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Abstract

OUTPUT REGULATION OF A

MULTI-AGENT SYSTEM USING

CONDITIONAL SERVOCOMPENSATORS

ZAIN UL AABIDIN LODHI

Multiple agents – sometimes referred to as swarm of agents – and their control

have been seeking interest significantly over the course of recent years. Their

ability to move in desired formations and perform synchronized task has been

the key arena in their development. In this research work, design of the contin-

uous sliding mode controller for the output regulation of a multi agent system

is studied. The idea of using conditional servocompensators for improving tran-

sient performance while achieving steady-state accuracy was introduced in the

literature and has been shown to be a useful tool to achieve regulation of min-

imum phase nonlinear systems. We extend the use of the same approach to a

class of multi-agent systems comprising of finite number of agents. The con-

trol scheme presented in this work is based on sliding mode control technique

and incorporates a conditional servocompensator. Closed-loop analysis under

the proposed control scheme for the multi-agent system is provided. Simula-

tion results in the form of output trajectories of individual agents and error

convergence are provided to illustrate the discussed approach.
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Chapter 1

Introduction

Multiple agents – sometimes referred to as swarm of agents – and their control

have been seeking interest significantly over the course of recent years. Their

ability to move in desired formations and perform synchronized task has been

the key arena in their development. Such a system bears a lot of benefits over

a single robot. Tasks which may be left unaddressed by a single robot can be

accomplished using this kind of system. These systems offer a huge range of

environmental adaptability and are flexible to a very huge extent. They are

impervious to failures as compared to others.

1.1 Why Multi-Agent Systems

Among all the emerging technologies for application problems, Multi-agent

robot systems stand out as one of the most plausible platforms for providing

solutions in different areas such as perturbed sensing, temporary mobile com-

munication networks and RSR (robotic search and rescue). Any system can be

labeled as a multi-agent system if at least two of its autonomous units work

together so as to accomplish a particular goal; for instance formation control.

Broadly speaking, MAS (multi-agent system) can be described as a network of

autonomous agents loosely coupled interacting with each other and providing
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a solution to problems that lie outside the circle of the individual capacities.

1.2 Application of Multi-Agent Systems

MAS applications cover a variety of domains, including

• Satellite formation flying

• Distributed computing and problem solving

• Multi-robot systems and Robotic clusters

• Surveillance and Reconnaissance systems

• Electric power systems

• Missile systems

• Intelligent Transport Systems(ITS)

1.3 Limitations in Multi-Agent Systems

The main objective in solving a control problem involving mutual interaction

between agents is designing the agent controllers so as to achieve the mutual ob-

jective. The feasibility of MAS is often questioned because of the high expenses

involved in addition to the following limitations:

• High quantity of agents involved

• Actuators spatial distribution

• Possession of incomplete information by each agent (This is because sen-

sors have restricted sensing capability)

• Limited ranges of wireless communication

• Data decentralization

• Asynchronous computation
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Therefore it becomes very challenging to design a distributed controller that

uses the individual information of the agents and couples them. Problems in-

volving complex system dynamics are the most challenging because of the in-

volvement of cooperative control law, agent interaction graph and mutual agent

dynamics.

1.4 Advantages of Multi-Agent Approach

Even after possessing all the aforementioned limitations, MAS still have huge

advantages over other systems and approaches. Some of them are stated below:

• MAS are impervious to robotic or communication failures. The overall

objective can be achieved even after certain agents or communication links

stop working due to any malfunctioning.

• MAS approach can also be utilized effectively for scaled-up or scaled-

down versions of a system thereby making it independent of the system

size. Therefore MAS approach is equally effective for any system whether

it possesses just two agent or a million agents.

• Computational burden gets distributed to the interconnected agents through-

out a network. This decentralization of computation and resources gets

rid of the SPF problem (single point of failure) that is ever-present in

centralized systems.

• Any problem is modeled by MAS with respect to each autonomous agent

involved in the network. This has proven to be the most natural way of

task distribution, agent interaction, user inputs and so on.

• Information is MAS is competently gathered from the sources, filtered and

then transferred globally to other agents.

• By enhancing the computational efficacy, the net system performance of

MAS gets enhanced. MAS approach is more reliable, extendible, robust,

3



responsive, flexible and maintainable as compared to other approaches.

1.5 Scope of the Thesis

This work is an extension of the approach discussed in [15] for the output reg-

ulation of nonlinear systems using conditional servocompensators. The goal

here is to design a conditional servocompensator in sliding mode control frame-

work for formation control of nonlinear multi-agent system comprising of finite

number fo agents agents to achieve the desired steady state accuracy as well

as the transient performance. The analysis of the overall closed loop system

for three agent system is also carried out that provides a better understanding

for formation control problem of multi-agent system in both the directed and

undirected graph topologies. The simulation results clearly indicate a better

transient performance of all the agents while maintaining the desired steady

state accuracy.
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Chapter 2

Preliminaries

2.1 Mathematical Preliminaries

2.1.1 Notation

The following notations will be used throughout the thesis for representation of

different terminologies;

• The set of all real number is represented by R; whereas Rn denotes the

set of all vectors of length n.

• f(x) denotes the function in variable x.

• λmin(A) and λmax(A) denote the smallest and largest eigenvalues of the

matrix A.

• AT denotes the matrix transpose.

• Norm of a scalar will be denoted by |x| whereas 2-norm of a vector will

be denoted by ‖x‖ =
√
xTx

2.1.2 Algebraic Graph Theory

A balanced graph is a graph whose ingoing edges and outgoing edges at every

node are equal in number. Edge (vi.vj) is outgoing and incoming at the same
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time with respect to vi and vj respectively, in case, if a graph has a property

(vi, vj) ∈ E, this states that for any value of vi, vj ∈ V, (vj , vi) ∈ E. Such a

graph is undirected and the edge (vi, vj) shows that there is mutual exchange

of information between the nodes vi and vj . The undirected graph can clearly

be called a special balanced graph.

Paths between nodes can either be direct or indirect. If the path between

nodes vi1 and vil is direct, then it can be represented in the form of a sequence

of ordered edges (vik, vik+1) where k = 1, . . . , l − 1. On the other hand, there

exists an analogous definition for an undirected path. A directed path for which

a same node acts as the starting as well as ending point is referred as a cycle.

If each node in a graph has a direct path to every other node, then the directed

graph is said to be strongly connected (Figure 2.1(a)). A similar connection

pattern in an undirected graph is referred as connectedness. If each node in

a directed graph has an edge to every other node, then the directed graph is

said to be complete. If all the nodes in an undirected graph connect via single

undirected path, then such an undirected graph is called an undirected tree.

If all the nodes in a directed graph have a single parent each apart from one

node which does not possess any parent, then such a directed graph is called a

(rooted) directed tree. The parent-less node is called the root and it is linked to

every other node via directed paths. If every node in a directed tree is connected,

then it is said to be spanning as shown in Figure 2.1(b). This means that there

exists one root node at least that is connected to every other node via a simple

path. A portion or subset of the graph can also contain a directed spanning tree.

This is even true for undirected graphs too as they may also contain a directed

spanning tree. Such undirected graphs are in fact connected. If directed graphs

contain directed spanning tree, then this is indicative of a weaker condition as

compared to being strongly connected. There exists a minimum of one directed

spanning tree in a strongly connected graph.
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Figure 2.1: Different types of directed graphs with five nodes: (a) A strongly
directed graph, (b) A directed spanning tree (c)an undirected balanced graph
(d)an undirected connected graph

Hence limitations in communication network do not always allow each agent

to communicate with all other agents. These limitations can be modeled with

the introduction of some graph terminologies mentioned in [17].

• G = (V, E) is a digraph that consists of a nodes V = {0, 1, 2, 3, ., N} and

edges E ⊆ V ×V. (i, j) denotes an edge from ith node to jth node. Set Ni

is the subset of V that contains all the nodes which are the neighbors of

node i. In the set V, node 0 represents the exosystem or a leader whereas

all other nodes represent the subsystems or agents defined in (2.1).

• A non-negative matrix known as the adjacency matrix can be defined as

A = [aij ] ∈ RN×N , i, j = 0, 1, ., N where for i = 1, 2, ., N, ai0 > 0 if the

local control input ui of the agent i can access the exogenous signal η.
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Other elements in A satisfies aii = 0 and aij ≥ 0.

• We can define a subgraph Gs = (Vs, Es) of G, where Vs = {1, 2, 3, ., N}, Es ⊆

Vs × Vs by excluding all edges between exosystem (leader) and all other

agents in set V.

• The Laplacian matrix L = [lij] ∈ RN×N of a digraph G corresponding to

matrix A contains elements in which lii =
∑N
j=1 aij and lii =

∑N
j=1−aij

if i 6= j

2.1.3 Functions

Definition 2.1.1. For a vector xi ∈ Rn, sign(xi) is defined as;

sign(xi) =


−1 : xi < 0

0 : xi = 0

1 : xi > 0

Definition 2.1.2. For a vector xi ∈ Rn, sat(xi) is defined as;

sat(xi) =


−1 : xi < −1

xi : |xi| ≤ 1

1 : xi > 1

Definition 2.1.3. A continuous function α : [0, a) → [0,∞) is said to belong

to class K if it is strictly increasing and α(0) = 0. It is said to belong to class

K∞ if a =∞ and α(r)→∞ as r →∞.

2.2 Literature Review

2.2.1 Multi-Agent System

Motion dynamics of a multi-agent system whose output regulation problem is

under consideration here can be found in literature [16] is given by the following
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form;

ẋi =fi(xi, ηi, ui)

yi =gi(xi, ηi) (2.1)

xi ∈ Rni , ui ∈ Rmi and yi ∈ Rmi are the local state, local control input

and local output of the ith subsystem. Functions fi and gi for all i agents are

assumed to be known and smooth.

Assumption 2.1. ηi ∈ Rri are the local exogenous signals supposed to be gen-

erated by a known system which is both local neutrally stable and autonomous,

referred here as exosystem.

η̇i =hi(ηi), i = 1, ....,M (2.2)

These local exogenous signals represent the reference inputs to be tracked

where function hi for all i agents are also known.

Collectively one can view the multi-agent system (2.1) and exosystem (2.2)

as the network of M + 1 agents with exosystem as the leader (or virtual leader)

and all the agents of (1) as followers. Furthermore, assumption of the local

neutral stability for exosystem indicates that Lyapunov stability of the system

in some neighborhood of the origin is preserved.

Assumption 2.2. There exist locally Lipchitz functions ϕi(xi, ηi) with ϕi(0, ηi) =

0 and continuously differentiable Lyapunov functions Vi(xi, ηi), such that

α1i(‖xi‖) ≤ Vi(xi, ηi) ≤ α2i(‖xi‖) (2.3)

∂Vi
∂ηi

hi(ηi) +
∂Vi
∂xi

fi(xi, ηi, ϕi(xi, ηi)) ≤ −Wi(xi) (2.4)

∀xi ∈ Rni and ηi ∈ Rri where α1i and α2i are class K functions and Wi(xi) are

continuous positive definite functions.
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Formation Control

Formation Control has one core objective. It makes the relative distances or

positions among the agents stabilize to prescribed values. Application arenas of

formation control are abundant. From formation flight of satellites to network of

sensors and coordinated transportation; it can be utilized in many synchronized

applications. Formation Control can roughly be classified into two categories.

• Formation Producing

• Formation Tracking

For a group of agents, if the algorithm design is such that the agents are made to

converge at a pre-determined positional pattern – and that too without following

any group reference – is Formation Producing. If the aforementioned task is gone

through but a pre-desired group reference is followed, then this is referred as

Formation Tracking [20]. The challenging of these two categories is formation

tracking because of the involvement of group reference. Only the formation

tracking problem will be discussed here.

Formation Control problems are firmly based on consensus algorithms. The

required formation structures are produces by modifying consensus protocols

and these protocols are modified by the addition suitable of offset variables

{[21],[22] and [23]}. In an attempt to offset the control inputs – in single in-

tegrator kinematic systems and double integrator dynamic systems – by some

angles, introduction of coupling matrices was done. These matrices are created

by extending the consensus algorithms {[24] and [25]}. The research in {[28],

[29] and [30]} – inspired from the graph rigidity – has been conducted in order

to mobilize a bunch of agents in such a way that the required configuration

among the agents is met. This can only be ensured by maintaining some of the

critical edge-distances equivalent to the required values. The Formation Con-

trol Algorithm based only on the rigidity – when compared to other formation

algorithms that make use of the edge-vector information – only needs the infor-
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mation regarding edge-distances. But this comes with a tradeoff as there might

exist some unstable equilibria. [20] reports some more research on Formation

Control.

2.2.2 Sliding Mode Control

One of the subset of the non-linear control is the Sliding Mode Control or SMC.

It makes use of the discontinuous control signal in order to push the system

trajectories so as to drive them towards the sliding manifold. The whole process

can be divided into two stages. These are referred as[31]

• Reaching Phase

• Sliding Phase

In the first stage, the trajectories start off the manifold, then drive towards it and

finally reaching it and all of this happens in a finite time. In the second stage,

control law is used to restrict these trajectories to that very sliding manifold.

Control law can be mathematically described as

u = −γsgn(s) (2.5)

The constant γ has a known positive value and it is dependent on the sys-

tems upper bound. SMC may introduce positive and negative properties to the

system. Positivity:

• Bounded control signal

• Well-understood tuning values

Negativity:

• Control Signal Chattering

Control signal chattering is the rapid change in the signal that may decrease

actuators life, decrease the control accuracy and decrease performance by in-

creasing heat losses. Zig-zag motion is induced due to this process which is
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depicted in the figure below [31]. In order to get rid of this chattering, there

exist many approaches in the literature. Some of the techniques include

• Breaking down the control into two components; continuous and switching

• Replacing a sign function for a continuous complement [32] (this research

work has made use of this approach)

• Utilizing a boundary layer around the sliding surface [13]

• Bringing higher order sliding modes into use [27]

Figure 2.2: Zig-zag motion due to chattering of control signal [31]

2.2.3 Servomechanism

The problem of achieving asymptotic tracking of pre-defined trajectories and/or

asymptotic rejection of disturbances lies at the very core in control theory. One

of the various possibilities to handle this type of problem is called ”Tracking

via Internal Models” or ”Servomechanism”. This technique is robust to han-

dle unknown uncertainties in plant as well as unknown reference trajectories to

be tracked simultaneously. [33], [18] and [12] provide a very detailed discus-

sion about servomechanism approach. Further details of servomechanism are

explained in Chapter 3.
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Chapter 3

Previous Work

3.1 Introduction

In this chapter, the previous work presented in [15] is reviewed in which the term

conditional servocompensator was introduced by Seshagiri and Khalil. Basic

purpose of this approach is to alleviate the degradation in transient performance

by embedding the anti-windup scheme while achieving steady-state accuracy.

References [12], [18] and [19] provide basis for the said previous work.

3.2 Conditional Integrators

In [12], Khalil and his companions presented an integral action based contin-

uous sliding mode control for minimum phase non-linear systems in which the

integral action only works conditionally to avoid the degradation in required

performance. Later the same idea was extended for designing of conditional

servocompensator.

Another work related to formation control of multiple vehicles using condi-

tional integrators is explained in [?]. In this research work, author devised an

application of conditional integrators while maintaining the path following and

trajectory tracking of multiple vehicles.
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3.3 Conditional Servocompensators

In [18], a robust servomechanism was discussed for minimum phase non-linear

single-input-single-output (SISO) system. In the absence of disturbances, SISO

system can be mathematically written as;

ẋ = f(x, ν) + g(x, ν)u

y = h(x, ν) (3.1)

where x ∈ Rn is the state , u ∈ R is the control input and y ∈ R is the measured

output. The functions f, g and h are smooth and continuously dependent on

ν ∈ Θ ⊂ Rl, a vector with unknown constant parameters. The output y is to

track a time-varying reference signal yR.

Assuming that the system (3.1) has a uniform relative degree r ≤ n that is;

Lgy = LgLfy = · · · = LgL
r−2
f y = 0 and |LgLr−1f y| ≥ k0 ≥ 0 (3.2)

where k0 is independent of θ.

Assumption 3.1. A known exosystem generates the exogenous signal repre-

sented by ν(t)

ν̇ = S0ν (3.3)

where eigenvalues of S0 are distinct and lies on the imaginary axis.

Assumption 3.2. There exist unique continuous differentiable mappings x =

π(ν) with π(0) = 0 and u = c(ν) that solves the equation

14



∂π

∂ν
S0ν =f(π, ν) + g(π, ν)c(ν)

0 =h(π, ν) (3.4)

Further assuming that there exist a set of real numbers a0, a1, . . . , aq−1 in-

dependent of θ, such that the steady state value of the control input represented

by c(η, θ) satisfies the identity;

Lqηc = a0c+ a1Lηc+ · · ·+ cq−1L
q−1
η c (3.5)

∀ (η, θ) ∈ W ×Θ, where Lηc = ∂c
∂η η̇ and the characteristic polynomial

pq − aq−1pq−1 − · · · − a1p− a0 = 0

have negative real parts, then following control law can be used;

u = −k sign(LgL
r−1
f y) sat

(
s

µ

)
(3.6)

σ̇ = Sσ + J(y(t)− yR(t)) (3.7)

s = K1σ + k1e1 +

r−1∑
i=2

kiêi + êr (3.8)

where,

S =



0 1 · · · · · · 0

0 0 1 · · · 0

...
...

0 · · · · · · 0 1

a0 · · · · · · · · · aq−1


and J =



0

0

0

...

1


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K1 and K2 are chosen to make the matrix

 S JC0

−B0K1 A0 −B0K2


Hurwitz in which {A0, B0, C0} indicates the canonical form representation of

chain of r − 1 integrators. k > 0 and µ > 0 are design parameters, and êi ∈

{2, . . . , r} provides estimates of tracking error.

Thus incorporating a robust servocompensator by above mentioned tech-

nique helps in achieving asymptotic tracking and disturbance rejection using

continuous sliding mode control; this is applicable for both linear and non-linear

system. But this technique suffers a degradation in transient performance of the

system [18] which can be overcome by using a conditional servocompensator ex-

plained below.

3.3.1 Introduction to conditional servocompensators

Seshagiri and Khalil in their reserach work [15] have shown that the servocom-

pensator can be designed as a conditional one just like conditional integrator

[12] to recover the performance of ideal (discontinuous) SMC by avoiding the

problem of chattering. The basic principle behind the conditional servocompen-

sator is that it activates only inside the boundary layer to provide asymptotic

output regulation with better transient performance. Taking σ as the output of

the conditional servocompensator and µ is the size of the boundary layer, the

new control law can be written as;

u = −k sign(LgL
r−1
f y) sat

(
s

µ

)
(3.9)

σ̇ = (S − JK1)σ + µJsat(s/µ) (3.10)

s = K1σ + k1e1 +

r−1∑
i=2

kiêi + êr (3.11)

The matrix K1 is chosen such that (S − JK1) is Hurwitz (since pair (S,J)
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is controllable) and [k1 k2 · · · kp] are chosen to make the polynomial λρ−1 +

kρ−1λ
ρ−2 + · · · + k2λ + k1 Hurwitz. Inside the boundary layer, equation (??)

reduces to (3.7). Below is given the basic example of single-input-single out-

put (SISO) system for better understanding of conditional servocompensation

technique.

3.3.2 Example

Consider a second-order SISO system of the form;

ẋ1 = x2

ẋ2 = −ax+ u

y = x1 (3.12)

where x ∈ R is the system state, u ∈ R is the control input and y ∈ R is the

measured output signal. The constant a > 0 is a known scalar system parameter.

The reference signal r is the sinusoidal signal generated by the exosystem given

as;

ν̇ =

0 −ω

ω 0

 ν, νT (0) = [0, r0], r(t) = ν1 (3.13)

The system parameters are taken as;

a = 1, ω = 0.5; r0 = 1

Here, the control objective is to make sure that measured output signal tracks

the reference signal r(t).

Steady state value of the control input can be computed as;

c = (−ω2 + a)ν1

satisfying the identity L2
ηc = a0c+ a1Lηc with c0 = −ω2 and c1 = 0.

Ideal SMC : For this design, the sliding surface is chosen as;
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s = k1e1 + ė1, where k1 = 5 > 0.

Continuous SMC : In this design, the sliding surface is also chosen as;

s = k1e1 + ė1, where k1 = 5 > 0.

CSMC with Conventional Servocompensator :

In this design, a second-order conventional servocompensator σ̇ = Sσ + Je1 is

introduced while sliding surface is taken as; s = K1σ + k1e1 + ė1, where K1

and k1 are chosen to assign the eigenvalues of

 S J

−K1 −k1

 at −1,−2 and −3.

[18].

CSMC with Conditional Servocompensator :

In this design, a second-order conditional servocompensator of the form (3.10)

is incorporated while sliding surface is taken as; s = K1σ + k1e1 + ė1, where

k1 = 5 > 0 and K1 is chosen to assign the eigenvalues of (S−JK1) at −1 and −2

[15].

And the control law is taken as;

• For ideal SMC case, usmc = −kssgn(s)

• For other three cases, ucsmc = −kssat( sµ )
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Figure 3.1: Performance comparison of conditional servocompensator response
with other three designs

Figure 3.2: Performance comparison of conditional servocompensator response
with other three designs at steady state

Results of the simulations are shown in Figure 3.1 and 3.2. The improvement

in the transient response with conditional servocompensator by using continu-

ous sliding mode control can be clearly seen in Figure 3.1 which is very similar
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to ideal SMC design. The transient response of continuous sliding mode control

design (case 2) is also very similar to ideal SMC design but Figure 3.2 suggests

the non-convergence of the asymptotic error using CSMC without servocompen-

sator. Furthermore, conventional servocompensator design also produces zero

steady state error but at the expense of degraded transient performance.
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Chapter 4

Conditional

Servocompensators for

Output regulation of

Multi-Agent System

4.1 Control Design

4.1.1 Directed Graph

The design of conditional servocompensator for multi-agent system is very simi-

lar to the conditional servocompensator in Reference [15]. Basically, this design

involves the extension of separate servocompensators to each individual in a

multi-agent system. The objective under consideration here is that agents with

the dynamics given in (2.1) are required to achieve and maintain coordinated

motion with respect to the leader. The relative position of ith agent with respect

to jth agent is uniquely defined by a know vector rij where i, j = L, 1, ....M .
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Assuming that for each agent, state e needs to be driven to zero is given by

eij = xi − xj − rij , i, j = L, 1, ....M (4.1)

where eij ∈ Rn is the position of the ith agent with respect to jth agent. Based

on the observations made by each agent, we define the generalized error zi as

zi =
∑
j∈J

eij , i, j = L, 1, ....M (4.2)

where J = {L, 1, ....M}. We define ζTi = [z1i z2i . . . zp−1i ] andK2
i = [k1i k2i . . . kp−1i ].

Servocompensation for multi-agent system is then introduced by defining the

sliding surface for each individual agent.

si = K1
i σi +K2

i ζi + zρi (4.3)

where σi is the output of the conditional servocompensator and is defined as

σ̇i = (Si − JiK1
i )σi + µJisat(si/µ) (4.4)

The control is taken as;

ui = −kisat(si/µ) (4.5)

where ui is the control for ith agent and ki is the upper bound on the control

signal of the respective agent. We define Aσi
= (Si − JiK1

i ) and the Lyapunov

function

Vσi(σi) = σTi Pσiσi (4.6)
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where the symmetric positive definite matrix Pσi
is the solution of Pσi

Aσi
+

ATσi
Pσi = −I. Defining the compact set Ωσi by

Ωσi = σi : Vσi(σi) ≤ µ2ρi

where ρi are the positive constants. Using the inequality

V̇σi
≤ −‖σi‖2 + 2µ‖σi‖‖Pσi

Ji‖

it is easy to show that V̇σi
≤ 0 on the boundary Vσi

= µ2ρi for the choice

ρi = 4‖PσiJi‖2λmax(Pσi). Hence, Ωσi is positively invariant

4.1.2 Undirected Graph

Undirected Graph can be treated as a special case of directed graph in which

all the agents in a multi-agent system can access the exogenous signal, so for

this case errors defined in (4.1) and (4.2) can be modified as;

ei =xi − xL − ri,

zi =ei (4.7)

where ri is the relative position of ith agent with respect to leader or exogenous

system. Equation (4.7) decreases the complexity of the system.

4.2 THREE AGENT SYSTEM IN DIRECTED

GRAPH TOPOLOGY

4.2.1 Description

To show the performance with conditional servocompensator, we consider for-

mation control of three-agent system consisting of two double integrator agents

with a leader (exosystem) represented by node 0. Dynamics of the agents mov-
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ing in two dimensional space are given by;

ẋi =vi

vi =ui

yi =xi (4.8)

where xi ∈ R2 is the position, vi ∈ R2 is the velocity and ui ∈ R2 is the control

signal for each individual agent. Agents are required to move along a circle in a

desired fixed formation as shown in figure 4.1. This implies that the trajectories

of the leader are generated by the linear exosystem.

η̇ =



0 −β 0 0

β 0 0 0

0 0 0 −β

0 0 β 0


η, yl =

1 0 0 0

0 0 1 0

 η (4.9)

where η ∈ R4 and ηT (0) = [10, 0, 10, 10]. Formation control of multi-agent sys-

tem with such dynamics can be found in [5], [6] and [16]. Note that the directed

graphs of the above topology satisfy the required property that there exists at

least one directed path from the leader to any agent. Let the required fixed

relative position (with respect to the leader) for the agents be r1 = [−1, 0]T ,

and r2 = [−2, 0]T . Note that the generalized error state z can be found by the

equation (4.2).

Figure 4.1: Network topolgy for directed graph

Furthermore, let us consider that there exist mappings (invariant manifold)
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xi = πi(ηi) and ui = ci(ηi), 1 ≤ i ≤M with πi(0) = 0 and ci(0) = 0, such that

∂πi(ηi)

∂ηi
η̇i =fi(πi(ηi), ηi, ci(ηi))

0 =gi(πi(ηi), ηi)− qi(ηi), 1 ≤ i ≤M (4.10)

For Agent 1, (4.10) can be written as;


∂π11

∂η1
∂π11

∂η2
∂π11

∂η3
∂π11

∂η4

∂π21

∂η1
∂π21

∂η2
∂π21

∂η3
∂π21

∂η4





−βη2

βη1

−βη4

βη3


=


π21

c1


0 = (π11 − (yL + r1L)) + (π11 − (π12 + r12)) (4.11)

Solving above equation yields following results;

−βη2
∂π11
∂η1

+ βη1
∂π11
∂η2

− βη4
∂π11
∂η3

+ βη3
∂π11
∂η4

= π21 (4.12)

−βη2
∂π21
∂η1

+ βη1
∂π21
∂η2

− βη4
∂π21
∂η3

+ βη3
∂π21
∂η4

= c1 (4.13)

yL + π12+r1L + r12 = 2π11 (4.14)

Now similar results can be obtained for Agent 2 using (4.10)


∂π12

∂η1
∂π12

∂η2
∂π12

∂η3
∂π12

∂η4

∂π22

∂η1
∂π22

∂η2
∂π22

∂η3
∂π22

∂η4





−βη2

βη1

−βη4

βη3


=


π22

c2


0 = π12 − (π11 + r21) (4.15)
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Solving above equation, following results can be obtained;

−βη2
∂π12
∂η1

+ βη1
∂π12
∂η2

− βη4
∂π12
∂η3

+ βη3
∂π12
∂η4

= π22 (4.16)

−βη2
∂π22
∂η1

+ βη1
∂π22
∂η2

− βη4
∂π22
∂η3

+ βη3
∂π22
∂η4

= c2 (4.17)

π12 = π11 + r21 (4.18)

Putting the value of π12 from (4.18) into (4.16), we get

π21 = π22 (4.19)

Now, putting the value of π12 from (4.18) into (4.14), we get

2π11 = yL + π11 + r21 + r1L + r12

π11 = yL + r21 + r1L + r12

or we can rewrite it as;

π11 =

η1
η3

+ r21 + r1L + r12

π11 = η∗ + r21 + r1L + r12 (4.20)

where η∗ =

η1
η3

 = yL.

Putting the value of π11 from above equation into (4.12), we get

π21 = −βη2

1

0

− βη4
0

1

 = β

−η2
−η4

 = −βη∗∗ (4.21)
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where η∗∗ =

η2
η4

. As π21 = π22, so we can say that

π22 = β

−η2
−η4

 = −βη∗∗ (4.22)

Putting (4.20) in (4.18),

π12 =

η1
η3

+ 2r21 + r1L + r12

π12 = η∗ + 2r21 + r1L + r12 (4.23)

The constant term r1L in above equation shows that although second agent is

not connected to the leader directly but it can still get the information (relative

position) of the leader (Node 0) through agent 1. We have mapped our states

to πi(ηi); next step is to map the control signals of each agent to ci(ηi).

Now solving equations (4.13) and (4.17) using the results of π11, π12, π21 and

π22;

c1 = βη1

−β
0

+ βη3

 0

−β

 = −β2

η1
η3

 = −β2η∗ (4.24)

and

c2 = βη1

−β
0

+ βη3

 0

−β

 = −β2

η1
η3

 = −β2η∗ (4.25)

which employs that c1 = c2 = ci(η). Hence,

ci(η) = −β2

η1
η3


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Taking the first Lie derivative of ci(η) employs that;

Lηci(η) =
∂ci(η)

∂η
η̇

⇒Lηci(η) =


∂c1
∂η1

∂c1
∂η2

∂c1
∂η3

∂c1
∂η4

∂c2
∂η1

∂c2
∂η2

∂c2
∂η3

∂c2
∂η4





−βη2

βη1

−βη4

βη3



⇒Lηci(η) =


−β2 0 0 0

0 0 −β2 0





−βη2

βη1

−βη4

βη3


= β3


η2

η4


(4.26)

Similarly the second Lie derivative of ci(η) is given by;

L2
ηci(η) =

∂Lηci(η)

∂η
η̇

⇒Lηci(η) =


0 β3 0 0

0 0 0 β3





−βη2

βη1

−βη4

βη3


= β4


η1

η3


(4.27)

So it can be verified that ci(η) satisfies the identity

L2
ηci(η) = a0ci(η) + a1Lηci(η) (4.28)

with a0 = −β2, a1 = 0.

4.2.2 Control Design

The performance of three designs are under consideration here:

1. The first is a continuous approximation of sliding mode without servo-
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compensator. In this design, surface is taken as

si = k1i z
1
i + z2i

⇒ si = k1i zi + żi (4.29)

2. Second design uses the second-order conventional servocompensator σ̇i =

Siσi + Ji(k
1
i zi + żi) whereas the sliding surface is taken as;

si = K1
i σi + k1i z

1
i + z2i

⇒ si = K1
i σi + k1i zi + żi (4.30)

where k1i > 0 (any positive constant). For this design, K1
i and k1i are

chosen to make ψi Hurwitz where

ψi =


Si Ji

−K1
i −k1i


3. The third design uses second-order conditional servocompensator of (4.4)

whereas the sliding surface is again taken as;

si = K1
i σi + k1i zi + żi (4.31)

In conditional servocompensator design K1
i is chosen to make (Si − JiK1

i )

Hurwitz whereas in first and third design k1i is chosen as any positive constant.

4.2.3 Analysis

Analysis of the agents following a leader is shown below. Depending upon the

neighboring nodes of both the agents, error zi is defined on the basis of set Ni.
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Outside the boundary layers

Agent 1: For agent 1, N1 = {L, 2} so error z1 and its derivatives are defined

as;

z1 = (x1 − xl − r1L) + (x1 − x2 − r12) (4.32)

ż1 = (v1 + η∗∗) + (v1 − v2) (4.33)

z̈1 = (u1 + η∗) + (u1 − u2) (4.34)

and the sliding surfaces for all the three designs are already defined in (4.29),

(4.30) and (4.31).

Agent 2: As from the network topology, agent 2 is directly connected to

Agent 1 only, hence getting information of exosystem through agent 1. In this

case, N2 = {1} so error z2 and its derivatives are defined as;

z2 = (x2 − x1 − r21) (4.35)

ż1 = (v2 − v1) (4.36)

z̈1 = (u2 − u1) (4.37)

and the sliding surfaces for all the three designs are already defined in (4.29),

(4.30) and (4.31).

Assumption 4.1. There exist known functions %1(v, η) and %2(v, η) for agent

1 and agent 2 for which the following inequalities are always satisfied;

|k11(2v1 + η∗∗ − v2) + η∗| ≤ %1(v, η), ∀(v) ∈ R2 (4.38)

|k12(v2 − v1)| ≤ %2(v, η), ∀(v) ∈ R2 (4.39)

Choosing the lyapunov candidate Vs1(s1) = 1
2s
T
1 s1 for agent 1 and Vs2(s2) =

1
2s
T
2 s2 for agent 2 to show that trajectories reach the boundary layers ‖s1‖ ≤ µ1

and ‖s2‖ ≤ µ2 respectively in finite time.
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sT1 ṡ1 ≤‖s1‖
{
%1(v) + (2u1 − u2) + (‖σ1‖‖K1

1‖‖Aσ1
‖

+ µ1‖K1
1‖‖J1‖)

}
(4.40)

and

sT2 ṡ2 ≤‖s2‖
{
%2(v, η) + (u2 − u1) + (‖σ2‖‖K1

2‖‖Aσ2‖

+ µ2‖K1
2‖‖J2‖)

}
(4.41)

Let ki ≥ max{%1 + β1, %2 + β2}, i = 1 and 2, where β1 > 0 and β2 > 0.

So now (4.40) and (4.41) can be written as;

sT1 ṡ1 ≤− %1(v, η)‖s1‖ − β1‖s1‖ −
(

(%(v, η) + β1)
|s2|
‖s2‖

)
‖s1‖+

(
‖σ1‖‖K1

1‖‖Aσ1
‖+ µ1‖K1

1‖‖J1‖
)
‖s1‖

and (4.42)

sT2 ṡ2 ≤− β2‖s2‖ −
(

(%2(v, η) + β2)
|s1|
‖s1‖

)
‖s2‖

+
(
‖σ2‖‖K1

2‖‖Aσ2
‖+ µ2‖K1

2‖‖J2‖
)
‖s2‖ (4.43)

The norms ‖σ1‖‖K1
1‖‖Aσ1

‖ and µ1‖K1
1‖‖J1‖ can be bounded by a class κ

function δ1(µ1). Similarly, the norms ‖σ2‖‖K1
2‖‖Aσ2‖ and µ2‖K1

2‖‖J2‖ can also

be bounded by another class κ function δ2(µ2). Hence

sT1 ṡ1 ≤− %1(v, η)‖s1‖ − β1‖s1‖ −
(

(%1(v, η) + β1)
|s2|
‖s2‖

)
‖s1‖

+ δ1(µ1)‖s1‖

and

sT2 ṡ2 ≤− β2‖s2‖ −
(

(%2(v, η) + β2)
|s1|
‖s1‖

)
‖s2‖+ δ2(µ2)‖s2‖

(4.44)
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or we can write above equations as;

sT1 ṡ1 ≤−
[
%1(v, η)‖s1‖+ β1‖s1‖+ (%(v, η) + β1)

|s2|
‖s2‖

− δ1(µ1)

]
‖s1‖ (4.45)

and

sT2 ṡ2 ≤−
[
β2‖s2‖+ (%2(v, η) + β2)

|s1|
‖s1‖

− δ2(µ2)

]
‖s2‖ (4.46)

which shows that for sufficiently small µ1 and µ2, all trajectories will reach

the boundary layers {‖s1‖ ≤ µ1} and {‖s2‖ ≤ µ2} respectively. Furthermore,

the terms |s2|‖s2‖‖s1‖ in sT1 ṡ1 and |s1|
‖s1‖‖s2‖ in sT2 ṡ2 clearly show that both agents do

experience the control impact of each other because they are directly connected

to each other.

Inside the boundary layers

Agent1: Inside the boundary layer, the closed loop system for Agent 1 is given

by;

η̇ = S0η (4.47)

ż11 = (v1 + η∗∗) + (v1 − v2) (4.48)

ż21 = 2u1 − u2 + η∗ (4.49)

σ̇1 = S1σ1 + J1(k1z
1
1 + z21) (4.50)

We define,

Mµ1
= {σ1 = σ̄1, z

1
1 = 0}

From (4.49), σ̄1 can be found as;

0 = 2u1 − u2 + η∗

⇒ 0 = 2

(
− k1K1

σ̄1
µ1

)
−
(
− k2K2

σ̄2
µ2

)
− η∗

⇒ σ̄1 =
µ1

2

{(
k2
k1

K2

K1

σ̄2
µ2

)
+

1

k1K1
η∗
}

(4.51)
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Define σ̃1 = σ1 − σ̄1, s̃1 = K1σ̃1 + k1z
1
1 + z21 and s̃2 = K2σ̃2 + k2z

1
2 + z22

Again taking eq (4.49),

ż21 =2u1 − u2 + η∗

⇒ ż21 =− 2k1
s1
µ1

+ k2
s2
µ2

+ η∗

⇒ ż21 =− 2k1
K1σ1 + k1z

1
1 + z21

µ1
+ k2

K2σ2 + k2z
1
2 + z22

µ2
+ η∗

⇒ ż21 =
−2k1
µ1

(
(K1σ1 + k1z

1
1 + z21) + (K1σ̄1 + k1z

1
1 + z21)− (K1σ̄1 + k1z

1
1 + z21)

)
+

k2
µ2

(
(K2σ2 + k2z

1
2 + z22) + (K2σ̄2 + k2z

1
2 + z22)− (K2σ̄2 + k2z

1
2 + z22)

)
+ η∗

⇒ ż21 =
−2k1
µ1

(
(K1σ̃1 + k1z

1
1 + z21) +K1σ̄1

)
+
k2
µ2

(
(K2σ̃2 + k2z

1
2 + z22) +K2σ̄2

)
+ η∗

By putting the values of σ̄1 and σ̄2, we get

⇒ ż21 =− 2k1
µ1

s̃1 −
k2K2

µ2
σ̄2 +

k2
µ2
s̃2 +

k1K1

µ1
σ̄1 (4.52)

Next we can find s̃T1 ˙̃s1 as,

s̃T1 ˙̃s1 = s̃T1 (K1
˙̃σ1 + k1ż

1
1 + ż21)

By putting the values, we get

⇒ s̃T1 ˙̃s1 =s̃T1

{
K1(S1σ̃1 + J1(k1z

1
1 + z21))

}
+ s̃T1 (k1z

2
1)+

s̃T1

{
− 2k1

µ1
s̃1 −

k2K2

µ2
σ̄2 +

k2
µ2
s̃2 +

k1K1

µ1
σ̄1

}
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By putting the value of σ̄2, above equation can be rewritten as;

⇒ s̃T1 ˙̃s1 =s̃T1K1S1σ̃1 + s̃T1K1J1k1z
1
1 + s̃T1K1J1z

2
1 + s̃T1 k1z

2
1

− s̃T1
2k1
µ1

s̃1 + s̃T1
k2
µ2
s̃2

⇒ s̃T1 ˙̃s1 ≤−
2k1
µ1
‖s̃1‖2 +

k2
µ2
‖s̃2‖‖s̃1‖+K1λmax(S1)‖s̃1‖‖σ̃1‖

+K1k1‖s̃1‖‖z11‖+ (K1 + k1)‖s̃1‖‖z21‖

Substituting the value of ‖z21‖ in above equation, we get

⇒ s̃T1 ˙̃s1 ≤−
2k1
µ1
‖s̃1‖2 +

k2
µ2
‖s̃2‖‖s̃1‖+K1λmax(S1)‖s̃1‖‖σ̃1‖+K1k1‖s̃1‖‖z11‖

+ (K1 + k1)‖s̃1‖
(
− k1‖z11‖+ ‖s̃1‖ −K1‖σ̃1‖

)
⇒ s̃T1 ˙̃s1 ≤−

(
2k1
µ1
− (K1 + k1)

)
‖s̃1‖2 +

k2
µ2
‖s̃2‖‖s̃1‖ − k12‖s̃1‖‖z11‖

+K1

(
λmax(S1)− (K1 + k1)

)
‖s̃1‖‖σ̃1‖ (4.53)

or

⇒ s̃T1 ˙̃s1 ≤−
(

2k1
µ1
− k13

)
‖s̃1‖2 +

k2
µ2
‖s̃2‖‖s̃1‖ − k12‖s̃1‖‖z11‖

+K1

(
k14 − k13

)
‖s̃1‖‖σ̃1‖ (4.54)

where

k13 = K1 + k1, k14 = λmax(S1)

Agent 2: Inside the boundary layer, the closed loop system for agent 2 is

given by;

η̇ = S0η (4.55)

ż12 = (v2 − v1) (4.56)

ż22 = u2 − u1 (4.57)

σ̇2 = S2σ2 + J2(k2z
1
2 + z22) (4.58)
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We define,

Mµ2 = {σ2 = σ̄2, z
1
2 = 0}

From (4.57), σ̄2 can be found as;

0 = u2 − u1

⇒ 0 = −k2K2
σ̄2
µ2

+ k1K1
σ̄1
µ1

⇒ σ̄2 = µ2

(
k1
k2

K1

K2

σ̄1
µ1

)
(4.59)

Define σ̃2 = σ2 − σ̄2, s̃1 = K1σ̃1 + k1z
1
1 + z21 and s̃2 = K2σ̃2 + k2z

1
2 + z22

Again taking eq (4.57),

ż22 =u2 − u1

⇒ ż22 =− k2
s2
µ2

+ k1
s1
µ1

⇒ ż22 =− k2
K2σ2 + k2z

1
2 + z22

µ2
+ k1

K1σ1 + k1z
1
1 + z21

µ1

⇒ ż22 =
−k2
µ2

(
(K2σ2 + k2z

1
2 + z22) + (K2σ̄2 + k2z

1
2 + z22)− (K2σ̄2 + k2z

1
2 + z22)

)
+

k1
µ1

(
(K1σ1 + k1z

1
1 + z21) + (K1σ̄1 + k1z

1
1 + z21)− (K1σ̄1 + k1z

1
1 + z21)

)
⇒ ż22 =

−k2
µ2

(
(K2σ̃2 + k2z

1
2 + z22) +K2σ̄2

)
+
k1
µ1

(
(K1σ̃1 + k1z

1
1 + z21) +K1σ̄1

)

By putting the values of σ̄1 and σ̄2, we get

⇒ ż22 =− k2
µ2
s̃2 −

k1K1

µ1
σ̄1 +

k1
µ1
s̃1 +

k2K2

2µ2
σ̄2 +

η∗

2
(4.60)

Next we can find s̃T2 ˙̃s2 as,

s̃T2 ˙̃s2 = s̃T2 (K2
˙̃σ2 + k2ż

1
2 + ż22)
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By putting the values, we get

⇒ s̃T2 ˙̃s2 =s̃T2

{
K2(S2σ̃2 + J2(k2z

1
2 + z22))

}
+ s̃T2 (k2z

2
2)+

s̃T2

{
− k2
µ2
s̃2 −

k1K1

µ1
σ̄1 +

k1
µ1
s̃1 +

k2K2

2µ2
σ̄2 +

η∗

2

}

By putting the value of σ̄1, above equation can be rewritten as

⇒ s̃T2 ˙̃s2 =s̃T2K2S2σ̃2 + s̃T2K2J2k2z
1
2 + s̃T2K2J2z

2
2 + s̃T2 k2z

2
2

− s̃T2
k2
µ2
s̃2 + s̃T2

k1
µ1
s̃1

⇒ s̃T2 ˙̃s2 ≤−
k2
µ2
‖s̃2‖2 +

k1
µ1
‖s̃1‖‖s̃2‖+K2λmax(S2)‖s̃2‖‖σ̃2‖

+K2k2‖s̃2‖‖z12‖+ (K2 + k2)‖s̃2‖‖z22‖

Substituting the value of ‖z22‖ in above equation, we get

⇒ s̃T2 ˙̃s2 ≤−
k2
µ2
‖s̃2‖2 +

k1
µ1
‖s̃1‖‖s̃2‖+K2λmax(S2)‖s̃2‖‖σ̃2‖

+K2k2‖s̃2‖‖z12‖+ (K2 + k2)‖s̃2‖
(
− k2‖z12‖+ ‖s̃2‖ −K2‖σ̃2‖

)
⇒ s̃T2 ˙̃s2 ≤−

(
k2
µ2
− (K2 + k2)

)
‖s̃2‖2 +

k1
µ1
‖s̃1‖‖s̃2‖ − k22‖s̃2‖‖z12‖

+K2

(
λmax(S2)− (K2 + k2)

)
‖s̃2‖‖σ̃2‖ (4.61)

or

⇒ s̃T2 ˙̃s2 ≤−
(
k2
µ2
− k23

)
‖s̃2‖2 +

k1
µ1
‖s̃1‖‖s̃2‖ − k22‖s̃2‖‖z12‖

+K2

(
k24 − k23

)
‖s̃2‖‖σ̃2‖ (4.62)

where

k23 = K2 + k2, k24 = λmax(S2)
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Quadratic Form

Consider the Lyapunov function candidate;

V =
1

2
zT1 z1 +

d1
µ1
σ̃T1 P1σ̃1 +

e1
2
s̃T1 s̃1+

1

2
zT2 z2 +

d2
µ2
σ̃T2 P2σ̃2 +

e2
2
s̃T2 s̃2 (4.63)

where d1, e1, d2 and e2 are positive constants to be chosen. By Calculating V̇ ,

we obtain

V̇ =zT1 ż1 +
d1
µ1

[
σ̃T1 P1

˙̃σ1 + ˙̃σT1 P1σ̃1

]
+ e1s̃

T
1

˙̃s1+

zT2 ż2 +
d2
µ2

[
σ̃T2 P2

˙̃σ2 + ˙̃σT2 P2σ̃2

]
+ e2s̃

T
2

˙̃s2 (4.64)

Values of the remaining terms in above equation are;

zT1 ż1 ≤− k1‖z1‖2 −K1‖σ̃1‖‖z1‖+ ‖z1‖‖s̃1‖ (4.65)

zT2 ż2 ≤− k2‖z2‖2 −K2‖σ̃2‖‖z2‖+ ‖z2‖‖s̃2‖ (4.66)

⇒ e1s̃
T
1

˙̃s1 ≤− e1
(

2k1
µ1
− k13

)
‖s̃1‖2 +

e1k2
µ2
‖s̃2‖‖s̃1‖

− e1k12‖s̃1‖‖z11‖+ e1K1

(
k14 − k13

)
‖s̃1‖‖σ̃1‖

(4.67)

⇒ e2s̃
T
2

˙̃s2 ≤− e2
(
k2
µ2
− k23

)
‖s̃2‖2 +

e2k1
µ1
‖s̃1‖‖s̃2‖

− e2k22‖s̃2‖‖z12‖+ e2K2

(
k24 − k23

)
‖s̃2‖‖σ̃2‖

(4.68)

d1
µ1

[
σ̃T1 P1

˙̃σ1 + ˙̃σT1 P1σ̃1

]
≤− d1

µ1
‖σ̃1‖2 +

2d1k15
µ1

‖σ̃1‖‖s̃1‖ (4.69)

d2
µ2

[
σ̃T2 P2

˙̃σ2 + ˙̃σT2 P2σ̃2

]
≤− d2

µ2
‖σ̃2‖2 +

2d2k25
µ2

‖σ̃2‖‖s̃2‖ (4.70)

where,

k15 = λmax(P1) and k25 = λmax(P2)
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By putting the values of equations (4.65) - (4.70) in (4.64), it can be seen that

the right hand side of the equation can be arranged in the following quadratic

form Π = [‖z1‖ ‖z2‖ ‖σ̃1‖ ‖σ̃2‖ ‖s̃1‖ ‖s̃2‖]T ;

V̇ ≤ −ΠT∆Π (4.71)

where the symmetric matrix ∆ has the form

∆ =



k1 0 K1

2 0 −k162 0

0 k2 0 K2

2 0 −k262

K1

2 0 d1
µ1

0 − e1k172 − d1k15
µ1

0

0 K2

2 0 d2
µ2

0 − e2k272 − d2k25
µ2

−k162 0 − e1k172 − d1k15
µ1

0 e1( 2k1
µ1
− k13) −( e1k22µ2

+ e2k1
2µ1

)

0 −k262 0 − e2k272 − d2k25
µ2

−( e1k22µ2
+ e2k1

2µ1
) e2( k2µ2

− k23)


where,

k16 = (1− e1k12), k17 = K1(k14 − k13)

k26 = (1− e2k22), k27 = K2(k24 − k23)

Choosing the appropriate values of d1, e1, d2 and e2, principal leading minors of

∆ can be made positive, thus making V̇ negative definite. This implies that the

trajectories of the closed loop sub-systems for agent 1 and agent 2, inside the

boundary layers, will asymptotically approach their respective invariant mani-

folds Mµ1
and Mµ2

as t→∞.
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4.2.4 Simulation

Following numerical values are used to obtain the simulation results of Three

Agent System.

• β = 1rad/sec, k1i = 15 and µ = 0.1

• In the first and third control design K1
i is chosen to assign the eigenvalues

of (Si − JiK1
i ) at −1± i.

• For conventional servocompensator, values of K1
i and k1i are chosen to

assign the eigenvalues of ψi at −1± i and −1.

Figure 4.2 and 4.3 shows the results of the simulation for two agents in which

the improvement in transient performance using conditional servocompensator

can be clearly seen while converging the asymptotic error to zero steady-state.

Figure 4.2: Error in x-axis for three agent system in directed graph topology
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Figure 4.3: Error in y-axis for three agent system in directed graph topology

4.3 THREE AGENT SYSTEM IN UNDIRECTED

GRAPH TOPOLOGY

As undirected graph topology can be considered as a special case of directed

graph topology because exogenous signal is accessible to all the agents in a

system. Dynamics of the system (agents and leader) are same as mentioned in

(4.8) and (4.9). Network topology of three agent system in undirected graph

topology is shown in figure 4.4. Node 0 represents the position of the leader. Let

the required fixed relative position (with respect to the leader) for the agents

be r1 = [
√

3, 3]T and r2 = [−
√

3, 3]T

Figure 4.4: Network topology for undirected graph

For this formation control problem, we can define the generalized error using
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(4.7). Using equations (4.10), it can easily be verified that,

ci(η) = −β2


η1

η3


and that ci(η) satisfies the identity Lqsci(η) = a0ci(η) + a1Lsci(η) + · · · +

aq−1L
q−1
s ci(η) with q = 2, a0 = −β2, a1 = 0. The performance of three

designs are shown here. In the first design, surface is si = k1i z
1
i + z2i and in

the last two designs silding surface is si = K1
i σi + k1i e

1
i + e2i . For conventional

servocompensator design K1
i and k1i are chosen to make ψi Hurwitz.

Numerical values used in the simulation are:

• β = 1rad/sec, k = 15 and µ = 0.1

• In first and last design where Ki
1 chosen to assign the eigenvalues of (Si−

JiK
i
1) at −1± i whereas ki1 is chosen as any positive constant.

• For conventional servocompensator, values of Ki
1 and ki1 are chosen to

assign the eigenvalues of ψih at −1± i and −1.

Figure 4.5: Error in x-axis for three agent system in undirected graph topology
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Figure 4.6: Error in y-axis for three agent system in undirected graph topology

Figures 4.5 and 4.6 show the results of the simulation for two agents following

a leader in which the improvement in transient performance using conditional

servocompensator can be clearly seen while converging the asymptotic error to

zero steady-state. Response of the system using conditional servocompensator

for undirected graph topology is shown in figure 4.7

Figure 4.7: System response for undirected graph topology for first 15 seconds
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Chapter 5

Conclusions

An approach of regulating the non linear systems using conditional servocom-

pensators have been extended and applied to a class of multi-agent system. The

approach is special in this regard that it provides conditional servocompensa-

tion that is servocompensation only inside the boundary layer of continuous

sliding mode control for all agents following a leader (exosystem). The tech-

nique has been designed and analyzed for a Three Agent System to show that

the technique is independent of the directed or undirected network topology.

In directed network topology case, an agent computes its control signal using

the information received from neighboring nodes whereas in undirected network

topology, the agent computes its control signal depending upon the informa-

tion received from the leader or exosystem. Results are shown analytically for

asymptotic tracking to show the improvement in transient performance of all

agents directly or undirectly connected to the leader. It is also shown that the

steady state error (relative position of each agent in this case) converges while

tracking the signal generated by exosystem is also converging for all the agents

present in a system.

The proposed approach is then specialized for a Three Agent System in

directed and undirected network graph topologies. Closed-loop analysis under

the proposed control scheme for the multi-agent systems is provided. Simulation
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results in the form of output trajectories of individual agents and error conver-

gence are provided to illustrate the discussed approach. Extension of this work

includes development of a general approach applicable to all network topologies.
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