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ABSTRACT 

 

 
Hash algorithms are one of the cryptographic primitives and play a key role in the 

security of every day applications that require data encryption, message authentication, 

message integrity and non-repudiation. The current Secure Hash Standard (SHS) 

followed by the IT industry worldwide is defined by National Institute of Standards and 

Technology (NIST). However, recent developments in cryptanalysis on SHA-1 and SHA-

2 have rendered SHS’s security at stake. As a response, NIST organized a public hash 

function competition in 2007. Since the announcement of third round results, the five 

candidates competing for the SHA-3 title are under continuous public evaluation from 

security, performance, flexibility and simplicity perspective.  

 

Skein is one of the five candidates that are being subjected to test analysis and 

performance evaluation on various software and hardware platforms. This work 

investigates the performance of sequential and parallel processing of Skein on two 

platforms that have not been explored yet: Intel core-i5 2450M processor and Cavium 

Networks CN5860 OCTEON Plus processor. Conventional Skein has been implemented 

for its evaluation using single core. However, to explore its performance using multiple 

cores, parallel processing algorithm has been designed and implemented on the two 

platforms using multithreading. Hash tree structure has been used for data independency. 
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1  INTRODUCTION 

 

Rapid advancement in technology has completely transformed the way we communicate 

today. Modern technologies, on one hand, have made communication quick and 

instantaneous while on the contrary they have made it insecure and vulnerable to various 

threats as well. Trade-offs and compromises are made when dealing with such situations 

but in communication, security aspect cannot be compromised at any cost. When 

communication takes place via any medium, the major security concerns are: 

1. The message communicated is not being overheard by an intruder. If, in any case, 

a trespasser manages to hear the conversation, he must not be able to decrypt it. 

This can be prevented by using encryption and decryption algorithms. 

2. Even if an intruder is successful to eavesdrop, he should not be able to modify the 

message before it reaches the intended recipient. 

3. An intruder or opponent must not succeed in faking the sender’s identity or 

pretend to be the originator of the message. 

4. In a situation where the second party is the opponent, he must not have any way 

of refuting the delivery or transmission of the message or that any communication 

was taking place. Digital signatures are a means to address this issue.  

Thus, in technical terms, a security system or cryptographic system is complete if it caters 

to our security concerns of confidentiality, Integrity, Authenticity and Non-repudiation. 

Cryptographic algorithms that address above security issues are called cryptographic 

primitives. Cryptographic Hash algorithms are the key primitives to security algorithms 

and form the foundation for almost every security protocol used in information 

infrastructure. These primitives when combined together form a cryptographic system. 

The input to a simple hash function is variable argument known as Message. The output 
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it returns is of fixed size called Message Digest. For hash function to qualify as a 

Cryptographic hash function, additional criteria need to be satisfied. 

 

First, given the message digest, it must be impractical to calculate the input message that 

generated that digest. This is known as Pre-Image Resistance.  Second, given one fixed 

input message, it must be impractical to find another input message that results in the 

same message digest as that of the first input message. This property is known as second 

pre-image resistance. Third, it must be computationally impractical to find two arbitrarily 

input messages that result in the same message digest. This property is known as collision 

resistance. Last, its performance must be practically efficient [1]. 

 

In recent years, cryptanalysts have successfully attacked hash algorithms that are widely 

used by the IT industry, thus rendering the industry’s integrity at stake. Collisions have 

been found in MD4, MD5 and SHA-0 [2] and published against SHA-1. This appealed 

National Institute of Standards and Technology (NIST) to review and evaluate the status 

of their currently approved hash algorithms. A thorough evaluation led to the decision of 

developing a new standard hash algorithm through a public competition similar to the one 

held for the development of Advanced Encryption Algorithm (AES). NIST revised its 

requirements and evaluation criteria and officially announced the public competition on 

2nd November, 2007 for the creation of a New Cryptographic Hash function that would 

be entitled as SHA-3 family. Since then, the competition has progressed through three 

rounds. NIST accepted sixty-four submissions by 31st October, 2008, out of which fifty-

one advanced to the initial round in December, 2008. The entries reduced to fourteen in 

number in the second round in July, 2009. The third round resulted in five final 

candidates to compete for the SHA-3 title. The competition is scheduled to end in 2012 

with the selection of a winning hash function that would be entitled as SHA-3 [3]. The 

five finalists are Keccak, JH, Grostl, BLAKE and Skein. 

 

1.1 Applications: 

Cryptographic Hash algorithms have wide applications in the IT industry. They can be 
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used for the purpose of constructing digital signatures, message authentication codes and 

secure password log – in [3]. They also act as a prime building block in authentication 

protocols and are employed in the development of encryption algorithms. 

 

1.2 Scope of Thesis: 

The primary purpose of this thesis work is to exploit a novel multiprocessor platform 

Cavium Networks OCTEON Plus that is available in the college since 2010. The resource 

has been availed to make a software implementation of Skein on the untested platform for 

experimental purposes. A second multiprocessor platform, Intel Core-i5 has also been 

used for the software implementation of Skein using C language. Intel core-i5 is in the 

market for quiet long but is still unproven for Skein performance whereas OCTEON is a 

novel platform in the market that is yet to be explored for its multiprocessing features [4].  

 

1.3  Chapter Organization: 

CHAPTER 1 provides with an introduction to the security concerns in communication 

and the basis of cryptographic hash functions. It then gives an overview of applications of 

hash function and the scope of Thesis. CHAPTER 2 elaborates on the subject Hash 

function algorithm Secure Hash Algorithm (SHA-3) candidate Skein, discussing its core 

components in detail. CHAPTER 3 discusses important contributions to the performance 

evaluation of Skein since its publication. This includes both hardware and software 

implementations. CHAPTER 4 is a brief description of Intel’s core-i5 and Cavium 

Networks CN5860 OCTEON Plus platform relevant to thesis work. CHAPTER 5 

describes the design methodology used for the sequential and parallel implementation as 

well as the step by step implementation procedure of the algorithm on the two platforms. 

In CHAPTER 6, the results obtained from the work are presented. CHAPTER 7 

concludes the thesis work providing with future work to improve the acquired 

accomplishment.  
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2   SKEIN – SHA 3 CRYPTOGRAPHIC HASH 

ALGORITHM CANDIDATE 

 
 

Skein is among the final candidates that have reached to the final round of NIST SHA-3 

cryptographic hash function competition. Skein forms a family of cryptographic hash 

functions with three standard variants: Skein-256, Skein-512 and Skein-1024 where 256, 

512 and 1024 are the internal state sizes in bits as explained in section 2.1. Skein consists 

of three elements, Threefish, UBI and an Optional argument system [5]. 

 

Threefish is the core of Skein hash function. It is a tweakable block cipher based on 

Matyas-Meyer-Oseas (MMO) construction as in figure 2.1 with additional features of 

Unique Block Iteration (UBI) and Optional Argument System. An MMO construction 

takes a message Mi of n bits as an input plaintext P to the block cipher and the last output 

hash value Hi-1 as the key K and gives a hash value Hi for the given Mi as its hash value 

using 

 iiHi MMEH i ⊗= − )(1        

where E can be any block cipher. Below is a description of two of the Skein elements. 

 

 

 

 

 

 

 

 
 

 

        P 

K     C Hi-1 

Mi 

Hi 

Figure .: Matyas-Meyer-Oseas Construction diagram 

(1) 
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2.1 Threefish:       

The core of Skein is Threefish, a Tweakable block cipher. It is a compression function 

that takes fixed size blocks of Nb bits as input. It is defined for three standard block sizes 

256 bits, 512 bits and 1024 bits according to the NIST requirements [6]. These are known 

as the internal state sizes. Additionally a block cipher key IV and a tweak T are also 

required as inputs to the compression function. The key is the same size as the input 

message block whereas tweak is always a 128 bit value. 

 

Threefish is sequential in nature. It performs the MIX and PERMUTE operations for a 

number of rounds. For Skein-256 and Skein-512, the number of rounds Nr = 72 and for 

Skein-1024, Nr = 80 as in Table 2.1. Figure 2.3 shows a detailed working of Threefish 

block cipher for Skein-256. The message block which in case of Skein-256 is 256 bits, is 

further divided in to unsigned 64 bit words Nw. These inputs are initially added with the 

block cipher key also known as initialization variable which is also in 64 bit words. 

 

Table .: Number of rounds for different Skein variants 

 

 

 

 

 

 

 

2.1.1 Mix and Permutation: 

A MIX function operates on two 64 bit words x0 and x1. Within each MIX function are 

the operations of simple addition, left-shift-rotate and XOR. The bits of input are shift-

rotated to the left by a constant that is different for Nw as given in Table 2.2. The MIX 

function returns two 64 bit words using the following equations: 

Block/key 

Size 

Number of 

Words 

Nw 

Number of 

Rounds 

Nr 

256 4 72 

512 8 72 

1024 16 80 
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( ) 64
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           Figure .: First four rounds of Threefish-256 block cipher 
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Table .: Rotation constants for each Nw 

Nw 4 8 16 

j 0 1 0 1 2 3 0 1 2 3 4 5 6 7 

d = 

0 14 16 46 36 19 37 24 13 8 47 8 17 22 37 

1 52 57 33 27 14 42 38 19 10 55 49 18 23 52 

2 23 40 17 49 36 39 33 4 51 13 34 41 59 17 

3 5 37 44 9 54 56 5 20 48 41 47 28 16 25 

4 25 33 39 30 34 24 41 9 37 31 12 47 44 30 

5 46 12 13 50 10 17 16 34 56 51 4 53 42 41 

6 58 22 25 29 39 43 31 44 47 46 19 42 44 25 

7 32 32 8 35 56 22 9 48 35 52 23 31 37 20 

 

The output of MIX function is fed to the word permutation function. As given in Table 

2.3 below, permutation is different based on the value of Nw. For example, for Nw=4, the 

output of MIX function y1 is swapped with y3.The output of permutation is the output of 

a single round. After every Nw rounds, a subkey is added to the output of the round. For 

Nw=4, a total of 18 subkeys are required for Nr =72. The subkeys are calculated using the 

Key-scheduler. 

 

Rr,i <<< 

   

x0 

   y0  y1 

x1 

Figure .: The MIX function 
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Table .: Values for word permutation 

        i =          

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 4 0 3 2 1             

Nw = 8 2 1 4 7 6 5 0 3         

 16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1 

 

2.1.2 Key schedule: 

The key-schedule requires an initial block cipher key also known as initialization variable 

IV and a tweak to calculate the subsequent subkeys. The tweak is a 128 bit value that is 

based on several fields as shown in Figure 2.4. The only fields that change commonly are 

the First, Final, Position, Type. TreeLevel field is used when using Tree hashing mode of 

Skein. The key-schedule is defined as: 

 

   

 

 

 

 

Where i = 0 to Nw and s = 1 to 18. Each equation results in a 64 bit value which when 

combined together forms a single subkey. For each subsequent key, the above key-

schedule is used.  

 

 

Final First Type BitPad TreeLevel reserved Position 

 

 

 

 

Figure .: Tweak fields 

(4) 

(5) 

(6) 

(7) 

96 112 120 127 0 

3mod)1()1mod(),(, ++ += sNwisis tIVk

3mod)1mod(),(, sNwisis tIVk += +

3mod)1()1mod(),(, ++ += sNwisis tIVk

sk Nwisis IV += + )1mod(),(,
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Table .: Tweak field values 

Name Bits Description 

Position 0-95 The number of bytes in the string processed so far (including this 
block) 

Reserved 96-111 Reserved for future use, must be zero 

TreeLevel 112-118 Level in the hash tree, zero for non-tree computations 

BitPad 119 Set if this block contains the last byte of an input whose length was 
not an integral number of bytes. 0 otherwise 

Type 120-125 Type of the field (Config, Message, output, etc.) 

First 126 Set for the first block of a UBI compression 

Final 127 Set for the last block of a UBI compression 

 

2.2 Unique Block Iteration: 

For messages longer than Nb bits, Skein uses UBI chaining mode. The message M is 

divided in to n message blocks M0, M1, …, Mn-1 and processes the message block wise. It 

requires three inputs: A message block of size Nb bits, an initial chaining variable IV and 

a starting tweak value T that is determined by the UBI as explained in the previous 

section. Figure 2.5 explains the processing of three block message. As the figure shows, 

the output of the last message block serves as the chaining variable for the next message 

block. The number of message blocks is determined by the size of the message M. 

Additional zeros can be padded to the message block to make its size equal to Nb bits for 

Threefish processing. The Type field in the Tweak value changes according to the type of 

input being handled. For example, in figure 2.5, the input is messages so the Type field in 

tweak used is Tmsg. When the UBI processes the message, it is known as Message UBI 

and the Type field for all the message blocks remains the same in their respective tweak 

values throughout the Message UBI. Other Skein type values are given in table 2.5. 
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Table .: Type field values 

Symbol Value Description 

Tkey 0 Key (for MAC and KDF) 

Tcfg 4 Configuration Block 

Tprs 8 Personalization string 

TPK 12 Public Key (for digital signature hashing) 

Tkdf 16 Key identifier 

Tnon 20 Nonce (for stream cipher or randomized hashing) 

Tmsg 48 Message 

Tout 63 Output 

 

Two additional stages are used before and after Message UBI known as Configuration 

UBI and Output UBI respectively as shown in figure 2.6. Configuration UBI takes a 

configuration string C of 256 bits as input. The string is a constant that has different fields 

as given in Table 2.7. Tree field values change when tree-hashing mode is used and 

remains 0 otherwise. The Ouptut UBI stage is used after the Message UBI that transforms 

the output of Message UBI in to desired number of bits. The output of this stage is the 

actual Message Digest. 

 

 

 

Figure .: UBI Chaining Mode of message M 

P 

K     C 

 

         P 

K     C 

 

P 

K     C 

 T1 
T0  T2 

IV 

T 

M0      M =

 =    
I I  M1 M2 I I 
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Figure .: UBI stages [7] 

 

Table .: Configuration string field values 

Offset Size in 

Bytes 

Name Description 

0 4 Schema identifier The ASCII string “SHA3” =(0x53,0x48,0x41,0x33), 
or ToBytes (0x33414853,4) 

4 2 Version number Currently set to 1:ToBytes(1,2) 

6 2  Reserved, set to 0 

8 8 Output Length ToBytes (No, 8) 

16 1 Tree leaf size en-
coding. 

YL 

17 1 Tree fan-out encod-
ing. 

YF 

18 1 Max. tree height YMAX 

19 13  Reserved, set to 0 

 

 

2.3 Tree- hashing: 

As explained earlier, Skein is sequential in nature and thus, by default, processes a 

message sequentially. However, for very long messages, calculating the message digest 

may take long time. Skein can be used in Tree hash mode to process message blocks 

simultaneously by utilizing multiple cores in a machine. For using Skein in Tree-hash 

mode, the process remains the same as sequential process with the only difference of 

Treelevel field in the Tweak and Tree parameters in the configuration string. The UBI 

chaining mode is replaced by a Tree structure as depicted in figure 2.7. The tree hash 

0 

C M0 M1 M2 0 

G0 G1 

H 

Type: Cfg Type: Msg 
First: 1 

Last: 0 

T: T: T: T: T: 

Type: Msg 
First: 0 

Last: 0 

Type: Msg 
First: 0 

Last: 1 

Type: Out 
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mode of Skein is based on Merkle Tree structure [2]. The tree is processed from top to 

bottom. Each node in the tree takes three inputs, IV, M and T. The input message is 

divided into Nb bit blocks and is distributed to the leaf nodes. The values of tree 

parameters Leaf size encoding, Fan-out encoding and Maximum tree height construct the 

tree structure and it varies according to these values. The definitions of tree parameters 

are given in table 2.7. Tree structures for different tree parameters are given in figure 2.8. 

 

 

Figure .: A Merkle Tree Structure [8] 

 

 

Table .: Hash-Tree mode parameters 

Symbol Description 

YL 
The leaf size encoding. Number of blocks processed by each leaf node 2Y

L 

(YL
≥  1) 

YF The fan-out encoding. The fan-out of a tree is 2Y
F with YF ≥ 1 

YMAX The maximum tree height; YMAX ≥ 2 

Nl Leaf size, Nb2 YL 

Nn Node size, Nb2 YF 

 

 

 

message 
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(a)                            (b) 

 

(c)     (d) 

Figure .: Skein Tree structure for different Tree parameters [8] 
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message message 
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YF=2 

YL=1 

YF=1 

YL=2 
YF=1 

YL=2 



18 
 

 

3 LITERATURE REVIEW 

 

NIST holds performance of a hash function as the second most important criterion for its 

evaluation after security [9]. This includes computational effectiveness, which not only 

denotes the data rate of the algorithm but also memory requisites such as the code size 

and the random-access memory (RAM) requirements for the purpose of software 

implementations, and the gate-counts for hardware implementations. In this regard 

performance evaluation of all the candidates is being continuously carried out on 

software, hardware and embedded platforms before the announcement of the final result 

in 2012. Continuous research on optimization techniques and cryptanalysis are under way 

to help NIST select the right SHA-3 candidate. 

 

3.1 Hardware Implementations: 

Various hardware implementations targeting on high-speed performance and compactness 

of required area have been proposed for Skein. High-speed hardware implementation has 

been proposed by Stefan Tillich in [10] for all the three variants of Skein on 0.18 µm 

standard-cell implementation and two modern FPGA architectures: Xilinx Spartan 3 and 

Xilinx Virtex 5.  0.18 µm standard-cell library was used for ASIC synthesis which re-

sulted in throughput of 0.882 Gb/s for small Skein-256 and 1.762 Gb/s for fast Skein-

256. On Xilinx Spartan 3, it came out to be 0.669 Gb/s and on Xilinx Virtex 5, 1.751 

Gb/s.  

 

Skein-256-256 is also implemented using Verilog on standard-cell library of 0.35 µm 

[11]. It has a datapath of 64 bits including a temporary 64-bit register, a register file with 

a size accommodating 16 words, a control FSM, and an AMBA APB interface of 32 bits. 

The 64-bit adder has been implemented in a standard fashion with Verilog’s built-in ’+’ 

operator so that synthesizer can allow greatest flexibility for optimization. The results 

revealed an area of 12,890 GEs and throughput of 19.8 Mbits/sec. 
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The work in [12] focuses on low budget a cryptographic solution that enables investiga-

tions for possible optimizations for area efficient implementations, and to neglect pure 

high-throughput considerations. It showed that Skein is the lowest area efficient candi-

date as well as least performance efficient as compared to JH and Grostl with areas 1621, 

1018 and 1722 slices respectively and throughputs 3178, 5416 and 10276 Mbits/sec re-

spectively. 

 

A low-area coprocessor has been designed on a Field-Programmable Gate Array (FPGA) 

in [13] for light-weight implementation of Skein-512-512. The architecture is prototyped 

on a Xilinx Virtex-6 device and produced result with an area of 132 slices and throughput 

of 80 Mbits/s. This work concluded that Skein has an upper edge over other SHA-3 final-

ists in that the same coprocessor allows one to encrypt or hash a message. 

 

3.2 Software Implementations: 

Several Software implementations of Skein have been reported using C#, .Net and Java 

on Skein’s official website. In C, Skein has been efficiently implemented on Intel Core 2 

Duo 2GHz processor [14]. This implementation revealed a throughput of 4.9Mbytes per 

second. Skein and MD6 has been implemented on NVIDIA graphics card and on a single 

core machine using CUDA-C to exploit the parallelism feature of the hash function using 

Tree Hashing in [1]. The SHA-3 candidates of round-2 including Skein have been im-

plemented on Cell Broadband Engine (Cell) and NVIDIA graphics Processing Unit 

(GPU) for performance estimates [15]. A throughput of 1.9 Gb/sec is reported for Skein-

512 on SPE architecture and 22.1 Gb/sec for the same on GPU architecture. Skein has 

been implemented using Spark language that is the subset of Ada. The implementation is 

known as SPARKSkein. The results have been compared with that of the C on the same 

Core i7 860 processor 2.8 GHz machine running 64bit GNU/Linux [16].  

 

An efficient algorithm for implementing parallelism has been proposed in [17]. This pa-

per describes sequential and parallel algorithms for Skein cryptographic hash functions, 

and the analysis, testing and optimization. Three possibilities to address parallelism have 
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been discussed that includes Lower-level node priority, Higher-level node priority and 

Priority to a fixed number of nodes of higher level and same level. However, the first of 

these possibilities has been implemented using JAVA. It is implemented using the tree-

hash approach by utilizing multithreads. The testing platform used was Dell Latitude 

D830, Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20Ghz, 2GB RAM, L2 cache size 4MB 

with a Ubuntu 9.10 operating system. On the 64-bit processor, Skein-256 turned out to be 

slowest of all the Skein versions Skein-1024 and Skein-512. Also, the tests showed that 

the one thread per node strategy is not efficient though there is maximum utilization of 

the CPU. After optimization, for a 700MB file, results showed speeds of 27 seconds for 

JAVA sequential version and 20 seconds for Skein java parallel version. These results 

when compared to the C reference implementation of Skein showed that JAVA tree hash 

mode implementation was slower. On the other hand, their parallel implementation using 

thread pool is faster than the C implementation. Such implementations are useful for 

high-end applications which require efficiently tuned implementations on multi-core tar-

get processors.  

 

To the best of our knowledge, there is no previous work implementing Skein on core-i5 

and CN5860 OCTEON Plus.  
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4 TARGET PLATFORMS 
 

4.1 The Intel core-i5 processor: 

The Intel i5-2450M is a Dual-Core Laptop processor that uses a 64 bit instruction set. It 

has 4 threads and 2 cores.  It has a maximum clock speed of 2.50 GHz. The processor has 

built-in over-clocking which increases the maximum clock speed to 3.10 GHz. The GPU 

model is HD Graphics 3000 with clock speed ranging from 650 MHz – 1300 MHz. 

The RAM installed on the system is 4 GB but is capable of accommodating 16 GB of 

RAM. Memory supported is DDR3-1066 and DDR3-1333. The cache size is 3MB. The 

processor provides 2 memory channels, and has a maximum memory bandwidth of 21.3 

GB/s. 

 

4.2 OCTEON Plus processor: 

OCTEON Plus CN5860 processor belongs to the family of OCTEON Plus CN58XX. It 

has 16 cnMIPS cores, frequency of 800MHz and supports a maximum of 25.6B of In-

structions per second. The cnMIPS cores use the MIPS64 v2 instruction set, supporting 

both 32-bit and 64-bit processing.  On the OCTEON processor, cache only supports 

access to system memory (DRAM) and not I/Os. The purpose of cache is to help in en-

hancing the system performance by means of core local or chip local fast memory which 

can save a copy of data accessed recently. The cache hierarchy includes: 

 

� L2 cache ranging from 256 KB to 2 MB shared by the cores and I/O 

subsystem 

� L1 instruction cache, 32 KB  per core 

� L1 data cache 8 KB to 16 KB per core 
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OCTEON processor is integrated with multiple hardware units that are used to reduce the 

load of cores thereby reducing overhead and complexity. In addition, these hardware 

units possess Dedicated DMA Engines to access memory. Cores and hardware units 

interconnect using high-speed connections. These connections operate at the same 

frequency as the cores. These connections are a collection of buses. The advantages of 

the hardware structure is that it enables an adaptable software structure design and at the 

same time allows for core grouping as required in order to increase performance. In 

addition, flexible software architecture, standard MIPS64 ISA and industry standard 

Toolchains helps in minimizing software development complexity. Modifications have 

been made in industry standard Toolchains (GCC, GDB) and operating systems 

(including SMP Linux) so that OCTEON’s processor’s multiple cores, special Cavium 

Networks specific instructions and hardware acceleration units can be utilized. C/C++ 

codes can be written easily while reusing the legacy software. Programs written for 

MIPS64 and MIPS32 ISA are inherently supported. 

 

A Cavium Networks Software Development Kit (SDK) is provided. The SDK comprises 

Figure .: OCTEON Plus Evaluation board Block diagram [4] 
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of GNU C/C++ compiler and other development tools, C language Application 

Programmer’s Interfaces (APIs) to the hardware units, a simple executive that can 

execute code on the cores without any operating system and Cavium Networks SMP 

Linux.  The Simple Executive provides a Hardware Abstraction Layer (HAL) in the form 

of an Application Programming Interface (API) to the underlying hardware units. The 

CPU registers are accessed via this thin layer of API. It offers convenience for the process 

of block initialization. In addition, the hardware units can be accessed by Simple 

Executive API.  

 

Simple Executive functions and macros allow building standalone applications or they 

can be run via drivers or application running on an operating system. For instance, as 

soon as the booting of Linux takes place, a Cavium Networks Ethernet driver may be 

initiated. In order to configure the OCTEON hardware, this driver makes use of the 

Simple Executive API. Using Linux, Simple Executive User Mode applications can also 

be executed supporting both 32 bit and 64 bit modes. A number of choices are available 

when it comes to runtime environment. Cavium Networks supply three such 

environments: Simple Executive standalone mode, hardware simulator and Linux as 

demonstrated in figure 4.2. 

 

Figure .: Different runtime environment choices 

 

Bootloader

Linux Kernel (64-bit mode)

Use Simple Executive  
register definitions to 
configure interrupts

Cavium Networks Ethernet 
Driver

Simple Executive User-
Mode 64-bit (SE-UM 64 bit)

Simple Executive User-
Mode: 32-bit mode (SE-UM 

32 bit)

Simple Executive Standalone 
64-bit mode (SE-S 64 bit)

Simple Executive Standalone 
32-bit mode (SE-S 32 bit)
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4.2.1 Simple Executive 

Simple Executive is used to provide API to hardware units. It can either be run as a user 

mode (SE-UM) application on an operating system for example on Linux or it can be run 

as standalone (SE-S). Different application startup code (main()) when Simple Executive 

is run as a user mode application.  

4.2.2 SMP Linux 

 In SMP (Symmetric Multi Processing), Linux may be run on or more cores. There are 

two choices for file system; it can either be the tiny root embedded file system (embed-

ded_rootfs) or the large Debian file system. The root file system acts as a RAM disk 

when Linux is run with the embedded root file system (embedded_rootfs). In such a case, 

the ELF file is either downloaded from a host, or stored in on- board flash. When no de-

vice is attached to the OCTEON processor for storing root file system to download OC-

TEON, the embedded root file system is used. Usually, the embedded root file system 

contains least number of files required. A small utility called “BusyBox” instead of the 

normal Linux utilities in order to save space. The utility can be customized to add func-

tions according to the requirement of the application thus reducing the size of the execut-

able file and saving space. 

 

The Simple Executive is different from Linux in a sense that when it is run in standalone 

mode, it offers minimum overhead along with the greatest potential for scaling. Simple 

Executive when run as user mode application may perform significantly slower than sim-

ple Executive Standalone.  
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5 DESIGN AND IMPLEMENTATION 
 

 

5.1 Design Methodology 

The main goal of this work was to design a static source code for Skein-256 for parallel 

implementation that would hash portions of a large message simultaneously. Utilization 

of multiple cores was the key objective when designing the architecture. 

 

5.1.1 Sequential processing of Skein 

In order to process an input message sequentially, it is divided into equal blocks of 256 

bits Mo … Mn-1 where n is the number of blocks. UBI function is then called for each 

message block. For every message block, Threefish function is called that executes the 

number of rounds required for Skein-256 that is, Nr = 72.   

 

The 256 bit message block is further divided into four blocks of 64 bits and is stored into 

unsigned 64 bit arrays. This is because the maximum size that could be achieved in an 

array location is 64 bit and because of the MIX operations that needs to operate on 64 bit 

blocks of data. In each round from Nr = 0 to 71, a key scheduler function is called that 

takes input the initial chaining variable IV and tweak T and returns eighteen subkeys for 

skein-256. The first subkey is the same as the initial chaining variable IV that is 

predefined. These subkeys are added to the intermediate outputs after every four rounds.  

 

A mix function and permutation function constitutes each round. Mix function performs 

the operations of addition, left-shift rotate and XOR. Number of bits left shift-rotated 

depends on the rotation constants that are different for each round so a check has been 

implemented here. The output of mix function forwarded for permutation. The hash 
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output is xored with original input message and the result is fed as the initial variable IV 

for the next message block M1. Subsequent tweaks for the rest of the message blocks are 

calculated using the tweak calculator function.  

The drawback with sequential processing is that when one message block is being 

processed all other successive blocks have to wait for their turn. This puts a limitation on 

the usage of multiple cores because of data dependency nature of Threefish where the 

processing of subsequent message blocks depends on the output hash value of the 

previous message blocks. 

 

5.1.2 Parallel processing of Skein 

To address parallelism, a Merkle tree structure is exploited. Hash tree structure can be 

traversed in different ways [17]. In this work, tree is traversed from top to bottom and left 

to right. This method is referred to as leftmost node priority in [17].  

The algorithm design is based on a static hash tree model for two fixed input message. 

Figure 5.2 shows a hash tree model for input message size of 1024 bytes. As the figure 

depicts, the maximum tree height and the number of nodes at each level are constant for 

basic implementation. The first level starts with 16 nodes and at every successive level 

the number of nodes gets halved of the previous level. The maximum tree height is 5. 

The original input message is again divided into 256 bit blocks M0 – Mn-1. A group of 

these blocks are fed to each node simultaneously. A single thread per node is initiated at 

every level. That means, at the first level, 16 threads are initiated essentially. Each thread 

invokes the sequential process for the message blocks passed as input arguments. The 

output of two consecutive nodes is concatenated to form a new message which is again 

fed to the higher level node. At each level, the priority starts from the leftmost node. 

Same sequential process approach as mentioned above is extended towards parallelism 

with the addition of multithreading. Value of leaf size encoding depends on the size of the 

input message and thus increases with larger input message given a fixed number of 

cores. 



 

A thread function is invoked that takes t

this function is to divide the input message into 256 bit blocks and pass them to each 

thread created in the first level of the tree. Since maximum number of cores in OCTEON 

processor is 16, 16 threads are cr

input argument. Each thread executes 

every level, the number of threads are halved the previous number of threads (for our 

case) until one is reached.

no thread creation. For the root node, the sequential process is called in a normal way.

After the sequential process finishes,

levels of tree hashing except for the last level (root 

nodes (2 in our case) to finish processing before beginning its own process. This is a 

constraint to achieve maximum parallelism because ev

parent nodes have finished processing, parent nodes still have to wait for the child nodes 

of predecessor parent nodes when traversing from left to right. 

Figure .:
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A thread function is invoked that takes the input message as input argument. The task of 

this function is to divide the input message into 256 bit blocks and pass them to each 

he first level of the tree. Since maximum number of cores in OCTEON 

16, 16 threads are created where each thread must take at least two blocks 

input argument. Each thread executes sequential processing for each 256 bit block. 

every level, the number of threads are halved the previous number of threads (for our 

case) until one is reached. This is the root node or the last level of the tree which requires 

no thread creation. For the root node, the sequential process is called in a normal way.

sequential process finishes, threads join the parent thread. For the successive 

except for the last level (root node), each node waits for all i

) to finish processing before beginning its own process. This is a 

constraint to achieve maximum parallelism because even if the child nodes of other 

parent nodes have finished processing, parent nodes still have to wait for the child nodes 

of predecessor parent nodes when traversing from left to right.  

: Hash-Tree model for 16 core parallel processing

e as input argument. The task of 

this function is to divide the input message into 256 bit blocks and pass them to each 

he first level of the tree. Since maximum number of cores in OCTEON 

least two blocks as 

sequential processing for each 256 bit block. At 

every level, the number of threads are halved the previous number of threads (for our 

This is the root node or the last level of the tree which requires 

no thread creation. For the root node, the sequential process is called in a normal way. 

. For the successive 

each node waits for all its child 

) to finish processing before beginning its own process. This is a 

en if the child nodes of other 

parent nodes have finished processing, parent nodes still have to wait for the child nodes 

 

Tree model for 16 core parallel processing 
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5.2 Implementation: 

The implementation on the two unexplored platforms is not for optimization but only for 

demonstrative purposes and testing the performance of Skein. 

5.2.1 Intel Core - i5: 

The set up of Intel Core i5 serves two purposes: For the implementation and analysis of 

Skein-256 and second, to serve as a cross- development host system for OCTEON 

embedded platform which is called as the development target. Linux operating system 

Fedora 17 is used with kernel 2.6.  For compiling, GNU-GCC compiler is used. Twenty 

samples for both sequential implementation and parallel implementation have been taken. 

5.2.2 OCTEON evaluation board CN5860: 

For the implementation on OCTEON evaluation board CN5860, an i386 or x86_64 

machine is required that will serve the purpose for the cross-development platform. This 

machine is referred to as development host whereas OCTEON evaluation board is 

referred to as the Target host. The development host used for this research is the same 

Intel core i5 machine with OS 64 bit Fedora 17. As explained in Chapter 4, Cavium 

Network provides different runtime environment choices. Here, SMP Linux Runtime 

environment is used. Therefore, the following steps for the implementation are according 

to the SMP Linux configuration and the sequential and parallel programs designed above 

are cross-compiled using the Linux development tools. The implementation requires: 

 

1. Installing OCTEON-SDK 

2. Build OCTEON Linux 

3. Copying it to compact flash and copying the program to CF 

4. Setting up the EVB 

5. Booting the board and downloading the program 

 

1. Installation of SDK: 

The sequential and parallel Skein codes are built on the development host and then down-

loaded to the development target connected to the development host through serial cable. 

For this, Software Development Kit (SDK) that comes with the OCTEON evaluation 
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board is installed on the development host. The SDK has two rpm packages: the base 

SDK (OCTEON-SDK-*.i386.rpm) (OCTEON-SDK-2.3.0-427.i386) and OCTEON Li-

nux (OCTEON-LINUX-*.i386.rpm). The base SDK package includes: 

 

� GNU based tool chain with linker, compiler and generic libraries. 

� OCTEON simulation software with performance measurement utilities 

� A Cavium Networks Simle Executive software for easy application development. 

� Example applications 

 

The OCTEON Linux package contains OCTEON Linux that is ported to the OCTEON 

processor. OCTEON_SDK is installed by running, as root, the command: 

 

rpm -i /media/OCTEON-SDK/*.rpm 

The SDK is by default installed in the directory: /usr/local/Cavium_Networks/OCTEON-

SDK which is created during installation. This directory is referred to as $OCTEON-

SDK. OCTEON-SDK is an environment variable and $OCTEON-SDK refers to the val-

ue of the environment variable. The working directory is changed to $OCTEON-SDK 

and a script ‘env-setup’ is executed that sets essential environment variables. The follow-

ing variables are set by the env-setup script: 

 

� OCTEON-SDK  

� The PATH  

� OCTEON_MODEL 

� OCTEON_CPPFLAGS_GLOBAL_ADD 

 

The env-setup script requires the value of a single argument: OCTEON_MODEL. The 

value of this argument is chosen from a list of values available in a file $OCTEON-

SDK/octeon-models.txt. The OCTEON Evaluation board model used in this work is 

CN5860 so the value of OCTEON_MODEL from the text file is specified as OC-

TEON_CN58XX.  The env-setup script is sourced (source env-setup) to modify the envi-
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ronment variables of the current shell (usually bash). As a result, all shells started from 

this shell inherit the shell’s environment variables. 

 

2. Build OCTEON Linux kernel: 

OCTEON Linux kernel is built for the Target development on the host development. An 

ELF file (vmlinux.64) is created and stored in on-board flash.  Since embedded systems 

do not have built-in memory like hard disks, linux is booted from this ELF file. Every-

time the development target is powered off, the copy of the file system in the memory is 

deleted. Thus, vmlinux.64 is booted from the onboard flash whenever the target devel-

opment is powered on again. Following command is used to build OCTEON Linux ker-

nel: 

$ cd $(OCTEON-SDK)/linux 

    $ make -s clean 

    $ make -s kernel 

 

 Successful built shows the following output: 

Preparing...                

################################################## 

OCTEON-LINUX                

################################################## 

The Linux Kernel has been successfully installed under the direc-

tory 

/usr/local/Cavium_Networks/OCTEON-SDK/linux 

Please refer to file:///usr/local/Cavium_Networks/OCTEON-

SDK/docs/html/linux.html 

on how to use Linux on the OCTEON. 

 
 
This build takes about 20 minutes. The Makefile creates an ELF file at  

$OCTEON-SDK/linux/kernel_2.6/linux/vmlinux.64 which can be run on the OCTEON 

processor.  This ELF file contains the Linux kernel and a filesystem which runs in memo-

ry only. This filesystem is the embedded root filesystem (embedded_rootfs). 

 

3. Copying vmlinux.64, file system and the source code to Compact Flash: 

A 1GB compact flash that comes with the evaluation board is organized as two PC style 



31 
 

partitions. The first partition is used for the kernel image vmlinux.64. This partition is 

used by the bootloader, so it uses the FAT16 file system (vfat under Linux). The second 

partition is an EXT3 file system containing the embedded root filesystem. 

Partition Size File system 
Target 

Mount 
Host Mount Description 

0 67MB vfat /dev/sda1 /mnt/cf1 
Kernel and files for the Bootloader 

vmlinux.64 

1 946MB ext3 / dev/sda2 /mnt/cf2 Embedded root filesystem 

 

Table .: Layout of 1 GB compact flash 

 

Mount points are created for the compact flash in /mnt: 

       $ mkdir -p /mnt/cf1 

       $ mkdir -p /mnt/cf2 

Both partitions are mounted on /run/media/aisha.  The Linux kernel is copied to the com-

pact flash: 

        $ mount /dev/sdb1 /mnt/cf1 

        $mips64-octeon-linux-gnu-strip  -o  /mnt/cf1/vmlinux.64 kernel_2.6/linux/vmlinux.64 

        $ umount /mnt/cf1 

Three tool directories are created that are commonly used in building, running, and de-

bugging applications: 

$OCTEON-SDK/tools/bin  

$ OCTEON-SDK /host/bin  

$ OCTEON-SDK /linux/kernel_2.6 

 

Two sets of GNU cross development tools are present in the tools/bin directory. These 

tools are run on the development host to build binary files for the development target. 

These tools include files and utilities that build software for the COTEON processor. The 

two sets of tools are: 
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1) Simple Executive Development Tools: The mipsisa64-octeon-elf-* tools are used 

to build Simple Executive applications. 

2) Linux Development Tools: The mips64-octeon-linux-gnu-* tools are used to build 

the Linux kernel and Linux User-mode applications. 

 

The latter is used to cross-compile the sequential and parallel SKEIN using the GCC 

utility: 

/usr/local/Cavium_Networks/OCTEON-SDK/tools/bin/mips64-gnu-gcc -o outputfilename 

inputfilename.gcc 

A binary with the name of outputfilename is created in the working directory. For the 

parallel skein, the thread library is also linked during the cross-compilation as follows: 

/usr/local/Cavium_Networks/OCTEON-SDK/tools/bin/mips64-gnu-gcc -o outputfilename 

inputfilename.gcc  -lpthread 

These binaries are copied to the CF using the commands: 

$mount   /dev/sdb2   /mnt/cf2 

$cp outputfilename  /mnt/cf2 

$unmount /mnt/cf2 

 

4. Connection to the EBT5860 Hardware: 

The OCTEON 5800 target development evaluation board consists of: 

1. A NULL modem serial cable to attach to the Linux development system, a 

USB Flash reader/writer, and a Compact Flash card. 

2. The EVB-5800-NIC4, power supply and cables 
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Figure .: The CN5860 OCTEON Evaluation board [4] 
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The console output for the target development is directed to UART0 on the target evalua-

tion board and is viewed on the terminal emulator, HyperTerminal. Linux connects to the 

first serial port on the device /dev/ttyS0.  

 

5. Booting from Onboard Flash 

When the evaluation board is booted from the vmlinux.64 in the on-board compact flash, 

Core 0 starts execution at the reset vector 0xBFC00000 (the location of the bootloader 

code in onboard flash). The bootloader (U-Boot) then carries out the following steps: 

 

1. Initializes the UART 

2. Configures the DRAM controller to allow physical memory to be used  

3. Relocates itself from the onboard flash to DRAM, and continues executing from 

DRAM. 

4. Executes the default command, if present 

 

.U-Boot 1.1.1 (U-boot build #: 217) (SDK version: 1.8.1-290) (Build time: Dec  
9                                                                                
2008 - 19:22:32)                 
 
EBT5800 board revision major:2, minor:0, serial #: 2009-2.0-
00512                                                                  
OCTEON CN5860-NSP pass 2.3, Core clock: 600 MHz, DDR clock: 399 MHz (798 Mhz data 
rate)        
DRAM:  2048 MB               
Flash:  8 MB             
Clearing DRAM........ done                           
BIST check passed.                   
Net:   octeth0, octeth1, octeth2, octeth3                                          
 Bus 0 (CF Card): OK                     
 
  ide 0: Model: CF 1GB Firm: 20071116 Ser#: 
TSS20031090724031238                                                                 
            Type: Removable Hard Disk                                      
            Capacity: 967.6 MB = 0.9 GB (1981728 x 512)                
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The ELF file is downloaded to the specified Reserved Download Block address using the 

following command. Bootloaders built with SDK 1.7 and higher allow the specified 

address to be 0. When the address is 0, the default Reserved Download Block address is 

selected by the bootloader.  

Octeon ebt5800# fatload ide 0 $(loadaddr) vmlinux.64 

After the ELF file is downloaded, the bootloader relocates it to a physical location of its 

choice (creating the in-memory image).  

Octeon ebt5800# bootoctlinux $(fileaddr)                            

ELF file is 64 bit                   

Attempting to allocate memory for ELF segment: addr: 0xffffffff80100000 (adjusted to: 

0x0000000000100000), size 0x2045750                                          

Allocated memory for ELF segment: addr: 0xffffffff80100000, size 

0x2045750                                                                           

Processing PHDR 0                  

  Loading 1fc4c00 bytes at ffffffff80100000                                            

  Clearing 80b50 bytes at ffffffff820c4                                      

## Loading Linux kernel with entry point: 0xffffffff80105c70 

...                                                                 

Bootloader: Done loading app on coremask: 0x1                                              

Linux version 2.6.32.27-Cavium-Octeon (root@ash) (gcc version 4.3.3 (Cavium 

Inc.                                                                                 

 Version: 2_3_0 build 116) ) #2 SMP Tue Jul 3 02:49:46 PKT 

2012                                                                

CVMSEG size: 2 cache lines (256 bytes)                                       

Cavium Inc. SDK-2.3                    

bootconsole [early0] enabled                             

CPU revision is: 000d030b (Cavium Octeon+)                                           

Checking for the multiply/shift bug... no.                                           

Checking for the daddiu bug... no.                                   

Determined physical RAM map:                             

 memory: 0000000001171000 @ 0000000000f5f000 (usable after in-

it)                                                                 

 memory: 000000000dc00000 @ 0000000002200000 (usable)                                                      

 memory: 0000000011400000 @ 0000000020000000 (usable)                                                      

Wasting 220360 bytes for tracking 3935 unused pages                                                    

Initrd not found or empty - disabling initrd                                             

CVMX_GMXX_INF_MODE (block_id = 4) not supported on this 
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chip                                                             

Using internal Device Tree.                            

Placing 0MB software IO TLB between a800000002c8e000 - 

a800000002cce000                                                                        

software IO TLB at phys 0x2c8e000 - 0x2cce000                                              

Zone PFN ranges:                 

  DMA32    0x00000f5f -                       

  Normal   0x000f0000 -> 0x000f0000                                    

Movable zone start PFN for each node                                     

early_node_map[3] active PFN ranges                                    

    0: 0x00000f5f -> 0x000020d0                                

    0: 0x00002200 -> 0x0000fe00                                

    0: 0x00020000 -> 0x00031400                                

Cavium Hotplug: Available coremask 0x0                                       

PERCPU: Embedded 10 pages/cpu @a800000002cdf000 s11264 r8192 d21504 

u65536                                                                           

pcpu-alloc: s11264 r8192 d21504 u65536 alloc=16*4096                                                     

pcpu-alloc: [0] 0                  

Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 

128736                                                                            

Kernel command line:  bootoctlinux console=ttyS0,115                                                   

PID hash table entries: 2048 (order: 2, 16384 bytes)                                                     

Dentry cache hash table entries: 65536 (order: 7, 524288 

bytes)                                                                

Inode-cache hash table entries: 32768 (order: 6, 262144 

bytes)                                                               

Primary instruction cache 32kB, virtually tagged, 4 way, 64 sets, linesize 128 bytes.      

Primary data cache 16kB, 64-way, 2 sets, linesize 128 bytes.                                                             

Secondary unified cache 2048kB, 8-way, 2048 sets, linesize 128 

bytes.                                                                      

Memory: 495492k/525764k available (5950k kernel code, 29796k reserved, 8763k data, 17860k 

init, 0k highmem)                            

Hierarchical RCU implementation.                                 

NR_IRQS:453            

Calibrating delay loop (skipped) preset value.. 1200.00 BogoMIPS 

(lpj=6000000)                                                                               

Security Framework initialized                               

Mount-cache hash table entries: 256                                    

Checking for the daddi bug... no.                                  

Brought up 1 CPUs                  

NET: Registered protocol family 16                                   
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Not in host mode, PCI Controller not initialized                                                 

bio: create slab <bio-0> at 0                              

SCSI subsystem initialized                           

usbcore: registered new interface driver usbfs                                               

usbcore: registered new interface driver hub                                             

usbcore: registered new device driver usb                                          

Switching to clocksource OCTEON_CVMCOUNT                                         

NET: Registered protocol family 2                                  

IP route cache hash table entries: 4096 (order: 3, 32768 

bytes)                                                                

TCP established hash table entries: 16384 (order: 6, 262144 

bytes)                                                                   

TCP bind hash table entries: 16384 (order: 6, 262144 bytes)                                                            

TCP: Hash tables configured (established 16384 bind 16384)                                                           

TCP reno registered                    

NET: Registered protocol family 1                                  

RPC: Registered udp transport module.                                      

RPC: Registered tcp transport module.                                      

RPC: Registered tcp NFSv4.1 backchannel transport module.                                                          

/proc/octeon_perf: Octeon performance counter interface 

loaded                                                               

octeon_wdt: Initial granularity 5 Sec.                                       

octeon_gpio 1070000000800.gpio-controller: probed                                                  

HugeTLB registered 2 MB page size, pre-allocated 0 pages                                                         

JFFS2 version 2.2. (NAND) Â© 2001-2006 Red Hat, Inc.                                                     

msgmni has been set to 968                           

alg: No test for stdrng (krng)                               

io scheduler noop registered                             

io scheduler anticipatory registered                                     

io scheduler deadline registered                                 

io scheduler cfq registered (default)                                      

Serial: 8250/16550 driver, 6 ports, IRQ sharing disabled                                                         

brd: module loaded                   

loop: module loaded                    

pata_octeon_cf 1d000000.compact-flash: version 2.2 8 bit.                                                          

scsi0 : pata_octeon_cf                       

ata1: PATA max PIO6 cmd 900000001d000800 ctl 

900000001d00080e                                                              

slram: not enough parameters.                              

mdio-octeon: probed                    

mdio-octeon 1180000001800.mdio: Version 1.0                                            
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Intel(R) PRO/1000 Network Driver - version 7.3.21-k5-NAPI                                                          

Copyright (c) 1999-2006 Intel Corporation.                                           

e1000e: Intel(R) PRO/1000 Network Driver - 1.0.2-k2                                                    

e1000e: Copyright (c) 1999-2008 Intel Corporation.                                                   

sky2 driver version 1.25                         

ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver                                                           

ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver                                                       

Initializing USB Mass Storage driver...                                        

usbcore: registered new interface driver usb-storage                                                     

USB Mass Storage support registered.                                     

usbcore: registered new interface driver libusual                                                  

i2c /dev entries driver                        

i2c-octeon 1180000001000.i2c: version 2.0                                          

rtc-ds1307: probe of 0-0068 failed with error -5                                                 

md: linear personality registered for level -1                                               

md: raid0 personality registered for level 0                                             

md: raid1 personality registered for level 1                                             

md: raid10 personality registered for level 10                                               

md: multipath personality registered for level -4                                                  

md: faulty personality registered for level -5                                               

device-mapper: ioctl: 4.15.0-ioctl (2009-04-01) initialised: dm-

devel@redhat.com                                                                                 

 

oprofile: using mips/octeon performance monitoring.                                                    

TCP cubic registered                     

NET: Registered protocol family 17                                   

L2 lock: TLB refill 256 bytes                              

L2 lock: General exception 128 bytes                                     

L2 lock: low-level interrupt 128 bytes                                       

L2 lock: interrupt 640 bytes                             

L2 lock: memcpy 1152 bytes                           

1180000000800.serial: ttyS0 at MMIO 0x1180000000800 (irq = 125) is a OC-

TEON                                                                            

console [ttyS0] enabled, bootconsole disabled                                              

console [ttyS0] enabled, bootconsole disabled                                              

1180000000c00.serial: ttyS1 at MMIO 0x1180000000c00 (irq = 126) is a OC-

TEON                                                                            

Bootbus flash: Setting flash for 8MB flash at 0x1f400000                                                         

phys_mapped_flash: Found 1 x16 devices at 0x0 in 8-bit bank                                                            

 Amd/Fujitsu Extended Query Table at 0x0040                                            

phys_mapped_flash: Swapping erase regions for broken CFI ta-
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ble.                                                                

number of CFI chips:                     

cfi_cmdset_0002: Disabling erase-suspend-program due to code broken-

ness.                                                                         

drivers/rtc/hctosys.c: unable to open rtc device (rtc0)                                                        

ata1.00: CFA: CF 1GB, 20071116, max MWDMA4                                           

ata1.00: 1981728 sectors, multi 0: LBA                                       

ata1.00: configured for PIO6                             

ata1.00: configured for PIO6                             

ata1: EH complete                  

scsi 0:0:0:0: Direct-Access     ATA      CF 1GB           2007 PQ: 0 ANSI: 5 

sd 0:0:0:0: [sda] 1981728 512-byte logical blocks: (1.01 GB/967 MiB) 

sd 0:0:0:0: [sda] Write Protect is off 

sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DP 

O or FUA 

 sda: sda1 sda2 

sd 0:0:0:0: [sda] Attached SCSI removable disk 

Freeing unused kernel memory: 17860k freed 

/sbin/rc starting 

Mounting file systems 

Setting up loopback 

Starting syslogd 

Starting telnetd 

/sbin/rc complete 

Jan  1 00:00:02 (none) syslog.info syslogd started: BusyBox v1.18.4 

Jan  1 00:00:02 (none) daemon.info init: starting pid 827, tty '': '-/bin/cav_sh 

 /bin/sh' 

 

BusyBox v1.18.4 (2012-07-03 02:31:49 PKT) built-in shell (ash) 

Enter 'help' for a list of built-in commands. 

~ # NET: Registered protocol family 10 
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6 PERFORMANCE RESULTS 
 

This chapter provides details on performance analysis of C implementation of Skein-256 

on Intel core-i5 and CN5860 OCTEON processor.  The details of the performance 

provided below are for the purposes of illustration only. This work is not meant to 

optimize the method for practical use; the sole purpose is to demonstrate the performance 

of the hash algorithm on two unexplored platforms. 

Table 6.1 shows performance results of Skein-256 sequential processing in terms of 

throughput for two fixed files sizes: 256 bytes and 1024 bytes. On core-i5, a 256 byte file 

takes 666.55 µsec and results in a throughput of 384.06 KB. When the file size increases 

to 1024 bytes, processing time also increases but results in a relatively high throughput of 

588.84KB. As the file size is increased by a factor of 4, the processing time has increased 

only by a factor of 2.6 thereby resulting in a relatively high throughput. Same files when 

processed on OCTEON platform, shows more latency in processing as compared to the 

core-i5 processing times. However, as the file size is increased by a factor of 4, 

processing time shows increase by a factor of 4.5 that results in approximately same 

throughput as that for 256 byte file. The marked difference in the processing times of the 

two platforms for the same file sizes is due to their clock frequencies. OCTEON offers 

800MHz whereas core-i5 has 2.5GHz. 

Table .: Sequential Processing of Skein-256 on two platforms 

Platform File Size 

(bytes) 

Execution time 

(µsec) 

Throughput 

(Kbyte/s) 

CORE-i5 256 666.55 384.067212 

1024 1739 588.844163 

OCTEON 256 924.55 276.891461 

1024 4339.9 235.950137 
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Table 6.2 tabulate results of parallel processing of Skein-256 on the two platforms de-

pending on the file sizes and the utilization of the number of cores. The methodology 

used here is similar to the approach in [7] referred to as the lower-level node priority. An 

advantage of this approach is that it provides maximum parallelism in theory and is re-

liant on the algorithm parameters which not only affect the tree structure in Skein Hash 

tree mode but also the node sizes. Hence, results here depicted are for fixed tree-structure 

with YF=YL= 1. When the same files are passed to core-i5 to run on all the cores availa-

ble, it results in relatively high processing times to output the hash value and thus results 

in a low throughput as compared to the sequential processing of the same file. As the file 

size increases by a multiple of 4, processing time increases by a factor of 4.2. On OC-

TEON processor, it takes even more time to process 256 byte file as compared to that on 

core-i5. However, since there is the availability of maximum 16 cores, 1024 byte is run 

on all the cores. Not only the file size is increased but also the number of cores when in-

creased by a factor of 4 resulted in reduced processing times thus giving an increased in-

put compared to the results on core-i5. This difference is due to the limitation of number 

of cores in the latter that puts subsequent message blocks in pipeline whereas in the for-

mer, all message blocks are available with vacant cores and thus, no thread has to wait in 

pipeline for its turn.  

 

 
Table .: Parallel processing of Skein-256 

Platform File size 

(bytes) 

Number 

of cores 

Execution time 

(µsec) 

Throughput 

(Kbyte/s) 

CORE-i5 256 4 1221.5 209.578387 

1024 4 5126.8 199.734727 

OCTEON 256 4 1859.85 137.645509 

1024 16 3637.6 281.504289 
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In Table 6.3, the results have been compared to the work in [14] and [17]. In [14], only 

the C sequential implementation of Skein-512 is discussed which results in a throughput 

of 4.9 Mbytes/sec on 2 GHz Core 2 Duo processor.  In [17], java implementations of both 

sequential and parallel processing of Skein-256, Skein-512 and Skein-1024 have been 

discussed. However, for comparison, results of only Skein-256 have been used in Table 

6.3. There is a marked difference between results in [17] and results from this work due 

to a number of reasons. A major difference is of the file size used. Also, in [7], skein is 

implemented using java. 

 
 

Table .: Performance comparison in terms of throughput 

Platform File size 

 

Implementation 

Throughput 

Sequential 

processing Lower node priority 

[17]Skein-256 700 MB Java 4 MB/s 26.5 KB/s 

[14]Skein-512 512 bits C 4.9 MB/s --- 

Skein-256 on 

Core-i5  

256 bytes C 384 KB/s 209 KB/s 

1024 bytes C 588 KB/s 199 KB/s 

Skein-256 on 

OCTEON  

256 bytes C 276 KB/s 136 KB/s 

1024 bytes C 235 KB/s 281 KB/s 
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7  CONCLUSION AND FUTURE WORK 
 

Presently, C implementation of only sequential Skein is available in open literature. This 

work not only implements sequential skein-256 using C but also provides a basic parallel 

implementation of Skein-256 using C on two unexplored multiprocessor platforms (core-

i5 and OCTEON). The design approach used is for fixed input parameters for illustrative 

purposes only. The results are reported in terms of throughput (KB/s) and compared with 

each other. From the results obtained, it is concluded that performance can be improved 

using large file sizes to utilize the true potential of multiprocessing. 

 

Future work includes designing a generic algorithm for parallel processing of larger input 

files on core-i5 and OCTEON processor. Moreover, the algorithm should be optimized to 

provide variable tree structures based on the different values of YL and YF. 
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