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Abstract

Advancement in demand side management strategies enables smart grid to cope

with the ever increasing energy demand and provide economic benefit to all of

it’s stakeholders. Moreover, emerging concept of smart pricing and advances in

load control can provide new business opportunities for demand side management

service provider or aggregator. The aggregator act as a third party between the

electricity supply system and the consumers, and facilitate consumers to actively

participate in Demand Side Management (DSM) by bidding price against power

reduction with some constraints. This work develops a novel algorithm for ag-

gregated demand response for the solution of peak demand problem during peak

hours in smart distribution network. In this research, This problem is formulated

in its unique prospective such that it catered both “peak demand issue” by load

scheduling and controlling and “consumers satisfaction” by enabling them to bid

in energy market against their load curtailment. Simulations are carried out over

a generalize modeled problem in which consumers identify demand reduction bids

and constraints. The simulation results of the proposed algorithm demonstrate

the potential impact of an aggregated demand response on the power system.
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Chapter 1

Introduction

1.1 Introduction

The demand of energy is increasing for industrial development and activity in

world. There are many serious challenges faced by energy sector of every country

when considering energy use because of inefficient and unclean energy utilization,

vulnerability to fuel prices and the sustainable growth of industries[5]. On other

hand, sustainable energy technologies are fast advancing in developed countries

but developing countries are still far behind due to various barriers. The biggest

barrier in developing countries is limited awareness of energy and environmental

management for electrical energy[6]. Even in developed nations, billion of common

people are unaware to the modern form of energy services[7]. Therefore, strong

communication and bonding is required between energy generating utilities, en-

ergy service providers and consumers to manage available energy efficiently and

effectively[1, 5].

There are two types of Energy Management:

• Supply Side Management (SSM)

• Demand Side Management (DSM)

1
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Supply Side Management generally refers to actions taken to ensure the generation,

transmission and distribution of electrical energy are conducted efficiently [8]. In

past, SSM is about generation of electricity by fossil fuels but now it is also applied

to actions, planning and services concerning the supply of electrical power by

other energy resources such as solar, wind, biomass renewable plants [9]. Supply

side Management (SSM) makes existing generators able to provide electricity at

lower cost, increase economical benefits and reduces environmental emissions [10].

SSM contributes in improving the reliability, attainability and quality of supply

system. SSM embarks utility to meet a skyrocketing demand without incurring in

unnecessary major capital investment in new generating capacity [11].

Energy Demand Management or Demand Side Management (DSM) is referred as

an investigation, analysis and control of energy consumption in a house, industry

and other process/ system. The aim of demand side management is to find areas

of high usage and electricity waste and determine services and/or systems that will

reduce it without fluctuating production [12]. In past literature and studies, DSM

is linked only to electrical load management by utilities and governments [13] but

emerging concept of demand response (DR) has highlighted the new dimension in

demand side management of electrical energy[14]. It provides utility or government

a new business approach because in most of the situation the implementation of

DSM is more profitable than investing capital in new construction or expansion of

generating plants. Utilities and Governments are taking interest in promotion of

DSM and energy saving among all [15]. Some countries are also providing financial

benefit or other incentives to the customers that are taking part in DR program

and curtailing their loads during peak hours [16].

Demand Side Management is one of the most important management strategy

that aims to balance electrical supply and demand by reducing the power demand

during critical periods instead of increasing the power generation [17]. Efficient

demand side management can potentially avoid the construction of an under-

utilized electrical infrastructure in terms of generation capacity, transmission lines

and distribution networks [18]. Controlling and influencing the energy usage can

reduce the overall peak load demand, reshape the demand curve, and increase the
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Material Resource
Management

Electricity Generation

Transmission

Distribution
Distributed
Generation

Delivery to End User

Demand Side
Management

Energy Efficiency Net Zero BuildingDemand Response

Figure 1.1: Vertical Integration of Supply Side Management and Demand
Side Management of Electrical Energy.[1]

grid sustainability by reducing the overall cost and carbon emission levels [19].

As shown in Fig. 1.1, DSM is classified into three major categories; Net Zero

buildings, Energy Efficiency and Demand Response[5].

One of the most important features of Smart Grid is demand response (DR). DR

traditionally refers to the capability to switch off some electrical loads at peak

times to lessen the need for peak power generation sources. It focuses on changing

the energy consumption behavior of customers on real time basis thereby enabling

the utility to modify peak demand. It allows dynamic interaction between energy

suppliers and users to flatten the power demand curve[20].

A successful implementation of a DR program can lead to significant financial

benefits. From the customer point of view, reduction of total electricity cost is

the most important motive for implementing the demand response. But earlier,

because of limitation of technology, small household customers have very limited

influence on the energy market decisions. Since these customers have very limited

or no access to the information regarding the price variation with time, there-

fore, they do not participate in demand response. Ever increasing advancement

in information and communication technology and burgeoning challenges in sup-

ply and demand of electrical power engrossed the concept of aggregated demand

response program in Smart Grid environment[21]. Since, smart grid has virtually
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and vertically integrated the supply side and demand side of electrical energy and

power systems as shown in Fig. 1.1. Therefore, it allows industrial, domestic

and commercial consumers (large and small) to actively participate in aggregated

demand response program and will help in improving the efficiency, quality, re-

liability, economics and sustainability of complete Supply and Demand chain of

Electrical Network [22].

1.2 Overview of the Thesis

In this thesis, we propose an Dynamic Programming approach to the design of

Aggregated Demand Response Program. First, we argue that Aggregated De-

mand Response Program can be viewed as a Multistage Decision Problem, and

then explain how the Dynamic Programming approach can be used to “solve” this

problem. We denote the entity which perform Aggregated Demand Response Pro-

gram by Aggregator. We propose two algorithm for aggregators in this thesis, and

evaluate their performance through simulation. The rest of the thesis is organized

as follows.

In Chapter 2, it discusses the significance of demand response in demand side

management in light of several work which are presented during last decade. It

also presented detail literature review on the emerging concept of aggregator in

which it describes the current perception of market and researchers about the

aggregator. Finally, it summarizes the concept of aggregator with a discussion

over it’s implementation, design and business models.

In Chapter 3, it discusses the general Multistage Decision Problem. Then, it

discusses the Dynamic Programming approach to solve the Multistage Decision

Problem. Two different approaches of dynamic programming is presented namely

shortest path approach and allocation approach and solve a general Multistage

Decision Problems.
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In Chapter 4, it argues how Aggregated Demand Response Program could be

viewed as a Multistage Decision Problem. It discusses the Dynamic Programming

approach to solve the Aggregated Demand Response Program which requires the

analytical model of the system to be scheduled and controlled. Finally, it presents

the general Aggregated Demand Response framework for aggregators which is

being proposed for optimal algorithm development.

In Chapter 5, it presents a simple Dynamic Programming approach which uses

the quantized level of power reduction, demand reduction bid and constraints by

consumer and peak demand pattern or value by utility which should be curtailed

during peak hours as the input and gives the optimal load schedule and control in

demand side management as the output.

In Chapter 6, it study in detail the implications of the design flexibility of the

proposed approach to Aggregated Demand Response Program. it also perform

simulation of load scheduling and controlling for Aggregated Demand Response

Program with an energy bidding and constraints by consumers. In Chapter 7, it

summarizes the major contributions of this work.



Chapter 2

Introduction to Demand

Response and Aggregators

2.1 Demand Response

With ever increasing demand of energy for a growing population, expanding economies,

depleting fossil fuel sources, increasing concerns about green house gases and global

warming, there is a strong need to plan wisely to reduce the energy usage and hence

demand response is essential[21].

While the public’s smart grid attention has focused on smart meters and home

energy network, the strategy of curtailing energy use during peak timings at com-

mercial, industrial, institutional and domestic entities as well as electric vehicles

on behalf of incentives is referred as Demand Response[23]. Thus, classification of

demand response programs are shown in Fig. 2.1.

Moreover, implementation of demand response program can potentially avoid the

construction of an under-utilized electrical infrastructure in terms of generation

capacity, transmission lines and distribution networks[24].

6
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Demand Response Classical

Incentive Based

Price Based

Direct Load Control

Interruptible /
Curtailable Control

Energy Bidding

Emergency DR

Ancillary Ser-
vice Market

Capacity Market

Time of Use

Critical Peak Pricing

Extreme Day Pricing

Real Time Pricing

Figure 2.1: Classification Demand Response Program.[2]

2.2 Key Responsibilities of Demand Response

Program

Demand Response Program is responsible for designing and implementing the

DSM program including smart monitoring, load controlling and smart pricing in

order to cope with the increasing demand and provide economical benefits to all

stakeholders, including[2, 23, 25]:

• Price incentive for the customers who curtails their load during identified

hours.

• Overall generation cost reduction because the demand peak will reduce the

overall generation peak, which in turn, will result in the less peak generation

spinning reserves.

• Reduction of price even for the customers who do not participate because

the overall generation cost is reduced.
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• Elimination of price spikes because of the elimination of demand spikes.

Thus, it is inferred that demand response program is responsible to provide de-

mand side management services to utility and consumer[14]. So, the responsibili-

ties of demand response could be broadly classified into:

• Load Control and Scheduling,

• Pricing Mechanism.

2.2.1 Load Control and Scheduling

Load management (LM) is a DSM strategy that aims to balance supply and de-

mand by reducing the power use of electrical devices during critical periods instead

of increasing the power generation. As smart meters and appliances slowly become

mainstream, LM technologies gain strength as an alternative for the electricity

market [26, 27].

Load management can generally be classified as [28]

• Indirect control (consumers manually make regulate its consumption in re-

sponse to incentive programs),

• Automatic Control system (appliance automatically regulates its own power

consumption)

• Direct load control (appliances are centrally controlled by the utility or ser-

vice provider).

Direct Load Control provide utility or service provider to remotely shuts down or

cycles a customer’s thermally controllable appliance. Controlling and influencing

energy demand can reduce the overall peak load demand, reshape the demand

profile, and increase the grid sustainability by reducing the overall cost and carbon

emission levels.
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The first step in the DLC is to perform a study of the loads in order to deter-

mine their nature, type and consumption patterns[29]. Then the changes that the

different control actions cause in these typical profiles must be analyzed[30]. In

this way, the reduction in demand that can be achieved through the application of

each control strategy can be determined. This analysis is performed by the util-

ity or aggregator every time if there is alteration in load reduction bid, number of

participating consumers, utility requirement, energy price in the electricity market

and cost of energy production etc.

Direct Load Control refers to load management strategy which has been used

by the utility or system operator since 1980s [31]. Therefore, the objective of

optimal DLC scheduling model typically include broad range of goals and could

be classified in to:

• Optimal DLC scheduling model before Smart Grid.

• Optimal DLC scheduling model after Smart Grid.

2.2.1.1 Optimal DLC scheduling model before Smart Grid

In 1980, Detroit Edison has accumulated 10 years’ operating experience with a

large-scale radio controlled electric water heater Load Management system[31].

In this system, direct load controlling of loads were performed by analyzing the

load payback patterns with the past and predicted load curve. However, the

primitive objective of implementation of DLC technique was minimization of peak

load during peak hours. Later on, Carolina Power and Light Company in 1983

[29], Florida Power & Light [32] and Taiwan Power [33] in late 80s accumulated

the experiences regarding DLC system of thermally controllable loads i.e. ACs,

Electric Water Heater and Chillers [29–31, 34, 35] which were specific to only peak

minimization.

With the advancement in computing and control techniques, optimal DLC schedul-

ing models transformed from peak-minimization based analysis to cost-minimization
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based analysis i.e to minimize operation cost of the power generation[36–40] and

maximize utility profit[41]. So , in 1984, Lee and Breiphol used quasistatic sys-

tem technique to evaluate the viability of this philosophy for a sample system

consisting of thermal generation and direct load control[37]. However, in 1986,

Bhatnagar and Rehman presented the improved DLC model for fuel cost mini-

mization using quadratic cost curve technique[39]. Later on researchers proposed

many DLC scheduling models using Dynamic Programming[33, 36, 39, 40] and

Linear Programming[29, 37, 42]. In 1995, Wei and Chen scheduled the control

of air conditioners by using Multi-pass Dynamic Programming[34] methods such

that the peak load reduction and production cost saving have optimum results.

On other hand, in 1995, Laurent and Desaulniers proposed control of electric water

heater using Linear Programing for optimal DLC. However, in 1996, Kurucz and

Brandt presented the general detailed optimal DLC scheduling model which also

considers few system constraints and payback issue for peak and operation cost

minimization using Linear programming.

2.2.1.2 Optimal DLC scheduling model after Smart Grid

As discussed earlier, after the advent of smart grid, smart pricing and smart me-

tering become easier for utilities and service providers. In order to achieve the

win-win situation that is to provide full benefit to all utility, service provider

and consumer, the new DLC Scheduling models introduce the price-based as

well as incentive-based direct load controlling. In order to implement this DLC

mechanism, many previous techniques like dynamic programming [43] and linear

programming [41, 44, 45] are modified. So, the utilities or service providers are

capable of offering different incentives[41, 46–49] to respective customers for di-

rect control over selected loads. Enormous literature implement these objectives

by using various techniques including heuristic-based Evolutionary Algorithm[19],

queuing system model and the Markov birth and death process[50], Particle Swam

Optimization[51, 52], Genetic Algorithm[53], Monte Carlo approach[54, 55], Multi
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Agent System based algorithm[56], Markov chain models approach[57] and dis-

tributed sub-gradient algorithm[58]. Moreever, in the existing literature on aggre-

gated direct load control, Berard and Veillerobe [59] presented discrete time opti-

mal control technique for the payback effect in load pattern during load scheduling.

Currently, DLC is facing the challenge of customer’s acceptance and people frowned

at the idea of relinquishing control over their own loads. In order to create a bal-

ance between the needs and wants of the utility and the customers, load control

strategy cannot be implemented without considering the customer’s satisfaction

[28]. Thus, Bhattacharyya and Crow in [60], Chu and Jong in [61] and Gomes, An-

tunes and Martins [62, 63] proposed Fuzzy Logic Dynamic Programming, Least

Enthalpy Estimator technique and Multi-objective Evolutionary Algorithm re-

spectively for DLC model in which provisions are made for customer preferences

in terms of temperature control of thermal appliances.

But, it is still a crucial challenge for any demand side management strategy to

guarantee the security of customer’s privacy and to provide the customer’s sat-

isfaction [64]. So, in order to resolve is issue, DSM should enable consumer to

participate in market pricing process.

In 1999, Goran and Kirschen [65] suggested that the concept of consumer partic-

ipation in market pricing process and stated that it could benefit in minimizing

peak demand, maximizing profit of stakeholders and maximizing the social wel-

fare. Laterly, Goel, Aparna and Wang [66] presented the framework for aggregated

demand response in which consumers can actively participate in a power reduction

program via the market bidding or demand reduction bidding. Thus, currently

the researchers are workings on the new framework of DLC Scheduling models

which have wide range of objectives including:

• Peak load minimization.

• Operating cost minimization.

• maximization of utility as well as service provider’s profit.
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• Provide incentive to participating customer.

• maximization of consumer satisfaction.

2.2.2 Pricing Mechanism

Smart Pricing can be used to achieve all social objectives including power re-

duction, customer satisfaction and securing reserves. Several pricing mechanisms

have already been proposed in the literature[2, 14, 67, 68]. However, pricing mech-

anism in demand response programs can be broadly classified into following two

categories as shown in Fig. 2.1.

• Price Based

• Incentive Based

2.2.2.1 Price Based

This type of Pricing Program includes time of use, real time pricing and critical

peak time pricing. Since many years time of use pricing based on peak load pricing

is implemented in which prices are announced ahead of time at the beginning of

the particular operational period [69–71].In order to reflect customer response to

TOU, price elasticity of demand can be used [72, 73].

Real time pricing theory was derived from spot price concept given by Schweppe

[74]. Many researchers suggests realtime pricing program for optimal implemen-

tation load management by aggregators in which reaction of the consumer is kept

in special notice for consumer satisfaction and influences on the price of upcoming

operational period[75, 76]. However, Critical time pricing is a dynamic prising

mechanism, usually hybrid of real time pricing and time of use. Many researchers

suggested dynamic pricing model based on CPP considers interest of both con-

sumer as well as aggregator [77–81].
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Currently, EnerCON and Comverge are one of the biggest aggregator companies

are dynamic price based programs including Time-of-Use(TOU), Critical Peak

Pricing(CPP), Real-time Pricing(RTP), and Peak Time Rebate(PTR) [82, 83].

2.2.2.2 Incentive Based

In 1999, Goran and Kirschen [65] proposed the concept of demand side bidding or

energy bidding in load management and demand peak minimization. This research

also stated the consumer will sign a interruptible contract or other conventional

form of load management agreement with service provider which specify the num-

ber of load reduction and their respective energy bidding that may be requested.

This new smart pricing strategy will enable consumer to actively participate in

market pricing process and help in minimizing demand and maximizing social

welfare[2, 23]. Lately, Goel, Aparna and Wang [66] presented the framework in

which demand side load bidding by the consumer will help contingency manage-

ment in reliability assessment of restructured power systems and participate in

contract market bidding with hybrid market models.

Moreover, one form of energy bidding is demand reduction bidding. In this case,

the bidding signals are generated by the customers who are willing to curtail their

loads at a certain price [84]. The signal shows the available demand reduction

capacity and the price asked for this reduction. So, service provider act as large

buyer of energy from utility at a fixed price or bid according to demand side curve.

But on other hand, it act as a electricity retailer to small consumers to enroll them

in Demand bidding program [85].

Recently, Katherine [86] stated that introduction of secure data networking and

communication pushed many utilities and service providing companies to think

for providing online demand bidding platform to consumers.
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2.3 The Concept of Aggregator

The aggregator is a retailer of electricity that buys electrical energy from utility

to supply uninterrupted and high quality power to commercial, industrial, institu-

tional and domestic entities as well as electric vehicles during peak hours and offers

ancillary services[87]. Aggregator1 is also refer as an energy Service Provider, de-

mand response service provider, energy management system, automated demand

side management, automated demand response and virtual power plant in many

works[64, 76, 88–91]. Till today, the aggregator does not have any empirical defi-

nition. So, Following are the three different definitions of Aggregator classified on

the basis of it’s responsibilities and controls over the consumer which are presented

in literature.

2.3.1 Plug-in Electric Vehicles

The aggregator concept was introduced by Kempton[92] in 2001 and further en-

hanced in many works. In 2010, Sekyung, Soohee and Sezaki extensively discussed

the Vehicle-to-Grid regulations from strategic prospective and proposes a prag-

matic framework for aggregators which considers the issues that arises due to the

integration of Plug-in Electric Vehicles in grid as energy consumers as well as en-

ergy suppliers[93]. Bessa and Matos [94] present an overview about the economic

potential of electric vehicles and discusses technical details of aggregator in the

electricity market. After 2010, literatures [88, 95, 96] refers Aggregator in context

of Plug-in Hybrid Electric Vehicles (PHEVs) as a service provider for charging

the batteries when the demand of Vehicle to grid supported building is lower than

its peak load and discharge the batteries to partially supply the building to re-

duce the peak demand during a high demand. In [88], Lopes, Soares and Almeida

proposed a comprehensive conceptual framework for aggregator which is capable

of dealing technical management and market operation with the existing grid to

handle EV charging in an effective manner. In [96, 97], a detailed algorithm for

1This report will continuously user term ”Aggregator” for this business entity.
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unidirectional regulation and profit maximization is formulated with system load

constraints and energy bidding mechanism for use by an aggregator. However, Wu,

Aliprantis and Ying in [95, 98] proposed an operational framework for aggregator

in which it uses dynamic algorithm for finding out the optimal minimum-cost load

scheduling in the day-aheadmarket and dispatch strategy used for distributing the

purchased energy to Plug-In Vehicles (PEVs) on the operating day. Recently, in

[89], authors proposed an integrated model for service provider comprising vehi-

cle technology modeling, agent based transportation modeling and power system

modeling to analyze the impacts of electric mobility on the domains of power and

transportation systems as well as on the environment. Thus, Aggregators are ex-

pected to play a significant role in future smart grid because it has to manage

PHEV charging so that it does not only occur during peak hours but also does

not overload distribution network[99].

Currently,The larger Investor-Owned Utilities (IOUs) in California, that is South-

ern California Edison (SCE) and Pacific Gas and Electric (PG&E), have shown

high concern in integration of electric vehicles to grid and are implementing ag-

gregation programs [100]. ”EDISON Project, Electric vehicles in a Distributed

and Integrated market using Sustainable energy and Open Networks” in Denmark

by Denmark energy Association is developing suitable aggregation technology for

low-cost, efficient, plug-and-play integration of Electric Vehicles into the power sys-

tem [101]. Many Companies like Enervate in UK [102]and Nuvve in USA [103]is

providing solutions for Vehicle-to-Grid (V2G).

2.3.2 Virtual Power Plant

In this developing concept of virtual power plant (VPP), some literatures [44, 104],

indistinctly use terms ”VPP” and ”aggregator”. However, according to the the

recent researchers , define Virtual Power Plant (VPP) as a decentralized energy

management system that use to aggregate the capacity of some Distributed Gen-

erations (DGs), storage facilities, and dispatchable Loads (DLs) for the purpose



Chapter 2. Introduction to Demand Response and Aggregators 16

of energy trading and providing system support services [90, 105, 106]. In refer-

ence [81, 107] , formulated virtual power plants as multiple objective optimization

problem with constraints of consumers and indigenous DGs in order to satisfy

the market requirements with the least generation cost and increase it’s revenue

by implementing it’s own customized price-based aggregated demand response.

However, in [91, 108] researchers combines the concept of microgrid management

and virtual power plant as energy management of clusters of DGs, energy storage

units, and loads in grid-connected and isolated grid modes.

Southern California Telephone and Energy (SCT&E) is heading towards the im-

plementation of virtual power plant [109], Flexitricity brings VPP business in UK

Market [110] and Fenix consortium is contributing in Eurozone through aggrega-

tion into Large Scale Virtual Power Plants (LSVPP) and decentralized manage-

ment [111].

2.3.3 Third Party Entity

In last few years, A large amount of research has been done on aggregated demand

and new strategies of direct load control. This emerging concept of aggregated

demand response elucidates aggregators as a legal third party entity which has

a bilateral contract with a utility as a large energy buyer over negotiated tariff

program[84, 112]. On other hand, it contracts large amounts of domestic customers

and responsible for designing and implementing their on demand side program

including smart monitoring, direct controlling and pricing[57, 58, 76].

In 2010, A Parc Xerox Company USA presented pragmatic solution of augmenting

existing grid power distribution with aggregators, providing new services to both

utility and customer as middle man or third party [113]. Moreover, Mohagheghi,

Stoupis, Wang, Li and Kazemzadeh stated that ADR promotes interaction and

responsiveness of the customers and changes the grid from a vertically integrated

structure to one that is affected by the need and wants of the consumer[84]. They
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also presented the aggregated demand response architecture that could be im-

plemented at the distribution level and discussed some practical considerations

associated with this approach. In 2011, Ducan S. Callaway summarized Business

Models for Demand-side Energy Services: Economics, Challenges, and Opportu-

nities and discussed some of the tradeoffs between price response versus direct

load control, grid cyber-infrastructure and control strategies for small versus large

loads to deliver aggregated system services[64]. However, reference [75] reported

the study of aggregator that synthesizes a daily load profile of Dutch domestic

appliances and electric vehicles and simulated them in real-time for economic op-

timization based on predicted day-ahead prices and the provision of balancing

energy.

In short, aggregated demand response can be implemented at the distribution

level for the customers via aggregator, a third party entity, under its territory.

However, researchers and DR companies are adding value to the aggregated de-

mand response algorithm by incorporating the model of the distribution network,

financial aspects, mutual agreement between individual consumer and utility, con-

sumer satisfaction, constraints of load control and pricing mechanism. Currently,

EnerNOC and Comverge are most famous third party aggregators which have al-

ready implemented the price-based/incentive-based load control mechanism over

consumer’s thermal appliances after signing bilateral contract or agreement with

them[82, 83]. However, EnergyConnect has stepped ahead and recently released

GridConnect platform for commercial or large consumers which has enabled them

to manage their energy bidding via website[114]. CPower, Energy Curtailment

Specialist, EPS Corporation, IQ building, World Energy Solutions and many oth-

ers has landed in aggregated demand side management as a third party[115].

2.4 Discussion

According to the definitions of the aggregator in the literature, it is an entity

which either provides services to the fleet of PEVs for controlled charging and
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dispatching of energy or a customize aggregated demand response provider to

group of consumers (commercial, industrial or domestic) to schedule and con-

trol thermal appliances for peak demand shaving during peak hours. Moreover,

aggregator is also referred as virtual power plant in several works according to

which it is responsible to optimally manage the power flow to and from indigenous

DGs, storage facilities and dispatchable loads (thermal appliances, electric vehi-

cles). However, some researchers consider integration and control of indigenous

DGs and storage facilities as a economic dispatch and unit commitment problem

which comes under the domain of the supply-side management instead of demand-

side management[116–118]. Thus, it could be concluded that the VPP combines

supply side and demand side management together under one concept and per-

form virtual vertical integration of electrical network. So, it could be inferred that

aggregator might be the part of virtual power plant but could not be referred as

VPP in whole.

Hence, in general, aggregator could be define as a third party entity or service

provider which responsible to:

• Schedule and control dispatchable loads in order to shave demand peak dur-

ing peak hours.

• Maximize it’s own revenue by finding optimal load control solution in order

to fulfill the utility requirement as well as consumer constraints.

• Satisfy consumer and secure it’s privacy.

• Develop systematic strategy to achieve win-win condition in supply and de-

mand of electrical network i.e. to provide economical benefit to both utility

by minimizing its operational cost and consumers by providing incentives.

Thus, it is evident that a new business opportunity i.e. aggregator is emerged by

the proliferation of automatic and direct control of loads and electric vehicles. That

is why different business models are being implemented and proposed in works

by industrialists and researchers respectively because it depends over number of

factors including:
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• existing grid network

• existing communication and data network.

• existing business model of electrical network.

• societal norms of inhabitants.

• culture of the people.

• environment of the region.

• economical and financial situation.

• political will.

Moreover, it could be inferred from the existing works that aggregator have con-

tractual relationship with utility as well as consumers. Both of these contracts

have two main terms and conditions regarding

• Nature of the Contract.

• Pricing Mechanism.

2.4.1 Contract Between Utility and Aggregator

Contracts may be bilateral or unilateral. If it is a bilateral contract, then it is

an agreement in which the utility promises to pay the aggregator, in exchange

aggregator promises to curtail the identified power. However, if it is a unilateral

contract, then only utility promises to pay the aggregator if it curtails the identified

power. It means that aggregator is not under an obligation to curtail the identified

power, but utility is under an obligation to pay a reward to aggregator if it does

the job.

In any case, Aggregator is a large buyer of electricity from utility or a large con-

sumer that facilitates utility by promising that it could curtail power during peak
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hours. For this service, it would be rewarded by the utility. Thus, the second

term of the agreement is that what would be the pricing mechanism. That is,

will the utility pay a fixed reward to aggregator or will the payment of reward is

based on either time-of-use, critical peak pricing or others. For instance, PG&E

has started Aggregator Managed Portfolio program which is a non-tariff program

that consists of bilateral contracts with aggregators with price-responsive pricing

mechanism[119].

2.4.2 Contract Between Consumer and Aggregator

Similarly, Contracts between Consumer and Aggregator may be bilateral or uni-

lateral. If it is a bilateral contract, then it is an agreement in which the aggregator

promises to pay the incentive to the consumer, in exchange consumer promises

to switch off or regulate the specific loads to reduce the required consumption.

However, if it is a unilateral contract, then only aggregator promises to pay the

incentive to the consumer if it switches off or regulates it’s load. It means that the

consumer is not under an obligation to control the load, but aggregator is under

an obligation to pay a reward to aggregator if it does the job.

Most of the contracts implemented by the aggregators or proposed by the re-

searchers for either European, Scandinavia or North America consumers are bilat-

eral contract because unilateral contract supports on indirect load management

strategy which may result in uncertainty, incompleteness and severance during the

time of contingency[82, 83, 119]. However, bilateral contracts provide provision

all kind of load management strategies i.e. indirect, automatic and direct load

control.

As in Section 2.2.2, the two major kinds of pricing mechanism which have already

been proposed in the literatures are discussed in detail. It can be inferred that

most of the literature developed the business model of aggregator with price-based

mechanism because it is more easier to implement for those nations which have

already implemented it on domestic level[82, 83]. However, very few researches
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consider incentive-based i.e. energy bidding as pricing mechanism of aggregator for

consumer[84, 86]. Indeed, it is an opportunity for those developing nations which

are implementing it because incentive-based pricing mechanism effectively caters

the social issues like consumer satisfaction and privacy, as it enables consumers to

bid in energy market.

Major Assumptions: The main purpose of this research is to introduce a

new strategy of demand side management to the aggregators which are already

providing energy services to the consumers in many different region of world.

This research proposed demand reduction bid based DLC strategy between the

consumer and the aggregator. Following are few major assumptions that are taken

during this research:

• The consumer and the aggregator are legally in bilateral contract.

• Aggregator presents retail energy market pricing to consumer before bidding.

• Consumer can change its bidding on the basis of retail energy market and

contract policy.

• The third party aggregator and the utility are in bilateral contract.

• Utility offers time-of-use electricity market pricing to the aggregator for busi-

ness.

• All shareholders especially government, consumers and suppliers are fully

committed to SMART GRID.

• Proposed strategy is for already existing aggregators, therefore, it doesnot

address the societal issues that may occur during its materialization.

• Similarly, it does not present any study related to economical and financial

implication that may be faced during the implementation of smart distribu-

tion network.
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Multi-stage Problem Solving

Technique

3.1 Multi-stage Problem Solving Technique

Multistage decision problems usually arise when decisions are made in the se-

quential manner over time where earlier decisions may affect the feasibility and

performance of later decisions. The multistage decision making process can be

separated into a number of sequential steps, or stages, which is completed in one

or more ways. The options for completing stages are known as decisions. The

condition of the process at a given stage is known as state at that stage; each

decision effects a transition from the current state to a state associated with the

next stage.

The multistage decision making process is finite if there are only a finite number

of stages in the process and a finite number of states associated with each stage.

Many multistage decision processes have returns (cost or benefits) associated with

each decision, and these returns may very with both the stage and state of the

process. The multistage decision process is deterministic if the outcome of each

decision is known exactly.

22
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F =
n∑
i=1

fi(Xi) (3.1)

such that

n∑
i=1

Xi ≤ b

Xi ≥ 0

i = 1, 2, .., n

Where, fi(Xi) are known (non-linear) optimal functions of a single variable and b

is a nonnegative integer.

Multi-stage Decision trees are a useful means for representing and analyzing multiple-

stage decision tasks as shown in Fig. 3.1, where decision nodes � indicate decision-

maker choices, event nodes © represent elements beyond control of the decision-

maker, and terminal nodes • represent possible final consequences[120].

Figure 3.1: Example of a real-life situation represented as a decision tree. [3]

For instance The first decision node concerns whether or not to apply to graduate

school, which leads to the event node of being accepted. If accepted, a second de-

cision is required concerning which degree to pursue, leading to probabilistic event

nodes dictating the decision-makers chances of success for each. While optimal
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navigation of this rather small decision tree may not seem so overwhelming, one

can imagine the difficulty in comprehending the different scenarios involved with

larger trees[3].

3.2 Principle of optimality in Dynamic Program-

ming

Dynamic Programming is a mathematical solving methodology for Complex Multi-

Stage Decision Making Problem using computer programming. The basic concept

of dynamic programming is to transform a complex problem into multiple sub-

problems and then to combine solutions of all sub-problems to derive the overall

solution. The sub-problems are usually referred to as stages and are calculated

once during the computation and their results are stored so as to use for future

computations. Thus, by this method, the numbers of computations are reduced

and consequently an optimized solution is obtained.

In the scheduling of supply and demand side of the electrical power system, DP

techniques have been developed for

• Economic dispatch of thermal system.

• Solution of hydrothermal economic-scheduling problems.

• Practical solution of unit commitment problem.

• Demand response.

• Aggregated demand side management.
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3.2.1 Shortest path problem

First it will be well to introduce some of the notions of Dynamic Programming

(DP) by means of some one-dimensional examples[121]. Special class of dynamic

programming is shortest path problem as shown in Fig. 3.2

Figure 3.2: Shortest path problem. [4]

In this is an example the aim is to calculate the shortest path from node A to

node J. Numbers at arrows indicate weights; an arrow shows a possible direction

for a move. The network can be divided into five stages, where Stage 1 contains

node A, Stage 2 contains nodes B, C and D, Stage 3 contains E, F and G, Stage

4 contains nodes H and I, and Stage 5 contains node J. Let Xn denote nodes in

stages n and n+ 1, with weight f(Xn). For calculating the shortest path, use the

recursive function:

Fn(Xn) = min[f(Xn) + Fn−1(Xn−1)] (3.2)
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Stage Shortest Distance Path

1 F1(B) = 2 AB

F1(C) = 4 AC

F1(D) = 6 AD

2 F2(E) = min[f(E) + F1(B), f(E) + F1(C), f(E) + F1(D)] = 5 ABE

F2(F ) = min[f(F ) + F1(B), f(F ) + F1(C), f(F ) + F1(D)] = 3 ABF

F2(G) = min[f(G) + F1(B), f(G) + F1(C), f(G) + F1(D)] = 10 ADG

3 F3(H) = min[f(H) + F2(E), f(H) + F2(F ), f(H) + F2(G)] = 6 ABFH

F3(I) = min[f(I) + F2(E), f(I) + F2(F ), f(I) + F2(G)] = 12 ADGI

4 F4(J) = min[f(J) + F3(H), f(J) + F3(I)] = 14 ABFHJ

The choice of route is made in sequence. There are very stages transverse. The

optimum sequence is called the optimal policy. Any subsequence is sub-policy.

From this it may be seen that the optimal policy i.e. the minimum cost contains

only optimal sub-policies. This is the Theorem of Optimality.

An optimal policy must contain optimal sub-policies.

3.2.2 An Allocation Problem

Let us solve this an allocation problem example by the help of Dynamic Pro-

gramming. Firstly, we will decide problem which is spending of money in plants’

expansion. Secondly, we need to know our projected GOAL i.e. to obtained max-

imum revenue by selecting appropriate proposal for each plant. Now, break the

problem into three stages: each stage has states that represent the money allocated

to a single plant. So stage 1 will have 3 states representing the money allocated

to plant 1, stage 2 has 4 states, and stage 3 has 2 states 3.
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Profit from venture

Investment Plant 1 Plant 2 Plant 3

0 0 0 0

1 5 - 4

2 6 8 -

3 - 9 -

4 - 12 -

5 - - -

Let’s try to figure out the revenues associated with each state. So the optimal

result after stage 1 would be:

[F10 F11 F12] = [0 5 6]

Now, for the computations for stage 2, following optimal function is carried. In

this case, the best solution will be found for both plants 1 and 2.

F2(X2) = min[f(X2) + F1(X1)]

such that

Capital Stage I Stage II F2(X2) Optimal Investment

0 0 0 0 0,0

1 5 - 5 1,0

2 6 8 6 2,0

3 - 9 13 1,2

4 - 12 14 2,2 or 1,3

5 - - 17 1,4

We can now go on to stage 3. Once again, we go through all the proposals for this

stage, determine the amount of money remaining.
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Capital F2(X2) Stage III F3(X3) Optimal Capital Investment

0 0 0,0 0 0 0,0,0

1 5 1,0 4 5 1,0,0

2 6 2,0 - 9 1,0,2

3 13 1,2 - 13 1,2,0

4 14 2,2 or 1,3 - 17 1,2,1

5 17 1,4 - 18 2,2,1 or 1,3,1

Hence, the optimal solution for spending money in these plants is either spend $2

Million to Plant 1 and 2 and $1 million to Plant 3; by this configuration, Proposal

3 will be best fit for Plant 1 and Proposal 2 will be best fit for plant 2 and 3. Or

spend $1 Million to Plant 1 and 3 and $3 million to Plant 2; by this configuration,

Proposal 3 will be best fit for Plant 2 and Proposal 2 will be best fit for plant 1

and 3.

If you study this procedure, you will find that the calculations are done recursively.

Stage 2 calculations are based on stage 1, stage 3 only on stage 2. Indeed, given

you are at a state, all future decisions are made independent of how you got to the

state. This is the principle of optimality and all of dynamic programming rests on

this assumption.
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Aggregator and Electricity

Market Framework

4.1 Introduction to Framework

This emerging concept of aggregated demand response elucidates aggregators as

a legal third party entity which has a bilateral contract with a utility as a large

energy buyer over negotiated tariff program. On other hand, it also bilaterally

contracts large amounts of domestic customers and responsible for designing and

implementing demand side program including smart monitoring, direct controlling

and pricing to satisfy the customers needs and wants.

In this report, a framework for aggregated demand response is proposed for smart

grid. The strategy is based on demand reduction bidding1 and customer satis-

faction parameters2 identified by the customer to the aggregator at the time of

contracting. A dynamic programming algorithm is developed for finding the opti-

mal load scheduling and direct controlling of large number of consumers. As shown

in Fig. 4.1, aggregator take two decisions; one for optimal load scheduling and

1This is an incentive amount or price identified by the consumer on the basis of their satis-
faction and domestic use.

2Customer Satisfaction parameters are the factors that takecare of consumer satisfaction and
ergonomics.

29
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other optimal load controlling. In optimal Load Scheduling, aggregator finds out

the optimal level of power reduction during an interval for each consumer. While

in optimal load controlling, aggregator finds out the optimal direct load control

strategy for controlling of consumers loads.

Section 4.2 and Section 4.3 mathematically formulates the load scheduling and

controlling mechanism respectively of aggregator’s framework.

Figure 4.1: Aggregator and Electricity Market Framework

4.2 Load Scheduling Mechanism

The purpose of the aggregator is to facilitate the utility in shaving power demand

during the peak hours by using aggregated demand response strategy for load

scheduling and DLC for load control of consumers in smart distribution network.
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If demand reduction bids are given by the consumers as a function of levels of de-

mand reduction required by the aggregator, then, consumers can specify fixed de-

mand reduction bids fn(P n
i ) for all levels of power reduction P n

i ε{0,∆P, 2∆P, ...., Pmax
n },

where ∆P is the step size. Thus aggregator can reduce a power PD ranging from

0 to Pmax.

Pmax =
∑N

n=1 P
max
n

Now the decision making problem for the aggregator is to find the load reduction

P 1∗, P 2∗,. . . , P n∗, . . . , PN∗by individual consumers such that P 1, P 2,. . . , P n, . . . ,

PN= PD and total incentive given by the consumer
∑N

n=1 fn(PD) is minimal. In

summary the optimal problem is

min
(P 1,P 2,...,Pn)

∑N
n=1 fn(P n)

where;

0 < P 1 < Pmax
1

0 < P 2 < Pmax
2

. . . . . . .

0 < P n < Pmax
i

. . . . . . .

0 < PN < Pmax
n

Thus, at a given time interval, if utility calls aggregator to reduce PD(k) power for

N consumers. Then, the prime objective of the aggregator is not only to find the

levels of power reduction P 1∗, P 2∗,. . . , P n∗, . . . , PN∗by all N consumers at the

specified time interval, such that P 1, P 2,. . . , P n, . . . , PN= PD. But, it has to find

the optimal levels of power reductions by considering the constraints of consumers

and calculating least aggregated demand reduction bid by all N consumers in

order to maximize its own profit.
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For such demand response, the aggregator and the consumers mutually sign the

bilateral contracts that facilitate consumers to update their demand reduction bids

for a given time period provided some constraints are met. It is assumed that TminnON

is minimum duration for which nth consumer must be continuously ON, TmaxnOFF
is

maximum duration for which nth consumer can be continuously OFF and Tmaxn is

total duration for which nth consumer can participate in load reduction program.

Thus, TminnON
, TmaxnOFF

and Tmaxn capture constraints of consumers.

Let us assume that TnON
(k) be the duration for which nth consumer is continu-

ously ON during kth interval, TnOFF
(k) be the duration for which nth consumer

is continuously OFF during kth interval and T (k) be the total duration for which

nth consumer is OFF till (k + 1)th interval.

Moreover let, Xn(k) , denote whether the nth consumer is participating or not in

load reduction. Xn(k) is a binary variable and is equal to one if the nth consumer is

participating during the kth interval. Thus, the problem could be mathematically

expressed as:

min
Pn
1 ,P

n
2 ,...,P

n
I |PnεP

N∑
n=1

fn(P n(k), Xn(k)) (4.1)

s.t.

P 1∗(k), P 2∗(k),. . . , P n∗(k), . . . , PN∗(k)= PD(k) ∀ (k ε H)

TnON
(k) = 0 or TnON

(k) > TminnON

TnOFF
(k) < TmaxnOFF

T (k) < Tmaxn

The procedure to update T (k) , TnON
(k) and TnOFF

(k) is explained in the section.
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4.3 Load Controlling Mechanism

Assume, aggregator use direct load control for load controlling of consumer’s load

via OpenADR system in smart grid environment. However, every N consumers

do not only identify that it has Dn controllable loads for direct controlling but

also update some consumer constraints including TmindnON
, TmaxdnOFF

, qdn and pdn of

each dn load. At this situation, if an aggregator want to reduce power PD(k) from

N consumer in an hour. Thus, the prime objective of the aggregator is to find the

optimal load reduction P 1∗, P 2∗,. . . , P n∗, . . . , PN∗by all N consumers at given

time interval, such that

P 1∗ + P 2∗ + P 3∗ . . .+ PN∗ = PD (4.2)

Moreover, aggregator also find the optimal solution in order to maximize it’s rev-

enue by paying least aggregated demand reduction bid F (P ) to participating con-

sumers. In this way, aggregator is able to find the equilibrium point in the supply

and demand curve of the electricity during peak period [T1 T2] without any power

generation.

By the advent of OpenADR, aggregator is capable to effectively solve this com-

plex multi-stage decision making problem. The function of OpenADR system is

to facilitate sending and receiving control signals from a utility or aggregator to

electric devices of consumers. Thus, it enables aggregator shed the power of par-

ticular loads out of dn loads of N consumers respectively. Moreover, OpenADR

also sends information of all available and controllable devices of every consumer

to aggregator. By this information, aggregator is capable to generate the list of

aggregated bids fn(P n
i ) by participating dn loads of nth consumer for all level of

power reduction P at given time interval k, such that

fn(P (k)) = min
p1,p2,...,pdn

Dn∑
dn=1

qdn(1−Ddn(k)) (4.3)
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Then, aggregator sends the control signals by OpenADR system to nth consumer

for switching OFF the particular loads, such that sum of power rating of partici-

pating dn devices must be equal to the level of power reduction Pi reduce by the

nth consumer at given time interval. Mathematically,

p1 + p2 + p3, . . . , pdn , . . . , pDn = P n∗



Chapter 5

Development of Optimization

Algorithm

5.1 Dynamic Programming

The basic concept of dynamic programming is to transform a complex problem

into multiple sub-problems and then to combine solutions of all sub-problems to

derive the overall solution. The sub-problems are usually referred to as stages and

are calculated once during the computation and their results are stored so as to

use for future computations. Thus, by this method, the numbers of computations

are reduced and consequently an optimized solution is obtained. The Table be-

low shows the mathematical framework for aggregators as discussed in Chapter 4.

It lists the power reduction Pi(KW ) by n consumers in an hour as a function of

price incentive f(P ) given to a particular consumer. Consider, the total amount of

power which the utility is required to reduce in an hour is PD. Then problem is to

find the optimal strategy by the aggregator so as to pay least incentive payments

to the consumers. Aggregator can reduce the maximum power Pmax which is the

integrated sum of maximum power that each consumer can reduce.

35
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Power Consumer 1 Consumer 2 . . Consumer n
P (kW ) C1 C2 . . Cn

P1 f1(P1) f2(P1) . . fn(P1)
P2 f1(P2) f2(P2) . . fn(P2)
P3 f1(P3) f2(P3) . . fn(P3)
. . . . . .
. . . . . .
Pi f1(P 1

i ) f2(P 2
i ) . . fn(Pn

i )

If aggregator follows policy of step-wise reduction in power, then ∆P would be a

step change in power between the two consecutive reductions and i represents the

number of steps. i.e.

∆P = P2 − P1 (5.1)

and

i =
PD
∆P

(5.2)

In order to solve the problem by dynamic programming, it has to be transformed

into a multi-stage decision making problem. The objective function of the algo-

rithm is to maximize the total profit of the aggregator by finding least aggregated

reduction bids of the consumers. The problem is divided into N − 1 stages which

are discussed as follows.

5.1.1 Stage 1

In stage 1, the problem is to find the optimum reduction by consumer1 (P 1∗) and

consumer2 (P 2∗) such that the total incentive to be paid to these two consumer

is minimized. If the net incentive paid for reducing (P 1
T ) units of power is denoted

by F1 (P 1
T ), then:
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F1

(
P 1
T

)
= min
{(P 1,P 2)|P 1+P 2=P 1

T}

[
f1

(
P 1
)

+ f2

(
P 2
)]

1 (5.3)

The stage 1 saves value set of P 1∗ and P 2∗ and F1 (P 1
T ) corresponding to every

load reduction level PT for all values of i = 1 . . . I, such that

0 < P 1
T < (Pmax

1 + Pmax
2 )

5.1.2 Stage 2

In stage 2, consumer1 and consumer2 are considered as a single composite con-

sumer with composite bid of F1 (P 1
T ) given for 0 < P 1

T < (Pmax
1 + Pmax

2 ). It may

noted that F1 (P 1
T ) is found for all values of P 1

T in stage 1. In stage 2, the problem is

to find the optimal reduction P 2
T by the composite consumer (P 1∗

T ) and consumer3

(P 3∗), such that:

F2

(
P 2
T

)
= min
{(P 1

T ,P
3)|P 1

T +P 3=P 2
T}

[
F1

(
P 1
T

)
+ f3

(
P 3
)]

2 (5.4)

The stage 2 eventually saves value set of P 1∗, P 2∗, P 3∗ and F2 (P 2
T ) corresponding

to every load reduction level P 2
T for all values of i = 1 . . . I.

0 < PT2 <
(
Pmax
T1

+ Pmax
3

)

5.1.3 Stage K

Similarly in stage K, consumers up to K − 1 are considered as a single composite

consumer with composite bid FK−1

(
PK−1
T

)
given for 0 < PK−1

T < (Pmax
1 + Pmax

2 + ...+ Pmax
K ).

It may noted that FK−1

(
PK−1
T

)
is found for all values of PK−1

T in stage K. In this

stage, the problem is to find the optimal reduction PTK by the composite consumer

1minimum is calculated over all combination of
(
P 1, P 2

)
such that

(
P 1 + P 2 = P 1

T

)
.

2minimum is calculated over all combination of
(
P 1
T , P

3
)

such that
(
P 1
T + P 3 = P 2

T

)
and so on.
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(P
(K−1)∗
T ) and consumer(K + 1) (P

(K+1)∗
T ), such that:

FK
(
PK
T

)
= min

[
FK−1

(
PK−1
T

)
+ fK+1

(
PK+1

)]
(5.5)

The stage K also stores value set of P 1∗, P 2∗, P 3∗ up till PK∗ and FK
(
PK
T

)
corresponding to every load reduction level PK

T for all values of i = 1 . . . I, such

that:

0 < PK
T <

(
Pmax
TK−1

+ Pmax
K+1

)

5.1.4 Stage N-1

So, FN−1

(
PN−1
T

)
is the least aggregated demand reduction bid by all consumers

for aggregated load curtailment of PN−1
T , such that:

FN−1

(
PN−1
T

)
= min

[
FN−2

(
PN−2
T

)
+ fN

(
PN
)]

(5.6)

The solution of (N − 1)th stage which will result in P
(N−1)∗
T and PN∗ such that

P
(N−2)∗
T + PN∗ = P

(N−1)∗
T = PD

Now, in order to reduce PD identified by the utility, aggregator could find amount

of power to be reduced by every consumer (P 1∗, P 2∗, P 3∗, ...., PN∗) such that P 1∗+

P 2∗ + P 3∗ + ....+ PN∗ = P
(N−1)∗
T = PD.



Chapter 5. Development of Optimization Algorithm 39

Figure 5.1: Dynamic Programming Algorithm

5.1.5 Example

Let us consider an example in which three consumer will be paid for different price

incentive over energy reduction of 25KWh, 50KWh and 75KWh. So, maximum

energy P(max) that all consumer can reduce is 150KWh. If total of 100KWh

i.e. P(D) is identified by the utility to reduce in any particular hour. Then what

would be the optimal policy for aggregator.

Table 5.1: Example

Energy Reduction (KWh) Consumer 1 Consumer 2 Consumer 3
25 20 25 15
50 45 41 25
75 85 75 40

At Stage II, we can compute

Table 5.2: Stage II

P f1(P ) f2(P ) F1(P ) Optimal Policy(Op)
25 20 25 20 (25, 0)
50 45 41 41 (0, 50)
75 85 75 65 (50, 25)
100 - - 86 (50, 50)

At Stage III, we can compute

Thus, the computation shows that aggregator has to reduce 0KWh from consumer1,

25KWh from consumer2 and 75KWh from consumer3 so as to pay least price
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Table 5.3: Stage III

P F1(P ) f3(P ) F2(P ) Optimal Policy(Op)
25 20 15 15 (0, 0, 25)
50 41 25 25 (0, 0, 50)
75 65 40 40 (0, 0, 75)
100 86 - 60 (0, 25, 75)

incentive of 60units to itś consumers and as well as satisfy utility requirement of

energy reduction.
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5.2 Optimal Load Scheduling algorithm

Suppose that the utility supplies the demand for a time period of [T1 T2] in a

day to the aggregator for peak shaving. Then, first of all, the aggregator di-

vides the identified period [T1 T2] in to |H| intervals. Thus, in order to find

out optimal load schedule, the algorithm transforms this problem in to |H| multi-

stage decision problem. Each problem involves two decisions i.e. finding x(k) = [

X1(k), X2(k), . . . , Xn(k), . . . , XN(k)] and P 1∗(k), P 2∗(k),. . . , P n∗(k), . . . , PN∗(k).

For the first interval (i.e k = 1), it is assumed that all consumers are available for

load reduction. Thus, x(1) has ones for all N . To find the P 1∗(1), P 2∗(1),. . . ,

P n∗(1), . . . , PN∗(1), the problem is divided into (N − 1) stage decision making

problem and is solved by using dynamic programming.

Next, the problem has to be solved for the remaining intervals i.e. k = 2, 3, .., |H|.

The decision variable Xn(k) is determined based on the consumer constraints.

During each interval TnOFF
(k) , TnON

(k) and T (k) are updated as follows:

TnOFF
(k) =


TnOFF

(k − 1) + hstep ; if Xn(k − 1)=1

0 ; if Xn(k − 1)=0

n = 1, 2, 3, ...N ∀ TnOFF
≤ TmaxnOFF

(5.7)

TnON
(k) =


TnON

(k − 1) + hstep ; if Xn(k − 1)=0

0 ; if Xn(k − 1)=1

n = 1, 2, 3, ...N ∀ TnON
≤ TminnON

(5.8)

and
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Tn(k + 1) =


Tn(k) + hstep ; if Xn(k)=1

Tn(k) ; if Xn(k)=0

n = 1, 2, 3, ...N ∀ Tn ≤ Tmaxn

(5.9)

If a particular consumer has been switched OFF for a total duration of Tmaxn , then

that particular consumer can not participate un the load control scheme. That is,

if T (k) ≥ Tmaxn then Xn(k+ 1) =0. If this condition is not satisfied, the algorithm

determines Xn(k+ 1) based on TnON
(k) , TnOFF

(k) and Xn(k) . If TnOFF
(k+ 1) <

TmaxnOFF
, it means that the participating nth consumer at given interval k could also

participate in load curtailment program during the interval k+ 1. If TnOFF
(k+ 1)

> TmaxnOFF
, it means that the participating nth consumer at given interval k would

not participate in load curtailment program during the interval k + 1. On other

hand, if TnON
(k + 1) >TminnON

, it means that the non-participating nth consumer

during a given interval k could participate in the load curtailment program during

the interval k + 1, because nth consumer has remained uncontrolled since TminnON
.

Conversely, if TnON
(k + 1) <TminnON

, it means that non-participating nth consumer

during the interval k would not participate again in the load curtailment program

during the interval k + 1. That is why, some participating consumer at given

interval k might not participate in the next interval k + 1.

Then, the decision that whether nth consumer participates or not is taken based

on the current status of the consumer Xn(k) and values of TnON
(k) , TnOFF

(k) and

T (k) based on the following equation:

Xn(k) =



1 ; if Xn(k − 1)=1 & TnOFF (k) < Tmax
nOFF

1 ; if Xn(k − 1)=0 & TnON (k) > Tmin
nON

0 ; if Xn(k − 1)=1 & TnOFF (k) > Tmax
nOFF

0 ; if Xn(k − 1)=0 & TnON (k) < Tmin
nON

for n = 1, 2, 3, ...N, and

k = 1, 2, 3, ...|H|

(5.10)
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Once Xn(k+1) is decided, P n(k+1) is obtained by solving eq. 4.1 using dynamic

programming [85]. The complete algorithm is explained in Algorithm. 1.

Algorithm 1 Load Scheduling Algorithm

Require: Demand reduction bids and consumer constraints.
Require: Demand reduction pattern from utility for specified time period [T1 T2]

.
Require: Initialize x(1) with ones for all N .
Require: Initialize TnOFF

(1), TnON
(1) and Tn(1) with zeros for all n .

Ensure: Total number of intervals |H| .

for k ≤ |H| do
Find total number of consumers i.e.N .
for n ≤ N do

Compute X(k + 1) , TnON
(k + 1) and TnOFF

(k + 1) for interval k + 1.
end for
for k ≤ (N − 1) do

Compute optimal solution using eq. 4.1
end for
Send list of reduction bid for all levels of power to aggregator.
Receive direct load control signal.
Update x(k) , TnON

(k) and TnOFF
(k) with X(k+1) , TnON

(k+1) and TnOFF
(k+

1) .
end for
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5.3 Optimal Load Controlling algorithm

Let Suppose, an aggregator decides to curtail power P from any nth consumer

at any given time interval k out of |H| control intervals, where each step hstep

equals to 10 minutes, during peak time period [T1 T2] . So, first of all, aggregator

identifies number of controllable loads Dn of that particular consumer by and their

respective consumer constraints by using openADR system at any given time step

k .

Initially, the load scheduling algorithm compute a column matrix of d(k) on the

basis of information received from openADR. This matrix summarizes the infor-

mation of all dn loads of nth consumer regarding their participation in direct load

control at time interval k in terms of binary values {0, 1}, such that:

Ddn(k) =



1 ; if dn
th load is participating

0 ; if dn
th load is not participating

dn = 1, 2, 3, ...Dn

k = 1, 2, 3, ...|H|

(5.11)

Then, algorithm generate list of least reduction bids by participating dn devices

of the nth consumer with optimal load schedule for control at all level of power

reduction P . For this algorithm transform this problem into multi-stage decision

problem and divide it into dn − 1 stages. algorithm solves this problem by using

dynamic programming. Thus, fn(P n
i ) is the optimal solution by the dynamic

programming that is the aggregated reduction bid by dn controllable load of nth

consumer at power reduction level Pi, such that:

fn(P n) = min
{p1,p2,..,pdn |p1+p2+..+pdn=Pn}

fn(dn−2)
(P n) + qdn(P n) (5.12)

At this moment, for all N consumer, algorithm can generate the lists of reduction

bids fn(P n
i ) by all participating dn loads for all level of power reduction P at given
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time interval. Now, aggregator can effectively decide the levels of power reduction

P 1, P 2,. . . , P n, . . . , PNwhich should be reduced by all N consumer at the given

time interval.

Let suppose, If aggregator decide to curtail power P n or simply P from particular

nth consumer at time interval k . Then, it sends control signals for switching

OFF the loads corresponding to the power level P in the list and offer fn(P ) as

reduction bid.

Finally, algorithm calculates a column matrix of d(k + 1) which contains infor-

mation of all dn loads of nth consumer regarding their participation in direct load

control at time interval k in terms of binary values {0, 1}, such that:

Ddn(k) =



1 ; if TdnOFF
(k − 1) < TmaxdnOFF

& TdnON
(k − 1) >TmindnON

0 ; if TdnOFF
(k − 1) > TmaxdnOFF

& TdnON
(k − 1) <TmindnON

dn = 1, 2, 3, ...Dn

(5.13)

If TdnOFF
(k + 1) < TmaxdnOFF

means that participating dth load of nth consumer at

given interval k could also participate in load curtailment program at next interval

k+1. Conversely, TdnOFF
(k+1) > TmaxdnOFF

means that participating dth load of nth

consumer at given interval k would not participate in load curtailment program

at next time interval k + 1. On other hand, TdnON
(k + 1) >TmindnON

means that

non-participating dth load of nth consumer at given interval k could participate

in load curtailment program for next interval k + 1, because dth load is remain

uncontrolled since TmindnON
. Conversely, TdnON

(k + 1) <TmindnON
means that non-

participating dth load of nth consumer at given interval k would not participate

again in load curtailment program at next time interval k + 1. That is why, some

participating consumer at given interval k might not participate in preceding time

interval k+1. Thus, when algorithm repeats these steps at next interval but before

that it updates the value of d(k) with d(k + 1) .
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Algorithm 2 Load Scheduling Algorithm

Require: Power to reduce, consumer constraints.
Require: Initiate d(k) , TdnON

(k) and TdnOFF
(k) with ones, TmindnON

and TmaxdnOFF

respectively.
Ensure: Total number of intervals |H| .

for k ≤ |H| do
Find total number of dn .
for dn ≤ Dn do

Compute d(k + 1) , TdnON
(k + 1) and TdnOFF

(k + 1) for interval k + 1.
end for
for k ≤ (Dn − 1) do

Compute optimal solution using eq. 5.12
end for
Send list of reduction bid for all levels of power to aggregator.
Receive direct load control signal.
Update d(k) , TdnON

(k) and TdnOFF
(k) with d(k + 1) , TdnON

(k + 1) and
TdnOFF

(k + 1) .
end for



Chapter 6

Case Studies

The proposed algorithm is investigated considering 15 large consumers who have

signed up the bilateral contracts of energy management program using DLC with

the aggregator. As per the bilateral contract, every consumer provides demand

reduction bids for five large devices which have thermal storage capability such

as air-conditioning, electric water heater and electric space-heating system. Thus,

aggregated demand response program encourages consumer to provide load re-

ductions at the prices for which they are willing to be curtailed. The aim of

this chapter is to test the applicability of the proposed algorithm by considering

different case studies.

6.1 Case Study For Optimal Load Scheduling

Algorithm

In order to test the efficacy of algorithm 1, it is assumed that utility provide a peak

demand curve to the aggregator for a time period of 8 hours ranging from 8:00am

to 4:00pm. Thus, the total number of control intervals is equal to 8×60
10

= 48. The

utility wants that the aggregator should execute it’s aggregated demand response

program to shave the peak demand. In Fig. 6.1, the solid-line shows the demand

curve of 15 consumers before the application of any load control by the aggregator.

47
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Figure 6.1: Power consumed by 15 consumers for a period ranging from
8:00am to 4:00pm

It is observed that collectively all consumers use a maximum power of 127kW

during the 25th interval. Although, the utility might be capable to provide this

much power to these consumers even during the peak hours, usually it may cost

more to the utility, because either it buys power from some other providers or

runs some inefficient generators. Thus, it is assumed that the utility is capable of

providing 100kW continuously to the 15 consumers at low cost and high power

quality during peak hours, as shown in Fig. 6.1 by dotted-line. So, utility calls the

aggregator to shave this peak demand up to it’s optimal generation capacity of

100kW . Then, the aggregator executes this algorithm for the reduction of power

and uses predefined demand reduction bids and the consumer constraints by the

15 consumers as shown in Table 6.1 and Table 6.2 respectively.

6.1.1 Simulation Results

As mention earlier, the aggregator has discretized the levels of power reduction by

1kW . It should be noted that the aggregator runs the load scheduling algorithm

at every interval and curtails power of various consumers. Moreover, at a given

interval, it also calculates the prospective optimal load control schedule for the

next interval. Fig. 6.2 shows power curtailment of each consumer for complete 48

intervals as bar graphs, representing the amount of power curtailed per interval.
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Figure 6.2: Power curtailment plots of all consumers for the given 8 hrs

Table 6.1: Demand reduction bids proposed by the consumers over corre-
sponding load reduction.
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kW Power Reduction Bid /SAR
1 0.05 0.01 0.08 0.03 0.07 0.04 0.06 0.05 0.04 0.05 0.03 0.06 0.02 0.10 0.02
2 0.09 0.03 0.12 0.08 0.11 0.07 0.09 0.09 0.07 0.09 0.06 0.10 0.07 0.14 0.04
3 0.17 0.08 0.10 0.09 0.12 0.09 0.11 0.10 0.09 0.10 0.09 0.13 0.10 0.15 0.06
4 0.18 0.08 0.15 0.11 0.13 0.11 0.13 0.12 0.12 0.13 0.10 0.13 0.07 0.13 0.08
5 0.20 0.13 0.16 0.11 0.15 0.14 0.16 0.15 0.13 0.17 0.15 0.19 0.12 0.17 0.12
6 0.24 0.14 0.22 0.19 0.22 0.19 0.20 0.20 0.18 0.21 0.18 0.21 0.18 0.24 0.17
7 0.28 0.20 0.23 0.21 0.23 0.21 0.23 0.22 0.20 0.22 0.21 0.23 0.18 0.26 0.18
8 0.26 0.18 0.24 0.21 0.26 0.22 0.25 0.24 0.23 0.24 0.23 0.25 0.19 0.26 0.24
9 0.33 0.24 0.28 0.23 0.27 0.24 0.27 0.26 0.25 0.27 0.24 0.27 0.24 0.27 0.22
10 0.36 0.28 0.33 0.29 0.30 0.28 0.31 0.30 0.29 0.31 0.28 0.33 0.26 0.30 0.25

In this figure, y − axis shows the levels of power reduction in kW and x − axis

shows the interval number.

Table 6.1 shows that each consumer offers demand reduction bidding with different

prices. The consumer are shown in Table 6.2. The algorithm has to solve for

optimal power reduction using dynamic programming while taking care of the

constraints by each consumer during all k intervals. Therefore, it can be observed

in Fig. 6.2 that every consumer has different power curtailment pattern for all k

intervals. Moreover, it can also be observed that the aggregator does not curtail

the load of 1st consumer because it is among the highest bidding consumers as

shown in Table 6.1 as well as it is also among the consumers with tight constraints
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i.e. TminnON
=40 minutes and TmaxnOFF

=10 minutes as shown in Table 6.2. On other

hand, the aggregator curtails most of the power of 2nd, 9th and 15th consumer

because they are among the consumers with least reduction bids as well as they

offer TmaxnOFF
=20 minutes and TminnON

=30 minutes as shown in Table 6.2.

It can also be observed from Fig. 6.2 that aggregator did not curtail power of

consumers continuously through out the control intervals because of their identified

consumer constraints. For instance, aggregator controls load of consumer 13 for

TMAX
13OFF

= 10 minutes at 1st interval of a peak hours and should resume it for TMAX
13ON

= 40 minutes (i.e. for next 4 intervals). Now, if aggregator need to curtail more

power for 13th consumer, then it has to wait for atleast 4 intervals before the

commencement of the next curtailment. So, at 6th interval, the aggregator again

curtails the power of the 13th consumer. Although, 13th consumer has identified

that the aggregator can curtail it’s power for total of 240 minutes per day (i.e.

24 intervals per day) as shown in Table 6.2, but even then aggregator can not

continuously curtail power of this consumer because of the constraints. Thus,

this trend of power reduction during the intervals is observed in Fig. 6.2 for all

consumers because of the predefined constraints.

Table 6.2: Consumer constraints by 15 consumers

Consumer TMAX TMIN
ON TMAX

OFF

minutes minutes minutes
1 360 40 10
2 360 40 20
3 240 30 10
4 360 30 10
5 300 30 10
6 360 40 10
7 360 30 10
8 240 40 10
9 360 30 20
10 300 40 10
11 360 40 10
12 360 30 10
13 240 40 10
14 290 30 20
15 200 30 20
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It is also observed from Fig. 6.2 that during the load control of any consumer,

the aggregator can change it’s level of curtailment in next interval. For instance,

15th consumer reduces power of 4kW for 10 minutes at 1st interval. Since, it

has identified TMAX
15OFF

= 20 minutes, so, aggregator curtails 3kW power of this

consumer during the next interval. Similarly, aggregator curtails 2kW power of

2nd consumer at 1st interval, while during 2nd interval, aggregator increased the

power curtailment up to 8kW. However, aggregator always take care of TmaxnOFF
of

all N consumers during the change in the level of curtailment at any interval.

Semi-dotted-line in Fig. 6.1 shows the aggregated consumption of 15 consumers af-

ter the optimal load control by aggregator is applied. Moreover, it can be observed

from Fig. 6.1 that the aggregated power after application of load control is lower

than the utility’s identified efficient generation capacity. Thus, it is evident from

the simulation results that the proposed algorithm successfully achieve the prime

objectives of the aggregator i.e. to maximize it’s profit by paying minimal aggre-

gated demand reduction bid to consumers and to shave the peak demand as per

utility requirement thereby providing full satisfaction to consumers by considering

consumer constraints in demand side management program.

6.2 Case Study For Optimal Load Control Algo-

rithm

The proposed algorithm was analyzed by considering a particular consumer char-

acterized as having five large devices which have thermal storage capability such

as air-conditioning, electric water heater and electric space-heating system. The

aim of this case study is to test the applicability of the proposed algorithm. It is

considered that the consumer initially send consumer constraints to the aggrega-

tor regarding their controllable devices as shown in Table 6.3. Thus, this program

encourages consumer to provide load reductions at the prices for which they are

willing to be curtailed.
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Table 6.3: Consumer constraints of 5 large devices by consumer
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minutes minutes kW SAR
1 40 10 0.5 0.05
2 40 10 0.5 0.60
3 30 10 1.0 0.12
4 30 10 2.5 0.11
5 30 10 1.5 0.12

For simulation aggregator executes the algorithm for any the nth consumer using

consumer constraints in Table 6.3 over corresponding loads at a control period

of one hour. Thus, firstly aggregator divides control period of one hour into |H|

= 6 intervals with hstep = 10 minutes. During the first interval i.e. k = 0, all

loads of consumer are ready to participate in load reduction program. However,

aggregator proposes aggregated power which should be reduce by this particular

consumer on the basis of list of reduction bids, corresponding to different levels of

power at interval k = 0, produced by the algorithm. Then, on the basis of con-

sumer constraints, algorithm updates the list of participating loads for preceding

interval and prepares itself to provide new list of reduction bids to aggregator at

the preceding interval. This process continues till the end of control period as

shown in algorithm 2.

6.2.1 Simulation Results

Table 6.4 and Table 6.5 shows different actions taken by aggregator at control

periods of two consecutive day. It also shows the effect of a particular action at

any interval over the decision for preceding interval of control period of a day.

6.2.1.1 Day First

In the control period of first day, aggregator decide to curtail power of 2.5kW

out of maximum deducible power of 6.0kW from consumer during first interval as

shown in Table 6.4. So, it switches OFF the load 4 for a bid price of 0.11SAR.

Then, algorithm updates the list of reduction bid for preceding interval on the
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Table 6.4: Simulation results of day first during control period
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P

ow
er

(k
W

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

D
ev

ic
es

P
ri

ce
(/
S
A
R

)

First Day
0.5 1 0.05 1 0.05 1 0.05 2 0.6 – – – –
1.0 3 0.12 3 0.12 1,2 0.65 – – – – 3 0.12
1.5 5 0.12 5 0.12 – – – – – – 5 0.12
2.0 1,5 0.17 1,5 0.17 – – – – – – – –
2.5 4 0.11 3,5 0.24 – – – – 4 0.11 3,5 0.24
3.0 1,4 0.16 1,3,5 0.29 – – – – – – – –
3.5 3,4 0.23 1,2,3,5 0.89 – – – – – – – –
4.0 4,5 0.23 – – – – – – – – – –
4.5 1,4,5 0.28 – – – – – – – – – –
5.0 3,4,5 0.35 – – – – – – – – – –
5.5 1,3,4,5 0.4 – – – – – – – – – –
6.0 1,2,3,4,5 0.1 – – – – – – – – – –

Table 6.5: Simulation results of day second during control period

at k = 0 at k = 1 at k = 2 at k = 3 at k = 4 at k = 5
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Second Day

0.5 1 0.05 2 0.6 3 0.12 2 0.6 – – 1 0.05
1.0 3 0.12 3 0.12 2,3 0.72 – – – – – –
1.5 5 0.12 2,3 0.72 – – – – 5 0.12 – –
2.0 1,5 0.17 2 – – – – – – – – –
2.5 4 0.11 4 0.11 – – – – – – 4 0.11
3.0 1,4 0.16 2,4 0.71 – – – – – – 1,4 0.16
3.5 3,4 0.23 3,4 0.23 – – – – – – – –
4.0 4,5 0.23 2,3,4 0.83 – – – – – – – –
4.5 1,4,5 0.28 – – – – – – – – – –
5.0 3,4,5 0.35 – – – – – – – – – –
5.5 1,3,4,5 0.4 – – – – – – – – – –
6.0 1,2,3,4,5 1 – – – – – – – – – –

basis of current decision. It can be observed from Table 6.4 that at k = 1, load

4 is not participating as it has participated at k = 0. Because, of this maximum
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power which can be reduced by the consumer at k = 1 has reduced to 3.5kW.

Moreover, according to the consumer constraints load 4 will not participate in

load curtailment for preceding 30 minutes. So, it is also observed from Table

6.4 that load 4 is again able to participate in interval k = 4. At k = 3 and k

=4, aggregator has only one choice i.e. 0.5kW and 2.5kW respective because of

consumer constraints.

6.2.1.2 Day Second

In the control period of first day, aggregator decide to curtail power of 2.0kW

out of maximum deducible power of 6.0kW from consumer during first interval as

shown in Table 6.5. So, it switches OFF the load 1 as well as load 5 for a bid

price of 0.17SAR. Then, algorithm updates the list of reduction bid for preceding

interval on the basis of current decision. It can be observed from Table 6.5 that

at k = 1, load 1 and load 5 are not participating as they have participated at k =

0. Because, of this maximum power which can be reduced by the consumer at k

= 1 has reduced to 4.0kW. Moreover, according to the consumer constraints load

1 and load 5 will not participate in load curtailment for preceding 40 minutes and

30 minutes respectively. So, it is also observed from Table 6.4 that load 5 is again

able to participate in interval k = 4. However, load 1 is again able to participate

in interval k = 5. At k = 3 and k = 4, aggregator has only one choice i.e. 0.5kW

and 1.5kW respective because of these consumer constraints.

Thus, Table 6.4 and Table 6.5 also elucidates that on availability of controllable

load, consumer constraints and decision at previous intervals, aggregator always

has different list of reduction bids at upcoming interval.
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Conclusion

The advancements in information and communication technology and burgeoning

challenges in supply and demand of electrical power have led to the concept of

Smart Grid. Smart Grid is expected to improve the efficiency, quality, reliabil-

ity, economics and sustainability of complete Supply and Demand chain of the

Electricity. In brief, Smart Grid is an energy management system of electrical

power grid using advance data communication and networking in order to cope

with skyrocketing demand and provide economical benefit to all stakeholders.

Aggregated Demand Side Management or Aggregated Demand Response is one

of the most important management strategy that aims to balance electrical sup-

ply and demand by reducing the power demand during critical periods instead of

increasing the power generation. Efficient demand side management can poten-

tially avoid the construction of an under-utilized electrical infrastructure in terms

of generation capacity, transmission lines and distribution networks. Controlling

and influencing the energy usage can reduce the overall peak load demand, reshape

the demand curve, and increase the grid sustainability by reducing the overall cost

and carbon emission levels.

The skyrocketing advancement in smart pricing in demand response, communi-

cation and data networking and embedded systems evolve the concept of Open

Automated Demand Response (OpenADR) system for commercial and domestic

55
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buildings. This system provides incentives to customers for investing in DMS tech-

nologies that also enable them to perform demand response and encourages them

to participate aggregated demand response programs via direct load controlling.

Consumers who sign up the contract with aggregator are allowed to participate

in aggregated demand side management using OpenADR. In this program, con-

sumer transceive control signals regarding their pre-define loads using OpenADR,

and then aggregator shed consumer’s load by using optimal load scheduling strat-

egy.

As, Direct Load Control (DLC) provide utility or service provider (aggregator)

to remotely shuts down customer’s thermally controllable appliance. So, by con-

trolling the large number of electrical devices, they can reduce the overall peak

demand, reshape the demand profile, and increase the grid sustainability by re-

ducing the overall cost and carbon emission levels. DLC as energy management

strategy has been a focus of research since last thirty decades. Conventionally,

objective of the direct load control was either cost minimization of the peak load

or minimization of production cost. Even till today many researchers are studying

several direct load control techniques and algorithms for demand side manage-

ment because DLC had faced the challenge of customer acceptance i.e security of

consumer’s privacy and satisfaction.

This report proposes an algorithm for load curtailment in aggregated demand

response program. The research provides the optimized policies that an aggregator

should execute load controlling algorithm along with optimal load scheduling in

order to economically benefit itself as well as the customers and manage peak

demand during peak hours as per utility requirements.

In this report, a direct load scheduling algorithm is developed for aggregator who

can use OpenADR standard for transceiving information from consumer regard-

ing it’s participating loads and consumer constraints. The proposed load con-

trolling algorithm will enables aggregator to develop direct load control program

using OpenADR system for efficient controlling in smart grid environment. The

research mathematically formulates the generalize algorithm based on dynamic
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programming as discussed in Section 4.3. Moreover, Algorithm consider consumer

constraints and also allow every consumer to bid price for it’s participating devices

on the basis of it’s utilization and importance. The simulation results in Section

6.2 shows that this algorithm is able to effectively schedule the participating de-

vices even with tight constraints and generate list of reduction bids and available

devices for all possible levels of power reduction for aggregator.

Furthermore, report also presented an algorithm for load scheduling based on

dynamic programming in an aggregated demand response program. Algorithm

provides an optimal solution by using the proposed mathematical framework for

aggregated load scheduling discussed in Section 4.2. This algorithm takes into ac-

count the bilateral contract between the aggregator and end-user for curtailment

of load over their energy bidding. This proposed algorithm fulfils objectives of

utility by minimizing demand during the peak hours. It also helps the aggregator

in maximizing it’s profit. Moreover, it satisfies the consumer by providing high

quality and low-cost power and incentives for load reductions with mutual agree-

ments. The simulation results shown in Section 6.1 proves that the algorithm is

able to achieve all the objectives effectively for a large number of consumers.

In Short, these algorithms collectively allow aggregator to achieve prime objectives

of demand side management that includes revenue maximization of aggregator,

minimization of peak demand during peak, minimization of operational cost of

utility, and provide personal security and satisfaction to consumer.

Recommendations: Since, Pakistan Electrical Industry reviving their electrical

power grid. So, it would be recommended that they should:

• Deploy smart meters at houses that contain flexible communication modules

and advance home-controlling system.

• Introduce price-responsive tariffs in wholesale energy market.

• Motivate entrepreneurs for installation of distributed generators.

• Instead of load shedding, deploy direct load control in offices, malls, shopping

centers, markets and other large consumers.

• Make retail energy market transparent to consumers.
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• Ensure sincerity and commitment towards implementation of Smart Grid

among all stakeholders.

• Introduce Aggregators to provide demand response program to their con-

sumers.

If Pakistani power industry try to implement these recommendations, then it

surely make Pakistani grid sustainable, reliable and provide high quality power

to their consumers. This seems to be large capital investment in Electrical Power

Industry. But, this investment will benefit the nation for long run and will help

in over coming the current energy crises.

Future Work: Following are few major areas of future research in aggregated

demand response:

• Suitable state estimation method by incorporating a large amount of data

from modern measurement devices.

• Investigating and determining customer flexibility.

• Reduce the consequences of uncertainty from both stochastic power produc-

tion and consumption.

• The wide area situational awareness and societal acceptance.

• Fast fault location identification.

• Investigating and determining network margins under stochastic power pro-

duction and consumption.

• Enhance network-monitoring capability.

• The evaluation of the impact and of the future control actions.

• Predict limitations of control actions taken in the distribution network.

• Defined and investigated control actions (availability and its time depen-

dency).

• The evolution of the impact of communication architecture and data trans-

mission protocols on the dynamics of control loops.

• Development of simulation platform.

• Development of dynamics of models of microgrids and/or DG units,

• Methods of compensations of delayed or lost data from instrumentation.
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