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Abstract 

The modulated signals used in the communication systems typically exhibits cyclic 

periodicity. It is due to the fact of using sinusoidal product modulators, use of repeating 

preambles, coding and multiplexing in modern communication. This property of signals can 

be analysed using cyclo-stationary analysis and based on that detection of a signal is possible. 

Spectral correlation function (SCF) of cyclic auto-correlation (CAF) has unique features for 

different modulated signals and noise. Different techniques are applied to SCF for extracting 

the features on the basis of which decision of detecting a signal or noise is made. 

In this research, different modulated signals used in satellite communication are analysed 

using SCF. A signal detection technique is devised on the basis of utilizing unique feature 

exhibit by a normalized vector calculated on SCF along frequency axis. The devised 

technique identifies the presence of a signal or noise in the analysed data within the defined 

threshold set for detection. A very high resolution SCF calculation is also not required by the 

proposed technique which is significant in terms of fast processing. Further, cumulants are 

applied to the calculated vector which further classifies different modulations and noise 

distinctly. 

The simulations are performed in MATLAB and to capture external world signals USRP2 is 

used. 
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Executive Summary 

The research presented in this thesis utilizes the time smoothing method FFT accumulation 

method (FAM) [1], [10] for calculating the cyclic statistics of the real satellite signals and 

obtained SCF spectral correlation function (SCF) with low resolution frequency and cyclic 

frequency parameters. The main contributions are devising feature based less complex 

detection scheme by extracting feature vectors from the calculated SCF for signals and noise 

in the satellite spectrum. Resulting SCF for received satellite carriers and noise are presented. 

The proposed technique requires no prior information about the signal it is analysing within 

the sampled spectrum. There are also no specialized memory requirements as in [2], [17] or 

covariance matrix computations [13] making it reduced computationally complex [18]. 

USRP2 [22] is used to capture the signals which make the whole algorithm compatible to be 

used in a practical satellite cognitive radio. No pre-processing of the acquired samples is 

required for mitigating the satellite channel effects which ensures signal detection with lowest 

possible SNR in the satellite link. Further, cumulants are applied to the calculated vector used 

by the detection scheme. They are used to classify the type of modulation of the detected 

signal by the proposed detection technique. Successful ranges are obtained for BPSK, QPSK 

and 16-QAM carriers present in the satellite frequency band. A unique application of 

cumulants is thus obtained in the research. The computational complexity analysis of the 

whole detection and classification using cyclostationary analysis and application of 

cumulants on the feature vector shows that the proposed research leads towards a feasible 

spectrum sensing solution for satellite cognitive radios. The proposed research performs well 

with high probability of detection under low SNR conditions in the satellite channel. 
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Chapter 1. Introduction 

1.1  Motivation 

Satellite cognitive radios have been proposed in recent years, so that the static bandwidth of 

the satellite can be utilized by primary and secondary users. Cognitive radio needs spectrum 

sensing technique to sense the free radio channel for utilization. Cyclostationary analysis [2]-

[4] is a hot research topic in the area of spectrum sensing because it is efficient than 

traditional energy detection analysis. Techniques based on this method are complex and 

computationally hungry [4] to be used in cognitive radios. Therefore, research in this area is 

still required. Special focus will be set to the modulated signals used in the communication 

satellites, since there is almost no or a very little research focusing this particular area [4]. If 

computational complexity of the detection technique is minimized, the research will help in 

developing algorithms for spectrum sensing modules for satellite cognitive radios. 

1.2  Aims and Objectives 

The aim of the proposed research is to devise a simpler technique for extracting feature from 

the SCF of the modulated signals used in communication satellites. The proposed technique 

of analysis should be working with low resolution parameters for spectral density calculation, 

so that it will be fast enough to be used in the cognitive radios for satellites as cyclostationary 

spectrum sensing algorithm. 

1.3  Cyclostationary and Cognitive Radios for Satellite 

Cyclostationary analysis of the modulated signals have been a vast topic of research for 

almost half a century [1], different aspects of this inherent property of modulated signals have 

been investigated in that period [1]. The main application of cyclostationarity of signals is in 

the domain of spectrum sensing as it has been a proven technique for this purpose than 

conventional energy detection [7]. After the advent of software defined radio (SDR) based 

cognitive radios (CRs) [3] to solve the problem of spectrum scarcity in the frequency bands, 

cyclostationary analysis have been adopted as a perfect choice for spectrum sensing [2]. The 

main focus in this context is in the terrestrial bands but their exploitation in satellite 

communication is still not explored [4]. Particularly, very few initiatives at academic and 

industrial level have addressed the spectrum sensing aspects for CR of satellite 

communication [4]. So, application of cyclostationary analysis to the modulated carriers in 

the satellite band is an open research area. The CR for satellite needs to detect the modulated 

carriers, while performing the spectrum sensing in order to provide opportunity spectrum 
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holes to the secondary users. There is a computational complexity associated with the 

cyclostationary based detection so the technique devised for satellite CR should be low in 

complexity with shorter number of samples and low resolution analysis [2]. 

In satellite communications, modulated carriers are generated with modems, function 

generators meant for this purpose and travels at around 36000 km up to the satellite 

transceiver [4]. The band pipe nature of the satellite sends them back to the downlink. So, this 

channel incorporated a lot of noisy effects in the communication signals and then intended 

CR should be working with these received signals having the effect of this long path channel. 

The importance of this scenario must be kept in mind, while designing the signal detection 

technique for satellite CR. In this research, properties of such signals are exploited and a 

simpler technique incorporating all the complexity parameters discussed above is being 

proposed for satellite CR. The platform for the design of practical CR is of great importance. 

This is due to the fact that if the designed algorithm for detection is not compatible with the 

CR platform, then the signal detection efficiency will be compromised. So, the USRP2 which 

has been a proven platform for practical SDR and CR development [22] is used to capture the 

satellite signals and the lab generated satellite signals. This will enable the developed 

algorithm to work as a practical spectrum sensing engine for a prospective satellite CR on a 

real CR platform as in [15]-[16], & [19]-[20]. 

1.4  Organization of Thesis Report 

The thesis report is organized in the following chapters.  

Chapter 1 is the introduction to cyclostationary and cognitive radios for satellite.  

Chapter 2 is about the cyclostationary spectrum sensing techniques in literature.  

Chapter 3 provides mathematical model of cyclostationary analysis using the FAM 

algorithm.  

In Chapter 4, theoretical SCF of BPSK, QPSK & 16-QAM modulations are discussed.  

In Chapter 5, proposed detection technique is discussed along with the applications of 

cumulants.  

Chapter 6 has practical experimentation setup and measurement results.  
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Chapter 7 discusses and presents the simulation results. It also presents the comparative 

analysis of the proposed technique and other state-of-the-art techniques used for detection of 

the signals.  

Chapter 8 provides performance analysis of the proposed spectrum sensing scheme. 

Chapter 9 gives the conclusion and suggests the prospective future work.  

A brief introduction of GNU radio and USRP2 (which are modern and the most developed 

open source SDR software and hardware platforms respectively) is presented in the following 

sections of the introduction.  

1.5  GNU Radio Software 

GNU Radio is an official project of GNU since 2001 [31], it is free with open source rights 

software. Its development toolkit has signal processing and operation blocks using which 

SDR systems can be implemented. These systems can be interfaced with available low-cost 

RF hardware or general purpose processors..GNU radio applications are based on python as 

the programming language. Main signal processing blocks in GNU radio are written in C
++

 

programming language in processor having floating point arithmetic. In GNU radio signal 

processing blocks are built on C
++

 programming language, and they use python programming 

language as wrapper which connects together the signal processing block [31]. In Fig. 1-1 

graphical user interface of GNU radio flow graph is shown. The application of GNU radio is 

known as GNU radio companion (GRC). 
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Figure 1-1: GUI of GNU radio flowgraph in GRC 

1.6  USRP2 

The universal software radio peripheral or USRP2 is a RF hardware front end sensor and pre 

processor used with GNU radio. It can convert normal computers into high bandwidth RF 

software radio instruments. Essentially, if a communication radio system is considered, 

USRP2 is the digital baseband and its daughter card is intermediate frequency (IF) 

equipments in the whole system. In a standard USRP2 two parts are included: (1) a mother 

board with a field-programmable gate array (FPGA), with high-speed processing feature for 

signals; (2) at-least one or more RF daughter boards designed to cover different bands of 

frequencies. The picture of USRP2 is present in Fig. 1-2 (a), and a picture of USRP2 mother 

board is present in Fig. 1-2 (b). The elements of USRP2 include a speedy 1Gbps Ethernet 

port which acts as the data bridge between PC and the FPGA, there are four 14bits/sample 

100 Msamples/sec high-speed analog-to-digital convertors (ADCs) and four 16 bits/sample 

400Msamples/sec high-speed digital-to-analog convertors (DACs). The mother board is 
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capable of supporting two transmit and receive daughter boards respectively. In order to 

change the operating frequency range we can choose different USRP2’s daughter boards 

[29]. Examples are, wide-band transceiver (WBX) daughter board working at frequency 

range of 50-2200 MHz, RFX400 daughter board working at 400-500 MHz. In our 

experimentation, wide-band SBX transceiver with 400-4400 MHz range of frequency 

operation is used. 

 

(a) 

 

(b) 

Figure 1-2 : (a) USRP2 front panel with interfaces (b) USRP2 mother board with SBX40 RF daughter cards 

So far, an introductory idea has been presented. Modern SDR based CR development 

platform of GNU radio and hardware RF front-end of USRP2 is briefly discussed. In the 

following chapter, review of different cyclostationary based technique has been presented. 

Also, novel techniques for calculating the spectral density based on the correlation of 

cyclostationary modulated signals and their detection are going to be discussed. 
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Chapter 2. Literature Review 

In this chapter, different approaches carried out in the literature for calculating the 

cyclostationary features of modulated signals are presented. The basic idea behind the 

approach, its significance, novelty and discrepancies are discussed. Specially, techniques 

using the second order statistics of the signal including the cyclic autocorrelation and the 

spectral correlation density for signal detection are focused. 

2.1  Cyclostationary Detection 

Cyclostationary for wireless signals that are present in signal processor is define by periodic 

variation in the statistical properties. These characteristics are time-varying with periodicity. 

For such wireless signals having periodicity property and modelled as cyclostationary signal, 

then functionality of signal processor can be enhanced by extracting cyclic features through 

signal detection based on features. Cyclostationary features shown by modulated carriers 

using signal processing of modulated sampled data is well developed in literature and has 

been used conventionally in wireless communication domain. The idea behind this special 

property of the signals is based on the fact that due to sine and cosine waves used to generate 

signals in a repeating manner so this introduces cyclic behaviour and a part from signal’s 

carrier frequency there exists a frequency which is a function of repetition of the parameters 

of such waves. This frequency is called cyclic frequency. Cyclostationary theory as first 

introduced by Gardner [1] exploiting cyclo-periodic features of random processes opened 

new threads in wide research scope. Features exhibited by the random processes and 

modulated signals as a function of the frequency and cyclic frequency was discovered. 

Detailed analysis of the cyclic periodogram was presented. The autocorrelation which is a 

second order statistical property for a Guassian processes having normal distribution was 

used by the author. Spectral analysis of autocorrelation function led to the discovery of 

specific peaks in the spectral density at certain location of cyclic frequency as a function of 

the carrier frequency. This was the first time when a proper mathematical frame work for 

exploring the cyclostationary behaviour of the signals was proposed. The research was also 

used to detect cyclostationary signals leading towards development of cyclostationary 

detectors. 

To implement the cyclostationary detector, cyclostationarity features of the signals are used 

[37]. If a signal is found in the channel, cyclic correlation values have peaks in it. If there are 

no peak(s), it implies that spectrum band is idle and no signal is present at the observation 
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time. Test statistics are usually formed using the values in spectral density of correlation. For 

better calculations of correlation spectral peaks values large number of samples are 

important. A better signal detection is carried out in this way. Cyclostationary processing has 

added benefit of insensitivity to lower SNR and without demodulating the received signal it 

can detect it [38]. As the implementation is considered, cyclostationary detector is fast fourier 

transform (FFT) based and degrading SNR issues are avoidable as variance of noise is not 

needed in cyclic spectral analysis. This gives added advantage over the conventional energy 

detection method. The trade-off between good performance and high efficiency is always 

there for the implementation of the detection system. It is emphasized in the research 

literature to use longer length of observation data in order to have better signal detection 

estimation. Cyclostationary processing is beneficial in two important aspects. The one is its 

less sensitivity to low SNR (Signal to Noise ratio) and the other one is that it does not require 

any demodulation of the signal under consideration for extracting significant features for 

signal detection. Different techniques for signal detection developed in the literature have 

exploited the inherent properties of the parameters resulting in cyclostationary analysis. 

Symmetric nature and cyclic frequency location spectral peaks are two examples. These 

properties appear in the spectral density of the cyclostationary signal. Other techniques using 

complex processing for pattern matching based feature verification were also developed. The 

main disadvantages are high resolution analysis and complex computational requirements 

making them void for usage in faster spectrum sensing modules of cognitive radio designs. 

One such design is a satellite cognitive radio. Till date, energy based detection and processing 

on PSD (Power Spectral Density) of the received spectrum has been utilized for the subject of 

spectrum sensing for satellite cognitive radios. [42]-[43].  

2.2  Specific Signal Detection Techniques 

Cyclostationary signals when analysed produce features as a result. Optimum detection has 

been done by comparing the ideal spectral density signatures for OFDM scheme QPSK 

carriers with the received one in [2]. This comparison scheme has good performance in terms 

of detection probability under low SNR. Also, only one FFT calculation block both for 

OFDM carrier generation and spectral density calculations was used reducing hardware 

resource utilization. But it requires high resolution complex computations in order to detect 

the features similar to the ideal signatures of OFDM features. Timing mismatches causing 

feature attenuation were avoided in [5] by extracting feature vectors for each modulation type 

considered in the analysis. These feature vectors were compared separately with the 
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calculated feature vector for the input signal for detecting the signal.  The technique was 

proved to be robust for mitigating timing mismatches effects on the features in the spectral 

density. The pre-processing stage introduced to estimate the symbol rate of the incoming data 

had Haar wavelets. Wavelets were used to provide blindly estimated symbol rate by 

measuring the phase transitions from symbol changes. The frequency seperation between 

transitions provides the estimated symbol rate Interpolated new symbol rate is used to 

calculate the cyclic spectrum. The proposed technique assumed a prior known carrier 

frequency. Wavelet based symbol rate estimation, spectral density at specific locations and 

comparison of feature vectors for different modulations made the technique very complex. In 

[6] SDR (software defined radio) based cyclostationary analysis had been done. Coherence 

function was used to normalize the spectral density and carrier frequency was estimated. 

Spectrogram of the modulated data is used to detect the presence of the signal graphically. 

Carrier frequency and bit rate of the input signal was successfully estimated. The presented 

work enlightens only the various parameters that can be estimated using the spectral density 

using real time data captured from USRP. The experimentation setup of this paper provides 

the basic setup requirements and procedures for capturing real time data in this research. 

Parallel implementation of cyclostationary mathematical model had been carried out in [12]. 

The method adopted was to calculate the spectral density using parallel hardware blocks 

instead of sequential approach. FAM (FFT Accumulation Method) is used to calculate it. A 

symmetry test for features in the cyclic spectrum was done to detect the signal. A very low 

computational time was achieved in estimating the cyclic spectrum using parralel hardware 

estimators. The parallelism of technique supersedes the serial implementation but the parallel 

threads required high resolution analysis for symmetric detection. High resolution analysis 

means incorporating every possible value of cyclic frequency in the analysis. Efficient 

spectral density algorithm on FPGA was implemented in [17] to perform the cyclostationary 

analysis of the signals. The detection technique under training mode saves the location of the 

peaks particularly produced in spectral density in look up tables with memory requirements. 

High complexity involves when the whole values of the analysed data got compared with the 

data of the look up tables. FAM algorithm has been successfully implemented on FPGA but 

for the detection of signal higher memory requirement based look up tables were used. High 

resolution cyclostationary analysis done to make decision of a signal presence presented in 

[20] exploited symmetry in the correlation statistics. A blind but complex in computation 

technique was presented in [23]. It is calculating SCSD (Sum of the magnitude square of the 

Cyclic Spectral Density). Symmetric property of the cyclic spectral density, magnitude 
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square, convolution between frequency shifted signal and differentiation was done to reach at 

the peaks and jumps in the cyclic frequency on the basis of which detection decision is done. 

Additional computational complexity added with two fast fourier transforms (FFTs) and 

inverse fourier transform (IFT). Blind hierarchical SDR based detection using ratio of high 

resolution coherence function and higher order cumulants was proposed in [27]. Practical 

classifier values for the cumulants were presented for BPSK, QPSK and 16-QAM 

modulations. The spectral density was calculated using spectral coherence function. Energy 

detection was used to determine the signal in the channel at the desired frequency. Then using 

detailed coherence function ratios for BPSK, QPSK and 16-QAM modulations were 

calculated. Threshold for detection was set using the mean point of the probability density 

function of the three modulations. The application of cumulants on the I and Q samples 

proved to be a good modulation classifier. Similar application of cumulants has been shown 

in the presented research using the resultant feature vector from the proposed technique as the 

input to the cumulant algorithm. Third order cyclic cumulants for one value of cyclic 

frequency (the frequency of periodic repetitions) were presented in [29]. Cyclic cumulants on 

BPSK modulation were applied in [30] to analyse the features of BPSK modulation using 

higher order statistics. Covariance based matrix was calculated to detect the signal 

numerically by comparing with a predetermined threshold. As the order of the calculation 

statistics increases along with covariance matrix calculations, less efficient the technique 

becomes in terms of computational requirements. Circular correlation stage addition was 

proposed in [33] before the FFT stage in cyclostationary detector resulting in enhanced 

features achieved under lower SNR at the expense of higher computational complexity. The 

circular correlation stage provides a zero valued result when noise is input to the system due 

to random nature of the noise signal. When a true signal with cyclic periodicities inserted 

then it shows real values for cyclic correlation. In this way the spectral density contains 

features in it which were searched by the detector in terms of numerical values. Resulting 

enhanced features in spectral density were presented for different modulations. Single cyclic 

frequency based high resolution analysis presented in [35] utilizes the maximum value of 

spectral density at an assumed single cycle frequency as the function of the carrier frequency 

with assumption of known carrier frequency and modulation type for the analysed signal. 

Whole spectral density calculations were avoided and significant feature was achieved at low 

SNR. Detection decision is done using the threshold value achieved in case of noise and in 

case of signal plus noise values. The technique works with the assumption of AWGN noise. 

Wavelets processed spectral feature detection in the graphical plot of spectral density was 
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carried out in [39]. Reconstruction of spectral density plot was done by utilizing the smaller 

number of samples using non-linear or convex reconstruction algorithms. This is known as 

compressed sensing technique. The noise produced by the reconstruction process was 

removed by treating the resulting spectral density as grey image plot using Wavelets. Noise 

reduction and good application of Wavelets in RF domain was achieved but higher 

complexity with the use of two dimensional Haar wavelets was unavoidable. Spectral density 

estimations were carried out by using the compressed orthogonal reconstruction from 

samples. ANN (Artificial neural network) trained in [40] were used to detect and classify 

modulation type of the inputted cyclostationary signals. Three layered ANN structure was 

used. Coherence function was first applied to get the training data for ANN.  The proposed 

technique proved to be working well with good probability of detection and classification of 

the signal. Coherence function and ANN implementation makes the technique 

computationally demanding. In [44], cyclostationary analysis for under water acoustic 

communication has been presented. The modulation format of BPSK and QPSK were 

analysed. The detection technique works by estimating the spectral density of the input signal 

using dynamic multi resolution spectral correlation function. In this technique SCF is 

estimated with low resolution for cyclic frequency in all the regions and with high resolution 

at specific locations for cyclic frequency where significant features appear. Peak ratios for 

BPSK and QPSK are calculated by dividing the peak magnitude at cyclic frequency and 

frequency axes. Modulation detection was achieved in under water acoustic communication 

using this cyclostationary analysis detection technique. Higher detection probabilities were 

resulted by experimenting on real data. The technique has been found susceptible to doppler 

and noise effects of underwater scenario and in practice it is more dependent on the ratio 

statistical values. Also, large samples were used to perform the detection of modulation. 

It is evident from the above discussion on different novel techniques that cylostationary 

analysis is computationally complex and has statistical dependence such as variance and 

mean due to guassian nature of communication signal and noise. There is still room for new 

methods based on SCF of the modulated signals for detection. In connection to cognitive 

radios for satellite very less emphasis is found in the literature. So, this research fills the gap 

and focused on a less complex cyclo-detector using low resolution and less number of 

samples spectrum sensing scheme. The proposed new scheme must be well performing but 

must use fewer resources in terms of computational operations. Also, HOS cumulants have 

never been tested on the features of the spectral density. The hypothesis can be formulated 



24 
 

with the fact that if a signal sample can be used to classify modulation type applying HOS 

cumulants then considering the feature numerical values in form of an input vector should 

result in some form of static ranges or values which can help in classification of the 

modulation type for the detected signal.  

In the coming chapter, the basis of the methods and mathematical description of 

cyclsotationary analysis along with an efficient time smoothing algorithm for estimating the 

SCF with low resolution has been presented.  
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Chapter 3. Cyclostationary Analysis and FAM algorithm 

In this chapter mathematical model of the cyclostationary analysis has been presented.  First 

detailed discussion on the involvement of second order statistics in determining the 

cyclostationary features was done. A derivation of spectral correlation density is presented. In 

the end, an efficient previously proposed time smoothing algorithm known as FFT 

accumulation method (FAM) with operational details is discussed. 

3.1  Background 

In satellite communication, modulated signals are used for different applications utilizing the 

band of frequencies supported by the satellite. These modulated signals are cyclostationary in 

nature [1]. Cyclostationary features are caused by the periodicity in the signal due to 

multiplexing, product modulation, coding and preambles induced in the generation process 

[1]. Signal’s mean and autocorrelation shows periodic features. Cyclostationary based 

algorithms can be used to detect signals in a band exploiting cyclic correlation function and 

can differentiate between noise and signals [7] cyclic autocorrelation function (CAF) is 

calculated for a cyclostationary signal which is a Fourier series coefficient 𝑅𝑥(𝜏). CAF 

exhibits the correlation between widely separated components because of the spectral 

redundancy due to periodicity [12]. Second order statistics of the signal are calculated using 

the Fourier coefficients in terms of its CAF and SCF. 

3.2  Cyclic Autocorrelation Function  

The periodic autocorrelation function can be expressed as: 

Rx t, τ = E[(x(t)x∗(t − τ))]    Equation 3-1 

For a cyclostationary signal 𝑅𝑥 𝑡, 𝜏  is periodic and its Fourier series decomposition yields: 

Rx t, τ =  Rx
α τ ei2πα t

α     Equation 3-2 

Where α is the cyclic frequency. The cyclic frequency α is the occurrences of the correlation 

due to periodicity in time domain [1]. Fourier coefficient Rx
α τ  is called the CAF and can be 

expressed as: 

Rx
α τ =  limT→∞

1

T
 Rx t, τ e−i2πα tdt

T

2
−T

2

  Equation 3-3 

Where, T is the observation interval for the signal. 
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Rx t, τ  can be replaced by symmetric delay conjugate product and can be expressed as: 

Rx
α τ =  limT→∞

1

T
 X  t +

τ

2
 

T

2
−T

2

X(t −
τ

2
)∗e−i2πα tdt  Equation 3-4 

Cyclic correlation in time domain is between two frequencies shifted x (t) values which in 

frequency domain are separated by α. 

Let 𝑢(𝑡)  =  𝑥(𝑡)𝑒−𝑖𝜋𝛼𝑡  and 𝑣(𝑡)  =  𝑥(𝑡)𝑒𝑖𝜋𝛼𝑡  are two shifted version of 𝑥(𝑡). 

𝑅𝑥
𝛼 𝜏 =  lim𝑇→∞

1

𝑇
 𝑢  𝑡 +

𝜏

2
 

𝑇

2
−𝑇

2

𝑣(𝑡 −
𝜏

2
)∗ 𝑑𝑡  Equation 3-5 

The fourier transform of the CAF of x(t) is defined as the spectral correlation density (SCF). 

SCF is the cyclic spectrum at a given cycle frequency α. It is the density of the correlation 

between two spectral components separated by an amount equal to cycle frequency. SCF is 

also referred to as cyclic spectral density (CSD). The CSD function produces peaks when 

cycle frequency is exact multiple of fundamental frequency due to correlation [7]. 

3.3  Spectral Correlation Function 

The SCF from the CAF is given as: 

𝑆𝑥
𝛼(𝑓) =   𝑅𝑥

𝛼 𝜏 
∞

−∞
𝑒−𝑖2𝜋𝑓𝜏   𝑑𝜏   Equation 3-6 

In terms of symmetric delay conjugate product between frequencies (𝑓 +  
𝛼

2
) and (𝑓 −  

𝛼

2
) for 

T interval, SCF in Eq. 3-6 becomes: 

𝑆𝑥
𝛼 𝑓 = limΔ𝑡→∞  lim𝑇→∞   

1

Δ𝑡
 

1

𝑇
   

Δ𝑡

2

−
Δ𝑡

2

 𝑋𝑇  𝑡,𝑓 +
𝛼

2
 𝑋𝑇

∗  𝑡,𝑓 −
𝛼

2
 𝑑t   Equation 3-7 

Where, 𝑋𝑇(𝑡,𝑓) is the spectral component of x(t) given as : 

XT t, f =   x(t)e−i2πf
t+

T

2

t−
T

2

dt    Equation 3-8 

The calculated SCF is viewed on a bi-frequency plane as a function of frequency f and cyclic 

frequency  α . A range for spectral frequency f is from −
𝑓𝑠

2
 to 

𝑓𝑠

2
 and α is from −𝑓𝑠  to 𝑓𝑠 . 
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Modulated signals have unique features pattern in their SCF that can be utilized for signal 

detection [8]. 

3.4  FFT Accumulation Method 

FFT accumulation method (FAM) is an algorithm for SCF calculation based on time 

smoothing method. Time smoothing method is an efficient method for SCF calculation than 

frequency smoothing method [9]-[11]. FAM method calculates the fourier transform (FT) of 

the time smoothed correlation product of the spectral components.  

 

 

 

 

 

 

 

 

Figure 3-1: Time Smoothing FAM Procedure 

Input signal x(n) in Fig. 3-1 is divided into blocks by Hamming window for reducing the 

spectral leakage. Complex demodulates are estimated efficiently by FFT covering all the 

samples in the input. Frequency shift is done to convert the signal into baseband. A step size 

is used instead of continuous slid through samples. Product sequences from the calculated 

components and complex conjugate are formed followed by a second FFT for time 

smoothing [21]. The first FFT size is determined by the frequency resolution ∆f and second 

FFT size is determined by cyclic frequency resolution ∆α.  

 

N′ =  
fs

Δf
        Equation 3-9 

P =  
fs

LΔα
      Equation 3-10 

Hamming 
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𝑆𝑥
𝛼 𝑓  
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Where, N′  and P are the first and second FFT sizes respectively. fs is the sampling frequency. 

Next, using the presented cyclostationary theory, ideal SCF of BPSK, QPSK and 16-QAM 

modulation are presented. The theoretical values of the feature peaks as they may appear in 

the spectral density and the parameters on which the values of the peaks depend are 

identified. Locations for typical feature points in the cyclic frequency are identified. The 

reasons behind the number of peaks as they may appear in the practical scenarios are 

highlighted for higher order QPSK and 16-QAM modulation formats. 
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Chapter 4. SCF of BPSK, QPSK & 16-QAM Modulations 

Ideal features of the SCF for the subject modulation types are presented in this chapter. Using 

the cyclostationary concepts and definitions, features in the SCF of BPSK, QPSK and 16-

QAM modulations can be mathematically estimated as follows. 

4.1  BPSK Modulation 

For BPSK modulated signal 𝑦(𝑡) = 𝑎(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙0), SCF according to [23] & [36] can 

be expressed as: 

Sy
α f =

 
 
 

 
 

1

4
 Sα

0 f − fc + Sα
0 f + fc  ,          α = 0;

1

4
ej2ϕ0 Sα

0 f ,                                   α = 2fc

1

4
e−j2ϕ0 Sα

0 f ,                                 α = −2fc

   Equation 4-1 

Where α is the cyclic frequency, ϕ0 is the shift in phase and Sα
0  is the Fourier transform of the 

autocorrelation Rα
0  τ . 

It is clear from the above estimate that the BPSK will show total four peaks. Two in the 

cyclic domain where f = 0 and two in the frequency domain where α = 0 in the bi-frequency 

plot of SCF. 

4.2  QPSK Modulation 

For QPSK modulated signal 𝑦(𝑡) =  
1

 2
[𝑎 𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 + 𝜙0 + 𝑏(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙0 +

𝜋

2
)]. The inphase a(t) and quadrature b(t) can be viewed as two separate BPSKs respectively. 

So SCF for QPSK can be given as: 

Sy
α f =  

1

4
 Sα

0 f − fc + Sα
0 f + fc  ,          α = 0;    Equation 4-2 

QPSK will be having two peaks in frequency domain where α = 0. This is due to the 

cancelation of in-phase part and quadrature part in cyclic frequency domain. 

4.3  16-QAM Modulation 

For 16-QAM modulated signal 𝑦 𝑡 = 𝑐 𝑡 𝑐𝑜𝑠 2𝜋𝑓0𝑡 − 𝑑 𝑡 𝑠𝑖𝑛 2𝜋𝑓0𝑡 . 16-QAM will 

have two peaks in the frequency domain at α = 0. Moreover, if the in-phase and quadrature 

part cancels out each other completely, then there will be no peaks in the cyclic frequency 

domain. For the case of no or little subtraction between in-phase and quadrature components, 

peaks may appear at locations in frequency domain. 
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A graphical representation of the ideal SCF of the BPSK plotted against 𝑓 and α can be seen 

in Fig. 4-1. The circles in blue colour depicts the peaks in the SCF at specified values of 

cyclic frequency α, frequency resolution  f and the carrier frequency 𝑓𝑐 .   

 

Figure 4-1: A graphical representation of Ideal BPSK SCF 

BPSK modulation shows four peaks according to Eq. 4-1. If proper values for the cyclic 

frequency resolution and frequency resolution are set in the analysis, ideal SCF is obtained 

for modulated signals present in the sampled data input to the analysis algorithm. 

Cyclostationary features then can be used to detect the signal from the noise.  

With such detailed analysis and idea of direction of research in cyclostationary analysis of the 

signals now a simple, low resolution spectrum sensing technique with application of 

cumulants on the resulting spectral density feature vector for classification of the modulation 

of the detected signal is presented in the following chapter. 
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Chapter 5. Proposed Detection Technique 

Spectral correlation function  Sx f,α  is a two-dimensional function of frequency and cyclic 

frequency when calculated practically. It shows particular spectral peaks at certain frequency 

and cyclic frequency locations due to cyclostationarity. These peaks are particular features 

represented by SCF for particular modulated signals as in our case it is BPSK, QPSK & 16-

QAM. The main idea behind devising a new technique is to enable a logical decision block 

and quantify the features shown by the SCF. For this purpose different techniques for 

detection have been proposed in [2, 12, 13, 16, 18 & 20]. All of these techniques in the 

literature use the calculated SCF further process it and reach at the detection hypothesis 

solution. One more method is to calculate high resolution SCF [2] & [12] and use its inherent 

properties at particular cyclic frequency locations to detect presence of signal. In the 

proposed method first SCF is calculated using FAM algorithm. The frequency and cyclic 

frequency resolutions used are very low i.e. in order of KHz which is far greater in value 

from different recent and former approaches using frequency resolutions in hertz (Hz). 

Secondly, only 1024 maximum and 600 minimum samples have been used as input to the 

FAM algorithm. In simulation chapter details of the parameters of FAM algorithm has been 

presented. SCF containing features in its two dimensional bi-frequency plane plot for discrete 

input data can be expressed as cyclic periodogram [14], 

Sx f,α =  
1

N
 Xt tn , f XT

∗  tn , f + α N−1
n=0   Equation 5-1 

Let’s define M as the maximum value in the calculated SCF so, 

M =  max2−d index Sx(f,α)            Equation 5-2 

Now, we define a normalized SCF as: 

Sx(a, b) =  Sx f,α ∗  
1

M
   Equation 5-3 

The features in the SCF can be extracted into a calculated column vector as: 

𝑉𝑖 𝐾 =

  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑐𝑜𝑙𝑢𝑚𝑛 𝐼𝑛𝑑𝑒𝑥 (1,2,3,… .𝑎)  
max (𝑅𝑜𝑤  𝑊𝑖𝑠𝑒  𝑠𝑖𝑓𝑡  & 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ) 𝑆𝑥 (𝑎 ,𝑏)

                             

          Equation 5-4 

Where ‘K’ have values ranging from 1 to a. ‘a’ represents the number of rows in SCF. 
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The proposed detection uses only half of the values in the calculated vector to detect the 

presence of signal or noise in the analysed data. This reduces the calculation complexity from 

‘N’ vector point analysis to ‘N/2’ as in [18]. 

The calculated vector Vi K  above is used by the detection block to generate the result of the 

hypothesis of signal and the noise in the captured spectrum band. The significant features of 

the SCF are presented in form of values in the index of vector Vi  . This vector is a column 

vector. The values in the vector are in the range from 0
to
→  1. Spectral peaks in the SCF at the 

locations of (f=0, α= 2−
+ 𝑓𝑐 ), (f= 𝑓𝑐−

+ , α=0), (α=0), (f= 𝑓𝑐−
+ , 0.5−

+ 𝑓𝑐 ,𝛼 = 2−
+ 𝑓𝑐 , 𝑓𝑐−

+ ) which are 

generally seen in the modulated data as in [1, 5, 12, 16 & 21] are gathered in the calculated 

vector. Points of spectral correlation have values near to one. In case of noise, the SCF shows 

features only at α=0 for whole values of f [23]. The calculated vector therefore, has more 

values near one. The distinction between a signal and noise thus can be made by using this 

response of the vector Vi K . A threshold value 𝛾 is defined which is used to identify the 

number of values qualifying for distinguishing between noise and signal response. By 

experimentation, the values of interest in the vector are those passing 𝛾 > 0.5 threshold. 

Let the hypothesis for detection be  

𝐻0 = 𝑛 𝑡      Equation 5-5 

𝐻1 = 𝑦 𝑡 + 𝑛(𝑡)    Equation 5-6 

Where n(t) is the noise and 𝑦(𝑡) + 𝑛(𝑡) is signal with noise. 

The decision is done for the two hypotheses above by calculating: 

𝐻0 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 =
𝑁

2
  Equation 5-7 

𝐻1 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 ≠
𝑁

2
  Equation 5-8 

The detection procedure works as follows: 

 

 

Figure 5-1: Block Diagram of the detector 

𝑆𝑥(𝑓,𝛼) 𝑉𝑖(𝐾) Decision Block 

𝐻0 

𝐻1 
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After calculating the SCF as shown in Fig. 5-1, the vector Vi(K) is extracted out containing 

the normalized SCF features in form of magnitudes ranging between 0 and 1. The decision 

block then counts the number of values in the vector above 𝛾 > 0.5 threshold level to decide 

between H0 or H1. 

 

 

Figure 5-2: Block Diagram of the technique 

The working of the algorithm can be summarized in the following steps. 

1. Estimate the SCF of the input signal using the low resolution values for frequency and 

cyclic frequency as parameter inputs to FAM. The resolution values are listed in 

Table 3 in chapter 7. 

2. Extract the maximum feature value’s magnitude in the two dimensional plot of the 

calculated SCF using sort and compare in a nested conditional loop. 

3. Normalize the whole SCF values by using this maximum value obtained in step 2. 

4. Now take a one dimensional vector and extract the maximum value in magnitude 

from the SCF which is a matrix containing rows and columns. Sort and compare 

values by scanning the columns in rows. 

5. Put only maximum value of the row in the vector. The vector would contain only 

values in the magnitude range from 0 to 1. 

6. Now a search for the values passing the defined threshold is done. 

7. Using the defined hypothesis for 𝐻0 and 𝐻1. If the number of peaks passing the 

threshold exceeds half of the number of values in the vector then detection of noise is 

declared else presence of the signal is declared. 

5.1  Alternate to Spectral Coherence Function (SOF) 

The coherence function is especially useful for cyclic frequency detection, since the 

coherence value is independent of the absolute power levels of the signals from the data 

signal y(t), which simplifies choosing the threshold for detection [16] & [21]. Additional 

advantage of SOF (being the normalized version of SCF) is that it helps in removing the 

channel effect [16]. In literature a normalized version of the SCF is obtained for detection of 

signals using the Spectral Coherence Function (SOF) is given as: 

FAM Max Value Normalize 

Calculator 

Vector 

Calc. 

Detection 

Block 

Input 
S (f,α) M S (a,b) 𝑉𝑖(𝐾) 

𝐻0 

𝐻1 
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Cy
α f =  

Sy
α (f)

 Sy
0 f+

α

2
 Sy

0 f−
α

2
 

    Equation 5-9 

If we take a closer look at the Eq. 5-9, it shows clearly that first SCF has to be estimated and 

at different cyclic frequency shifts the product value of α = 0 SCF is used to calculate the 

coherence function 𝐶𝑦
𝛼 𝑓 . Summarily, it is ratio of the whole bi-frequency SCF to the square 

root of the product of cyclic frequency shifted values at α = 0. These values can also be 

referred to as power spectral density (PSD) values [1]. This normalization method in 

comparison to the proposed technique implicates high computational complexity even if we 

select certain cyclic frequency locations such as α = 2𝑓𝑐  for calculating the denominator 

products. In the proposed technique of this research, simply maximum value of SCF in the bi-

frequency plane is calculated and whole SCF of the bi-frequency plane is divided by this 

value using Eq. 5-3. However, in this research the proposed method for detection has all the 

advantages offered by SOF with lesser amount of computational resources unlike the 

coherence function. 

5.2  Fourth-Order Cumulants on Calculated Feature Vector for Modulation     

Classification 

The spectrum sensing approach so far proposed has the ability to successively detect signal in 

the band of interest. But the type of modulation of the detected signal is unknown. One of 

most extensive methods used in the literature for modulation recognition is by using HOS 

(Higher order statistics). This is done by calculating the cyclic cumulants of 4th and above 

orders of the signal captured for detection purpose [24]-[28]. The type of modulated signals 

in the presented work includes BPSK, QPSK and 16-QAM modulations. For BPSK only 

second-order statistics are enough to classify it. But for the case of QPSK and 16-QAM 

modulations, it lies in the higher order statistics i.e. 4th order cumulants are required to 

classify between these types of higher modulations [27].  

In literature the modulation classification is done by first using the captured data (which can 

be complex valued or real valued data) to detect signal via energy detection method [24] & 

[26]. Then cumulant values for third [29] or 4th order cumulants are estimated for different 

modulation schemes [27]. The Cumulant values thus estimated are used to classify the 

modulation types. It is evident from this approach that cumulants provides characteristic 

values different for different modulation types which helps in modulation recognition [28]. 

For a random complex process z(n), second order moments are given as: 
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𝐶20 = 𝐸  𝑧2(𝑛)       Equation 5-10 

𝐶21 = 𝐸[  𝑧(𝑛) 2]      Equation 5-11 

E[. ] here is showing expected value of the z n  random process . 

Fourth order moments and cumulants can be written in the following three ways [24]. 4th 

order cumulants can be defined as: 

𝐶40 = 𝑐𝑢𝑚 (𝑧 𝑛 , 𝑧 𝑛 , 𝑧 𝑛 , 𝑧(𝑛))   Equation 5-12 

𝐶41 = 𝑐𝑢𝑚 (𝑧 𝑛 , 𝑧 𝑛 , 𝑧 𝑛 , 𝑧∗(𝑛))   Equation 5-13 

𝐶42 = 𝑐𝑢𝑚 (𝑧 𝑛 , 𝑧 𝑛 , 𝑧∗ 𝑛 , 𝑧∗(𝑛))  Equation 5-14 

For random variables a, b, c, d the fourth order cumulants can be written as: 

𝑐𝑢𝑚 𝑎, 𝑏, 𝑐,𝑑 =  𝐸 𝑎𝑏𝑐𝑑 −  𝐸 𝑎𝑏 𝐸 𝑐𝑑 − 𝐸 𝑎𝑐 𝐸 𝑏𝑑 − 𝐸 𝑎𝑑 𝐸 𝑏𝑐 Equation 5-15 

Eq. 5-12, 13, 14 can be used to express 𝐶40 ,𝐶41𝑜𝑟 𝐶42  using second and fourth order 

moments of z n  [24] [27]. 

The estimates of cumulants in Eq. 5-14 using estimates of corresponding moments are given 

as: 

𝐶21
 =

1

𝑁
 |𝑦 𝑛 |2𝑁
𝑁=1      Equation 5-16 

𝐶20
 =

1

𝑁
 𝑦2(𝑛)𝑁
𝑁=1      Equation 5-17 

𝐶40
 =

1

𝑁
 𝑦4 𝑛 − 3𝐶20

2 𝑁
𝑁=1     Equation 5-18 

𝐶41
 =

1

𝑁
 𝑦3 𝑛 𝑦∗(𝑛) − 3𝐶20

 𝑁
𝑁=1 𝐶21

   Equation 5-19 

𝐶42
 =

1

𝑁
 |𝑦 𝑛 |4 − 𝐶20

2 𝑁
𝑁=1 − 2𝐶21

2    Equation 5-20 

Where the subscript ^ denotes sample average. 

Alternatively, in terms of moments above estimates can be written as in [28]: 

𝑀𝑝𝑞 = 𝐸[𝑋 𝑡 𝑝−𝑞𝑋∗(𝑡)𝑞 ]    Equation 5-21 
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(*) means the complex conjugate. Cumulants  𝐶40 ,𝐶41& 𝐶42  then can be expressed as: 

𝐶40 = 𝑀40 − 3𝑀20
2      Equation 5-22 

𝐶41 = 𝑀41 − 3𝑀20𝑀21     Equation 5-23 

𝐶42 = 𝑀42 −𝑀20𝑀22 − 2𝑀22    Equation 5-24 

So far detailed estimates of cumulants have been presented with special focus on fourth-order 

cumulants. This is because of the fact that higher order modulations of QPSK and 16-QAM 

shows feature values on fourth order cumulants. These feature values are used to classify 

these modulations after a signal is detected. One of the other main reasons for using the 

fourth order cumulant and not the third order cumulant is that for a random process that is 

symmetrically distributed, it’s third order cumulants are equal to zero. Moreover, higher 

signal modulations have extremely small third-order cumulant value and larger fourth-order 

cumulant value so preference is given to fourth-order cumulant [26]. There are theoretical 

values for the estimated cumulants for different modulations [24] & [25] which can be used to 

classify the modulations. Practically cumulants were applied in [27] and range for cumulants 

estimates has been provided by the author. This approach is utilized further in the 

classification process used in this research. 

The application of cumulants after doing cyclostationary analysis re calculates the second 

order statistics of the signal. Particular modulation formats producing same features in the 

calculated moments result in the theoretical values of the cumulants. These values are 

approximately fixed and are used for classification of modulations after a signal has been 

detected by the spectrum sensing algorithm. In this research, cumulants are directly applied to 

the real valued vector calculated from the SCF considering it as a symmetric zero mean 

random variable which is having approximately a normal distribution. Its cumulant analysis 

being easy operator is preferred over its moments [25] for characterizing the shape of the 

distribution [24]. The calculated vector serves as the random process input to the cumulants 

instead of the captured signal say y(n). In Error! Reference source not found. magnitudes of 

he FFT values obtained by calculating the second order statistics were used to calculate the 

second, third and fourth moments and then using these values respective cumulants can be 

calculated using Eq. 5-22, 23, 24. Summarily, the idea of testing the calculated feature vector 

values by considering them as a random variable inputted to the cumulants will provide the 

required results which are present as we proceed. This application testing of cumulants on the 
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vector has many advantages. In comparison to second and fourth order moments of a 

captured complex signal, the calculated vector has reduced calculation size reducing the 

complexity of cumulants calculation. Secondly, modulation format produces distinct features 

if cyclostationary analysis is done correctly. The calculated vector has these features 

calculated in a unique way. So it increases the probability of distinct values as output of 

fourth order cumulants for different modulation formats. Thirdly, a unique normalization to 

value equals to one approach is used in the vector so that cumulant values are least disturbed 

with the amplitude of the feature values and will produce the consistent values as results, 

normalization of cumulants has also been presented in [24] for the said purpose. All these 

particular advantages are being utilized while calculating the fourth order cumulant values for 

BPSK, QPSK, 16-QAM and Noise feature vectors by the algorithm. This helps in simpler, 

less computational and low on resources detection and classification of modulation signals. 

With such a cumulant based classifier, we can have an idea of the authenticity of the primary 

signal. Whether the signal present at the analysed frequency is allowed to transmit and also 

we can use this identification for validation of primary user. Suppression activities of 

unauthorized carriers can be done by the concerned authorities such as military or the signals 

and frequency regulatory body. 

5.3  Advantages of the Extracted Feature Vector 

Some of the fringe advantages of the extracted feature vector are that the correlation spectral 

peaks at locations of f and α are all present in it. So when compared to noise vector, we have 

only certain peaky points in the vector. At low resolution, these peaky points are significant 

only and not there numbers of occurrences at particular locations on which many techniques 

are dependent as we see in the literature. There are no special pre processing blocks, 

Wavelets or special high resolution analysis on particular values of cyclic frequency. There is 

no need for estimating the variance matrices. The said vector is not statistically bound. SCF 

has been estimated with low resolution FAM. Then, features are extracted from SCF in a 

vector with normalized values and by comparing and sorting only largest value in a row. Due 

to normalization, effects of noise variance are diminished as in [14]. 

The next chapter presents detailed experimentation setup used in this research. Different 

approaches for capturing signals and verifying the working performance of the proposed 

technique are discussed in details. 
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Chapter 6. Experimentation Setup  

The focus of this work is on cyclostationary analysis of signals that are used in practice by 

satellite uplink channels. In order to claim the use of the proposed detection technique in CRs 

for satellite, the experimentation setup should have modern SDR and CR development 

platforms through which signal generation and acquisition be carried out. MATLAB as being 

renowned simulation and analysis software platform is then used to validate the devised 

technique. The details of the setup and special considerations follow in the next sections. 

6.1  Experimentation 

The main concern of this research is to process the modulated signals used in a real satellite 

scenario, so the experimentation involves the capture of signals from the valid sources instead 

of generating them in the simulation software. To gain a deeper insight into the fulfilment of 

requirements, a flexible CR implementation platform is used [2]. The results are produced by 

analysing both the AWGN and multi-path fading channels [16]. The first approach selected 

for the purpose of experimentation is to generate the three modulations using the Agilent 

technologies E8267D signal generator. It is a renowned fact that using the signal generator at 

the input of the satellite RF link chain, a simple modulated carrier can be uplinked on the 

satellite. So keeping this fact in mind, signal generator is configured for generating BPSK, 

QPSK and 16-QAM modulations and is connected to USRP2 N210 for capturing the 

modulated data for analysis.  A Rohde & Schwarz (26.6-GHz) Spectrum analyser is used to 

analyse the generated modulation’s power spectral density (PSD) and constellation. The 

generated modulated data is fed into the USRP2, which digitizes the captured data and 

decimate it. This data is then provided to the computer using the gigabit interface. The SBX 

daughter card (400-4400 MHz) is used as the RF front-end for the input data to the USRP2. 

The sampled data is saved in a file sink as in [2] for further processing using Matlab based 

detection algorithm presented above. The parameters of the generated modulations are listed 

in the Table 1 and parameters for USRP2 data capture are presented in Table 2 respectively. 

The GNU radio 3.6 open source software is used to capture the data from USRP2 as it 

provides a GUI based flow-graph programming model Error! Reference source not found.. The 

se of USRP2 assures the fact that spectrum sensing capability of the proposed research can be 

utilized in a prospective design of the CR for satellites using modern flexible radio platform. 
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Parameter Value 

Modulation Type BPSK, QPSK, 16-QAM 

Symbol Rate 2Msps 

Data PN23 (PRBS with 𝑁 = 223 − 1) 

Frequency 2.25GHz 

Amplitude -30dBm 

Table 1: Modulation parameters on signal generator 

Parameter Value 

Sample Rate 10 MHz 

Centre Frequency 2.25 GHz 

Channel 0, TX/RX 

Channel Gain 5dB 

Table 2: Parameters for USRP2 

For getting the real satellite signals, an RF chain containing parabolic antenna and low noise 

amplifier + block down converter (LNB) is used. The L band frequency 950-1750MHz 

output of the reception setup is connected with the spectrum analyser and the USRP2 using a 

splitter. The real-time satellite spectrum is scanned for carriers of the primary users in 1-

4MHz span. This bandwidth is well supported by the USRP2 device Error! Reference source 

ot found.. A broadcasting carrier typically uses a bandwidth of 4MHz. Within this span, the 

signal of interest is scanned and captured [12]. GNU radio based flow-graph is used to 

capture the data using USRP2 [5]. The saved samples in the file from the flow-graph are 

imported in the Matlab for cyclostationary analysis and detection scheme simulation. A block 

diagram for the experimentation setup is presented in Fig. 6-1 below. 
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Figure 6-1: Block diagram of the setup where signal generator is used first as input to the splitter (One to two way) 

for Lab-generated data capturing and analysis and then it is replaced by the RF chain containing 2.4m parabolic 

antenna and C-band LNB 

In Fig. 6-1, the function generator is connected at the input of the USRP2 setup with the 

spectrum analyser and the PC with GNU Radio flow graph for collecting lab generated 

modulated data for the analysis. For the real-time satellite signals, the function generator is 

disconnected and the antenna with C-band 3.4-4.2GHz LNB with LO frequency of 5.15GHz 

is connected in the input of the USRP2. The centre frequency and the bandwidth for 

capturing the signal in the band are set by the parameters in the GNU Radio flow graph. 

The overall experimentation setup can be summarized in the following main steps: 

1. First connect the function generator output with a splitter and configure the function 

generator with the modulation parameters as listed in Table 1. 

2. Take the splitter’s outputs and connect them to USRP2 and the spectrum analyser 

respectively. Set the analyser according to the carrier frequency of function generator 

for taking measurement results. 

3. Connect the USRP2 with the computer running GNU Radio flowgraph for capturing 

the signals in the data file. 

4. Now, generate the signals from the function generator, for constellation diagrams and 

put the spectrum analyser in the vector signal analyser (VSA) mode and set the 

parameters for the required modulation. 

5. Run the flowgraph in the computer for 5 seconds. Measure this time from the first 

instance of the FFT plot similarly appearing in the flowgraph as it is shown by the 

spectrum analyser. In the 5 seconds period the recorder file in the GRC flowgraph 
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will have the minimum number of required samples. Replace function generator with 

antenna chain and repeat the steps. 

6.2  Measurement Results 

In Fig. 6-2 (a), setup of the configured and connected signal generator, spectrum analyser and 

USRP2 are shown. The generated signal from the signal generator is received on the 

spectrum analyser and USRP2 both using the signal splitter. Fig 6-2 (b) shows the running 

GNU Radio flow graph which is capturing the signal input to the USRP2 from the signal 

generator. The FFT plot of the real time generated BPSK modulated signal can be seen in the 

figure.  

 

 (a)      (b) 

 

 (c)      (d) 
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 (e)      (f) 

 

 (g)      (h) 

Figure 6-2: (a) Experimental setup containing USRP2, signal generator and spectrum analyser, (b) FFT plot of signal 

captured in a file using GRC flowgraph, (c) configuration of signal generator for generating BPSK data, (d) 

configuration of signal generator for generating QPSK data, (e) configuration of signal generator for generating 16-

QAM data, (f) constellation diagram of generated 16-QAM on VSA, (g) constellation diagram of generated BPSK on 

VSA & (h) constellation diagram of generated QPSK on VSA  

Configuration of the signal generator for BPSK, QPSK and 16-QAM modulations is 

presented in Fig. 6-2 (c), (d) and (e) respectively. The parameters are set according to the 

listed parameters of Table 1. The modulated data generated is verified on the spectrum 

analyser in terms of its spectrum and constellation plot. Fig. 6-2 (f), (g) and (h) are showing 

the constellation plots of 16-QAM, BPSK and QPSK modulated data generated by the signal 

generator. Same data is input to the USPR2 and collected for testing by the proposed 

algorithm. 
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Figure 6-3: Real-time spectrum of satellite on spectrum analyser obtained using the receive only antenna chain with 

down converted L-band start frequency= 1355.5 GHz, stop frequency = 1360.5 GHz with a 5 MHz span  

After experimenting with the lab generated modulated carriers, the discussed receive only 

chain for capturing the satellite signals was used. The connected spectrum analyser was used 

to ensure the satellite carriers having the desired modulations of BPSK, QPSK and 16-QAM 

along with some frequency with no transmission as can be seen in Fig. 6-3 for noise analysis. 

Zoomed-in views of these carriers are shown in Fig. 6-4. below. The marker labelled as ‘1’ in 

white colour in Fig. 6-3 is showing the noise floor. Marker labelled as 1R in white colour is 

showing the QPSK carrier. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6-4: Spectrum of real satellite carriers zoomed-in power spectral density (PSD) view, (a) PSD of BPSK carrier, 

(b) PSD of QPSK carrier,  (c) PSD of 16-QAM carrier and (d) Noise floor of the satellite band  

The real-time satellite carriers were captured by connecting the signal generator and USRP2 

to the antenna containing the C-band LNB. The spectrum analyser PSD plots for BPSK, 

QPSK, 16-QAM and noise are shown in Fig. 6-4 (a), (b), (c) and (d) respectively. Particular 

modulated carrier span is set on the spectrum analyser to get proper view of the power 

spectral density on the spectrum analyser. Noise is captured by setting the centre frequency of 
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USRP2 at the location in the satellite band where there is no carrier preset as shown in the 

spectrum analyser. 

The next chapter discusses in detail the obtained results by simulating the algorithm on the 

captured signals using the USRP2 in GNU Radio and generated by function generator and 

form real-time satellite signals from the receive only chain. The captured signal files were 

input to the Matlab implementation of the algorithm. 
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Chapter 7. Simulation Results 

The collected samples are analysed and plotted in Matlab [17] using the FAM algorithm and 

then signal detection is done through the proposed technique. The calculated SCF with low 

resolution frequency and cyclic frequency is presented for BPSK, QPSK and 16-QAM 

modulation types. The modulation parameters using the signal generator approach as 

discussed in the previous chapter on experimentation are set according to the carrier 

specifications on a real satellite uplink. The SCF for noise and its vector plot is also presented 

in this chapter. It can be seen from the SCF and calculated vector plots that the proposed 

technique can effectively identify the difference between a present signal and noise in the 

sampled data. The proposed technique works effectively even in the multi-path fading 

channel of the satellite. The parameters for FAM algorithm are presented in Table 3. 

Parameter Value Unit 

Fs 10 MHz 

Delta α 20 KHz 

Delta f 200 KHz 

Np 64 Points 

L 16 Points 

P 32 Points 

N = P*L 512 Points 

FFT size 32 Points 

Table 3: FAM parameters 

The parameters for FAM in Table 3 ensure its low calculation complexity. The platform 

running Matlab is an Intel Core2duo 2.54GHz processor with 2GB of RAM running 

Matlab7.0.8.347. The results of SCF for the two approaches along with the calculated vector 

(obtained using the proposed technique) are being presented in the results chapter. 
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7.1  Signal Generator Approach 

7.1.1  BPSK Modulation 

 

Figure 7-1 Constellation Plot of the BPSK sampled data 

Data obtained from the signal generator is first analysed by the constellation plot and proper 

modulation is assured by getting the scatter plot as shown in Fig. 7-1. The input vector 

defined in Matlab is used as the input data vector containing sampled data values from the 

GNU Radio captured file. These files were first recorded during the experimentation and then 

were used by Matlab to obtain the SCF features and detection results. In Fig. 7-2, the cyclic 

spectral density of the BPSK signal is shown. The SCF is plotted on z-axis with the bi-plane f 

and α values on x and y axes respectively. Referring to the mathematical SCF of the BPSK in 

Chapter 4 Section 4.1, the SCF plot of the BPSK is having four peaks two at α = 0 and two at 

f = 0.  The frequency f and the cyclic frequency α are normalized to the value of the sampling 

frequency fs . If a section through the figure is made where the cyclic frequency α = 0, then 

the spectral power density of the modulated signal is obtained [21]. It is also evident that 

since α and f values are normalized by fs  and peaks occurs at  fc . That means the peak 

locations give true fc  if we calculate it with the fs . That is why it is blind detection no there is 

no need of fc . Here fs  and fc  are sampling and carrier frequencies respectively. Determination 

of carrier frequency is out of scope of this thesis. 
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Figure 7-2: The SCF plot of the lab generated BPSK signal 

For the shown plot of SCF in Fig.7-2, only a graphical understanding of the features 

exhibited by BPSK modulated signal (captured through the USRP2) is obtained. Now, the 

algorithm proposed for detecting these features is based on the hypothesis devised for 

detecting signal and noise separately in the frequency band under analysis by calculating a 

normalized vector. Plot of the vector is presented in the Fig. 7-3. The vector points or length 

is dependent on the resolution of frequency set in the FAM algorithm. Making use of this 

lower value the proposed technique folds the SCF features and a plot is presented for 

understanding in Fig. 7-3. The peaks in the plot are the spectral peaks in the SCF. This vector 

is fairly readable using its indexes by any computer program or hardware solving the problem 

of extracting SCF features which are well understandable by plotting a 3-dimensional plot. 
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Figure 7-3: Plot of the lab generated BPSK feature vector 

One more advantage is that only half of the values can be utilized to detect signal or noise. If 

the peaks are counted from index 0 to 35, then according to Eq. 5-8 H1 is true resulting signal 

detection by the decision block.  

7.1.2  QPSK Modulation 

 

Figure 7-4: Constellation plot of the QPSK sampled data 
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The QPSK constellation diagram is presented in Fig. 7-4 before applying to the algorithm 

ensures proper modulation data in the input vector. The SCF plot of Fig. 7-5 has significant 

peaks at α = 0. The ideal SCF should be containing only two peaks at α = 0 and no peaks in 

f = 0 axis due to the cancellation of in-phase and quadrature parts [23] but this is only 

possible when high resolution analysis is done which is computationally complex. Due to the 

low resolution parameters used with the added advantage of less complex operation, some 

smaller magnitude peaks are present at the location of  f = 0.   

 

Figure 7-5: SCF Plot of the lab generated QPSK 

 

Figure 7-6: Plot of the lab generated QPSK feature vector 
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This phenomenon does not disturb the detection result. In Fig. 7-6, the calculated vector show 

peaks which resulted in the detection hypothesis H1upon the application of the devised 

technique. A closer look on the calculated vectors for BPSK and QPSK modulated data 

highlights the difference of available spectral peaks in the SCF. 

7.1.3  16-QAM Modulation 

 

Figure 7-7: Constellation plot of the 16-QAM sampled data 

The captured data is first plotted and 16-QAM constellation was obtained in Fig. 7-7. SCF is 

calculated using the FAM low resolution parameters. 16-QAM is a complex digital 

modulation. Several peaks are present in Fig. 7-8 at α = 0, 2fc−
+  and f = 0 axes. This is due to 

the low resolution analysis resulting in smaller number of cancellations between in-phase and 

quadrature components. Fig. 7-9, shows the plot of calculated vector containing the 

significant spectral peaks extracted from 3-dimensional SCF. The detection algorithm when 

applied resulted in hypothesis H1 . Since the number of peaks crossing the threshold value 

Υ = 0.5 are less than  
N

2
. 
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Figure 7-8: SCF plot of the lab generated 16-QAM modulation 

 

 

Figure 7-9: Plot of the lab generated 16-QAM feature vector 
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7.1.4   Noise 

SCF plot of noise data as captured through USRP2 is shown in Fig. 7-10. There is no 

significant spectral peak in the whole SCF except random but symmetric peaky response at α 

= 0. This is also the power spectral density (PSD) of noise seen in the frequency domain 

spectrum.  According to the basic theory [1], noise exhibits the same particular behaviour as 

obtained in our analysis that it does not show any feature peaks in its correlation product 

spectral density. The resultant vector from the detection algorithm is presented in Fig. 7-11. 

Peaks passing the defined threshold γ are greater than 
N

2
 so the detection algorithm will result 

in H0. That is no signal present and only noise is detected. 

 

Figure 7-10: SCF plot of the lab generated noise 
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Figure 7-11: Plot of the lab generated noise feature vector 

Effect of varying noise variance in the analysed data will have least effect because it is 

ensured through detailed experimental testing and normalized values are present in the 

calculated vector and the threshold set for the worst case noise to avoid false detection.  

7.2  Real Satellite Signal Approach 

In this part of the thesis, the analysis results for the real time satellite signals are being 

presented. These results were obtained by applying the whole detection algorithm to the 

captured data from USRP2 connected with a pointed antenna with LNB operating in C-band. 

The antenna is pointed towards the communication satellite. Proper link was ensured between 

the antenna and satellite transponder using the connected spectrum analyser. The captured 

signal spectrum is checked on the spectrum analyser connected using a two port power 

splitter on which the input signal is the LNB’s output and the outputs connected with USRP2 

and the spectrum analyser. It is also worth mentioning here that no sort of noise cancellation 

or conditioning of LNB’s output had been carried out before capturing and testing the signals 

by the detector. The antenna and LNB used in the setup are low-cost off the shelf solution for 

receive only satellite link. To the best of author’s knowledge, the results presented next are 

one of their kinds since energy detection and only PSD calculations are available so far in the 

literature addressing the subject of the thesis in the domain of communication satellite 

signals. 
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7.2.1  BPSK Modulation 

 

Figure 7-12: FFT plot of the BPSK satellite carrier sampled data 

Fig. 7-12 is the plot of magnitude of the FFT in dBm units. It is significant to ensure that the 

sampled data points from USRP2 are having the same BPSK spectrum as of the measured 

one using the spectrum analyser in experimentation chapter. The SCF plot of Fig. 7-13 is 

having the features exhibited by the BPSK carrier present in the satellite band. Since, no pre-

processing is done to remove the noise effects and corrections to the induced irregularities of 

LNB’s output so SCF is different than that of the SCF of lab generated BPSK and ideal 

BPSK.   

 

Figure 7-13: SCF plot of real satellite BPSK carrier 

Feature Peaks 
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The normalized SCF has four bumps two at α = 0 and two at f = 0 axes. These bumps are 

actually the peaks obtained in the lab generated BPSK SCF. The raised part in the SCF plot 

represents the noise floor and irregularities induced by the satellite channel and LNB’s 

hardware. It is higher because of lower observation time & frequency resolutions [32].  

Discussions of these effects are out of the scope here in this thesis. 

 

Figure 7-14: Plot of the real satellite BPSK feature vector 

Detection algorithm calculates the vector for the SCF presented in Fig. 7-14. The raised noise 

floor is clearly visible, since the least value in comparison to the lab generated BPSK vector 

has risen from nearly zero to somewhere near 0.38. The bumps in the SCF can be easily seen 

in the vector as features of the BPSK signal. The detection block calculates the number of 

peaks above the threshold of Υ = 0.5 for 
N

2
 values (where N is the total number of vector 

points i.e. 70) and results in H1 hypothesis meaning detection of signal. 

7.2.2  QPSK Modulation 

Same procedure was repeated for QPSK data samples. First the spectrum plot is obtained 

from the sample data points as shown in Fig. 7-15 with a close matching with the one 

measured on the spectrum analyser. The SCF plot shows particular QPSK features disturbed 

by the noise. 

𝐻1 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 ≠
𝑁

2
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Figure 7-15: FFT plot of the QPSK satellite carrier sampled data 

 

 

Figure 7-16: SCF plot of the real satellite QPSK carrier 

At α = 0 axis, two symmetric raised lobes are present showing the spectral features of QPSK 

modulation in Fig. 7-16. The raised portion is a bit shifted too because of improper 

cancellation between in-phase and quadrature portions of the modulated data. But the main 

concentration is within the area bounded by the  𝛼 =  0 axis. 

Feature Peaks 
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Figure 7-17: Plot of the real satellite QPSK feature vector 

The features extracted in the calculated vector for QPSK modulation in Fig. 7-17 are 

uniquely identifiable. Using the proposed detection algorithm, the values qualifying the set 

threshold of 0.5 are < 
N

2
 so signal is detected and output is H1. 

7.2.3  16-QAM Modulation 

 

Figure 7-18: FFT plot of the 16-QAM satellite carrier sampled data 

𝐻1 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 ≠
𝑁

2
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Captured data in case of 16-QAM modulation was first ensured by matching the simulated 

spectrum plot in Fig. 7-18 and that obtained by spectrum analyser presented in the 

experimentation measured results. 

 

Figure 7-19: SCF plot of real satellite 16-QAM carrier 

 

Figure 7-20: Plot of the real satellite 16-QAM feature vector 

SCF of 16-QAM carrier in Fig. 7-19 is showing raised lobes at α = 0, 2fc and f = 0−
+  

locations. These several raised lobes are due to non cancellation of in-phase and quadrature 

parts of the complex modulation due to low resolution analysis. Extracted vector in Fig. 7-20 

satisfies the condition for hypothesis  H1 so detection of signal is resulted by the decision 

block.  

𝐻1 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 ≠
𝑁

2
 

Feature Peaks 
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7.2.4  Noise 

The spectrum of the captured real-time satellite band noise is shown in Fig. 7-21. The noise 

spectrum shows rapid power level changes which is significant in processing the noise data 

because the shown noise spectrum is very far from the usual linear noise floor. The noise 

PSD presented in the figure below is varying in terms of power levels and this particular 

noise data set will qualify the threshold set for detecting signal and noise. The analysis of this 

type of non-linear noise floor with the proposed technique is presented for testing it under 

hypothesis 𝐻0. 

 

Figure 7-21: FFT plot of the real satellite noise sampled data 

No particular spectral peaks are shown in the SCF of noise in the satellite frequency band. In 

Fig. 7-22, the SCF for idle frequency location where there is no transmission going on is 

presented. In the whole SCF no particular pattern is available. Since, all the captured I & Q 

samples are same so SCF has the same spectral values in the bi-frequency plane. This is the 

reason for a raised noise bed in the SCF. 
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Figure 7-22: SCF plot of the real satellite band noise 

 

Figure 7-23: Plot of the real satellite noise feature vector 

Fig. 7-23 shows the calculated vector according to the proposed detection scheme from the 

noise SCF. All the 
N

2
 values are passing the threshold value of 0.5 in the calculated feature 

vector so hypothesis H0 is resulted by the decision block sensing an idle frequency channel 

equals to half the bandwidth of the sampling frequency. 

So far, the detection of BPSK, QPSK and 16-QAM carriers captured in the satellite band as 

signals in general has been presented. The algorithm then further applies fourth order 

cumulnats as statistical classification tool for modulation type in the detected signal. 

𝐻0 = 𝑁𝑜. 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠 >  𝛾 =
𝑁

2
 

No Feature Peaks 
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Particular values of cumulants obtained for different modulation types can assure the simple 

classification of the detected signal.  

7.3  Modulation Classification Using Cumulants on Calculated Vector 

Cumulant  

 

BPSK  QPSK  16-QAM Noise  

Values for Calculated Vector  (Real Satellite Signals) 

𝑪𝟒𝟎  
-1.03995 -0.50965 -0.38224 -1.29625 

𝑪𝟒𝟐  -1.03995 -0.50965 -0.38224 -1.29625 

Table 4 : Fourth order- Cumulant values of feature vector 

For real constellation cumulants values follows C20 = C21  and C40 =  C42  [24]. This validates 

the results obtained through simulations for cumulants for different modulations and noise. 

The classifier in the algorithm compares the incoming value with the look up table of the 

values in Table 4. The classification of modulation decision takes place with the result of 

comparison of the incoming value and the present values obtained through testing the 

statistics of cumulants obtained for noise and modulations. If the incoming value does not lie 

in the ranges presented, the classifier results in un-known modulation. 

 

Figure 7-24: Cumulant values for BPSK, QPSK, 16-QAM and Noise Data 
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A plot of cumulant values for different modulations and noisy data obtained through the 

algorithm is shown in Fig. 7-24. Values for modulated data from the real time satellite 

sampled data are present. To clarify the values of Table 4, different values obtained for 

BPSK, QPSK, 16-QAM and noise data by using the cumulant calculations are present in the 

plot of the figure. The shown values in the plot are being used by the classification block of 

the algorithm to differentiate between different modulations. The input data from which these 

values were obtained was that of the column vector 𝑉𝑖 from Eq. 5-4.  

7.4  Trend Analysis of Cumulant Values Obtained 

The values of cumulants obtained as listed in Table 4 shows the same trend as the HOS 

analysis on the complex valued signals. The modulation formats of BPSK, QPSK and 16-

QAM have shown approximately half of the values obtained by HOS cumulants applied on 

the complex signal samples. The values from [24] for the modulation formats are BPSK= -

2.0000, QPSK = -1.0000 and 16-QAM = -0.6047. The trend shows that as the modulation 

gets more complex and dense the cumulant values become smaller. The reason for this trend 

lies in the definition of cumulants. Since, the fourth order cumulants are dependent on the 

second order statistics values C20  and C21  [24]-[25]. For denser modulations, the sum of these 

statistical values becomes smaller due to correlation values and cancellations of I & Q parts 

whether completely or partially. Fig. 7-24 shows the trend of values obtained using 

cumulants for different sample sizes on the calculated feature vector obtained from the 

proposed technique. Remember that the feature vector contains the magnitudes FFT values of 

feature peaks and has only a total of 65 values which is far smaller than the sample sizes on 

which cumulants were calculated in [24] & [33]. So, the trend of approximately half values as 

compared to the theoretical values in literature is due to the lower sample size and 

magnitudes. Secondly, only feature values have been used in calculating cumulants. It has 

significantly reduced the computational complexity of the cumulant calculations and the 

pattern for modulations is in a great logical agreement with the theoretical pattern. The 

obtained values of cumulants with respect to the changing sample sizes (input to FAM from 

where the SCF containing the feature peaks is calculated and then feature vector is extracted) 

are showing lesser amount of variations. Due to normalized SCF and fixed parameters for the 

sample size and FAM the cumulant values obtained are consistent. The values are unique 

forming the same pattern as the theory suggests for the modulation formats under 

considerations. Noise has different and greatest value than that of the three modulations.  



65 
 

These values are used by the classifier to decide about the type of the detected signal or noise 

successfully. 

7.5  Comparative Analysis  

In order to emphasis the valuable contributions of the discussed technique for detection of 

satellite signals and its classification capability, comparative analysis with other state-of-the-

art techniques built in the literature has been carried out. The cyclic spectral density resulting 

from cyclostationary analysis has different built-in statistical properties which are usually 

utilize by signal detectors specially, the symmetric property of the SCF is used. This works 

by checking the equality of the feature peak magnitudes at specific locations in bi-frequency 

SCF on cyclic frequency axis [19] & [20]. For this equality decision by measuring the 

magnitude at symmetric SCF location, high resolution analysis is done which introduces high 

complexity and computational time. In the proposed research, the objective was to achieve 

such a detection technique which works with low resolution frequency parameters, least 

affected by the magnitudes of the peaks (when using low resolutions peak’s magnitude 

attenuates), works blindly (without any prior knowledge of the signal under consideration) 

and should extract feature peaks form the SCF bi-frequency two variable function in a simple 

way. The feature vector extracted has the least possible index and values reducing post SCF 

calculations. Despite being less complex, the calculated SCF contains all the features 

exhibited by the modulations (BPSK, QPSK and 16-QAM) as the theory suggests. The 

results from this work and other laid out techniques can be compared on the following 

grounds. 

7.5.1  High Cyclic Frequency Resolution 

In [44], a novel modulation detection technique has been presented for detecting acoustic 

signals using cyclostationary analysis. The technique works by calculating SCF at dynamic 

cyclic resolutions. For specific locations of cyclic frequency as a function of the carrier 

frequency, high resolution SCF as in Table 5 is calculated and for the rest of the bi-frequency 

plane low resolution calculations are done see Fig. 7-25 (a). For signal detection decision 

ratio of the peaks in frequency and cyclic frequency axes is calculated. The author claims 

reduction in complexity by observing and analysing short duration signals for SCF but in Fig. 

7-25 (b), the SCF misses the significant peaks at α = 2Fc  for BPSK modulation when a little 

shift in Fc  and a low ∆α is used. This leads to false detection of modulation. The values for 

cyclic frequency resolutions are presented in Table 5. For the technique in [44], SCF is 
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calculated with high and low resolutions imposing computational complexities while for the 

proposed technique in this research works well with low resolution cyclic frequency value. 

 

  (a)       (b) 

Figure 7-25: (a) SCF of BPSK, Fc=17000, Fb=4000, Fs=80000, dalpha=0.005 (Fig.4 [44]),  

                      (b) SCF of BPSK, Fc=17020, Fb=4000, Fs=80000, dalpha=0.001 (Fig. 5 [44]) 

∆α (Dynamic SCF in [44]) ∆α (Proposed Technique) 

5𝑥10−5(High Resolution SCF) + 

1𝑥10−2(Low Resolution SCF) 

2𝑥10−4 (Low Resolution SCF) 

Table 5: Cyclic frequency resolutions of [44] vs. Proposed technique 

7.5.2  FAM Complexity and Computational Time 

 

 

 

 

 

Table 6: FAM computing time and parameters in (Table 1 of [12]) vs. Proposed technique 

For calculating the SCF, time smoothing FAM algorithm has been used in the proposed 

detection technique for estimating the features of the detecting signal. In Table 6, the 

parameters of FAM with their computing time have been listed. These parameters are mainly 

dependent upon the number of samples used and the resolution of frequency selected. These 

values have been taken from [12] and since the computing time is based on the platform so 

N(samples) 𝑵′ L P Resolution 

(Hz) 

Time (s) 

218  28 26 212  26 60.0 

217  28 26 211  27 30.55 

216  28 26 210  28 13.28 

215  27 25 210  29 3.39 

214  26 24 210  210  0.896 

213  25 23 210  211  0.273 

210  26 24 25 211  0.1059 



67 
 

same platform (Intel Core2 Duo 2.54 GHz with 2GB RAM) as mentioned in [12] has been 

used to calculated the computing time and FAM a parameters of the proposed technique 

boxed in red as the last entry in the table. It can be concluded that comparatively the proposed 

detection technique has lesser number of samples and least computing time.  

7.5.3 Wavelet Based Technique 

For wide band cyclostationary analysis, one of the techniques for detection of peaks in the 

calculated SCF is by using Wavelets [39]. Wavelets are applied to SCF considering it as a 2-

dimensional grey image. The application of wavelets significantly removes noise in the SCF 

introduced due to compressed sensing and helped in producing improved SCF plots. The 

technique comes with SCF matrix calculations using compressed sensing convex 

reconstruction algorithm and then it calculates the wavelet coefficients, edge magnitudes and 

gradients of the peaky features to remove noise and results in a de-noised SCF as shown in 

Fig. 7-26 (b). 

(a) (b)  

Figure 7-26: (a) Before the Noise Reduction at SNR=-5dB, (b) After the Noise Reduction (Fig.2 of [39]),  

In comparison to the proposed technique of this research, the detection probability is very 

high in case of signal SNR = -5dB. This is because of the detection algorithm design strategy 

and its independence with the noise statistics due to normalized feature’s magnitudes. Also, 

the computational complexities of wavelets are avoided in the technique. 

7.5.4   ANN Based Modulation Recognition 

In [40], cyclostationary analysis has been utilized to classify the modulation format of the 

signal. The extracted features from the signal are in terms of coherence function and cyclic 

domain profile as can be seen in Fig. 7-27. The classifier used to actually perform the 

classification decision is an artificial neural network (ANN). Classifier needs training data in 

large quantities as a prerequisite. Using delta rule (errors calculated and compared between 
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desired and obtained outputs) training of ANN is carried out. The SOF (coherence function) 

and cyclic domain profile (CDP) requires estimation of the spectral density first. The iterative 

algorithm is feed forward back propagation algorithm (FFBPA) details of which are 

presented in [40].  

 

Figure 7-27: Proposed algorithm for classification of PSK modulation formats (Fig.8 [40]),  

Overall, in comparison to the proposed technique of cumulant based classification, the former 

is quite simpler and low on computation than ANN based classification. However, the 

classification method has a very high classification probability at SNR = 0 dB but, a large 

computation and signal processing is involved in calculating SCF, SOF & CDP and then 

ANN (FFBPA) classification. 

7.5.5  Single cyclic frequency techniques 

In [19], a novel technique for signal detection using CAF symmetry test is presented. It is 

using orthogonal matching point (OMP) algorithm to estimate the CAF of the signal and then 

check for symmetric feature of the signals at certain α. In comparison to the proposed 

algorithm, it is an iterative algorithm with high resolution discrete fourier transform (DFT). 

This makes it more time consuming and complex due to iterations, number of DFT and IDFT 

operations. A real-time CAF symmetry check algorithm for signal detection is presented in 

[20]. It is also using OMP algorithm and then check for the feature peak magnitude value in 

CAF at α & -α. The probability of detection at SNR= -15 dB is Pd < 0.2 which is in the 

proposed technique is Pd = 0.9. Also, the FFT size of 2048 has been used in the said 

technique which is just 32 in our case as the first FFT size in FAM. [23] has an alternate to 

FAM technique (details are in literature review) but it has complexity of two FFTs and one 

IFFT to reach to the detection decision when compared to the proposed technique. Also the 

probability of detection in lower SNR is almost the same for both the techniques. 
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The performance in terms of detection probability, computational cost and execution time for 

the proposed technique is laid down in the next chapter. 
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Chapter 8. Performance Analysis 

The performance analysis of the spectrum sensing technique is given by the two major factors 

as in [2]. One of the major factors is the probability of detection of the proposed technique in 

changing SNR conditions. Probability of detection (𝑃𝑑 ) shows how correctly the proposed 

algorithm can detect a signal in the lower and higher SNR conditions. There are certain 

methods and experimentations [2, 17 & 29] including Monte Carlo simulations or custom 

experiment designed to calculate the probability of detection. The lowest possible probability 

of false alarm is selected to perform these experiments. In our case, we have set probability of 

false alarm (𝑃𝑓) to be 0.01. The probability of detection versus SNR plot has been carried out 

by applying the conventional definition of probability calculation. The probability is 

calculated in a random experiment of 27 trials for each modulation format (BPSK, QPSK, 

and 16-QAM). Signal detection is done under SNR set 

of 𝑆𝑁𝑅 𝜖 [−20,−15,10,−5,0,5,10,15]. The second most important parameter is the 

complexity analysis of the technique. It is presented next. The complexity of the technique in 

terms of the calculation and operational resources comes out to be equal to the complexity of 

FAM algorithm with low resolution analysis than in [5] & [12] due to larger 𝛼 and 𝑓 

resolutions. 

8.1  Probability of Detection 

For performance analysis of the detection technique in low SNR, probability detection 

experimentation is carried out [2]. The detection technique shows excellent performance 

under low SNR condition. For typical SNR range of establishing a communication link in 

satellite (SNR values between 5dB to 20dB), the probability of detecting the signal is 

approximately 100% within the defined threshold statistics. In Fig. 8-1, the trend shows 

lowest probability of detection at SNR = -20dB. This is due to the fact that at -20dB SNR the 

peaks in the calculated vector by the proposed technique are well above the defined threshold 

of 0.5 due to increased noise floor than signal. So detection is disturbed and probability of 

false alarm is increased. For SNR above -20dB, signal is detected with good probability of 

detection with a maximum probability of false alarm of 0.1. 
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Figure 8-1: Probability of Detection vs. SNR Plot 

8.2  Computational Complexity Analysis 

The calculation of Cyclostationary features of modulated signals is a computational hungry 

task. It was considered to be complex in computing the SCF estimates for complex signals 

[1]. In this research, FAM method has been used which is an efficient time smoothing 

method for the calculation of the estimates of SCF [1]. Although, it is an efficient calculation 

algorithm for SCF, but it includes the computation of windowing, complex demodulates 

calculations and above all the FFT operations are dominant in the FAM computational 

complexity [5, 12] & [34]-[35]. The complexity of SCF for estimating the features using 

FAM is 𝑂  
𝑁𝑁′

𝐿
 𝑙𝑜𝑔2 𝑁

′ + 𝑁′ 𝑙𝑜𝑔2(
𝑁

𝐿
)  . Where N, N′  and L represents the parameters in 

FAM algorithm naming number of samples, number of samples to calculate complex 

demodulates and decimation factor for channelization of input respectively [12]. Main benefit 

of the proposed detection technique is that it works for low resolution analysis. Low 

resolution analysis reduces the values of the above parameters of FAM by using larger values 

of ∆α and ∆f. Complexity of the feature vector calculations of the detection technique and 

cumulants based classification has calculation complexity of  𝑂 0.5𝑀 + 4𝑁  [24]. 

Additionally, the technique is computationally less complex since there are no covariance 

matrix calculations. Also, only 
𝑀

2
 vector points are used from the SCF to detect the signals as 
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in [18]. Values of  𝑁, N′  and L depends upon the resolution of frequency and cyclic 

frequency parameters of the FAM algorithm. In Table 5, different resolutions of cyclic 

frequency and the coarse frequency values are presented. The smaller the values of these 

resolutions, greater the number of samples and in turn higher the number of complex 

operations required to be performed on the hardware for FAM algorithm are required. The 

values used in this work are enclosed in the highlighted red rectangle in Table 5. The 

complex operations required are least among the listed values in the table. From the results 

and performance analysis it is ensured that SCF features, detection of signal, its classification 

using cumulants and less complex numerical computations have been done by the proposed 

research using low resolution parameters for FAM. The numbers of operation by FAM are 

the least in which spectrum sensing in its true nature has been carried out. 

∆𝒇 ∆α N 𝑵′  L O 

200000 20000 512 64 16 667648 

20000 2000 8192 512 128 100958208 

2000 480 32768 8192 2048 4.2967e+09 

2000 200 65536 8192 2048 1.0741e+10 

2000 50 262144 8192 2048 6.0143e+10 

Table 7: Values of complex operations required by the number of samples on different resolutions 

As far as the time taken by the execution of algorithm is concerned, according to [12] it is 

dependent on the values of N the number of samples to be processed by the FAM. From the 

aspect of hardware setup, the running USRP2 output to the algorithm containing a large 

buffered data does not affect the time taken to process it because numbers of samples are 

defined by the set frequency and cyclic frequency resolutions ∆f and ∆α which defines the 

number of samples. The plot of Fig. 8-2 shows little change in time taken by FAM with 

increasing number of samples input from the USRP2 captured file. Only N samples are 

processed for calculating the SCF of the given input data from USRP2 for the set resolutions 

highlighted in Table 5. So, real-time operation will take the same execution time for the 

specified platform as mentioned in experimentation chapter which is the lowest possible time 

using the resolution parameters and number of samples. It is therefore has least effect of 

USRP2 increasing number of samples on execution time. But, at-least N number of sample 

points i.e. 𝑁 =  512 must be provided by the hardware so that features of SCF can be 

calculated effectively. 
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Figure 8-2: Execution time of FAM for number of USRP2 samples 

The captured file from GNU Radio flowgraph containing the USRP2 samples of the data is 

processed by the algorithm in Matlab. Time for capturing the samples from the hardware was 

5 seconds in which a total of 327642 samples were captured and saved in a file using the flow 

graph. The platform specific elapsed time was determined by ‘tic and toc’ commands of 

Matlab. Different indexes of the input vector (read from the captured file in Matlab) were 

used and execution elapsed time was calculated. In Fig. 8-2 it is evident that there is a little 

change in the execution time with increasing number of captured samples because the FAM 

algorithm uses only N number of samples which is 512 for the set frequency resolutions in 

this work. Thus, the proposed algorithm works with low resolution, less complexity and least 

time consumption, ensuring required features in the SCF. 

In the next chapter, concluding remarks and prospective future work is presented. There is a 

lot of potential in the area of spectrum sensing. Detection algorithms and its application to the 

signals are not only limited to one domain but has a vast scope in engineering sciences. 
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Chapter 9. Conclusion and Future Work 

9.1  Conclusion 

In this research cyclostationary analysis of real time satellite signals with efficient FAM 

algorithm using low resolution parameters for faster execution have been presented. SCF 

features of real time satellite carriers are presented and a unique, less complex and simple 

technique for detecting signal or noise is devised. The proposed technique blindly works for 

BPSK, QPSK and 16-QAM modulated carriers of satellite with minimal user interaction. 

Also no knowledge of the interfering noise power level is required in the detection phase. 

This new technique works with the modern SDR based cognitive radio platform front-end 

(USRP2) so it can be utilized in evolving satellite cognitive radio designs for the purpose of 

spectrum sensing. For conventional techniques, magnitude, variance and exact location of the 

feature peaks are very critical. This criticality has been reduced in the proposed technique by 

maximum value normalization as in [14] and no dependence upon exact locations for cyclic 

frequency and frequency axes. Also for this technique to work only some of the feature peaks 

are required without any restriction of their location of occurrence. Significantly, with the 

processing point of view, the detector is able to work at low resolution parameters for 

frequency 𝑓 and cyclic frequency α. Using said parameters least number of complex 

operations is achieved with significant features in the SCF. Only 
𝑁

2
  points are used to detect 

the presence of signal in the calculated feature vector of length N which reduces the 

complexity as in [18]. The probability of detection in lower SNR conditions is also 

satisfactory for the proposed technique. Further, for the classification of the modulated 

signals after being detected by the spectrum sensing algorithm is done using fourth order 

cumulants. Successive ranges for BPSK, QPSK and 16-QAM modulated carriers of satellite 

and lab generated signals has been achieved. With this classification capability, identification 

and validation of an authentic primary carrier can be done by the secondary user or any 

government agency. The novel application is that Cumulants were calculated on the real 

feature vector values extracted from the calculated SCF instead of applying them to the 

complex I & Q samples of the signal under analysis. It significantly reduces the calculation 

complexity in comparison with the conventional cumulant calculations considering the 

signal 𝑦(𝑡) . Comparative analysis with conventional techniques revealed that this new 

spectrum sensing algorithm forms good connection with the background theory and shows 

good bond with the theoretical results.  
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9.2  Future work 

As a future perspective, the whole algorithm can be implemented using C++ programming 

language and with python wrappers it can be directly implemented as a new block in 

GNURADIO. In this way, a real time spectrum sensing system can be demonstrated for 

satellite cognitive radios. The cumulant based classification provides a simpler way to 

identify the modulation type of the primary signal present in the channel. This classification 

capability enables the cognitive spectrum sensing engine to monitor the channel and validate 

the authenticity of the detected signal. This can be used in a manner that if the modulation 

type comes out to be different than known for the primary user in a specific channel, it can be 

reported for certain necessary actions to prevent the unauthorized use of the spectrum. 

Certain industry practices of suppression of such an unauthorised carrier can be carried out by 

the relevant satellite operator upon being reported by the secondary user utilizing the 

spectrum sensing engine proposed in this research. 
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