
i

OBSTACLE AVOIDANCE CONTROL FOR

AUTONOMOUS GROUND VEHICLE

By

M. Ahsan Nisar

(NUST201361569MPNEC45013F)

PAKISTAN NAVY ENGINEERING COLLEGE, PNS JAUHAR,

KARACHI

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

August, 2016

ii

OBSTACLE AVOIDANCE CONTROL FOR

AUTONOMOUS GROUND VEHICLE

By

M. Ahsan Nisar

(NUST201361569MPNEC45013F)

REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MS

TO THE FACULTY OF POSTGRADUATE PROGRAM

PAKISTAN NAVY ENGINEERING COLLEGE, PNS JAUHAR,

KARACHI

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

August, 2016

iii

ABSTRACT

This work focuses on developing an obstacle avoidance algorithm for

autonomous hybrid electric vehicles named as Obstacle Avoidance System (OAS).

The algorithm is subdivided into two parts, i.e. heading angle and velocity adjustment.

A pre-requisite to OAS is an obstacle detection system, which provides characteristics

of obstacles. A nascent approach of trajectory comparison and estimation has been

proposed. A potential point of impact is estimated from trajectory of each obstacle and

requisite heading and velocity corrections are provided to the controller. The

performance of different operational scenarios is evaluated by simulations.

iv

TABLE OF CONTENTS

COVER PAGE .. i

TITLE PAGE ... ii

OBSTACLE AVOIDANCE CONTROL FOR AUTONOMOUS GROUND VEHICLE ... i

OBSTACLE AVOIDANCE CONTROL FOR AUTONOMOUS GROUND VEHICLE ... ii

ABSTRACT .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES .. vii

LIST OF SYMBOLS ... ix

LIST OF ACRONYMS ... xii

ACKNOWLEDGEMENTS .. xiv

DEDICATION .. xv

CHAPTER 1 : INTRODUCTION .. 16

Introduction ... 16

Obstacle Avoidance System ... 16

Obstacle Detection Unit .. 17

I. RADAR ... 17

II. LIDAR ... 17

III. CAMERA UNIT ... 18

IV. ULTRASONIC SENSORS... 18

Challenges .. 18

Problem Statement ... 19

Advantages ... 19

v

Major drawbacks / disadvantages .. 19

Report Layout ... 20

CHAPTER 2 : LITERATURE REVIEW .. 21

Introduction ... 21

Algorithms ... 21

Follow the Gap Method... 21

New Hybrid Navigation Algorithm ... 23

Hybrid Navigation Algorithm with Roaming Trials (HNA) 24

Comparison of Commercial Vehicle ... 24

CHAPTER 3 : SYSTEM MODELLING AND ALGORITHM DESIGNING 27

System Modelling for Obstacle Avoidance ... 27

Algorithm Designing for Obstacle Avoidance .. 31

Impact Point Algorithm.. 31

Predictive Modelling ... 32

Stationary Obstacle Avoidance ... 33

Derivation of Stationary Obstacle Avoidance w.r.t Impact Point Algorithm 34

Moving Obstacle Avoidance ... 37

Derivation of Moving Obstacle Avoidance w.r.t Impact Point Algorithm 38

Pseudocode of Impact Point Algorithm ... 42

Impact Point Software... 44

Comparison .. 45

Analysis on Referred Work ... 47

CHAPTER 4 : RESULT ANALYSIS .. 49

Stationary Obstacle Avoidance ... 49

Moving Obstacle Avoidance ... 51

Case of Velocity Drop ... 52

CHAPTER 5 : CONCLUSION ... 54

vi

CHAPTER 6 : FUTURE WORK .. 55

Security Checks .. 55

Road Class ... 55

Road Surface/Condition.. 55

Obstacles .. 56

Implementation ... 56

APPENDIX A Simulink models .. 60

Stationary Obstacle Avoidance ... 60

Moving Obstacle Avoidance ... 60

Velocity Drop Model ... 61

APPENDIX B CODES ... 62

Graphical User Interface of Impact Point Algorithm .. 62

vii

LIST OF FIGURES

Figure 1 Major Units of Autonomous Car .. 17

Figure 2 Sensors for Obstacle Detection ... 18

Figure 3 Representation of gap border parameter [3] ... 22

Figure 4 Representation of gap center angle [3] ... 23

Figure 5 Vehicle Two Wheel Equivalent Model for Steering Motion 27

Figure 6 Flow Chart for Trajectory Development .. 31

Figure 7 Estimating Point of Impact ... 33

Figure 8 Flow Chart of Stationary Obstacle Avoidance 34

Figure 9 Stationary Obstacle Avoidance .. 35

Figure 10 Flow Chart of Moving Obstacle Avoidance ... 38

Figure 11 Flow Chart of Moving Obstacle Avoidance w.r.t IPA.......................... 39

Figure 12 Trajectories of Two Vehicle with Estimated Point of Collision 40

Figure 13 Moving Obstacle Avoidance by Changing Lane 41

Figure 14 Moving Obstacle Avoidance by Decreasing the Velocity 42

Figure 15 Software of Impact Point Algorithm .. 45

Figure 16 Obstacle avoidance for unavailability of lane [8] 46

Figure 17 Obstacle avoidance with Driver Assistance [14] 47

Figure 18 Comparison Table of Algorithm ... 48

viii

Figure 19 Required Angle to Avoid Stationary Obstacle 49

Figure 20 X-Y Graph of Stationary Obstacle Avoidance 50

Figure 21 Required Angle for Stationary Obstacle Avoidance 50

Figure 22 X-Y Graph of Stationary Obstacle Avoidance Case-2 51

Figure 23 Required Angle for Moving Obstacle Avoidance 51

Figure 24 X-Y Graph of Moving Obstacle Avoidance .. 52

Figure 25 X-Axis Graph of the Velocity Drop Case ... 52

Figure 26 Graph of Velocity Drop ... 53

Figure 27 Stationary Obstacle Avoidance Simulink Model 60

Figure 28 Moving Obstacle Avoidance Simulink Model 60

Figure 29 Velocity Drop Simulink Model .. 61

Figure 30 Velocity Drop Box ... 61

ix

LIST OF SYMBOLS

Symbol Notation

𝐶𝐹 Cost Function

∅𝑔𝑎𝑝𝑐 Gap center angle

𝐷 Distance between vehicles

𝑥 Position of Autonomous car at x-axis

𝑦 Position of Autonomous car at y-axis

𝑥0 Initial position of the car along x-axis

𝑦0 Initial position of the car along y-axis

𝛿𝑥 Distance between car and no go zone

ycar Current position of car along y-axis

𝑥𝑐𝑎𝑟 Current position of car along x-axis

𝑥𝑜𝑏𝑠 Current position of obstacle along x-axis

𝑦𝑜𝑏𝑠 Current position of obstacle along y-axis

𝜃𝑟𝑒𝑞 Required heading angle

x

Symbol Notation

𝐴 Constant of proportionality

𝑥𝑓 Final position of car along x-axis

𝑦𝑓 Final position of car along y-axis

𝑡𝑖 Initial time

𝑡𝑓 Final time

𝛿𝑡 Change in time

𝛿𝑦 Distance between lanes

𝑣 Velocity

𝑉𝑐𝑎𝑟 Velocity of the car

𝑉𝑜𝑏𝑠 Velocity of the obstacle

𝛿𝑥𝑜𝑏𝑠 Change in position of obstacle along x-axis

𝛿𝑦𝑜𝑏𝑠 Change in position of obstacle along y-axis

𝑉𝑟𝑒𝑞 Required velocity

𝑉𝑑𝑟𝑜𝑝 Drop in velocity

xi

Subscript Notation

𝑜𝑏𝑠 Obstacle

𝑓𝑜𝑣 Field of view

𝑟𝑒𝑞 required

𝑟 Right side

𝑙 Left side

𝑥 Along x-axis or about x-axis

𝑦 Along y-axis or about y-axis

𝑧 Along z-axis or about z-axis

𝑓 final

𝑖 initial

𝑙𝑜𝑠 Line of sight

xii

LIST OF ACRONYMS

Abbreviation Acronym

AGV Autonomous Ground Vehicle

OAS Obstacle Avoidance System

AHEV Autonomous Hybrid Electric Vehicle

APF Artificial Potential Field Method

FGM Follow the Gap Method

VFH Vector Field Histogram

VSBM Vision Sensor Based Method

HNA Hybrid Navigation Algorithm

NHNA New Hybrid Navigation Algorithm

IPA Impact Point Algorithm

OAS Obstacle Avoidance System

FB Feedback

GPS Global Positioning Sensor

xiii

Abbreviation Acronym

Cdr Commander (Pak Navy)

HEV Hybrid Electric Vehicle

Dr. Doctor (PHD)

INS Inertial Navigation System

NUST National University of Science & Technology

PNEC Pakistan Navy Engineering College

RADAR RAdio Detection And Ranging

LIDAR LIght Detection And Ranging

SONAR SOund Navigation And Ranging

xiv

ACKNOWLEDGEMENTS

All praise and thanks to the Almighty ALLAH (SWT) whom the help and guidance is

sought for sustenance, who gave me the courage and knowledge to undertake this

intriguing as well as interesting project.

I am greatly indebted to my thesis supervisor, Dr. Cdr Attaullah, for his immense

guidance, suggestions and wise reproach throughout the course of the thesis. It was

his appreciation which enhances my efficiency in completing the project and made me

able to design the Obstacle Avoidance System for driverless ground vehicle.

Last but not least, I shall always remain highly obliged to my parents for giving me

immense strength not only to set high goals but also to achieve them. Without their

support, I would never have gotten so far.

xv

DEDICATION

To Humanity.

16

CHAPTER 1 : INTRODUCTION

Introduction

The advancement of electronic era has made human life easier as compared to last

century. Humans are inventing systems/machineries, which are capable of performing

human tasks to ease human life, replace labour, do recursive tasks and work in life

threatening environment. Along with these inventions, humans started taking

advantage of electronic inventions more efficiently to save their time, do parallel

tasking and speed up their work. These days world is using autonomous systems for

travelling, research, exploration, military purpose, household use, industrial use,

offices use and many other uses for better efficiency.

Since auto pilot systems have been serving humans to travel in air and sea for

decades and during these years auto pilot systems have become the basic need of

aviation and marine industries. Similarly, autonomous systems to drive vehicle on the

road would be the need of coming decades to serve humanity. Keeping this need in

mind many research organizations and research institutes are working on it and this

is the basic motivation to work on this topic for a thesis.

A driverless car is a robotic vehicle that is designed to reach to destinations without a

human driver. Autonomous vehicle must be able to navigate without human

intervention to a predetermined path.

This work is a part out of three for development of complete model and subsequent

controller for fully autonomous hybrid electric vehicle that drives it in the safest way

possible, avoids the obstacles intelligently and take the decision instantly.

Obstacle Avoidance System

Like any other vehicle, Autonomous vehicle also works in a systematic way. It needs

a navigation system for path information and the path trajectory system for lane

keeping. Then comes the obstacle detection system. While following the path obstacle

detection system detects obstacle and send the information to an obstacle avoidance

system which generates the required heading and velocity and drive control act upon

17

the decision and the car runs smoothly and reach to the destination without collision.

Figure 1 Major Units of Autonomous Car

Obstacle Detection Unit

Obstacle detection is the key capability for an autonomous vehicle systems, without

the obstacle detection unit, the concept of autonomous vehicle has no meaning. For

the obstacle detection and then avoidance, it is very much necessary to categorize the

peculiar threat and deals them accordingly.

An autonomous Vehicle should be able to interact with the environment. For this

purpose many sensors are being used, some majors are mentioned below:

I. RADAR

The radars are installed on front and back side of the car and on the sides of the

bumper for the adaptive cruise control. It senses the object from approximately 300

meters and accidents prevention system trigger when the output is true.

II. LIDAR

Lidar is abbreviated as Light Detection and Ranging. It acts as an eye of autonomous

car and generates an accurate map of the car’s surroundings, but it is not ideal for

Navigation
System

Path
Tracking

Obstacle
Detection

Unit

Obstacle
Avoidance

System

Drive
Control

18

monitoring the speed of other cars in real time [1]. It consists of an emitter, Mirror and

Receiver. The Emitter sends out the laser beam which bounces off the mirror that is

rotated along with the cylindrical housing at 10rpm. The bounced beam returns to

mirror and then received by the receiver.

III. CAMERA UNIT

The camera unit is mounted on an autonomous car as per the field of view of the

camera. Cameras which are used by the google cars, have 500 field of view and

mounted on the exterior of the car in pairs with small separation between them [1].

The cars knows the exact location of the obstacle as long as it is detected by many

cameras. The camera unit is particularly used for the cautionary signs, pedestrian,

animals and other moving objects.

IV. ULTRASONIC SENSORS

These are short range sensors. First time in history of autonomous cars, the sensors

are used by Tesla autonomous cars. They are used for auto parking systems and as

a backup for RADAR system. They detect everything small child, running dog etc. [2]

Figure 2 Sensors for Obstacle Detection

Challenges

The development of self-driving cars has been an area of active research for many

years. Recently, an abundance of interest has been engendered by Google’s self-

driving cars, which have logged many thousands of miles in numerous scenarios –

city driving as well as highway driving, to name a few. While there have been a couple

Obstacle
Detection

Unit
RADAR

LIDAR

CAMERA
UNIT

ULTRASONIC
SENSORS

SONAR

19

of mischances, the reason for these mishaps have been the people driving different

vehicles, which have slammed into the self-driving auto. A self-driving car by itself has

never been involved in any mishap initiated by it. While the technology behind self-

driving cars appears to be incredible; it is yet to confront numerous genuine difficulties.

One of the difficulties is that of driving where legitimate roads don't exist. Another

challenge lies with the execution of these vehicles in amazing climate conditions like

overwhelming precipitation and/or substantial snow.

Given that the technologies being used will mature over time, it is only a matter of time,

where the performance of self-driving cars will surpass the expectations of any vehicle

in the city. Even with the maturity of the technology behind self-driving cars, we believe

that the wider acceptance of such vehicles needs to address three important issues,

namely sensing technology interference, accident liability responsibility and crowd

navigation.

Problem Statement

To build an Obstacle Avoidance System for two wheel equivalent model of

Autonomous Ground Vehicle by presenting a reference signal for speed and heading

of vehicle in order to avoid stationary and moving obstacles on a highway, assuming

that obstacle is already detected by obstacle detection unit.

Advantages

Significant benefits of AGVs in general are:

(a) Accident avoidance

(b) Fewer road traffic collision

(c) Better roadway capacity by reduced stream of traffic crowding.

(d) Assistance of automobile occupants from driving and navigation tasks.

(e) Human error reduction.

(f) Better mobility.

(g) Reduction in requirement of traffic police

Major drawbacks / disadvantages

Along with lots of benefits there are potential disadvantages of AHEVs enlisted as:

(h) High cost of vehicles due to sensitive and state of the art hardware.

(i) Weather condition may effect performance.

(j) Increased number of accidents till maturity of system and technology.

20

(k) Raise of unemployment due to self-driving systems (less need of drivers)

as we shift from cars and heavy traffic to self-driving tractors and machinery.

Report Layout

 Chapter 1 gives a brief introduction on autonomous cars. The major phases of

building autonomous vehicle have been discussed. Sensors of obstacle detection unit

has been briefed and obstacle avoidance system is discussed. And at the last some

advantages and challenges have been enlisted.

 Chapter 2 covers the literature review of obstacle avoidance system with

respect to the technology and work done in local as well as global market. It briefly

describes the major algorithms used by the researchers so far.

 Chapter 3 describes the major contribution of obstacle avoidance system. This

chapter includes the designing IMPACT POINT ALGORITHM, its mathematical

derivation and modelling. It also includes modelling of some major cases of obstacle

avoidance system. In last graphical user interface of the algorithm has discussed.

 Chapter 4 is the brief chapter of simulations and results of derived cases of the

algorithm. Result has been analysed and compared with already existed algorithms

used by different major companies working on autonomous systems.

 Chapter 5 concludes the research work.

 Chapter 6 discusses the future work in order to make the algorithm more robust

of the most complex environment.

21

CHAPTER 2 : LITERATURE REVIEW

Introduction

After Obstacle recognition the principle undertaking for the driverless vehicle is to

maintain a strategic distance from that obstacle. There are various Algorithms through

which an obstacle can be maintained a strategic distance from. These algorithms were

at first intended for versatile robots yet they are executed on AGVs also.

Diverse configuration algorithms have been introduced so far to talk about the

possibility of obstruction evasion, which incorporate the Vector Field Histogram

Technique, Follow the Gap Method, Vision Sensor based Method, Hybrid Navigation

Algorithm with Roaming Trials and New Hybrid Navigation Algorithm. [3], [4]

Algorithms

Follow the Gap Method

Follow the gap method dodges obstacles by finding the gap between them. It

calculates the gap angle. It has a threshold gap, the smallest gap between obstacles

from which vehicle can move. If the measured gap is greater than the threshold gap

then vehicle will follow calculated gap angle. Obstacle avoiding using “FGM” is done

in three main steps. [5]

STEP-1: Calculate the gap array and finding the maximum gap

In step 1, when vehicle face obstacles it calculates the distance of obstacle from

vehicle and stores these distance in distance array. After finding the distances of all

obstacles, gap array is generated, which includes the gap between obstacles. Gap

array is being traversed to find a maximum gap between obstacles. If more than one

Maximum gap exists with the same value, then first gap will be selects as a maximum

gap. The pink lines are indicating the non-holonomic constraints of vehicle whereas

doted green lines are the field of view of vehicle. 𝑑𝑛ℎ𝑜𝑙𝑙 and 𝑑𝑛ℎ𝑜𝑙_𝑟 are the distances

of obstacles from left and right non-holonomic constraints lines and 𝑑𝑓𝑜𝑣_𝑙 and 𝑑𝑓𝑜𝑣_𝑟

are the distances of obstacles from left and right field of view lines respectively. ∅𝑛ℎ𝑜𝑙_𝑙

and ∅𝑛ℎ𝑜𝑙_𝑟 are the angles of left and right non-holonomic constraint lines and ∅𝑛𝑓𝑜𝑣_𝑙

22

and ∅𝑛𝑓𝑜𝑣_𝑟 are the angles of left and right field of view lines of cars. The distance with

less value is stored and avoided first. [3]

Figure 3 Representation of gap border parameter [3]

STEP-2: Calculation of gap center angle

The second step of FGM is to calculate center angle of the maximum gap, which

ensures the safe trajectory from the center of obstacles. This is an angle of vector

having tail at vehicle's current position and head on the center point of maximum gap.

Gap center angle can be calculated by using Apollonius theorem and law of cosine.

Final equation of gap center angle is; [4]

∅𝑔𝑎𝑝𝑐 = arccos⁡(
𝑑1 + 𝑑2 cos(∅1 + ∅2)

√𝑑1
2 + 𝑑2

2 + 2𝑑1𝑑2 cos(∅1 + ∅2)
− ∅1

Where 𝑑1 and 𝑑2 are the distances of obstacle 1 and 2 from the car respectively. ∅1

and ∅2 are angles of obstacle 1 and 2 respectively, ∅𝑔𝑎𝑝𝑐 is the final calculated gap

center angle.

𝑑𝑛ℎ𝑜𝑙_𝑟

Obstacle 1

Obstacle 2

𝑑𝑓𝑜𝑣_𝑙

Obstacle 3

𝑑𝑓𝑜𝑣_𝑟

𝑑𝑛ℎ𝑜𝑙_𝑙

∅𝑛ℎ𝑜𝑙_𝑙

∅𝑛ℎ𝑜𝑙_𝑟

∅𝑓𝑜𝑣_𝑙

∅𝑓𝑜𝑣_𝑟

23

Figure 4 Representation of gap center angle [3]

STEP-3: Calculation of final heading angle

The last stage of “FGM” is to calculate the final heading angle. This can be achieved

by combining the gap center angle with the goal angle. The combining structure is

distance of obstacles and weight dependent, i.e. the obstacle nearer to vehicle has

more weight. In case, when obstacle is at very short distance to car then vehicle must

move to gap angle rather than goal angle. It is due to fact that obstacle avoidance is

the main task of path planning. [4] [3]

∅𝑓𝑖𝑛𝑎𝑙 =

𝛼
𝑑𝑚𝑖𝑛

∅𝑔𝑎𝑝𝑐 + 𝛽∅𝑔𝑜𝑎𝑙

𝛼
𝑑𝑚𝑖𝑛

+ 𝛽
⁡

Where 𝑑𝑚𝑖𝑛 = min
𝑖=1:𝑛

(𝑑𝑛), ∅𝑔𝑎𝑝𝑐 and ∅𝑔𝑜𝑎𝑙 are calculated gap and goal angle, 𝛼 and 𝛽

are weight coefficient of gap and goal angle respectively. [3]

New Hybrid Navigation Algorithm

New hybrid navigation algorithm based on two layers, deliberative layer and reactive

layer. Both layers are independent to each other. Deliberative layer planned a

reference path on the basis of stored prior information. Reactive layer independently

steers vehicle on the path planned by the deliberative layer. [6]

24

Hybrid algorithm required prior information of environment, which is stored in the form

of binary grid map. In map, states of every grid are either free of occupied that depends

on obstacles around i.e. free for no obstacle and occupied for obstacle. Unknown

information is also taken as a free. In deliberative layer, a reference path is generated.

Reference path is temporary and not necessary to follow through out motion, it can be

changed by the reactive layer.

Reactive layer takes reference path from deliberative layer and controls the motion of

robot. It also receives the precepts of sensors and take decision to avoid an obstacle

if found. For the purpose of obstacle avoidance, this layer uses D-H bug algorithm

(Distance Histogram bug). This is a version of bug-2 algorithm, which allows vehicle

to rotate freely at angle less than 90° to avoid an obstacle. If the rotation of 90° or

greater is required to avoid an obstacle; it acts as bug-2 algorithm and starts moving

to destination when path is clear from obstacles.

Reactive layer can change the path on the basis of current percept. Sensors provide

current precepts to reactive layer as well as it updates the prior knowledge. In case on

conflict between layers, the result of reactive layer is taken into an account. It is due

to the present and updated nature of the results of reactive layer and hence incomplete

knowledge of deliberative layer may contain errors. [6]

Hybrid Navigation Algorithm with Roaming Trials (HNA)

The Hybrid Navigation algorithm with roaming trails is related to new NHNA. The main

difference is that it used APF instead of D-H BUG in reactive layer. NHNA has not

described any limit for car to deviate from reference path but HNA used the concept

of roaming trails for the same purpose.

Comparison of Commercial Vehicle

Google Self Driving car collects data from different sensors mounted on it. The

software processes all of the data in real-time as well as modelling behavioural

dynamics of other drivers, pedestrians, and objects around you. While some data is

hard-coded into the car, such as stopping at red lights, other responses are learned

based on previous driving experiences. Every mile driven on each car is logged, and

this data is processed in an attempt to find solutions to every applicable situation.

25

The learning algorithm processes the data of not just the car you’re riding in, but that

of others in order to find an appropriate response to each possible problem. [1]

Tesla’s forward looking camera, created by Mobileye, is mounted on the front of the

rear-view mirror and features advanced software that allows it to not only measure

distance, but also read signs, and detect pedestrians and avoids it. [2]

Toyota’s Pre-Collision System packs in a similar combination of radar and cameras

to help its latest cars avoid accidents at all costs, with the technology splitting potential

accidents into four distinct steps: The detection of a vehicle ahead, the possibility of a

collision, the high possibility of a collision and collision is unavoidable. During these

steps the car will offer an alarm and visual warning, followed by braking assistance

and finally fully automatic braking. Toyota car only avoids the obstacle by apply

brakes.

Volvo’s avoidance system offers audible and haptic warnings, only activating auto

braking when it has to, and then full braking power a second before impact. Even if

that’s not quite enough to stop you from crashing altogether, it’s likely to reduce your

speed by a considerable amount, potentially proving the difference between a life-

threatening crash and a much smaller collision.

Mercedes-Benz has also joined in the action, introducing Collision Prevention Assist,

which uses radar to continuously monitor the distance to the vehicle in front. Driver will

get several seconds to respond to a warning light in the instrument cluster if you get

that little bit too close to the vehicle in front, with an intermittent tone sounding if the

distance decreases quickly. If braking by the driver isn’t enough to slow the car

sufficiently, Collision Prevention Assist will also apply the brakes.

BMW as one of the leading car companies when it comes to technology, it’s no

surprise to see BMW has been working on its own collision-avoidance technology, in

this case dubbed Active Assist, and future BMWs are set to be a whole lot smarter

than the average car.

Active Assist uses a huge range of laser scanners, cameras and even a few ultrasound

sensors that will make your journey safer by detecting obstacles and other vehicles in

the immediate surroundings. Four laser scanners can measure precise distances to

26

other objects, along with measuring speeds and surroundings, and BMW explains that

the car can then form a picture of which areas are accessible and free from obstacles.

Most common machine learning algorithms that are being used in autonomous

vehicles are based on OBJECT TRACKING. These algorithms are aimed at improving

the accuracy of pinpointing and distinguishing between objects. A core problem, for

example, is profiling of an object i.e. whether is it another vehicle, a pedestrian, a

bicycle, an animal? The solution is a sophisticated machine learning or pattern

recognition algorithm that is fed with many images containing objects. [7]

A vehicle’s internal map includes the current and predicted location of all static (e.g.

buildings, traffic lights, stop signs) and moving (e.g. other vehicles and pedestrians)

obstacles in its vicinity. Obstacles are categorized depending on how well they match

up with a library of pre-determined shape and motion descriptors.

27

CHAPTER 3 : SYSTEM MODELLING AND

ALGORITHM DESIGNING

System Modelling for Obstacle Avoidance

An equivalent two-wheel model for vehicle dynamics is considered. Where theta is the

car heading angle and phi is the steering angle of the vehicle. It has been given in the

literature [8] that the relation of car’s heading with steering is:

 𝜃̇ =
𝑣

𝑙
tan𝜑

Where⁡𝑣 is constant velocity of vehicle and 𝑙 is the distance between front and rear

tires.

The author does not agree with the designed model and hence a new model right from

the start is developed. Consider Newton’s 2nd law of motion in angular motion

 𝑀𝑧 = 𝐼⁡𝜃̈

Figure 5 Vehicle Two Wheel Equivalent Model for Steering Motion

𝑥

𝑦

F

𝑙

𝜃

𝜙

𝑀𝑧

28

It can be acquired from the figure above that the force acting along the line of the

vehicle longitudinal axis has no effect on vehicle steering motion, whereas the lateral

acting force steers the vehicle. Hence:

 𝑀𝑧 = 𝑙⁡𝐹 sin 𝜙

Comparing for 𝑀𝑧

 𝐼⁡𝜃̈ = 𝑙⁡𝐹 sin 𝜙

By applying Newton’s 2nd law of motion in translational form:

 𝐹 = 𝑚⁡𝑎

 𝐹 = 𝑚
𝑑𝑣

𝑑𝑡

𝑰⁡𝜽̈ = 𝒍⁡𝒎⁡

𝒅𝒗

𝒅𝒕
⁡𝐬𝐢𝐧𝝓

3.1

 𝜃̈ =
𝑙⁡𝑚

𝐼
⁡
𝑑𝑣

𝑑𝑡
⁡sin𝜙

We know that for a rigid body as shown in the figure above the moment of inertia is

defined as:

 𝐼 = 𝑚⁡𝑙2

 𝜃̈ =
1

𝑙
⁡
𝑑𝑣

𝑑𝑡
⁡sin𝜙

Integrating both sides over time

29

 ∫𝜃̈ = ∫
1

𝑙
⁡⁡
𝑑𝑣

𝑑𝑡
⁡sin𝜙

 𝜃̇ =
1

𝑙
⁡∫

𝑑𝑣

𝑑𝑡
⁡sin𝜙

Simplification of the product of a function in the integral it is calculated that:

 ∫
𝑑𝑣

𝑑𝑡
⁡sin𝜙 = 𝑣 sin𝜙

Therefore

 𝜃̇ =
𝑣

𝑙
sin𝜙 3.2

The equation (3.2) shows a relation of heading angle of vehicle with the steering angle

and the velocity as a direct relation. Here it is to be noticed that the time-varying

variables 𝜃(𝑡), 𝜙(𝑡)⁡𝑎𝑛𝑑⁡𝑣(𝑡) are written in simpler form as 𝜃, 𝜙⁡𝑎𝑛𝑑⁡𝑣 respectively. Let

us consider velocity as constant to focus on steering controller:

 𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

In order to design the equation of motion for vehicle steering in state space form, let

the system states as heading and steering angles of vehicle, whereas the output of

the closed loop system is desired as the heading of vehicle. And the control effort to

correct heading is the steering angle velocity. The states as defined above can be

written as:

 𝑥1 = 𝜃(𝑡)

 𝑥2 = 𝜙(𝑡)

Control is applied on rate of change of steering angle

 𝑢 = 𝜙̇(𝑡)

Heading angle is considered as output of the system

30

 𝑦 = 𝜃(𝑡)

Therefore the system becomes

 𝑥1̇ =⁡ 𝜃̇ =
𝑣

𝑙
sin 𝜙

 𝑥1̇ =⁡ 𝜃̇ =
𝑣

𝑙
sin 𝑥2

 𝑥2̇ =⁡ 𝜙̇ = 𝑢

Which can be summarized as

 𝑥̇ = [
𝑥1̇
𝑥2̇
] = [

𝜃̇
𝜑̇
]

𝑥̇ = [

𝑣

𝑙
sin 𝑥2

𝑢
]

Whereas

 𝑦 = 𝑥1

Comparing with generic state space form i.e.

 𝒙̇ = 𝒇(𝒕, 𝒙, 𝒖)

 𝑦 = ℎ(𝑡, 𝑥, 𝑢)

Here controlled system is:

𝑓(𝑡, 𝑥, 𝑢) = [

𝑓1(𝑡, 𝑥, 𝑢)

𝑓2(𝑡, 𝑥, 𝑢)
] = [

𝑣

𝑙
sin 𝑥2

𝑢
]

 𝒉(𝒕, 𝒙, 𝒖) = 𝒙𝟏

31

The system analysis shows following:

(a) Open loop plant model is time invariant.

(b) Plant is nonlinear.

(c) Output of system is not directly linked with control effort.

(d) 𝑓 is continuously differentiable in domain 𝐷𝑥 and 𝐷𝑢 (containing origin

𝑥 = 0, 𝑢 = 0

Algorithm Designing for Obstacle Avoidance

The foremost step required to accomplish the designing of Obstacle Avoidance

System is to divide the system into major subsystems. Then, as a second step a

general algorithm for the flow of work for each subsystem has to be developed. Figure

6 below shows main algorithm of OAS in which prediction of vehicle trajectory has

been designed.

Start

End

Vehicle
Heading

Curve Fitting
Quadratic Equation

Derivation

Previous 2 sec
heading values

Future Position
Calculation

Figure 6 Flow Chart for Trajectory Development

Impact Point Algorithm

The Impact Point Algorithm has been designed to work on the basis of trajectories

along with heading angle. The vehicle has been equipped with indigenously developed

trajectory prediction system as shown in figure 7 where the previous tracks have been

32

used to fit a polynomial curve and subsequently deriving the equation of the fitted

curve. The trajectory equation has been used to predict the future trajectory of the

vehicle. Impact point algorithms detect the moving obstacle and checks its heading

and speed from the data given by different sensors. The algorithm calculates the

trajectory of each vehicle and checks for point of collision. Obstacles are categorized

according to their speed and their heading.

Predictive Modelling

Predictive modeling uses mathematical and computational methods to predict an

event or outcome. A mathematical approach uses an equation-based model that

describes the phenomenon under consideration. The model is used to forecast an

outcome at some future state or time based upon changes to the model inputs. The

model parameters help explain how model inputs influence the outcome. [9] [10]

The impact point algorithm predicts the point of collision based on the rules of

predictive modelling. The approach predicts the future position of the obstacle by

considering the equation of the obstacle trajectory. This approach helps the obstacle

avoidance system in estimating the point of impact, which is avoided by the lane

change and velocity management.

To illustrate the predictive modelling in a better way, below are the equations of

trajectories of two different cars, based on these current equations, their future position

and point of impact has been estimated and avoided by the impact point algorithm.

Equation of the vehicle’s trajectory is as follows:

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦1 = −0.08125𝑥3 + 1.15𝑥2 − 3.475𝑥 + 6 3.3

The second car's trajectory is given as under:

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦2 = ⁡−0.7667𝑥3 + 12.85𝑥2 − 69.38𝑥 + 125 3.4

33

Figure 7 Estimating Point of Impact

From the given trajectories of the vehicles, the distance from the point of impact has

been calculated. The distance of the trajectory1 is calculated as

𝑑𝑖𝑠𝑡1 = 2.9398𝑚

The distance of the trajectory2 from the point of impact is

𝑑𝑖𝑠𝑡2 = 27.5690𝑚

The time each car will take to reach at that point of impact with the velocity of 10m/s

is 0.2940s for the first car, and for the second car it will take approximately 2.7569s.

The amount of time is to reach at point estimated point of collision is not same,

autonomous vehicle will not take the second car as a threat because it will reach to

the point way before the second car reach there and cause collision.

This trajectory calculation helps the car to prioritize the obstacle and take the smart

decision accordingly.

Stationary Obstacle Avoidance

To autonomously avoid the obstacle, obstacles have been categorized as stationary

and moving. The algorithm developed is displayed as in below given flow chart, where

Point of Impact

34

sensors give the obstacle profile and once it is detected as threat impact point

algorithm calculates the heading angle and avoid the obstacle.

Obstacle Detection Box

START Sensors O/P=1 Y
Calculating Obstacle

Height

yPass over it

N

NApply Brakes

Y

Calculating Turn
Angle

Change Lane

Y

N
Continue with Same

Speed

IF h<threeshold
Height

STOP

Is it
Avoidable

Destination
Reached?

N

Figure 8 Flow Chart of Stationary Obstacle Avoidance

Derivation of Stationary Obstacle Avoidance w.r.t Impact Point Algorithm

In this approach, the distance between car and obstacle is measured in time not in

meters. And calculating the distance from the obstacle before which car should be in

another lane. Assuming the avoided distance between car and obstacle is 2 seconds,

which is the international rule, to keep car apart from each other. So, in this thesis

distance of 2sec is the no go zone for the car.

35

Figure 9 Stationary Obstacle Avoidance

Time to avoid the obstacle is;

𝛿𝑡 = 2𝑠𝑒𝑐

From the distance formula;

𝛿𝑥 = 𝑣. 𝛿𝑡

𝛿𝑥 = 𝑥𝑓 − 𝑥𝑖

Assume the velocity of the car is v and the rectangular components of the velocity of

the car are:

𝑣𝑥 = 𝑣𝑐𝑜𝑠(𝜃)

𝑣𝑦 = 𝑣𝑠𝑖𝑛(𝜃)

So the position of the car be find from above equations.

𝑥 = ∫ 𝑣𝑥

𝑡𝑓

𝑡𝑖

. 𝑑𝑡

𝑥 = ∫ 𝑣𝑐𝑜𝑠(
𝑡𝑓

𝑡𝑖

𝜃). 𝑑𝑡

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Y-Values

(𝑥𝑖 , 𝑦𝑖) (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)

(𝑥𝑓 , 𝑦𝑖 + 3.6)

2𝑣

𝛿𝑥

𝜃

3.6

36

Similarly 𝑦 − 𝑎𝑥𝑖𝑠 value of the car is;

𝑦 = ∫ 𝑣𝑠𝑖𝑛(𝜃). 𝑑𝑡
𝑡𝑓

𝑡𝑖

Finding the final location of the car at which vehicle should be reached before the

distance of⁡2𝑣, so the new location of the car is (𝑥𝑓 , 𝑦𝑓)

𝑥𝑓 = 𝑥𝑖 + 𝑣𝑐𝑜𝑠(𝜃). (𝑡𝑓 − 𝑡𝑖)

And 𝑦𝑓 will become;

𝑦𝑓 = 𝑥𝑖 + 𝑣𝑠𝑖𝑛(𝜃). (𝑡𝑓 − 𝑡𝑖)

Where

𝛿𝑡 = 𝑡𝑓 − 𝑡𝑖

𝛿𝑥 = 𝑥𝑓 − 𝑥𝑖

By putting the values in the above equation we get the new values of 𝛿𝑥 and 𝛿𝑦 which

are:

𝛿𝑥 = 𝑣𝑐𝑜𝑠(𝜃). 𝛿𝑡

𝛿𝑦 = 𝑣𝑠𝑖𝑛(𝜃). 𝛿𝑡

By squaring and adding above given equations;

𝛿𝑥2 + 𝛿𝑦2 = (𝑣𝑐𝑜𝑠(𝜃). 𝛿𝑡)2 + (𝑣𝑠𝑖𝑛(𝜃). 𝛿𝑡)2

𝛿𝑥2 + 𝛿𝑦2 = (𝑣. 𝛿𝑡)2

And we can get the 𝛿𝑡 from above mentioned equation

𝛿𝑡 =
√(𝛿𝑥2 + 𝛿𝑦2

𝑣

By putting the value of 𝛿𝑡 in equation of 𝛿𝑥

𝛿𝑥 = 𝑣𝑐𝑜𝑠(𝜃).
√(𝛿𝑥2+𝛿𝑦2

𝑣

𝜃 = cos−1(
𝛿𝑥

√𝛿𝑥2 + 𝛿𝑦2
)

37

𝛿𝑥 should be selected as per car’s speed. From the very first argument we decided to

give the gap between the car and obstacle in time not in meters. So, if we want a

system to avoid the obstacle by 2 seconds, then the distance with respect to obstacle

is;

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑤. 𝑟. 𝑡⁡𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 = 2𝑣

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑜𝑓⁡𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 = 𝑥𝑜𝑏𝑠

So, we have

𝑥𝑓 = 𝑥𝑜𝑏𝑠 − 2𝑣

𝛿𝑥 = 𝑥𝑜𝑏𝑠 − 2𝑣 − 𝑥𝑖

Now for the lane change, one has to keep in mind the distances between the lanes, in

this system lane width of 3.6 meters has been assumed. So,

𝛿𝑦 = 𝐿 = 3.6

By substituting all the above values in the required heading equation, the new required

heading will be;

𝜽𝒓𝒆𝒒 = 𝐜𝐨𝐬−𝟏
𝒙𝒐𝒃𝒔 − 𝟐

√(𝒙𝒐𝒃𝒔 − 𝟐𝒗 − 𝒙𝒊)𝟐 + 𝜹𝒚𝟐

As the equation describes, 𝜃𝑟𝑒𝑞 depends on the position of the obstacle and car and

the velocity of the car and also the distance between the lanes.

Moving Obstacle Avoidance

The idea of autonomous car came into existence to minimize the traffic accidents and

the number of deaths caused by those accidents. In complex and a real environment,

there are many obstacles which can cause problem for driverless cars. The most major

obstacle is moving obstacle. Below is the simplified flow chart for an autonomous

vehicle to avoid the moving obstacle.

38

Obstacle Detection Box

START

Starts Calculating
Distance at every

instant

Distance
Closing?

Is it Avoidable?

Calculating Angle of
Turn

Continue with same
speed

Apply Brakes

Send command to
Cruise Control

STOP

Y

Destination
Reached?

Y

Sensor O/P =1

Y

N

N

Take the Required
Turn

N

Figure 10 Flow Chart of Moving Obstacle Avoidance

Derivation of Moving Obstacle Avoidance w.r.t Impact Point Algorithm

As explained earlier, the impact point algorithm works on the trajectories. It predicts

the future trajectory based on the current heading and speed and calculates the point

of impact and avoid it. To depict the better picture, the flow chart is given below.

39

Start Hitting Probability Calculation Collision Check

Moving
Obstacle

Trajectory

Own Current
Trajectory

Steering
Control System

End

Current
Speed

Yes

No

Moving
Obstacle

Speed

Trajectory
Building

Safety Level

Figure 11 Flow Chart of Moving Obstacle Avoidance w.r.t IPA

𝜃𝑟𝑒𝑞 for moving obstacle is the function of the following parameters.

𝜃𝑟𝑒𝑞 = 𝑓(𝑥𝑐𝑎𝑟, 𝑦𝑐𝑎𝑟, 𝑉𝑐𝑎𝑟 , 𝑥𝑜𝑏𝑠 , 𝑦𝑜𝑏𝑠, 𝑣𝑜𝑏, 𝛿𝑥𝑜𝑏𝑠, 𝛿𝑦𝑜𝑏𝑠)

There are two approaches to avoid the moving obstacle either to increase the heading

angle according to the obstacle distance and its speed or decrease the vehicle velocity

depending on the position of the obstacle with respect to the car. 𝑉𝑟𝑒𝑞 and 𝜃𝑟𝑒𝑞 has

been derived for the moving obstacle and results are attached.

For 𝜃𝑟𝑒𝑞, a scenario has been formulated for the two cars with different speeds and

different heading angles. But the future prediction of their trajectories shows the point

of collision, which should be avoided. The subject vehicle is approaching to the

obstacle with greater velocity and needs a 𝜃𝑟𝑒𝑞 according to its speed to move to the

next lane. The graphs of the vehicle’s trajectories are given below. The prediction of

the trajectories shows that there would be collision after 4 seconds.

40

Figure 12 Trajectories of Two Vehicle with Estimated Point of Collision

Below is the equation of the above given trajectories of the two cars moving with

different speed and the different heading angle is derived.

𝑦 = 𝑚𝑥 + 𝑏

130 = 30𝑡 + 10

Now calculating the time to reach at position 130, which is the point of impact for two

cars.

𝑡 = 4𝑠𝑒𝑐

Equation of the obstacle trajectory is given below.

130 = 20𝑡 + 50

Obstacle is reaching at point 130 in 4seconds. Which is the same amount of time and

thus 130 is the point of impact. Which needs to be avoided at any cost.

𝑡 = 4𝑠𝑒𝑐

Equating the time of impact for obstacle and vehicle will give the formulated time to

reach at the impact point.

𝑡 = 𝑡

30𝑡 + 10 = 20𝑡 + 50

Replacing the numerical values with the variable.

Point of

impact

Point of Impact

41

𝑣𝑐𝑎𝑟 + 𝑥𝑖 = 𝑣𝑜𝑏𝑡 + 𝑥𝑜𝑏

(𝑣𝑐𝑎𝑟 − 𝑣𝑜𝑏)𝑡 = 𝑥𝑜𝑏 − 𝑥𝑖

Time of impact of the moving obstacle and the subject vehicle can be calculated with

the following formula.

𝑡 = [
𝑥𝑜𝑏 − 𝑥𝑖
𝑣𝑐𝑎𝑟 − 𝑣𝑜𝑏

]

We need time to avoid the obstacle. Here international rule of the traffic has been

applied. Which is 2seconds distance from the front vehicle. So, time to avoid the

obstacle is;

𝑡 = [
𝑥𝑜𝑏 − 𝑥𝑖
𝑣𝑐𝑎𝑟 − 𝑣𝑜𝑏

] − 2

Now, we need to find 𝛿𝑥, which is the distance of the vehicle from the no go zone.

i.e. 𝛿𝑥 = 𝑣 ∗ 𝑡 and here t is time required to avoid the obstacle.

𝛿𝑥 = 𝑣𝑐𝑎𝑟 ∗ {[
𝑥𝑜𝑏 − 𝑥𝑖
𝑣𝑐𝑎𝑟 − 𝑣𝑜𝑏

] − 2}

Figure 13 Moving Obstacle Avoidance by Changing Lane

Now the car will change the lane, while considering the above mentioned parameters.

Lane distance is the 𝑦 − 𝑎𝑥𝑖𝑠 value and the 𝛿𝑥 is the 𝑥 − 𝑎𝑥𝑖𝑠 value of the map. So,

𝜽𝒓𝒆𝒒 = 𝐭𝐚𝐧−𝟏(
𝑳

𝜹𝒙
)

Where 𝐿 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑜𝑓⁡𝑙𝑎𝑛𝑒

Now calculating the 𝑣𝑟𝑒𝑞 for the moving obstacle and the value of 𝜃𝑟𝑒𝑞

42

Figure 14 Moving Obstacle Avoidance by Decreasing the Velocity

To decrease the speed at 𝛿𝑥 = 1𝑚 we need to find⁡𝑉𝑑𝑟𝑜𝑝

𝛿𝑥 =
(𝑉𝑐𝑎𝑟 − 𝑉𝑑𝑟𝑜𝑝)(𝑥𝑜𝑏 − 𝑥𝑖)

𝑉𝑐𝑎𝑟 − 𝑉𝑑𝑟𝑜𝑝 − 𝑉𝑜𝑏
− 2(𝑉𝑐𝑎𝑟 − 𝑉𝑑𝑟𝑜𝑝)

So we get the 𝑉𝑑𝑟𝑜𝑝:

𝑽𝒅𝒓𝒐𝒑 = 𝝍+√
𝜶 + 𝜷 + 𝜸

𝟒

Where;

𝜓 = 𝛿𝑥 + 4𝑉𝑐𝑎𝑟 − 2𝑉𝑜𝑏 + 𝑥𝑖 − 𝑥𝑜𝑏

𝛼 = 𝛿𝑥. (𝛿𝑥 + 4𝑉0𝑏 + 2𝑥𝑖 − 𝑥𝑜𝑏)

𝛽 = 4𝑉𝑜𝑏. . (𝑉𝑜𝑏 − 𝑥𝑖 + 𝑥𝑜𝑏)

𝛾 = 𝑥𝑖(𝑥𝑖 − 2) + 𝑥𝑜𝑏(𝑥𝑜𝑏 − 1)

𝑉𝑑𝑟𝑜𝑝 is the amount of velocity, which needs to be decreased when the obstacle is

getting closer and closer. It is the function of the velocity of the subject vehicle and the

moving obstacle and their positions.

Pseudocode of Impact Point Algorithm

Initialization:

1. Initialize obstacle_detected to zero.
2. Input obstacle_detected from pin x. /*reading sensor data and putting the

data acquired into a variable named
obstacle_detected. Pin X is arbitrary
pin to be appointed as the sensor data
pin (or obstacle detection circuitry
output). Obstacle profile will consist of

43

Obstacle Position in xy plane,
Obstacle Velocity (Vx, Vy), Obstacle

Heading angle θ*/
3. Set array obstacle[i] as obstacle_detected /*Obstacle profile building in an array

with i as the index of array e.g.
obstacle [1] is the structure containing
position, velocity and type of 1st
obstacle and so on.*/

Obstacle Detection:

4. Repeat step 2 and 3 for N times /*minimum array size required to build
the obstacle profile is N, N is the
number of times the sensors give
output to obstacle avoidance system
to build obstacle profile */

5. N>10 the higher limit of N depends on the
completion of obstacle profile, it will
stop repeating step 2 once the
obstacle will not be considered as a
potential threat.

6. Build obstacle trajectory /*by use of curve fitting tool and
preparation of equation of curve for
the detected obstacle. */

7. Input vehicle[i]=accelerometer /*Get vehicle position from
accelerometer*/

8. Build vehicle trajectory /*by use of curve fitting tool and
preparation of equation of curve for
own vehicle. */

Impact Point Estimation

9. Calculate obs_y = m1x1+c1 /*from equation in step 6. i.e. obs_y =
slope_obs_traj * obs_x + c1*/

10. Calculate veh_y = m2x2+c2 /*from equation in step 8 i.e. veh_y =
slope_veh_traj * veh_x + c2*/

11. POI_x = (c2-c1) / (m1-m2) /*by equating obs_y and veh_y to find
the x coordinate of point of impact*/

12. POI_y = m1*POI_x + c1 /*calculating y coordinate of point of
impact by putting values in step 9*/

13. POA = (POI_x - 2*v, POI_y) /*Point of avoidance is 2 sec before
the point of impact. Here 2*v is the
distance that vehicle covers in 2 sec.
whereas there is no effect on y
coordinate of POA*/

Case 1: Stationary Obstacle

14. Delta_x = POA – veh_x /* Distance with the POA is an input to
heading angle calculation formula*/

44

15. Delta_y = L /* L is lane to lane distance, for
obstacle avoidance by lane changing.
*/

16. If (obstacle speed==0) /* Stationary Obstacle Case*/

a. Calculated Theta_req /*𝜃𝑟𝑒𝑞 = cos−1
𝑥𝑜𝑏𝑠−2𝑣−𝑥𝑖

√(𝑥𝑜𝑏𝑠−2𝑣−𝑥𝑖)
2+𝛿𝑦2

*/

b. Output Theta_req /*Output reference signal to drive
control system*/

Case 2: Moving Obstacle

17. Else If (obstacle speed>0) /*Moving Obstacle case*/
18. Build obstacle trajectory /*by use of curve fitting tool and

preparation of equation (2nd degree
polynomial) of curve for the detected
obstacle. The equation is used to
calculate the future trajectory of
obstacle, the equation is parabolic but
at every instant it gives tangential
heading of obstacle*/

a. Calculated Theta_req /*𝜃𝑟𝑒𝑞 = 𝑡𝑎𝑛−1 (
𝛿𝑦

𝛿𝑥
)

Where 𝛿𝑥 = 𝑣𝑐𝑎𝑟 ∗ {[
𝑥𝑜𝑏−𝑥𝑖

𝑣𝑐𝑎𝑟−𝑣𝑜𝑏
] − 2}

and 𝛿𝑦 = 𝑤𝑖𝑑𝑡ℎ⁡𝑜𝑓⁡𝑙𝑎𝑛𝑒 */
b. Output Theta_req /*Output reference signal to drive

control system*/

19. Calculate Velocity_drop /*𝑉𝑑𝑟𝑜𝑝 = 𝜓 + √
𝛼+𝛽+𝛾

4
; where

𝜓 = 𝛿𝑥 + 4𝑉𝑐𝑎𝑟 − 2𝑉𝑜𝑏 + 𝑥𝑖 − 𝑥𝑜𝑏

𝛼 = 𝛿𝑥. (𝛿𝑥 + 4𝑉0𝑏 + 2𝑥𝑖 − 𝑥𝑜𝑏)

𝛽 = 4𝑉𝑜𝑏. . (𝑉𝑜𝑏 − 𝑥𝑖 + 𝑥𝑜𝑏)

𝛾 = 𝑥𝑖(𝑥𝑖 − 2) + 𝑥𝑜𝑏(𝑥𝑜𝑏 − 1)
20. Output Velocity_drop /*Output reference signal to drive

control system*/

Case 3: Dead-End Scenario

21. While (no alternate route available) /*i.e. all lanes occupied, traffic jam,*/
22. V_veh=V_drop /*V_drop is the calculated velocity

depends on the obstacle profile*/
23. End

Impact Point Software

Matlab based graphical user interface has been developed for the clear picture of the

algorithm. Different scenarios have already been tested on the software and results

have been analysed in chapter 4.

45

Figure 15 Software of Impact Point Algorithm

Software takes obstacle profile as input and based on the mathematical equations, it

calculates the avoidance angle and the desired velocity and generate its graph. User

can change the position velocity and lane of the subject vehicle and change the

category of the obstacle from stationary to moving by introducing its velocity.

Comparison

1. The obstacle avoidance system has been presented [8] based on fuzzy logics

and optimal control. Author has successfully achieved the task but the approach

is not suitable for more than three obstacles and for the simulation time greater

than 15 seconds. Simulations have been tested with four obstacles to check

the robustness of the system but system got crashed. Moreover, the system is

useless for the unavailability of the lane.

46

Figure 16 Obstacle avoidance for unavailability of lane [8]

2. The paper proposes four kinds of scheme for obstacle avoidance [11] which

are cruising, lane change, decelerating and emergency braking system. The

author has used two different models of vehicle, for braking scheme 3DOF

model has been used and 2DOF model has been used for cruise and lane

change scheme. In lane change scheme the velocity has kept constant, in

decelerating scheme, there is no concept lane change. Each scheme is working

independently.

3. The idea given in the paper [12] is based on model predictive approach. Lidar

sensor is used for obstacle detection. The scheme is presented only for the

unstructured environment, and there is no discussion of lane change, as soon

as it detects the obstacle, it generates an imaginary boundary around the

obstacle and avoids it by keeping safe distance from the imaginary boundary.

4. The approach [13] used the idea of parallax-based information for obstacle

detection and avoidance. Parallax is a displacement or difference in

the apparent position of an object viewed along two different lines of sight, and

is measured by the angle or semi-angle of inclination between those two lines.

The parallax angle to obstacles can be defined from the front vertices of the

vehicle or from the rear vertices of the vehicle. Using both front and rear parallax

angles gives some degree of freedom in weighting the obstacle threat

considering its relative position to the vehicle.

5. The approach designed for obstacle avoidance was for the semi-autonomous

vehicle [14]. Two scenarios has been designed for the obstacle avoidance. One

47

scenario is the driver scenario in which driver is attentive and the second

scenario is considered where driver is distracted.

Figure 17 Obstacle avoidance with Driver Assistance [14]

6. Hybrid navigation algorithm, vector field histogram and follow the gap method

have also been compared with Impact Point Algorithm and the comparison

table is given below in figure 18.

Analysis on Referred Work

The published work was reviewed. The model used in some of the approaches is

bicycle model which is two wheel equivalent model of vehicle referred in [8], [9], [10],

[11]. An analysis of performance of obstacle avoidance has been reviewed. Each

system has achieved its objectives of obstacle avoidance with some assumptions.

Some models have used limited obstacles for new velocity and heading angle

generation, and some are only applicable in unstructured environment. In unstructured

environment there is no concept of lane change because there are no road maps.

Impact Point Algorithm has also achieved the objective of obstacle avoidance and it is

based on the predictive modeling of trajectories. It estimated the point of impact and

avoids it by changing the lane with required velocity and required heading angle.

48

Algorithm Efficiency Convergence Time Complexity Remarks

Vector Field

Histogram

Low, calculation may

accurate but consumes more

memory and processor

No Requires more time to

generate a 2D grid and then

conversion to 1D polar

histogram

Difficult for micro-controller

as high computations are

required

Follow the Gap

Method

High, always selects shortest

path, able to avoid

symmetric obstacle

No Less time consuming as

decision are made on the

basis of current precepts

Fails in most of the

complex cases

Hybrid

Navigation

Medium, generates shortest

path but no limit to deviate

from path

Yes, but in some scenarios

car may stop in front of the

obstacle

Consume more time in

generating reference path

Requires high calculation,

consume more time

Impact Point

Algorithm

High, generates new heading

angle and velocity

Road limit is defined cannot

deviate from the path

Does not need much time to

calculate

Reference designing

makes the cruise control

more efficient

Figure 18 Comparison Table of Algorithm

49

CHAPTER 4 : RESULT ANALYSIS

In order to demonstrate lane changing by vehicle for Obstacle Avoidance, vehicle

heading angle is adjusted. A standard lane width of 3.6 metres is considered in this

regard

Stationary Obstacle Avoidance

In the first case of obstacle avoidance system a stationary object has been supposed

at a finite distance. The controller is calculating the angle of the car with respect to the

obstacle position and vehicle speed and its current position. The given below result is

the required heading angle of the vehicle. Which increases as soon as the obstacle

detected and once the car has started moving according to the required heading angle

the angle is decreasing with the time. And once the lane has been changed completely

the angle again drops to zero degree.

Figure 19 Required Angle to Avoid Stationary Obstacle

In this case the car is moving with velocity of 30km/h, and obstacle was detected after

5 second and to avoid the obstacle the angle calculated is 15.5 degrees. After 5

seconds of the movement of the car the obstacle was detected at the distance of 30m

i.e. v*t= 8.33*5=41.67m. So the position of the obstacle is approx. 71.67m. Now, as

the no go zone is 2v i.e. 16.66m. So the autonomous car has to reach to second lane

within a distance of 13.34m. For that required angle was 15.5 degrees calculated by

the impact point algorithm.

𝜃 = 15.5

50

Figure 20 X-Y Graph of Stationary Obstacle Avoidance

Case-2

In case-2 of stationary obstacle, autonomous car has the same velocity as in case-1

i.e. 8.33m/s; and obstacle was detected after 5 sec and it was at a far distance of

100m. To avoid the far object the calculated angle is very small i.e. Angle 2.54 degrees

Figure 21 Required Angle for Stationary Obstacle Avoidance

The car was at 41.67m and the obstacle was 100m far, i.e. 141.67m so no go zone is

[click] 16.67, so the car has enough distance to change the lane that is why the

required angle has been dropped from the 15.5 to 2.54 degrees.

16.66m 13.34m

2.54

51

Figure 22 X-Y Graph of Stationary Obstacle Avoidance Case-2

Moving Obstacle Avoidance

For an autonomous car when an obstacle is moving at a certain velocity the required

heading angle changes slowly and gradually and when it comes close to the no go

zone, the angle increases to avoid the no go zone.

In this particular case, when the obstacle was detected it was at a distance of 130m,

the angle generated by the impact point algorithm was 4.1 degrees, but at the same

time the distance between both cars was decreasing so the impact point algorithm

starts increasing the angle till it reach at the second lane.

Figure 23 Required Angle for Moving Obstacle Avoidance

16.66m
83.33m

4.1

7.5

52

Here velocity of the autonomous vehicle is 40km/h i.e. 11.11m/s so after 5 sec it was

at the position of 55.56m, velocity of the obstacle is 25km/h, i.e. 6.94m/s after 5 sec it

has covered the distance of 34.72m/s so they are coming close at the rate of 4.17m/s.

Figure 24 X-Y Graph of Moving Obstacle Avoidance

Case of Velocity Drop

The scenario is avoiding obstacle by decreasing the velocity of the subject vehicle. It

also applies in lane change cases when the subject vehicle is approaching the

obstacle with higher speed and by just obeying the heading angle command, may

result in a fatal accident of the subject vehicle. So it is very much necessary, even for

the lane change, that subject vehicle should decrease its speed by certain amount

which depends on the obstacle distance, obstacle speed, heading angle, subject

vehicle speed and its position.

Figure 25 X-Axis Graph of the Velocity Drop Case

53

The graph of X-axis shows the displacement of the autonomous car with respect to

time. In this case, the obstacle was detected at 5sec and both the lanes were occupied

so the impact point algorithm has dropped its speed to zero you can see from the

above given graph that time is increasing but displacement has stopped.

Now the below graph shows the velocity drop. Autonomous car has assigned the

speed of 15km/h i.e. 4.33m/s. At 5 sec the impact point algorithm has generated the

command of velocity drop and the velocity has been dropped till 4.33m/s.

Figure 26 Graph of Velocity Drop

54

CHAPTER 5 : CONCLUSION

A standalone model of collision avoidance is presented which is capable of

avoiding potential obstacles (stationary as well as moving). Different algorithms have

been proposed for the detection of objects, prioritization of the obstacle, lane follower

and the traffic rule follower are worth mentioning. Mathematical modelling of the

Impact Point Algorithm has been derived, which is tested with simulations using a

Matlab tool of Simulink®. Obstacles are categorized as stationary and moving

because it affect the vehicle heading angle and its speed also. Critical cases have

been discussed which are; sensors are not working properly from the very far distance

and obstacle has been detected at a finite distance. These situations need immediate

line of action to avoid the obstacle which may result in fatal accidents. In the last but

not least, the results are being analysed and explained in a separate chapter.

55

CHAPTER 6 : FUTURE WORK

Security Checks

Some obstacle are those which are no threats to the vehicle and does not cause any

harm, and some are small in size but can create a lot of mess. Obstacles may be

divided into different categories according to the threat they possess.

1.1. Low/No Risk Obstacle

1.2. Low to Medium Risk Obstacle

1.3. Medium to High Risk Obstacle

1.4. High Risk Obstacle

1.5. Critical Obstacle

This is important because there are times when the vehicle has to decide between

different obstacles.

Road Class

Road class decides the velocity of the vehicle and the speed limit on that road. Road

class may add, it contains the highway road, primary and secondary roads of the town.

There are also some roads which are categorized as local/urban class and vehicle

may have to run on the trails as well. Each type contains different rules and different

speed limits.

Road Surface/Condition

The condition of the road also affects the performance and cost function of the control.

One may include the road surface in its model for high accuracy.

3.1. Compacted (Rough) <40kph

3.2. Compacted (Smooth) >40kph

3.3. UN-Compacted (Rough) <40kph

3.4. UN-Compacted (Smooth) <40kph

3.5. Snow/ Ice

56

3.6. Mud/Sand

Obstacles

More Obstacle can be added like;

4.1. Pedestrians

4.2. Check Points

4.3. Debris/Wreckage

4.4. Downed Electric Lines

4.5. Landslide/ Mudslide

4.6. Wet crossing

4.7. Road Damage

4.8. Bridge

4.9. Cautionary Signs on the road

4.10. Elevation

4.11. Restricted Area

4.12. Traffic Lights

Last but not the least, the driverless vehicle should have the capability to prioritize the

potential threat and take the decision accordingly.

Implementation

A practical implementation of this work may be carried out. The designed algorithm be

implemented on any Vehicle to make it autonomous. A set of electronics would be

required to see the hardware implementation. In the same chain a real time hardware-

in-loop simulation can be prepared where a controller on board may be prepared and

implemented in the vehicle.

57

REFERENCES

[1] R. Whitwam, "How Google's Self-driving cars detect and avoid obstacles," in

www.extremetech.com, 2014.

[2] P. E. Ross, "Tesla's Model S will offer 360-degree Sonar," in IEEE Spectrum, 2014.

[3] V. Sezer, "A Novel Obstacle Avoidance Algorithm: "Follow the Gap Method"," Elsevier, 2012.

[4] M. Zohaib, "Control Strategies for Mobile Robot with Obstacle Avoidance," Islamabad.

[5] B. I. J Oroko, "Obstacle Avoidance and PAth Planning Schemes for Autonomous Navigation of a

Mobile Robot," in Sustainable Research and Innovation Proceedings.

[6] T. Z. J. S. X. L. Y Zhu, "A New Hybrid Naviagtion Algorithm for Mobile Robots in Environments

with Incomplete Knowledge," in Knowledge Based Systems, 2012.

[7] DARPA, DARPA Grand Challenge website, United States Department of Defence

[http://www.darpa.mil/grandchallenge/], 2008.

[8] W. K. Grefe, Integrating Collision Avoidance, Lane Keeping, and Cruise Controlwith an Optimal

Controller and Fuzzy Controller, Virginia: Virginia Polytechnic Institute and State University,

2005.

[9] David A. Dickey, N Carolina State U, Raleigh, Introduction to Predictive Modelling with

Examples, SAS Global Forum, 2012.

[10] T. Shrivastava, Perfect way to build a Predictive Model, https://www.analyticsvidhya.com,

2015.

[11] Hongyan Guo, Rui Jia, Zaitao Yu, Obstacle Avoidance for Autonomous Ground Vehicles based

on Moving Horizon Optimazation, Shenyang, China: Preceeding of the 11th world congress on

Intelligent Control and Automation, 2014.

58

[12] Jiechao Liu, Paramsothy Jayakumar, An MPC Algorithm with Combined Speed and Steering

Control for Obstacle avoidance in AGV, Ohio, USA: Preceedings of ASME 2015 Dynamic

Systems and Control Conference, 2015.

[13] J M Park, D W Kim, Y S Yoon, H J Kim, K S Yi, Obstacle Avoidance of Autonomous Vehicles based

on Model Predictive Control, Seoul, Korea, 2009.

[14] Andrew Gray, Muhammad Ali, Yiqi Gao, Semi-Autonomous Vehicle Control for Road Departure

and Obstacle Avoidance, University of Califorinia, Berkeley, USA.

[15] A. K. J Anupama, "Design and Development of Autonomous Ground Vehicle for Wild Life

Monitoring," International Journal of Innovative Research in Computer and Communication

Engineering, vol. 2, no. 5, 2014.

[16] D. Langer, "Autonomous Driving and Intelligent Vehicles," in Volkswagan Electronics Research

Laboratory, 2012.

[17] K. You, "Autonomous NAvigation and Obstacle Avoidance Vehicle," Florida, 2008.

[18] C. L. Kumari, "Building Algorithm for Obstacle Detection and Avoidance System for Wheeled

Mobile Robot," in Global Journal of Researches in Engineering Electrical and Electronics

Engineering, 2012.

[19] N. P. David Vissiere, Experiments of trajectory generation and obstacle avoidance for UGV, The

American Control Conference, IEEEXplore, 2007.

[20] S. S. J. E. M. &. R. O. S. D E Chang, Collision Avoidance for Multiple Agent System, 42nd IEEE

Conference of Decision and Control, 2003.

[21] A. V. &. AzimEskandarian, Research advances in Intelligent Collision Avoidance and Adaptive

Cruise Control, IEEE Transactions on Intelligent Transportation Systems, 2003.

[22] G. Li, "An Efficient Improved Artificial Potential Field based Regression Search Method for

Robot Path Planning," in Internation Conference on Mechatronics and Automation (ICMA),

IEEE, 2012.

59

[23] I. Kamon, A Range sensor based Navigation Algorithm, The International Journal of Robotics

Research, 1998.

[24] S. K. Kalmegh, "Obstacle Avoidance for a Mobile Exploration Robot using a Single Ultrasonic

Range Sensor," in Emerging Trends in Robotics and Communication Technologies (INTERACT),

IEEE, 2010.

[25] V.Sezer, "A New Fuzzy Speed Control Strategy Considering Lateral Vehicle Dynamics," in IEEE

Conference on Intelligent Transportation System, Alaska, USA, 2012.

60

APPENDIX A

SIMULINK MODELS

Stationary Obstacle Avoidance

Figure 27 Stationary Obstacle Avoidance Simulink Model

Moving Obstacle Avoidance

Figure 28 Moving Obstacle Avoidance Simulink Model

61

Velocity Drop Model

Figure 29 Velocity Drop Simulink Model

Figure 30 Velocity Drop Box

62

APPENDIX B

CODES

Graphical User Interface of Impact Point Algorithm

function varargout = OA_Software_v1(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @OA_Software_v1_OpeningFcn, ...
 'gui_OutputFcn', @OA_Software_v1_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before OA_Software_v1 is made visible.
function OA_Software_v1_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to OA_Software_v1 (see VARARGIN)
global h
clc;
h.veh.v=60/3.6;
h.veh.x=0;
h.lanewidth=3.6;
h.veh.y= (2 - 1) *h.lanewidth;
h.obs.v=0;
h.obs.x=100;
h.obs.y=h.lanewidth;
h.laneavailability=1;
% h.Euler=[20;0;0]*3.14/180;
% h.f=[500;500;500;500];
% h.m=1430;
% h.g=9.81;
h.simtime=1000/100; %in sec
% Choose default command line output for OA_Software_v1
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

63

% UIWAIT makes OA_Software_v1 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = OA_Software_v1_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function roll_Callback(hObject, eventdata, handles)
% hObject handle to roll (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of roll as text
% str2double(get(hObject,'String')) returns contents of roll as a

double
global h
h.veh.v=str2double(get(hObject,'String'))/3.6;

% --- Executes during object creation, after setting all properties.
function roll_CreateFcn(hObject, eventdata, handles)
% hObject handle to roll (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pitch_Callback(hObject, eventdata, handles)
% hObject handle to pitch (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of pitch as text
% str2double(get(hObject,'String')) returns contents of pitch as a

double
global h
h.veh.x=str2double(get(hObject,'String'));

% --- Executes during object creation, after setting all properties.
function pitch_CreateFcn(hObject, eventdata, handles)
% hObject handle to pitch (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');

64

end

function yaw_Callback(hObject, eventdata, handles)
% hObject handle to yaw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of yaw as text
% str2double(get(hObject,'String')) returns contents of yaw as a

double
global h
h.veh.y= (str2double(get(hObject,'String'))-1) *3.6;

% --- Executes during object creation, after setting all properties.
function yaw_CreateFcn(hObject, eventdata, handles)
% hObject handle to yaw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as a

double
global h
h.obs.v=str2double(get(hObject,'String'))/3.6;

% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as a

double
global h

65

h.obs.x=str2double(get(hObject,'String'));

% --- Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit8_Callback(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8 as a

double
global h
h.obs.y=(str2double(get(hObject,'String'))-1) *3.6;

% --- Executes during object creation, after setting all properties.
function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text
% str2double(get(hObject,'String')) returns contents of edit9 as a

double
global h
h.f(4)=str2double(get(hObject,'String'));

% --- Executes during object creation, after setting all properties.
function edit9_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

66

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit10_Callback(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text
% str2double(get(hObject,'String')) returns contents of edit10 as a

double
global h
h.m=str2double(get(hObject,'String'));

% --- Executes during object creation, after setting all properties.
function edit10_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit12_Callback(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit12 as text
% str2double(get(hObject,'String')) returns contents of edit12 as a

double
global h
h.simtime=str2double(get(hObject,'String'))/100;

% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

67

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global h

if h.obs.v~=0
 if h.laneavailability==1
 sim('one_moving');
 figure('outerposition',[100 10 1200 600],'title','Obstacle

Avoidance Software')
 subplot(1,2,1);
 plot(theeta_req.Time, theeta_req.Data,'LineWidth',3)
 axis([0 max(theeta_req.Time) min(theeta_req.Data)-2

max(theeta_req.Data)]+2);
 set(gca,'fontsize',14,'LineWidth',2);
 xlabel('Time(t) in sec','fontsize',16);
 ylabel('Req Heading Angle in deg','fontsize',16);
% legend('Desired heading','Current heading')
 subplot(1,2,2);
 plot(x.Data,y.Data,'LineWidth',3)
 set(gca,'fontsize',14,'LineWidth',2);
 axis([-1 max(x.Data) -1.8 16.2])
 xlabel('Position (x) in m','fontsize',16);
 ylabel('Position (y) in m','fontsize',16);

 else
 one_moving_vdrop;
 end
else
 sim('one_stationary');
 figure('outerposition',[100 100 1200 600])
 subplot(1,2,1);
 plot(theeta_req.Time, theeta_req.Data,'LineWidth',3)
 axis([0 max(theeta_req.Time) min(theeta_req.Data)-2

max(theeta_req.Data)]+2);
 set(gca,'fontsize',14,'LineWidth',2);
 xlabel('Time(t) in sec','fontsize',16);
 ylabel('Req Heading Angle in deg','fontsize',16);
% legend('Desired heading','Current heading')
 subplot(1,2,2);
 plot(x.Data,y.Data,'LineWidth',3)
 set(gca,'fontsize',14,'LineWidth',2);
 axis([-1 max(x.Data) -1.8 16.2])
 xlabel('Position (x) in m','fontsize',16);
 ylabel('Position (y) in m','fontsize',16);

end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

68

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

% --- Executes during object creation, after setting all properties.
function ipa_CreateFcn(hObject, eventdata, handles)
axes(hObject)
image(imread(strcat('impact point algorithm','.png')));
axis off

