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ABSTRACT 
 

The main focus of this thesis is on the implementation of an output feedback control 

scheme with a nonlinear model predictive controller (NMPC) for a class of nonlinear 

systems. The class of the nonlinear system may include nonminimum phase systems 

structured in standard normal form having relative degree   and the corresponding 

internal system has full relative degree. The sample data NMPC scheme is applied as 

feedback controller. The observer proposed involves an extended high gain observer 

(EHGO) to estimate the output derivatives in combination with a high gain observer 

(HGO) to estimate the internal states. The main contribution of this thesis is the 

framework for the semi global practical stability of the proposed output feedback scheme. 

The necessary theoretical foundation has been laid to prove and accomplish the practical 

stability results of output feedback control. It is shown for the output feedback scheme 

that there exists an observer parameter and a sampling time such that for any desired 

region which is subset of the state feedback controller‘s region of attraction and for any 

small area around the origin that contains the origin, the trajectories starting in that subset 

will converge to that small area around the origin in finite time. With the aid of 

simulations, it is shown for the example of single link flexible joint manipulator system 

that the output feedback state trajectories converge to state feedback trajectories in 

relatively short time when the observer and NMPC controller parameters are set in 

accordance with the mentioned stability conditions. 

 

 

Keywords: NMPC, EHGO, HGO, Nonminimum Phase Systems, Nonlinear Systems, 

Observer. 
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Chapter 1  

INTRODUCTION 

 

1.1 Motivation 

In the existing world, optimization of the process is considered as one of the fundamental 

objective of control engineers to incorporate efficient use of resources and to curtail the 

energy utilization and cost. In achieving this, many constraints should be consider in 

designing process control such as energy, quality, legal and safety requirements. In recent 

years, control strategies based on mathematical model of the plant have been successfully 

implemented to deal with these requirements as they can also equally incorporate the 

MIMO plants in the presence of constraints on control effort as well on process states. 

Among these, one of the most popular control strategies is Model Predictive Control 

(MPC). In Model Predictive control, the mathematical model of the plant is used to 

predict the future behavior of the plant over a prediction horizon. It involves solution of 

the optimization problem to minimize the pre-defined cost function and to compute future 

control inputs over that prediction horizon. As the mathematical model of the plant is the 

main core of this controller, the degree of accuracy of mathematical model of plant 

greatly determine the performance of controller.  

Generally, one can easily recognize the difference between linear and nonlinear model 

predictive control (NMPC). Linear Model Predictive Control refers to those MPC 

schemes in which linear mathematical plant models is used to predict the system‘s future 

performance. It incorporates linear constraints on the system states and control inputs and 
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a quadratic pre-defined cost function which is to be curtailed. Even if the mathematical 

plant model is linear, the closed-loop dynamics are in general nonlinear due to the 

presence of constraints. Nonlinear Model Predictive Control refers to those MPC 

schemes that are based on nonlinear mathematical plant models and/or general nonlinear 

constraints on the states and inputs. During the last decades, the Linear MPC is widely 

used in industries [1, 2, 3, 4 and 5]. The NMPC also gained much interest of engineers in 

the last 15 years [2, 6, 7, 8, 9, 10, 11, 12 and 13]. 

In many circumstances, all the system states are not measured or measurable due to 

hardware or financial constraints. These system states are then estimated by an efficient 

observer. Such arrangements in which the states are estimated by observer are referred as 

Output feedback. Output Feedback NMPC gained a lot of interest of researches. NMPC 

scheme employing moving horizon observer is discussed in [14] and its closed loop semi 

global stability is proved in [15]. The local asymptotic stability of NMPC with sampled 

estimation of states is proved in [16]. The stability of weakly detectable discrete time 

systems with NMPC is presented in [17, 18 and 19]. The practical semi global stability 

for instantaneous NMPC with high gain observer is accomplished in [20]. The results are 

further illustrated for single input single output (SISO) system sampled data NMPC with 

high gain observer in [21] and for multi input multi output (MIMO) systems in [22]. The 

research work presented in this thesis is greatly inspired by the work of Boker and 

Findeisen presented in [21 and 22]. The results are primarily based on general nonlinear 

separation principle presented in [24, 25]. It is assumed in this thesis that a state feedback 

NMPC controller is available that asymptotically stabilizes the system and thus NMPC 

stability schemes are not discussed here. Some of these schemes are quasi infinite horizon 

NMPC (QIH-NMPC) [9], stability using control Lyapunov function [26] and zero 

terminal constraint NMPC [27]. Further insight on stability of state feedback NMPC is 

presented in [6, 7 and 8].  

Presently, the high gain observers are widely used in a variety of control applications due 

to the numeral characteristics provided by them which might not be provided by other 

observers [23]. The major characteristic lies in the simplicity of their design by avoiding 

complex gain formulas and solution of partial differential equations linear matrix 

inequality (LMI). In addition to it, output feedback involving high gain observers can 
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fully recover the state feedback performance if correctly tuned. Another important feature 

of high gain observers is the robustness in the estimation of states in the presence of 

model uncertainties and disturbances. The output feedback control of nonminimum phase 

system using extended high gain and high gain observer is presented in [23].    

1.2 Organization of Thesis 

The organization of this thesis is as follows.  

In chapter 2, a brief background of nonlinear observers is presented with the explanation 

of high gain observers (HGO) and extended high gain observers (EHGO). A brief 

overview on output feedback control of nonlinear nonminimum phase system is 

presented.  

In chapter 3, the history, basic principle mathematical formulation, nominal stability 

along with the advantages and disadvantages of Nonlinear Model Predictive Control 

(NMPC) is presented. It is assumed in the chapter that all the systems states are measured 

hence the NMPC is referred as State feedback NMPC. The NMPC controller presented is 

simulated on an example of nonlinear nonminimum phase single link flexible joint 

manipulator system and its stabilization at the origin is shown. 

Chapter 4 constitutes the core of this thesis in which the output feedback nonlinear model 

predictive control of nonlinear nonminimum phases system is presented. The proposed 

observer formulation is presented and the semi global practical stabilization of output 

feedback scheme with NMPC controller is proved. The output feedback controller is then 

simulated on the same example of single link flexible joint manipulator system. The 

convergence of output feedback trajectories to those of state feedback is achieved and 

shown. 

In chapter 5, the conclusion of the thesis along with the areas for the future work and 

advancements is presented.          
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Chapter 2 

BRIEF BACKGROUND 

 

2.1  Non minimum Phase Systems 

After the advancement in the theory of the minimum phase systems, nonminimum phase 

systems gained a lot of interest and attention of control engineers. This is due to the fact 

that a number of physical systems by nature lies in the category of nonminimum phase 

system that have unstable internal or zero dynamics. Some examples of these systems are 

electromechanical systems, chemical reactors, flexible joint manipulator system, inverted 

pendulum, under actuated systems and sideways motion of aircraft and ships. 

Some dominant features of nonminimum phase systems are: 

 Inverse step response. 

 Time delay. 

 Instability of internal states. 

 Bandwidth limitations. 

  

2.2 Observers for nonlinear systems 

A lot of work has been done and published in literature on linear observers. But the case 

is not similar for the nonlinear observers. In actual a uniform formulation for nonlinear 

observers is yet to emerge [23]. Additionally, the enlargement of region of attraction of 

stability of observer is one of the main obstacles. A number of different approaches are 
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present in literature. The earliest methodology relies on the Leunberger observers [28] 

and Kalman filters [29 and 30] for nonlinear systems. These involve linearization of 

nonlinear systems to implement linear observers which results in local stability results 

which is a major drawback. The second method involves state transformation that results 

in the linearization of error dynamics so as to make the nonlinearities dependent on input 

and output [31, 32, and 34]. The third method involves the use of LMI techniques [34, 35 

and 36]. The forth method involves the use of sliding mode observers [37] and high gain 

observers [38]. These observers depend on the systems that are in standard normal form 

and gained a lot of fame because of its robustness properties. The nonlinear observers are 

not limited to these approaches.  For example observer based on extended Kalman filter 

and high gain observer is presented in [39] and some others in [40 and 41].    

2.2.1 Extended High Gain and High Gain Observers 

High gain observer is the major element of this thesis and the basic idea of high gain 

observer is presented here. Consider a following nonlinear system 

  ̇     (2.1) 

  ̇   (     )    (2.2) 

      (2.3) 

where   is the input and   is the output. The function  (     ) is continuous and could 

be unknown which satisfies 

 (   )    

The high gain observer for above system can be given as, 

  ̇̂   ̂  
  
 
(   ̂ ) (2.4) 

  ̇̂   ( ̂   ̂ )    
  
  
(   ̂ ) (2.5) 

The constants    and    are chosen such that the roots of 

            

are negative and   is the small observer parameter. 

Additionally one can employ the high gain observers to estimate the output signal and its 

derivatives [42]. So it can also estimate the right side of equation (2.2) and consequently 

can also estimate the unknown function  . Such an observer is referred as Extended High 
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Gain Observer (EHGO). It increases the dimension of observer by adding an extra state 

variable  .     

Let, 

   (     ) 

Now the observer becomes, 

 ̇     

 ̇      

 ̇    (       ) 

where, 

   
  

  
 
  

   
   

  

   
( (     )   ) 

So, the extended high gain observer becomes, 

 ̇̂   ̂  
  
 
(   ̂ ) 

 ̇̂   ̂    
  
  
(   ̂ ) 

 ̇̂    ( ̂   ̂   )  
  
  
(   ̂ ) 

Also  

 ̂   ̂ 

It is also important to mention that the effect of function    is attenuated as   approaches 

to zero. So the observer can neglect the unknown function    and can accomplish the 

estimation error of order  ( ). 

High gain observer evolves as a popular observer in nonlinear literature. A 

comprehensive survey over the last two decades on its development is presented in [43]. 

Previously high gain observers were restricted to minimum phase systems as in [44] 

where the open loop observer is employed for the internal dynamics. In [39] high gain 

observer in combination with the extended Kalman filter is implemented for minimum 

phase system to estimate the states of the system having linear internal dynamics that are 

driven by output signal. 

On the other hand, the extended high gain observer is used for variety of objectives in the 

literature. One of the objectives is to estimate the uncertainties in the mathematical model 

represented by unknown signals or external inputs and thus enabling the controller to 
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cancel the effect of these [45]. Similar methodology is adopted in [46] in which the match 

uncertainties are estimated by a full order high gain observer and then canceled by 

controller. A remarkable feature of desired transient performance by the nonlinear control 

in the presence disturbances and matched model uncertainties was accomplished in [46, 

47 and 48]. Extended high gain observers also assist in the development of the switching 

control strategy methods relying on Lyapunov function [48, 49]. In [50] the extended 

high gain observer is used for the nonminimum phase system to estimate the signal which 

is observable to internal dynamics which allows the designing of a stabilizing controller. 

In [23] a combination of extended high gain observer and a high gain observer is 

presented. The extended high gain observer estimates the observable signal for the 

internal dynamics and a high gain observer is used to estimate the full order nonlinear 

unstable internal dynamics.      

2.3 Control of Observer Based Nonminimum Phase Systems 

The biggest hurdle in designing the observer for nonlinear systems is the absence of 

general separation principle for nonlinear systems. In contrast to the linear case in which 

the separation principle guarantees the global stabilization of output feedback control 

when the states in the state feedback control are replaced by their estimates. Many of the 

observers design reported in [24, 51 and 52] are not usable for nonlinear observer design. 

High gain observer is one of the observers that fulfill this principle.  

The earliest result is presented by Isidori in [53] for control of nonminimum phase system 

in which the semi global stabilization for a class of nonlinear nonminimum phase system 

is proved. It was assumed in [53] that a stabilizing controller is present for the auxiliary 

system. Similarly the robust semi global stabilization of output feedback control 

involving extended high gain observer in presented in [50]. This shows the prospective of 

extended high gain observer to be used as a substitute of high gain feedback scheme 

presented in [53]. A successful semi global stabilization of output feedback control for a 

class of nonlinear nonminimum phase system in which the internal dynamics has full 

relative degree is shown in [23]. 
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Chapter 3  

STATE FEEDBACK 

NONLINEAR MODEL 

PREDICTIVE CONTROL 

(NMPC) 

 

3.1 Introduction 

In many control applications, the key idea is to implement such a stabilizing feedback 

control law which satisfies the constraints on states and control input and to minimize the 

performance criterion. The ideal solution for this is to find a closed solution for feedback 

control law which optimizes the performance of the system keeping the solutions within 

the constraints on input and states. As the optimal feedback control law involves the 

solution of Hamilton Jacobi-Bellman partial differential equations. Even for the 

unconstrained case, it cannot be obtained analytically. One way of avoiding such problem 

is to obtain repeated open loop optimal solution for a specified state. Only the first 

element of the obtained open loop control input is applied. This process is then repeated 

again. . The control techniques which employ such scheme are discussed as Model 

Predictive Control (MPC), receding or moving horizon control. The Model predictive 
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control that utilizes and incorporates the nonlinear model of the system is referred as 

Nonlinear Model Predictive Control (NMPC).   

 

3.2 History of Nonlinear Model Predictive Control 

This section gives the brief history of NMPC in the light of literature references 

explaining the NMPC control technique. The model predictive control technique emerges 

in the middle of 20
th

 century from the optimal control theory with inspirational 

contributions by researchers. Some of which includes the work done by Pontryagin, 

Boltyanskii, Gamkrelidze, Mishchenko and Bellman [54 and 55] on maximum principle 

and the dynamic programming method. In 1960‘s, the first research paper exploiting the 

idea of model predictive control was presented by Propoi [56] for discrete time linear 

systems. It is worthy to note that to solve optimal control problem in this paper neither 

the dynamic problem nor the maximum principle of Pontryagin is used. Instead, the paper 

proposed a method which is very popular in NMPC nowadays. It transformed the optimal 

control problem into linear static optimization problem. This idea for nonlinear systems is 

presented in the book by Lee and Markus. 

To achieve feedback controller from the knowledge of open loop controller requires the 

measurement of control process state and compute the open loop controller function fast 

enough. The first element of the control action is applied for the short interval (sampling 

time).  The process state is re measured at the next sampling time and the open loop 

controller function is recalculated with this new state. This procedure is then repeated 

again.  Due to unavailability of software and the computer hardware for fast enough 

computations at that time, this control technique had little practical impact. 

As the progress and development in solving constrained linear algorithms and quadratic 

optimization problems was attained in the later 1970‘s. The linear MPC became much 

popular control technique. This method was proposed by Richalet, Rault, Testud and 

Papon [57] and Cutler and Ramaker [58] for rather slow systems so that online 

optimization is done even with the technology available at that time. The MPC technique 

was implemented for years without having strong theoretical background and Stability 

proofs which later become the part of literature. Some early results for MPC can be found 
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in the Survey paper [3]. Many of the NMPC useful practices like stabilizing terminal 

constraints and stability proofs based on Lyapunov functions was first developed for 

Linear MPC and later developed for nonlinear systems. 

The article by Chen and Shaw [59] is among the earliest paper that analyzes the NMPC 

technique similar to the one used today. In this paper, Lyapunov function technique is 

used in continuous time to prove the stability of NMPC with equilibrium terminal 

constraints. However, the paper proposed the application of whole optimal control 

function on the optimization horizon rather than the only first element (receding horizon) 

as in today‘s NMPC model. On today‘s NMPC model, Keerthi and Gilbert [60] gave the 

ample stability analysis for NMPC with equilibrium terminal constraints for discrete and 

systems and Mayne and Michalska [27] for continuous time systems. For nonlinear 

systems, the equilibrium terminal constraints impose severe numerical complications. 

This prompts the researchers for the alternative NMPC methods. The combination of 

suitable terminal and regional terminal constraints showed rapid development in the later 

1990‘s. This forms the basis of self-evident stability framework for NMPC with 

stabilizing terminal constraints. For discrete time systems, the survey paper by Mayne [6] 

outline the comprehensive information on history of different NMPC schemes which are 

not mentioned here.                

3.3 Model Predictive Control 

In the past years, the model predictive control (MPC) has gained significant attention. 

MPC also refers as moving horizon control comprise of class of algorithms that uses 

mathematical model, of the process to be controlled, to predict the optimum future 

behavior of the process. One of the main reasons of its application in industries is the 

ease of handling constraints with in the controller formulation with optimum control 

effort. It is worthy to mention that despite of lack of theoretical results related to stability 

and robustness in the beginning years, it gained a lot of attention and popularity. The 

theoretical basis and results of this control technique emerged almost after 15 years of its 

appearance in industries [61]. Model predictive control, which had originally its 

applications in power plants and petroleum industries, is currently successfully applied to 

a variety of processes not only in process industries but also to Biomedical and 
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automotive applications. Till date, many publications related to theoretical and practical 

issues of MPC have been reported. See e.g. the books [62, 63 and 64] and the survey 

papers [2, 4, 6, 10, 13 and 65]. 

The major reason of the success of the MPC is that it addresses the control problem 

intuitively. The sets of algorithms that estimate (predict) the future behavior of the plant 

by using the mathematical model of the plant.   

The main ingredients of model predictive control are: 

 The mathematical model of plant. 

 The performance index (cost function) which is to be minimized that reflects the 

applied control effort and the error between the actual state and desired state 

value. 

 Optimization algorithm that estimates the future control effort subject to 

constraints on input and states by minimizing the performance index. 

 Receding horizon strategy in which only the first element of the optimum control 

sequence is applied to the system. 

In model predictive control, the optimal control input applied to the system is obtained by 

the repeated solution of a (finite) horizon open-loop optimal control problem (FHOCP) 

subject to the dynamics of the system, state and input constraints. At each sampling 

instant ‗ ‘, using the current (measured) state value ‗ ‘ as the initial value of the process, 

a finite horizon optimal control problem (FHOCP) is solved over a prediction horizon 

‗  ‘ and for the control horizon ‗  ‘ to predict the future dynamic behavior of the system. 

This optimization which is online takes account of the system dynamics, constraints (both 

on control input and states) such that the open loop performance objective function is 

minimized. This optimization results in an optimal control sequence.  

If it is assumed that the prediction horizon is infinite and the system model is exactly 

known (there is no system model mismatch) and in the absence of any external 

disturbance, we can apply the open loop control input to the system and under certain 

further assumptions we can achieve the state convergence of the system to the origin. 

However, as it is impossible to find a perfect model and due to presence of disturbance 

and the use of finite prediction horizons (due to calculation problems) instead of infinite 

horizons, the predicted and the actual system states differ which may results in poor 
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performance of the controller. To overcome and counteract this difference the feedback is 

introduced. The feedback is achieved by applying the first element of the control 

sequence to the system which is for the current time and the remaining sequence is 

discarded. The optimization problem is recalculated at the next sampling instant and the 

new optimal control input is applied to the system for that sampling instant. This process 

is repeated at every sampling instant. This strategy is referred as Receding Horizon 

Control (RHC). Figure 3.1 shows the pictorial illustration of the model predictive control 

strategy.  

 

3.3.1 Mathematical Formulation 

Suppose we have a following nonlinear system 

  ̇   ( ( )  ( ))         ( )       (3.1) 

with input and state constraints 

 ( )                      

 ( )                      

where  ( )       are the states of the system and  ( )       is the control 

input applied to the system. The set   denotes the set of all possible admissible inputs 

that can be applied to the system. The set   denotes the set of feasible states of the 

system and the initial states of the system is denoted by the set     
 . It is assumed 

 

Figure 3.1: Basic principle of Model Predictive Control 
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that the function   is continuous and locally Lipschitz in its arguments with       

      and it satisfies  (   )   . It is also assumed that the set      is simply 

connected and the set      is compact. The initial conditions set       and the 

origin is contained in the set (   )      and it is stationary point for the system (3.1). 

Typically the sets   and   are convex of the form, 

   *                + 

     *                + 

where     ,      ,      and      are constant vectors. 

Furthermore, the solution of (3.1) (if the solution exists) for the time   with the system 

state  (  ) with the application of input   ,     -   
  is denoted by 

 (   (  )  ( ))   ,     -, 

 (   (  )  ( ))   (  )  ∫  ( ( )  ( ))  
 

  

          ,     - 

In NMPC, the feedback is achieved by application of repeated optimal control input at 

every sampling instant by solving open loop optimal control program. The open loop 

optimal control program is obtained by,  

    
 ̅( )

  ( ̅( )  ̅( )) (3.2a) 

Subject to  

  ̇̅( )   ( ̅( )  ( ))  ̅( )   ( ) (3.2b) 

  ̅( )           [      ] (3.2c) 

  ̅( )           [      ] (3.2d) 

  ̅(    )    (3.2e) 

Here, the bar denotes the internal variables of the controller. This distinction in the 

variables notation is necessary as the predicted values and the actual close loop system 

values are different even in the nominal case. The variation in values is due to finite 

horizon. The cost function, defined over the prediction horizon    in terms of stage cost   

and terminal penalty term   , is given as, 

 
 ( ̅( )  ̅( ))  ∫  ( ( )  ( ))  

    

 

   . (    )/ (3.2f) 
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The stage cost   reflects the economical, energy or safety concerns. The stage cost is 

often chosen as the quadratic. 

 (   )            

Where the weighing matrix Q is the positive definite matrix     and R is semi definite 

matrix    . The term    which might or might not be present in the cost function along 

with (3.2e) which is terminal region constraint is included in the optimal control problem 

to enforce stability of the NMPC controller. The optimal solution of the problem (3.2) 

denoted by  ̅ , which is obtained from the dynamic optimization problem. This optimal 

control input which is obtained at the time interval    is applied open loop till the next 

sampling interval     . 

 (   (  ))     ̅
 (   (  ))          ,       - 

The optimal control input     ( ( ))  (   (  )) is feedback input as it is calculated 

at each sampling interval with new measurement of states obtained.  

Assumption 3.1: For an acceptable control input function  ( )   [    ]    and for all 

initial conditions of system states in the region of attraction  , the nonlinear system (3.1) 

has the unique continuous solution.  

The optimal solution of (3.2) obtained at time    for the system states  (  ) with optimal 

control input   between sampling interval is given by, 

 (   ( )  (  ))           ,       - 

It is important to mention that the optimal control must be admissible according to 

performance specification. The admissible input is defined as, 

Definition 3.1: (Admissible Input) [13] 

An optimal input   [    ]   
  obtained from the optimization problem is considered 

as admissible input for the state    if: 

 It is piecewise continuous 

  ( )            [    ] 

  (   ( )   )            [    ] 

  (    ( )   )     
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Assumption 3.2: In the region of attraction  , the optimal control effort  (   ) is 

locally Lipschitz in the system states  ( )  

‖ (    )   (  )‖    ‖     ‖        ,    ) 

This assumption reflects that we obtain two ―close‖ optimal control input trajectories for 

two ―close‖ initial conditions.  Furthermore, the value function which is the optimal cost 

of (3.2) is define by, 

 

Definition 3.2: (Value Function) 

The minimal value of the cost for a given state   is referred as the value function  ( ( )) 

for the open loop optimization problem (3.2). The value function is given by, 

 ( ( ))   ( .   ( )  ̅ (   ( ))/   ̅ (   ( ))) 

The value function is very important as it plays a vital role in the stability investigation of 

the NMPC. The value function often served as Lyapunov function candidate [6 and 7]. 

The decrease in value function with the passage of time reflects the stability of NMPC.  

Proposition 3.1: [66] For all the system states in the region of attraction, the value 

function  ( )   ( ( ))  is locally Lipschitz. 

Lemma 3.1: The value function  ( ) has following properties 

  ( ) is positive definite and has zero value for     

 

 ( )         ( )             

 For any system state in the region of attraction   and for admissible optimal 

control input  , the difference in value function along the trajectories from a 

given starting point    is given as, 

 

 ( (  ))   ( (  ))   ∫  ( ( )  (    ))
  

  

                  

There exist two major NMPC versions depending on the frequency of calculation of 

optimal control problem (3.2). If the open loop optimal control problem is solved at every 

instant, it is referred to as Instantaneous NMPC [6 and 27]. However if it is solved at 

certain time intervals and the resulting optimal control input is applied between the 
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intervals, then it is referred as Sampled Data NMPC. This thesis relies on the sampled 

data NMPC technique. The different versions of NMPC scheme reported in literature is 

not the scope of thesis. For further details on different NMPC techniques see [67]. 

3.4 Nominal Stability of NMPC  

Due to the use of finite horizon, the questions arise regarding the guarantee of stability of 

the closed loop. This is mainly due to difference in the trajectories of the predicted and 

actual closed loop trajectories. This is due to the fact that the infinite horizon cannot be 

approximated to finite horizon without altering the optimization problem. Then it is a 

natural need to adopt such an NMPC technique which guarantees stability of the closed 

loop irrespective of the choice of parameters and approximate the infinite horizon NMPC 

arrangement as close as possible. Such an NMPC approach which guarantees stability 

regardless of the choice of parameters is referred to as NMPC with guaranteed stability. 

There are different approaches which guarantees the stability of the closed loop are exist. 

The basic idea of some technique is presented here with simple illustration and most of 

the technical detail is not included. It is important to mention that not all the techniques 

have been discussed here, as it is out of scope of this thesis. For further insight on these, 

see [67].  

Furthermore, it is also assumed that the origin         is the steady state point 

which is to be stabilized. 

3.4.1 NMPC with Infinite Horizon 

It is perhaps the most basic way of achieving the close loop stability by setting the 

prediction horizon      in (3.2f). In this setting, the open loop input and the state 

values obtained from the solution of the optimization problem (3.2) of NMPC are equal 

to nonlinear closed loop trajectories. This is due to Bellman‘s Optimality principle [54]. 

In the light of this, at the next sampling interval, the remaining portion of the trajectories 

is also optimal. This is due to the fact that the end part of optimal trajectory is also 

optimal. This entails the convergence of the trajectories of the closed loop. The further 

details and derivations can be found in the references [6, 27, 60 and 68]. 
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3.4.2 Guaranteed stability with Finite Horizon NMPC 

Different schemes that guarantees the closed loop stability with finite horizon exists. 

Infact most of such techniques modify the standard NMPC optimization problem, 

independently of system and performance specifications, to guarantee the stability of the 

closed loop. This is done by adding appropriate penalty terms and equality and/or 

inequality constraints in the standard optimization problem. The sole purpose of these 

addition is due to the enforce stability and it has nothing to do with the system and its 

performance requirements. So, these constraints are also referred as ―Stability 

constraints‖. One possibility of such stability constraint which enforces the stability is the 

zero terminal equality constraint. This forces the trajectories at the end of each prediction 

horizon to origin, i.e. 

 ̅(    )    

The zero terminal constraint is added to the standard optimization problem (3.2) [27, 59, 

60 and 69]. This yields the stability of the closed loop if its solution is feasible at 

time    . As in the case of infinite horizon, if the solution is feasible at one time 

interval, it implies the solution to be feasible at following time intervals and will also 

decrease the value function. The major disadvantage of the zero terminal constraint is that 

it always forces the trajectories at the end of each interval to reach the origin. This may 

cause the feasibility problems if the prediction horizon length is short enough. 

Furthermore, the exact achievement of zero terminal constraint requires infinite number 

of iterations in the computations which is undesirable. However its advantage lies in the 

simplicity of its concept and rather straight forward application.  

There are several schemes which try to overcome the use of zero terminal constraint. 

Infact they employ terminal region stability constraint rather than zero terminal 

constraint. In this setting, at the end of each interval the trajectories are forced to lie in a 

small and compact set around the origin. This relaxes the computational problem of 

enforcing the trajectories to exact zero and it is more practically realizable. The terminal 

region constraint is of the form, 

 ̅(    )    
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This constraint together with terminal penalty term    enforces the stability and 

feasibility of the closed loop. The penalty term    penalized the deviation of the origin 

and the final predicted state. Usually the terminal region set   and terminal penalty term 

   are computed offline which gives an upper bound on the infinite horizon cost. 

 ( ̅( )  ̅( ))  ∫  ( ( )  ( ))  
    

 

   . (    )/ 

This also ensures the decrease in the value function with the passage of time. If the 

terminal region  , terminal penalty term    and prediction horizon    are chosen 

appropriately, the stability and feasibility of the closed loop is guaranteed. Similar 

stability setups are discussed in [6 and 7]. The details of these setups are not provided 

here. The stability setup similar to [13] which is slight modification of [70, 71 and 72] is 

shown here. 

  

Theorem 3.1:  [21] (stability of finite horizon NMPC) 

If we suppose, 

 The terminal region   contains the origin and it is closed, i.e. 

             

The terminal penalty term    is positive semi definite,   ( )   
 . 

 The terminal region is positively invariant. The terminal region   and penalty 

term    is set in a way that for all system states in the set  , there exist an 

admissible input    ,   -    such that the states  ( ) remain in   in that time 

interval, i.e. 

 ( )              ,   - 

and  

   

  
 ( ( )   ( ))   ( ( )   ( ))          ,   -  

 At time    , the open loop finite horizon optimal control problem has a feasible 

solution. 

If above assumptions are satisfied. Then for a given sampling interval  , the trajectories 

of closed loop system  ( ) with optimal input   converge to origin having the region of 
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attraction  . The set   contains the possible system states for which it has feasible open 

loop solution. 

 ( )           

The proof of this theorem can be found in [13]. 

 

 

3.5 NMPC Advantages & Disadvantages  

The performance of NMPC depends on the prediction horizon   . Setting the prediction 

horizon large enough results in good performance of NMPC. Naturally, one would 

assume the prediction horizon to be infinity (set      in 3.2f) to minimize the overall 

cost. But this is not feasible in terms of computations. Therefore, a finite prediction 

horizon is always used. In case of finite prediction horizon, the actual close loop 

trajectories of input and states differ from the predicted ones even in the nominal case 

and in the absence of disturbance. This can be understood by an example of chess. If 

someone plans his future moves at the current situation of the chess game, and moves one 

step according to his future moves. The scenario might change as the opponent plays his 

move. Then one has to rebuild his future moves taking account of the changes occurred 

due to the opponent move.  The new future moves might differ from the previous 

predicted future moves.   

The same approach is applied to the finite horizon optimal control problem (FHOCP) 

strategy. At every sampling instant the optimal control input is recalculated by solving 

the optimal control problem and the future behavior of input and states is predicted over 

the prediction horizon. At next sampling interval, the prediction horizon moves forward 

which allows more information and re-planning. The variation in the actual and the 

predicted states has two major significances. Firstly, the minimization of the objective 

function of the close loop over the infinite horizon is not achieved. It is a fact that 

repeated finite horizon optimization of objective function does not lead to the optimal 

solution of corresponding infinite horizon optimization problem. The solutions of both 

will vary drastically if the prediction horizon if shorter prediction horizon is used. 
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Secondly if the actual and predicted solutions vary, the stability of closed loop is not 

guaranteed. It is not difficult to construct examples where the close loop becomes 

unstable if short prediction horizon is used [73 and 74]. The finite horizon optimization 

control problem must be modified in order to guarantee stability.    

The overall control loop of NMPC is shown in fig 3.2. 

 

The states are estimated based on application of current input and measured system 

states. Using these estimates the NMPC controller computes the next optimal control 

input to be applied to the system.  

NMPC has following properties: 

 NMPC allows the nonlinear model of the plant to incorporate directly in the 

controller. 

 NMPC allows us to consider the constraints on input and states explicitly. 

 In NMPC, the objective function is minimized online. 

 The closed loop behavior is usually different from the predicted behavior. 

 The system‘s states must be measured or estimated (by observer) for the future 

prediction of plant. 

The above properties can be viewed as advantages or may be disadvantages of NMPC 

apart from the explicit consideration of constraints on input and states. NMPC requires 

good and fast enough computation platform to obtain the solution of optimal control 

problem in relatively short finite time. Such computation platforms are available with the 

advancement of microcontrollers and microprocessors. In some cases, it is difficult to 

obtain the accurate mathematical model of the plant. The performance of NMPC varies 

 

Figure 3.2: Control loop of NMPC 
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drastically if the mathematical model is not accurate as all the NMPC computations rely 

on the accuracy of mathematical model.   

 

3.6 Simulation Example 

In this section, the NMPC controller is applied and simulated on a nonlinear non-

minimum phase systems that have unstable internal dynamics such as n-link flexible joint 

manipulator system. 

We consider a single link flexible joint manipulator system, in which the actuator is 

linked to a load with a torsional spring. The differential mathematical model is given by 

[75]. 

    ̈            (     )    (3.3) 

    ̈   (     )    (3.4) 

Where,       are the angular positions of link and rotor and       are the inertias of the 

link and the rotor. The load mass is represented by M, distance by l, gravity by  , joint 

stiffness by   and u represents the torque input. The output is the angular position of the 

rotor   . 

We can transform the above system into normal form by change of variables, 

       

    ̇   

       

    ̇  

The transformed model becomes, 

  ̇     (3.4) 

 
 ̇   

   

  
      

 

  
(     ) (3.5) 

  ̇     (3.6) 

 
 ̇  

 

  
(     )  

 

  
  (3.7) 

      (3.8) 
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The relative degree of the above system is    . The Internal (zero) dynamics are given 

by setting    . 

 ̇     

 ̇   
   

  
      

 

  
   

To check the stability of the zero dynamics, let‘s assume the Lyapunov function. 

  ∫
   

  
    

  

 

   
 

 

 

  
  
  

 

 
  
  

So, 

  
   

  
(       )  

 

 

 

  
  
  

 

 
  
  

Calculating the derivative of the Lyapunov function 

 ̇  
   

  
     ( ̇ )  

 

  
    ̇      ̇ 

 ̇  
   

  
        

 

  
       ( 

   

  
      

 

  
  ) 

 ̇  
   

  
        

 

  
     

   

  
        

 

  
     

 ̇    

As  ̇ is zero, the system is not asymptotically stable. Thus the above system is a non-

minimum phase system. It is desired to stabilize the angular position of rotor   to the 

origin. We will apply nonlinear model predictive controller to stabilize the above system. 

The stage cost is chosen to be quadratic of the form, 

 (   )            

Where, the weights in the stage cost are chosen as unity for simplicity. The state feedback 

controller is employed as Quasi-Infinite horizon NMPC [9 and 12]. The terminal penalty 

term    and the terminal region set   are obtained by LMI technique. 

The system parameters as given in [75] are tabulated in table 3.1.  
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Table 3.1: System parameter values   

S.No 
Parameter Value 

1 Inertia of link           

2 Inertia of rotor           

3            

4 Joint stiffness           ⁄  

The NMPC controller and system parameters are tabulated in table 3.2. 

Table 3.2: NMPC controller and system initial values   

S.No 
Parameter Value 

1         

2      

3 Sampling time         

4   ( ) 0.9 

5   ( ) 0 

6   ( ) 0.9 

7   ( ) 0 

The input and state constraints are given by, 

         

           

           

The terminal inequality constraint which also forces the internal dynamics of the system 

to be stable is given as, 

0
    
  

1    0
   
 
1 

0
    
  

1    0
   
 
1 

Figure 3.3 shows the response of the flexible joint manipulator with NMPC controller. 

The output (angular position of rotor) approaches to origin as the time progresses.  
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The angular position of the rotor is successfully stabilize to origin with NMPC controller. 

The response of the control input is shown in the figure 3.4. 

 

Figure 3.3: Output response of rotor angle with NMPC controller. 
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As it is expected, the control input remains in the boundary and hence obeying the 

constraints. The NMPC controller successfully stabilizes the single link flexible joint 

manipulator system to the origin. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Control input Torque for state feedback NMPC controller. 
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Chapter 4 

OUTPUT FEEDBACK 

NONLINEAR MODEL 

PREDICTIVE CONTROL 

(NMPC) 

 

4.1 Introduction 

In the previous chapter, the NMPC Stability results and its nominal stability was 

dependent on the assumption that full state information is available, i.e. all the states are 

measured. In many practical scenarios, all the states cannot be measured due to hardware, 

practical and economic constraints. The states are estimated via suitable observer. So in 

the output feedback problem, the true states are replaced by their estimates in the 

feedback law. This often leads to performance nearer to the state feedback controller. 

Since there isn‘t any separation principle for the nonlinear system the closed loop 

stability cannot be realized from the stability of state feedback controller and stability of 

observer explicitly. In this chapter, the output feedback controller is obtained that ensures 

the semi-global practical stability of the closed loop system for nonminimum phase 

systems. 
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The obtained results are encouraged by the work of Boker [23] on nonlinear observers 

that utilizes a combination of high gain and extended high gain observer for nonminimum 

phase systems and the findings of Findeisen on output feedback nonlinear model 

predictive control. The key idea of employing high gain observers for feedback is 

inspired by the nonlinear singular separation principles by Atassi and Khalil [24, 25, 76, 

77, 78, 79 and 80]. It is shown that if the state estimation error, which is primarily 

considered as disturbance on the nominal closed loop, converge sufficiently fast enough, 

the closed loop semi global stability is achieved.            

In this thesis, we consider a class of nonlinear nonminimum phase systems represented in 

the normal form having nonlinear internal dynamics with full relative degree. The 

implemented observer is motivated from the work of Boker [23] that comprises 

combination of extended high gain observer and high gain observer. The extended high 

gain observer is employed on the outer loop to estimates the output and its derivatives 

and the high gain observer estimates the internal states. The main challenge in this 

observer is to ensure that the extended high gain observer that estimates output and its 

derivatives works faster than the internal high gain observer. This is realizable in the 

sense that as both the observers forms high gain observer. It must be faster than the 

system dynamics. This scheme allows us to achieve several properties for the considered 

class of nonlinear systems. This observer allows us to recover the performance of any 

globally stabilizing state feedback controller [23].      

 

4.2 Observer Design 

Consider the stabilization of class of nonlinear system represented by, 

  ̇   ( ( )  ( ))  ( )     (4.1) 

    ( ( )  ( )) (4.2) 

 where  ( )       are states of the system,  ( )       is the control input, and 

  is the measured output. The objective besides the stabilization is to satisfy the 

constraints on input and states.  

 ( )                      

 ( )                      
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Normally the sets   and   are convex of the form, 

    *                + 

       *                + 

where     ,      ,      and      are specified constant vectors according to 

specifications. 

Assumption 4.1: The function   is continuous and locally Lipschitz in its arguments 

with             and it satisfies  (   )   . 

Assumption 4.2: The origin is contained in the set (   )      and it is stationary 

point for the nonlinear system (4.1) 

The above system can be written in normal compact form as, 

 ̇         (   ) 

 ̇        ,     (   )- 

     

       

where,   is the measured output and    is the output for the internal system. Also (   )  

   where               .  

  ,     -
        ,         -

  

   0
 
 
1       0

 
 
1       ,  - 

The internal system has full relative degree. The above class of system could represent 

many under actuated mechanical and electro mechanical systems. These systems may 

have unstable internal dynamics or zero dynamics. The internal dynamics   are obtained 

by setting     in above equations. 

The first     derivatives of the output signal   are estimated by an extended high-gain 

observer in which the first   derivatives of the output signal contains   states, while the 

(   )   derivative is used to calculate the internal state   . We contemplate the internal 

system that is based on   dynamics with    used as an output signal. This internal system 

has a full relative degree viewing    as input and it is in standard normal form. Thus, we 

can imply a high-gain observer to estimate the internal state vector  . The most important 

consideration here is to design an extended high-gain observer (EHGO) for the output 

signal and its derivatives and making it faster than that of high-gain observer for the 
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internal system. This can be achieved by setting the eigenvalues of the high-gain observer 

(HGO) of the order  (  ⁄ ) and the eigenvalues of the extended high-gain observer of 

order  (   ⁄ ) [23].  

Consequently, the full order observer is given by, 

 ̇̂     ̂     ̂( ̂  ̂)    (   ( ̂)     ̂) 

 ̇̂     ̂    , ̂   ̂( ̂  )-    (     ̂) 

 ̇̂     ( ̂ )   (     ̂) 

Where, 

   [

  
 ⁄

  
  ⁄
] 

   

[
 
 
 
 
 
 
 
  
  
⁄

  
  
⁄

 
  
   
⁄

]
 
 
 
 
 
 
 

 

       [     
 (   )⁄ ]

   
 

Inside the region of interest, the functions  ̂(   ) and  ̂(   ) are identical to  (   ) 

and  (   ). The positive constants   are fixed such that the roots of             

lies in the left half plane. Similarly, the constants    are fixed to make the roots of 

        
               to lie in left half plane.  The saturation function is 

used to prevent the states from peaking. The saturation of  ̂ and  ̂ is done outside the 

domain of    and    under state feedback control.  

4.3 Output Feedback Control 

By replacing the states in the state feedback control law with their estimates, we get, 

    ( ̂  ̂)   (4.3) 
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Assumption 4.3: The control input   should obey: 

 The control input   is admissible with respect to the state and input constraint sets 

 and   for all the states in the set  . 

 For all    , the control input is saturated to a constant value. 

               

The mentioned full order observer is employed to provide the estimates of the states. We 

will show that the output feedback control system recuperates the stability properties of 

the state feedback control. Furthermore, it is also possible to recover the trajectories of 

the system under state feedback. To obtain these results, we combine the dynamics of 

system and the estimation error  ̃ of the observer. The scaled estimation error is given as, 

 ̃  
   ̂

    
 

 ̃  
    ̂ 
 

 

 ̃  
    ̂ 
  

 

 ̂     ( ) ̃ 

 ( )      ,        - 

   
   ̂

        
 

     
    ̂

 
 

where         and            .  

Assumption 4.4: After a fixed number of freely chosen sampling instants     , there 

exists observer parameter such that the desired maximum estimation error satisfies 

‖ ( )    ( )‖                    

It is important to mention that the scaling for  ̃ is usual for high-gain observer effects. 

But, the scaling   for the extended high gain observer is selected in a way that it is 

depends on the   dynamics dimensions. This is done to preserve the two time scale 

structures as there is connection and coupling through  ̂. Therefore, we will analyze the 

closed loop system in a multi-time scale arrangement. 

Applying this, we get 
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  [
  
 
  

] 

  [
 
 

    

]

,(   )  

 

 ( )      ,          -    

 ( )      ,            -(   ) (   ) 

 ( )     ̂ 

 ( ) ̃     ̂ 

 ( )  [
   ̂
    ̂

] 

Accordingly, the closed loop system under the output feedback scheme takes the form, 

  ̇    (   ( ̂  ̂))    (   (   ( ) ̃    ( ) ))

   (   ( ) ̃  ( ) ) 
(4.4) 

   ̇̃     ̃              (4.5) 

 
   ̇       [       

  

  
] (4.6) 

where, 

  0
  
  
1 

   [
 
  
] 

   0
  
 
1 

    (   )   ̂( ̂   ̂) 

         ( ̂ ) 

    (   ( ̂  ̂)   ̂( ̂  ( ̂  ̂))) 

Because of the smoothness characteristic of  (   )  we comprehend that, for 

 (      ̃   )        

where   is a compact set,    is locally Lipschitz in its arguments, uniformly in  . In 

addition, for any  ̃   and for all 

 (      ̃   )        

there exists,      ̃ such that, 
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‖
 

  
0 .   ( ̂  ̂)   ̂( ̂  ( ̂  ̂))/1‖   ̃   ‖   ̂‖   ̃   ‖ ‖‖ ‖   ̃‖ ‖ 

where  ̃ is the Lipschitz constant of nonlinear function  (   ) over the domain  . It is 

important that to obtain the above inequality, we utilize the facts  

‖ ‖          ‖ ‖  ‖ ‖ 

From now on, we will always consider that the observer parameter    ̃.  

The matrices   and    are Hurwitz by scheme and given by 

   [
    
    

]
   

 

   

[
 
 
 
 
   
   
 
   
     

    
    
    
    
    ]

 
 
 
 

(   ) (   )

 

The above system in the standard singularly perturbed form with three time scales 

structure. The slow variable of this structure is  ( ) and the fast variables 

are ( ̃( )  ( )). Moreover, the dynamics of  ( ) is of order  (   ⁄ ) and faster 

than  ̃( ).  

By setting      in (4.5)-(4.6) we get  ̃    and    , so that the system is reduced to 

 ̇    (   (   )) 

which is equivalent to the closed-loop system under state feedback. Representing the 

solutions of output feedback as  ( ) and that of state feedback as    ( ) starting from 

some initial condition   ( ). The initial states for output feedback are 

  ( )    

 where   is any compact set in the interior of  . The observer initial states are in 

( ̂( )  ̂( )  ̂( ))    

where   is any compact subset of     .  

Before we proceed to our main results, we led the foundation of the presence of an 

invariant region for the proposed observer for all the states of system belongs to  ( ). 

Moreover it is shown that by decreasing observer parameter   and sampling time     the 

incorporated error between the state feedback scheme and output feedback scheme can be 

made adequately small provided that the observer error begins in adequately small 
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region. This indicates that the variation in the value functions obtained can be rendered 

adequately small. 

4.4 Practical Stability of Output Feedback 

To establish the practical stability, we begin by exploring the boundary layer model. For 

this reason, we apply the new time scale     ⁄  for the system to get, 

   

  
    (   (   ( ) ̃    ( ) )) (4.7) 

   ̃

  
    ̃              (4.8) 

 
 
  

  

̇
      [       

  

  
] (4.9) 

Here we observe that for the original system, the subsystem (4.8)-(4.9) serves as the 

boundary layer subsystem. Additionally for (4.7)-(4.8), the subsystem (4.9) serves as the 

boundary layer subsystem. 

By substituting     in this time scale results in     and 

  ̃

  
    ̃ 

Let us propose the Lyapunov function candidate, 

  ( ̃)   ̃
    ̃ 

where    is the positive definite matrix and obtained from the solution of Algebraic 

Riccati equation 

       
       

This Lyapunov function fulfills 

    (  )‖ ̃‖
    ( ̃)      (  )‖ ̃‖

  

   
  ̃

   ̃   ‖ ̃‖
  

Where     (  ) and     (  ) are the corresponding minimum and maximum 

eigenvalues of the matrix    respectively. 

In a similar fashion, let us investigate the stability of this boundary layer. For this, we use 

the time Scale  

    ⁄  
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This gives, 

  

  
     (   (   ( ) ̃    ( ) )) 

  ̃

  
  ,   ̃             - 

  

  

̇
      [       

  

  
] 

Substituting     in above equation, we get 

  

  

̇
     

To analyze this boundary layer, we establish the Lyapunov function candidate 

   ( )   
     

where     is also a positive definite matrix and obtained similarly from the solution of 

Algebraic Riccati equation,  

       
       

 This Lyapunov function fulfills, 

    (  )‖ ‖
    ( )      (  )‖ ‖

  

   
  ̃

   ̃   ‖ ‖
  

where     (  ) and     (  ) are the corresponding minimum and maximum 

eigenvalues of the matrix   respectively. 

Let us define the sets  

  * ̃   ( ̃)     
 + 

  *    ( )     
 + 

Where    and    are some positive constants which will be specified later. For all 

 (    ̃  )      

it can be shown in a similar fashion as in [23], 

‖  (   ( )  ̃  ( ) )    (     )‖    ‖ ̃‖    ‖ ‖ 

Where    and    are positive constants independent of the observer parameter  . In the 

light of the fact that the continuous functions are confined over compact sets.  

For all states    ( ) and ( ̃  )      , we can deduce [23], 

‖  (      ̃   )‖     
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‖  (    ̂ )‖     

‖  (   (   ( ) ̃    ( ) ))‖     

where    ,   ,and    are positive constants independent of observer parameter  . 

Lemma 4.1: 

For all the system states    ( ), the set     is invariant for the observer error. The 

proof is similar to shown in [21, 23 and 24]   

Lemma 4.2: 

Consider     , then there exist a sampling time   ̅    and observer parameter  ̅    

such that for all      ̅ and        ̅ and for  ̃    and    ,     the 

inequality 

 ∫  ( ( )  ( ))  
   

 

 ∫  (  ( )   ( ))  
   

 

      

Is valid for any time interval   (   ̅] where  ̅      is finite, such that 

 (   )           (   ̅] 

Lemma 4.3: 

Consider time interval   (   ̅- where  ̅      is finite and such that  

 (   )          (   )          ,     ̅) 

 both starting from  ( )   ( ). Then for every     , there exist a sampling time 

 ̌    and  ̌    such that for all      ̅̌ and       ̌
̅
  ,  ̃    and    . 

| ( (   ))   (  (   ))|       

4.4.1 Boundedness of Observer States 

To prove the boundedness of observer states we state and prove the theorems which are 

modification of theorems presented in [21, 23 and 24] for the mentioned output feedback 

scheme.  

Theorem 4.1:  

Under assumptions, there exists an  ̌    such that for every      ̆, the trajectories 

( ( )  ̃( )  ( )) starting at   

( ( )  ̃( )  ( ))      

are bounded for all    .    
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Proof: 

The retrieval of boundedness can be proved in following two steps. 

1. The set    ( )      is compact and positively invariant for some small 

enough e and     

2. The close loop trajectories starting in     enter in set   in finite time. 

4.4.2 Invariance of Set   

We define the boundary of  ( ) as   ( ). For all 

( ( )  ̃( )  ( ))    ( )      

and for all time interval   (   ̅- where  ̅      is finite, we have, 

 ( (   ))   ( ( )) 

  (  (   ))   ( ( ))  | ( (   ))   (  (   ))| 

  ∫  (  ( )   ( ))  
   

 

 | ( (   ))   (  (   ))| 

  ∫  ( ( )  ( ))  
   

 

 

 |∫  ( ( )  ( ))
   

 

  (  ( )   ( ))  | 

 | ( (   ))   (  (   ))| 

We notice that as  

 ( )     

there exists  ̅ such that  

    ̅      (   )    

so that we can use Lemma 4.2 and Lemma 4.3, 

 ( (   ))   ( ( ))   ∫  ( ( )  ( ))  
   

 

           

As  ( )    and     is finite, we identify that 

∫  ( ( )  ( ))  
   

 

    

for some positive constant    . It follows that there exist observer parameter  ̅  

 ,  ̌    and   ̅   , such that for         ( ̅  ̌) and        ̅, we have, 
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 ( (   ))   ( ( ))    

This proves that  (   )   ( )    and therefore it holds for all   (   ̅-. 

If for any finite time interval    ̅, the states  ( ) again reach the border of set  ( ), 

we can again apply the above mentioned procedure. 

Further, for all  

( ( )  ̃( )  ( ))   ( )      

we have from Lemma 4.1,  

 ̇    

And  

 ̇    

If  

   (      
 (  )     (  ))[     √       (  )]

 
 

 and 

    (    
     
 (  )     (  )) 

We accomplish that for observer parameter        ( ̅  ̌) and        ̅, the set   

is positively invariant. 

4.4.3 Attractivity of Set   in Finite Time 

This is achieved in similar fashion as in [21, 23 and 24].   

Consider  

 ( )  ̃( )  ( )      

 It can be verified that the resultant initial errors  ̃( ) and  ( ) satisfy 

 ‖ ̃( )‖     ⁄  

 and 

 ‖ ( )‖     
    ⁄  

for some positive constants    and    dependent on the sets        . It can also be 

presented that, since  ( ) is in the interior of  ( ) and as long as  ( )   ( ), we have 

‖ ( )   ( )‖      

Hence there exist a finite time interval  ́, independent of observer parameter e such that,   
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 ( )   ( )       (   ́] 

During this interval, we can indicate that,   

 ̇ ( )   
 

   
‖ ‖  

For       
  and    ̅.  

Established on this point we can show that,  

 ̇ ( ̃)   
 

  
‖ ̃‖  

For       
  and       

 , the above inequalities reflects that the variable E first 

becomes of the order  ( ). This sequentially allows the variable  ̃ to become  ( ).  

We can choose small enough  ́ such that      ́, we have 

 ̿   ̃   ̆  
 

 
 ́ 

Where, 

 ̃  
  

‖  ‖
  (

‖  ‖  
 

    
) 

 ̆  
   

‖  ‖
  (

‖  ‖  
 

       
) 

We found that such observer parameter  ́ exists, since the time intervals  ̃ and  ̆ 

approaches to zero as   approaches to zero. It follows that, for every  

     ́ 

We have, 

  ( ̃( ̿))     
  

  ( ( ̿))     
  

Setting,  

 ̿     * ̅  ̆  ́+ 

guarantees that for every      ̿, the trajectories ( ( )  ̃( )  ( )) enters the set   

during the time interval [   ̿] and remains inside for all time interval    ̿. We also 

observe that, for all time   [   ̿], the trajectories are bounded by virtue of above 

inequalities. 
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4.4.4 Semi Global Practical Stability of Output Feedback 

Now we present the fact that for any sufficiently small area or ball around the origin, 

there exist an observer parameter   and sampling time interval   , such that the close loop 

trajectories will reach that small ball in finite time and will remain there and thus making 

the ball invariant. 

 

Theorem 4.2: 

Under the assumptions of theorem 4.1, then for any     there exists      and   
    

and    such that for every observer parameter        and sampling time      

  
 , we have, 

‖ ( )‖  ‖ ̃( )‖  ‖ ( )‖               

Proof: 

For a given positive constant   as in [21 and 24], we can find     ̅ such that for all 

       we have,   

‖ ̃( )‖  ‖ ( )‖  
 

 
          (  ) 

Since the value function  ( ) is continuous around the origin and 

  ( )    

it follows that it is thinkable to find a constant   such that,  

*   ( )   +  *  ‖ ‖    ⁄ + 

Using the results of theorem 4.1, we can show that for  

       

and  

       
  

We have, 

 ( (   ̂)   ( ( ))   ∫  ( ( )  ( ))  
   ̂

 

  ̂     ̂    

So, there exists a  ̅    such that  

 (   )    ̅      ( )  *   ( )   +        

 Suppose that states  

 ( )           ̂ 



   Page 40 
  

does not contain in the set  

*   ( )   + 

then we get, 

 ( (   ̂)   ( ( ))     ̂̅   ̂     ̂    

We have to choose observer parameter   and sampling time    such that  

         ̅    

If  ̂ is big enough (we can set its value as big till Lemma 4.2 and Lemma 4.3 is valid as 

the states are in the invariant set  ), we can ensure that  

 ( (   )    

for some    ̂. Then by contradiction, we ought to have  

 (   )  *   ( )   + 

By the similar reasoning as presented in theorem 4.1, this set is invariant and we can set  

       ( (  )  ̂) 

This institutes our key result. The semi global practical stability of closed loop system is 

achieved in a manner, that for given system trajectories     and for any small ball 

around the origin there exists an observer parameter   and sampling time   , such that the 

trajectories approaches the ball from any starting point in the set   in finite time and will 

remain inside the ball and making it positively invariant. 

Furthermore we can also show, that the close loop trajectories of the output feedback 

scheme converges to the trajectories of the state feedback as the observer parameter   and 

sampling time    approaches to zero 

            

Theorem 4.3: 

Under the assumptions of theorem 4.1, then for any     there exists      and   
    

such that for every        and        
 , we have, 

‖ ( )    ( )‖               

Proof:  

This can be proved on the similar lines as shown in [23 and 24], 

To prove this, we divide the time interval ,   - into three time intervals ,    -, ,     - 

and ,    - where the interval      is to be defined. 
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Interval ,    -: 

Using similar reasoning as in the inequality (4.81), we can conclude that 

‖  ( )   ( )‖      

Therefore,  

‖ ( )    ( )‖      
          ,    - 

Since      as     given any     there exists observer parameter         and 

sampling time   
    such that for every  

       

 and 

        
  

we have, 

‖ ( )    ( )‖             ,   
 - 

Interval ,     -: 

During this interval the trajectories  ( ) satisfies  

 ̇    (   ( ) ̃  ( ) ) 

with initial condition  (  ) and  ( ) ̃ and  ( )  are of order  ( ) and the state 

feedback trajectories   ( ) satisfies 

 ̇    (     ) 

with initial condition   ( 
 ). We know that from [23 and 24] 

‖ ( )    ( )‖      
            ,    - 

where,     as    . Consequently, by using (Theorem 3.5, [82]), we accomplish 

that, for any    , there exists observer parameter  

        

such that for every  

       

we  can ensure 

‖ ( )    ( )‖             , 
    - 

Interval ,    -: 

From the Theorem 4.2 and as the origin of the state feedback system is asymptotically 

stable, we establish that there exists a finite time interval      , independent of 

observer parameter  , such that for every 
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 we get, 

‖ ( )    ( )‖              
  

Taking, 

      (     ) 

This proves the theorem 4.3.  

It is now evident that if the sampling time    and the observer parameter   are chosen in 

accordance with the above stability conditions, the semi global practical stability of 

output feedback i.e. observer with nonlinear model predictive controller can be achieved. 

So, the trajectories starting from the set   which is the subset of the region of attraction   

of the state feedback will reach the small set around the origin in finite time and will 

remain thereafter.  

4.5 Simulation Example  

In this section we will apply the proposed observer and Nonlinear Model Predictive 

Controller (NMPC) to a non-minimum phase systems having unstable internal dynamics.  

We consider the same nonlinear system of single link manipulator with a flexible joint as 

considered in chapter 3. The mathematical dynamics are given by [75]. 

    ̈            (     )    (4.10) 

    ̈   (     )    (4.11) 

In which the angular positions of link and rotor are denoted by      , the inertias of link 

and rotor are denoted by       . The load mass is denoted by  , gravity by  , distance 

by    joint stiffness by   and u gives the input torque and the rotor angular position    is 

the measured output.  

We can convert the above system into standard normal form by change of variables, 

       

    ̇   

       

    ̇  

 

 



   Page 43 
  

The new transformed model becomes 

  ̇     (4.12) 

 
 ̇   

   

  
      

 

  
(     ) (4.13) 

  ̇     (4.14) 

 
 ̇  

 

  
(     )  

 

  
  (4.15) 

      (4.16) 

We can see that the relative degree   of the system is   and the Internal (zero) dynamics 

are given by substituting     . 

The states of the above system are estimated by an observer described in section 4.2. The 

first two derivatives of output are estimated by an extended high gain observer (EHGO). 

This makes the   states available so we can use it in computing the internal states   the 

second derivative of the output is the right hand side of equation (4.66). We can estimates 

the internal states   with the aid of it. The internal (auxiliary) system which is represented 

by, 

 ̇     

 ̇   
   

  
      

 

  
(     ) 

in which the signal      ⁄    serves as the output signal of the internal (auxiliary) 

system. The internal system is already in standard normal form by viewing    as input 

and it has full relative degree. So, we can use a high gain observer to estimate the internal 

states. The most important consideration here is to ensure that the extended high gain 

observer which estimates the first two derivatives of output must be fast enough than the 

high gain observer which estimates the internal states. This is achieved by making the 

extended high gain observer of order  (   ⁄ ) and that of high gain observer of 

order  (  ⁄ ).  
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Following the same procedure described in section 4.2, the full order observer takes the 

form 

 ̇̂   ̂  
  
 
(
  
 
 ̂   ̂ ) 

 ̇̂   
   

  
    ̂  

 

  
( ̂   ̂ )  

  
  
(
  
 
 ̂   ̂ ) 

 ̇̂   ̂  
  
  
(   ̂ ) 

 ̇̂   ̂  
 

  
 ̂  

 

  
  

  
  
(   ̂ ) 

 ̇̂  
 

  
 ̂  

  
  
(   ̂ ) 

For the simulation, the system parameters are fixed to same values as in chapter 3 and in 

[75]. The NMPC controller parameters, observer parameters, initial values of system and 

observer are tabulated in table 4.1. 
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Table 4.1: Observer and controller parameters for output feedback scheme 

S.No Parameter Value 

1   0.01 

2    15 

3    6 

4    12 

5    14 

6    1 

7   ( ) 0.5 

8  ̂ ( ) 0.9 

9   ( ) 0 

10  ̂ ( ) 0 

11   ( ) 0.5 

12  ̂ ( ) 0.9 

13   ( ) 0 

14  ̂ ( ) 0 

15  ̂( ) 0 

16         

17      

18 Sampling time         

19 Q 8 

20 R 0.35 

It must be assured that the control input  ,  ̂   ̂  and  ̂ should be saturated to avoid the 

peaking phenomenon. The saturation was performed after we investigated that control 

input is in the range ,      -,    is in the range ,        -,    is in the range ,        - 

and   is in the range ,      - under state feedback control. In the light of this the 

saturation level set for these parameters are as under, 
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    ̂    

    ̂    

     ̂     

Figure 4.1 shows the output response of the flexible joint manipulator for output feedback 

scheme. As expected, the angular position of rotor which is the output reaches the origin 

as the time progresses.  

 

The angular position of rotor is successfully stabilized at the origin in relatively short 

time with good transient response. The transient response may further be tuned according 

to performance specifications by carrying the controller parameters. The response of the 

control input effort which is the input torque is shown in the figure 4.2. 

 

Figure 4.1: Output response of rotor angle for Output Feedback Scheme. 
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It is evident from the figure 4.2 that the optimal control input passes the saturation period 

in rapid time and the control input remains in the specified boundary and therefore 

obeying the input constraints. Moreover the figure 4.3 shows the estimation error which 

is the difference between the output feedback controller and state feedback controller for 

the internal state (link angular position). The estimation error for the output signal is 

shown in figure 4.4.  

 

Figure 4.2: Control input Torque for Output Feedback scheme. 
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Figure 4.3: Error between the state feedback & output feedback for link angular position. 

 

 

Figure 4.4: Error between the state feedback & output feedback for rotor angular position. 
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The observer estimates the system states efficiently. The internal states which were made 

observable with respect to virtual output by the observer are also satisfactorily estimated. 

Thus, the output feedback trajectories approach to the state feedback trajectories as the 

time passes. The proposed output feedback controller successfully stabilizes the single 

link flexible joint manipulator system to the origin.  
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Chapter 5 

CONCLUSION AND  

FUTURE WORK 

 

5.1 Conclusion  

The output feedback control for nonlinear nonminimum phase systems is presented in 

this thesis that involves nonlinear model predictive controller (NMPC). The sampled data 

NMPC scheme is employed in which the control input is applied open loop between the 

sampling intervals. Here, a finite horizon optimal control problem (FHOCP) scheme is 

used and the stability of NMPC controller using a terminal constraint is briefly presented. 

However, the stability schemes for NMPC is not limited to one described here but can be 

adopted from a variety of available NMPC controller techniques reported in literature 

[67]. The observer used for the output feedback scheme includes combination of 

extended high gain observer and high gain observer. The extended high gain observer 

estimates the output and its derivatives and extends the dimension of observer by one 

state. This allows us to estimate the unknown state which is considered as virtual output 

to the remaining states of the system which are not estimated. The new estimated signal 

makes the remaining system states (internal dynamics) observable with respect to virtual 

output. The high gain observer is then applied to full order internal system to provide 

estimates of these internal states. The vital point here is to ensure that the extended high 

gain observer is fast enough to estimate the virtual output. This is achieved by setting the 
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observer parameter of order  (   ⁄ ) for extended high gain observer and  (  ⁄ ) for 

high gain observer. So, the extended high gain observer and high gain observer for 

internal dynamics together with the original close loop makes the output feedback in 

three time scale structure. The closed loop is then analyzed in these three time scales on 

the similar lines as in [23]. The required mathematical and theoretical foundation is 

established to achieve semi global practical stability of overall output feedback scheme. 

The output feedback is simulated on an example of single link flexible joint manipulator 

system.  When the sampling time and the observer parameter is set according to 

theoretical formulation, the semi global practical stability is achieved for a desired region 

which is the subset of the state feedback control‘s region of attraction. The close loop 

trajectories are made to converge to small area around the origin accomplishing practical 

stability. 

5.2 Future Work 

The research work covered in this thesis can be extended in the following directions: 

 The scheme for the output feedback presented here is for single input single 

output (SISO) systems and it can be further extended to multi input multi 

output (MIMO) systems. 

 The robustness analysis of the proposed output feedback scheme can be 

investigated in the presence of uncertainties and disturbance. As the observer 

used contains high gain observer which is generally considered as robust 

observer, further investigations can be done when it combined with sample 

data NMPC which also possess inherently some robustness properties as 

reported in [81]. 

 The efficient implementation and realization of output feedback scheme with 

NMPC can be investigated that involves real time implementation constraints 

such as computational delays, sub optimal solutions. 

 Further investigation of semi global stability can be done for different NMPC 

techniques where the control input is not constant between the sampling 

instants. 
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 Another area could be the investigation of stability analysis of output 

feedback scheme for nonlinear systems not in normal form. 
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