
Passive Sonar Signal Detection and Classification

By

Mohtashim Baqar

Registration No.: NUST201260533MPNEC45312F

Thesis Supervisor: Cdr. Dr. Syed Sajjad Haider Zaidi PN

A THESIS

Submitted to

Department of Electrical and Power Engineering,

Pakistan Navy Engineering College,

National University of Sciences and Technology

in partial fulfilment of the requirements

for the degree of

Electrical Engineering (Communication) - Master of Science

June 2016



Abstract

Sound Navigation and Ranging (sonar) systems have long been employed for acoustic

signal acquisition and processing in underwater environment. Since 20th century sonar

systems have been in use, though major developments in this domain were made post

world war II [56]. Further, major areas pertaining to research in this domain have been

the development of efficient detection & classification systems, modelling of underwater

environment, tracking and telecommunications. Sonar operates in two modes, namely,

active and passive. Both active and passive sonar systems are widely deployed in military

applications though they have also been used in scientific and commercial applications.

Signal detection and classification in underwater environment has been the challenge that

researchers are fazed with for years primarily due to the non-linear mixing of the noise

producing sources and non-stationary (statistical properties of the signal varies randomly

if it is observed for longer periods) nature of the underwater environment. Problem at

hand in this work is the development of a processing system capable of detecting and

classifying objects based on noise radiated by underwater sources. Overall proposed

model comprised of two sub-modules; a front-end unit and a back-end unit. The front-

end unit is used for extracting distinguishing feature set by employing various detection

techniques whereas the second sub-module, the back-end unit, is used for providing au-

tomated & efficient signal classification by employing template matching and machine

learning techniques. For detection, wavelet analysis (daubechies and symlets), classical

signal detection approaches for sonar systems, namely, detection envelope modulation

on noise (DEMON) and low frequency analysis & ranging (LOFAR) have been used. Be-

sides, renowned speech signal processing techniques have also been employed for feature

extraction, namely, linear predictive analysis (LPA), linear predictive cepstral coeffi-

cient (LPCC), mel-frequency cepstral coefficient (MFCC), perceptual linear prediction

(PLP/ BFCC) and gammatone cepstral coefficient (GTCC). Further, for the purpose

of classification, variants of neural networks (NN) and dynamic time warping (DTW)



have been used. Classifiers include, multilayer feed-forward neural network (MFNN),

variable learning rate neural network (VLR-NN), radial-basis function neural network

(RBF-NN) and dynamic time warping (DTW). Further, to make a computationally low

cost system, dimensions of the feature set were reduced using principal component anal-

ysis (PCA) and linear discriminant analysis (LDA). Effects of dimensionality reduction

were observed on classification rates. In addition, two relatively newer approaches for

feature learning and classification have also been used i.e. convolutional neural network

(CNN) and multi-linear principal component analysis (MPCA), respectively. Justifica-

tion for inclusion of the lateral two approaches has been their effectiveness in problems

related to detection and classification of tensor objects. Further in light of recent and

latest available studies, convolutional neural networks (CNNs) have worked well with

greater efficiency in speech classification problems. Moreover, amongst all the applied

techniques, the lateral two have produced best classification accuracies i.e. up to 99.4%.

Also, a graphical user interface (GUI) has been developed for performing LOFAR and

DEMON analysis on recorded and live streams. All scripts have been written and sim-

ulations have been done in MATLAB. In this study, two datasets have been used for

evaluating performance of the aforementioned detection and classification schemes i.e. a

raw dataset acquired via passive sonar platform, having samples belonging to 4 distinct

classes of ships and a synthetic dataset, taken from a database [79], having samples

belonging to 20 different classes of underwater objects i.e. sea species and man-made

objects. Further, the system was tested under noisy conditions at different levels of

signal-to-noise (SNR) ratio i.e. −20,−10, 0, 10, 20. Noisy samples were generated via

adding standard normal distributed synthetic noise to the source samples i.e. additive

white Gaussian noise (AWGN). Results obtained have shown good recognition rates and

a lot of promise.
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1 Introduction

1.1 Introduction

Sound Navigation and Ranging (sonar) signal processing system utilizes propagation of

sound in water for object detection, classification and communication. Prime objective

of the said system is to analyse underwater environment and use it to advantage in

navigation, tracking, surveillance, sea tomography and for detecting fishes etc. It has

applications in both commercial and scientific world. It has been used to greater extent

in military applications for surveillance and tracking purpose. Sonar operations are put

into two categories; passive sonar systems and active sonar systems. Passive sonar only

listens to the radiating sources in underwater environment whereas active sonar radiates

and listens to it’s echo to make decisions. They are mostly used in military settings

for surveillance and tracking etc. whereas active sonar systems are used in applications

related to sea tomography etc. Sonar setup comprised of sensors i.e. hydrophones, with

a backhand processing unit that enables efficient detection and classification of objects.

Modes of operation of a sonar system are illustrated in figure 1.1.

Figure 1.1: Sonar Modes of Operation [56] (a) Passive Mode (b) Active Mode

1



Passive Sonar Signal Detection and Classification 1 Introduction

As mentioned earlier, mostly passive sonar systems are deployed in military settings.

So, that raises the need of a processing system that enables automated decision making

for object classification. This thesis aims at building a passive sonar signal detection

and classification system for underwater signalling sources. Scope of this work includes

performance evaluation of detection and classification schemes for sources in underwater

environment.

Passive sonar listens to noise (vibration or sound) radiated by objects. Signals

captured using hydrophones are processed for detection and classification of objects.

Captured signals can be from sources of different and distinct nature i.e. from a target

(Ship, Submarine), self-noise of the sonar platform or the sea ambient noise.

Detection and classification of underwater objects is a complex task. Major factors

influencing classification of objects in underwater environment are listed below [40]:

1. Variations in operating conditions of the source or target.

2. Variations in the environmental conditions.

3. Due to the presence of spatially varying clutter of sources.

4. Due to variation in target’s shape, orientation and composition.

5. Finding common discriminating feature set for signalling sources acquired using

different and spatially dislocated sonar platforms.

6. Bottom features such as coral reefs, sand formations and vegetation plays role in

obscuring the target or could confuse the detection process.

Initial step of processing is the estimation of direction of arrival (DOA) of the radiat-

ing source. It is usually accomplished using beam-forming techniques [19]. Afterwards,

acquired signal from estimated direction is preprocessed to remove artefacts, that is,

presence of unwanted signalling components from other sources from neighbouring di-

rections. Proportion of interfering sources in the mixture depends upon the bearings

(DOA) resolution. Methods like, independent component analysis etc., are employed to

remove unwanted signalling components.

National University of Sciences & Technology 2



Passive Sonar Signal Detection and Classification 1 Introduction

After required signal conditioning and pre-processing, signals are fed to the feature

extractor to extract discriminating characteristics of the source. Then, the extracted

feature set is passed on to the classification unit for automated recognition. However,

signal conditioning and preprocessing is not considered under the scope of the presented

work.

To implement detection module, several signal processing techniques have been used,

including, wavelet analysis, renowned sonar signal detection techniques i.e. detection of

envelope modulation on noise (DEMON) and low frequency analysis & ranging (LO-

FAR), and some of the most renowned speech signal processing techniques i.e. linear

predictive analysis (LPA), linear predictive cepstral coefficient (LPCC), perceptual linear

prediction (PLP), mel-frequency cepstral coefficient (MFCC) and gammatone cepstral

coefficient (GTCC). For classification module, machine learning techniques have been

employed, including, a template classifier i.e. dynamic time warping and variants of neu-

ral networks i.e. multilayer feed-forward neural network (MFNN), variable learning rate

feed-forward neural network (VLR-NN), radial-basis function neural network (RBF-NN)

and convolutional neural network (CNN).

Also, measures have been taken to make an efficient and computationally low-cost

detection and classification system. To fulfil the said purpose, dimensions of the feature

set have been reduced and effects of it were observed on classification rates. Further,

two linear subspace learning approaches i.e. principal component analysis (PCA) and

linear discriminant analysis (LDA) and one multi-linear subspace learning approach i.e.

multi-linear principal component analysis (MPCA), have been used for dimensionality

reduction.

Constraints, including non-stationarity of the underwater environment and signalling

mixtures are not considered in this work. The focus is primarily on to build an under-

water object detection and classification system to assist the sonar operator.

1.2 Motivation for Proposed Work

Though in-numerous distinct work has been done in area of sonar signal processing for

object detection and classification, but still there exist many constraints & challenges

National University of Sciences & Technology 3



Passive Sonar Signal Detection and Classification 1 Introduction

that halts development of a perfect expert system. Few of the challenges that motivated

for this proposal are as under:

• Lots of distinct work have been presented in the literature for sonar signal detection

and classification but most of it has been targeted to a specific platform or limited

to a specific environment. There are no standard go to methods available in

literature. Meanwhile, it is very difficult to find correlation between the works

available in literature [42].

• Not much thorough work has been done to investigate the performance of detection

and classification methods for objects of distinct nature. Majority of the work deals

with automated recognition systems for objects of similar nature.

• Most of the literature deals with the use of conventional sonar signal detection tech-

niques, not many thorough studies have been conducted to exploit other acoustic

signal detection techniques for object detection in underwater environment.

• Having an efficient detection and classification system been the principal task but

computation load of the system is one of the other key factors to be considered

because it effects a lot of other system attributes i.e power consumption, memory,

delays and processing time etc. Not much work available in literature investigates

methods that paves way for development of a computationally low-cost detection

and classification system without compromising on recognition rates.

• Multi-linear subspace learning and deep learning approaches have been successfully

extended to applications of speech recognition but haven’t been tested to classify

underwater acoustic transients.

1.3 Research Objectives

Keeping in mind the challenges and constraints towards building an efficient detection

and classification system, the objectives of this study are:

• To present a comprehensive study, evaluating performance of various detection and

National University of Sciences & Technology 4



Passive Sonar Signal Detection and Classification 1 Introduction

classification approaches outlined in literature.

• To evaluate performance of the system using samples from distinct underwater

acoustic sources obtained via passive sonar platform as well on the synthetic

dataset.

• To make the system computationally low-cost, two linear subspace learning meth-

ods i.e. principal component analysis (PCA) and linear discriminant analysis

(LDA), and one multi-linear subspace learning method i.e. multi-linear principal

component analysis (MPCA) will be applied. Moreover, effects of dimensionality

reduction on recognition rates will also be observed.

• To evaluate performance of all the applied schemes under the effects of noise i.e.

noisy samples will be generated using additive white Gaussian noise (AWGN) at

different levels of signal-to-noise ratio (SNR).

• To develop a graphical user interface (GUI), implementing DEMON and LOFAR

analysis for recorded as well as real-time acoustic streams.

1.4 Thesis Organization

The thesis comprises of six chapters. Chapter one covers the overall introduction to

sonar systems, their operations and work undertaken in this study. It includes, motiva-

tion for the proposed work as well as the research objectives. Moreover, main objectives

of the proposed study are discussed in chapter one. Chapter two presents the compre-

hensive literature review, highlighting major contributions made in this area of research.

Chapter three describes the proposed detection, classification and dimensionality re-

duction techniques along with their mathematical models. Chapter four gives details

of simulation environment and parameters. It also provide detailed summary of simula-

tion results. Chapter five provides overall conclusion of the proposed work undertaken

in this study. Chapter six gives recommendations for future work in this area.

National University of Sciences & Technology 5



2 Background

Automated recognition of objects in underwater environment is deemed a difficult task

because of large variations in both temporal and spectral characteristics of the signals

even if they are obtained from one source [56]. Signals acquired via sonar platform

comprises of noise radiated from vessels and underwater species i.e. whale, porpoise,

mantis shrimp etc. Every signal has its own characteristics that are identified or la-

belled by human experts either by listening or by investigation of spectrograms of the

processed signals. Though, it is not an objective approach for humans to identify tonal

characteristics of a source all by themselves. So, this creates need for an automated clas-

sification system to reduce the sonar operator’s load. For automated recognition, a good

feature extraction process is needed and to complement the detection process a strong

classifier should be selected. For classification, among many, neural network classifier is

one of the most sought after machine learning paradigms that helps in achieving good

classification rates even when the problem is highly non-linear. Furthermore, owing to

the adaptive nature and parallel processing ability of neural networks, they have been

applied in many applications i.e. sonar signal processing [16][30][31], antenna modelling,

speech recognition [12][49], facial recognition etc.

Further, studies specifically underlying development and analysis of sonar frame-

works are far and few whereas most of them have relied upon synthetic acoustic dataset

while some dealt with real-time acoustic samples acquired via sonar platform. Sonar

data acquisition is a costly and time taking process which requires a lot of resource,

so most of the studies conducted have used synthetic acoustic sample set. Moreover,

extraction of optimum feature set and classification are two major components that de-

fines the performance of a sonar signal processing unit. Among the classifiers, neural

networks along with Markov chains [9] and its variants, namely, hidden Markov models

(HMM) etc., have shown better results. Many research organizations and universities

have initiated programs in order to develop sensor based autonomous underwater ve-

6



Passive Sonar Signal Detection and Classification 2 Background

hicles (AUV) to serve the needs of military in coastal environments. For example, a

program was initiated at Massachusetts Institute of Technology, MIT, to build and test

a low Frequency sonar system with the name of Generic Ocean Array Technology Sonar

(GOATS) [24]. Passive sonar system comprises of an acoustic receiver that listens to

noise radiated by the sources and a processing unit i.e. detector and classifier. Moreover,

characteristics of methods used for feature extraction and classification are of particular

importance to have good classification accuracies. This chapter presents a comprehen-

sive literature review of the work conducted for signal detection and classification of

objects in underwater environment.

Features and Feature Extraction Methods: Characteristics of a source or target lies

within it’s spectrogram i.e. spectral content. Though, processing systems making use of

pure spectral content met little success in the early era of sonar signal processing [80].

In addition, classification of underwater vehicles is much more complicated as compared

to surface vehicles. Further, understanding the nature, characteristics of environment

and radiating sources is key to achieving good detection and classification rates. Many

studies reiterated that characteristics of surroundings and underwater environment are

Gaussian in nature while others stated them to be non-Gaussian [83]. Some of the most

common ambient noise producing sources with their spectral characteristics as described

in [80] [11] are as follows:

1. Seismic Disturbance

2. Biological Organisms Activities

3. Distant Shipping

4. Swirl and Wind

5. Thermal Noise

6. Oceanic Turbulence

Moreover, distant shipping and wind are prime contributors to ambient noise. Level of

noise depends upon the distance from the ship and condition of the sea. In deep sea
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environment, distant shipping noise is dominant in the frequency regions from about

10− 20 Hz to 200− 300 Hz whereas wind noise is dominant in the regions from about

200− 300 Hz to several tens of KHz. Spectral density of the ambient noise is relatively

smooth in the acoustic region.

Radiated Noise: Noise radiated due to machinery and motion of underwater and

surface vessels has both narrowband as well as broadband component. Propellers and

hydro-dynamic turbulences produces noise covering wider bands. The narrow band

components are due to the propulsion system and auxiliary machinery. Moreover, speed

of the vessel also contributes to the overall radiated noise and has fair reflection in the

spectrum of the source. Major reason of research and development in this area has been

due to the strange nature of the underwater environment and its effects on radiated

signals. Environment’s effect on signal characteristics is described as follows,

1. Rapid change in characteristics of a signal over time and frequency.

2. Variation in the overall energy of the signal due to multipath propagation.

Dominant Noise Generating Mechanisms: Works in [64] [63] [80] have given an

excellent description of kind of noises radiated from ships, submarines and vessels in

underwater environment. Based on the assessment and analysis performed by authors,

these noises were found dominant and categorized as follows:

• Propeller Cavitation Noise: The high pressure created on the suction surface

of the propeller rotating in water generates cavitation noise. Further, number of

blades, blade geometry, propeller’s rotation per minute, forward speed of the vehi-

cle and ambient conditions dictates the intensity of cavitation noise. Analysis and

calculations have shown that merchant vessels generates the most cavitation noise

followed by submarines and warships. Cavitation noise for submarines decreases

with submergence.

• Blade Rate Tonals: More or less in all marine vessels pusher propellers are

used, operating in turbulent and non-uniform wakes. This results in oscillations

at multiples of blade-rate frequency.

• Piston Slap Tonals: Piston-slap refers to the impact of piston against cylinder
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wall. Noise generated due to piston slap depends upon the mounting arrangements

and vibration isolation used in ship structures. Though, it is one of the most

dominant noise generating source in all diesel and reciprocating compressors used

in ships. It is not considered important for slow-speed diesel ships.

• Gear Noise: Gear Noise is also one of the common type of noise radiated from

marine vessels. Marine engines use reduction gears and transmission error in gears

produce gear noise.

• Injector Noise: Injector noise is mainly due to the needle settling impact in the

fuel injection system. Typical values of noise intensity are in between 50 to 60 dB

re 1 microPA. It can be a key classification attribute for vessels whose injector

noise do not get suppressed due to cavitation.

• Low Frequency Radiation of Hulls: Noise due to hull of surface is usually

negligible because ocean surface produces negative image of the source within

half-wavelength of the hull source, thus almost cancelling it out. Moreover, low

frequency hull radiation is an important factor for classification of submarines as

the image cancellation is much less and also due to the fact that propeller cavitation

noise is also absent.

• Propeller Speed and No. of Blades: Propeller’s blade causes cavitation noise

to modulate at the blade’s frequency rate. A standard method to detect such noise

is detection envelope modulation on noise (DEMON), the composite noise is filtered

using a bandpass filter to isolate the high frequency cavitation noise components.

Filtered noise components are passed through a square law demodulator and a

low pass filter for detection. Finally spectrum is analysed of the acquired signal

for any given target. Number of blades can be determined by dividing the blade

frequency with the shaft frequency.

• Types of Propulsion: Low speed vehicles have engines with speed up to 400

RPM and produces slap piston tonals in the range of 3 − 9 Hz. Medium speed

vehicles have speeds in the range of 400 RPM to 1000 RPM and the piston slap

noise is in the range of 7 to 17 Hz. Moreover, extraction of piston slap tonal can

help in classifying objects on the basis of propulsion speed.
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• Injector Noise: In most marine engines, fuel injector system generates a single

frequency component that is at about 1700 Hz and has a broadband spectrum

of around 5000 Hz. With spectral analysis total injector noise component can be

detected.

In a work, Urick [80] stated that signals radiated from ships can be placed into three

categories: machinery signals, propeller signals and hydrodynamic signals. Machinery

signals are generated due to vibration of various parts of ship i.e. shafts, armature, gear

teeth, turbine blades etc. They produce line spectra; a predominant tonal component

with frequency being the fundamental frequency of vibration. In addition, the likes of

pumps, pipes and valves contributes to continuous spectra while superimposing the tonal

components. Propeller signals are generated outside the hull as a consequence of pro-

peller’s movement and by virtue of vehicle movement in water. These cavitation signals

form due to the rotation of the propeller. Also, propeller signals also produce a tonal

spectra in addition to the continuous spectra of cavitation signals. Lastly, hydrodynamic

signals are produced as a result of irregular and fluctuating fluids motion. It consists of

Gaussian signals and flow signals generated by the hull of the vessel and the ambient

signals in the ocean, respectively. Further, it is quite clear from above discussion that

tonal components hold characteristics of the vessels. Some of the tonal components vary

with the speed of the engine whereas some stay the same.

Work in [61], presented a study for passive sonar signal detection and classification

where a feature set representing four classes of ships were taken into account. An expert

system RECTSENSOR was developed to classify objects. Methodology adopted by the

system to calculate accurate decision was based on slightly modified version of Dempster-

Shafer theory. This study also highlighted major noise generating mechanisms in ships

& submarines along with methods to identify key discriminating feature set.

• Expert System: The proposed system had three major elements; an inference

engine, a knowledge base and a database. The knowledge base has all the rules

and regulations relating to the facts about the object and environment. Database

used, has been developed according to the context. The inference engine helps

in overlooking the reasoning process in conjunction with the database. In the

proposed model, the knowledge base was created using PROLOGUE, an object

oriented programming language with a unique ability to infer facts from other facts.

Using heuristics, PROLOGUE executes the matching process. It attempts to find
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out facts that satisfies a particular condition. If it fails, the system back-tracks

to the previous fact and tries to prove it again with a new binding. The actual

implementation of the expert system took only four vessels into consideration

while using nine discriminating features in the feature set. Flow of the system was

such that on acquiring signals, it extracts features and store them in a database

through a dialogue session. This session could be that the system may ask the user

to provide information about the type of propulsion etc. Moreover, the selected

type is stored in the database. It is imperative that the performance of the expert

system depends upon the feature extraction method as well as the measure of

the portion of the total belief which is committed to different classes of vessels

by these attributes. An accuracy index is used so that it gives the measure that

the direction is towards the correct solution. The accuracy index can hold values

between 0.5 and 1. Its value is decided by taking into account some conditional

probabilities pertaining to features and targets.

Also, work has also been put in to model cavitation in acoustic environment. In

a work [44], authors tried to improve the cavitation model by including the effects of

acoustic losses which comes from taking the compressibility of fluid into consideration.

Moreover, losses due to heat were also considered. For sonar signal analysis, building

a cavitation model is a necessity while working on detection and tracking of objects

based on radiated cavitation noise. In another study [17], a model was build to find the

effects of masking by shipping and surrounding noises on the sounds generated by the

protected animals for communication purpose i.e. whales. As spectra of both comprises

low frequency components and size of species makes it nearly impossible to conduct

any experiment in captive, controlled and close environment. So, this study gave a

qualitative analysis of the noisy effects that shipping and surrounding sounds may have

on the sounds produced by the sea specie i.e whale.

In [15], Chin-Hsing Chen applied neural network classifiers to investigate the feasi-

bility of neural networks to problems where the tonal component is varying with respect

to the speed of the object.

Apart from the usage of spectral contents as features for classification of objects,

studies have also shown the usage of autoregressive models for automated recognition

of objects [25]. In a study, autoregressive models were used to classify three types of

propulsion systems i.e. high speed diesel, low speed diesel and turbine [44]. Also, there
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have been studies to categorize vessels. Mainly, classification is done based on vessel

speed, blade-rate of propeller, location of the tonal components of the machinery, injector

noise, gear noise and due to the low frequency radiations from the vessel. All of these

mentioned features can be extracted from the spectrum of the noise generating object.

Many estimation techniques have been proposed exploiting patterns in the spectrum of

the objects for efficient detection and classification. Algorithm proposed in [43] used

about six parameters, acquired from the spectrum of the source and classification was

performed by comparing the extracted feature vector to the ones in the database using

euclidean distance as the metric for comparison. Due to the presence of noise, unknown

features appear in the spectrum that makes classification difficult or impossible at times.

Another method discussed in [74] utilizes power spectrum for distinguishing between

four different vessels. Moreover, the method utilizes two-pass split window (TPSW) for

estimation of background noise of the sonar platform.

Further, auto-Regressive (AR) models and cepstral coefficients are highly dependent

on signal-to-noise ratio (SNR) while spectral components being more robust to variations

in signal over time. Moreover, AR models are usually used in stationary conditions or

in short time signal processing. features are used as inputs to the classifier. A lot of

studies suggested HMM over other classifiers because of its optimum performance and

robustness. In an environment prone to noise, radiated signals from a source may suffer

degradation and interference, but the spectral features seem to remain unchanged, this

highlights the importance of dealing with spectral features for classification. However,

in severe noisy conditions, it is difficult to detect main features. Moreover, spectrum

may very well be showing wrong amplitudes or positions of features.

For underwater object classification, feature set required to discriminate objects

usually comprised of spectral contents of the sources. Spectral densities are more ro-

bustness and give better estimates as compared to statistical or parametric modelling

of sources. But using only the spectral information obtained from sources with out

any transformations can yield false detection and classification. It is because of high

variations in spectral characteristics of a signal, mainly due to the presence of ambient

and system noise. More or less, methods available for detection and classification takes

power spectral density estimates into account but due to the environmental conditions,

performance level of the system may degrade substantially. In such cases either some

transformation helps in deducing discriminating features or some higher order spectrum

can help in target recognition. In a work [84], authors suggested to use higher-order es-
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timates in conjunction with the power spectral density estimates for target recognition.

This work analysed the advantages and disadvantages of using power spectral estimates

and higher-order estimates as features. Moreover, a multilayer neural network was used

for classification. Results observed showed that usage of BP neural network and com-

bining the two said information improves the classification rates. In another work [43],

an expert system, named ”EXPLORE” was developed to identify the types of noise

radiated by underwater objects. Set of targets, comprised of surface ships, cargo ships,

speed boats, submarines and fishing vessels were taken into account. System used fuzzy

logic and clustering for decision making. Moreover, feature vectors were mapped into

the Hilbert space which then were used for detection. System was tested with several

hundred samples and the results obtained showed that the expert system, EXPLORE,

is intelligent in recognizing underwater targets even at very low signal-to-noise ratio

(SNR).

Markov models have been very effective in classification problems having to deal

with variable length feature set i.e. speech recognition and classification.

Markov Models: Markov models and their variants have shown greater stability in

classification problems related to objects in underwater environment. They have proven

to be at the optimum in detection/ classification problems related to acoustic signal

recognition [60]. Presently, many speech recognition algorithms use HMM as classifier

where speech sequences are modelled as states of the HMM classifier with probabilities

assigned to each state of the classifier. Moreover, probability densities are associated

with acoustic observations. These observations are spectra or cepstra corresponding to

several states and state transitions. The states are identified while observing the patterns

in the acquired spectra. In speech, a left to right topology is used while a mesh topology

can be very useful in sonar signal detection and classification, where transition from one

state to any state is possible. The left to right model is known as bakis model whereas

a fully connected topology is referred as an ergodic model. Although HMM approach

has two major problems and they are,

1. Identification of optimum methodology for feature extraction.

2. Training of model for extracted feature set.
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Neural Networks and Their Variants: Neural Networks are widely used in classifica-

tion problems because of their ability to learn and cluster [41] [28]. Amongst several

neural network architectures, radial-basis function neural network (RBF-NN) is exten-

sively used due to its fast convergence and low computation cost. RBF-NN works on

the criteria of Euclidean distance measure and is extremely sensitive to the magnitude

of feature vector. Two vectors having to be apart in space can produce high Euclidean

distance measure whereas in contrast, Hausdorff similarity measure (HSM) is able to

combat this separation in space with similar Euclidean measure and discriminate them

well. Moreover, Hausdorff similarity measure (HSM) is usually used for two dimensional

feature set [8].

Another approach that has been used a lot for underwater object classification is

probabilistic neural network (PNN); having one input, one hidden and one output layer.

Number of neurons in the input layer depends upon the dimension of the feature vector,

number of neurons in the output layer are the same as the number of class labels and

neurons in the hidden layer depends upon the factor ’n’ whereas the parameter ’n’ is

chosen, such that, good convergence can be achieved i.e. error function should be at

optimum minimal. In PNN, parzen method for PDF estimation is used. At the end of the

training mode, each class appears as the center of the Gaussian function i.e. mean of the

Gaussian function. The conventional PNN needs an input parameter called the spread

value of the parzen window. The variance of the Parzen window is directly proportional

to this spread value. The difficulty or disadvantage is the selection of an appropriate

spread value. Too small value produces a spiky PDF whereas too large value produces

a smooth PDF. To overcome this problem, a new approach of multi-spread PNN was

proposed [26], where each class can be assigned a different spread value. This method

is useful where the intra-class variance is different in each class. MSP-NN is a neural

network technique which estimates the PDF of the training data set using Parzen window

while using different spread values for each class. Results obtained with MS-PNN are

much better compared to those obtained with PNN.

Another article [81] discussed an approach for feature extraction and classification i.e.

short-time Fourier transform (STFT) for feature extraction and finite impulse response

neural network (FIR-NN) for classification. A database (courtesy: Defence Research

Establishment, Canada) was used for performance evaluation of the proposed system.

Apart from neural network classifier, other machine learning methods were also employed

with former giving better recognition rates. In a study, Duda [23] used Probabilistic
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Neural Network (PNN) for classification of objects based on features extracted using

autoregressive model. Performance evaluation of the proposed system was made using a

synthetic and a recorded acoustic dataset. Authors in [84] discussed the advantages and

disadvantages of keeping both the low frequency as well as the high frequency contents

of the acoustic samples as part of the feature vector. Features were classified using

a modified artificial neural network via back-propagation algorithm. Two feature sets

were fed to the neural network classifier i.e. feature set acquired via autoregressive model

whereas second feature set comprised of pure spectral contents of the radiating sources.

The modified neural network classifier was referred as the multi-spread probabilistic

neural network (MS-PNN). As discussed, noise radiated by marine objects in ocean

contains information about their attributes while spectral estimates of these noisy signals

are used for the detection and classification of objects. In a work, hydrophones were

placed in an ocean at a far-off place from the ships while listening to the radiated noise.

Classification of ships was made using a neural network classifier that took spectral

estimates as inputs. The study also showed that spectral averaging improves the overall

classification rates compared to processing of data in frequency domain for each window.

It was also observed that cases when object wasn’t changing its speed and operating

conditions, the radiated noise has virtually an unchanged statistical pattern and was

termed as wide-sense stationary noise [71]. Though, when this sound was received at a

distance by a hydrophone, it cannot be considered as stationary any more, due to varying

characteristics of the ocean. The variations are very much with respect to time and could

also be due to the relative geometry between the ships and sensors [80]. It depends upon

factors such as ship speed, distance between ship and sensor, propagation characteristics

of ocean and the overall environmental conditions. Signals can also be thought of as

stationary when variations are slow and steady while propagation towards the receiver as

well as when frames of smaller durations are considered for analysis. For a random noisy

signal, but stationary, averaging increase the overall signal-to-noise ratio (SNR) while

suppressing the incoherent noise spectra. In a work [74] after data averaging, estimates

were used to train a neural classifier. Classifier used back-propagation algorithm for

cost minimization while learning rate was also varied adaptively as a function of output

error. Hyperbolic tangent function was used as an activation function and as mentioned

earlier, signal averaging showed improvements in overall classification results.

In another work [6], a modified version of a multilayer feed-forward neural classifier

was used for performing a pattern recognition task i.e. IRIS recognition. The well-

known back-propagation algorithm was used [33]. Back-propagation technique is one of
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the most vastly used learning mechanisms in supervised neural nets. Based upon error

calculations, weights are updated at each layer for each respective node. The process

is repeated until the cost function approaches an optimum value. Mean square error

(MSE) is usually used as a measure of the global error. In this work, a modified version

of MFNN was used, which took into account the energy of error while setting the value of

learning rate. Classification results showed improvement compared to results obtained

using conventional multilayer feed-forward neural network.

In a work [28], a comprehensive study was made to build a good classification sys-

tem for temporal signalling sources. Authors have explained as how to extract good

signal descriptors as feature vectors for a high performance classification system. More-

over, wavelet-based features were considered to be more superior and powerful in terms

of classification accuracy compared to autoregressive coefficients and power spectral

estimates. A variety of neural classifiers were tested, evaluated and compared with

traditional statistical classification techniques. The focus was on those networks that

were less susceptible to noise and were able to time-out irrelevant noisy features. This

work took into account two neural network based classifiers. Further, methods to com-

bine several different classifiers were also proposed and evaluated for better classification

rates. Performance of the system was evaluated using signals from a dataset, namely,

DARPA-I.

In a work [20], authors have developed a preprocessing method to improve the clas-

sification results. For classification, artificial neural network was used to classify four

classes of ships. Using preprocessed data, classification was improved to an accuracy of

97%.

In [75], a statistical data analysis technique, principal component analysis was used

with the frequency domain estimates of the signal and the results were used as inputs to

an artificial neural network for classification. Classification results obtained with three

different feature transformation techniques were compared, the techniques were; linear

principal component analysis (PCA), non-linear principal component analysis (NLPCA)

and a neural discriminant analysis technique (NDA). Results showed that feature set ob-

tained using NDA outperformed the ones obtained using PCA and NLPCA in terms of

percentage classification. Classifier using features obtained with NDA gave a classifi-

cation accuracy of 93% using only 3 components while with PCA and NLPCA same

accuracy was achieved using as much as 33 components.
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Multi-target Detection and Tracking: Many researchers have tried their hands in the

field of target tracking, some recent developments include Monte Carlo techniques and

the tree search techniques combining the data association and target tracking problem

as a unified problem. Algorithms have been developed for single target as well as for

multiple target tracking [38]. Some of the work has been extended with the introduction

of stacked-based tree search algorithm for multi-target tracking in a highly cluttered

environment [65] [66] [50]. Target tracking is an integral part of surveillance and with

these techniques available, tracking systems can be made to work efficiently in cluttered

and noisy environments. As mentioned, a lot of work has been done for multi-target

detection and tracking[27]. Multi-target tracking referred as two problems to be solved

together, one is estimation and the other one is data association. It is concerned with

the estimation of states for unknown number of targets. Available measurements may

be acquired from the clutter or targets of interest. Due to the element of ambiguity,

it isn’t just an estimation problem. Methods available utilizes measurements which lie

nearest to the available set of measurements to make predictions. On the other hand,

an extended approach uses probabilistic data association filters, this extended work

simply relies upon the probability that a measurement is originated from a particular

target. It is worth emphasizing that fundamental difficulty in multi-target detection lies

in data association. This area over recent years has gained the attention of a lot of

researchers because performance of an algorithm directly effects the performance of the

sonar platform. With the technological developments, this data association problem has

been formulated as a computing problem [13] [48] [54] [57] and labelled as a NP-Hard

problem i.e. the complexity increases exponentially as the number of measurements or

scans increases. Earlier, this area wasn’t exploited intensively but in lateral stages of

70’s a real time algorithm was proposed, namely, Multiple Hypothesis Tracker [62] in

which the measurements received were assigned to the initial targets, new targets or

false alarms. Hypotheses is used to retain the most likely of targets. Moreover, worry

was the elimination of the correct measurement sequences as one of the prime reasons of

that may be the weak strength or constant fluctuation of signal of the radiating source

of interest. Another way of dealing with the data association problem is to consider it

from a probabilistic point of view to calculate the likelihood. But the uncertainty still

lies and with the increase in number of parameters to be estimated, the uncertainty

grows. If the vector to each target is known, then it is mare an estimation problem and

the likelihood function can be easily calculated. One of the methods for calculation is

expectation and maximization algorithm. Avitzour [5] saw the first use of this algorithm

for multi-target tracking. Authors in [78] [77] used EM algorithm in conjunction with
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Kalman filtering for multi-target tracking, the algorithm was referred to as Probabilistic

Multi-Hypothesis Tracking (PMHT). The probabilistic approach did not require any

assignment of measurements to targets. The measurement assignments were taken as

random variables and were estimated jointly with possible target states. Hence, the

problem was solved only with the probabilistic approach and wasn’t classed as a NP-

hard problem.

In another article [72], authors have suggested an optimal technique for target track-

ing which minimizes the effects of correlation uncertainties in underwater environment

and improves the performance of the system substantially compared to some of the stan-

dard methods i.e. standard Kalman filter. In case of no correlation uncertainties, filter

reduces to a Kalman filter. This method is viable in environment where correlation

uncertainties cannot be ignored. The filter formulation has two major key elements;

two key tracking loop function and return-to-track correlation. It allows evaluation of

system performance under its influence analytically. The suggested filter design showed

good results on simulation level but it is yet to be applied on real-time data in noisy

environment.

In a work [67], an extension to tree-search based tracking mechanism for multi-static

target was presented and the performance of the work was tested on a sonar dataset,

namely, SEABAR’07. The tree based search mechanisms were originally introduced in

[?] and were build on stack algorithm for convolutional decoding. To estimate a target,

the tracker navigates a search tree in which each path represents a sequence of states

the target goes through. Estimation of a track is done via traversing through only a

subset of the tree, the stacked based tracker computes only likely regions of the posteriori

probability distribution at each update. Thereby, giving a Bayesian inference solution to

the problem. In this piece of work, authors have extended the mono-static stack based

tracker to multi-static tracking. The structure of the tree helps in facilitating multiple

sources detection with minimal increase in complexity. Results observed showed that

the tracker has been able to effectively follow the targets trajectory while the sources

were exhibiting non-linear manoeuvres in a cluttered environment.

Source Separation: Usually signals acquired through hydrophones are mixtures com-

ing from separate sources and their separation is one of the integral factors on which

the performance of the detection and classification system greatly resides. Due to this,
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a lot of work has been done in area of blind source separation for extracting original

source from the acquired mixture. In a work [10], a broadband approach to blind source

separation for convolutive mixtures based on second-order statistics was proposed. This

method avoids the initial problems in the conventional narrowband approaches as it takes

both non-whiteness and non-stationarity of the source signal into consideration. Also,

a novel method for optimization of the cost function was introduced. This approach

allowed rigorous derivations of both novel and conventional algorithms to provide bet-

ter solution of the internal permutation table. Experimental results showed that this

theoretical approach leads to better performance results in reverberant acoustic environ-

ment in both frequency and time domain compared to practical Blind Source Separation

(BSS) algorithms.

Feature Selection: Feature selection is an essential element when it comes to pattern

classification, selecting right features has always been an area of concern. In a work [55],

a study was made in order to select features according to maximal statistical dependency

based on the criteria of mutual information. Because of the complexity in implement-

ing the maximal dependency condition directly, an equivalent form was derived called

minimum redundancy and maximum relevance criterion (mRMR). Then a two stage fea-

ture selection algorithm was presented combining mRMR with other feature selectors.

This also reduced the computation cost and memory requirements as the most relevant

features were selected while making the feature vector size compact. An experimental

study was presented to evaluate the performance of the algorithm. For the purpose of

classification, three different classifiers were used, namely, nave bayes, support vector

machine (SVM) and linear discriminant analysis (LDA). Experiment was conducted us-

ing four different data sets, including, both continuous and discrete data sets. Results

showed significant improvement in overall classification accuracy.

This chapter presented a literature review related to the area under study. Next

chapter discusses each front-end and back-end approach used for signal analysis of the

sources under study.
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3 Proposed Methodology - Feature

Extraction and Classification

Techniques

3.1 Introduction

Building blocks of any object recognition system has two main sub-components, a fea-

ture extractor and a classifier. In this study, work has been undertaken to develop

and evaluate performance of the said building blocks to have an efficient detection and

classification system. Figure 3.1 illustrates the overall system model of an underwater

acoustic signal detection and classification system.

Figure 3.1: Overall Model of Sonar Signal Detection and Classification System
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Main objective of feature extraction process is to obtain best discriminating feature

set for the acoustic samples under study i.e. representing the characteristics of the sam-

ples while reducing the amount of redundancy. Moreover, the acoustic samples were

divided into frames of duration up to 25 ms. After framing, each frame is windowed

using a suitable windowing function to avoid spectral leakage and generation of inter-

modulation products. Further, features are extracted for each frame and regarded as

feature vector for the frame or at times, vectors of multiple frames are combined to

form a single feature vector. Almost in all detection techniques, consecutive frames are

overlapped by a percentage, usually 50%. In this study, multiple methods were used for

extracting features from the acoustic samples under test. Extracted feature set was fed

to multiple back-end modules, that is, classifiers, for automated recognition. Further,

the task of a recogniser is to appropriately identify class label for each of the input

vector. Moreover, to have good classification results, feature set should comprised of the

most discriminating features. Appropriate selection of classifier and good training also

leads to good classification results. There are two types of classification techniques used

in this study, one is template matching i.e. dynamic time warping (DTW) and other

is neural network classifier. In dynamic time warping, feature vector of the acquired

sample is matched with the templates of acoustic samples under consideration. The

closest found template based on minimum Euclidean distance is the classification result.

On other hand, neural networks are modelled such that the input samples are map to

their respective class labels.

Moreover, good recognition rate is subject to goodness of the feature set. No matter

how strong the classifier is, good classification results cannot be achieved if the input to

the classifier does not hold discriminating characteristics of the objects. Various feature

extraction and classification techniques have been put to test in this study. All simulation

results are discussed in chapter 4. Acoustic profiles were taken from a database [79] as

well as from sonar platform to evaluate performance of all detection and classification

schemes.

There are two important processing measures that improves the overall detection

process. They are briefly discussed below,
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Windowing

After framing, first step is to apply a windowing function on each frame as a prepro-

cessing measure. Windowing mitigates spectral leakage and reduce the generation of

intermodulation products [58]. Moreover, spectral content of a signal holds characteris-

tics of the source and taking FFT gives us detailed description of the frequency content in

the signal. Further, FFT can only take a finite input sequence. Moreover, actual Fourier

transform (FFT) assumes signal to be comprised of finite data points and a continuous

spectrum, that is, it considers single period of a periodic signal. A periodic signal has

periodic footprints in both time and frequency domain, this states that starting of next

and ending of previous cycle occurs from the same point in both time and frequency

domain. However, at times the ensemble of a signal doesn’t comprise one complete cycle

or integer multiple of the period of the signal whereas the need of finite set of data for

processing needs signal to be truncated. This could cause sharp discontinuities, which

may result in a spectrum with different characteristics as opposed to the ones in the orig-

inal signal. The discontinuities adds up to the spectrum as high frequency components

and if those high frequency components are greater than the Nyquist frequency range

than they will be aliased in the range of interest and the resulting spectrum is a smeared

version of the original signal. It shows as if the energy from one frequency component

leaks into another frequency component and termed as spectral leakage. Further, win-

dowing tends to suppress the energy of the samples near discontinuities and thus avoids

creation of those unwanted frequency components in the spectrum. Criteria for selecting

windowing function is briefly discussed in the following,

1. If an interfering frequency component exists having large magnitude at a distant

position from the frequency of interest, then windowing function selected should

have a high roll-off rate for the side lobes.

2. If an interfering frequency component having large magnitude exists near the fre-

quency of interest, then windowing function selected should have a low maximum

side lobe level.

3. When two or more frequency components lie very near each other and while the

time spectral resolution is of key importance then in such cases it is best to choose

a smoothing windowing function with a narrow main lobe.
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4. If relative or absolute amplitude of the signal is more important than the frequency

value then choose a windowing function with a wider main lobe.

5. If the signal has a flat frequency spectrum, choose a uniform window or no window.

6. Hann window gives satisfactory results in almost 95% of the cases. Its main fea-

tures include, good frequency resolution and low spectral leakage. Moreover, if

nature of the signal is not known, Hann windowing function is best to use.

Even when no window is used, signal is multiplied (convolved) with a sinc function

(rectangular-shaped window) having uniform height in frequency (time) domain. It is

done to extract an ensemble from the input stream, so that a discrete sequence can be

obtained for processing. No window is often called the uniform or rectangular window

because there is an effect of spectral leakage visible in the signals spectrum.

Hamming and Hann are most widely used windowing functions because of their fea-

tures. Both are sinusoidal in shape and produce wide peak main lobes and low peak

side lobes. Moreover, Hann windowing function touches zero at both endpoints elim-

inating any possible discontinuity in the signal whereas the Hamming window doesn’t

quite reach the zero level at both discontinuities, thus does a poorer job at completely

eliminating discontinuities present in the signal although it does an excellent job in can-

celling any side lobe near the main lobe. These windowing functions help in retaining

information content as in the original signal while eliminating noise and giving good

frequency resolution at same time.

Two-Pass Split Window (TPSW)

Two-Pass Split Window [51] is applied for spectrum smoothing against background

noise. The frequency content of the radiated signal consists of two major components.

First is a broadband component which has a continuous spectrum i.e. noise and the

other is a tonal component, which has a discrete spectra. Mainly, tonal components in

the spectrum are the characteristic features of the source. So, extracting these tonal

components is key in having good detection and classification results. Further, TPSW

works well in extracting the tonal components from the continuous spectrum. Steps of

the algorithm are listed below.
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1. For a signal f(x), a window is selected, centred on the current sample, k, in time

as, Rk = {k −M,k −M + 1, . . . . . . , k, . . . . . . , k +M − 1, k +M}. Where, length

of the selected window is 2M + 1.

2. In pass-1, mean for the window centred at k is calculated. It is done for all values

of k,

ˆf(k) =
1

2M + 1

i=K+M∑
i=K−M

f(i)

3. Further, a clipped sequence, g(k), is formed in order to avoid biasing of the esti-

mates of local mean due to the presence of tonal components,

g(k) =

{
ˆf(k) if, f(k) ≤ α ˆf(k)

f(k) if, f(k) > α ˆf(k)
where α is a constant

where, α is a constant. Its typical value is 0.9.

4. Next is pass-2, continuous spectra is again attained by evaluating the local mean

of the sequence obtained in pass-1, that is, g(k),

ˆm(k) =
1

2M + 1

i=K+M∑
i=K−M

g(i)

On estimation of the broadband component, narrow band components or tonal com-

ponents can be evaluated by removing the estimated spectrum from the spectrum of

original signal, i.e.,

h(k) = f(k)− ˆm(k) (3.1.0.1)

The tonal components thus extracted are normalized to avoid any amplitude discrep-

ancies and also because we are only interested in the patterns present in the spectrum,

X =
h

‖ h ‖
(3.1.0.2)

National University of Sciences & Technology 24



Passive Sonar Signal Detection and Classification 3 Proposed Methodology

3.2 Detection Techniques

This section gives detailed insight into all the feature extraction methods used in the

implementation of proposed study. Including, wavelet analysis, classical sonar signal

detection techniques along with some of the most popular speech signal processing tech-

niques. Details of all the detection schemes are in the following.

3.2.1 Detection Envelope Modulation on Noise (DEMON)

A narrow band signal analysis technique which is heavily used in detection of signals

acquired via sonar platform [51]. Moreover, noise radiated by sources have characteristics

in the spectral content. Further, DEMON furnish propeller’s characteristics i.e. Shaft

Rate, Shaft Rotation Frequency, Blade Rate and Number of Blades etc. Results of

DEMON analysis are often credible and helps in efficient recognition of underwater

object. Figure 3.2 depicts block diagram for implementing classical DEMON analysis.

Figure 3.2: Detection Envelope Modulation on Noise (DEMON)

Given the direction of arrival (DOA), acquired signal is fed to a bandpass filter,

that is, to select the range of interest while limiting variations in the signal. Moreover,

oscillations in acoustic signals range from a few Hz to hundreds of Hz, proper selection of

cavitation range is one of the key elements in having good detection. Further, the filtered

signal is squared as done in classical envelope detection technique. As this is an era of

digital signal processing, so, most of the end-systems are digital and samples at very

high rates. But that much sampling rate is useless in underwater environment as most
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of the underwater objects have characteristics in low frequency contents. Therefore, after

filtering, signal is down sampled according to the observational needs and this increases

the coarse resolution of the range of interest. Finally the signal is frequency transformed

using Fourier transformation (FFT), so it can be analysed in frequency domain. In

addition, TPSW method is applied to the resulting spectra to reduce the background

noise. DEMON is usually implemented in two different ways. They are listed and briefly

discussed in the following.

Demon - Hilbert Transform

From a real data sequence, Hilbert transform yields a complex signal, also referred to

as an analytic signal. The complex signal x = xr + i ∗ xi has a real part, xr, which

is the actual data, and an imaginary part, xi, which comprises information acquired

after Hilbert transformation. Imaginary part has version of the original signal, which is

90o phase shifted i.e. Cosines are transformed to Sines and vice versa. Moreover, the

transformed series has same frequency and amplitude content as in the original signal. It

also includes phase information which depends on phase of the original sequence. Figure

3.3 illustrates implementation of DEMON using Hilbert transform.

Figure 3.3: DEMON - Hilbert Transform

Hilbert transform is useful in calculating instantaneous attributes of a signal, spe-

cially frequency and amplitude. Instantaneous amplitude refers to the amplitude of the

Hilbert transformed signal whereas instantaneous frequency is the rate of change of the

instantaneous phase of the transformed signal. For a sinusoid, instantaneous frequency
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and amplitude remains constant. Instantaneous phase, however, is like a sawtooth, de-

picting linear phase shift over a single frequency cycle. For a signal having combinations

of sinusoids, signal attributes are short term or local i.e. averages not lasting for more

than two or three points. For DEMON analysis, each frame is transformed into Hilbert

space, transformed signal is squared as done in envelope detection. Further, squared

signal is frequency transformed using Fourier transform (FFT) and DC component is

removed from the resulting spectra. In addition, spectrum is smoothed using TPSW.

Mathematically, Hilbert transform, ˆx(t), of a signal, x(t), can be expressed as,

ˆx(t) =
1

π

∞∫
−∞

x(s)

t− s
ds (3.2.1.1)

where, integral represents the Cauchy principal-value integral.

The reconstruction of the original signal can be achieved using the following formula,

x(t) = − 1

π

∞∫
−∞

ˆx(s)

t− s
ds (3.2.1.2)

The frequency-domain description of Hilbert transform can be mathematically expressed

with the following equations,

H(ν) = −j.sgn(ν) (3.2.1.3)

where,

sgn(t) =

{
−1 if, t < 0

1 if, t > 0

So,
ˆX(ν) = −j(sgn(ν))X(ν) (3.2.1.4)

DEMON - Low Pass Filtering

Another approach to implement DEMON is using a low pass filter. Figure 3.4 shows

the overall system model of DEMON implementation via low pass filtering. Moreover,

this approach is analogous to amplitude demodulation as the input signal is squared as

done in envelope demodulation. Then, the squared signal is fed to a low pass filter to

eliminate any unwanted high frequency components. Cut-off frequency of the filter is

chosen while keeping in mind the frequency range of interest. Next, square root of the
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filtered signal is taken to mitigate the effects of earlier squaring. Further, the resulting

signal is frequency transformed using FFT and DC bias is removed from the transformed

signal. Lastly, the resulting spectra is passed through TPSW to suppress the effects of

background and ambient noise.

Figure 3.4: DEMON - Low Pass Filter

3.2.2 Low Frequency Analysis and Ranging (LOFAR)

Low Frequency Analysis and Ranging (LOFAR) [22] is a broadband signal analysis

technique and furnishes machinery characteristics of the object i.e ships and vessels.

Moreover, it provides detailed knowledge of machinery noise of the target to the sonar

operator. Figure 3.5 depicts block diagram implementing LOFAR.

Figure 3.5: Low Frequency Analysis & Ranging (LOFAR)

On estimation of direction of arrival (DOA), captured signal is chopped into pieces
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of short duration referred to as frames. Later, ensembles are passed through a win-

dow, Hann window, to select the range of interest. Filtered ensembles are frequency

transformed using Fourier transform (FFT). Then, DC component is removed from the

resulting spectrum and normalized using TPSW method to remove the presence of any

bias due to background noise. Implementation of LOFAR is usually made using two

schemes. Their brief details are in the following.

Bartlett

Bartlett method is used for spectrum estimation. It gives good frequency resolution.

In Bartlett method frames are not overlapped, no-overlapping gives better frequency

resolution but could result in loss of information because windowing function tends to

suppress the energy of the samples near the boundaries of the frame segment to avoid

spectral leakage. Having said that, it won’t give a fair reflection of the original signal in

the spectrum estimate.

Welch

As already discussed, LOFAR is the estimation of spectrum. Welch method [82] is

used to estimate the power spectral density of the signal. It is an improved form of

the standard peridiogram estimation techniques. It avoids noisy components getting

into the spectra in exchange for good frequency resolution. Overlapping between two

consecutive frames is 50%. Further, Welch method gives better spectrum estimates as

compared to standard spectrum estimation techniques.

3.2.3 Linear Predictive Analysis (LPA)

Foundations of linear predictive analysis (LPA) [46] are built on adaptive differential

pulse code modulation (ADPCM). In linear predictive analysis, prediction of x[n] is done

based on past samples i.e. x[n − 1], x[n − 2], . . . . . . , x[k]. Goal is to reduce the overall

prediction error. Equation 3.2.3.1 depicts the objective function for linear predictive

analysis. Main objective is to minimize error to make more accurate predictions. Linear
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predictive analysis is quite widely used for acoustic signal analysis and prediction. It

has most common applications in speech signal processing where it is used to mimic the

speech generation model.

e[n] = x[n]−
P∑
k=1

αkx[n− k] (3.2.3.1)

Figure 3.6 shows system model of ADPCM, which quite closely relates to linear predictive

analysis whereas figure 3.7 illustrates system diagram implementing linear predictive

analysis.

Figure 3.6: Adaptive Linear Pulse Code Modulation (ADPCM)

Figure 3.7: Linear Predictive Analysis (LPA)
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Error Equation

Modified and frequency transformed version of equation 3.2.3.1 is given in equation

3.2.3.2 below,

X[z] =

 1

1−
P∑
k=1

αkz−k

 .E[z] (3.2.3.2)

Speech Model

In speech or acoustic signal generation, the vocal tract governs the nature of the sound

produced. There are several speech production models present to date. Amongst them,

Formant or Vocal Tract model has been the most renowned one. Further, speech or

acoustic models are important because if we can manage to make an estimate of the

acoustic signal generating sources then we can predict the characteristics of speech or

acoustic source with near accuracy.

Formant/ Vocal Tract Model

Formants are the fundamental frequencies at which the vocal tract resonates. Moreover,

it is the concentration of acoustic energy around a particular frequency in the acoustic

sequence. There are several formant bands at different positions on the frequency-scale,

roughly at 1000 Hz intervals. Each formant corresponds to a frequency or a resonance

in the vocal tract.

H[z] =
1

1− b1z−1 + b2z−2
(3.2.3.3)

According to formant speech model, input to the vocal tract are the excitation pulses i.e.

Impulses. Vocal tract is followed by a mouth cavity. Both the vocal tract and the mouth-

cavity can be modelled using a digital filter having one-pole. Thus, a formant would be

needing a two-pole filter to mimic the vocal tract resonating at a particular frequency

or formant. Equation 3.2.3.3 depicts the transfer function of the speech model for a

formant. It is just the cascading of two one-pole filters. Further, there is an existence

of 4 to 5 formants in the human speech bandwidth (up to 3 KHz) and an additional
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filter is also needed for spectral compensation as radiation is a frequency dependent

term and it is done using a one-pole filter. Having said that, 4 to 5 formants exist in the

range of human speech bandwidth with each formant needing a two-pole filter while a

one-pole filter is needed for spectral compensation. Therefore, a 9 to 11 order filter will

be needed to model the vocal tract for bandwidth of around 4 KHz. This means, we

will be needing an odd-order filter. Overall transfer function of the filter representing

vocal tract in ranges of human speech bandwidth is given by equation 3.2.3.4,

H[z] =
1

1− c1z−1 − c2z−2 − c3z−3....− cqz−q
(3.2.3.4)

where, q is the order of the filter and it will be N + 1. Equation 3.2.3.4 is rewritten as

equation 3.2.3.5,

H[z] =
1

1−
q∑

k=1

ckz−k
(3.2.3.5)

According to the speech model, input to the vocal tract are the excitation pulses, so the

transfer function can be as expressed in equation 3.2.3.6,

X[z] =

 1

1−
q∑

k=1

ckz−k

 .I[z] (3.2.3.6)

Here, ck describes the position and bandwidth of the formant’s resonance. The speech

model in figure 3.8 looks similar to ADPCM model discussed earlier and illustrated as

in figure 3.6.

Figure 3.8: Low-Bit Rate Speech Coder/Decoder

Process in fig. 3.8 can be used to model any acoustic signalling source. An estimate

of α’s will be required to model an acoustic source. We need the first half of the block
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presented in figure 3.8 to build an acoustic model. On calculation of α’s, denominator

in equation 3.2.3.6 needs to be factorized to calculate formant frequencies. Calcula-

tions involving formant frequencies are computationally very demanding and expensive.

Moreover, values of α’s will be obtained on minimizing the error i.e. Mean Square Error

(MSE). Following represents the mathematical equation of mean square error,

M =
∑
∀n

e2(n) =
∑
∀n

[
x[n]−

P∑
k=1

αkx[n− k]

]2
(3.2.3.7)

For calculating ’α’, mean square error should be to global minimum. Mathematically,

it is given by,
dm

dαj
= 0 (3.2.3.8)

Differentiating equation 3.2.3.7 with respect to ’α’ and equating it to 0,

−2
∑
∀n

x[n− j]

[
x[n]−

p∑
k=1

αkx[n− k]

]
= 0

p∑
k=1

αk
∑
∀n

x[n− j]x[n− k] =
∑
∀n

x[n]x[n− j]

where, 1 ≤ j ≤ P (3.2.3.9)

Hence from equation 3.2.3.9, it can be inferred that for calculating ’p’ unknowns, p-

equations are to be solved. Further, the problem is computationally very demanding

and involves calculation of inverse of a p× p matrix. So, a lesser complicated procedure

for calculating the ’p’ unknowns is to be used.

Computational Aspects

Further, equations discussed have been for a sequence of length n, now we want to

calculate it for a segment or a frame. Modifying previous equations for a finite length

sequence, sn(m). Mathematically, it is given by,

p∑
k=1

αk
∑
m

sn[m− i]sn[n− k] =
∑
m

sn[m]sn[m− i]

where, 1 ≤ i ≤ P (3.2.3.10)
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Solving above p equations will yield p-α coefficients. Looking at R.H.S of the above

equation, it looks like an autocorrelation function, so equation 3.2.3.10 can be rewritten

as,

φn(i, k) =
∑
m

sn(m− i)sn(m− k) (3.2.3.11)

Putting values from equation 3.2.3.11 in equation 3.2.3.10,

p∑
k=1

αkφn(i, k) = φn(i, 0)

where, i = 1, 2, 3, ...., p (3.2.3.12)

In terms of autocorrelation, mean square error (MSE) is given by,

En =
∑
m

s2n(m)−
p∑

k=1

αk
∑

sn(m)sn(m− k)

= φn(0, 0)−
p∑

k=1

αkφn(0, k) (3.2.3.13)

There are several approaches available in literature to solve for the ’p’ α-coefficients. i.e.

Autocorrelation Method, Lattice Method etc. In this study, Autocorrelation Method

[58] has been used to calculate the α-coefficients.

Autocorrelation Method

Error Equation,

En =
N+P−1∑
m=0

e2n(m) (3.2.3.14)

Autocorrelation method will be applied to a segment or frame instead of all n samples.

Mathematically,

sn[m] = s[m+ n]w[m]

where, 0 ≤ m ≤ N − 1 (3.2.3.15)

where, sn(m) outside the interval will be considered zero, that is, 0 ≤ m ≤ N − 1.
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The autocorrelation function can be written as,

φn(i, k) =
N+P−1∑
m=0

sn(m− i)sn(m− k)

where, 1 ≤ i ≤ p

0 ≤ k ≤ p (3.2.3.16)

cosmetic changes in equation 3.2.3.16 will shape the equation as,

φn(i, k) =

N−1−(i−k)∑
m=0

sn(n)sn(m+ i− k)

= Rn(i− k) (3.2.3.17)

where,

Rn(k) =
N−1−k∑
m=0

sn(m)sn(m+ k)

and

φ(i, k) = Rn(|i− k|)

For finding α’s, equation 3.2.3.12 needs to be solved, re-writing equation in terms of Rn,

p∑
k=1

αkRn(|i− k|) = Rn(i)

where, 1 ≤ i ≤ p (3.2.3.18)

The p simultaneous equations can be written in form of a matrix as given in equation

below,

Rn(0) Rn(1) Rn(2) . . . Rn(p− 1)

Rn(1) Rn(2) Rn(3) . . . Rn(p− 2)

Rn(2) Rn(3) Rn(4) . . . Rn(p− 3)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Rn(p− 1) Rn(p− 2) Rn(p− 3) . . . Rn(0)





α1

α2

α3

...

...

...

αp


=



Rn(1)

Rn(2)

Rn(3)
...
...
...

Rn(p)



(3.2.3.19)
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Solving equation 3.2.3.19 for linear predictive coefficients involves expensive mathemati-

cal calculations i.e. inverse of a p×p matrix, where p are the number of linear predictive

coefficients. If looked closely at equation 3.2.3.19, matrix on R.H.S looks a special type

of matrix known as Toeplitz Matrix.

There are several numerical approaches available to solve this kind of a matrix i.e.

Durbin’s recursive procedure [58] and Bareiss Method [7] etc. Set of equations describing

Durbin’s recursive method are discussed below.

Durbin’s Recursive Procedure

1. E(0) = R(0)

2. ki =

R(i)−
i−1∑
j=1

α
(i−1)
j R(i−j)

E(i−1)

 where, 1 ≤ i ≤ p

3. α
(1)
i = ki

4. α
(i)
j = α

(i−1)
j − kiα(i−1)

i−j where, 1 ≤ j ≤ i− p

5. E(i) = (1− k2i )E(i−1)

Equations (2) to (5) are solved recursively for, i = 1, 2, 3, . . . , p, coefficients. As ’i’ reach

pth iteration, linear predictive coefficients can be represented by a set as under,

αj = α
(p)
j

where, 1 ≤ j ≤ p (3.2.3.20)

Coefficients in equation 3.2.3.20 are said to be the linear predictive coefficients and will

be referred to as the feature vector representing characteristics of the acoustic source.
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3.2.4 Linear Predictive Cepstral Coefficient (LPCC)

Linear Predictive Cepstral Coefficient (LPCC) [58] is a commonly used technique in

acoustic and speech signal processing. The concept behind LPCC is similar to LPA,

that is, modelling of the human vocal tract using an all-pole digital filter. Though,

it adds one more step compared to LPA, that is, the cepstral analysis. Advantage of

taking cepstrum is that it further refines the coefficients extracted using LPA. Figure

3.9 represents the overall system model for LPCC.

Figure 3.9: Linear Predictive Cepstral Coefficient (LPCC)

Pre-emphasis and Hamming Window

Processing of acoustic sequence starts with pre-emphasis [59], which is applied to the

complete signal. It is modelled using a first-order low pass digital filter. The idea behind

pre-emphasis is to spectrally flatten the signal. Equation below represents transfer

function of the said filter,

Hp(z) = 1− az−1 (3.2.4.1)

where, ’a’ is a constant and it’s typical value is taken as 0.97.

After pre-emphasis, the signal is broken into segments referred as frames. Duration of

each frame should be kept between 15ms to 25ms, duration more than that would have

adverse effects on the detection process. After framing, each frame is windowed i.e.

it will be multiplied with a windowing function. Idea behind windowing is to mitigate

spectral leakage because framing an aperiodic or random signal can lead to discontinuities
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yielding high frequency components which aren’t part of the actual signal. Windowing

function used is hamming and it is given by,

w[n] =

{
0.54− 0.46 cos

(
2πn
N−1

)
0 ≤ n ≤ N − 1

0 otherwise
(3.2.4.2)

Mathematically, windowing operation can be expressed with the following equation,

sm[n] = s[n]w[n−m] (3.2.4.3)

where, s[n] represents the complete signal, sm[n] represents windowed frame of a signal

recorded at instant m, w[n] represents the Hamming window function and ’N ’ represents

the length of the Hamming window. Moreover, ’m’ can be defined as the step size or the

time shift of the windowing function. Frames can be obtained by moving the windowing

function by ’m’ steps in time. To avoid any loss of information, overlapping between

two consecutive frames has been kept to 12.5 ms in this study.

As discussed earlier, windowing function shape is of key importance. Uniform win-

dow is not suggested in any case even if we don’t have any information about the char-

acteristics of the signal. Rectangular window can cause severe spectral leakage. Other

types of windowing functions also exist but their usage is subject to the characteristics

of the signal. After windowing, the signal is passed on to the next stage.

Linear Predictive Analysis (LPA)

Linear predictive analysis will be applied to each windowed segment to obtain linear pre-

dictive coefficients. Durbin’s Recursive Method, a numerical approach for implementing

autocorrelation method will be used for calculating linear predictive coefficients. The

process will be similar as discussed in section 3.2.3.

Cepstral Analysis

Cepstral analysis [58] is a process for finding cepstrum of a signal. Cepstrum refers

to as ”the inverse frequency transformation of log of a signal’s power spectrum”. The

word cepstrum is formed by moving around the letters of spectrum. It refers to as the
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time-domain representation of the signal. However, quefrency, a special term is used

instead of time to describe basis of the cepstrum. It is formed by shuffling the letters of

the term frequency. Following equation represents the cepstrum of a signal.

ŝ[n] =
1

2π

π∫
−π

ln[S(ω)]ejωndω (3.2.4.4)

where, S(ω) represents power spectrum of a windowed frame sequence and s[n] represents

the resulting cepstrum.

The idea behind cepstral analysis is de-convolution. It is quite frequently used in speech

signal processing. Cepstral analysis is primarily used to extract the characteristics of the

vocal tract from the acoustic spectrum. According to formant speech model, an acoustic

signal is the result of convolution of the vocal tract and the glottal excitation pulses.

Mathematically, speech generation model can be expressed with the following equation.

s[n] = v[n] ∗ u[n] (3.2.4.5)

where, v[n] represents behaviour of the vocal tract, u[n] represents glottal excitation

pulses. It is a quasi-periodic sequence of impulses for voiced part of speech. Mathemat-

ically, above can be expressed in frequency domain as,

S(ω) = V (ω)U(ω) (3.2.4.6)

With reference to equation 3.2.4.4, application of logarithm splits the product of the two

spectrum inside the integral into a linear summation. Moreover, resulting sequence will

be the sum of the vocal tract cepstrum and the glottal excitation cepstrum.

ŝ[n] = v̂[n] + û[n] (3.2.4.7)

where, s[n] is the acoustic sequence, v[n] represents behaviour of the vocal tract and

u[n] represents the glottal excitation pulses.

Cepstrum hold two distinct properties that makes it useful and they are listed below:

1. Cepstrum of a periodic signal is always periodic.

2. Cepstrum of a system with random behaviour is always decaying, which tends to

zero as n, quefrency, approaches infinity.
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Since, v[n] represents the impulse response of the vocal tract filter, u[n] is a quasi-

periodic impulse sequence and from the above two properties it can be inferred that

low-frequency part of the cepstrum represents the vocal tract while the high frequency

content represents the glottal excitation pulses, so first few coefficients of the resulting

cepstrum has all the information about the vocal tract and the lateral half represents

glottal excitations. Therefore, only first few coefficients of the cepstrum are kept to form

the feature vector. These are termed as cepstral coefficients. Further, cepstral analysis

is performed on the LPA coefficients resulting in linear predictive cepstral coefficients.

3.2.5 Perceptual Linear Prediction (PLP)

Perceptual Linear Prediction (PLP) [36] [34] [35], also known with the name of Bark

Frequency Cepstral Coefficient (BFCC) (due to the use of a special filter bank, known

as the Bark filter bank), is one of the most renowned feature extraction techniques exist

in the domain of speech signal processing. It models the human auditory system. The

principle of PLP lies within three major characteristics of the auditory nerve and they

are as follows:

1. Critical Band Frequency Selectivity

2. Equal-loudness curve

3. Intensity-Loudness Power Law

Initial step is to calculate spectrum of a frame obtained after windowing. Then, resulting

spectrum undergoes a special type of filter known as the Bark filter. It implements the

critical band selectivity property of the auditory nerve. After that, the outgoing filter

coefficients are transformed as per the equal-loudness curve function that emulates the

human hearing sensitivity. Next step is to compress the weighted filter coefficients using

intensity-loudness power law, which represents the relationship between perceived loud-

ness and signal intensity. Inverse Fourier transform is taken of the resulting compressed

coefficients and then, linear predictive analysis technique is applied to the transformed

sequence. Final step of the process is to perform cepstral analysis, which can be done us-

ing equation 3.2.4.4 or alternate recursive procedures can be used. Figure 3.10 represents

the overall system model for implementation of PLP.
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Figure 3.10: Perceptual Linear Prediction (PLP)

Steps for implementing Perceptual Linear Prediction (PLP) are discussed in the

following,

Hamming Window and FFT

First step is to segment the acoustic signal and apply windowing function to each frame.

Hamming window is the windowing function used in this case. Purpose and details

of windowing have already been discussed in section 3.1. Next step is to take Fourier

transform (FFT) of the windowed sequence. Then, resulting spectrum, S(ω), will be

passed to the next stage for further processing.

Bark Scale Filter

In PLP, a filter bank is used based upon a non-linear frequency-scale referred to as the

bark-scale. Mathematical relationship between linear frequency-scale and bark-scale can

be expressed with the following equation.

fBark = 6 ln(
f

600
+ ((

f

600
)2 + 1)0.5) (3.2.5.1)

where, f represents frequency in hertz and fBark represents frequency on bark-scale in

barks.
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Moreover, filters are evenly spread along the bark-scale, though, spacing is with respect

to their center frequencies. Moreover, it was suggested in an article [34] that filters

along bark-scale should approximately be 1 bark apart. Also, that position of first and

last filter on the bark-scale should be 0 bark and Nyquist frequency (highest frequency

component present in the signal) bark, respectively. Following equation depicts the

mathematical model of the bark filter bank.

ψ =



0 for, fBark − fc(Bark) < −2.5

10fBark−fc(Bark)+0.5 for, −2.5 ≤ fBark − fc(Bark) ≤ −0.5

1 for, −0.5 ≤ fBark − fc(Bark) ≤ 0.5

10−2.5(fBark−fc(Bark)−0.5) for, 0.5 ≤ fBark − fc(Bark) ≤ 1.5

0 for, fBark − fc(Bark) > 1.3

(3.2.5.2)

where, ’fc(Bark)’ is the center frequency of a filter in the bark filter bank, ’ψ’ represents

weight of frequencies along bark-scale. Figure 3.11 gives an idea of filter placement and

position in the filter bank along the linear frequency-scale. It can be seen that all filters

in the filter bank are non-linearly positioned on the linear frequency-scale. Also, that

filters positioned high up the linear frequency scale have wider bandwidth compared to

the ones positioned at low frequency levels. This describes the non-linear relationship

between the bark-scale and the linear frequency-scale. However, shapes of the filters are

identical in the Bark filter bank.

Figure 3.11: Bark-scale Filter Bank [52]

Moreover, output of each filter is represented as the sum of the product of FFT
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spectrum and the filter’s weights. Mathematically, it can be expressed as,

Xm =

N/2−1∑
k=0

|S[k]|2|ψm[k]|

where, 2 ≤ m ≤M − 1 (3.2.5.3)

where, Xm is output of the mth filter in the filter bank, |S[k]|2 represents power spec-

trum of the windowed sequence, it is of length N and |ψm[k]| represents the magnitude

response of the mth filter in the filter bank on linear frequency-scale. It is also of note

that output for first and last filter in the filter bank are not evaluated in this step. It

is because that these two filters have almost identical shapes as of their adjacent filters.

Output for these two filters will be calculated in the next step.

Equal-Loudness Curve

Equal-loudness curve [34] function models human hearing sensitivity with respect to

frequency levels. It has two basic mathematical models catering for different frequency

ranges. One for applications whose Nyquist frequency is 5 KHz or below and the other

for applications where Nyquist frequency is above 5 KHz. Equations 3.2.5.4 and 3.2.5.5

represents the mathematical model for both the criterion,

E =
(ω2 + 56.8× 106)ω4

(ω2 + 6.3× 106)2(ω2 + 0.38× 109)
(3.2.5.4)

and,

E =
(ω2 + 56.8× 106)ω4

(ω2 + 6.3× 106)2(ω2 + 0.38× 109)(ω6 + 9.58× 1026)
(3.2.5.5)

where, ω represents angular frequency in radians.

From the above two equations, equal-loudness weight for outgoing filter coefficients can

be calculated by replacing the respective value of center frequency (radians) in one of the

aforementioned equations, choice of equation will depend upon the Nyquist frequency.

Each outgoing filter coefficient from the filter bank will be weighted using the equal-

loudness function. Mathematically, it can be expressed as,

Xm(e) = EmXm

where, 2 ≤ m ≤M − 1 (3.2.5.6)
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where, Xm(e) represents output from the mth filter after multiplication with equal-

loudness weight and Em represents the equal-loudness weight of the mth filter.

As discussed earlier, the shape of first and last filters in the bark filter bank is identical to

the adjacent filter. So, weight of the second filter after equal-loudness curve function will

be assigned to the first filter and likewise, weight of next-to-last filter will be assigned

to the last filter. It can be mathematically expressed as

X1(e) = X2(e)

XM−1(e) = XM(e)

Intensity-Loudness Curve

Intensity-loudness curve [34] represents human perceptibility of loudness given signal

intensity at different frequencies; it models the relationship between perceived loudness

and signal intensity which is non-linear in nature. In PLP, this relationship is mathe-

matically described with cubic root. Following equation describes the intensity-loudness

relationship,

φm = (Xm(e))
0.33

where, 1 ≤ m ≤M (3.2.5.7)

where, φm represents output of a filter after intensity-loudness operation.

IDFT and Linear Predictive Analysis

Next step is to take inverse Fourier transform of the resulting coefficients after intensity-

loudness operation. Then, linear predictive analysis is applied to the transformed coeffi-

cients. Further, inverse Fourier transform will be applied to the filtered coefficients that

will yield autocorrelation function coefficients and LPA will be applied to the extracted

autocorrelation coefficients. Notice that φm only represents one half of the spectrum i.e.

till Nyquist frequency. Before applying IDFT, spectrum will be appended with its mirror

to form a double-sided spectrum. Note that first and last filter weights were same as

their neighbours. So, they will be excluded from the mirroring process. Mathematically,

National University of Sciences & Technology 44



Passive Sonar Signal Detection and Classification 3 Proposed Methodology

the resulting spectrum can be expressed as in the following equation.

Φ = [φ1 φ2 φ3 . . . . . . φM−1 φM φM+1 . . . . . . φ3 φ2] (3.2.5.8)

IDFT is applied to the vector shown above, where first p coefficients will be regarded

as the autocorrelation function sequence, R[n], for 1 ≤ n ≤ p. Autocorrelation function

sequence will be used as an input to perform linear predictive analysis. As discussed

earlier, Durbins recursive algorithm will be used for calculating linear predictive coeffi-

cients.

Cepstral Analysis

Cepstral analysis is applied to the extracted linear predictive coefficients. The process of

cepstral analysis will be same as discussed in section 3.2.4. The order of PLP coefficients

will be same as that of linear predictive coefficients. There will be ’p’ number of PLP

coefficients calculated and will be regarded as feature vector for that particular frame

sequence.

3.2.6 Mel-Frequency Cepstral Coefficient (MFCC)

Mel-Frequency Cepstral Coefficient [18] is one of the most used front-ends in speech

signal processing. It is a FFT based method i.e. feature vectors are extracted from

spectrum of the windowed frame. Figure 3.12 illustrates the overall feature extraction

process for mel-frequency cepstral coefficient technique.

Pre-emphasis, Windowing and FFT

Like LPCC, complete acoustic signal is fed to a one-pole digital FIR filter, implement-

ing pre-emphasis function. The concept behind pre-emphasis is to magnify the high

frequency contents in the signal before the signal is processed further. The transfer

function of the filter will be same as mentioned earlier. After pre-emphasis, signal will

be broken into segments of duration 15ms to 25ms i.e. to avoid non-stationarity. Next,

framed sequences are passed through a windowing function, namely, Hamming window

i.e. to avoid spectral leakage. The impulse response of the windowing function will be

same as described earlier. The windowed frame is passed onto the next stage to extract
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frequency contents in the signal, that is, FFT of the windowed frame is calculated to

extract spectrum of the signal, S[k], for 0 ≤ k ≤ N − 1. Spectrum of the windowed

frame is fed to the next stage for further processing.

Figure 3.12: Mel-Frequency Cepstral Coefficient (MFCC)

Mel-Filter Bank

Mel-filter bank is represented with a series of band pass filters that are triangular in

shape. It tries to emulate the human auditory nerve. Moreover, mel-filter is based on a

non-linear frequency-scale, referred to as the mel-scale. Mel-scale represents the measure

of pitches observed by humans. In a study [76], it was validated that a tone of 1000

Hz with an intensity of about 40 dB or above listeners threshold, is regarded as having

a pitch of 1000 mels. Mel-scale is almost equal to the linear frequency-scale below

1000 Hz. Further, listener’s perceived pitch increments with longer frequency intervals

above 1000Hz reference point and proves the relationship between mel-scale and linear

frequency-scale to be non-linear. Moreover, the relationship is logarithmic above the

1000 Hz reference point. Relationship between linear frequency-scale and mel-scale is

given by the following equation,

fmel = 1127.01× log(f/100 + 1) (3.2.6.1)

Moreover, inverse relationship can be mathematically expressed as in equation given

below,

f = 700(e
fmel
1125 − 1) (3.2.6.2)

where, fmel represents frequency on mel-scale and f represents frequency on linear-scale.
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As described earlier, filters in mel-filter bank are triangular bandpass filters. These

filters overlap each other in such a way that boundary of one filter lies at the center

frequency of its adjacent filter i.e. lower boundary of the filter is positioned at the center

frequency of the preceding filter and upper boundary of the filter is positioned at center

frequency of the next filter. Moreover, maximum magnitude response of a filter lies at

its center frequency, that is, the top vertex of a triangle. Further, magnitude response

of all filters in the filter bank is normalized to unity. Following equation represents the

mathematical model of a mel-filter bank.

Hm[k] =



0 for, k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) for, f(m− 1) ≤ k ≤ f(m)

f(m+1)−k
f(m+1)−f(m)

for, f(m) ≤ k ≤ f(m+ 1)

0 for, k > f(m+ 1)

(3.2.6.3)

Filters in the mel-filter bank are evenly spread along the mel-scale. Center frequencies

of filters in the mel-filter bank are evaluated using the following equation. Where, ’m’

represents the mth filter in the filter bank,

fcm(mel) = fl(mel) +
m(fh(mel)− fl(mel))

M + 1
where, 1 ≤ m ≤M (3.2.6.4)

where, fc(mel) represents center frequency of a filter on mel-scale in mels. FL(mel) and

FH(mel) are the lower and upper bounds of the mel-frequency scale. There are ’M ’

filters lying in between this range. Following figure shows magnitude response of the

filter bank along linear frequency-scale.

Figure 3.13: Mel Filter Bank [52]
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It is of note that all filters are identical in shape and as we move along the linear

frequency-scale, bandwidth of these triangular bandpass filters gets wider and the cen-

ter frequencies of the respective filters are not evenly spaced. This goes to show that

relationship between mel-scale and linear frequency-scale is non-linear.

Moreover, if |Hm[K]| represents magnitude response of the mth filter, where k is the

frequency domain index, then output, X, of the filter can be expressed by the following

equation,

Xm =

N/2∑
k=0

|S[k]|2|H[k]|

where, 1 ≤ m ≤M (3.2.6.5)

where, S[k] represents the spectrum of the windowed frame. Note that in equation

3.2.6.5, summation is taken till N/2 points because lateral half is mirror of the first half

of the spectrum.

Logarithmic Compression

To model human perceived loudness with respect to signal intensity, logarithmic com-

pression is applied. Mathematically, output after logarithmic compression can be ex-

pressed with the following equation,

Xm(ln) = ln(Xm)

where, 1 ≤ m ≤M (3.2.6.6)

where, Xm(ln) represents the output of the mth filter after logarithmic compression func-

tion.

Discrete Cosine Transform (DCT)

After logarithmic compression, resulting coefficients are passed to the next stage for the

concluding final step of cepstral analysis i.e. Discrete Cosine Transform (DCT). It is

applied to the filter coefficients to de-correlate them. Only first few coefficients are kept

after the application of DCT as they completely defines the vocal tract and are regarded
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as the cepstral coefficients. Mathematically, the kth MFCC coefficient can be expressed

by equation 3.2.6.7.

MFCCk =
√

2/M

M∑
m=1

cos(
πk(m− 0.5)

M
)

where, 1 ≤ k ≤ P (3.2.6.7)

Suppose, ’p’ is the order of the mel-filter bank. Then, cepstrum will have ’p’ coefficients

after DCT. Only first few coefficients are kept to form the feature vector.

3.2.7 Gammatone Cepstral Coefficient (GTCC)

Gammatone Cepstral Coefficient [2] is another FFT-based front-end used in speech signal

processing. It also tries to mimic human auditory system. It is relatively a newer

technique compared to other conventional cepstral analysis methods and works well

in noisy conditions compared to other acoustic signal detection front-ends [52]. This

technique is based upon a gammatone-filter bank, that mimics the frequency selectivity

property of the human auditory system with a series of bandpass filters. Like MFCC,

feature vector is calculated using spectral content of the windowed frame. Following

figure illustrates the overall feature extraction process of GTCC.

Steps of feature extraction are discussed in the following.

Figure 3.14: Gammatone Cepstral Coefficient (GTCC)
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Hamming Window and FFT

First step of the algorithm is similar to other cepstral analysis techniques, that is, divid-

ing the signal into small segments regarded as frames. Segments are later passed through

a windowing function i.e. Hamming window. After windowing, windowed-frame is fre-

quency transformed using fast Fourier transform (FFT). The N -point FFT represents

the spectrum of the signal, that is, S[k] for 0 ≤ k ≤ N − 1.

Gammatone Filterbank

Gammatone filter bank comprised of a series of bandpass filters, which represents fre-

quency selectivity property of the auditory system. Response of a filter in the filter bank

explained in [73] and can be mathematically expressed as in the equation below,

g(t) = atn−1e−2πbt cos(2πfct+ φ) (3.2.7.1)

where, ’a’ is a constant. Usually its value is taken as 1. Moreover, ’φ’ represents the

phase shift, ’f ’ represents the frequency and ’b’ represents the bandwidth of the filter in

Hz.

According to a research [73], center frequency and bandwidth of each filter can be

calculated using the equivalent rectangular bandwidth (ERB). The ERB of a filter is

related to its center frequency. Concept behind ERB is that human cochlea can be

modelled using a series of rectangular bandpass filters; the bandwidth of each filter is

termed as equivalent rectangular bandwidth (ERB). Following equation describes the

mathematical relationship between auditory filter’s ERB and center frequency [29].

ERB(fc) = 24.7(
4.37× fc

1000
+ 1) (3.2.7.2)

Also, Slaney [73] suggested that bandwidth of a gammatone filter should approximately

be 1.019 times the ERB from center frequency of the said filter. It can be mathematically

expressed as,

b = 1.019 ERB (3.2.7.3)

It was also recommended [73] that a 4th order gammatone filter should be good to

model an auditory filter. This answers two unknowns; one being the order and second

being the bandwidth of the filter. Now, the question is how much spaced should two
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consecutive filters be in the filter bank. In an article, it was suggested that a filter

should be a fraction of ERB spaced from a preceding filter. Following equation shows

the relationship to calculate center frequency of a filter in the filter bank [73].

fcm =
−1000

4.37
+ (fh +

1000

4.37
)e

m
M

(− ln(fh+
1000
4.37

)+ln(fl+
1000
4.37

))

where, 1 ≤ m ≤M (3.2.7.4)

where, fcm represents center frequency of a gammatone filter. Moreover, Fl and Fh are

the lower and upper bounds of the filter bank in Hz, respectively. There are total M

filters in the gammatone filter bank distributed between the range Fl and Fh along the

linear frequency-scale.

To implement gammatone filter bank an efficient approach was proposed; each 4th

gammatone filter was implemented using cascading of four filters. Each cascading stage

is build using a 2nd order filter. Equation 3.2.7.5 to 3.2.7.8 represents the transfer

function of each of the cascading stages

H1(z) =
−2T + (2Te−2πbt cos(2πfcT ) + 2

√
3 + 23/2Te−2πbt sin(2πfct))z

−1

−2 + 4e−2πbt cos(2πfcT )z−1 − 2e−4πbtz−2
(3.2.7.5)

H2(z) =
−2T + (2Te−2πbt cos(2πfcT )− 2

√
3 + 23/2Te−2πbt sin(2πfct))z

−1

−2 + 4e−2πbt cos(2πfcT )z−1 − 2e−4πbtz−2
(3.2.7.6)

H3(z) =
−2T + (2Te−2πbt cos(2πfcT )− 2

√
3− 23/2Te−2πbt sin(2πfct))z

−1

−2 + 4e−2πbt cos(2πfcT )z−1 − 2e−4πbtz−2
(3.2.7.7)

H4(z) =
−2T + (2Te−2πbt cos(2πfcT ) + 2

√
3− 23/2Te−2πbt sin(2πfct))z

−1

−2 + 4e−2πbt cos(2πfcT )z−1 − 2e−4πbtz−2
(3.2.7.8)

where, T represents sampling interval of the system. It can drawn from the above

discussion that complete response of a gammatone filter is the product of responses of

the cascading filters. Mathematically, it can be expressed as,

H(z) = H1(z)H2(z)H3(z)H4(z) (3.2.7.9)

Here, we are only interested in the magnitude response of the filters, |H(ω)|. Magnitude

response of each filter is extracted and normalized to unity. Figure 3.15 illustrates the

normalized magnitude response of the gammatone filter bank.
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Figure 3.15: Gammatone Filter Bank [52]

As discussed previously, after windowing FFT is applied to the windowed-frame.

Moreover, the resulting power spectrum, |S[k]|2, is fed to the next stage, that is, to the

gammatone filter bank. Further, power spectrum till Nyquist frequency of the signal is

kept i.e. only half of the N -points because the lateral is the mirror of the first half. The

output of a gammatone filter, Xm, can be mathematically expressed with the following

equation,

Xm =

N/2−1∑
k=0

|S[k]|2|Hm[k]|

where, 1 ≤ m ≤M (3.2.7.10)

where, N represents the number of FFT points and H[k] is the frequency response of a

filter in the gammatone filter bank.

Equal-Loudness

As in PLP, equal-loudness function implements the sensitivity of human hearing. Filter

outputs are weighted according to their center frequencies. First and last filters in the

filter bank will not be weighted as the respective filters have identical shape same as

their adjacent filters. These two filter coefficients will be processed in the next step.
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Output of a gammatone filter, Xm, after weighting as per the equal-loudness function

can be mathematically expressed by the following equations,

Xm(e) =EmXm

where, 2 ≤ m ≤M − 1 (3.2.7.11)

Equal-loudness function, for applications having Nyquist frequency below 5 KHz,

E(w) =
(w2 + 56.8× 106)w4

(w2 + 6.3× 106)2(w2 + 0.38× 109)

for, fm ≤ 5KHz (3.2.7.12)

and, for applications having Nyquist frequency above 5 KHz,

E(w) =
(w2 + 56.8× 106)w4

(w2 + 6.3× 106)(w2 + 0.38× 109)(w6 + 9.58× 1026)

for, fm > 5KHz

(3.2.7.13)

Logarithmic-Compression

Next step is to apply the logarithmic-compression function to the weighted filter coef-

ficients. It models the perceived loudness of human auditory nerve in response to the

signal intensity. Following equation represents the mathematical relationship between

perceived loudness and signal intensity,

Xm(ln+e) = ln(Xm(e))

where, 1 ≤ m ≤M (3.2.7.14)

As discussed, first and last filters in the filter bank will be assigned weights same as of

their adjacent filters. Mathematically, it can be expressed by the following equation,

X1(e) = X2(e)

XM−1(e) = XM(e) (3.2.7.15)

Discrete Cosine Transform (DCT)

Final step of cepstral analysis is to apply the DCT function to the compressed & weighted

filter coefficients. Moreover, it is to de-correlate the filter coefficients. Suppose, the order
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of GTCC is ’p’, then feature vector will comprise ’p’ coefficients. Mathematically, it can

be expressed with the following equation,

GTCCk =

√
2

M

M∑
m=1

Xm(ln+e) cos(
πk(m− 0.5)

M
) where, 1 ≤ k ≤ p (3.2.7.16)

where, k represents the kth Gammatone Cepstral Coefficient.

3.2.8 Wavelet Analysis

Wavelet gives both time and frequency resolution of a signal. It is a small wave packet,

which is duration bound and has concentrated energy in time. Although, these wave

packets or wavelets can be shifted in time. Wavelet functions have two properties;

scaling and shifting. Scaling is the compression and rarefaction of wavelet i.e. equivalent

to variations in frequency of a wave packet whereas translation is the shifting of a

wave packet along time axis. These two properties helps in gaining both time and

frequency information of a signal. At low frequencies, it gives poor time resolution

along with good frequency resolution and vice versa. Two wavelet functions have been

used in this study for feature extraction i.e. Daubechies and Symlets. Order of both

the wavelet functions were kept to three because characteristics of the source resides

in low frequency regions. Moreover, symlet is a modified version of daubechies wavelet

and the significant difference between the two functions is that higher-order symlets are

symmetric compared to daubechies. Following equation represents general form of the

discrete wavelet function.

Ψm,n(t) =
1√
Sm0

Ψ

(
t− nt0sm0

sm0

)
(3.2.8.1)

where, m and n are the scaling and time shifting factors, respectively. Following equation

is used to calculate detail coefficients of a signal using wavelets.

ψm,n(t) =

∞∫
−∞

x(t)Ψm,n(t)∂t (3.2.8.2)
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3.3 Classification Techniques

For automated detection of objects based on signals acquired via sonar platform, tem-

plate classifier and variants of neural network have been used in this study. To perform

efficient classification, five classifiers have been used, namely, a hyperplane classifier

i.e. multilayer layer perceptron with fixed and variable step size (MFNN and VLR-

MFNN), a kernel based classifier i.e. radial-basis function neural network (RBF-NN),

convolutional neural network (CNN) and a template classifier i.e. dynamic time warping

(DTW). Details of each classifier have been discussed in the following.

3.3.1 Neural Networks

Artificial neural networks are inspired with human nervous system i.e. by real biological

neurons. First neural network model was developed by McCulloch and Pitts [47]. Since

then, thorough usage of neural network classifiers in the field of pattern recognition

and signal processing has led to the development of several neural network architectures

and learning algorithms. They comprise of associative memory networks i.e. Hopfield

memory, Bi-directional associative memory (BAM) and pattern recognition networks

i.e. multilayer perceptron (MLP), counter propagation networks etc. Artificial Neural

Network is a highly interconnected network of data processing units known as artificial

neurons. The connections joining nodes to one another are termed as weights [32].

Moreover, weights are deemed as the single most important factor in determining the

output of a neuron. The higher the weight of a link to the neuron, stronger will be the

effect of the input applied to that neuron. For a complex network of hundreds of neurons,

algorithms are used for weight updating. The process is termed as training. Depending

upon the type of weights, the learning and adjustment mechanisms are different. Another

important factor is the activation function, which is used to scale the output of the

neuron. Artificial neuron acts as a stimulator to the next neuron, as output of one

neuron activates another neuron in the next layer. Moreover, all neuron take decisions

based on some activation function. A typical neuron with input, output and activation

function is illustrated in figure below.
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Figure 3.16: A Simple Perceptron

Further, three types of mechanisms exist for training of a classifier, namely, super-

vised training, un-supervised training and combined supervised/ un-supervised training.

Classifiers trained with supervised methods require information of correct class labels of

the data set whereas classifiers with un-supervised learning mechanism i.e. vector quan-

tization and clustering, groups un-labelled data into internal clusters. Classification

with combined supervised/ un-supervised learning mechanism usually uses clustering to

segregate data into internal clusters. Then, the generated clusters are assigned class

labels, which is then used for training as done in supervised learning mechanisms.

Why Neural Networks? Artificial Neural Network is a network of massively parallel

neurons i.e. distributed processors interconnected to each other in a mesh. It has a

tendency of naturally storing information to be used then and forth. ANNs have been

applied to a lot of the real world problems of complex nature, making them a lucrative

solution compared to current technologies. Neural networks have an ability to derive

meanings and finding patterns from an imprecise data that is difficult for an ordinary

human being or machine to detect or notice. A trained neural network is an expert

system when it comes to analysing the kind of information it is trained with. Neural

networks have several advantages, few of them are discussed below,

• Adaptive: Ability to learn and adapt on how system should respond to input

data based on training or initial experience.
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• Self-Organization: An ANN has an ability to create its own interpretation or

organization of information received during learning time.

• Real Time Operation: Computations can be carried out in parallel for an ANN;

special type of hardware can be designed and manufactured to utilize this feature

of ANN.

• Fault Tolerance via Redundant Information Coding: Damage to a neural

network could cause performance degradation. However, the network is massively

interconnected, so even in case of damage; some of the network capabilities may

be retained.

3.3.2 Multilayer Feed-forward Neural Network

Multilayer perceptrons are feed-forward networks which can be trained using back-

propagation algorithm [68]. The network comprised of an input layer, an output layer

and one or more hidden layers. Number of neurons in the input layer depends upon

the size of the feature vector whereas the number of neurons in output layer depends

upon the size of the vector representing class labels. Figure 3.17 illustrates a multilayer

feed-forward neural network.

Figure 3.17: Multilayer Feed-forward Neural Network
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In back-propagation algorithm, there are two steps, a forward step and a backward

step. During the forward step; neuron sends its signal in forward direction. A non-

linear activation function is used for decision making at each layer i.e. it transforms an

input signal into an output signal. While during the backward step; the error (difference

between desired value and output value from the network) is back-propagated to adjust

the weights of the links to reduce the accumulated error. Objective of this training

phase is to adjust weights in such a way that it reduces the overall error. When error is

reduced to its minimum or it reaches an acceptable steady state value the training phase

is complete. Back-propagation algorithm is a supervised learning algorithm, therefore,

requires every input to be mapped to a class label or output. New set of weights are

iteratively calculated based on the amount of error until an overall minimum error is

achieved. The mean square error is the objective function and a measure of global error

and it is defined as,

MSE(n) =
No∑
j=1

(dj(n)− yj(n))2 =
No∑
j=1

e2j(n) (3.3.2.1)

where, ej(n) represents the error between the output of the jth neuron and the corre-

sponding desired value. N0 represents the number of output nodes.

Back-propagation Algorithm - As discussed, Multilayer perceptron uses back-propagation

algorithm for training. Its basic steps and weight update mechanism is briefly discussed

below,

• The input signal, x1, x2, x3, . . . , xn, propagates through the input layer neurons to

the hidden and output layer neurons in forward direction.

• The error, e1, e2, e3, . . . , em, is back propagated from output to the input layer.

• Weight of the ith neuron of the input layer to the jth neuron of the hidden layer is

denoted by wij.

• Weight of the jth neuron of the hidden layer to the kth neuron of the output layer

is denoted by wjk

• Error at the kth neuron of the output layer on pth iteration can be expressed as,

ek(p) = dk(p)− yk(p)
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where, dk(p) and y(p) represents the desired value and output value at kth neuron

on pth iteration, respectively.

• The weight update equation is given by,

wjk(p+ 1) = wjk(p) +4wjk(p)

where, 4wjk(p) represents the weight adjustment factor.

• Further, weight adjustment factor for the link connecting jth neuron to the kth

neuron of the next layer on pth iteration can be mathematically expressed as,

4wjk(p) = αyj(p)δk(p)

where, α is the learning rate, δk(p) represents the local gradient at kth neuron of

the output layer on pth iteration.

• The local gradient is the product of the gradient of the activation function and the

error at the neuron output. The gradient at kth neuron on pth iteration is given

by,

δk(p) =
∂yk(p)

∂xk(p)
ek(p)

where, xk(p) is the weighted input to the kth neuron on pth iteration.

• Moreover, correction of weights, wij, connecting neurons of input layer to the

hidden layer will be made using the same process as above.

3.3.3 Variable Learning Rate Feed-forward Neural Network

(VLR-NN)

For variable learning rate - feed-forward neural network, a modified back-propagation

algorithm is used for training purpose. For modified back-propagation algorithm, weights

associated with ith neuron of the (l−1)th layer to the jth neuron in the lth layer is updated

as below:

w
(l)
ji (n+ 1)︸ ︷︷ ︸

New Weights

= w
(l)
ji (n)︸ ︷︷ ︸

Old Weights

+η(n) δ
(l)
j (n)︸ ︷︷ ︸

Local Gradient

y
(l−1)
i (n) (3.3.3.1)
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where, η(n) represents time-varying learning rate. It is updated according to the mech-

anism of variable step-size learning algorithm in [3] as,

η(n+ 1) =


ηmax if, ρ(n+ 1) > ηmax

ηmin if, ρ(n+ 1) < ηmin

ρ(n+ 1) otherwise

(3.3.3.2)

Value of ρ(n+ 1) depends upon the energy of the instantaneous error, that is,

ρ(n+ 1) = αη(n) + γe2(n) (3.3.3.3)

Such that, 0 < α < 1 and γ > 0. δj(n) in equation 3.3.3.1 represents the local gradient

associated with the jth neuron of the lth layer and can be calculated as follows,

δ
(l)
j (n) =

 (dj(n)− y(L)j (n))φj′(v(L)j (n)) , OutputLayer

φj′(v(L)j (n))
∑
∀K
δ
(l+1)
k (n)w

(l+1)
kj (n) , HiddenLayer (3.3.3.4)

3.3.4 Radial-Basis Function Neural Network (RBF-NN)

Radial-basis function neural network (RBF-NN), also known as the kernel classifier,

has one hidden layer. Kernel function (i.e. usually the Gaussian function) defines the

composition of neurons in the hidden layer. Kernel function forms a complex decision

space by localizing regions in the space of the transformed data [4] [14]. The only

hidden layer uses the non-linear activation function that transforms the data from a

low-dimensional space to a high-dimensional space while making it linearly separable.

Radial-Basis function is a term which depicts the use of a kernel function as a non-linear

activation function in the hidden layer. Each hidden layer neuron compares each of the

link inputs coded in form of weights. The activation function generates a strong output

when input is near to the centroid of the kernel function in terms of Euclidean distance

and as the input moves away from the centroid, output signal decreases monotonically.

Further, Euclidean distance is the metric used for distance calculation. Radial-basis

function neural network (RBF-NN) classifier is a feed-forward mapping network that

has a lot of applications in classification problems related to object identification based

on speed and underwater transients. It provides an alternative tool to learn in neural

networks. The advantage of RBF is that it does not get trapped into local minima or

maxima of the objective function surface whereas the disadvantage is that it requires a

large space for input representation as number of centers depends upon the distribution
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of input data. Here, the main objective is to design an artificial neural network with

good adaptation and inference ability along with having fewer number of processing

units to avoid long taxing calculations. In this work, centroids of the RBF network were

determined from clustering while width was kept constant during training. Figure 3.18

illustrates a typical RBF network.

Figure 3.18: Radial-Basis Function Neural Network

The main factors of RBF are,

1. RBF-Networks are used for performing complex (non-linear) pattern classification

and function estimation tasks.

2. They are called single layer feed-forward neural networks.

3. Nodes on hidden layer uses an activation function.

4. Output nodes only sum up the weighted input and doesn’t use any activation

function in decision making.

5. Weights are updated from input to hidden and then, from hidden to output layer.

6. It takes probably more computation time compared to MLP but learning is faster

compared to MLP.
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7. Larger number of hidden layer neurons are required compared to MLP.

The interpolation of N−points in a D−dimensional space requires input vectors, Xp, of

D−length as

xp = {xpi ; i = 1, 2, 3, . . . , D} (3.3.4.1)

The input vectors are mapped to respective target outputs, tP , goal is to calculate

function, f(x), such that,

f(xp) = tp ∀p = 1, 2, . . . . . . , N (3.3.4.2)

RBF approach introduces N basis functions for each D−dimensional data point in the

input set. Each data point will be mapped to one of the basis which is closest to it in

terms of distance. The function is of the form φ(||x − xP ||), where, φ(.) is some non-

linear function i.e. Gaussian function etc. Moreover, the output can be mathematically

written as,

f(x) =
N∑
p=1

wpφ(||x− xp||) (3.3.4.3)

Solving equation 3.3.4.2 and 3.3.4.3 will yield appropriate value of weights with respect

to the transformed input set. It is given by,

f(xq) =
N∑
p=1

wpφ(||xq − xp||) = tq (3.3.4.4)

Further, the matrix form representation is, let f(xq) = tq, w = {wp} and Φ = {φpq = φ||xq − xp||}.
Then, equation 3.3.4.4 becomes,

ΦTw = t (3.3.4.5)

3.3.5 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) [59] is a template classifier. It is a measure for calculating

similarity between time varying sequences. It has been used long and to greater extent

in applications of speech signal processing. Its distinguishing feature is that it performs

non-linear mapping by minimizing distance between two sequences. Non-linear (elastic)

mapping is a good similarity measure as sequences out of phase but similar in shape or

pattern are easier to match. Usually, Euclidean distance is the metric used for distance

calculation. Following figure illustrates non-linear mapping of one signal on another.
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Figure 3.19: Non-linear Mapping of One Signal on Another [69]

To find the best alignment between signal A and B, one needs to find the path

through the grid, P = p1, p2, . . . , ps, . . . , pk, where, ps = (is, js). Which minimizes the

total distance between two signals. Here, P is called a warping function. Following

figure illustrates the warping function,

Figure 3.20: Depiction of Warping Function [69]

Time-normalized distance between A and B is given by,

D(A,B) =


k∑
s=1

d(ps).ws

k∑
s=1

ws

 (3.3.5.1)

where, d(ps) represents distance between points is and js and ws represents the weighting

coefficient. Moreover, the best alignment path between A and B is given by,

Po = argp min(D(A,B)) (3.3.5.2)

However, the number of possible warping paths through the grid are exponentially ex-

plosive, so optimization measures available in literature [69] are taken to reduce the

computational complexity of the process. They are listed below along with the figure

3.21 illustrating effects these will have on the computational complexity.
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Figure 3.21: Optimization Methods (1) Monotonicity (2) Continuity (3) Boundary

Conditions (4) Warping Window (5) Slope Constraint [69]

1. Monotonicity: The alignment path does not go back in ”time” index, that is,

is−1 ≤ is and js−1 ≤ js.

2. Continuity: The alignment path does not jump in ”time” index, that is, is−is−1 ≤
1 and js − js−1 ≤ 1.

3. Boundary Conditions: The alignment path starts at the bottom left and ends up

at the top right, that is, i1 = 1, ik = n and j1 = 1, jk = m.

4. Warping Window: A good alignment path is unlikely to wander too far from the

diagonal, that is, |is − js| ≤ r, where r > 0 is the window length.

5. Slope Constraint: (jsp − jso)/(isp − iso) ≤ p and (isq − iso)/(jsq − js) ≤ q, where

q ≥ 0 are the number of steps in x−direction and p ≥ 0 are the number of steps

in y−direction. After q steps in x direction one must step in y direction and vice

versa, that is, S = p/q ∈ [0,∞].

Algorithm - Steps of Dynamic Time Warping algorithm are discussed below,

1. Initial condition: g(1, 1) = d(1, 1).
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2. DP-equation:

g(i, j) = min


g(i, j − 1) + d(i, j)

g(i− 1, j − 1) + d(i, j)

g(i− 1, j) + d(i, j)

(3.3.5.3)

3. Warping window: j − r ≤ i ≤ j + r

4. Time-normalized distance:

D(A,B) = g(n,m)/C (3.3.5.4)

where, C = n+m

3.4 Dimensionality Reduction Techniques

Computational complexity of a system is proportional to the size of the input vector.

Features extracted using Low Frequency Analysis & Ranging (LOFAR) method have

been used to study the effects of dimension reduction on classification results. For the

purpose of dimensionality reduction, principal component analysis (PCA) and linear

discriminant analysis (LDA) have been used. Details of both the methods are in the

following.

3.4.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) [39] is a statistical data analysis technique. It is also

termed as an un-supervised classifier and known for increasing the variance amongst the

data elements in the input set. It has greater applications in fields of pattern recognition

and cryptography. It is very commonly used in applications where dimension of the data

set is to be reduced. It transforms the data set in high-dimensional space into a low-

dimensional space reducing the overall processing cost with out losing much information.

It is used for finding similarities and patterns present in data. Since, there is less

chance of efficiently analysing data of higher dimensions analytically, that’s where PCA
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helps the most; it is a powerful tool that helps in analysing data of higher dimension

i.e. finding similarities and differences. One of the most important features of PCA that

makes it ever so useful is that once patterns are identified in data, it can be compressed.

Steps for implementation of Principal Component Analysis

1. First step of principal component analysis (PCA) is to obtain zero-mean data, that

is, because we are only interested in patterns present in the data not the absolute

values. Subtracting mean value from data will yield zero-mean data.

2. Covariance matrix is calculated using the zero-mean input data. Result is a square

matrix, whose dimension is same as that of the input data.

3. Next step is the calculation of Eigenvectors and Eigenvalues using covariance ma-

trix. Eigenvectors are arranged based on their respective Eigenvalues. Eigenvector

with the highest Eigenvalue will be placed first and will be referred to as the prin-

cipal component. Further, Eigenvectors are normalized to unity as absolute values

don’t have any information only patterns do.

4. Final step is to transform data using Eigenvectors. Eigenvectors acts as basis of the

space in which the transformed data lies. Usage of all components in data trans-

formation yields data with maximum variance or spread. Leaving out Eigenvectors

from the set of principal components during data transformation will result in loss

of information and it will also weaken the discriminating ability of the feature set.

3.4.2 Linear Discriminant Analysis (LDA)

It is a statistical data analysis technique, also known as a supervised classifier. It trans-

forms data elements into an Eigen space while maximizing the projected variance be-

tween data elements belonging to different classes and reducing the intra-class projected

variance i.e. minimizing the variance between data elements belonging to same class [70].

Further, key difference between PCA and LDA is that the lateral deals with labelled
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data. Objective function for LDA can be mathematically expressed as,

max
w

J(w) =
wTBw

wTBs

(3.4.2.1)

where, Bw and Bs represents the between and within class scatter matrices, respectively.

Main goal of LDA is to find a vector w that maximizes the objective function.

3.5 Deep Learning and Multi-linear Subspace Learning

Deep learning and sub-space learning have shown to outperform many standard and

conventional methods in acoustic modelling in many research applications related to

speech and acoustics [37] [21] but there haven’t been many studies available investigat-

ing their performance for under water acoustics. So, apart from all the front-ends and

back-ends discussed in previous sections, two relatively newer approaches have also been

used in this study. Amongst the two approaches, one has been used for feature learn-

ing and the other being used for classification. For classification, convolutional neural

network (CNN), a deep learning approach has been used whereas multi-linear principal

component analysis (MPCA), a multi-linear sub-space learning approach has been used

for feature learning and dimensionality reduction. CNN and MPCA have both been

applied successfully to problems where conventional techniques have failed to perform.

Moreover, both techniques have worked well in environments that uses tensor objects as

inputs i.e 2D or 3D Matrices. Further, both techniques have given good and sustained

performance levels where size, dimension and complexity of data is large. Brief details

of both the techniques are in the following.

3.5.1 Convolutional Neural Network (CNN)

It is a deep learning approach, which has worked well in classification problems where

data is tensor, complex and separability is difficult. convolutional neural networks

(CNNs) are inspired with visual mechanism in living beings. The visual cortex in hu-

man brain contains a lot of cells that are sensitive to light and detects light in small

overlapping sub-regions in the visual fields known as the receptive fields. Complex cells

have larger visual fields. Moreover, these cells act as filters in realizing the convolution
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operation. Convolutional neural network comprised of two types of layers, namely, the

convolutional layer and the sub-sampling or pooling layer. One major advantage of the

convolution neural network is the use of shared filter bank (weights) in the convolutional

layers. This improves performance while reducing the size of the parameter set [1]. Af-

ter the aforesaid layers comes the optional fully connected layer(s) that connects output

layer with the complete network. Input to the convolution neural network is always a

2D or 3D data matrix. The convolutional layer comprises of ’k’ number of filters which

convolves with the input matrix to produce feature maps. Further, each map is passed

on to the sub-sampling layer for max or mean pooling operations. Either before or after

pooling operation, each feature map is passed through a non-linear activation function

i.e. sigmoid or ReLU etc. to incorporate non-linearity into the feature maps and as

mentioned earlier, an output layer follows the convolutional and sub-sampling layers.

Moreover, back-propagation algorithm has been used for weights correction, which has

already been discussed in previous section.

The convolution operation in the convolutional layer can be mathematically de-

scribed by the following equation,

CFM i
j = f(

I∑
i=1

X l
i ⊗K l

ij + blj) (3.5.1.1)

where, ’CFM l
j’ is the output feature map from the lth convolutional layer, ’f’ represents

the non-linear activation function, ’X l
l ’ represents the lth input matrix, ’K l

ij’ represents

the kernal and ’blj’ represents the bias value. Similarly, the pooling operation in the

sub-sampling layer can be mathematically described by the following equation,

PFM l
i,m =

G
max
n−1

CFM l
i,(m−1)∗s+n (3.5.1.2)

where, ’PFM l
i,m’ is the output feature map from the lth sub-sampling layer, ’G’ repre-

sents the pooling size and ’s’ represents the shifting parameter.

3.5.2 Multi-linear Principal Component Analysis (MPCA)

It is a multi-linear subspace (MSL) learning approach, which is used for feature learning

and dimensionality reduction of tensor objects i.e. multi-dimensional objects. It is

designed to work with tensors of any order i.e. 1D, 2D, 3D etc. Moreover, the objective
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of MPCA is to find Eigen tensors that tends to capture maximum variations present in

the input data. Traditionally, linear subspace learning (LSL) mechanisms i.e PCA and

LDA, were used a lot and they have mostly been used to reduce the dimensions of the

data set. Moreover, almost all LSL methods represent input as a vector and solve for

transforming the input vectors into an optimal lower-dimensional space. However, with

multi-dimensional data LSL methods haven’t been effective because it tends to break

the natural structure of the objects which results in loss of information and therefore

the transformed data usually tends to lose variations present in the original tensors.

Moreover, the author in [45] has discussed all mathematical and algorithmic details

of multi-linear principal component analysis (MPCA) related to it’s implementation.

Also, results presented in [45] signifies the importance and need of usage of the MSL

approaches for feature learning and dimensionality reduction of tensor objects.
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4.1 Experimental Conditions

In this chapter performance evaluation of all detection and classification schemes have

been made using two sets of data, that is, a raw dataset having acoustic samples belong-

ing to 4 different classes of ships and a synthetic dataset, URL: http://www.dosits.org

[79], having acoustic samples belonging to 20 different classes of underwater objects i.e.

ships and sea species. All scripts and simulations have been written and conducted in

MATLAB, respectively. Moreover, toolboxes for convolution neural network (CNN) [53]

and multi-linear principal component analysis (MPCA) [45] have been used. Further,

Classification results were observed under the effects of noise i.e. additive white Gaus-

sian noise (AWGN). Following are the 20 class labels of acoustic samples downloaded

from DOSITS [79],

1. Ship with a Vessel in a Tow

2. Merchant Vessel

3. Commercial Ship

4. SONAR

5. Mantis Shrimp

6. Mantis Shrimp - Patek Caldwell - In presence of an Intruder

7. Torpedo

70
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8. Blue Grunt (Fish)

9. Toad-fish

10. Silver Perch

11. Blue Whale

12. Blue Whale - Sulphur Bottom Whale

13. Amazon River Dolphin

14. Gray Whale

15. Sperm Whale (Coda)

16. Sperm Whale (Creak)

17. Atlantic Croaker

18. Pilot Whale

19. Harbour Porpoise

20. Surveillance Towed Array Sensor System - Low Frequency Active (SURTASS-LFA)

SONAR

After feature extraction process, acquired feature set was fed to the classifier for au-

tomated recognition. The task of the recognition system is to correctly identify the

class label of the sample under test. Moreover, half of the generated samples were used

for training while the remaining half was used to test the performance of the trained

network. All samples were chopped into ensembles of about 25 ms of duration to miti-

gate the effects of non-stationarity. Moreover, consecutive frames had an overlapping of

around 50% in all feature extraction front ends except for Bartlett spectral estimation

method where overlapping between frames is not required. Feature vectors were calcu-

lated for each frame of the acoustic samples while using all the detection schemes as
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discussed in chapter 3. Moreover, each feature vector was represented using ’p’ number

of coefficients.

A profile for % recognition is created for each front-end feature extraction method

with every back-end classification scheme. Simulations were repeated at different val-

ues of signal to noise ratio. Five renowned classifier were used for classification of

objects based on extracted feature set. Namely, multilayer feed-forward neural network

(MFNN), variable learning rate feed-forward neural network (VLR-NN), radial-basis

function - neural network (RBF-NN), convolutional neural network (CNN) and dynamic

time warping (DTW). Effects of dimensionality reduction on classification results were

also observed. Three techniques were used for the said purpose i.e. two linear subspace

learning schemes, namely, principal component analysis (PCA) and linear discriminant

analysis (LDA) and a multi-linear subspace learning (MSL) approach, multi-linear prin-

cipal component analysis (MPCA). Details of simulation environment and parameters

are listed in table 4.1 below.

Table 4.1: Simulation Details

Parameters Attributes

Sampling Frequency (Hz) 44100

Down-Sampling Factor 5

Sample Size (FrameSize) (sec) 25ms

Step-Size (sec) 12.5ms

Database DOSITS [79]

Raw Dataset

No. of Samples in each Class - DOSITS [79] 21200 Approx

No. of Samples in each Class - Raw Dataset 657600 Approx

No. of Classes DOSITS - 20

Raw Dataset - 4

Percentage of Samples for Training 50%

Percentage of Samples for Testing 50%

Noise Type AWGN

SNR Range −20dB,−10dB, 0dB, 10dB and 10dB

Front-End Models LOFAR, DEMON, LPC, LPCC,

PLP, MFCC, GFCC, Wavelet and MPCA

Back-End Units MFNN, VLR-MFNN, RBF-NN, DTW and CNN

Dimension Reduction Techniques PCA and LDA

Platform MATLAB
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4.1.1 Graphical User Interface Model

Figure 4.1: Graphical User Interface Model for Detection of Envelope Modulation on

Noise (DEMON) and Low Frequency Analysis and Ranging (LOFAR) Anal-

ysis

In addition, a graphical user interface (GUI) has been developed for performing two

analysis, that is, detection of envelope modulation on noise (DEMON) and low frequency

analysis & ranging (LOFAR), on the acquired acoustic sample. GUI was build using

MATLAB. Figure 4.1 illustrates the graphical user interface for the aforementioned

system. The model can be used to perform LOFAR and DEMON analysis on recorded

and real-time streams. Figure 4.2 gives view of the GUI model illustrating signal spectra

after DEMON/ LOFAR analysis on the real-time stream. For real-time streams, data

acquisition was made after every 25 ms.

Figure 4.2: Graphical User Interface Model for Signal Analysis - Real-time Stream

Figure 4.4 and 4.3 illustrates the graphical user interface for performing LOFAR &

DEMON signal analysis on the recorded sequences and for generating synthetic spectra

based on source characteristics, respectively.
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Figure 4.3: Graphical User Interface Model for Generating Synthetic Spectra

Figure 4.4: Graphical User Interface Model for Signal Analysis - Recorded Stream

4.2 Detection and Classification

As discussed earlier in section 4.1, different signal detection and classification techniques

have been used in this study. First, feature extraction is performed and then obtained

feature set is fed to the classifier for classification. Moreover, feature sets acquired using

aforementioned approaches were first normalized before being fed to the classifier as in-

puts. Table 4.2 give details of the parameters for the respective classification techniques.
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Table 4.2: Classification Techniques - Parameters

Technqiues Parameters Values

Activation Functions, φ Tansig and Logsig

No. of Layers 05

No. of Hidden Layers 03

MFNN
No. of Neurons in Input Layer As the size of the FV

No. of Neurons in Hidden Layer 150-100-100

No. of Neurons in Output Layer - DOSITS 20

No. of Neurons in Output Layer - Raw Dataset 4

Learning Rate, η 0.05

Total Epochs 500

Activation Functions, φ Tansig and Logsig

No. of Layers 05

No. of Hidden Layers 03

No. of Neurons in Input Layer As the size of the FV

VLR-MFNN
No. of Neurons in Hidden Layer 150-100-100

No. of Neurons in Output Layer - DOSITS 20

No. of Neurons in Output Layer - Raw Dataset 4

Learning Rate, η 0.008 to 0.05 (Variable)

Alpha, α 0.2

Gamma, γ 0.00001

Total Epochs 500

RBF Type Recursive RBF

No. of Layers 03

No. of Hidden Layers 01

No. of Neurons in Input Layer As the size of the FV

No. of Neurons in Hidden Layer 20

RBF-NN
No. of Neurons in Output Layer - DOSITS 20

No. of Neurons in Output Layer - Raw Dataset 4

Learning Rate, η 0.09

Total Epochs 100

Non-Linear Function, φ Gaussian Function

Centres Fixed Centres - Using Euclid. Dis.

Variance, σ Fixed Variance - 0.2
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Table 4.3 and Table 4.4 give details of the simulation results for both the datasets.

Every detection technique has been used with every classification technique except for

CNN and MPCA. Moreover, all presented results have been averaged over at least 10

iterations. Further, all simulations have been performed under the influence of noise at

different levels of signal-to-noise ratio (SNR).

Table 4.3: DOSITS - %Recognition - Feature Extraction Techniques vs Classification

Techniques

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

−20 - - - 81.75%

−10 - - - 84.58%

DEMON
0 69.00% 68.02% 71.05% 91.21%

10 90.38% 89.25% 97.56% 94.53%

20 98.42% 97.35% 99.84% 99.57%

−20 - - - 89.00%

DEMON
−10 - - - 90.21%

F
e
a
tu

re
E
x
tr
a
c
ti
o
n

T
e
ch

n
iq
u
e
s

(LPF)
0 51.21% 50.68% 59.04% 93.24%

10 79.87% 78.38% 98.82% 98.34%

20 93.90% 92.82% 94.53% 99.53%

−20 - - - 86.25%

DEMON
−10 - - - 88.34%

(HILBERT)
0 58.49% 59.85% 58.83% 91.23%

10 81.50% 81.08% 93.30% 94.87%

20 95.06% 93.06% 98.27% 99.12%

−20 - - - 86.21%

−10 - - - 88.98%

LOFAR
0 75.38% 74.41% 73.17% 93.57%

10 91.38% 89.33% 95.19% 95.33%

20 98.71% 97.21% 97.66% 99.10%

LOFAR
−20 - - - 22.25%

(Welch)
−10 - - - 53.00%

0 56.60% 55.60% 57.20% 95.75%

continued on next page...
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... Table 4.3 continued

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

10 76.00% 73.00% 75.30% 96.32%

20 89.40% 87.20% 87.20% 98.23%

−20 - - - 23.25%

LOFAR
−10 - - - 51.00%

(Bartlett)
0 56.20% 54.20% 54.80% 89.75%

10 77.49% 74.40% 76.80% 94.23%

20 87.80% 92.40% 91.10% 98.21%

−20 - - - 80.00%

LPA
−10 - - - 89.00%

(Bareiss
0 28.43% 28.95% 22.07% 92.23%

Method)
10 51.87% 55.10% 54.18% 95.21%

20 73.46% 75.54% 76.33% 99.43%

F
e
a
tu

re
E
x
tr
a
c
ti
o
n

T
e
ch

n
iq
u
e
s

−20 - - - 89.75%

LPA
−10 - - - 91.22%

(Durbin’s
0 26.41% 26.41% 21.23% 93.45%

Method)
10 45.59% 48.61% 50.32% 96.32%

20 74.49% 76.56% 76.62% 98.45%

−20 - - - 92.00%

−10 - - - 93.23%

LPCC
0 76.64% 76.06% 69.63% 95.54%

10 95.14% 75.30% 92.62% 98.21%

20 99.53% 97.56% 99.74% 99.43%

−20 - - - 16.25%

−10 - - - 48.75%

PLP-BFCC
0 57.38% 56.86% 55.31% 89.50%

10 89.31% 88.23% 87.26% 95.21%

20 98.77% 98.13% 98.79% 99.34%

MFCC
−20 - - - 85.00%

−10 - - - 89.23%

continued on next page...
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... Table 4.3 continued

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

0 67.80% 67.93% 53.89% 94.21%

10 91.31% 91.73% 92.88% 97.34%

20 98.24% 98.13% 03.31% 99.11%

−20 - - - 09.25%

−10 - - - 25.00%

F
e
a
tu

re
E
x
tr
a
c
ti
o
n

T
e
ch

n
iq
u
e
s

GTCC
0 62.27% 61.72% 61.51% 78.00%

10 91.20% 91.64% 89.62% 89.32%

20 98.92% 98.75% 99.55% 97.67%

−20 - - - 89.23%

Wavelet
−10 - - - 91.65%

(Daubechies)
0 27.69% 21.18% 42.14% 92.43%

10 74.49% 65.95% 95.48% 95.12%

20 74.48% 93.27% 99.16% 99.32%

−20 - - - 82.21%

Wavelet
−10 - - - 87.44%

(Symlets)
0 25.35% 23.15% 35.89% 91.24%

10 54.07% 59.12% 93.25% 96.21%

20 52.65% 88.41% 99.50% 99.46%

Table 4.4: Raw Dataset - %Recognition - Feature Extraction Techniques vs Classifi-

cation Techniques

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

−20 - - - 68.57%

−10 - - - 89.87%

DEMON
0 41.48% 41.34% 62.93% 92.31%

10 63.18% 71.20% 99.12% 97.23%

continued on next page...
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... Table 4.4 continued

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

20 88.12% 95.80% 99.46% 99.32%

−20 - - - 24.64%

DEMON
−10 - - - 76.96%

(LPF)
0 37.30% 38.29% 43.98% 86.27%

10 51.07% 46.71% 97.75% 95.24%

20 64.21% 53.50% 99.05% 98.21%

−20 - - - 33.57%

DEMON
−10 - - - 89.11%

(HILBERT)
0 42.02% 42.30% 54.41% 93.12%

10 62.88% 63.05% 99.93% 96.12%

20 79.86% 93.75% 100% 98.45%

F
e
a
tu

re
E
x
tr
a
c
ti
o
n

T
e
ch

n
iq
u
e
s

−20 - - - 85.32%

−10 - - - 89.76%

LOFAR
0 42.77% 41.25% 56.66% 91.43%

10 64.96% 67.63% 99.95% 98.23%

20 82.68% 94.45% 100% 99.24%

−20 - - - 04.43%

LOFAR
−10 - - - 04.57%

(Welch)
0 93.71% 88.86% 91.64% 12.86%

10 96.14% 89.29% 99.64% 39.71%

20 96.43% 92.86% 100% 90.86%

−20 - - - 04.43%

LOFAR
−10 - - - 06.00%

(Bartlett)
0 91.29% 85.86% 92.29% 11.43%

10 85.14% 89.00% 99.86% 42.43%

20 89.29% 85.71% 100% 96.29%

LPA
−20 - - - 55.36%

(Bareiss
−10 - - - 89.56%

Method)
0 38.50% 37.30% 35.96% 92.37%

continued on next page...
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... Table 4.4 continued

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

10 51.66% 47.38% 59.96% 96.34%

20 70.61% 67.43% 95.68% 99.45%

−20 - - - 88.21%

LPA
−10 - - - 91.34%

(Durbin’s
0 39.79% 36.77% 35.29% 95.12%

Method)
10 49.63% 52.50% 74.29% 98.56%

20 68.52% 80.07% 99.32% 99.43%

−20 - - - 59.64%

−10 - - - 82.23%

LPCC
0 58.39% 55.59% 71.02% 89.68%

10 81.00% 83.52% 99.88% 94.32%

20 88.57% 98.14% 100% 99.65%

F
e
a
tu

re
E
x
tr
a
c
ti
o
n

T
e
ch

n
iq
u
e
s

−20 - - - 52.14%

−10 - - - 85.88%

PLP-BFCC
0 39.79% 38.95% 53.14% 91.23%

10 55.02% 51.98% 92.50% 95.12%

20 72.54% 85.71% 99.25% 99.21%

−20 - - - 59.64%

−10 - - - 87.32%

MFCC
0 46.38% 46.39% 45.98% 91.34%

10 67.43% 75.59% 98.86% 95.12%

20 83.88% 95.11% 100% 98.43%

−20 - - - 03.93%

−10 - - - 04.92%

GTCC
0 43.66% 43.96% 45.54% 08.75%

10 63.71% 65.41% 91.07% 34.46%

20 79.45% 89.84% 99.98% 98.57%

−20 - - - 89.23%

−10 - - - 91.24%

continued on next page...
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... Table 4.4 continued

Classification Techniques

SNR MFNN VLR-NN RBF-NN DTW

Wavelet
0 30.21% 31.39% 42.20% 94.35%

(Daubechies)
10 30.23% 38.07% 66.75% 96.46%

20 46.25% 67.61% 91.75% 99.23%

−20 - - - 87.32%

Wavelet
−10 - - - 91.23%

(Symlets)
0 31.68% 30.34% 31.95% 94.13%

10 36.63% 35.02% 77.86% 95.87%

20 40.89% 42.39% 99.95% 98.23%

4.3 Results - Linear Subspace Learning: Dimensionality

Reduction vs Classification

Efficiency and feasibility of realization of any system is govern by a lot of parameters

i.e. size on chip, number of mathematical operations, processing time, delays, memory

requirements and power consumption etc. Moreover, a lot of hardware and software

constraints limits the performance of a system. In this study, an objective of building a

low-cost processing unit was also undertaken for detection and classification of objects

based on acoustic signals. For the said purpose, two linear subspace learning (LSL)

techniques, namely, principal component analysis (PCA) and linear discriminant anal-

ysis (LDA) have been used for dimensionality reduction of the feature sets and thus,

reducing the overall computational cost. Moreover, effects of dimensionality reduction

were also observed on classification rates. Feature set acquired via low frequency analy-

sis & ranging (LOFAR) with both Bartlett and Welch method have been used to study

the effects of dimensionality reduction on percentage classification. For classification,

variable learning rate neural network (VLR-NN) was used having parameters as men-

tioned in table 4.2. Both the aforementioned datasets have been used to evaluate the

performance of the said dimensionality reduction techniques. Feature set acquired for

DOSITS [79] and raw acoustic samples had 127 and 63 dimensions, respectively. Effects

of dimensionality reduction on classification accuracies were observed by reducing the di-
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mensions to 25%, 50% and 75% of original feature set at different levels of signal-to-noise

ratio (SNR).

Table 4.5 to 4.8 list classification results for dataset downloaded from DOSITS [79].

Further, dimensions of the feature set were varied and results were observed at different

values of signal-to-noise ratio (SNR) i.e. 0dB, 10dB and 20dB.

Table 4.5: DOSITS - Dimension vs % Recogni-

tion - Principal Component Analysis

(Lofar - Welch)

Dimensions - Feature Vector

64 80 96 127

0 57.80% 57.60% 58.30% 57.50%

S
N
R 10 71.60% 72.20% 74.50% 85.50%

20 85.50% 86.70% 85.50% 82.00%

Table 4.6: DOSITS - Dimension vs % Recogni-

tion - Linear Discriminant Analysis

(Lofar - Welch)

Dimensions - Feature Vector

64 80 96 127

0 35.20% 35.30% 36.25% 37.55%

S
N
R 10 67.45% 68.10% 68.55% 70.00%

20 82.50% 84.95% 85.50% 87.00%

Table 4.7: DOSITS - Dimension vs % Recogni-

tion - Principal Component Analysis

(Lofar - Bartlett)

Dimensions - Feature Vector

64 80 96 127

0 53.00% 55.00% 51.40% 57.80%

S
N
R 10 72.60% 72.60% 72.00% 75.60%

20 79.20% 87.40% 78.80% 89.40%

Table 4.8: DOSITS - Dimension vs % Recogni-

tion - Linear Discriminant Analysis

(Lofar - Bartlett)

Dimensions - Feature Vector

64 80 96 127

0 55.40% 54.45% 56.80% 59.00%

S
N
R 10 75.70% 78.00% 79.80% 80.20%

20 89.70% 91.70% 91.25% 91.65%

Table 4.9 to 4.12 list classification results for dataset acquired via sonar platform.

Further, dimensions of the feature set were varied and results were observed at different

values of signal-to-noise ratio (SNR) i.e. 0dB, 10dB and 20dB.
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Table 4.9: Raw Dataset - Dimension vs %

Recognition - Principal Component

Analysis (Lofar - Welch)

Dimensions - Feature Vector

16 32 48 63

0 76.71% 87.57% 82.86% 86.14%

S
N
R 10 92.57% 88.14% 94.57% 84.57%

20 89.14% 89.29% 92.86% 96.43%

Table 4.10: Raw Dataset - Dimension vs %

Recognition - Linear Discriminant

Analysis (Lofar - Welch)

Dimensions - Feature Vector

16 32 48 63

0 50.75% 63.11% 70.82% 69.71%

S
N
R 10 89.82% 89.71% 91.82% 90.32%

20 93.54% 91.14% 91.57% 92.04%

Table 4.11: Raw Dataset - Dimension vs %

Recognition - Principal Component

Analysis (Lofar - Bartlett)

Dimensions - Feature Vector

16 32 48 63

0 81.43% 84.43% 83.86% 86.86%

S
N
R 10 94.14% 84.43% 91.29% 95.00%

20 92.71% 92.71% 89.14% 85.71%

Table 4.12: Raw Dataset - Dimension vs %

Recognition - Linear Discriminant

Analysis (Lofar - Bartlett)

Dimensions - Feature Vector

16 32 48 63

0 58.21% 67.43% 71.29% 75.75%

S
N
R 10 84.11% 89.89% 92.93% 94.32%

20 86.79% 91.07% 98.61% 88.32%

4.4 Results - Deep Learning and Multi-linear Subspace

Learning

In this study, convolutional neural network (CNN), a deep learning approach has been

used for classification and multi-linear principal component analysis (MPCA), a multi-

linear subspace learning technique, has been used for dimensionality reduction & feature

extraction. In both the techniques, spectrograms (Frequency vs Time or 2D Matrix) have

been used as inputs. Moreover, A spectrogram was created for an acoustic window of

duration 20 ms with 10 ms of overlapping between two consecutive windows. Moreover,

both the time and frequency axes were divided into 98 slices, representing the spectro-

gram as a 98× 98 matrix. Details of parameters for convolution neural network (CNN)

and multi-linear principal component analysis are in table 4.13.
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Table 4.13: Details of Parameters for CNN and MPCA

Technqiues Parameters Values

Activation Function, φ Sigmoid

Size of the Input (Feature Vector) 98× 98

No. of Hidden Layers 05

No. of Convolution Layers 02

CNN
No. of Output Maps in Convolution Layers 20− 10

Size of Kernel 7

No. of Sub-sampling Layers 02

Scaling Factor in Sub-sampling Layer 02

No. of Neurons in Output Layer - DOSITS 20

No. of Neurons in Output Layer - Raw Dataset 4

Learning Rate, η 0.01

Batch Size 7

Total Epochs 5000

Size of the Input (Feature Vector) 98× 98

No. of Modes 2

MPCA
Value of Variation in Each Mode 97

No. of Iterations (For Optimization) 02

Size of the Principal Component Matrix - Raw Dataset) 68× 94

Size of the Principal Component Matrix - DOSITS) 64× 84

As mentioned earlier, spectrograms have been used as inputs to both the said tech-

niques. Moreover, simulations have been done in two different manners, first the raw

spectrograms of the acoustic samples were fed to the classifier, i.e. convolutional neural

network (CNN), for classification whereas in second case multi-linear principal compo-

nent analysis (MPCA) was first used for feature learning/ dimensionality reduction and

then, the resultant feature set was fed as input to the classifier i.e. convolutional neural

network (CNN). Table 4.14 and 4.15 illustrates the classification results for both the

data sets i.e. synthetic and ship data, using the said techniques. Moreover, from simula-

tion results it can be deduced that compare to the usage of raw spectrograms, usage of

feature set learned from multi-linear principal component analysis (MPCA) gave better

classification accuracies with a minimum of 33% reduction in overall dimensions of the

feature set. Moreover, CNN with raw spectrograms as inputs gave very good classifica-
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tion accuracies compared to results obtained using other approaches but due to the size

of the feature vector and spareness of features in the spectrogram, the classifier missed

some of the fine details present in the spectrum. Further, usage of MPCA improved

the classification results with reduction in size of the feature vector, thus, enabling the

classifier to learn better.

Table 4.14: DOSITS - Using CNN and MPCA - %Recognition - Feature Extraction

Techniques vs Classification Techniques

Classification Technique

SNR Convolutional Neural Network (CNN)

F
e
a
tu

re
E
x
tr
a
c
t.

T
e
ch

n
i.

Raw Input
0 95.11%

(Spectrogram)
10 97.47%

20 98.23%

Multi-linear Principal
0 98.2%

Component Analysis
10 98.9%

(MPCA)
20 99.3%

Table 4.15: Raw Dataset - Using CNN and MPCA - %Recognition - Feature Extrac-

tion Techniques vs Classification Techniques

Classification Technique

SNR Convolutional Neural Network (CNN)

F
e
a
tu

re
E
x
tr
a
c
t.

T
e
ch

n
i.

Raw Input
0 96.5%

(Spectrogram)
10 98.21%

20 98.31%

Multi-linear Principal
0 98.9%

Component Analysis
10 99.1%

(MPCA)
20 99.4%

National University of Sciences & Technology 85



Passive Sonar Signal Detection and Classification 4 Simulation Results

Multi-linear principal component analysis (MPCA) with convolution neural net-

work (CNN) have produced best classification accuracies compared to other standard &

renowned feature extractors and classifiers used in this study. In addition, from table 4.3

and 4.4, it can also be concluded that amongst classifiers, dynamic time warping (DTW)

has performed better than all other classifiers except CNN. However, it is computation-

ally more expensive and takes more processing time during testing phase as compared to

other classification schemes. Moreover, with other classifiers the recognition rates have

increased significantly with the increase in signal-to-noise ratio (SNR) of the feature

set. Further, among the cepstral analysis techniques, linear predictive cepstral coef-

ficient (LPCC) produced the most robust and discriminating feature sets along with

mel-frequency cepstral coefficient (MFCC) and gammatone cepstral coefficient (GTCC)

whose classification accuracies were quite close to GTCC.
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5 Conclusion

Passive sonar signal detection and classification system aims to detect and classify tar-

gets coming from different directions. It has major applications in military and defence

settings. Moreover, signal detection and classification is difficult and a challenge due

to the environment’s non-stationary nature. Aim of this study was to present a com-

prehensive study for detection and classification of underwater objects based on signals

acquired via sonar platform. Performance of the system was evaluated using two sets

of data i.e. a raw dataset acquired via sonar platform, having samples belonging to 4

distinct classes of ships and a synthetic dataset downloaded from DOSITS [79], having

samples belonging to 20 distinct classes of underwater objects i.e. sea species and man-

made objects. The front-end unit used for signal detection, comprised of major acoustic

signal analysis techniques, including, wavelet analysis, renowned sonar signal detection

techniques i.e. detection of envelope modulation on noise (DEMON) and low frequency

analysis & ranging (LOFAR) and some of the most acknowledged speech signal process-

ing techniques i.e. linear predictive analysis (LPA), linear predictive cepstral coefficient

(LPCC), perceptual linear prediction (PLP/ BFCC), mel-frequency cepstral coefficient

(MFCC) and gammatone cepstral coefficient (GTCC). Moreover, the back-end unit for

signal classification used discriminating feature set obtained using aforementioned de-

tection techniques. For classification, machine learning techniques have been employed

i.e. variants of neural networks and template matching. System utilized five classifiers

i.e. multilayer feed-forward neural network (MFNN), variable learning rate feed-forward

neural network (VLR-NN), radial-basis function neural network (RBF-NN), convolu-

tional neural network (CNN) and dynamic time warping (DTW). Moreover, effects of

dimensionality reduction on classification rates were also observed. For dimensional-

ity reduction, Multi-linear principal component analysis (MPCA), principal component

analysis (PCA) and linear discriminant analysis (LDA) were used. The system was

tested under noisy conditions, that is, under the effects of additive white Gaussian noise

(AWGN) at different levels of signal-to-noise Ratio (SNR) i.e. from −20 dB to 20 dB.
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Results obtained for both the datasets i.e. raw and synthetic, have made similar reading

and based on simulation results following conclusions are in order,

• Amongst spectral feature sets, LOFAR features performed better than DEMON

features in terms of classification accuracies.

• Amongst cepstral analysis techniques, LPCC features outperformed other ap-

proaches in terms of classification accuracies.

• Amongst cepstral analysis techniques, MFCC and GTCC were second and third

best after LPCC in terms of classification accuracies, respectively.

• In speech recognition paradigm, GTCC has outperformed every other cepstral

analysis technique in terms of classification accuracy, specially in noisy conditions

but as per the simulation results it didn’t work well with underwater acoustic

sequences.

• Feature set acquired using LPA didn’t perform well in terms of classification ac-

curacies compared to other feature sets obtained using spectral and cepstral ap-

proaches.

• Overall, cepstral features gave better classification accuracies compared to pure

spectral features.

• Classification accuracy significantly increased with the increase in signal-to-noise

ratio.

• At low SNR, LPA and LPCC features gave better classification accuracies.

• Wavelet features didn’t perform well compared to cepstral and spectral features,

specially at low SNR.

• Amongst all classifiers, CNN, a deep learning approach, produced best classifica-

tion results. Moreover, CNN was fed with a spectrogram (2D or TF Matrix) as

an input compared to other classification approaches where 1D feature vector was

used as input to the classifier.
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• Apart from CNN, DTW produced better classification results. Moreover in terms

of classification accuracies, DTW lagged behind CNN at low values of SNR.

• Between RBF, MFNN and VLR-NN, comparatively RBF has performed way better

in terms of classification accuracies.

• Amongst all classifiers, DTW took most processing time during testing phase.

• Linear subspace learning (LSL) approaches, namely, principal component analysis

(PCA) and linear discriminant analysis (LDA), and Multi-linear subspace learn-

ing (MSL) approach, multi-linear principal component analysis (MPCA) have been

used for dimensionality reduction. Moreover, LSL techniques were used to reduce

dimension of 1D feature vector whereas MSL approach was used for reducing di-

mensions of a 2D vector.

• For dimensionality reduction of spectral features MSL and LSL approaches were

used. Moreover, a spectrogram was used as an input to the MSL approach whereas

LOFAR feature set was used as input to the LSL approaches.

• Amongst both MSL and LSL techniques, transformed feature set obtained using

MSL technique gave best results in terms of classification accuracies.

• Amongst the LSL techniques, principal component analysis (PCA) performed rel-

atively better compared to linear discriminant analysis (LDA) in terms of classifi-

cation accuracy.

• Overall, amongst all outlined approaches, combination of MPCA and CNN gave

best classification results with an accuracy up to 99.4%.
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6 Future Work

There are numerous problems and challenges still exist that halts the development of a

proper framework offering sustained performance levels in object detection and classifi-

cation in underwater environment. These challenges open up a lot of research areas and

give direction that needs to be pursued in order to have a proper framework for signal

detection and classification in underwater environment.

One such area is to employ techniques resulting in optimum discriminating fea-

ture set and to complement the feature extraction process a strong classifier is to be

selected to have better recognition rates. Signal transformation, signal analysis and ma-

chine learning methods should be employed to obtain optimal results for the temporally

varying signalling sources. Another aspect of sonar signal processing is mathematical

modelling of underwater environment and noise producing sources. Good modelling can

have significant effect in obtaining overall good classification rates. It is another area

which can be explored and worked at to develop an efficient sonar signal processing

unit. Machine learning techniques i.e. Deep Learning, prediction methods and statis-

tical inference models i.e. Markov models and it’s variants, can be used to model the

underwater objects. Another area in this field pertains to source separation. It is pivotal

in attaining good detection and classification results. For efficient detection and classifi-

cation, source separation is of equal importance, as important as to have a good feature

extractor and a strong classifier. Techniques, including independent component analy-

sis, blind source separation and its variants are vastly employed to achieve good source

separation. Several algorithms for independent component analysis (ICA) exist that

works well in noisy environments where source separation is difficult, namely, fastICA,

joint approximate diagonalization of eigen matrices (JADE), multiplicative newton-like

algorithm and time domain-blind source separation etc.

Another area in this domain is to devise and employ methods to develop computa-
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Passive Sonar Signal Detection and Classification 6 Future Work

tionally low-cost systems, such that, it should not effect system’s performance levels.

Work presented in this study can be expanded to different signal processing schemes,

larger datasets and to sound samples acquired in different conditions and environments.

The presented study can also be expanded for detailed analysis of each approach for per-

formance evaluation at micro scale. Moreover, optimum signal processing and machine

learning techniques must be employed to improve the overall recognition rates.

Finally, in terms of application, the most prominent areas are commercial and mili-

tary settings, that is, sea tomography, shoal fish detection, surveillance of coastal areas

and many more. Perhaps, this framework with little variations can be employed in

applications where acoustic signal detection and prediction is required.
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Calôba. Averaging spectra to improve the classification of the noise

radiated by ships using neural networks. In Neural Networks, 2000.

Proceedings. Sixth Brazilian Symposium on, pages 156–161. IEEE,

2000.

[75] William Soares-Filho, Jose Manoel De Seixas, and L Pereira Caloba.

Principal component analysis for classifying passive sonar signals. In

Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE Interna-

tional Symposium on, volume 3, pages 592–595. IEEE, 2001.

[76] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A

scale for the measurement of the psychological magnitude pitch. The

Journal of the Acoustical Society of America, 8(3):185–190, 1937.

[77] Roy L Streit and Tod E Luginbuhl. A probabilistic multi-hypothesis

tracking algorithm without enumeration and pruning. In Proc. 6th

Joint Sevice Data Fusion Symp, volume 16, 1993.

[78] Roy L Streit and Tod E Luginbuhl. Maximum likelihood method for

probabilistic multihypothesis tracking. In SPIE’s International Sym-

posium on Optical Engineering and Photonics in Aerospace Sensing,

pages 394–405. International Society for Optics and Photonics, 1994.

[79] Graduate School of Oceanography University of Rhode Island. Dis-

covery of sound in the sea.

[80] Robert J Urick. Principles of underwater sound for engineers. Tata

McGraw-Hill Education, 1967.

[81] Michael K Ward and Maryhelen Stevenson. Sonar signal detection

National University of Sciences & Technology 103



Passive Sonar Signal Detection and Classification BIBLIOGRAPHY

and classification using artificial neural networks. In Electrical and

Computer Engineering, 2000 Canadian Conference on, volume 2,

pages 717–721. IEEE, 2000.

[82] P.D. Welch. The use of fast fourier transform for the estimation of

power spectra: A method based on time averaging over short, mod-

ified periodograms. IEEE Transactions on Audio Electroacoustics,

AU-15:7073, 1967.

[83] Gordon M Wenz. Acoustic ambient noise in the ocean: spectra

and sources. The Journal of the Acoustical Society of America,

34(12):1936–1956, 1962.

[84] He Xi-Ying, Cheng Jin-Fang, He Guang-Jin, and Li Nan. Appli-

cation of bp neural network and higher order spectrum for ship-

radiated noise classification. In Future Computer and Communi-

cation (ICFCC), 2010 2nd International Conference on, volume 1,

pages V1–712. IEEE, 2010.

National University of Sciences & Technology 104


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation for Proposed Work
	Research Objectives
	Thesis Organization

	Background
	Proposed Methodology
	Introduction
	Detection Techniques
	Detection Envelope Modulation on Noise (DEMON)
	Low Frequency Analysis and Ranging (LOFAR)
	Linear Predictive Analysis (LPA)
	Linear Predictive Cepstral Coefficient (LPCC)
	Perceptual Linear Prediction (PLP)
	Mel-Frequency Cepstral Coefficient (MFCC)
	Gammatone Cepstral Coefficient (GTCC)
	Wavelet Analysis

	Classification Techniques
	Neural Networks
	Multilayer Feed-forward Neural Network
	Variable Learning Rate â•ﬁ Feed-forward Neural Network (VLR-NN)
	Radial-Basis Function Neural Network (RBF-NN)
	Dynamic Time Warping (DTW)

	Dimensionality Reduction Techniques
	Principal Component Analysis (PCA)
	Linear Discriminant Analysis (LDA)

	Deep Learning and Multi-linear Subspace Learning
	Convolutional Neural Network (CNN)
	Multi-linear Principal Component Analysis (MPCA)


	Simulation Results
	Experimental Conditions
	Graphical User Interface Model

	Detection and Classification
	Results - Linear Subspace Learning: Dimensionality Reduction vs Classification
	Results - Deep Learning and Multi-linear Subspace Learning

	Conclusion
	Future Work
	Bibliography

