blake-64 4329 35 2.389 0.55 

This Work Blake-512 3206 74.79 4.787 1.49 

 
4G 

Kris et al. [15] Blake-512 3337 
 

3.159 0.95 

Kashif et al. [21] Blake-512 2582 100.02 3.210 1.24 

Vaibhav et al. [24] Blake-64 11800 27 9.804 0.83 

Aumasson et al. [12] Blake-64 2389 50 1.766 0.74 

This Work Blake-512 1478 87.9 2.814 1.90 

 
1G 

Kris et al. [15] Blake-512 2935 
 

2.287 0.78 

Baldwin et al. [16] Blake-64 1718 90.9 1.299 0.76 

Aumasson et al. [12] Blake-64 939 59 0.533 0.57 

This Work  Blake-512 801 161.29 1.032 1.29 

 

5.3 Timing Comparison 

Timing comparison of Blake-256 and Blake-512 design based on Throughput calculated using 

formula of equation is given in Figure 5.1. The comparison shows that 8G design gives highest 

throughput for both Blake-512 and Blake-256. In comparison of Blake-512 and Blake-256, 

Blake-512 gives higher throughput than Blake-256. Least throughput is resulted from 1G design. 
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Figure 5.1 Timing Comparison 

5.4 Area Utilization Comparison 

Comparison of Blake-256 and Blake-512 area resource utilization based on number of slices 

used in the design is given in Figure 5.2. The comparison shows that 1G design has maximum 

efficiency in terms of resource utilization for both Blake-512 and Blake-256. As obvious due to 

larger data width, in comparison of Blake-512 and Blake-256, Blake-512 uses less number of 

FPGA slices. 8G design consumes highest number of slices. 
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Figure 5.2 Resource Utilization Comparison 

5.5 Throughput per Area 

Usually, the efficiency of the Blake algorithm design on FPGA is measured in terms of 

Throughput-per-Area.  Throughput-per-Area (TPA) results of Blake-256 for three architectures 

with three optimization techniques are given in Figure 5.3. The results show that 4G design is 

most efficient in terms of TPA. Highest throughput of 2.1Gbps is obtained for 8G design with 

speed optimization strategy selected. Design results of 8G with respect to optimization strategies 

as compare to 4G and 1G are unusual because of large data path of 8G consists of 8G functions 

in a serial path. The critical path delay of 4G design is consist of 4 G-functions and a multiplexer 

is the basis for most efficient design on Virtex 5 architecture. 

Throughput-per-Area (TPA) results of Blake-512 for three architectures with three optimization 

techniques are given in Figure 5.4. The results show that 4G design is most efficient in terms of 

TPA. Highest throughput of 1.9Gbps is obtained for 8G design with speed optimization strategy 

selected.  
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Figure 5.3 Throughput/Area Comparison for Blake-256 

 

 

Figure 5.4 Throughput/Area Comparison for Blake-512 
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5.6 Summary 

Post Place-and-Route Implementation Results are described in this chapter. Synthesis and 

implementation of the design is performed on Xilinx ISE 13.1. Three different design 

optimization techniques built-in in ISE software based on “Speed”, “Area” and “Balance” 

optimization are used for implementation. Three design architectures 8G, 4G and 1G have been 

implemented using these three optimization strategies. For Blake-256, implementation results 

shows that maximum throughput of 2.62 Gbps is obtained from 8G design using “Speed 

Optimization” strategy. 4G design implementation with “Speed Optimization strategy” gives 

maximum TPA of 2.1. 1G design is best suited for low-area design implementation that gives 

slice count of 412 when using “Area Optimization” strategy. For Blake-512, throughput of 4.78 

Gbps is obtained from 8G design using “Speed Optimization” strategy. 4G design 

implementation with “Area Optimization strategy” gives maximum TPA of 1.90. 1G design is 

best suited for low-area design implementation that gives slice count of 814 when using “Area 

Optimization”.  In the next and last chapter, concluding remarks along with some future 

recommendation of this research work are given. 
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CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS 

6.1 Conclusion 

Different design architectures of Blake-256and Blake-512 are implemented on FPGA. Design 

uses large hardware resources gives maximum throughput i.e. 8G design requires only 14 clock 

cycles for Blake-256 and 16 cycles for Blake-512 for Hash value calculation resulted throughput 

of 2.6 Gbps and 4.7 Gbps respectively. Design uses least hardware resources gives best results in 

terms of area. 1G design gives most efficient results in terms of number of slices utilized. The 

optimized delay path is utilized in 4G design with respect to Virtex 5 architecture. That‟s gives 

maximum TPA of 2.1 for Blake-256 and TPA of 1.9 for Blake-512. Overall research suggests 

that selection of architecture is dependent upon type of application either high speed 

requirements or low area constraints, suitable optimization could be performed in a particular 

domain to achieve best design results. 

6.2 Future Recommendations 

In this research work, we have implemented both low area and high speed designs of Blake-256 

and Blake-512. Our results show much better improvements as compare to previous 

contributions. The performance can be improved more by utilizing one of the dedicated 

resources such as DSP slices and Multipliers, internal G-Function operations. This will be 

helpful for low area implementation. Another optimization can be performed by increasing the 

pipeline stages in between G-Function to improve the timing performance. No work for the 

optimization of the design with respect to Power consumption is performed in this work. Power 

Analysis of proposed architectures could be performed in future, which is indeed an important 

factor in Hardware design evaluation. Implementation of proposed design is performed on Xilinx 

Virtex 5 FPGA, evaluation of the design on latest FPGA device like Virtex 6 and Virtex 7 and 

other devices families like Altera and Actel FPGAs could be performed in future for more 

comprehensive analysis of the design performance. 
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 Muhammad Arsalan and Dr. Arshad Aziz, “Compact Hardware Implementation of SHA-

3 Finalist Blake on FPGA”, 10th International Bhurban Conference on Applied Sciences 

& Technology (IBCAST), January 2013. [Accepted]  

 Muhammad Arsalan and Dr. Arshad Aziz, “Comparative Analysis of high speed and low 

area architectures of Blake SHA-3 candidate on FPGA”, 10th International Conference 

on Frontiers of Information Technology (FIT‟ 12), December 2012 [Published]  
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