
EFFICIENT IMPLEMENTATION OF SECURE HASH

ALGORITHM (SHA-3) CANDIDATE SKEIN USING

CAVIUM NETWORKS MULTIPROCESSOR PLATFORM

Submitted By

Aisha Malik

2010-NUST-MS-PhD-Elec(Comm-N)-05

Supervisor:

Dr. Arshad Aziz

Thesis Submitted In partial fulfillment to the requirements for the award of

the degree of Master of Science in Electrical Engineering

With Specialization in Communications

at the

Department of Electronics and Power Engineering

Pakistan Navy Engineering College, Karachi

National University of Sciences and Technology,

H-12, Islamabad, Pakistan

December 2012

ii

iii

iv

© Copyright by Aisha Malik

December 2012

All rights reserved

v

Dedicated to my loving family and friends

vi

ACKNOWLEDGMENTS

All praise is to Allah, who bestowed upon me with the opportunity to acquire higher

education. Every moment of my life is an utter depiction of his mercy. He has showered

upon me the blessings more than I deserved.

This work was a critical challenge because of very little help available for the platform,

lack of programming skills and the use of Linux for the first time. All these were required

to work on this research that I didn’t have any background of. It is with Dr. Arshad’s

continuous support that kept me motivated. It was an honor to work with him. I would to

like to thank my GEC members, Dr. Pervez Akhtar, Dr. Athar Mahboob and Dr. Khawaja

Bilal Mehmood for being cooperative through their busy schedules.

I would like to pay my gratitude to Abdul Qadeer, Asad Ather, Ayaz Khan and all those

who shared their knowledge with me. Their help came to me as a mercy from Almighty

Allah through toughest times. I am grateful to all of them for not turning me down when I

approached them for guidance. It has improved my faith in Allah.

I am thankful to my youngest sister who has been with me at all times. Last but not the

least I am extremely grateful to my parents without whom I wouldn’t have been able to

achieve any of the goals successfully.

vii

ABSTRACT

Hash algorithms are one of the cryptographic primitives and play a key role in the

security of every day applications that require data encryption, message authentication,

message integrity and non-repudiation. The current Secure Hash Standard (SHS)

followed by the IT industry worldwide is defined by National Institute of Standards and

Technology (NIST). However, recent developments in cryptanalysis on SHA-1 and SHA-

2 have rendered SHS’s security at stake. As a response, NIST organized a public hash

function competition in 2007. Since the announcement of third round results, the five

candidates competing for the SHA-3 title are under continuous public evaluation from

security, performance, flexibility and simplicity perspective.

Skein is one of the five candidates that are being subjected to test analysis and

performance evaluation on various software and hardware platforms. This work

investigates the performance of sequential and parallel processing of Skein on two

platforms that have not been explored yet: Intel core-i5 2450M processor and Cavium

Networks CN5860 OCTEON Plus processor. Conventional Skein has been implemented

for its evaluation using single core. However, to explore its performance using multiple

cores, parallel processing algorithm has been designed and implemented on the two

platforms using multithreading. Hash tree structure has been used for data independency.

TABLE OF CONTENTS

LIST OF FIGURES .. 3

LIST OF TABLES .. 4

1 INTRODUCTION ... 5

1.1 Applications: .. 6

1.2 Scope of Thesis: ... 7

1.3 Chapter Organization: .. 7

2 SKEIN – SHA 3 CRYPTOGRAPHIC HASH ALGORITHM .. 8

2.1 Threefish: ... 9

2.1.1 Mix and Permutation: ... 9

2.1.2 Key schedule: .. 12

2.2 Unique Block Iteration: .. 13

2.3 Tree- hashing: ... 15

3 LITERATURE REVIEW .. 18

3.1 Hardware Implementations: ... 18

3.2 Software Implementations: .. 19

4 TARGET PLATFORMS .. 21

4.1 The Intel core-i5 processor:.. 21

4.2 OCTEON Plus processor: .. 21

4.2.1 Simple Executive .. 24

4.2.2 SMP Linux .. 24

5 DESIGN AND IMPLEMENTATION ... 25

5.1 Design Methodology .. 25

5.1.1 Sequential processing of Skein ... 25

5.1.2 Parallel processing of Skein .. 26

5.2 Implementation: ... 28

2

5.2.1 Intel Core i5 .. 28

5.2.2 OCTEON evaluation board CN5860 .. 28

6 PERFORMANCE RESULTS .. 40

7 CONCLUSION AND FUTURE WORK .. 43

Bibliography ... 44

3

LIST OF FIGURES

Figure 2.1: Matyas-Meyer-Oseas Construction diagram ..8

Figure 2.2: First four rounds of Threefish-256 block cipher ..10

Figure 2.3: The MIX function ... 11

Figure 2.4: Tweak fields ..12

Figure 2.5: UBI Chaining Mode of message M ..14

Figure 2.6: UBI stages [7] ...15

Figure 2.7: A Merkle tree structure [8] ...16

Figure 2.8: Skein Tree structure for different Tree parameters [8]17

Figure 4.1: OCTEON Plus Evaluation board Block diagram [4]22

Figure 4.2: Different runtime environment choices ..23

Figure 5.1: Hash-Tree model for 16 core parallel processing ...27

Figure 5.2: The CN5860 OCTEON Evaluation board [4] ..33

Figure 5.3: Hardware configuration –Connections to Development target33

4

LIST OF TABLES

Table 2.1: Number of rounds for different Skein variants ..9

Table 2.2: Rotation constants for each Nw ... 11

Table 2.3: Values for word permutation ..12

Table 2.4: tweak field values ..13

Table 2.5: Type field values ..14

Table 2.6: Configuration string field values ...15

Table 2.7: Hash-Tree mode parameters ..16

Table 5.1: Layout of 1GB compact flash ..31

Table 6.1: Sequential Processing of Skein-256 on two platforms40

Table 6.2: Parallel processing of Skein-256 ...41

Table 6.3: Performance comparison in terms of throughput ...42

5

1 INTRODUCTION

Rapid advancement in technology has completely transformed the way we communicate

today. Modern technologies, on one hand, have made communication quick and

instantaneous while on the contrary they have made it insecure and vulnerable to various

threats as well. Trade-offs and compromises are made when dealing with such situations

but in communication, security aspect cannot be compromised at any cost. When

communication takes place via any medium, the major security concerns are:

1. The message communicated is not being overheard by an intruder. If, in any case,

a trespasser manages to hear the conversation, he must not be able to decrypt it.

This can be prevented by using encryption and decryption algorithms.

2. Even if an intruder is successful to eavesdrop, he should not be able to modify the

message before it reaches the intended recipient.

3. An intruder or opponent must not succeed in faking the sender’s identity or

pretend to be the originator of the message.

4. In a situation where the second party is the opponent, he must not have any way

of refuting the delivery or transmission of the message or that any communication

was taking place. Digital signatures are a means to address this issue.

Thus, in technical terms, a security system or cryptographic system is complete if it caters

to our security concerns of confidentiality, Integrity, Authenticity and Non-repudiation.

Cryptographic algorithms that address above security issues are called cryptographic

primitives. Cryptographic Hash algorithms are the key primitives to security algorithms

and form the foundation for almost every security protocol used in information

infrastructure. These primitives when combined together form a cryptographic system.

The input to a simple hash function is variable argument known as Message. The output

6

it returns is of fixed size called Message Digest. For hash function to qualify as a

Cryptographic hash function, additional criteria need to be satisfied.

First, given the message digest, it must be impractical to calculate the input message that

generated that digest. This is known as Pre-Image Resistance. Second, given one fixed

input message, it must be impractical to find another input message that results in the

same message digest as that of the first input message. This property is known as second

pre-image resistance. Third, it must be computationally impractical to find two arbitrarily

input messages that result in the same message digest. This property is known as collision

resistance. Last, its performance must be practically efficient [1].

In recent years, cryptanalysts have successfully attacked hash algorithms that are widely

used by the IT industry, thus rendering the industry’s integrity at stake. Collisions have

been found in MD4, MD5 and SHA-0 [2] and published against SHA-1. This appealed

National Institute of Standards and Technology (NIST) to review and evaluate the status

of their currently approved hash algorithms. A thorough evaluation led to the decision of

developing a new standard hash algorithm through a public competition similar to the one

held for the development of Advanced Encryption Algorithm (AES). NIST revised its

requirements and evaluation criteria and officially announced the public competition on

2nd November, 2007 for the creation of a New Cryptographic Hash function that would

be entitled as SHA-3 family. Since then, the competition has progressed through three

rounds. NIST accepted sixty-four submissions by 31st October, 2008, out of which fifty-

one advanced to the initial round in December, 2008. The entries reduced to fourteen in

number in the second round in July, 2009. The third round resulted in five final

candidates to compete for the SHA-3 title. The competition is scheduled to end in 2012

with the selection of a winning hash function that would be entitled as SHA-3 [3]. The

five finalists are Keccak, JH, Grostl, BLAKE and Skein.

1.1 Applications:

Cryptographic Hash algorithms have wide applications in the IT industry. They can be

7

used for the purpose of constructing digital signatures, message authentication codes and

secure password log – in [3]. They also act as a prime building block in authentication

protocols and are employed in the development of encryption algorithms.

1.2 Scope of Thesis:

The primary purpose of this thesis work is to exploit a novel multiprocessor platform

Cavium Networks OCTEON Plus that is available in the college since 2010. The resource

has been availed to make a software implementation of Skein on the untested platform for

experimental purposes. A second multiprocessor platform, Intel Core-i5 has also been

used for the software implementation of Skein using C language. Intel core-i5 is in the

market for quiet long but is still unproven for Skein performance whereas OCTEON is a

novel platform in the market that is yet to be explored for its multiprocessing features [4].

1.3 Chapter Organization:

CHAPTER 1 provides with an introduction to the security concerns in communication

and the basis of cryptographic hash functions. It then gives an overview of applications of

hash function and the scope of Thesis. CHAPTER 2 elaborates on the subject Hash

function algorithm Secure Hash Algorithm (SHA-3) candidate Skein, discussing its core

components in detail. CHAPTER 3 discusses important contributions to the performance

evaluation of Skein since its publication. This includes both hardware and software

implementations. CHAPTER 4 is a brief description of Intel’s core-i5 and Cavium

Networks CN5860 OCTEON Plus platform relevant to thesis work. CHAPTER 5

describes the design methodology used for the sequential and parallel implementation as

well as the step by step implementation procedure of the algorithm on the two platforms.

In CHAPTER 6, the results obtained from the work are presented. CHAPTER 7

concludes the thesis work providing with future work to improve the acquired

accomplishment.

8

2 SKEIN – SHA 3 CRYPTOGRAPHIC HASH

ALGORITHM CANDIDATE

Skein is among the final candidates that have reached to the final round of NIST SHA-3

cryptographic hash function competition. Skein forms a family of cryptographic hash

functions with three standard variants: Skein-256, Skein-512 and Skein-1024 where 256,

512 and 1024 are the internal state sizes in bits as explained in section 2.1. Skein consists

of three elements, Threefish, UBI and an Optional argument system [5].

Threefish is the core of Skein hash function. It is a tweakable block cipher based on

Matyas-Meyer-Oseas (MMO) construction as in figure 2.1 with additional features of

Unique Block Iteration (UBI) and Optional Argument System. An MMO construction

takes a message Mi of n bits as an input plaintext P to the block cipher and the last output

hash value Hi-1 as the key K and gives a hash value Hi for the given Mi as its hash value

using

 iiHi MMEH i ⊗= −)(1

where E can be any block cipher. Below is a description of two of the Skein elements.

 P

K C Hi-1

Mi

Hi

Figure .: Matyas-Meyer-Oseas Construction diagram

(1)

9

2.1 Threefish:

The core of Skein is Threefish, a Tweakable block cipher. It is a compression function

that takes fixed size blocks of Nb bits as input. It is defined for three standard block sizes

256 bits, 512 bits and 1024 bits according to the NIST requirements [6]. These are known

as the internal state sizes. Additionally a block cipher key IV and a tweak T are also

required as inputs to the compression function. The key is the same size as the input

message block whereas tweak is always a 128 bit value.

Threefish is sequential in nature. It performs the MIX and PERMUTE operations for a

number of rounds. For Skein-256 and Skein-512, the number of rounds Nr = 72 and for

Skein-1024, Nr = 80 as in Table 2.1. Figure 2.3 shows a detailed working of Threefish

block cipher for Skein-256. The message block which in case of Skein-256 is 256 bits, is

further divided in to unsigned 64 bit words Nw. These inputs are initially added with the

block cipher key also known as initialization variable which is also in 64 bit words.

Table .: Number of rounds for different Skein variants

2.1.1 Mix and Permutation:

A MIX function operates on two 64 bit words x0 and x1. Within each MIX function are

the operations of simple addition, left-shift-rotate and XOR. The bits of input are shift-

rotated to the left by a constant that is different for Nw as given in Table 2.2. The MIX

function returns two 64 bit words using the following equations:

Block/key

Size

Number of

Words

Nw

Number of

Rounds

Nr

256 4 72

512 8 72

1024 16 80

10

() 64
10 2mod0 xxy +=

()0),8mod(11)(yRxy jd ⊗<<<=

Addition of

IV/Subkey 0

MIX Function MIX Function

Permutation

MIX Function MIX Function

Permutation

MIX Function MIX Function

Permutation

MIX Function MIX Function

Permutation

Addition of

Subkey 1

 Figure .: First four rounds of Threefish-256 block cipher

(3)

(2)

11

Table .: Rotation constants for each Nw

Nw 4 8 16

j 0 1 0 1 2 3 0 1 2 3 4 5 6 7

d =

0 14 16 46 36 19 37 24 13 8 47 8 17 22 37

1 52 57 33 27 14 42 38 19 10 55 49 18 23 52

2 23 40 17 49 36 39 33 4 51 13 34 41 59 17

3 5 37 44 9 54 56 5 20 48 41 47 28 16 25

4 25 33 39 30 34 24 41 9 37 31 12 47 44 30

5 46 12 13 50 10 17 16 34 56 51 4 53 42 41

6 58 22 25 29 39 43 31 44 47 46 19 42 44 25

7 32 32 8 35 56 22 9 48 35 52 23 31 37 20

The output of MIX function is fed to the word permutation function. As given in Table

2.3 below, permutation is different based on the value of Nw. For example, for Nw=4, the

output of MIX function y1 is swapped with y3.The output of permutation is the output of

a single round. After every Nw rounds, a subkey is added to the output of the round. For

Nw=4, a total of 18 subkeys are required for Nr =72. The subkeys are calculated using the

Key-scheduler.

Rr,i <<<

x0

 y0 y1

x1

Figure .: The MIX function

12

Table .: Values for word permutation

 i =

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 4 0 3 2 1

Nw = 8 2 1 4 7 6 5 0 3

 16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

2.1.2 Key schedule:

The key-schedule requires an initial block cipher key also known as initialization variable

IV and a tweak to calculate the subsequent subkeys. The tweak is a 128 bit value that is

based on several fields as shown in Figure 2.4. The only fields that change commonly are

the First, Final, Position, Type. TreeLevel field is used when using Tree hashing mode of

Skein. The key-schedule is defined as:

Where i = 0 to Nw and s = 1 to 18. Each equation results in a 64 bit value which when

combined together forms a single subkey. For each subsequent key, the above key-

schedule is used.

Final First Type BitPad TreeLevel reserved Position

Figure .: Tweak fields

(4)

(5)

(6)

(7)

96 112 120 127 0

3mod)1()1mod(),(, ++ += sNwisis tIVk

3mod)1mod(),(, sNwisis tIVk += +

3mod)1()1mod(),(, ++ += sNwisis tIVk

sk Nwisis IV += +)1mod(),(,

13

Table .: Tweak field values

Name Bits Description

Position 0-95 The number of bytes in the string processed so far (including this
block)

Reserved 96-111 Reserved for future use, must be zero

TreeLevel 112-118 Level in the hash tree, zero for non-tree computations

BitPad 119 Set if this block contains the last byte of an input whose length was
not an integral number of bytes. 0 otherwise

Type 120-125 Type of the field (Config, Message, output, etc.)

First 126 Set for the first block of a UBI compression

Final 127 Set for the last block of a UBI compression

2.2 Unique Block Iteration:

For messages longer than Nb bits, Skein uses UBI chaining mode. The message M is

divided in to n message blocks M0, M1, …, Mn-1 and processes the message block wise. It

requires three inputs: A message block of size Nb bits, an initial chaining variable IV and

a starting tweak value T that is determined by the UBI as explained in the previous

section. Figure 2.5 explains the processing of three block message. As the figure shows,

the output of the last message block serves as the chaining variable for the next message

block. The number of message blocks is determined by the size of the message M.

Additional zeros can be padded to the message block to make its size equal to Nb bits for

Threefish processing. The Type field in the Tweak value changes according to the type of

input being handled. For example, in figure 2.5, the input is messages so the Type field in

tweak used is Tmsg. When the UBI processes the message, it is known as Message UBI

and the Type field for all the message blocks remains the same in their respective tweak

values throughout the Message UBI. Other Skein type values are given in table 2.5.

14

Table .: Type field values

Symbol Value Description

Tkey 0 Key (for MAC and KDF)

Tcfg 4 Configuration Block

Tprs 8 Personalization string

TPK 12 Public Key (for digital signature hashing)

Tkdf 16 Key identifier

Tnon 20 Nonce (for stream cipher or randomized hashing)

Tmsg 48 Message

Tout 63 Output

Two additional stages are used before and after Message UBI known as Configuration

UBI and Output UBI respectively as shown in figure 2.6. Configuration UBI takes a

configuration string C of 256 bits as input. The string is a constant that has different fields

as given in Table 2.7. Tree field values change when tree-hashing mode is used and

remains 0 otherwise. The Ouptut UBI stage is used after the Message UBI that transforms

the output of Message UBI in to desired number of bits. The output of this stage is the

actual Message Digest.

Figure .: UBI Chaining Mode of message M

P

K C

 P

K C

P

K C

 T1
T0 T2

IV

T

M0 M =

 =
I I M1 M2 I I

15

Figure .: UBI stages [7]

Table .: Configuration string field values

Offset Size in

Bytes

Name Description

0 4 Schema identifier The ASCII string “SHA3” =(0x53,0x48,0x41,0x33),
or ToBytes (0x33414853,4)

4 2 Version number Currently set to 1:ToBytes(1,2)

6 2 Reserved, set to 0

8 8 Output Length ToBytes (No, 8)

16 1 Tree leaf size en-
coding.

YL

17 1 Tree fan-out encod-
ing.

YF

18 1 Max. tree height YMAX

19 13 Reserved, set to 0

2.3 Tree- hashing:

As explained earlier, Skein is sequential in nature and thus, by default, processes a

message sequentially. However, for very long messages, calculating the message digest

may take long time. Skein can be used in Tree hash mode to process message blocks

simultaneously by utilizing multiple cores in a machine. For using Skein in Tree-hash

mode, the process remains the same as sequential process with the only difference of

Treelevel field in the Tweak and Tree parameters in the configuration string. The UBI

chaining mode is replaced by a Tree structure as depicted in figure 2.7. The tree hash

0

C M0 M1 M2 0

G0 G1

H

Type: Cfg Type: Msg
First: 1

Last: 0

T: T: T: T: T:

Type: Msg
First: 0

Last: 0

Type: Msg
First: 0

Last: 1

Type: Out

16

mode of Skein is based on Merkle Tree structure [2]. The tree is processed from top to

bottom. Each node in the tree takes three inputs, IV, M and T. The input message is

divided into Nb bit blocks and is distributed to the leaf nodes. The values of tree

parameters Leaf size encoding, Fan-out encoding and Maximum tree height construct the

tree structure and it varies according to these values. The definitions of tree parameters

are given in table 2.7. Tree structures for different tree parameters are given in figure 2.8.

Figure .: A Merkle Tree Structure [8]

Table .: Hash-Tree mode parameters

Symbol Description

YL
The leaf size encoding. Number of blocks processed by each leaf node 2Y

L

(YL
≥ 1)

YF The fan-out encoding. The fan-out of a tree is 2Y
F with YF ≥ 1

YMAX The maximum tree height; YMAX ≥ 2

Nl Leaf size, Nb2 YL

Nn Node size, Nb2 YF

message

17

(a) (b)

(c) (d)

Figure .: Skein Tree structure for different Tree parameters [8]

message

message message

message

YF=YL=1
YF=2

YL=1

YF=1

YL=2
YF=1

YL=2

18

3 LITERATURE REVIEW

NIST holds performance of a hash function as the second most important criterion for its

evaluation after security [9]. This includes computational effectiveness, which not only

denotes the data rate of the algorithm but also memory requisites such as the code size

and the random-access memory (RAM) requirements for the purpose of software

implementations, and the gate-counts for hardware implementations. In this regard

performance evaluation of all the candidates is being continuously carried out on

software, hardware and embedded platforms before the announcement of the final result

in 2012. Continuous research on optimization techniques and cryptanalysis are under way

to help NIST select the right SHA-3 candidate.

3.1 Hardware Implementations:

Various hardware implementations targeting on high-speed performance and compactness

of required area have been proposed for Skein. High-speed hardware implementation has

been proposed by Stefan Tillich in [10] for all the three variants of Skein on 0.18 µm

standard-cell implementation and two modern FPGA architectures: Xilinx Spartan 3 and

Xilinx Virtex 5. 0.18 µm standard-cell library was used for ASIC synthesis which re-

sulted in throughput of 0.882 Gb/s for small Skein-256 and 1.762 Gb/s for fast Skein-

256. On Xilinx Spartan 3, it came out to be 0.669 Gb/s and on Xilinx Virtex 5, 1.751

Gb/s.

Skein-256-256 is also implemented using Verilog on standard-cell library of 0.35 µm

[11]. It has a datapath of 64 bits including a temporary 64-bit register, a register file with

a size accommodating 16 words, a control FSM, and an AMBA APB interface of 32 bits.

The 64-bit adder has been implemented in a standard fashion with Verilog’s built-in ’+’

operator so that synthesizer can allow greatest flexibility for optimization. The results

revealed an area of 12,890 GEs and throughput of 19.8 Mbits/sec.

19

The work in [12] focuses on low budget a cryptographic solution that enables investiga-

tions for possible optimizations for area efficient implementations, and to neglect pure

high-throughput considerations. It showed that Skein is the lowest area efficient candi-

date as well as least performance efficient as compared to JH and Grostl with areas 1621,

1018 and 1722 slices respectively and throughputs 3178, 5416 and 10276 Mbits/sec re-

spectively.

A low-area coprocessor has been designed on a Field-Programmable Gate Array (FPGA)

in [13] for light-weight implementation of Skein-512-512. The architecture is prototyped

on a Xilinx Virtex-6 device and produced result with an area of 132 slices and throughput

of 80 Mbits/s. This work concluded that Skein has an upper edge over other SHA-3 final-

ists in that the same coprocessor allows one to encrypt or hash a message.

3.2 Software Implementations:

Several Software implementations of Skein have been reported using C#, .Net and Java

on Skein’s official website. In C, Skein has been efficiently implemented on Intel Core 2

Duo 2GHz processor [14]. This implementation revealed a throughput of 4.9Mbytes per

second. Skein and MD6 has been implemented on NVIDIA graphics card and on a single

core machine using CUDA-C to exploit the parallelism feature of the hash function using

Tree Hashing in [1]. The SHA-3 candidates of round-2 including Skein have been im-

plemented on Cell Broadband Engine (Cell) and NVIDIA graphics Processing Unit

(GPU) for performance estimates [15]. A throughput of 1.9 Gb/sec is reported for Skein-

512 on SPE architecture and 22.1 Gb/sec for the same on GPU architecture. Skein has

been implemented using Spark language that is the subset of Ada. The implementation is

known as SPARKSkein. The results have been compared with that of the C on the same

Core i7 860 processor 2.8 GHz machine running 64bit GNU/Linux [16].

An efficient algorithm for implementing parallelism has been proposed in [17]. This pa-

per describes sequential and parallel algorithms for Skein cryptographic hash functions,

and the analysis, testing and optimization. Three possibilities to address parallelism have

20

been discussed that includes Lower-level node priority, Higher-level node priority and

Priority to a fixed number of nodes of higher level and same level. However, the first of

these possibilities has been implemented using JAVA. It is implemented using the tree-

hash approach by utilizing multithreads. The testing platform used was Dell Latitude

D830, Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20Ghz, 2GB RAM, L2 cache size 4MB

with a Ubuntu 9.10 operating system. On the 64-bit processor, Skein-256 turned out to be

slowest of all the Skein versions Skein-1024 and Skein-512. Also, the tests showed that

the one thread per node strategy is not efficient though there is maximum utilization of

the CPU. After optimization, for a 700MB file, results showed speeds of 27 seconds for

JAVA sequential version and 20 seconds for Skein java parallel version. These results

when compared to the C reference implementation of Skein showed that JAVA tree hash

mode implementation was slower. On the other hand, their parallel implementation using

thread pool is faster than the C implementation. Such implementations are useful for

high-end applications which require efficiently tuned implementations on multi-core tar-

get processors.

To the best of our knowledge, there is no previous work implementing Skein on core-i5

and CN5860 OCTEON Plus.

21

4 TARGET PLATFORMS

4.1 The Intel core-i5 processor:

The Intel i5-2450M is a Dual-Core Laptop processor that uses a 64 bit instruction set. It

has 4 threads and 2 cores. It has a maximum clock speed of 2.50 GHz. The processor has

built-in over-clocking which increases the maximum clock speed to 3.10 GHz. The GPU

model is HD Graphics 3000 with clock speed ranging from 650 MHz – 1300 MHz.

The RAM installed on the system is 4 GB but is capable of accommodating 16 GB of

RAM. Memory supported is DDR3-1066 and DDR3-1333. The cache size is 3MB. The

processor provides 2 memory channels, and has a maximum memory bandwidth of 21.3

GB/s.

4.2 OCTEON Plus processor:

OCTEON Plus CN5860 processor belongs to the family of OCTEON Plus CN58XX. It

has 16 cnMIPS cores, frequency of 800MHz and supports a maximum of 25.6B of In-

structions per second. The cnMIPS cores use the MIPS64 v2 instruction set, supporting

both 32-bit and 64-bit processing. On the OCTEON processor, cache only supports

access to system memory (DRAM) and not I/Os. The purpose of cache is to help in en-

hancing the system performance by means of core local or chip local fast memory which

can save a copy of data accessed recently. The cache hierarchy includes:

� L2 cache ranging from 256 KB to 2 MB shared by the cores and I/O

subsystem

� L1 instruction cache, 32 KB per core

� L1 data cache 8 KB to 16 KB per core

22

OCTEON processor is integrated with multiple hardware units that are used to reduce the

load of cores thereby reducing overhead and complexity. In addition, these hardware

units possess Dedicated DMA Engines to access memory. Cores and hardware units

interconnect using high-speed connections. These connections operate at the same

frequency as the cores. These connections are a collection of buses. The advantages of

the hardware structure is that it enables an adaptable software structure design and at the

same time allows for core grouping as required in order to increase performance. In

addition, flexible software architecture, standard MIPS64 ISA and industry standard

Toolchains helps in minimizing software development complexity. Modifications have

been made in industry standard Toolchains (GCC, GDB) and operating systems

(including SMP Linux) so that OCTEON’s processor’s multiple cores, special Cavium

Networks specific instructions and hardware acceleration units can be utilized. C/C++

codes can be written easily while reusing the legacy software. Programs written for

MIPS64 and MIPS32 ISA are inherently supported.

A Cavium Networks Software Development Kit (SDK) is provided. The SDK comprises

Figure .: OCTEON Plus Evaluation board Block diagram [4]

23

of GNU C/C++ compiler and other development tools, C language Application

Programmer’s Interfaces (APIs) to the hardware units, a simple executive that can

execute code on the cores without any operating system and Cavium Networks SMP

Linux. The Simple Executive provides a Hardware Abstraction Layer (HAL) in the form

of an Application Programming Interface (API) to the underlying hardware units. The

CPU registers are accessed via this thin layer of API. It offers convenience for the process

of block initialization. In addition, the hardware units can be accessed by Simple

Executive API.

Simple Executive functions and macros allow building standalone applications or they

can be run via drivers or application running on an operating system. For instance, as

soon as the booting of Linux takes place, a Cavium Networks Ethernet driver may be

initiated. In order to configure the OCTEON hardware, this driver makes use of the

Simple Executive API. Using Linux, Simple Executive User Mode applications can also

be executed supporting both 32 bit and 64 bit modes. A number of choices are available

when it comes to runtime environment. Cavium Networks supply three such

environments: Simple Executive standalone mode, hardware simulator and Linux as

demonstrated in figure 4.2.

Figure .: Different runtime environment choices

Bootloader

Linux Kernel (64-bit mode)

Use Simple Executive
register definitions to
configure interrupts

Cavium Networks Ethernet
Driver

Simple Executive User-
Mode 64-bit (SE-UM 64 bit)

Simple Executive User-
Mode: 32-bit mode (SE-UM

32 bit)

Simple Executive Standalone
64-bit mode (SE-S 64 bit)

Simple Executive Standalone
32-bit mode (SE-S 32 bit)

24

4.2.1 Simple Executive

Simple Executive is used to provide API to hardware units. It can either be run as a user

mode (SE-UM) application on an operating system for example on Linux or it can be run

as standalone (SE-S). Different application startup code (main()) when Simple Executive

is run as a user mode application.

4.2.2 SMP Linux

 In SMP (Symmetric Multi Processing), Linux may be run on or more cores. There are

two choices for file system; it can either be the tiny root embedded file system (embed-

ded_rootfs) or the large Debian file system. The root file system acts as a RAM disk

when Linux is run with the embedded root file system (embedded_rootfs). In such a case,

the ELF file is either downloaded from a host, or stored in on- board flash. When no de-

vice is attached to the OCTEON processor for storing root file system to download OC-

TEON, the embedded root file system is used. Usually, the embedded root file system

contains least number of files required. A small utility called “BusyBox” instead of the

normal Linux utilities in order to save space. The utility can be customized to add func-

tions according to the requirement of the application thus reducing the size of the execut-

able file and saving space.

The Simple Executive is different from Linux in a sense that when it is run in standalone

mode, it offers minimum overhead along with the greatest potential for scaling. Simple

Executive when run as user mode application may perform significantly slower than sim-

ple Executive Standalone.

25

5 DESIGN AND IMPLEMENTATION

5.1 Design Methodology

The main goal of this work was to design a static source code for Skein-256 for parallel

implementation that would hash portions of a large message simultaneously. Utilization

of multiple cores was the key objective when designing the architecture.

5.1.1 Sequential processing of Skein

In order to process an input message sequentially, it is divided into equal blocks of 256

bits Mo … Mn-1 where n is the number of blocks. UBI function is then called for each

message block. For every message block, Threefish function is called that executes the

number of rounds required for Skein-256 that is, Nr = 72.

The 256 bit message block is further divided into four blocks of 64 bits and is stored into

unsigned 64 bit arrays. This is because the maximum size that could be achieved in an

array location is 64 bit and because of the MIX operations that needs to operate on 64 bit

blocks of data. In each round from Nr = 0 to 71, a key scheduler function is called that

takes input the initial chaining variable IV and tweak T and returns eighteen subkeys for

skein-256. The first subkey is the same as the initial chaining variable IV that is

predefined. These subkeys are added to the intermediate outputs after every four rounds.

A mix function and permutation function constitutes each round. Mix function performs

the operations of addition, left-shift rotate and XOR. Number of bits left shift-rotated

depends on the rotation constants that are different for each round so a check has been

implemented here. The output of mix function forwarded for permutation. The hash

26

output is xored with original input message and the result is fed as the initial variable IV

for the next message block M1. Subsequent tweaks for the rest of the message blocks are

calculated using the tweak calculator function.

The drawback with sequential processing is that when one message block is being

processed all other successive blocks have to wait for their turn. This puts a limitation on

the usage of multiple cores because of data dependency nature of Threefish where the

processing of subsequent message blocks depends on the output hash value of the

previous message blocks.

5.1.2 Parallel processing of Skein

To address parallelism, a Merkle tree structure is exploited. Hash tree structure can be

traversed in different ways [17]. In this work, tree is traversed from top to bottom and left

to right. This method is referred to as leftmost node priority in [17].

The algorithm design is based on a static hash tree model for two fixed input message.

Figure 5.2 shows a hash tree model for input message size of 1024 bytes. As the figure

depicts, the maximum tree height and the number of nodes at each level are constant for

basic implementation. The first level starts with 16 nodes and at every successive level

the number of nodes gets halved of the previous level. The maximum tree height is 5.

The original input message is again divided into 256 bit blocks M0 – Mn-1. A group of

these blocks are fed to each node simultaneously. A single thread per node is initiated at

every level. That means, at the first level, 16 threads are initiated essentially. Each thread

invokes the sequential process for the message blocks passed as input arguments. The

output of two consecutive nodes is concatenated to form a new message which is again

fed to the higher level node. At each level, the priority starts from the leftmost node.

Same sequential process approach as mentioned above is extended towards parallelism

with the addition of multithreading. Value of leaf size encoding depends on the size of the

input message and thus increases with larger input message given a fixed number of

cores.

A thread function is invoked that takes t

this function is to divide the input message into 256 bit blocks and pass them to each

thread created in the first level of the tree. Since maximum number of cores in OCTEON

processor is 16, 16 threads are cr

input argument. Each thread executes

every level, the number of threads are halved the previous number of threads (for our

case) until one is reached.

no thread creation. For the root node, the sequential process is called in a normal way.

After the sequential process finishes,

levels of tree hashing except for the last level (root

nodes (2 in our case) to finish processing before beginning its own process. This is a

constraint to achieve maximum parallelism because ev

parent nodes have finished processing, parent nodes still have to wait for the child nodes

of predecessor parent nodes when traversing from left to right.

Figure .:

27

A thread function is invoked that takes the input message as input argument. The task of

this function is to divide the input message into 256 bit blocks and pass them to each

he first level of the tree. Since maximum number of cores in OCTEON

16, 16 threads are created where each thread must take at least two blocks

input argument. Each thread executes sequential processing for each 256 bit block.

every level, the number of threads are halved the previous number of threads (for our

case) until one is reached. This is the root node or the last level of the tree which requires

no thread creation. For the root node, the sequential process is called in a normal way.

sequential process finishes, threads join the parent thread. For the successive

except for the last level (root node), each node waits for all i

) to finish processing before beginning its own process. This is a

constraint to achieve maximum parallelism because even if the child nodes of other

parent nodes have finished processing, parent nodes still have to wait for the child nodes

of predecessor parent nodes when traversing from left to right.

: Hash-Tree model for 16 core parallel processing

e as input argument. The task of

this function is to divide the input message into 256 bit blocks and pass them to each

he first level of the tree. Since maximum number of cores in OCTEON

least two blocks as

sequential processing for each 256 bit block. At

every level, the number of threads are halved the previous number of threads (for our

This is the root node or the last level of the tree which requires

no thread creation. For the root node, the sequential process is called in a normal way.

. For the successive

each node waits for all its child

) to finish processing before beginning its own process. This is a

en if the child nodes of other

parent nodes have finished processing, parent nodes still have to wait for the child nodes

Tree model for 16 core parallel processing

28

5.2 Implementation:

The implementation on the two unexplored platforms is not for optimization but only for

demonstrative purposes and testing the performance of Skein.

5.2.1 Intel Core - i5:

The set up of Intel Core i5 serves two purposes: For the implementation and analysis of

Skein-256 and second, to serve as a cross- development host system for OCTEON

embedded platform which is called as the development target. Linux operating system

Fedora 17 is used with kernel 2.6. For compiling, GNU-GCC compiler is used. Twenty

samples for both sequential implementation and parallel implementation have been taken.

5.2.2 OCTEON evaluation board CN5860:

For the implementation on OCTEON evaluation board CN5860, an i386 or x86_64

machine is required that will serve the purpose for the cross-development platform. This

machine is referred to as development host whereas OCTEON evaluation board is

referred to as the Target host. The development host used for this research is the same

Intel core i5 machine with OS 64 bit Fedora 17. As explained in Chapter 4, Cavium

Network provides different runtime environment choices. Here, SMP Linux Runtime

environment is used. Therefore, the following steps for the implementation are according

to the SMP Linux configuration and the sequential and parallel programs designed above

are cross-compiled using the Linux development tools. The implementation requires:

1. Installing OCTEON-SDK

2. Build OCTEON Linux

3. Copying it to compact flash and copying the program to CF

4. Setting up the EVB

5. Booting the board and downloading the program

1. Installation of SDK:

The sequential and parallel Skein codes are built on the development host and then down-

loaded to the development target connected to the development host through serial cable.

For this, Software Development Kit (SDK) that comes with the OCTEON evaluation

29

board is installed on the development host. The SDK has two rpm packages: the base

SDK (OCTEON-SDK-*.i386.rpm) (OCTEON-SDK-2.3.0-427.i386) and OCTEON Li-

nux (OCTEON-LINUX-*.i386.rpm). The base SDK package includes:

� GNU based tool chain with linker, compiler and generic libraries.

� OCTEON simulation software with performance measurement utilities

� A Cavium Networks Simle Executive software for easy application development.

� Example applications

The OCTEON Linux package contains OCTEON Linux that is ported to the OCTEON

processor. OCTEON_SDK is installed by running, as root, the command:

rpm -i /media/OCTEON-SDK/*.rpm

The SDK is by default installed in the directory: /usr/local/Cavium_Networks/OCTEON-

SDK which is created during installation. This directory is referred to as $OCTEON-

SDK. OCTEON-SDK is an environment variable and $OCTEON-SDK refers to the val-

ue of the environment variable. The working directory is changed to $OCTEON-SDK

and a script ‘env-setup’ is executed that sets essential environment variables. The follow-

ing variables are set by the env-setup script:

� OCTEON-SDK

� The PATH

� OCTEON_MODEL

� OCTEON_CPPFLAGS_GLOBAL_ADD

The env-setup script requires the value of a single argument: OCTEON_MODEL. The

value of this argument is chosen from a list of values available in a file $OCTEON-

SDK/octeon-models.txt. The OCTEON Evaluation board model used in this work is

CN5860 so the value of OCTEON_MODEL from the text file is specified as OC-

TEON_CN58XX. The env-setup script is sourced (source env-setup) to modify the envi-

30

ronment variables of the current shell (usually bash). As a result, all shells started from

this shell inherit the shell’s environment variables.

2. Build OCTEON Linux kernel:

OCTEON Linux kernel is built for the Target development on the host development. An

ELF file (vmlinux.64) is created and stored in on-board flash. Since embedded systems

do not have built-in memory like hard disks, linux is booted from this ELF file. Every-

time the development target is powered off, the copy of the file system in the memory is

deleted. Thus, vmlinux.64 is booted from the onboard flash whenever the target devel-

opment is powered on again. Following command is used to build OCTEON Linux ker-

nel:

$ cd $(OCTEON-SDK)/linux

 $ make -s clean

 $ make -s kernel

 Successful built shows the following output:

Preparing...

OCTEON-LINUX

The Linux Kernel has been successfully installed under the direc-

tory

/usr/local/Cavium_Networks/OCTEON-SDK/linux

Please refer to file:///usr/local/Cavium_Networks/OCTEON-

SDK/docs/html/linux.html

on how to use Linux on the OCTEON.

This build takes about 20 minutes. The Makefile creates an ELF file at

$OCTEON-SDK/linux/kernel_2.6/linux/vmlinux.64 which can be run on the OCTEON

processor. This ELF file contains the Linux kernel and a filesystem which runs in memo-

ry only. This filesystem is the embedded root filesystem (embedded_rootfs).

3. Copying vmlinux.64, file system and the source code to Compact Flash:

A 1GB compact flash that comes with the evaluation board is organized as two PC style

31

partitions. The first partition is used for the kernel image vmlinux.64. This partition is

used by the bootloader, so it uses the FAT16 file system (vfat under Linux). The second

partition is an EXT3 file system containing the embedded root filesystem.

Partition Size File system
Target

Mount
Host Mount Description

0 67MB vfat /dev/sda1 /mnt/cf1
Kernel and files for the Bootloader

vmlinux.64

1 946MB ext3 / dev/sda2 /mnt/cf2 Embedded root filesystem

Table .: Layout of 1 GB compact flash

Mount points are created for the compact flash in /mnt:

 $ mkdir -p /mnt/cf1

 $ mkdir -p /mnt/cf2

Both partitions are mounted on /run/media/aisha. The Linux kernel is copied to the com-

pact flash:

 $ mount /dev/sdb1 /mnt/cf1

 $mips64-octeon-linux-gnu-strip -o /mnt/cf1/vmlinux.64 kernel_2.6/linux/vmlinux.64

 $ umount /mnt/cf1

Three tool directories are created that are commonly used in building, running, and de-

bugging applications:

$OCTEON-SDK/tools/bin

$ OCTEON-SDK /host/bin

$ OCTEON-SDK /linux/kernel_2.6

Two sets of GNU cross development tools are present in the tools/bin directory. These

tools are run on the development host to build binary files for the development target.

These tools include files and utilities that build software for the COTEON processor. The

two sets of tools are:

32

1) Simple Executive Development Tools: The mipsisa64-octeon-elf-* tools are used

to build Simple Executive applications.

2) Linux Development Tools: The mips64-octeon-linux-gnu-* tools are used to build

the Linux kernel and Linux User-mode applications.

The latter is used to cross-compile the sequential and parallel SKEIN using the GCC

utility:

/usr/local/Cavium_Networks/OCTEON-SDK/tools/bin/mips64-gnu-gcc -o outputfilename

inputfilename.gcc

A binary with the name of outputfilename is created in the working directory. For the

parallel skein, the thread library is also linked during the cross-compilation as follows:

/usr/local/Cavium_Networks/OCTEON-SDK/tools/bin/mips64-gnu-gcc -o outputfilename

inputfilename.gcc -lpthread

These binaries are copied to the CF using the commands:

$mount /dev/sdb2 /mnt/cf2

$cp outputfilename /mnt/cf2

$unmount /mnt/cf2

4. Connection to the EBT5860 Hardware:

The OCTEON 5800 target development evaluation board consists of:

1. A NULL modem serial cable to attach to the Linux development system, a

USB Flash reader/writer, and a Compact Flash card.

2. The EVB-5800-NIC4, power supply and cables

33

Figure .: The CN5860 OCTEON Evaluation board [4]

Eth Port
0
Eth Port
1

Debug Console

 Port Port

C

F OCTEON

Development Target

Serial Serial
 Port Port

Development Host Running Linux

Null

modem

serial

cable

Figure .: Hardware configuration –Connections to Development target

34

The console output for the target development is directed to UART0 on the target evalua-

tion board and is viewed on the terminal emulator, HyperTerminal. Linux connects to the

first serial port on the device /dev/ttyS0.

5. Booting from Onboard Flash

When the evaluation board is booted from the vmlinux.64 in the on-board compact flash,

Core 0 starts execution at the reset vector 0xBFC00000 (the location of the bootloader

code in onboard flash). The bootloader (U-Boot) then carries out the following steps:

1. Initializes the UART

2. Configures the DRAM controller to allow physical memory to be used

3. Relocates itself from the onboard flash to DRAM, and continues executing from

DRAM.

4. Executes the default command, if present

.U-Boot 1.1.1 (U-boot build #: 217) (SDK version: 1.8.1-290) (Build time: Dec
9
2008 - 19:22:32)

EBT5800 board revision major:2, minor:0, serial #: 2009-2.0-
00512
OCTEON CN5860-NSP pass 2.3, Core clock: 600 MHz, DDR clock: 399 MHz (798 Mhz data
rate)
DRAM: 2048 MB
Flash: 8 MB
Clearing DRAM........ done
BIST check passed.
Net: octeth0, octeth1, octeth2, octeth3
 Bus 0 (CF Card): OK

 ide 0: Model: CF 1GB Firm: 20071116 Ser#:
TSS20031090724031238
 Type: Removable Hard Disk
 Capacity: 967.6 MB = 0.9 GB (1981728 x 512)

35

The ELF file is downloaded to the specified Reserved Download Block address using the

following command. Bootloaders built with SDK 1.7 and higher allow the specified

address to be 0. When the address is 0, the default Reserved Download Block address is

selected by the bootloader.

Octeon ebt5800# fatload ide 0 $(loadaddr) vmlinux.64

After the ELF file is downloaded, the bootloader relocates it to a physical location of its

choice (creating the in-memory image).

Octeon ebt5800# bootoctlinux $(fileaddr)

ELF file is 64 bit

Attempting to allocate memory for ELF segment: addr: 0xffffffff80100000 (adjusted to:

0x0000000000100000), size 0x2045750

Allocated memory for ELF segment: addr: 0xffffffff80100000, size

0x2045750

Processing PHDR 0

 Loading 1fc4c00 bytes at ffffffff80100000

 Clearing 80b50 bytes at ffffffff820c4

Loading Linux kernel with entry point: 0xffffffff80105c70

...

Bootloader: Done loading app on coremask: 0x1

Linux version 2.6.32.27-Cavium-Octeon (root@ash) (gcc version 4.3.3 (Cavium

Inc.

 Version: 2_3_0 build 116)) #2 SMP Tue Jul 3 02:49:46 PKT

2012

CVMSEG size: 2 cache lines (256 bytes)

Cavium Inc. SDK-2.3

bootconsole [early0] enabled

CPU revision is: 000d030b (Cavium Octeon+)

Checking for the multiply/shift bug... no.

Checking for the daddiu bug... no.

Determined physical RAM map:

 memory: 0000000001171000 @ 0000000000f5f000 (usable after in-

it)

 memory: 000000000dc00000 @ 0000000002200000 (usable)

 memory: 0000000011400000 @ 0000000020000000 (usable)

Wasting 220360 bytes for tracking 3935 unused pages

Initrd not found or empty - disabling initrd

CVMX_GMXX_INF_MODE (block_id = 4) not supported on this

36

chip

Using internal Device Tree.

Placing 0MB software IO TLB between a800000002c8e000 -

a800000002cce000

software IO TLB at phys 0x2c8e000 - 0x2cce000

Zone PFN ranges:

 DMA32 0x00000f5f -

 Normal 0x000f0000 -> 0x000f0000

Movable zone start PFN for each node

early_node_map[3] active PFN ranges

 0: 0x00000f5f -> 0x000020d0

 0: 0x00002200 -> 0x0000fe00

 0: 0x00020000 -> 0x00031400

Cavium Hotplug: Available coremask 0x0

PERCPU: Embedded 10 pages/cpu @a800000002cdf000 s11264 r8192 d21504

u65536

pcpu-alloc: s11264 r8192 d21504 u65536 alloc=16*4096

pcpu-alloc: [0] 0

Built 1 zonelists in Zone order, mobility grouping on. Total pages:

128736

Kernel command line: bootoctlinux console=ttyS0,115

PID hash table entries: 2048 (order: 2, 16384 bytes)

Dentry cache hash table entries: 65536 (order: 7, 524288

bytes)

Inode-cache hash table entries: 32768 (order: 6, 262144

bytes)

Primary instruction cache 32kB, virtually tagged, 4 way, 64 sets, linesize 128 bytes.

Primary data cache 16kB, 64-way, 2 sets, linesize 128 bytes.

Secondary unified cache 2048kB, 8-way, 2048 sets, linesize 128

bytes.

Memory: 495492k/525764k available (5950k kernel code, 29796k reserved, 8763k data, 17860k

init, 0k highmem)

Hierarchical RCU implementation.

NR_IRQS:453

Calibrating delay loop (skipped) preset value.. 1200.00 BogoMIPS

(lpj=6000000)

Security Framework initialized

Mount-cache hash table entries: 256

Checking for the daddi bug... no.

Brought up 1 CPUs

NET: Registered protocol family 16

37

Not in host mode, PCI Controller not initialized

bio: create slab <bio-0> at 0

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

Switching to clocksource OCTEON_CVMCOUNT

NET: Registered protocol family 2

IP route cache hash table entries: 4096 (order: 3, 32768

bytes)

TCP established hash table entries: 16384 (order: 6, 262144

bytes)

TCP bind hash table entries: 16384 (order: 6, 262144 bytes)

TCP: Hash tables configured (established 16384 bind 16384)

TCP reno registered

NET: Registered protocol family 1

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NFSv4.1 backchannel transport module.

/proc/octeon_perf: Octeon performance counter interface

loaded

octeon_wdt: Initial granularity 5 Sec.

octeon_gpio 1070000000800.gpio-controller: probed

HugeTLB registered 2 MB page size, pre-allocated 0 pages

JFFS2 version 2.2. (NAND) Â© 2001-2006 Red Hat, Inc.

msgmni has been set to 968

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler anticipatory registered

io scheduler deadline registered

io scheduler cfq registered (default)

Serial: 8250/16550 driver, 6 ports, IRQ sharing disabled

brd: module loaded

loop: module loaded

pata_octeon_cf 1d000000.compact-flash: version 2.2 8 bit.

scsi0 : pata_octeon_cf

ata1: PATA max PIO6 cmd 900000001d000800 ctl

900000001d00080e

slram: not enough parameters.

mdio-octeon: probed

mdio-octeon 1180000001800.mdio: Version 1.0

38

Intel(R) PRO/1000 Network Driver - version 7.3.21-k5-NAPI

Copyright (c) 1999-2006 Intel Corporation.

e1000e: Intel(R) PRO/1000 Network Driver - 1.0.2-k2

e1000e: Copyright (c) 1999-2008 Intel Corporation.

sky2 driver version 1.25

ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver

ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

usbcore: registered new interface driver libusual

i2c /dev entries driver

i2c-octeon 1180000001000.i2c: version 2.0

rtc-ds1307: probe of 0-0068 failed with error -5

md: linear personality registered for level -1

md: raid0 personality registered for level 0

md: raid1 personality registered for level 1

md: raid10 personality registered for level 10

md: multipath personality registered for level -4

md: faulty personality registered for level -5

device-mapper: ioctl: 4.15.0-ioctl (2009-04-01) initialised: dm-

devel@redhat.com

oprofile: using mips/octeon performance monitoring.

TCP cubic registered

NET: Registered protocol family 17

L2 lock: TLB refill 256 bytes

L2 lock: General exception 128 bytes

L2 lock: low-level interrupt 128 bytes

L2 lock: interrupt 640 bytes

L2 lock: memcpy 1152 bytes

1180000000800.serial: ttyS0 at MMIO 0x1180000000800 (irq = 125) is a OC-

TEON

console [ttyS0] enabled, bootconsole disabled

console [ttyS0] enabled, bootconsole disabled

1180000000c00.serial: ttyS1 at MMIO 0x1180000000c00 (irq = 126) is a OC-

TEON

Bootbus flash: Setting flash for 8MB flash at 0x1f400000

phys_mapped_flash: Found 1 x16 devices at 0x0 in 8-bit bank

 Amd/Fujitsu Extended Query Table at 0x0040

phys_mapped_flash: Swapping erase regions for broken CFI ta-

39

ble.

number of CFI chips:

cfi_cmdset_0002: Disabling erase-suspend-program due to code broken-

ness.

drivers/rtc/hctosys.c: unable to open rtc device (rtc0)

ata1.00: CFA: CF 1GB, 20071116, max MWDMA4

ata1.00: 1981728 sectors, multi 0: LBA

ata1.00: configured for PIO6

ata1.00: configured for PIO6

ata1: EH complete

scsi 0:0:0:0: Direct-Access ATA CF 1GB 2007 PQ: 0 ANSI: 5

sd 0:0:0:0: [sda] 1981728 512-byte logical blocks: (1.01 GB/967 MiB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DP

O or FUA

 sda: sda1 sda2

sd 0:0:0:0: [sda] Attached SCSI removable disk

Freeing unused kernel memory: 17860k freed

/sbin/rc starting

Mounting file systems

Setting up loopback

Starting syslogd

Starting telnetd

/sbin/rc complete

Jan 1 00:00:02 (none) syslog.info syslogd started: BusyBox v1.18.4

Jan 1 00:00:02 (none) daemon.info init: starting pid 827, tty '': '-/bin/cav_sh

 /bin/sh'

BusyBox v1.18.4 (2012-07-03 02:31:49 PKT) built-in shell (ash)

Enter 'help' for a list of built-in commands.

~ # NET: Registered protocol family 10

40

6 PERFORMANCE RESULTS

This chapter provides details on performance analysis of C implementation of Skein-256

on Intel core-i5 and CN5860 OCTEON processor. The details of the performance

provided below are for the purposes of illustration only. This work is not meant to

optimize the method for practical use; the sole purpose is to demonstrate the performance

of the hash algorithm on two unexplored platforms.

Table 6.1 shows performance results of Skein-256 sequential processing in terms of

throughput for two fixed files sizes: 256 bytes and 1024 bytes. On core-i5, a 256 byte file

takes 666.55 µsec and results in a throughput of 384.06 KB. When the file size increases

to 1024 bytes, processing time also increases but results in a relatively high throughput of

588.84KB. As the file size is increased by a factor of 4, the processing time has increased

only by a factor of 2.6 thereby resulting in a relatively high throughput. Same files when

processed on OCTEON platform, shows more latency in processing as compared to the

core-i5 processing times. However, as the file size is increased by a factor of 4,

processing time shows increase by a factor of 4.5 that results in approximately same

throughput as that for 256 byte file. The marked difference in the processing times of the

two platforms for the same file sizes is due to their clock frequencies. OCTEON offers

800MHz whereas core-i5 has 2.5GHz.

Table .: Sequential Processing of Skein-256 on two platforms

Platform File Size

(bytes)

Execution time

(µsec)

Throughput

(Kbyte/s)

CORE-i5 256 666.55 384.067212

1024 1739 588.844163

OCTEON 256 924.55 276.891461

1024 4339.9 235.950137

41

Table 6.2 tabulate results of parallel processing of Skein-256 on the two platforms de-

pending on the file sizes and the utilization of the number of cores. The methodology

used here is similar to the approach in [7] referred to as the lower-level node priority. An

advantage of this approach is that it provides maximum parallelism in theory and is re-

liant on the algorithm parameters which not only affect the tree structure in Skein Hash

tree mode but also the node sizes. Hence, results here depicted are for fixed tree-structure

with YF=YL= 1. When the same files are passed to core-i5 to run on all the cores availa-

ble, it results in relatively high processing times to output the hash value and thus results

in a low throughput as compared to the sequential processing of the same file. As the file

size increases by a multiple of 4, processing time increases by a factor of 4.2. On OC-

TEON processor, it takes even more time to process 256 byte file as compared to that on

core-i5. However, since there is the availability of maximum 16 cores, 1024 byte is run

on all the cores. Not only the file size is increased but also the number of cores when in-

creased by a factor of 4 resulted in reduced processing times thus giving an increased in-

put compared to the results on core-i5. This difference is due to the limitation of number

of cores in the latter that puts subsequent message blocks in pipeline whereas in the for-

mer, all message blocks are available with vacant cores and thus, no thread has to wait in

pipeline for its turn.

Table .: Parallel processing of Skein-256

Platform File size

(bytes)

Number

of cores

Execution time

(µsec)

Throughput

(Kbyte/s)

CORE-i5 256 4 1221.5 209.578387

1024 4 5126.8 199.734727

OCTEON 256 4 1859.85 137.645509

1024 16 3637.6 281.504289

42

In Table 6.3, the results have been compared to the work in [14] and [17]. In [14], only

the C sequential implementation of Skein-512 is discussed which results in a throughput

of 4.9 Mbytes/sec on 2 GHz Core 2 Duo processor. In [17], java implementations of both

sequential and parallel processing of Skein-256, Skein-512 and Skein-1024 have been

discussed. However, for comparison, results of only Skein-256 have been used in Table

6.3. There is a marked difference between results in [17] and results from this work due

to a number of reasons. A major difference is of the file size used. Also, in [7], skein is

implemented using java.

Table .: Performance comparison in terms of throughput

Platform File size

Implementation

Throughput

Sequential

processing Lower node priority

[17]Skein-256 700 MB Java 4 MB/s 26.5 KB/s

[14]Skein-512 512 bits C 4.9 MB/s ---

Skein-256 on

Core-i5

256 bytes C 384 KB/s 209 KB/s

1024 bytes C 588 KB/s 199 KB/s

Skein-256 on

OCTEON

256 bytes C 276 KB/s 136 KB/s

1024 bytes C 235 KB/s 281 KB/s

43

7 CONCLUSION AND FUTURE WORK

Presently, C implementation of only sequential Skein is available in open literature. This

work not only implements sequential skein-256 using C but also provides a basic parallel

implementation of Skein-256 using C on two unexplored multiprocessor platforms (core-

i5 and OCTEON). The design approach used is for fixed input parameters for illustrative

purposes only. The results are reported in terms of throughput (KB/s) and compared with

each other. From the results obtained, it is concluded that performance can be improved

using large file sizes to utilize the true potential of multiprocessing.

Future work includes designing a generic algorithm for parallel processing of larger input

files on core-i5 and OCTEON processor. Moreover, the algorithm should be optimized to

provide variable tree structures based on the different values of YL and YF.

44

Bibliography

[1] G. v. Laszewski, A. Fitzgerald and A. Schorr, "Benchmarking of SHA-3 Candidates

on a GPU using CUDA," Rochester Institute of Technology, 2009.

[2] X. Wang, D. Feng and H. Yu, "Collisions for Hash Functions MD4, MD5, HAVAL-

128 and RIPPEMD," in Cryptology ePrint Archive, 2004.

[3] "National Institute of Standards and Technology (NIST): Cryptographic Hash

Algorithm Competition," [Online]. Available:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[4] J. Curtis, "OCTEON Programmer's Guide," July 2010. [Online]. Available:

http://university.caviumnetworks.com/downloads/Mini_version_of_Prog_Guide_E

DU_July_2010.pdf.

[5] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas and

J. Walker, "The Skein Hash Function Family Version 1.3," 2010.

[6] "Description of Known Answer Test (KAT) and Monte Carlo Test (MCT) for SHA-

3 Candidate Algorithm Submissions," 20 February 2008. [Online]. Available:

http://csrc.nist.gov/groups/ST/hash/documents/SHA3-KATMCT1.pdf.

[7] N. At, J. Beuchat and I. San, "Compact Implementation of Threefish and Skein on

FPGA," in 5th International Conference on New Technologies, Mobility and

Security (NTMS), Istanbul, 2012.

[8] A. Schorr, "Performance Analysis of a Scalable Hardware FPGA," Rochester

Institute of Technology, Rochester, New York, 2010.

[9] M. S. Turan, R. Perlner, L. E. Bassham, W. Burr, D. Chang, S.-J. Chang, M. J.

Dworkin, J. M. Kelsey, S. Paul and R. Peralta, "Status Report on the Second Round

of the SHA-3 Cryptographic Hash Algorithm Competition," National Institute of

Standards and Technology, 2011.

[10] S. Tillich, "Hardware Implementation of the SHA-3 Candidate Skein," IACR

Cryptology ePrint Archive, p. 159, 2009.

45

[11] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck, M. Mühlberghuber, G.

Neubauer, A. Reiter, A. Köfler and M. Mayrhofer, "Compact Hardware

Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and Skein,"

International Association for Cryptologic Research (IACR), Cryptology ePrint

Archive, 2009.

[12] B. Jungk, "Compact implementations of Grostl, JH and Skein for FPGAs," in

CRYPT II Hash Workshop, 2011.

[13] A. Nuray, J. -L. Beuchat and S. Ismail, "Compact Implementation of Threefish and

Skein on FPGAs," in IACR Cryptology ePrint Archive, 2012.

[14] K. Latif, M. Tariq, A. Aziz and A. Mahboob, "Efficient Software Implementation of

Secure Hash Algorithm (Sha-3) Candidate-Skein," International Journal of

Academic Research, pp. 313-317, 2011.

[15] J. W. Bos and D. Stefan, "Performance Analysis of the SHA-3 Candidates on Exotic

Multi-Core Architectures," in CHES'10 Proceedings of the 12th international

conference on Cryptographic hardware and embedded systems, Berlin, 2010.

[16] R. Chapman and E. Botcazou, "SPARKSkein: A Formal and Fast Reference

Implementation of Skein," in Formal Methods, Foundations and Applications; 14th

Brazilian Symposium, SBMF 2011, São Paulo, Brazil, September 26-30, 2011,

Revised Selected Papers, Springer Berlin Heidelberg, 2011, pp. 16-27.

[17] K. Atighehchi, A. Enache, T. Muntean and G. Risterucci, "An Efficient Parallel

Algorithm for Skein Hash Functions," International Association for Cryptologic

Research (IACR) Cryptology ePrint Archive, 2010.

