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Chapter 2

Problem 2.1

1)
0o N
€ = / z(t) =Y cigi(t)
o i=1

0o N N
-/ (rc(t) =S aiqsi(t)) (z*(t) -3 a;¢;<t>) dt
—© i=1 ]

7j=1
= / |lz(t)|?dt — Zai/ Gi(t)z*(t)dt — Y o () (t)dt
e i=1 - j=1 oo
N N oo
—i—ZZaiaj/ i(t)rdt
i=1j=1 -
_ / o (t)2dt + 3 o - Zai/ bty (B)dt — S a;/ () (t)dt
> i=1 i=1 o j=1 >

Completing the square in terms of «; we obtain

e_/ |dt— / c(Oetrdt]

The first two terms are independent of a’s and the last term is always positive. Therefore the

minimum is achieved for -
; = / S5 (D) (8)dt

dt

which causes the last term to vanish.

2) With this choice of a;’s

¢ = [ law) KDY / bt

-/ |x<t>\2dt—z|ai12
e i=1

Problem 2.2
1) The signal x;(t) is periodic with period Ty = 2. Thus

1 .
T, = /A e 12T EtdE = /A(t)efj’mtdt

= 5/ (t+ 1)e 7™t + = / —t 4 1)e 7™t
-1
. 0
+ J e*jﬂ'nt

1/5 . 1N
= (L4 —gmnt ]ﬂ'nt>
2 (Wn c + m2n2¢ 1 2mn

1/ 1 N
S A —jmnt - ]wnt)

2 <7Tn ¢ + m2n2° 0 2mn
1 1

m2n2  272n2

-1
. 1

+ J eijmt

0

(ejﬁn + e—jﬂ'n) _

3,2 (1 — cos(mn))



When n = 0 then
L / Ayt = L
€T = — _ —
L0 =5 . 5

Thus

(mn)) cos(mnt)

2) xo(t) = 1. It follows then that x99 =1 and z3, =0, Vn # 0.

3) The signal is periodic with period Ty = 1. Thus

1 To . 1 .
T3n = 7/ ele 72t gt — / e(=a2mn+1)t gy
To Jo 0
S S e it |
—j2mn + 1 0 —j2mn + 1
e—1 e—1

1 —j2mn \/1+47T2n2( +J2mn)

4) The signal cos(t) is periodic with period T3 = 2w whereas cos(2.5t) is periodic with period
Ty = 0.87. It follows then that cos(t)+ cos(2.5¢) is periodic with period 7" = 4x. The trigonometric
Fourier series of the even signal cos(t) + cos(2.5¢t) is

o0
cos(t) + cos(2.5t) = Z Qi COS QWTt)
— 0

= n
= E ay, cos(—=t)
— 2
n=1

By equating the coefficients of cos(%t) of both s1des we observe that a, = 0 for all n unless n = 2,5

in which case as = a5 = 1. Hence 42 = 245 = 5 and x4, = 0 for all other values of n.

5) The signal z5(¢) is periodic with period Tp = 1. For n =0

1

1 1
w0 = [ (=t+1dt= (58 +1)
0

0o 2
For n#0
1 )
P / (—t + 1)e 92ty
0
. 1 - 1
J —j2mnt 1 —j2mnt J —j2mnt
Y = I ]
(27m ¢ * 4n2n2© ) 0+ 9n* 0
_ I
2mn
Thus,
=243 L nomne
x == — sin 27mn
b 2 ™ "

6) The signal z4(t) is periodic with period Ty = 27". We can write x¢(t) as

z6(t) = Z 5(t —n2T) — Z 5(t — T —n2T)

n=—oo n=—oo



1 e.¢]

(e.o]
- = 3 ejw%t_% S )

n=-—oo n=—oo
_ i i(l _ efjﬂn)ejQﬂ'%t
n=-—00 2T

However, this is the Fourier series expansion of z¢(t) and we identify x¢ , as

7) The signal is periodic with period T'. Thus,
Trnm = /_75/ Je —j2m it gy
= f(—l);ie_]?“ t . «72T7;”

8) The signal xg(t) is real even and periodic with period Ty = ﬁ Hence, x5, = ag /2 or

1

Ty, = 2f0/ f cos (27 fot) cos(2mn2 fot)dt

4f0
_1 L
_ fo/ f cos(27 fo(1 + 2n)t )dt+f0/ " cos(2m fo(1 - 2n)t)dt
4fo 1fo
1 . 4f 1 4}
L sin@rfo(l 4+ 2000 4 ——sin(2nfo(1 — 20)8)| P

- (_;)n {(1 +12n) T —12n)]

9) The signal zg(t) = cos(27 fot) + | cos(2m fot)| is even and periodic with period To=1/fo. It is
equal to 2cos(27 fot) in the interval [—ﬁ, ﬁ] and zero in the interval [4f T 3_]. Thus
1
4
To, = 2f0/ flo cos(2m fot) cos(2mn fot)dt

_%
1

- fo/T cos(2nfo(1+m)dt + fo [ 77 cos(zrfo(1 — )it
5 —I5

1 : 75 - 7
= ——sin(27fg(1 +n)t)] 1® + —————sin(27 fo(1 — n)t)| °

= 7r(11+n) sin(g(l +n))+ ) sin(g(l —n))

Thus xg,, is zero for odd values of n unless n = %1 in which case xg 41 = % When n is even
(n = 2l) then
(-1 1 1

TOA= T Ty T 19




Problem 2.3
It follows directly from the uniqueness of the decomposition of a real signal in an even and odd
part. Nevertheless for a real periodic signal

x(t) = 5 0 + Z {an COS(QW?t) + by, sin(2 W?t)

n=1

The even part of z(t) is

JUe(t) = x(t)_;x(_t)
— ;( +n2:1an cos(27r?t)+cos( 27Tf0t))

+oa(sin(2m 1) + sin(—27r£)t)))

= % + ; an cos(27rT£0t)
The last is true since cos(#) is even so that cos(#) 4 cos(—6) = 2 cos 6 whereas the oddness of sin(6)
provides sin(#) + sin(—60) = sin(#) — sin(f) = 0.
The odd part of z(t) is
z(t) — x(-t)
2

> n
Z by, sin(QW?t)
n=1 0

xo(t) =

Problem 2.4
a) The signal is periodic with period T. Thus

= —t ,—j2m % tdt / —(j2mE+1) tdt
Tn T/ e e T

— 67(327rT+1) _ 1 [67(j271'n+T) o 1}
T(]Q?TT—i-l) o j2mm+T
1 T — j52mn
= —— N-—eN=— 27" 11_¢T7T
j27m—|—T[ e T2 +47r2n2[ e
If we write x,, = % we obtain the trigonometric Fourier series expansion coefficients as
2T _T 4mn -T
an:T2+47r2n2[1_e ) bn:T2+47r2n2[1_€ ]

b) The signal is periodic with period 2T. Since the signal is odd we obtain g = 0. For n # 0
" 2T 2T )1 T

= 2T2/ te IT Tt

_ 1 JT pe—iTRt o 7 o—imikt g
o2 2n? -7
2 2 2 2
_ 1 ]T 7j7rn_+_ T 6*]'71'” + ﬂejﬂ'n _ Lejﬂn
272 m2n2 ™ m2n2
J n
- L4
—-(=1)



The trigonometric Fourier series expansion coefficients are:

anp =0, bn, = (_1>n+li
™

c) The signal is periodic with period T'. For n =0

1 [z 3
== t)dt = =
ro= 7 [ =3
If n # 0 then
1 2
2 4 n
T = _Zw(t)e 2ty
2
1 % : n 1 % N n
- —j2m =t - —j2m it
_T,Ze Tdt+T/,Z€ T dt
2 4
. T . T
_ I gempe|? i J et
2mn _T  27n _T
2 4
o J —jmn __ _jmn —jr2  —gmZ
= —271_” {e e +e 2 —e 2}
1 n 1. n
= 5111(775) = §SIHC(§)

Note that z,, = 0 for n even and x9;11 = m(—l)l. The trigonometric Fourier series expansion

coefficients are:

2

% (1) =

ap =3, ,ay =0, a4 =

d) The signal is periodic with period T'. For n =0

1 (T 2

If n # 0 then
Ty = ;/()Tx(t)eﬂ“;tdt = ;/og %te*j%%tdt
—|—% /;3T eI Tt 4 ;/;(—;t + 3)e 12Tty
3 3
+27jrne_ﬂﬂ?t T %%e_ﬂﬁ%t 2z
= gl -1
The trigonometric Fourier series expansion coefficients are:
ag = %, ap = %[cos(%%) —1], b,=0, Vn



e) The signal is periodic with period T'. Since the signal is odd zg = a9 = 0. For n # 0

Ty =

x(t)dt = 1o —e 2Tt
T ).
2
T

4

7 4 I 1 /2 oon
+— —j2mzt —j2m it
T/ZTte Tt T/Te Tt

T
1 /74T _ .5 n,\|74 1 /4T _.on
Bl Al P e 12 S (S et
T (27m€ > ‘_g + T (277716 )

o [(_1)71_25“1(”2")] _J [(—1)"—sinc(n)}

™ ™ ™ 2

For n even, sinc(y) = 0 and x,, = 2. The trigonometric Fourier series expansion coefficients are:

0. V. b { — n =2l
an = U, n, n = 9 9(—1)!
w(20+1) [1+ W((QH)I)} n=2+1

f) The signal is periodic with period 7. For n =0

1 (%
xo = —/ z(t)dt =1
T g
Forn #0
10 3 _— 1 (5, 3 om
= = — —j2m gt il _ 2 —j2mit
Ty = T/_g(Tt+2)e Tdt+T/0 ( Tt+2)e T'dt
_ 3 ]T —j2m 2t T2 —j2m 2t 0
T (27mte o 4n2n2© ! z
T
3 (T e . T°  pen\[F
e (27mte T An2n2© o 0
. . T
2T o i2m it ° —l—z jT oJ2m it
T 2mn -T T 2mn 0
3 1 2™ 1 . 2mn
= [2 - C°S<3>} o sl

The trigonometric Fourier series expansion coefficients are:

3 1 2mn 1 . 2mn
ap=2, ap=2 [W <2 - cos(S)) + — sm(3)} , b,=0,Vn

™m
Problem 2.5
1) The signal y(t) = z(t — to) is periodic with period T' = T.
1 a+Tpy o n
Yn = f/ x(t —to)e 2 Lat
0Ja
1 a—to+Tp i
= To/ t z(v)e 72 (v+to)dv
a—to
_iogn 1 a—to+To _iopn
= 72 TotOTO/ t z(v)e 10 dy
a—to
_ xne*jQﬂ'TﬂOto



where we used the change of variables v =t — tg

2) For y(t) to be periodic there must exist 7' such that y(t + mT) = y(t). But y(t + T) =
x(t + T)el?fotei2mfoT so that y(t) is periodic if T = Ty (the period of x(t)) and foT = k for some
kin Z. In this case

1 a+Ty oMy .
Yn = To/ x(t)e P25t gi2m fot gy
1 a+Ty o _(n—k)
- T/ w(t)e T dt = 2,y
0

3) The signal y(¢) is periodic with period T' = Tp/cv.

Yn = T/ y(t)e 2Tt = To/ z(at)e A

1 [BatTy _
= o [ e P e =,
0

where we used the change of variables v = at.

4)
1 a+To —j)2m -t
wo= [ A0
1 —j2m -t at+To 1 a+To 21 -t
— (e ——/ —i2 Tt
To (t)e a To Ja J 7TTO)6
n 1 a+Ty —iom g
= j27TTOTO/a t)e 7T dt —]271'?1’71
Problem 2.6
1 a—+T1p 1 a+Ty oo 327rn 27rm
To/a xty(t)dt:TO/a an To ZyeTO dt
n=-—o0o m=—o00
0 0 1 a+Tp j27r(n—m)t
= Z Z Tl = e To dt
n=—00 M=—00 TO @
o0 o0 oo
n=—00 Mm=—00 n=-—oo
Problem 2.7
Using the results of Problem 2.6 we obtain
1 a+Ty 0
7/ s Wit = Y |anf?
To Ja n=-—00

Since the signal has finite power

1

a+Ty
7/ l2(8)|2dt = K < oo
TO a

Thus, >0°  _ |7,|?> = K < co. The last implies that |z,| — 0 as n — oo. To see this write

Z |73n|2 Z |33n|2+ Z ‘xn’2+ Z |$n‘2

n=—oo n=—oo



Each of the previous terms is positive and bounded by K. Assume that |z,|? does not converge to
zero as n goes to infinity and choose € = 1. Then there exists a subsequence of x,,, =, , such that

|z, | >€e=1, forny > N > M
Then

o0 o0
Z iz |* > Z iz |* > Z|xnk|2 =0

This contradicts our assumption that Y o2 ,, |:z:n\2 is finite. Thus |z,|, and consequently x,,, should
converge to zero as n — 00.

Problem 2.8
The power content of z(t) is

1 dt = = [ a(o) 2t
Po= Jim o [ le)Pde = o [ lato)

But |x(t)|? is periodic with period Tp/2 = 1 so that

N

NH

9 [To/2 2 To/2 4
P, =~ HPdt = =t} =<
= [ P = | T =
From Parseval’s theorem
1 a+T o0 a2 1 [e'e)
Pom o [T aOPd = Y fal = P45 Y (@ +2)
To Ja 4 4 2 —
n=-—oo n=1
For the signal under consideration
4 2
I n odd b — ) " n odd
" 0 n even " 0 neven
Thus,
1 1 5 1 e 9
3 7 2 Z “ T3 Z b
n=1 n=1
8 & 1 2 = 1
J— . + P
m g 204+ 1) w2 g (20 +1)2
But,

= —
= (2l+1) 8
and by substituting this in the previous formula we obtain

[e.9] 1 4

27 _T
—(20+1)t 96

Problem 2.9
1) Since (a — b)? > 0 we have that

with equality if a = b. Let



Then substituting «;/A for a and (3;/B for b in the previous inequality we obtain

aZﬁZ 777,_'_77
AB~2A2 " 2B?

with equality if % = % =k or o; = kf; for all i. Summing both sides from ¢ = 1 to n we obtain

n n 2 n 2
; B; 1 af 1 '
25 S sl m ok
i=1 i=1 i=1
1 & 1 - 1 2
- — N B
242 ;O" T ope ;ﬂ T
Thus,
FEPICCEIES R SR o
i=1 i=1 i=1 i=1
Equality holds if a; = kG;, fori=1,...,n
2) The second equation is trivial since |z;yf| = |z;||yf|. To see this write x; and y; in polar
coordinates as x; = py, /% and y; = py,e?%i. Then, |z;yF| = |pu, py, €70 =0 | = pu.py, = |xillyi] =

|zi||y;|. We turn now to prove the first inequality. Let z; be any complex with real and imaginary

components z; g and z; ; respectively. Then,
2 n 2 " 2
- (z R) + (z )
i=1 i=1

n n
= > (2i.r%m,R + Zi1%m,1)
=1 m=1

Since (2i,RZm.1 — #m,r%i.1)> > 0 we obtain
(zi,RZm.R + Zi2m1)? < (ZE,R + ZiQ,I)(Z?n,R + Z?%l,[)

Using this inequality in the previous equation we get

(2i,R%m,R + Zi,1%m.1)

|
AM:
NE

s
Il
—
i
—_

2 2 \1,.2 2 1
(zirt2i0)2(zmp+ 2m1)?

2
= 1 - 1 - 1
S 2t 22, ) (zuzn,wzma) _ (zuzwzm)

IA
M-
NE

@
I
~
3
I
A

Il
/\

i=1 m=1 i=1
Thus
2 n 2 n
1
[ <(Serant) o [$of <3
=1 =1
The inequality now follows if we substitute z; = z;y;. Equality is obtained if ZZ’Z—’; = Z”n’; = ky or

[z = Lzgm = 0.
3) From 2) we obtain

3
iYi

2 n
<D lwillyil
i=1




But |z;|, |y;| are real positive numbers so from 1)

=
N|=

IN

n
> |aillyil
=1

Combining the two inequalities we get

]

2

[NIE
[NIE

n n n
Ziﬁzyf < [Z $i|2] [Z \%\21
i=1 i=1 i=1
From part 1) equality holds if a; = kf; or |2;| = k|y;| and from part 2) z;yf = |zy}|e’. Therefore,

the two conditions are
\iﬁz’\ = k\yi\

which imply that for all ¢, x; = Ky; for some complex constant K.

3) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An
easier approach is obtained if one considers the inequality

|z(t) + ay(t)] > 0, for all «

Then
0 < [l +ayola= [ @) +ay®)e @) +aty (@)

= /Z|x(t)2dt+a/z x*(t)y(t)dt+a*/ (t)y* (t)dt + |a|2/o:o|y(t)|2dt

[e.o]

The inequality is true for [0 2*(t)y(t)dt = 0. Suppose that [0 z*(t)y(t)dt # 0 and set

S5 (@) dt

Sz (t)y(t)adt
Then, . 2
Y AT [J25 [z(@®)12dt]? [0, [y(t)]dt
0% - [ a0 S
and

‘/_O:O a:(t)y*(t)dt‘ < U_O:O |$(t)\2dtr U_O:o Iy(t)Pth

Equality holds if z(t) = —ay(t) a.e. for some complex «.

Problem 2.10
1) Using the Fourier transform pair

poll £, 20 22 1
a? + (2mf)?  4m? o5y f2

and the duality property of the Fourier transform: X (f) = Flz(t)] = z(—f) = F[X ()] we obtain

2c
Qﬁ)f

With o = 27 we get the desired result

}_{1+t2} e

1

2
&

e

10



Flz(t)] = FI(t —3) + (¢t + 3)]
= sinc(f)e*j?”f3 + sinc(f)eﬂ”f?’
= 2sinc(f) cos(273f)

Fla(t)] = FIAQt+3)+ A3t — 2)]

= FIAQU+ )+ AG(E -~ 2)

1 . 1 '
= §Sin02(£)e]”f3 + fsinc2(§)e—327rf%

4) T(f) = Flsinc®(t)] = F[sinc?(t)sinc(t)] = A(f) » II(f). But

/ TOAG — )0 = |7 A(f — )8 /fHéA(v)dv

1
2

3
For f§—§:>T(f):O
3 1 f+3 1 f+3 3 9
Fi —— < —= T(f) = 1dv = (=02 242 =z
o s<f<y =T = [ Cwrnd=Getau)| T=5r i
1 1 0 f+3
For —§<f§§:>T(f):/l(v+l)dv+ (=0 +1)dv
f=3 0
1 0 1 I+3 3
_(§v2+v)fil+(—§112+v)o 2_—f?+Z
2
1 3 1 1 1 1 3,09
Fi = < = T(f) = - Ddv = (— =02 ——-f_ 2 =z
o G <IS3= 1= [ e o= (gt )| =5 - 5r g
3
For §<f:>T(f):O
Thus,
0 f<—3
ey Sf<fs-d
T(f)=q —f*+4 —3<f<3
e R EIt
0 s<f
5)

Fltsinc(t)] = %f[sin(ﬂt)] = 2% [5(f + %) —0(f — ;)}

The same result is obtain if we recognize that multiplication by ¢ results in differentiation in the
frequency domain. Thus

Fltsinc] = 2]7Tde(f) = 2L { (f + ) 6(f — 1)}

11



Fltcos(2mfot)] = QJCZC ( 0(f — fo)+ 5(f+f0)>
- j (0'(f — fo) +8'(f + o)
7)
altl ¢og 1 20 20
7l O01=5 | @ s anr = L) @r(f+2)) ]
8)
—alt . j d « «
Flte= M cos(pt)] = o df <a2+(27r(f—2ﬂ,r))2 a2+ (27 (f + L))
_ 2ar(f — %) 2am(f + 5-)
2
(2 +@r(f = £)°) (a2 +@n(f +£)?)
Problem 2.11
Flplot+ )+ 030 = [ 50+ 3)+ - e ar
= %(e i 4 eIy = cos(nf)

Using the duality property of the Fourier transform:
X(f) = Flz(t)] = «(f) = F[X(-1)]
we obtain 1 1 1
Fleos(—mt)] = Flcos(mt)] = 5((5(]" + 5) +4(f — 5))
Note that sin(wt) = cos(nt + §). Thus

1

1 1 1. .
= 5607 +5) +6(f = 5 )ei™

1 .1 1 1 1 1
— _pJT3 _ oTITS _
5¢ 25(f+2)+2e 26(f 2)

_J Ly 1
= 55(f+5) - 55(f— 5)

Flsin(nt)] = Flcos(m(t +

Problem 2.12
a) We can write z(t) as z(t) = 2II(%) — 2A(%). Then

Fla(t)] = ]—"[211(3)] _ ]—"[2A(%)] _ Ssinc(4f) — 4sinc(2f)

x(t) = 2H(£) — A(t) = Flz(t)] = 8sinc(4f) — sinc?(f)

12



o0 . 0 ) 1 4
x() = [T ewer = [ aane s [ ner

—0o0

_ (jHl) ciempt| o I gt
2w f  4m2f2 1 2nf

+<j t+ ! >ef2”ft1
2rf 4m2f2

= 25 =sin(xf)

) ot !
——e
o 2nf 0

d) We can write z(t) as z(t) = A(t+ 1) — A(t — 1). Thus

X(f) = sinc?(f)e’?™ — sinc?(f)e 2™ = 2jsinc?(f) sin(2n f)

e) We can write z(t) as x(t) = A(t+ 1) + A(t) + A(t — 1). Hence,

X(f) =sinc(f)(1 + 2™ 4+ 7727y = sinc?(f)(1 + 2 cos(27f)

f) We can write z(t) as
o(t) = 1 (2falt = 7700 ) =T (260t = 7)) | snCzmpo)
Then
X(f) = [2;(]sinc <2J}0> e it _ 2;0$inc <2J;0)> ej%‘lll‘of]
%3 (0(F + fo) = 8(F + o)

B 2;0 Sinc(f 2+fofo)sin (ﬂf ;}Ofo)_ 2}0 Sinc(f;fof0>sin (Wf;fofo)

Problem 2.13
We start with

Flz(at)] = /ﬂ)o ooz (at)e 2™t

and make the change in variable v = at, then,

Flz(at)] = ;/_woox(u)e_j%f“/adu

(o)
lal " \a
where we have treated the cases a > 0 and a < 0 separately.
Note that in the above expression if a > 1, then x(at) is a contracted form of x(t) whereas if
a < 1, z(at) is an expanded version of x(¢). This means that if we expand a signal in the time
domain its frequency domain representation (Fourier transform) contracts and if we contract a
signal in the time domain its frequency domain representation expands. This is exactly what one

expects since contracting a signal in the time domain makes the changes in the signal more abrupt,
thus, increasing its frequency content.

13



Problem 2.14
We have

Flz(t)xy(t)] = / {/ oox(T)y(t — 1) dT] e It gt
= [m oox(T) {/Oo ooy(t — T)e_j%f(t_T) dt] e I IT dr

Now with the change of variable u =t — 7, we have

= Fly®)]
Y(f)
and, therefore,
Fla(t) xy(t)] = /_Ooooa:(T)Y(f)e*ﬂ”deT
= X(f)-Y(f)

Problem 2.15
We start with the Fourier transform of x(t — t),

f[l'(t — to)} = / OOZE(t _ to)e—j27rftdt
—00
With a change of variable of u =t — tg, we obtain
Fla(t —to)] = / oo (u)e I to =32 ugy,
— 0o

= e_ﬂ’rfto/ ooz (u)e 2™ Uy
—0oQ

= eI Fla(t)

Problem 2.16

[m ocox(t)y*(t)dt = / 00 {/ ooX(f)ej%ftdf] [/ ooY(f’)ej%f/tdf':*

dt

_ / [ / o X (f eﬂ”ftdf] [ / oY *(f )—ﬂﬂf’tdf’] dt

Now using properties of the impulse function.
[ coel =1 qas = 5(f — f)
and therefore
/_ ocox(t)y*(t)dt = /_ oo X (f [/ Y (fNS(f — f1)df'| df
= [ Xy (s

14

/_Oo oo X (f {/ oY *(f) [/_OO coel 2t =1") dt] df’:

df



where we have employed the sifting property of the impulse signal in the last step.

Problem 2.17
(Convolution theorem:)

Flat) xy(t)] = Flz@)]Fy(@)] = X (/)Y (f)
Thus

sinc(t) * sinc(t) =

Il
NI
!
)
IZINh
=
(@)
=<
=
)
=7
=
o
=<
=

Problem 2.18

Flalw®) = [ alywe s> a

= / </ X(H)eﬂ“etcw) y(t)e 72t dt

-/ O:o X(;) ( / O:O y(t)eﬂ”(f@)tdt) d

_ /Zx(g)y(f —0)do = X(f)* Y (f)

Problem 2.19

1) Clearly
x1(t+kTy) = i x(t + kTp — nTp) = i z(t — (n —k)Tp)
= i x(t — mTy) = z1(¢)

where we used the change of variable m =n — k.

2)
x1(t) = x(t) * Z o(t —nTy)
This is because
/_O:O x(T) _z: 0t — 7 —nTy)dr = _z: /_O:O x(1)6(t — 7 — nTp)dr = _Z x(t — nTp)

Flor®)] = Flzt)x Y 3t —nTo)] = Fla®)F[ Y 6t —nTp)]

= XUg X - = X X 1)

15



Problem 2.20
1) By Parseval’s theorem

/_O:O sinc5(t)dt = /_O:O sinc3(t)sin02(t)dt = /_Z AT (f)df

where
T(f) = Flsinc3(t)] = F[sinc?(t)sinc(t)] = H(f) » A(f)
But
f+1
/ TI(6)A(f — 6)d6 — IA(f e)de_/ Z Aw)dv
3
For f§—§:>T(f):O
3 I+3
For —Z<f§—;:>T(f):/fl+ (U—l—l)dU:(%UQ—FU) _Jlr —éf2+gf+g
For —;<f§2:>T(f):/0_(v+1)dv+/0f+(—v+1)dv
1 0 1 I+3 3
:(§v2+v)f_%+(—§v2+v)o :—f2+1
1 1
For ;<f§;:>T(f):/_;(—v+l)dv:(—v o) =5f2—;f+§
For g<f:>T(f):0
Thus,
0 f<-3
it sy
T(f)=4 —["+3 —5<f<3
o drey j<rsy
0 s<f
Hence,
[ s = [ Gre S Do enars [ s B
+/ —-f2+ f+1df+/ gf+§)(—f+1)df
- 64
2)
/OOO e sinc(t)dt = / t)sinc(t)dt

B /ooa+327rf Jdf = /1a+j27rff

= j27T1 (Oé—l—j27rf)| 1/2 =

j27 a— g7

16
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/ e %sinc?(t)dt = / e~y (t)sinc?(t)dt
0

o0 1
= ——A(f)dfd
| e
0 f+1 D —f+1
S A e / iy
_1a+gjnf 0 a+]7rff
But [ ;5-dr = § — ;5 In(a + bx) so that
/oo ~otgin2(M)dt = (< + - In(a + j2 f))o
; e in = Gt e n(a + 527 |
f o 1 1
—(j27 + @ln(a—l—]QWf)) . + ﬂ—ﬂln(a + 727 f) B
1 _1,2m o o
p— — — 71 o
7Ttan (a)+2772 n( ﬁz+47r2)
4)
/ e~ cos(Bt)dt = / e~y (t) cos(Bt)dt
0 —00
N 8 8
= 5| e O ) 8
1 1 1 o
= 00 t—=l=5—%
22a+jB8 a-—jgB a*f+p
Problem 2.21
Using the convolution theorem we obtain
Y(f) = X(OH() = () ()
N C a+j2nf B+ j2nf

1 1 1
(B—a)a+j2nf (B-a)B+j52rf

Thus

1
t)=Fly = e — e Pu_(t
If o= (3 then X(f) = H(f) = aﬂli%f In this case
1
_ 1 ol N2 ot
v(t) = FY (D] = F gy =t i)
The signal is of the energy-type with energy content
2 71
— : 200 i - o—at  —PtN\2
Ey TIE;I;O _% ‘y(t)’ dt Th—I};o 0 (,8-0()2 (6 e ) dt
T/2 T/2 T/2
= lim # —i6720‘t / _ ieﬁﬁt / + Lef(orkﬁ)t /
T—o0 (ﬁ — O[)Q 2 0 2ﬁ 0 (a —+ /6) 0
SRS S S BN
 (B—a)2a 28 a+p 2af(a+f)

17



Problem 2.22

$a(t):{ z(t) a<t<a+T)

0 otherwise
Thus
o0 . Oé—‘rTO .
on(f) = / flfa(t)eijwrftdt = / x(t)efj%rftdt
Evaluating X, (f) for f = 7~ we obtain

a+Ty
Xa<%>= / w(t)e " dt = Ty,
«

where z;, are the coefficients in the Fourier series expansion of z(t). Thus Xq(7;) is independent
of the choice of a.

Problem 2.23

z(t —nTs) = o(t —nTs) ) * &2 Ts
> @lt—nT) Z >
1 Z

- ;5 L;g( ) m

Ts n=—00
If we set t = 0 in the previous relation we obtain Poisson’s sum formula
(0]

Zx(—nTs): ix ZX( )

n=-—00 m=—o0 Ts n=—00

Problem 2.24
1) We know that

paltl F, 2o
a? + 42 f2
Applying Poisson’s sum formula with 75 = 1 we obtain
oo [e.9]
_ 2¢
_Z el = _Z o2 + An2n2
n=-—oo n=-—oo

2) Use the Fourier transform pair II(t) — sinc(f) in the Poisson’s sum formula with 75 = K. Then

i H(nK):% > sinc(%)

n=—oo n=—oo

But II(nK) =1 for n =0 and I[I(nK) =0 for |n| > 1 and K € {1,2,...}. Thus the left side of the

previous relation reduces to 1 and
oo

K = Z sinc(%)

n=—oo

18



3) Use the Fourier transform pair A(t) — sinc?(f) in the Poisson’s sum formula with 7, = K. Then

Z AnK) = — Z sinc?

n=—oo TL——OO

Reasoning as before we see that > 02 A(nK) =1 since for K € {1,2,...}

n=—oo

1 n=0
0 otherwise

A(nK) = {

Thus, K = 30° __ sinc?(%)

n=—oo

Problem 2.25
Let H(f) be the Fourier transform of h(t). Then

1

H(f)Fle™*u-1(t)] = Flo(t)] = H(f)rj%f

=1= H(f)=a+j2rf

The response of the system to e~ cos(Bt)u_1(t) is

y(t) = F1 [H(f)Fle " cos(Bt)u-1 ()]

But
—at _ 1 —at ipt 1 —at —jpt
Fle “cos(Bt)u_i(t)] = .7-"[26 u_1(t)e’”" + 5¢ u_1(t)e 7"
_ 1
2 la+jg2n(f—L2)  a+ji2n(f+L2)
so that
_a+jg2nf 1

2

, + ,
a+2n(f — %) a+ 2m(f + %)
Using the linearity property of the Fourier transform, the Convolution theorem and the fact that
8 (t) ., jorf we obtain

y(t) = ae *cos(Bt)u_i(t) + (e~ cos(Bt)u_1(t)) x §'(t)

e~ cos(Bt)6(t) — fe”* sin(Bt)u—1(t)
= 6(t) — Be”sin(Bt)u_1(t)

Problem 2.26
1)

y(t) = x(t)xh(t) =z(t)* (6(t) + 5 (t)

With z(t) = e~ we obtain y(t) = e~ — ae=tsgn(t).

y(t) = / h(r)a(t — 7)dr

t t
= / e e Plt-T)qr = e_ﬁt/ e~ @=Prqr
0 0

19



If a = ﬁ = y(t) — te_atufl(t)

t
a#B=y(t) = eﬁtﬂiae@ﬂ)t Ou_l(t) =5 i - [e at _ ﬁt} wa(t)
3)
wt) = [ e cos(rmun(meu (e - 1)dr
= /t e T COS(’YT)@iﬂ(t*T)dT =e Pt /t e(B—0)T cos(vyT)dr
0 0
Fa=8=yt) = e /Ot cos(yT)dTu_1(t) = e sin(yt)u_1(t)
fa=8=ylt) = ™ /t BT cos(y7)dTu_y (t)
0
< - (3-arr|
= G-t ((8 — a) cos(y7) + ysin(y7)) e Ou,l(t)
—at
= G (- e)cos(rt) + sin(r0) s ()
e (B~ a)
R
4)

> t
ult) = / e e PNy (t — 7)dr = / e~ lTle=B=7) 1,

—00 S

Consider first the case that o # 3. Then

— ¢ + 1
Ift 0= t = —Bt / (B+a)T _ at
< y(t) € e dr - e

0 t
Ift<0=yt) = / e Te =T dr + / eoTe A=) g7
oo 0
, 0 .
— ie(aw)f +
a+ ’8 —o0 /8 -«
Qe Pt et

_52—042+ﬁ—04

e Pt S5

0

Thus

In the case of « =
t
oo o

0 t
Ift < O = y(t) e e_at62a7'd7_ + e_ath




5) Using the convolution theorem we obtain

Thus

y(t) = FY( = [ Y (e

:/_0 7

1
2

=

(f + 1)e??mItqr + /:(—f + 1)e/2m It df

1 . . , 0
— j2mft j27m ft j27 ft
<j27rtfe * a2 € > ‘é j27rte -1
1 1
1 . . 2 1 . 2
= pog2nmft 727 ft j2r ft
(j27rtf€ t et ) o T,
1 1 .
= W[l — cos(7t)] + 57 sin(mt)

Problem 2.27
Let the response of the LTI system be h(t) with Fourier transform H(f). Then, from the convolution
theorem we obtain

Y(f) = H()X(f) = A(f) = TL(F)H(f)
However, this relation cannot hold since II(f) = 0 for 3 < |f| whereas A(f) # 0 for 1 < |f| < 1/2.

Problem 2.28

1) No. The input II(¢) has a spectrum with zeros at frequencies f = k, (k # 0, k € Z) and the
information about the spectrum of the system at those frequencies will not be present at the output.
The spectrum of the signal cos(27t) consists of two impulses at f = +1 but we do not know the
response of the system at these frequencies.

2)
hi(t) «TI(E) = TI(t) % TI(t) = A(t)
ho(t) % TI(E) = (TI(£) + cos(2mt)) « TI(t)
— AW+ %}"‘1 [3(f = V)sine?() + 3(f + L)sine?(f)

= A(t)+ %f‘l [5(f — 1)sinc®(1) 4+ 6(f + 1)sinc2(—1)}
= A(?)

Thus both signals are candidates for the impulse response of the system.

3) Flu—1()] = 26(f) + ﬁ Thus the system has a nonzero spectrum for every f and all the
frequencies of the system will be excited by this input. Fle™%u_1(t)] = m Again the spectrum
is nonzero for all f and the response to this signal uniquely determines the system. In general the
spectrum of the input must not vanish at any frequency. In this case the influence of the system

will be present at the output for every frequency.
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Problem 2.29
1)

o0
= / e 2t cos® tdt
0

o0 2td 1
< - t=—
/0 ¢ 2

where we have used cos?t < 1. Therefore, x1(t) is energy type. To find the energy we have

/ e 2leos?tdt = 7/ e 2t dt—l—f/ e 2t cos 2t dt
0 2 0 2 0
1 1

o0

1 1
= —+- {—46_% cos(2t) + Ze_Q*t sin(2t)]

4 2 0

where f(t) = 2 cos?(t)+sin(2t) + 1. By taking the derivative and setting it equal to zero we can find
the minimum of f(¢) and show that f(¢) > 0.5. This shows that lim;_, e—;tf(t) > limy— o0 el%t = 0
This shows that the signal is not energy-type.

To check if the signal is power type, we obviously have limp_, o, % fOT e 2 cos? tdt = 0. Therefore

N N
P = Tlgréo 7/ e cos”(t) dt
y 1/4€*T (cos(T))* + 1/4€2T cos(T) sin(T) +1/8 (eT)2 —3/8
e T
= o0

Therefore x2(t) is neither power- nor energy-type.
3)

— 00 —00

., :/OO (sen(t)2dt — /OO Ldt

and hence the signal is not energy-type. To find the power

. 1 /T
Py = Tlgféoﬁ _T(sgn(t)))th
1
= lim — 12 dt
7o OT |
= lim L2T:1
—o00 2T



4) Since x4(t) is periodic (or almost periodic when f1/f2 is not rational) the signal is not energy
type. To see whether it is power type, we have

1 T
P, = lim — / (Acos 2m fit + B cos 27 fot)* dt
2T J_r

T—o00

1 T
= lim 5T / <A2 cos? 21 fit + B2 cos® 27 fot + 2AB cos 27 fit cos 27rf2t) dt
-7

T—o0
A% + B?
2

Problem 2.30
1)

2
)" at

T—o0 2T 0

T
E = lim | KZ%/Vtdt
T—oo Jo

—  lim [2K2\/EE

T—o0
= lim 2K3VT
T—o0

= o0

therefore, it is not energy-type. To find the power

T
P o= lim — K?/Vtdt

and hence it is not power-type either.

Problem 2.31

1) z(t) = e **u_1(t). The spectrum of the signal is X (f) = and the energy spectral density

1
a+j2nf

1

Gx(f) = |X(f)PP = o fAn2f2

Thus,

Rx(r) = F ' Gx (f)] = 5 e "

23



The energy content of the signal is

2) z(t) = sinc(t). Clearly X (f) = I(f) so that Gx(f) = |X(f)|? = I?(f) = H(f). The energy

content of the signal is
EX_/ TI(f)df = /1 fdf =1
2

3) z(t) =Y o>_ A(t—2n). The signal is periodic and thus it is not of the energy type. The power
content of the signal is

0 1
P, = 2/ t)|2dt = / (t+1)2dt+/ (—t 4 1)2%dt
1 0

L/1s )0 1(13 5 )1
= —|=t t t — | =t° =t t
5 <3 e 4505 + .
1
3
The same result is obtain if we let
> n
Sx(f) = Z |95n|25(f—§)
n=—oo
with zg = %, x9r =0 and xg 11 = m (see Problem 2.2). Then
(o]
Py = Z | [”
n=—oo
1 8 & 1 1 2 1
S ITEL@r ) 1 %3
4)
2 T
Ex = lim lu—_1(t)|*dt = lim dt = lim — = oo
T—oo 2
Thus, the signal is not of the energy type.
1T 1
Px = 1 — dt = lim —— ==
et /’“1| T T2 2

Hence, the signal is of the power type and its power content is % To find the power spectral density
we find first the autocorrelation Rx (7).

1 /3
Rx(t) = Tlgrgof _zu_l(t)u_l(t—T)dt

r
2
= lim — dt
T—o0 T

1 1

— lim = (% — 7)==

A 75— =5

Thus, Sx(f) = F[Rx(7)] = 56(f).
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T
5) Clearly |X(f)|> = m2sgn?(f) = 72 and Ex = limy_.o [ °p 72dt = co. The signal is not of the

2
energy type for the energy content is not bounded. Consider now the signal

1
er(t) = 11(;)
Then,
Xr(f) = —jnsgn(f) * Tsine(/T)
and )
2 [e§)
Sx(f) = Tlim ‘qul(f)’ = Tlim T /f sinc(vT)dv —/ sinc(vT)dv
—00 —00 —00 f

However, the squared term on the right side is bounded away from zero so that Sx(f) is co. The
signal is not of the power type either.

Problem 2.32

1)
a) lf a #7,
Y(NHI? = [XHPIHP
1

(a2 +Am2f2) (52 + 42 f2)

- 1 [ 1 B 1

- ﬂZ_az a2+4772f2 ﬂ2+471’2f2
From this, Ry (1) = 75 [i(;aw _ %(;qu and B, = Ry(0) = 5oy

If & =~ then
1

Gy (f) =Y (I = IX(HPIHHP = (@ 1 4222

The energy content of the signal is

oo 1
Ey = —_—
Y [m (a2 + dn2f2)2
1/°° 2a 2a df
402 J_oo 02 + 472 f2 a2 + 42 f2

prnd _— [ = —_— e
402 |- 402" Jo

_ 1 1 —2at o _ 1
22?2 2a o 4ad
b) H(f) = m — |H(f)]? = m. The energy spectral density of the output is
1
Gy (1) = Gx (NN = 5 =z7zT1)
The energy content of the signal is
1 1
2 1 1 fylz
Ey = ————df = —— arctan =—
Y /_é v2 + 42 f2 4 2y aretan o -1
_ 1 fr
= —arctan -—
Ty 4
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c) The power spectral density of the output is

(e}

S(f) = % |anLH<§>P6af—-§>
. ]w21+1| 2l+1
_4’y +Z 2l+)5(f_ > )
1 8 — 2041
- 47 7?;0 20+ 1)4 (42 + 72(20 + 1)?) =)

The power content of the output signal is

o0

n
Py = Z \an’H(g)\Q

7T4 7T2
- 22 1T a2 2 2\ 4 2
2l+1 Yy +7r(2l+1)) yA(20+1)

1 8 7'('2 d 2 &

= 2 T2\ 206 &4 727
2 ™\ 8y =0 =z t 2l+1)
1 72 2x2

- 37’)/2—¥+?tanh(§)

where we have used the fact

Tr,  4r 1 et —e @
tanh —_y tanh(z) = ———
o (2) W§)$2+(2l+1)27 anh(z) et +e
d) The power spectral density of the output signal is
§v(f) = Sx (NI = § 55 70() = 550(F)
YA T eX T 22 pam2 2N T 22

The power content of the signal is
Pr= [ Sv(pif =5
Y — oo Y - 2’72

e) X(f) = —jmsgn(f) so that |X(f)]? = 72 for all f except f = 0 for which |X(f)|*> = 0. Thus,
the energy spectral density of the output is

2

—|X 21g 2_ T
gY(f) | (f)| | (f)| ’)/2+47T2f2
and the energy content of the signal
o 1 1 2m | 2
Ey = 772/ 5 = WQ—arctan(—f TF) _
—o0 V2 AT 21y Y e 2

2)
a) h(t) = sinc(6t) = H(f) = %H(%) The energy spectral density of the output signal is Gy (f) =
gX(f)’H(f)P and with gX(f) == m we obtain

1 1 o f, 1 f
a2 + Ax2 f2 36" (E) ~ 36(a + 47r2f2)H(6)

Gy(f) =
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The energy content of the signal is

By = / Gy (f 36/3a2+47r2f2f
2m
= 736(20477) arctan(f;) B

tan(—)
= rctan(—
36047r8LCa a

b) The energy spectral density is Gy (f) = S—IGH(g)H(f) = +II(f) and the energy content of the
output

B = -
Y6 T 86
c)
Sy () = Sx(DIHWIE = 3 JanlfT1(Z)5(f — )
IR b 2
Since II({%) is nonzero only for n such that {5 <1 5 and xp = % o = 0 and wopy1 = (2111) (see
Problem 2.2), we obtain
1 21 + 1
S = o(f — ——
V() = gl + E_:g 36'302’“' (s )
1 2 2041
N 144 Z 2z +1 2 )
The power content of the signal is
1 2 1 1 1 .2253
Py=—+-—(l4—4—)==—+ 21
vttt es) Tt e

d) Sx(f) = 36(f), [H(f )|2 = 4 H(%) Hence, Sy (f) = %H(%)é(f) = 20(f). The power content
of the signal is Py = [°% & (f)df

e) y(t) = sinc(6t)x+ = msinc(6t) x . However, convolution with X is the Hilbert transform which
is known to conserve the energy of the signal provided that there are no impulses at the origin in
the frequency domain (f = 0). This is the case of wsinc(6t), so that

00 | f 2 3 2
Ey = 6t)dt = 2/ —HQ—d:—/d:—
Y /_oommc( )t 36 gl =35 4=
The energy spectral density is

Gy (1) = 35T (5 wsen’ ()

3) # is the impulse response of the Hilbert transform filter, which is known to preserve the energy
of the input signal. |H(f)|? = sgn?(f)
a) The energy spectral density of the output signal is

Gy (f) = Gx (f)sgn’(f) = { gX(f) ; i 8

Since Gx (f) does not contain any impulses at the origin



b) Arguing as in the previous question

Gy (f) = G (f)sgn(f) = { ) 7#0

Since II(f) does not contain any impulses at the origin

Ey=FEx =1
c)
Sv(f) = Sx(Dsen®(H) = X |aal?8(F = 3), n#0

But, 291 = 0, 9141 = so that

(2l+1)

> n 8 1 n
= 2; \$2z+1’25(f - 5) 3 Zm&f - 5)

The power content of the output signal is
_ 8 1
Pp=—-SN - - °" _
w2 Z:;) 20+ 1)4 T 7296 12

d) Sx(f) = 36(f) and [H(f)* = sgn®(f). Thus Sy(f) = Sx(f)IH(f)|* = 0, and the power
content of the signal is zero.
e) The signal 1 has infinite energy and power content, and since Gy (f) = Gx (f)sgn?(f), Sy (f) =

Sx(f)sgn?(f) the same will be true for y(t) = %* %

Problem 2.33

Note that -

a:[: (#—hmf/z (t)[2dt

P
But in the interval [-Z, L], [z(¢)[* = |zr(t)|* so that
Py = hm f/ |z (t)|2dt
Using Rayleigh’s theorem
P Jin 2 [ eroPar = im L / X ()P
T—oo T J-T oo T J_

= lim 7/ Gop(f)df = / hm ng (f)df

T—oo T

Comparing the last with P, = [0 S,(f)df we see that

) 1
S:(f) = Jim —Goy (f)

T—o00
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Problem 2.34
Let y(t) be the output signal, which is the convolution of z(t), and h(t), y(t) = [0 h(T)z(t—T)dT.
Using Cauchy-Schwartz inequality we obtain

()] = ‘/ h(r)a(t — 7)dr

V_m Ih(r )PdTF U_O:O\x(t—T)\?dTF
E? U_O; |x(t—7)|2dTF

Squaring the previous inequality and integrating from —oo to co we obtain

/| 2dt<Eh// z(t — 7)2drdt

But by assumption [°_ [ |z(t — 7)|?drdt, E}, are finite, so that the energy of the output signal
is finite.

Consider the LTI system with impulse response h(t) = I1(t —2n). The signal is periodic
with period T' = 2, and the power content of the signal is Py = % If the input to this system is
the energy type signal x(t) = II(¢), then

IA

IN

oo
n=—oo

i A(t —2n)

n=—oo

which is a power type signal with power content Py = %

Problem 2.35
For no aliasing to occur we must sample at the Nyquist rate

fs = 2-6000 samples/sec = 12000 samples/sec

With a guard band of 2000
fs —2W = 2000 = fs = 14000

The reconstruction filter should not pick-up frequencies of the images of the spectrum X (f). The
nearest image spectrum is centered at fs and occupies the frequency band [fs — W, fs + W]. Thus
the highest frequency of the reconstruction filter (= 10000) should satisfy

10000 < fs — W = f, > 16000
For the value fs = 16000, K should be such that

K- f,=1= K = (16000)""

Problem 2.36

A f
(=)
1000 "1000
Thus the bandwidth W of z(t) is 1000/2 = 500. Since we sample at fs = 2000 there is a gap
between the image spectra equal to

x(t) = Asinc(10007t) = X (f) =

2000 — 500 — W = 1000
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The reconstruction filter should have a bandwidth W’ such that 500 < W'’ < 1500. A filter that
satisfy these conditions is

H(f) =TIl <2{V/) - 20100H (25V’>

and the more general reconstruction filters have the form

55 | f| < 500
H(f) =4 arbitrary 500 < |f| < 1500
0 |f| > 1500
Problem 2.37
1)
zp(t) = Z x(nTs)p(t — nTy)
= p(t)* Z x(nTs)o(t — nTy)

= p(t) *x(t) i d(t —nTs)

n=—oo

Thus

Xp(f) = P(f)‘f[w(t) i 5(t—nTs)1

n=—oo

_ P(f)X(f)*f[ 3 5<t—nTs>]

= P(f) *—Z(S
= ZXf_*

2) In order to avoid aliasing T% > 2W. Furthermore the spectrum P(f) should be invertible for
|fl<W.

3) X(f) can be recovered using the reconstruction filter II(g—) with W < Wy < T — W. In this
case

b
2Wn
X() = X(NTP ()

I
Problem 2.38
b
zi(t) = i (=1)"x(nTs)o(t — nTs) = x(t) i (=1)"0(t — nTy)
= xz(t) iét—QlT Z(St— — 2IT,)
l=—00 l=—o0
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Thus

1 & ) L\ jornfT,
Z<w—+@f 3~ e

1 s 1 l —ion-L.T
- X(f - - X(f — —)e 927, T
2, 2. X(F—57 ) 2T (f = 57)e

0o
>

l=—c0 s S l=—00 S
0o
>

1 & l 1 l
= X(f— — X(f—
2T, g_:oo U=5r) ", e U=

)(=1)

1 & 1 {

-5 2 XU )

2) The spectrum of x(t) occupies the frequency band [-W,W]. Suppose that from the periodic
spectrum X (f) we isolate Xj(f) = -+ X(f - 2T — Tﬁ), with a bandpass filter, and we use it to
reconstruct z(t). Since Xj(f) occupies the frequency band [2kW,2(k + 1)W], then for all k, X (f)
cannot cover the whole interval [—TV, W]. Thus at the output of the reconstruction filter there will
exist frequency components which are not present in the input spectrum. Hence, the reconstruction
filter has to be a time-varying filter. To see this in the time domain, note that the original spectrum
has been shifted by f/ = 27’}& In order to bring the spectrum back to the origin and reconstruct
x(t) the sampled signal x;(t) has to be multiplied by ¢ It = =i Wi
described by

. However the system

y(t) = (1)

is a time-varying system.

3) Using a time-varying system we can reconstruct x(t) as follows. Use the bandpass filter
TSH(%) to extract the component X (f — i) Invert X (f — i) and multiply the resultant

signal by e 72"t Thus

L=y (p)

x(t) = e W F=LI T TI( S

Problem 2.39
1) The linear interpolation system can be viewed as a linear filter where the sampled signal
x(t) Y00 0(t — nTs) is passed through the filter with impulse response

n=—oo

1+4 -T,<f<0
h(t)=<{ 11—+ 0<f<T;

Ts
0 otherwise
To see this write
[ee] o)
x1(t) = lx(t) Z ot — nTs)] *x h(t) = Z x(nTs)h(t — nTs)
Comparing this with the interpolation formula in the interval [nTs, (n 4+ 1)T%]
t—nTs
w(t) = 2(nTy) + ——=2 (2((n + D)Ty) — 2(nTy))
t—nT, ‘- )T,
= atnm) [1 = FEE] st ymy [+ D
= z(nTs)h(t —nTs) + z((n+ 1)Ts)h(t — (n+ 1)Ts)
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we observe that h(t) does not extend beyond [—Ty, Ts] and in this interval its form should be the

one described above. The power spectrum of z1(t) is Sy, (f) = | X1(f)|> where

Xi(f) = f[wl(t)]Zf[h(t)*ﬂf(t) i 5(t—nTs)]

n=—oo

= H(f) [X(f)*; > 5(f—£>]

S n=—o00

— sin(fTy) S X(f—%)

n=—oo

2) The system function sinc?(fT;) has zeros at the frequencies f such that
fTs =k keZ—-{0}

In order to recover X (f), the bandwidth W of x(¢) should be smaller than 1/T, so that the whole
X (f) lies inside the main lobe of sinc?(fTs). This condition is automatically satisfied if we choose
T such that to avoid aliasing (2I/W < 1/T). In this case we can recover X(f) from X;(f) using

the lowpass filter H(%)

(1) X0(7) = sin(72) X ()
X(f) = (sine(FT) (L) X1

If Ty < 1/W, then sinc?(fTs) ~ 1 for |f| < W and X (f) is available using X (f) = H(%)Xl(f)

Problem 2.40
1) W = 50Hz so that Ty = 1/2W = 10~2sec. The reconstructed signal is

o0

z(t) = Z x(nTS)sinc(Ti —n)
— t ! t
= — n;4 sinc(?S —n)+ nZ:l sinc(i —n)

With 7, =102 and t = 5 - 1073 we obtain

4 4
1 1
z(.005) = — Z SiHC(§ +n) + Z Sinc(§ —n)
n=1 n=1

.3 .0 — .9

= —[Slnc(§) + smc(§) + smc(§) + s1nc(§)]
1
+[sinc(—§) + Sinc(—g) + SiHC(—g) + sinc(—g)]
1 2 2

= sine() — sinc(;) = = sin(5) — o sin())
I
97

where we have used the fact that sinc(¢) is an even function.
2) Note that (see Problem 2.41)

> 1
inc(2Wt — m)sinc* (2Wt — n)dt = —— 8,
/_Oo sinc(2Wt — m)sinc* (2Wt — n) ST
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with d,,,, the Kronecker delta. Thus,

/_O:o ()2t — /OO 2(t)2* ()t

= Z x(nTs)z™ (mTs) / sinc(2Wt — m)sinc* (2Wt — n)dt
= 1
= T ——
3 BT
Hence
00 ) 1 —1 4 4 ,
$)2dt = —— 1 1l =2 —g.10"
N P
Problem 2.41
1) Using Parseval’s theorem we obtain
A = / sinc(2Wt — m)sinc(2Wt — n)dt

_ [ " Flsinc(2Wt — m)] Flsinc(2W — n)dt

_ 1 oo f —j2nfm=n
- /,ngW)H(gw)” daf

_ 1 /W —j27rf”§‘}/"df_ig
- o)y oW o

where 0, is the Kronecker’s delta. The latter implies that {sinc(2Wt — m)} form an orthogonal
set of signals. In order to generate an orthonormal set of signals we have to weight each function

by 1/\/W

2) The bandlimited signal x(¢) can be written as

z(t) = Z x(nTy)sinc(2Wt — n)

n=—oo

where z(nTy) are the samples taken at the Nyquist rate. This is an orthogonal expansion relation
where the basis functions {sinc(2Wt¢ —m)} are weighted by x(mT5).

3)

/ z(t)sinc(2Wt —n)dt = / Z x(mTs)sinc(2Wt — m)sinc(2Wt — n)dt

= Z x(mTs) / sinc(2Wt — m)sinc(2Wt — n)dt
= i x(mT, )ié = Lx(nT )
= L s/ O T s
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Problem 2.42

We define a new signal y(t) = x(t + to). Then y(t) is bandlimited with Y (f) = /270 X (f) and

the samples of y(t) at {kTs}72 _
the sampling theorem to the reconstruction of y(t), we have

o

are equal to the samples of x(t) at {to + kTs}3> . Applying

y(t) = > y(kTy)sinc W (t - kTy)) (1)
k=—0o0
= ) a(to + kTy)sinc QW (t — kTy)) (2)
k=—o0
and, hence,
x(t+tp) = Z x(to + kTs)sinc (W (t — kTs))
k=—o0
Substituting t = —ty we obtain the following important interpolation relation.
z(0) = Z x(to + kTs)sinc (2W (tog + kT))
k=—o00
Problem 2.43
We know that
x(t) = z(t) cos(2m fot) — xs(t) sin(27 fot)

T(t) = w(t)sin(27 fot) + x5(t) cos(27 fot)

We can write these relations in matrix notation as

z(t) \ _ [ cos(2mfot) —sin(2m fot) xc(t) _n xc(t)
Z(t) sin(2w fot)  cos(27 fot) xs(t) xs(t)

The rotation matrix R is nonsingular (det(R) = 1) and its inverse is

Rl cos(2m fot) sin(27 fot)
—\ —sin(27fot) cos(2m fot)

ze(t) | _ Rl x(t) \ _ [ cos(2mfot)  sin(2 fot) x(t)
xs(t) Z(t) —sin(27 fot) cos(2m fot) z(t)

and the result follows.

Thus

Problem 2.44
zc(t) = Relz;(t)]. Thus
1
relt) = 5 () +2° (1)
Taking the Fourier transform of the previous relation we obtain

Xelf) = 51X() + X[ (1)
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Problem 2.45

z1(t) = xz(t)sin(27 fot)
Xif) = =g XU+ 0+ 5 X( = )

za(t) = (1)
Xo(f) = —jsgn(f)X(f)

—

x3(t) = 21(t) = x(t) sin(27 fot) = —x(t) cos(2m fot)
Xs(f) = —5X(f+ fo) = 5X(F ~ fo)
x4(t) = wxo(t)sin(2w fot) = &(t) sin(27 fot)
Xilf) =~z X+ )+ 5 XU~ )
= g s + SX(f + fol + 5= [dsgnlf = Fa)X(f = fo)
= gsmn(f + )X (T + o) — goen(f — o) X(f ~ fo)

xz5(t) = Z(t)sin(2w fot) + x(t) cos(2m fot)
Xs(f) = Xalf) — Xs() = 5 X(F + fo)lsen(f + fo) — 1) — 5X(f ~ fo) sen(f — fo) +1)

ze(t) = [&(t)sin(2w fot) + x(t) cos(27 fot)]2 cos(27 fot)
Xo(f) = Xs(f+fo) +Xs(f = fo)
= X7+ 20)(smn(f +2f0) — 1) — L X (/) (sen(f) + 1)

5 X (F)sam(F) 1) — S X(F — 2/0) sen(f — 2fo) + 1)

= X(f) + 5 X(f + 2/0)smn(f +2fo) 1) = 5X(F ~ 2fo) (] — 2fo) + 1)

xz7(t) = xe(t) * 2Wsinc(2Wt) = —x(t)

Xe(f) = Xo()(1) = ~X(f)
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2jX1(f) —jX2(f)

o 6) | xe(f) 20

X7(f)

/

/:l

Problem 2.46

If 2:(t) is even then X(f) is a real and even function and therefore —jsgn(f)X (f) is an imaginary
and odd function. Hence, its inverse Fourier transform z(t) will be odd. If x(t) is odd then X (f)
is imaginary and odd and —jsgn(f)X(f) is real and even and, therefore, Z(t) is even.

Problem 2.47
Using Rayleigh’s theorem of the Fourier transform we have

B~ | slaPdt= [ oolX(p)df

and

By = [ ocla(ofdr= [ ool = jsen(NX ()

Noting the fact that | — jsgn(f)|*> = 1 except for f = 0, and the fact that X (f) does not contain
any impulses at the origin we conclude that F, = Ej;.

Problem 2.48
Here we use Parseval’s Theorem of the Fourier Transform to obtain

| eaayde = [ ooX(f)=isen(X (1))
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= i [ par g [ X (P
0

where in the last step we have used the fact that X (f) is Hermitian and therefore | X (f)|? is even.

Problem 2.49

We note that C(f) = M(f) * X(f). From the assumption on the bandwidth of m(t) and z(t) we
see that C'(f) consists of two separate positive frequency and negative frequency regions that do
not overlap. Let us denote these regions by C4.(f) and C_(f) respectively. A moment’s thought
shows that

Cr(f) = M(f) = X+ (f)
and

C(f) = M(f)x X_(f)
To find the Hilbert Transform of ¢(t) we note that

(Her)
—JC+(f) +3C(
—JM(f)* X+(f)

M(f)* [=iX+(f) +3X-(f)]

M(f)*[—jsgn(f)X(f)]
= M(f)>Fzt)]

Fle@®)] = —jsgn

f)
+iM(f)x X_(f)

Returning to the time domain we obtain

Problem 2.50
It is enough to note that

Fla(t)] = (—jsen(£))*X(f)
and hence

Fla(t)] = —X(f)

where we have used the fact that X (f) does not contain any impulses at the origin.

Problem 2.51
Using the result of Problem 2.49 and noting that the Hilbert transform of cos is sin we have

x(t) C(g(\Zﬂfot) = z(t) sin(27 fot)

Problem 2.52

F[ASIH(2;F.\fOt+9)] = —jsgn(f)A |:_2]:]5<f+f0) ]27Tf2f0 + (f f) 2ﬂ'f2§)c0:|

2
A

:2‘2F6+hw%@wwu—mwﬂﬁ%]

= —AF|cos(27 fot + 0)]

- A[%m—ﬁww+ﬁwﬂﬂﬁo—gm—ﬁwU—jmaﬁﬁij
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Thus, Asin(27 fot + ) = — A cos(27 fot + 0)

Problem 2.53

Taking the Fourier transform of e32mfot we obtain
Fleizmfot] = —jsen(f)5(f — fo) = —jsgn(fo)d(f — fo)
Thus, -
B0t = [ jsgm(f0)3(f — o) = ~gogn(fo)e*

Problem 2.54

F [$$(t>] = f[:E(t)/*\(S/(t)} = —jsgn(f)Flz(t) « 8 (t)]

—jsen(f)j2m fX(f) = 2 fsgn(f) X (f)
= 27|fIX(f)

Problem 2.55 -
We need to prove that z/(t) = (z(t))’.
Fla'(t)] = Flat)d'(1)] = —jsen())Flu(t) * 8'(t)] = —jsen(f) X (f)j2n
= Fle)janf = Fl(0))

Taking the inverse Fourier transform of both sides of the previous relation we obtain, xT(;) =

(1))’

Problem 2.56

o(t) = sinetcos2mfut = X(f) = JTI(F + fo)) + 3 TIS — o)

h(t) = sinc?tsin2n fot — H(f) = ;jA(f+f0))+21jA(ffo))
The lowpass equivalents are
Xi(f) = 2u(f+ fo)X(f+ fo) =1I(f)
H() = 2u(f+ f)H(f + fo) = j (f)
. if(f+1) —1<f<0
V() = SN =1 5(-f+1) 0<f<;
0 otherwise

Taking the inverse Fourier transform of Y;(f) we can find the lowpass equivalent response of the

system. Thus,

u(t) = F ()]
1 0 27 ft 1 % j27 ft
= o [ e s o [P g+ e
jJ-1 25 Jo
0
_ i 1 fej27rft+ 1 ej27rft:| 1 1 J27rft
27 Lj2nt 4722 1 2 j27rt -1
1 1
1 - 2 1 1 2
- J2mft j2mft j2mft
2 []27rtf t e ] 25 2mtS |,
. . 1
= J [—msmwt—i—W(COSM—l)]
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The output of the system y(t) can now be found from y(t) = Re[y;(t)e/>"/o!]. Thus

oL
y(t) = Re (j[—m81n7rt+4w2t2
1

4242

(cosmt — 1)])(cos 2w fot + 7 sin 27 fot)

1
(1 —cosmt) + yyn sin 7t] sin 27 fot

= |

Problem 2.57
1) The spectrum of the output signal y(¢) is the product of X (f) and H(f). Thus,

Y(f) = H(f)X(f) = X(f)A(fO)ej(9(f0)+(f—fo)9'(f)|f:f0)

y(t) is a narrowband signal centered at frequencies f = +fy. To obtain the lowpass equivalent
signal we have to shift the spectrum (positive band) of y(¢) to the right by fo. Hence,

Yi(f) = ulf + fo) X (f + fo)A(fo)e? OUI+0(Nli=r0) = X, (f)A(fo)el OUI+10'(Hl=10)
2) Taking the inverse Fourier transform of the previous relation, we obtain
w(t) = FH[X(f)A(fo)e e Dlr=o]
= AUo)au(t + 58 (F)ls=1)
With y(t) = Re[y(t)e??™0!] and 2(t) = Vi (t)e’®+ ) we get

y(t) = Rely(t)e” ]
= Re {A( fo)x(t + %9'( Pl j o )e0U0) gi2m ot

1 2 . 1 g _
= Re|AUValt + 0Dy )T 0 D)

= AGO)Valt — ty) cos(2rfot + (o) + Oult + 5-0'(F)l =)

0(fo)
27 fo

= AUfo)Valt — tg) cos(2mfolt — tp) + Oult + o-0'()l =)

= A(fo)Va(t — tg) cos(2m fo(t +

)+ Oult + 50 (ly=p))

where ) L o) L o)
t :—79, — t :—770:_77
g 2 (f)|f_f07 b 2 f() 2 f f=ro
3) ty can be considered as a time lag of the envelope of the signal, whereas t, is the time

corresponding to a phase delay of i%

Problem 2.58
1) We can write Hy(f) as follows

cost —jsind f>0
Hy(f)=12 0 f=0 =cosf — jsgn(f)siné
cosf + jsinf f <0
Thus,
1
ho(t) = FL[Hy(f)] = cosB5(t) + —tsin0

™
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xg(t) = x(t) * hg(t) = x(t) * (cos B (t) + % sin 6)

= cosfz(t) * §(t) + sin 6% * z(t)
m
= cosfz(t) + sin 0z (¢)

/ wo(t)2dt = / | cos 0z(t) + sin 03 (¢)|2dt
—00 —00
_ cos29/ ()2t + sin20/ ()| %dt
+cos€sin9/ x(t)ﬁ;*(t)dt—i—cosﬁsin&/ x*(t)&(t)dt
But [*_|z(t)|?dt = [° |2(t)|*dt = E, and [0 x(t)2*(t)dt = 0 since x(t) and &(t) are orthogonal.

Thus,
E, =FE, (cos2 0 + sin® 0)=E,

0

Problem 2.59
1)

z2(t) = z(t) + jz(t) = m(t) cos(2m fot) — m(t) sin(27 fot)
+j[m(t)cos(2m fot) — m(t)sin(27 fot)
= m(t) cos(2m fot) — m(t) sin(27 fot)
+jim(t) sin(27 fot) + jm(t) cos(2m fot)
= (m(t) + jrin(t))e’* 7!

The lowpass equivalent signal is given by

z(t) = z(t)e 2ot = m(t) + jin(t)

2) The Fourier transform of m(t) is A(f). Thus

x(f) = MWHRERIZI) - ogn(p)ac) «

1 1
—%af+h»+%&f—ﬁﬂ

= S+ o) (L= sea(f + fo)l + 5A( — fo) [L+ sea(f — fo)

—fo—1 —fo Jo  fot1

The bandwidth of z(¢) is W = 1.
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z2(t) = xz(t) + ja(t) = m(t) cos(2m fot) + m(t) sin(27 fot)
+j[m(t)cos(2 fot) + m(t)sin(27 fot)
= m(t) cos(2m fot) + m(t) sin(27 fot)
+jm(t) sin(27 fot) — jm(t) cos(2m fot)
= (m(t) — jrin(t))e?>™ !

The lowpass equivalent signal is given by
ni(t) = 2(£)e P00 = m(t) — jin()
The Fourier transform of z(t) is

x(p) = MAHERZI) Go(piac) «

1 1
—275(]0 + fo) + 275(1? — fo)

= S+ o) [ sen(f + fo)l + 5AC — fo) [1 = sga(f — fo)

AR iR

—fo —fot+1 fo—1 fo
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Chapter 3

Problem 3.1
The modulated signal is

u(t) = m(t)e(t) = Am(t) cos(2m4 x 103t)
200 250
= A |2cos(2r—t) + 4sin(2r—t + g) cos(27m4 x 10t)
T T

200 200
= Acos(2m(4 x 103 + ) ) + Acos(2m(4 x 103 — - —)t)
250

250
+2Asin(2m(4 x 103 + —)t + U

) — 2Asin(27(4 x 10% — - —I)t—-=)

3 3

Taking the Fourier transform of the previous relation, we obtain
200 200 2 250 2 _.x 250
= —_— 5 - 7.775 -
U() = AJB(F =220 487 +20) + 2eTR6(7 = 22) = ZeiFa(f + =)
1 .
*50(F — 4% 10%) + 6(f +4 x 10%)]

= ‘;[5(f—4x13—200)+5(f 4% 10° + 200)

o 250 o 250
+2e7756(f — 4 x 10% — ) +26785(f —4 % 10% + —)

200 200
+6(f +4 x 103—7)+5(f+4>< 103+7)

250

x - 2
+2€7J€5(f+4>< 103—7)4‘26‘76(5(]0"‘4 103 io):|

The next figure depicts the magnitude and the phase of the spectrum U(f).
U TA «coeopreeeeeeeeee

[ 1

—f(:—@fc—@ —f(:+27:;0fc+27?-70 fc—@fc—Zg—o fc+@ fc+2ﬂ@

To find the power content of the modulated signal we write u?(t) as

200 200

) t) + A2 cos?(2m(4 x 103 — ==)t)

™
250 250
+4A2sin?(27(4 x 10° + —)t + 3) +4A%sin?(2m(4 x 103 — =)t — g)
T

u (t) = A%cos?(2m(4 x 103 +

+terms of cosine and sine functlons in the first power

Hence,

3 A2 A% 4A% 442

P =1l 2yt = —+ — 4+ — + —— =5A?
im —5U() st T 5 T



Problem 3.2
u(t) = m(t)e(t) = A(sinc(t) + sinc?(t)) cos (27 fot)
Taking the Fourier transform of both sides, we obtain
U(f) = - M)+ AN 60 = fe) +0(f + fe))
L(f = fe) + Af = fe) + TI(f + fo) + A(Sf + fe)]

N[ o]

II(f — fo) 0 for |f — fe] < %, whereas A(f — f¢) # 0 for |f — f.|] < 1. Hence, the bandwidth of
the bandpass filter is 2.

Problem 3.3

The following figure shows the modulated signals for A = 1 and fy = 10. As it is observed
both signals have the same envelope but there is a phase reversal at t = 1 for the second signal
Amg(t) cos(2m fot) (right plot). This discontinuity is shown clearly in the next figure where we
plotted Ama(t) cos(2 fot) with fo = 3.

0.8} 1 0.8}
0.6- 1 0.6-
04} 1 0.4
0.2} 1 0.2}
0 0
0.2+ 1 0.2+
04+ 1 04+
0.6+ 1 0.6+
0.8+ 1 0.8+
002 04 06 08 1 12 14 16 18 2 002 04 06 08 1 12 14 16 18 2
0.8

0.6-
0.4t
0.2
0
_0.2L
-0.4¢
-0.6L
-0.8+

-1

0 02 04 06 08 1 12 14 16 18 2

Problem 3.4
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— m(t) + cos(2nfit) + = (m2(t) + cos?(2mfet) + 2m(t) cos(2rfet))

2
= m(t) + cos(2mfet) + %mz(t) + % + icos(27r2 fet) +m(t) cos(2m fet)

Taking the Fourier transform of the previous, we obtain

V() = M)+ ZMU) % M) + 5 (M(f = fo) + M(F + 1)

1

F00F) + 3 (O(F = )+ 6(F + Jo)) + 3 (07 — 2£) + 6(F + 212))

The next figure depicts the spectrum Y (f)

1]

fe fc QW W fc 2c

Problem 3.5

u(t) = m(t)-c(t)
= 100(2 cos(272000t) + 5 cos(273000t)) cos(27 f.t)
Thus,

Ulf) = ? [5(]‘ — 2000) + 8(f + 2000) + g(d(f —3000) + 6(f + 3000))}
«[8(f = 50000) + 8(f + 50000)]

= 50 {6(]" —52000) + o(f — 48000) + gé(f —53000) + gd(f —47000)
+4(f + 52000) + 6(f + 48000) + gé(f + 53000) + g5(f + 47000)]
A plot of the spectrum of the modulated signal is given in the next figure
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.................... 50.....|.
‘ ot ‘ | b f
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Problem 3.6
The mixed signal y(t) is given by

y(t) = wu(t) xp(t) = Am(t) cos(2m fet) cos(2m fot + 6)

= gm(t) [cos(2m2 ft + 0) + cos(6)]
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The lowpass filter will cut-off the frequencies above W, where W is the bandwidth of the message
signal m(t). Thus, the output of the lowpass filter is

2(t) = gm(t) cos ()

If the power of m(t) is Py, then the power of the output signal z(t) is Poy = PMAT2 cos?(). The
power of the modulated signal u(t) = Am(t) cos(2n f.t) is Py = %2PM. Hence,

P 1
];);t =3 6052(0)

A plot of PPO—[‘}“ for 0 < 0 < 7 is given in the next figure.
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Problem 3.7
1) The spectrum of u(t) is

UG = D )+ 60+ L)

% [6(f — f. — 1500) + 6(f — f. + 1500)

+6(f + fo — 1500) + 6(f + fe + 1500)]

$22 180 — J. —B000) 4 5(f — . + 3000)

+6(f + fe — 3000) + 6(f + f. + 3000)]
The next figure depicts the spectrum of u(t).

10
A2
WI ........... T
I t | ¢ N | I
-1030-1015-1000 -985 -970 ! 0 970 985 1000 10151030
X 100 Hz
2) The square of the modulated signal is
u(t) = 400 cos?(2m f.t) 4 cos®(2m(f. — 1500)t) 4 cos® (27 (f. + 1500)t)

425 cos? (27 ( f. — 3000)t) + 25 cos®(2m( f. 4 3000)t)

+ terms that are multiples of cosines
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If we integrate u?(t) from —% to %, normalize the integral by % and take the limit as T" — oo,

then all the terms involving cosines tend to zero, whereas the squares of the cosines give a value of
400

%. Hence, the power content at the frequency f. = 10° Hz is Py, = == = 200, the power content
at the frequency Py 41500 is the same as the power content at the frequency Py, _1500 and equal to
%, whereas Pfc+3000 = Pfcfgogo = %
3)
u(t) = (20 + 2cos(2w1500t) + 10 cos(27w3000¢)) cos(27 fet)
1 1
= 2001+ 10 cos(2m1500t) + 3 cos(2m3000¢)) cos(2m f.t)
This is the form of a conventional AM signal with message signal

1 1
m(t) = 0 cos(271500t) + 3 cos(273000t)

) 1 1
= cos”(2m1500t) + 0 cos(2m1500t) — 3

The minimum of g(z) = 2% + {2 — § is achieved for z = —55 and it is min(g(z)) = —25. Since
z = —4 is in the range of cos(2w1500¢), we conclude that the minimum value of m(t) is —2.
Hence, the modulation index is
201
400

1)

u(t) = 20cos(27fct) + cos(2m(f. — 1500)t) + cos(2m(fo — 1500)t)
= 5cos(2m(f. — 3000)t) + 5 cos(2m(f. + 3000)t)

The power in the sidebands is

1 1 25 25
Psidebands:§+§+?+?:26
The total power is Piotal = Pearrier + Psidebands = 200 4+ 26 = 226. The ratio of the sidebands power
to the total power is
Psidebands . 26

Ptotal B %

Problem 3.8
1)

u(t) = m(t)e(t)
= 100(cos(271000t) + 2 cos(2w2000¢)) cos(27 f.t)

= 100 cos(271000¢t) cos (2 ft) + 200 cos(27w2000t) cos (27 f.t)

_ %O [cos (2 (fe + 1000)t) + cos(27(f — 1000)t)]

%O (cos(27(f, -+ 2000)£) + cos(27(f. — 2000)¢)]

Thus, the upper sideband (USB) signal is

Uy (t) = 50 cos(2m( fo 4+ 1000)t) 4 100 cos(27( f. + 2000)t)

46



2) Taking the Fourier transform of both sides, we obtain

Udf) = 25((f — (f. 4 1000)) + 6(f + (f- + 1000)))
+50 (0(f — (fe +2000)) +d(f + (fe +2000)))

A plot of Uy,(f) is given in the next figure.
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Problem 3.9
If we let

T, T,
t_|_l t— =2
2 2

then using the results of Problem 2.23, we obtain

(e 9]

v(t) = m(t)s(t) = m(t) Z z(t —nTp)
= mlg 3 X H
where
n t+ 2
- o) o)
T, % ‘

= J;Sinc(f:gp)( —j2mf T _ i ) ‘

_ %sinc(%)(—Qj) sin(n)

Hence, the Fourier transform of v(t) is

V() =y 3 sinc(5)(-2j)sin(n])M(f -

n=—oo

n
Tp)

The bandpass filter will cut-off all the frequencies except the ones centered at -, that is for n = +1.
Thus, the output spectrum is

U() = sine(Z)(~)M(f ~ ) +sine()iM(f + )

2 T, T,
2, 1 2, 1
= —;JM(f—?p)‘F;JM(f‘F?p)
4 1 1 1 1
= ;M(f)* ?jé(f_fp)_?j(s(f—i_fp)

Taking the inverse Fourier transform of the previous expression, we obtain

u(t) = %m(t) sin(27r71,pt)
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which has the form of a DSB-SC AM signal, with ¢(t) = %sin(QﬂTipt) being the carrier signal.

Problem 3.10
Assume that s(t) is a periodic signal with period T, i.e. s(t) =3, x(t — nT},). Then

v(t) = m(t)s(t) = m(t) Z z(t — nT)p)
= mi)g Y X

where X(Tﬂp) = f[!l?(t)”f:TLp. The Fourier transform of v(¢) is

Vi) = Z X (g m{t)e” !
n
= X —

The bandpass filter will cut-off all the frequency components except the ones centered at f. = :l:T%,‘
Hence, the spectrum at the output of the BPF is

1 1 1 1 1 1
Ufy==X(=)M(f— =)+ =—X(—=)M —
() = 7 XM = )+ 5 X ()M + )
In the time domain the output of the BPF is given by
1 1 ]277 1 —jom -t
t) = —X(= t)e X* t 7
ut) = X mOF T X (o m(e
1 1 ]27r 1 —jomAt
= — X E— Tp X Tp
(0 |X () 4 X (e
= L oRe(X(=))m(t) cos(2m—t)
L Ty " 7TTp

As it is observed u(t) has the form a modulated DSB-SC signal. The amplitude of the modulating
signal is A, = T%QRe(X( %p)) and the carrier frequency f. = T%,

Problem 3.11
1) The spectrum of the modulated signal Am(t) cos(27 f.t) is

V(F) = DM~ )+ M+ 1)

The spectrum of the signal at the output of the highpass filter is

U(F) = SIM(F + fJuns(~F — £+ M(F — FJunr(F — 1)

Multiplying the output of the HPF with A cos(27(f.+W)t) results in the signal z(t) with spectrum

2() = 2+ Rua(—f — £) + M(f — fyus(f — £2)
W~ (fet W) 807 + fot W)
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2
- A( M(f 4+ fo— fom W)uor(=f + fo+ W = £)
M(f+fe—fet Wlusai(f+ fo+ W = fo)
+M(f = 2fe = W)u_1(f = 2fc = W)
+M(f +2fc +W)u_i(—f — 2f. — W))
2
= DU~ WA (=] + W)+ MO+ Whuoa(f + W)

M(f =2fc =W)ua(f = 2fc = W)+ M(f +2fc + W)u1(=f = 2fc = W))

The LPF will cut-off the double frequency components, leaving the spectrum

A2
Y(f) = MO = Whuo (] + W)+ M+ W)ua(f + W)
The next figure depicts Y (f) for M (f) as shown in Fig. P-5.12.
Y()
-W W

2) As it is observed from the spectrum Y'(f), the system shifts the positive frequency components
to the negative frequency axis and the negative frequency components to the positive frequency
axis. If we transmit the signal y(¢) through the system, then we will get a scaled version of the
original spectrum M (f).

Problem 3.12
The modulated signal can be written as

u(t) = m(t)cos(2mfet + @)
= m(t) cos(2m f.t) cos(¢p) — m(t) sin(27 f.t) sin(¢p)
= wuc(t) cos(2m fet) — us(t) sin(27 fet)

where we identify u.(t) = m(t) cos(¢) as the in-phase component and us(t) = m(t)sin(¢) as the
quadrature component. The envelope of the bandpass signal is

Vu(t) = \/ )+ u(t \/m2 cos?(¢) + m2(t) sin?(¢)
= m2(t)=|m(t)\

Hence, the envelope is proportional to the absolute value of the message signal.

Problem 3.13
1) The modulated signal is

u(t) = 100[1 4+ m(t)] cos(2w8 x 10°t)
= 100cos(278 x 10°t) + 100sin(2710%¢) cos(278 x 10°t)
4500 cos(2m2 x 10t) cos(278 x 10°¢)
= 100 cos(278 x 105t) + 50[sin(27(10% + 8 x 10°)t) — sin(27(8 x 105 — 10%)t)]
+250[cos(27(2 x 10 + 8 x 10°)t) 4 cos(2m(8 x 10° — 2 x 10%)t)]
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Taking the Fourier transform of the previous expression, we obtain

U(f) = 50[0(f—8x10°) +&(f +8 x 10°)]
+25L7 (f —8x10° — 103)—;5(f+8><105+103)}

—25[] (f —8x 105 +10%) — 16(f+8><105—103)}

j
+125 [6(f = 8 x 10° = 2 x 10%) + 8(f + 8 x 107 + 2 x 10%)]

+125 [6(f = 8 X 10° = 2 x 10%) + 3(f + 8 x 107 + 2 x 10%)]
= 50[0(f — 8 x 10°) + &(f + 8 x 10°)]

+25 [3(f — 8 x 107 = 10°)e 7% + 6(f + 8 x 10° + 10%)e/5

+25 [3(f — 8 x 107+ 10%)e/ 5 + 6(f + 8 x 10° — 10%)e /5]

+125 [6(f = 8 X 10° = 2 x 10%) + 3(f + 8 x 107 + 2 x 10%)]

)

}

+125 [6(f — 8 x 10° =2 x 10%) + 5(f + 8 x 10° + 2 x 107

U
B TR
................ I P
T ............ 20 ] T
1 f f A
fe—2x10%  —f. fet+2x103 fe—2x103 fe fet+2x103
AOUTRTTR Uz .
- fe—103 fo+103
. O, .
2) The average power in the carrier is
A2 1002
Pcarrier = 76 - 72 = 5000

The power in the sidebands is

502 502 2502 2502

Psidebands = 7 + 7 B + 72 = 65000
3) The message signal can be written as
m(t) = sin(2r10%t) + 5 cos(272 x 10%t)

= —10sin(2710%t) + sin(2710%¢) + 5

As it is seen the minimum value of m(t) is —6 and is achieved for sin(27103%t) = —1 or t =

ﬁ + ﬁk, with k € Z. Hence, the modulation index is a = 6.

4) The power delivered to the load is

lu(t)]? _ 100%(1 4 m(t))? cos?(2n fet)
50 50

Pload =
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The maximum absolute value of 1 + m(t) is 6.025 and is achieved for sin(27103t) = 5 or t =

20
s 1
%ﬁlé?) + %. Since 2 x 10? < f, the peak power delivered to the load is approximately equal to
100 x 6.025)2
max(Poaq) = GO0X G025)7 _ 79 6019
50
Problem 3.14
1)
u(t) = 5cos(18007t) + 20 cos(20007t) + 5 cos(22007t)

1
= 2001+ 3 cos(2007t)) cos(20007t)

The modulating signal is m(t) = cos(2wr100t) whereas the carrier signal is ¢(t) = 20 cos(271000t).

2) Since —1 < cos(27100¢) < 1, we immediately have that the modulation index is o = 3.

3) The power of the carrier component is Peayrier = % = 200, whereas the power in the sidebands

. 2
18 Psidebands - % = 50. Hence,
Psidebands 50 1

Pcarrier B % B 4

Problem 3.15
1) The modulated signal is written as
u(t) = 100(2cos(2w10%t) + cos(273 x 10%t)) cos(2m f.t)
= 200 cos(2m10%t) cos(27 fot) + 100 cos(273 x 103t) cos(2m f.t)
100 [cos(2(f. + 10%)2) + cos(2r(f. — 10*)1)]

+50 [cos(Qﬂ(fc 43 x 10*)t) + cos(27(f. — 3 x 103)t)}
Taking the Fourier transform of the previous expression, we obtain
U(f) = 50[8(f = (fe+10%) +0(f + fe+ 10°)
+ 0(f = (fo = 10%) + 0(f + fo = 10%)]
+ 25 [8(f = (fet+ 3% 10%) +8(f + fo + 3 x 10%)
+-5q—4ﬂ—3x1§»+af+ﬁ—3x1@ﬂ
The spectrum of the signal is depicted in the next figure

! T

—1003 —1001 —999 —997 997 999 1001 1003 KHz

2) The average power in the frequencies f. + 1000 and f. — 1000 is

1002
Pr. 11000 = Pf.—1000 = — = 5000

The average power in the frequencies f. + 3000 and f. — 3000 is

2
Pr. 13000 = Pr.—3000 = -5 = 1250
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Problem 3.16
1) The Hilbert transform of cos(271000¢) is sin(271000t), whereas the Hilbert transform ofsin(271000¢)
is — cos(2w1000¢). Thus

m(t) = sin(271000¢) — 2 cos(2w1000t)

2) The expression for the LSSB AM signal is
w(t) = Aem(t) cos(2m fet) + Ac(t) sin(2m fot)

Substituting A, = 100, m(t) = cos(2w1000t)+2 sin(271000¢) and 72 (t) = sin(271000¢)—2 cos(271000¢)
in the previous, we obtain

w(t) = 100 [cos(271000t) + 2sin(271000¢)] cos(27 fet)

100 [sin(271000t) — 2 cos(271000t)] sin(27 f.t)

100 [cos(271000¢) cos(2m ft) 4 sin(27w1000t) sin (27 f.t)]
200 [cos(27 ft) sin(27w1000t) — sin (27 f.t) cos(2w1000t)]
100 cos(2m(f. — 1000)t) — 200 sin(27 (f. — 1000)t)

+

+

3) Taking the Fourier transform of the previous expression we obtain

Ul(f) = 50(6(f — fe+1000) +(f + fe —1000))
+ 1005 (§(f — fo+1000) — 6(f + f. — 1000))
= (50 +1005)6(f — fc + 1000) + (50 — 1007)d(f + fe — 1000)

Hence, the magnitude spectrum is given by

U(f)] = V/502+100% (3(f — fo+1000) + 6(f + fo — 1000))
= 10V125(6(f — f. + 1000) + 6(f + f. — 1000))

Problem 3.17
The input to the upper LPF is

un(t) = cos(2m fimt) cos(2m f1t)
= 5 feos(2m(fy — fn)f) + cos(2n(fi + fn)0)]
whereas the input to the lower LPF is
w(t) = cos(2n fint) sin(2m f1t)
= S BnEn( — f)t) + sin(@r(fy + 0]

If we select f1 such that |fi — fm| < W and f1 + f,, > W, then the two lowpass filters will cut-off
the frequency components outside the interval [—W, W], so that the output of the upper and lower
LPF is

yu(t) = COS(QW(fl_fm)t)
w(t) = sin@2m(f1 — fm)t)

The output of the Weaver’s modulator is
u(t) = cos(2m(f1 — fm)t) cos(27 fot) — sin(2w(f1 — fm)t) sin(27 fat)
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which has the form of a SSB signal since sin(27(f1 — fi)t) is the Hilbert transform of cos(2w(f; —
fm)t). If we write u(t) as

u(t) = cos(2m(f1 + f2 — fm)t)

then with f1+ fo— fin = fe+ fm we obtain an USSB signal centered at f., whereas with fi+ fo— fi, =
fe — fm we obtain the LSSB signal. In both cases the choice of f. and f; uniquely determine fo.

Problem 3.18
The signal z(t) is m(t) + cos(2n fot). The spectrum of this signal is X (f) = M(f) + 2(6(f — fo) +
d(f + fo)) and its bandwidth equals to W, = fy. The signal y;(t) after the Square Law Device is

2(t) = (m(t) + cos(2m fot))?
cos?(2m fot) + 2mi(t) cos(2m fot)

yi(t) = =
= m
= m

+ % cos(2m2fot) + 2m(t) cos(2r fot)

The spectrum of this signal is given by

1

Vi(f) = MOF) % MF) + 5807) + (60 — 20) + 57 +2f0)) + M(F — fo) + M(f + o)

and its bandwidth is W7 = 2f;. The bandpass filter will cut-off the low-frequency components
M(f)*M(f)+35(f) and the terms with the double frequency components X (5(f—2f0)+3(f+2fp)).
Thus the spectrum Ya(f) is given by

Ya(f) = M(f — fo) + M(f + fo)
and the bandwidth of yo(t) is Wo = 2W. The signal y3(t) is
y3(t) = 2m(t) cos? (2 fot) = m(t) + m(t) cos(2x fot)

with spectrum
1
Y3(t) = M(f) + 5 (M(f = fo) + M(f + fo))
and bandwidth W3 = fy + W. The lowpass filter will eliminate the spectral components %(M (f —
fo) + M(f + fo)), so that y4(t) = m(t) with spectrum Yy = M(f) and bandwidth Wy = W. The
next figure depicts the spectra of the signals x(t), y1(t), y2(t), y3(t) and ya(t).
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Problem 3.19
1)
y(t) = ax(t)+bz?(t)

a(m(t) 4 cos(2m fot)) + b(m(t) + cos(2 fot))?
am(t) + bm?(t) + a cos(27 fot)

+bcos? (2 fot) + 2bm(t) cos(27 fot)

2) The filter should reject the low frequency components, the terms of double frequency and pass
only the signal with spectrum centered at fy. Thus the filter should be a BPF with center frequency
fo and bandwidth W such that fo — Wy > fo — % > 2Ws where W)y, is the bandwidth of the

message signal m(t).

3) The AM output signal can be written as

u(t) = a(l+ 2Ebm(t)) cos(2m fot)

Since A, = max||m(t)|] we conclude that the modulation index is

a
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Problem 3.20
1) When USSB is employed the bandwidth of the modulated signal is the same with the bandwidth
of the message signal. Hence,

Wuyssg = W = 10* Hz

2) When DSB is used, then the bandwidth of the transmitted signal is twice the bandwidth of the
message signal. Thus,
Wpsg = 2W = 2 x 10" Hz

3) If conventional AM is employed, then

Wy = 2W = 2 x 10* Hz

4) Using Carson’s rule, the effective bandwidth of the FM modulated signal is

ky max{[m(t)[]

BC:(26+1)W:2< 0

+ 1) W = 2(ks + W) = 140000 Hz

Problem 3.21
1) The lowpass equivalent transfer function of the system is

1 1
_l’_ =
H(f) = 2u_1(f + fo)H(f + f.) :2{ wli+tsz |/
Taking the inverse Fourier transform, we obtain

w 4
) = FUHG) = [, B

- 9 2 (if+1)6j27rftdf—|—2 Wej27rftdf
N w2 w

2

M‘%

v w
1 S P
—w j2rt _w j2rt

2 1 . 1 .
— 2 (= poi2mft - i2nft
W (j27rtfe t et )

L jemw J
jmt m2t2W
= % {sinc(Wt) - ej%Wt}

N‘S

sin(rWt)

2) An expression for the modulated signal is obtained as follows

u(t) = Re[(m(t) x hy(t))e”/!]

= Re {(m(t) * %(sinc(Wt) _ €j2TFWt))€j27rfct
. | . |
= Re {(m(t) * (%Sinc(wﬂ))@ﬂmt + (m(t) * RQJ%Wt)eﬂwfct

Note that

Flm(t) j}ﬁeﬂ”Wﬂ — M(f)sgu(f — W) = M(f)
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since sgn(f — W) = —1 for f < W. Thus,
u(t) = Re (m(t)*(itsinc(Wt)))ejzﬂfct + m(t)ed?Sel
T

= m(t) cos(2m fet) — m(t) x (%sinc(Wt)) sin(27 fet)

Problem 3.22
a) A DSB modulated signal is written as
u(t) = Amf(t)cos(27 fot + @)
= Am(t) cos(¢) cos(2 fot) — Am(t) sin(¢) sin(27 fot)

Hence,
z(t) = Am(t)cos(e)
xs(t) = Am(t)sin(o)
V() = \JAZm()(cost(9) + sin(9)) = | Am(t)
O(t) = arctan <m) = arctan(tan(¢)) = ¢

b) A SSB signal has the form
ussp(t) = Am(t) cos(2m fot) F Am(t) sin(27 fot)
Thus, for the USSB signal (minus sign)
z(t) = Am(t)
w(t) = Am(t)
V() = \JA2(m2(t) +m2(t) = Ay/m2(t) + m2(t)

O(t) = arctan <m§2)

For the LSSB signal (plus sign)
z(t) = Amf(t)

zs(t) = —Arm(t)
V(D) = \/A2(m2(t) +1m2(t)) = Ay/m2(t) +1i2(t)
O(t) = arctan <_%>

c) If conventional AM is employed, then

u(t) = A(1l+m(t))cos(2r fot + &)
= A(1+m(t)) cos(¢) cos(2m fot) — A(1 + m(t)) sin(¢) sin(27 fot)

Hence,
ze(t) = A(l+4m(1))cos(¢)
zs(t) = A(l+m(t))sin(e)
V() = A2+ m()2(cos?(g) + sin?(9)) = Al(1 +m(1))]
_ A(L 4+ m(t))cos(9)\ _ _
©(t) = arctan <A(1 gy ))sin(qb)) = arctan(tan(¢)) = ¢
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d) A PM modulated signal has the form

u(t) = Acos(2nfct+ kym(t))
— Re [ Aej%fctejkpmm}

From the latter expression we identify the lowpass equivalent signal as
w(t) = Ae?*m® = g (8) + jag(t)
Thus,
ze(t) = Acos(kym(t))
zs(t) = Asin(kym(t))
V() = \JA2(cos2(kym(1)) + sin’(kym(t))) = A

O(t) = arctan (W) = k,m(t)

e) To get the expressions for an FM signal we replace k,m(t) by 27k [*__m(r)dr in the previous
relations. Hence,

zo(t) = Acos(2mky /_toom(T)dT)

zs(t) = Asin(2wks /_toom(T)dT)
V(i) = A

o) = 27rk:f/toom(7)d7'

Problem 3.23
1) If SSB is employed, the transmitted signal is

u(t) = Am(t) cos(27 fot) F Am(t) sin(2m fot)

Provided that the spectrum of m(t) does not contain any impulses at the origin Py = Py, = % and

A%P A%P,
M + M

1
= A%2Py; = 400= = 200
9 9 v = 4005

Pssp =
The bandwidth of the modulated signal w(t) is the same with that of the message signal. Hence,

Wssp = 10000 Hz

2) In the case of DSB-SC modulation u(t) = Am(t) cos(27 fot). The power content of the modulated
signal is
APy
2

1
Ppsp = = 2005 =100

and the bandwidth Wpgp = 2W = 20000 Hz.

3) If conventional AM is employed with modulation index o = 0.6, the transmitted signal is

u(t) = A[l + am(t)] cos(2 fot)
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The power content is

A2 A202P
Payg = 75—+-44£%4JK—::200—%200-(162-(15 — 236

The bandwidth of the signal is Way = 2W = 20000 Hz.

4) If the modulation is FM with k¢ = 50000, then
A2
Pey = -5 = 200

and the effective bandwidth is approximated by Carson’s rule as

50000
Be=2(8+1)W =2 (W + 1) W = 120000 Hz

Problem 3.24
1) Since Flsinc(400t)] = T(l)oﬂ(ﬁ)’ the bandwidth of the message signal is W = 200 and the
resulting modulation index

k X k
g = fmaw[lm(t)\]_ {/;O

Hence, the modulated signal is

= 6= ky =120

t
u(t) = Acos(27rfct+27rkf/ m(7)dr)

t
= 100 cos(2m fot + —|—27r1200/ sinc(4007)dr)
—00

2) The maximum frequency deviation of the modulated signal is

A frax = BfW = 6 x 200 = 1200

3) Since the modulated signal is essentially a sinusoidal signal with amplitude A = 100, we have

AQ
P = -5 = 5000

4) Using Carson’s rule, the effective bandwidth of the modulated signal can be approximated by
B, =28y +1)W = 2(6 + 1)200 = 2800 Hz

Problem 3.25
1) The maximum phase deviation of the PM signal is

A¢max = kp maXHm(t)H = kp

The phase of the FM modulated signal is

o(t) = 2mks /t m(r)dr = 27ky /Otm(T)dT

2rky [§ rdr = Tk t? 0<t<1
- mky + 2nks [[dr =k + 21k (t — 1) 1<t<2
~ | wky+2nkp —2mky [y dr = 3nky — 2mkp(t—2) 2<t<3

7ka 3<t¢
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The maximum value of ¢(t) is achieved for t = 2 and is equal to 3wky. Thus, the desired relation
between k, and ky is
k, = 3mky

2) The instantaneous frequency for the PM modulated signal is

1 d
—¢

fz<t) = fe+ %dt

1 d
(8) = fot byt

For the m(t) given in Fig. P-3.25, the maximum value of £m(#) is achieved for ¢ in [0, 1] and it is
equal to one. Hence,

max(f(t)) = fo + 5

For the FM signal f;(t) = f. + kgm(t). Thus, the maximum instantaneous frequency is

max(fi(t)) = fo+ ky = fo+ 1

Problem 3.26
1) Since an angle modulated signal is essentially a sinusoidal signal with constant amplitude, we

have 2 )
1
sz; :>P:—OQO = 5000

The same result is obtained if we use the expansion

u(t) = i Ao (B) cos(2m(fe + nfm)t)

n=-—00
along with the identity
oo
Jo(B)+2>_ Ja(8) =1
n=1

2) The maximum phase deviation is

A@max = max |[4sin(20007t)| = 4

3) The instantaneous frequency is

1 d
fi = fc‘l‘%a?b(t)

4
= fe+ o cos(20007t)2000m = f. 4 4000 cos(20007t)

Hence, the maximum frequency deviation is

A frmax = max |f; — f.| = 4000

4) The angle modulated signal can be interpreted both as a PM and an FM signal. It is a PM
signal with phase deviation constant k, = 4 and message signal m(t) = sin(20007t) and it is an
FM signal with frequency deviation constant k¢ = 4000 and message signal m(t) = cos(20007t).
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Problem 3.27
The modulated signal can be written as

ut) = 3 Ac(B) cos(2n(fe + nfu)t)

n=—oo

The power in the frequency component f = f. + kf,, is P = %%Jﬁ(ﬂ). Hence, the power in the

carrier is Pearrier = ATEJ(? (6) and in order to be zero the modulation index 3 should be one of the
roots of Jy(x). The smallest root of Jy(z) is found from tables to be equal 2.404. Thus,

Bmin = 2.404

Problem 3.28
1) If the output of the narrowband FM modulator is,

u(t) = Acos(27 fot + ¢(t))
then the output of the upper frequency multiplier (xnp) is
u1(t) = Acos(2mny fot + ni1p(t))

After mixing with the output of the second frequency multiplier us(t) = A cos(2mnsg fot) we obtain
the signal

y(t) = A?cos(2mny fot +ni¢(t)) cos(2mng fot)
2
= % (cos(2m(n1 + n2) fo +n1¢(t)) + cos(2m(n1 — n2) fo + n1é(t)))

The bandwidth of the signal is W = 15 KHz, so the maximum frequency deviation is Af = ;W =
0.1 x 15 = 1.5 KHz. In order to achieve a frequency deviation of f = 75 KHz at the output of the
wideband modulator, the frequency multiplier n; should be equal to

f

“aF 15 W

ny
Using an up-converter the frequency modulated signal is given by
A2
y(t) = - cos(2m(ny + n2) fo + n1o(t))
Since the carrier frequency f. = (n1 + n2)fo is 104 MHz, ng should be such that

(n1 4+ n2)100 = 104 x 10° = ny + ny = 1040 or ny = 990

2) The maximum allowable drift (d;) of the 100 kHz oscillator should be such that

2
=2 = = —— =.0019 H
(m —i—ng)df df 1040 0019 Hz

Problem 3.29
The modulated PM signal is given by

u(t) = Accos(2mfot + kym(t)) = ARe [eﬂ“fcteﬂ%m@)
— ARe [ej%fctejm(t)}
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The signal e/™® is periodic with period T}, = f% and Fourier series expansion
1 Tm . .
- 7/ e]m(t)e—]anfmtdt
Tm 0

1 1 (Tm
- / > eimlmt gy L L / ¢~ =32 fmt gy
T Jo T TTm

Tm

— D A - S o O
Tnj2mnfm 0 Tmj2mnfm TTm
= w9 T E ysin() n=2041
Hence,
jm(t) - 2 1)ed2mlfmt
Jm(t) _ R B m
© ZZ r@ ) e
=—00
and
0 2 i
t) = A J2m fet gm(t) | — A §2m fet in(1)ei2mlfmt
u(t) <Re [e e } <Re |e l:z_:oo @) sin(1)e
| 2sin(1)
= A —_ 2 Lfm)t
CZZZ;OO T2+ 1) cos(2m(fe + Ufm)t + ¢1)

where ¢; = 0 for [ > 0 and ¢; = 7 for negative values of [.

Problem 3.30
1) The instantaneous frequency is given by

1 d 1
() = fo+ ——o(t) = fo+ —100m(t
Filt) = fot 5 g d(t) = fo 5 100m()
A plot of f;(t) is given in the next figure
fit)
..... fc + %
500
cofp — 200
0 t
2) The peak frequency deviation is given by
100 250
Afmax = kf maXHm(t)H = §5 = 7
Problem 3.31
1) The modulation index is
5= krmax(/m(t)]]  Afmax 20 X 103 .

fm fm 104
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The modulated signal u(t) has the form

0t) = S Ada(B)cos(@n(fu 4 nfu)t + 6n)

n—=—oo

= i 100.J,,(2) cos(27(10% 4+ n10*)t + ¢y,)

n=—oo
The power of the unmodulated carrier signal is P = % = 5000. The power in the frequency
component f = f.+ k10% is
100272%(2)
Pletbfn = =5

The next table shows the values of Ji(2), the frequency f. + kfi,, the amplitude 100.J;(2) and the
power Py s, for various values of k.

Index k || Ji(2) | Frequency Hz | Amplitude 100J(2) | Power Py, ykf,,
0 2239 | 108 22.39 250.63
1 5767 | 108 4+ 104 57.67 1663.1
2 3528 | 108 + 2 x 10% 35.28 622.46
3 1289 | 10% + 3 x 10% 12.89 83.13
4 .0340 | 108 +4 x 10* 3.40 5.7785

As it is observed from the table the signal components that have a power level greater than
500 (= 10% of the power of the unmodulated signal) are those with frequencies 10% + 10* and
10% + 2 x 10%. Since J2(3) = J2,,(B) it is conceivable that the signal components with frequency
108 —10* and 10% —2 x 10* will satisfy the condition of minimum power level. Hence, there are four
signal components that have a power of at least 10% of the power of the unmodulated signal. The
components with frequencies 108 4+ 10%, 108 — 10* have an amplitude equal to 57.67, whereas the
signal components with frequencies 108 + 2 x 104, 10 — 2 x 10* have an amplitude equal to 35.28.

2) Using Carson’s rule, the approximate bandwidth of the FM signal is

Be=2(8+1)fm =22+ 1)10* = 6 x 10? Hz

Problem 3.32

1)
By = kpymax(m(t]]=15x2=3
_ kymax[|m(t)]] 3000 x2
B = fim © 1000

2) Using Carson’s rule we obtain

Bpr = 2(Bp41)fm = 8 x 1000 = 8000
Bem = 2(87 +1)fin = 14 x 1000 = 14000

3) The PM modulated signal can be written as

u(t) = i AJy(By) cos(2m(10° + n10%)t)

n=—oo
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The next figure shows the amplitude of the spectrum for positive frequencies and for these compo-
nents whose frequencies lie in the interval [106 — 4 x 103,105 + 4 x 103]. Note that Jy(3) = —.2601,
J1(3) = 0.3391, J2(3) = 0.4861, J3(3) = 0.3091 and J4(3) = 0.1320.

In the case of the FM modulated signal
u(t) = Acos(2mfct + Bfsin(20007t))

— i AJy,(6) cos(2m(10° + n10%)t + ¢y,)

n=—oo

The next figure shows the amplitude of the spectrum for positive frequencies and for these com-
ponents whose frequencies lie in the interval [106 — 7 x 103,10% — 7 x 103]. The values of J,,(6) for

n=0,...,7 are given in the following table.
n 0 1 2 3 4 5 6 7
Jn(6) || 1506 | -.2767 | -.2429 | .1148 | .3578 | .3621 | .2458 | .1296

4) If the amplitude of m(t) is decreased by a factor of two, then m(t) = cos(27103t) and

Bp = kpmax[|m(t)|]] =15
~ kymax[lm(?)]] 3000
br = fm = 1000 °

The bandwidth is determined using Carson’s rule as

Bem = 2(Bp+ 1)fm =5 x 1000 = 5000
Brm = 2(Bf +1)fm = 8 x 1000 = 8000

The amplitude spectrum of the PM and FM modulated signals is plotted in the next figure for
positive frequencies. Only those frequency components lying in the previous derived bandwidth are
plotted. Note that Jy(1.5) = .5118, J;(1.5) = .5579 and J(1.5) = .2321.
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5) If the frequency of m(t) is increased by a factor of two, then m(t) = 2 cos(272 x 103¢) and

Bp = kymax|m(t)|]]=15x2=3
5, — krmax|/m(t)]] 3000 x 2
F= fim © 2000

The bandwidth is determined using Carson’s rule as

Beni = 2(Bp 4 1)fm = 8 x 2000 = 16000
Bem = 2(85 +1)fm = 8 x 2000 = 16000

The amplitude spectrum of the PM and FM modulated signals is plotted in the next figure for
positive frequencies. Only those frequency components lying in the previous derived bandwidth
are plotted. Note that doubling the frequency has no effect on the number of harmonics in the
bandwidth of the PM signal, whereas it decreases the number of harmonics in the bandwidth of

the FM signal from 14 to 8.
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Problem 3.33
1) The PM modulated signal is

u(t) = 100cos(2mf.t + g cos(271000¢))

= Z 100, ( cos(27r(108+n103))

n=—oo

The next table tabulates J,(3) for =5 and n=0,...,4.

n 0 1 2 3 4
Jn(B) || 4720 | .5668 | .2497 | .0690 | .0140

The total power of the modulated signal is Pt = ﬂ = 5000. To find the effective bandwidth
of the signal we calculate the index k such that

Fo100% 2
> 2= 5) = 0.99 x 5000 = ZJ 5) > 0.99

n=—~k n=—~k

By trial end error we find that the smallest index k is 2. Hence the effective bandwidth is
Begr = 4 x 10% = 4000

In the the next figure we sketch the magnitude spectrum for the positive frequencies.

_>‘ 103‘<_
--------- (3)

N T

108 f Hz

2) Using Carson’s rule, the approximate bandwidth of the PM signal is

Bpy = 2(8p + 1) fim = Q(g +1)1000 = 5141.6
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As it is observed, Carson’s rule overestimates the effective bandwidth allowing in this way some
margin for the missing harmonics.

Problem 3.34
1) Assuming that u(t) is an FM signal it can be written as

u(t) = IOOCOS(ZﬂfCt+27TI<:f/ o cos(27 f,7)dT)

k
= 100 cos(2m ft + fLa sin(27 fint))
kg

Thus, the modulation index is 8y = ij = 4 and the bandwidth of the transmitted signal

2) If we double the frequency, then
u(t) = 100 cos(2m fot + 4sin(272 fint))
Using the same argument as before we find that 3y = 4 and
Brm = 2(8f +1)2f = 20 KHz

3) If the signal u(t) is PM modulated, then
Bp = Apmax = max[4sin(2r fi,t)] = 4
The bandwidth of the modulated signal is
By = 2(8, + 1) fr = 10 KHz

4) If fp, is doubled, then 3, = A¢max remains unchanged whereas
Bpy = Q(ﬁp + 1)2fm = 20 KHz

Problem 3.35
1) If the signal m(t) = mi(t) + ma(t) DSB modulates the carrier A.cos(27fct) the result is the
signal

u(t) = Acm(t)cos(2mfet)
= Ac(mi(t) +ma(t)) cos(2m fet)
= Acmq(t) cos(2m fet) + Acma(t) cos(2m fet)
= wu(t) + ua(t)

where u1(t) and us(t) are the DSB modulated signals corresponding to the message signals m; ()
and mg(t). Hence, AM modulation satisfies the superposition principle.

2) If m(t) frequency modulates a carrier A.cos(27 f.t) the result is
u(t) = Agcos(2mfut + 2mk; / (ma (7) + ma(7))dr)
# Accos(2m fot + 2mky / mq(7)dr)

+Accos(2m fot + 2mky / ma(T)dT)

= ul(t) -+ Uz(t)
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where the inequality follows from the nonlinearity of the cosine function. Hence, angle modulation

is not a linear modulation method.

Problem 3.36

The transfer function of the FM discriminator is

R
H(s) = i 1~ o J%S 1
R+Ls+g s°+ T8+ 10
Thus,
2
47‘(‘2 % f2
[H(f)] = ( )

(% — 47r2f2)2 + 4m2($)2f2

As it is observed |H(f)|? < 1 with equality if

o 1
N 27T\/LiC

Since this filter is to be used as a slope detector, we require that the frequency content of the signal,
which is [80 — 6,80 + 6] MHz, to fall inside the region over which |H(f)| is almost linear. Such
a region can be considered the interval [f19, foo], where fig is the frequency such that |H(f10)| =
10% max[|H(f)|] and foo is the frequency such that |H(f10)| = 90% max[|H(f)|].

With max[|H(f)| =1, fio = 74 x 10° and fgo = 86 x 10°, we obtain the system of equations

50 x 10° L1
47T2fl20 + TQ?Tflo[l — 0_12]2 a7 =0
50 x 103 .
am® f3o + Tzﬁfgo[l -0.9%2 — 76 = 0

Solving this system, we obtain

L=1498 mH C =0.018013 pF

Problem 3.37

The case of ¢(t) = [fcos(2mft) has been treated in the text (see Section 3.3.2). the modulated

signal is

u(t)

_ i Acdn(B) cos(2m(fe +nfm))

n=—0oo

= i 100.J,,(5) cos(2m(10% + n10))

n=—oo

The following table shows the values of J,(5) for n =0,...,5.

0 1 2 3 4 5)

Jn(5)

- 178 | -.328 | .047 | .365 | .391 | .261

In the next figure we plot the magnitude and the phase spectrum for frequencies in the range
[950, 1050] Hz. Note that J_,,(5) = J,(8) if n is even and J_,(8) = —J,(8) if n is odd.
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JIRRNIn

950 1000 1050 f Hz

950 1000 1050 f Hz

The Fourier Series expansion of e/#sn(27fmt) ig

5
n = fm Am jBsin(2m fint) ;527 fmt gy
4fm

1 . « . s
— 27/ e]ﬂCObu—]nue‘deu
T Jo
= 5 Ja(p)

Hence,

0
Z ¢, eI fet gi2mn fmt

[ 3 ej27r(fc+nfm)t+"2”]
)

The magnitude and the phase spectra of u(t) for 5 = 5 and frequencies in the interval [950, 1000]
Hz are shown in the next figure. Note that the phase spectrum has been plotted modulo 27 in the
interval (—m, 7.

A.Re
= A.Re

U(f)| g0 )

P T NEaD T T

950 1000 1050 f Hz
LU(f)
Tr s e e e .?.. ’ ?
3 e i i i !

950 © 1000 " 1050 f Hz
s U . 6 .

Problem 3.38
The frequency deviation is given by

fa(t) = fi(t) — fo = kpm(t)
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whereas the phase deviation is obtained from

t

dq(t) = 27rk:f/ m(T)dT

—0o0

In the next figure we plot the frequency and the phase deviation when m(t) is as in Fig. P-3.38
with ky = 25.

fa(t) ba(t)
50 ........... 507'(':
25 ..... 257-[-5 ........ E§A
e LBt 3 AN
=50 ...........

Problem 3.39
Using Carson’s rule we obtain

20020 k= 10
+1)W ={ 20200 ks =100
22000 k; = 1000

ky max[|m(t)|]

=28+ )W = 2(-L20

Problem 3.40

The modulation index is
krmax[lm(t)[] 10 x 10

fm -8
The output of the FM modulator can be written as

= — 125

t
u(t) = 10cos(27r2000t+27rkf/ 10 cos(2787)dr)

—0o0

= i 10.J,,(12.5) cos(27(2000 + n8)t + ¢n)

n=—oo

At the output of the BPF only the signal components with frequencies in the interval [2000 —
32,2000 + 32] will be present. These components are the terms of u(t) for which n = —4,...,4.
The power of the output signal is then

102 102

—75(12.5) +2Z ——J2(12.5) = 50 x 0.2630 = 13.15

Since the total transmitted power is Pt = % = 50, the power at the output of the bandpass filter
is only 26.30% of the transmitted power.

Problem 3.41
1) The instantaneous frequency is

fi(t) = fe+kpma(t)

The maximum of f;() is

max[fi(t)] = max[f. + kymi(t)] = 10° + 5 x 10° = 1.5 MHz
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2) The phase of the PM modulated signal is ¢(t) = k,m1(t) and the instantaneous frequency

fZ(t) = fe+

The maximum of f;(t) is achieved for ¢ in [0, 1] where £my(t) = 1. Hence, max[f;(t)] = 106 + 2.

ld
21 dt

(1)

ky d
= fc + %%ml

(t)

3) The maximum value of ma(t) = sinc(2 x 10%¢) is 1 and it is achieved for ¢ = 0. Hence,

max[fi(t)] = max[f. + kyma(t)] = 10° + 10° = 1.001 MHz

Since, F[sinc(2 x 10%t)]

using Carson’s rule, we obtain

1
2><104H(2><J;04
B = oy max(im@®)l]

w

+1)W = 22 KHz

) the bandwidth of the message signal is W = 10*. Thus,

Problem 3.42

1) The next figure illustrates the spectrum of the SSB signal assuming that USSB is employed and

K=3. Note, that only the spectrum for the positive frequencies has been plotted.

K=3

ARNAANERN

2) With LK = 60 the possible values of the pair (L, K) (or (K, L)) are {(1,
As it is seen the minimum value of L + K is achieved for L =6, K = 10 (or L

10

13 14

17 18

21

3) Assuming that L = 6 and K = 10 we need 16 carriers with frequencies

)7

KHz

10, K = 6).

Jr, =10 KHz fr, = 14 KHz
frs =18 KHz fr, = 22 KHz
Jrs = 26 KHz frs = 30 KHz
fr; = 34 KHz frs = 38 KHz
fro =42 KHz fry = 46 KHz
and
fi, =290 KHz fi, = 330 KHz
fi; =370 KHz fi, = 410 KHz
Ji; = 450 KHz fis = 490 KHz
Problem 3.43
Since 88 MHz < f. < 108 MHz and
\fe— fil=2fir if fir < fLO

we conclude that in order for the image frequency f. to fall outside the interval [88,108] MHZ, the

minimum frequency fir is such that
2fir = 108 — 88 = fir = 10 MHz
If fip = 10 MHz, then the range of fio is [88 + 10,108 + 10] = [98, 118] MHz.
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Chapter 4

Problem 4.1
Let us denote by 7, (b,) the event of drawing a red (black) ball with number n. Then

1. By = {ro,r4,bo}

2. By = {ro,r3, 14}

3. E5 = {ri,r2,b1,bo}

4. By = {ry,re,r4,b1,b2}

5. E5 = {ro,ra,bo} U[{re,rs,ra} N{ry,ro,b1,ba}]

= {ro,ra, b2} U{ra} = {ra,rs,bo}

Problem 4.2

Solution:

Since the seven balls equally likely to be drawn, the probability of each event Fj; is proportional to
its cardinality.

3

P(E)=2, P(E)=3, PB)=3, PE)=2, PE)=:

Problem 4.3

Solution:

Let us denote by X the event that a car is of brand X, and by R the event that a car needs repair
during its first year of purchase. Then

1)
P(R) = P(A,R)+ P(B,R)+ P(C,R)

= P(R|A)P(A)+ P(R|B)P(B) + P(R|C)P(C)

_ 520 1080 1550

~ 100100 100100 100 100

_ 15

100
2)

P(A,R) P(R|A)P(A) .05.20
P A = = = = .
AIR) = 5w P(R) 115 0T

Problem 4.4
Solution:

If two events are mutually exclusive (disjoint) then P(AU B) = P(A) U P(B) which implies that
P(ANB) = 0. If the events are independent then P(AN B) = P(A) N P(B). Combining these two
conditions we obtain that two disjoint events are independent if

P(ANB) =P(A)P(B)=0

Thus, at least on of the events should be of zero probability.
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Problem 4.5
Let us denote by nS the event that n was produced by the source and sent over the channel, and
by nC the event that n was observed at the output of the channel. Then

1)

P(10) = P(1C[1S)P(1S) + P(1C|0C)P(0C)
= 8:-.74+.2-.3=.62

where we have used the fact that P(15) = .7, P(0C) = .3, P(1C|0C) = .2 and P(1C|15)=1-.2 =
.8
2)

(1C,18)  P(1C|18)P(1S) 8-.7

P 8.
P(1S[1C) = PAC) ~ — PaC]  ~ & 2

Problem 4.6

1) X can take four different values. 0, if no head shows up, 1, if only one head shows up in the four
flips of the coin, 2, for two heads and 3 if the outcome of each flip is head.

2) X follows the binomial distribution with n = 3. Thus

k) = (2)1)’“(1—1?)3’“ for0<k<3

P(X =
0 otherwise
3)
(3
Fx(k) =Y ( o )pm(l —p)*
m=0
Hence
0 k<O
(1-p)? k=0
Py (k) = (1=p)° +3p(1—p)° k=1
(1—p)®+3p(1—p)* +3p*(1 —p) k=
(1—pBP+3p(1l—p2+3p2(1—p)+p¥=1 k=3
1 k>3
4)
(3
P(X>1)=3% ( k )pk(l - =31 -p) + (1 - p)
k=2
Problem 4.7

1) The random variables X and Y follow the binomial distribution with n = 4 and p = 1/4 and
1/2 respectively. Thus

wren= ()0 Q)3 wr-o-(3)(2)'-
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Since X and Y are independent we have

3
X =Y =9) =p(X =2)p(v =2)= 22 2 = 2
2)
pX=Y) = p(X=0pY =0)+pX=1)pY =1) +p(X =2)p(Y =2)
+p(X = 3)p(Y =3) + p(X = 4)p(Y = 4)
3 342 3122 3.4 1 886
= 919 T oy T g T oig Taie T 4006
3)
p(X>Y) = pY=0)[p(X =1)+p(X =2) +p(X =3) +p(X =4)] +
p(Y =1)[p(X =2)+p(X =3) +p(X =4)] +
p(Y =2)[p(X =3) +p(X =4)] +
p(Y =3) [p(X = 4)]
535
~ 4096

4) In general p(X +Y < 5) = Y0 3L p(X =1 —m)p(Y = m). However it is easier to find
p(X +Y <5) through p(X +Y <5)=1—-p(X +Y > 5) because fewer terms are involved in the
calculation of the probability p(X +Y > 5). Note also that p(X +Y > 5| X =0) =p(X +Y >
51X =1) = 0.

pP(X+Y >5) = p(X =2)p(Y =4) +p(X =3)[p(Y =3) +p(Y =4)] +
p(X =4)[p(Y =2)+p(Y =3) +p(Y =4)]

125

4096

Hence, p(X +Y <5)=1—-p(X +V >5)=1— 12

Problem 4.8
1) Since limg_,o Fix(z) = 1 and Fx(z) =1 for all z > 1 we obtain K = 1.

2) The random variable is of the mixed-type since there is a discontinuity at = 1. lim¢_o Fix (1 —
€) = 1/2 whereas lim._,g Fix(1+¢) =1

3)



1 1 1 1
(2< <1)=Fx(17) X(2)244
5)
P(X>2)=1-P(X<2)=1-Fx(2)=1-1=0
Problem 4.9
1)
r<—-1 = Fx(x)=0
z r 1 1
-1<z<0 = FX(x):/ (v +1)dv = (02 +v) :§x2+x+§
-1 1
0 x 1
0<z<1 = Fx(x)=[ (v+1)dv+ (—v+1)dv:—§x2+x+§
-1
1<z = FX(x):l
2)
1 7 1
X>)=1-Fy(z)=1—— ==
3)

1, p(X>0, X<3) Fx(3)-Fx(0) 3
p(X >0X < )= 2 X3 =2
2 p(X < 3) l-p(X>3) 7

4) We find first the CDF

1 1. pX <z, X>1)
F X>)=pX<zlX>=-)=

If z < £ then p(X < z|X > 1) = 0 since the events Ey = {X < 1} and By = {X > 1} are disjoint.
If z > 5 then p(X < z|X > 5) = Fx(z) — Fx(}) so that
1 Fx(x) — Fx 1
Fx(z|X > 2) = (@) 1(2)
Differentiating this equation with respect to x we obtain
1 fX(I)l 1
fx(alX > 5) = @ T3
2 0 xr < %
5)
o
E[X|X >1/2] = / 2fx(@|X > 1/2)dx
oo X N d

_ > _ 1y 1,0
_ 8/§ oo+ 1ds =82 + 507,
2

3
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Problem 4.10
1) The random variable X is Gaussian with zero mean and variance o2 = 1078, Thus p(X > ) =

Q(%) and

104

4x1074
X>4x107%H = -
p(X >4x107%) Q( = )

1—Q(1) — Q(2) = 8182

“ = (i)
p(X>107% = Q== | =0@1) =.159

Q(4) =317 x 107°

p(—2x1071 < X <107%)

2)
B p(X >107% X >0) p(X>10"%) .159
X >1074X >0) = = = = .318
i | ) (X > 0) (X > 0) 5
3) y = g(z) = zu(z). Clearly fy(y) = 0 and Fy(y) = 0 for y < 0. If y > 0, then the equation
y = zu(z) has a unique solution z; = y. Hence, Fy(y) = Fx(y) and fy(y) = fx(y) for y > 0.
Fy (y) is discontinuous at y = 0 and the jump of the discontinuity equals F'x (0).

Fy(0%) — Fy(07) = Fx(0) = =

In summary the PDF fy(y) equals

fy () = fx(y)uly) + %5(.@)

The general expression for finding fy (y) can not be used because g(x) is constant for some interval
so that there is an uncountable number of solutions for x in this interval.

9
ElY] = /O:Oyfy(y)dy
= [y |rcwut) + 550 dy
A T
T Vb YT

5) y = g(x) = |z|. For a given y > 0 there are two solutions to the equation y = g(z) = |z|, that is
x12 = +y. Hence for y > 0

fx(x1) Ix(2)

fry) = + =fx() + fx(—y
sen(a)] * mnes) :
2 _2
= (& 202
V2mo?
For y < 0 there are no solutions to the equation y = |z| and fy(y) = 0.
20
E[Y] = / iy = 20
¥l V 27TO‘2 Y V= V2
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Problem 4.11
1) y = g(z) = ax®. Assume without loss of generality that @ > 0. Then, if y < 0 the equation
y = az? has no real solutions and fy (y) = 0. If y > 0 there are two solutions to the system, namely

x12 = v/y/a. Hence,

fx (1) n fx(z2)
19" (z1)] 19/ (22)]
fx(%)+fx(—M)
2a+/y/a 2a\/y/a

1 y

= 76_ 2a02

JayV2no?

Iy (y)

2) The equation y = g(x) has no solutions if y < —b. Thus Fy (y) and fy (y) are zero for y < —b. If
—b < y < b, then for a fixed y, g(x) < y if z < y; hence Fy(y) = Fx(y). If y > b then g(z) <b <y
for every x; hence Fy (y) = 1. At the points y = +b, Fy (y) is discontinuous and the discontinuities
equal to

Fy(—b+) — Fy(—b_) = Fx(—b)

and
Fy(b") = Fy(b™) =1 — Fx(b)

The PDF of y = g(x) is

fr(y) = Fx(=0)é(y+b)+ (1 —Fx(b)d(y —b) + fx(y)u—1(y +b) —u_1(y — b)]

= Q) 6ty 0)+ 8y — 1) + e sy +0) — uea(y — )

3) In the case of the hard limiter

Thus Fy (y) is a staircase function and

fy(y) = Fx(0)d(y — b) + (1 = Fx(0))d(y — a)

4) The random variable y = g(z) takes the values y,, = x,, with probability
p(Y = yn) = p(an <X<L anJrl) = FX(anJrl) - FX(an)

Thus, Fy(y) is a staircase function with Fy(y) = 0 if y < x; and Fy(y) =1 if y > xn. The PDF
is a sequence of impulse functions, that is

M=

fry) = ) [Fx(aiy1) — Fx(ai)] 6(y — i)

SLORICS

1=

~
—_

6(y — i)

—
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Problem 4.12
The equation 2 = tan ¢ has a unique solution in [-7, 7], that is

¢1 = arctanx

Furthermore

i (sing\' 1 sin® ¢ 2
x(gb)_(cosqb) _COS2¢_1+COSZ¢_1+$
Thus,

()] m(1+a?)
We observe that fx(z) is the Cauchy density. Since fx(z) is even we immediately get E[X] = 0.
However, the variance is

ok = BIX? - (B[X))?
_ 717/_0; J_;dx—oo
Problem 4.13
1)
ElY] = /Ooyfy(y)dy> :Oyfy(y)dy

Thus p(Y > a) < E[Y]/a.

2) Clearly p(|X — E[X]| > €¢) = p((X — E[X])* > €%). Thus using the results of the previous
question we obtain
E[(X - E[X]))?] _ o

P(X = BIX)| > ) = p((X — BIX))? > &) < S 2ml =

Problem 4.14
The characteristic function of the binomial distribution is

vx(v) = i:ej”k ( . )p’“(l —p)" "
k=0

= > ( Z ) (pe’" ) (1 = p)" ™ = (pe’* + (1 - p))"

k=0
Thus
EIX _ (U_li Jv 1— n _ = Ju 1 — n—1_. jv
[X] = myx =-—("+(1-p)) = —n(pe’’ + (1 —p))"" pje
jd’U v=0 v=0
= nlp+1-p)" 'p=np
21 _ 2 _ &? Ju n
BIXY = m = ()2 (e + (1~ p)
v v=0

= (1) [ne + (1 - p) e

v=0

= [n(n = D)@e” + (1= )" 2P2e¥" + nlpel” + (1 - p))" ' pe’’]

v=0
n(n—1)(p+1-p)p* +n(p+1-p)p
= n(n—1)p* +np
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Hence the variance of the binomial distribution is

0® = E[X?] — (E[X])* = n(n — 1)p* + np — n’p* = np(1 — p)

Problem 4.15
The characteristic function of the Poisson distribution is

Ak oo (ejv—l)\)k
_ vk -k _
¥x (v) —];)ej e _gik!

But >72, ‘}6—’? = ¢ 50 that 1hx (v) = "), Hence

_ o _td Loy |
E[X] = my —jdv¢x(v) T - jAe v:O—)\
2
2 _ @ ) MY v
BIX? = m{ = (1) gpux()] = (g AN

=+ A

_ {)\QGA(ej“_l)ejv + )\6/\(8'7U_1)6j0:|
v=0

Hence the variance of the Poisson distribution is

o? = E[X?] = (EIX])> = A2+ A -\ =)

Problem 4.16

For n odd, 2™ is odd and since the zero-mean Gaussian PDF is even their product is odd. Since
the integral of an odd function over the interval [—o0, 00| is zero, we obtain E[X"] = 0 for n even.
Let I, = [ a™exp(—2?/20%)dz with n even. Then,

d—In = / {nx”_ e 202 — —2x”+ e 22| dr=20
T —o o
d? oo _s2 241 .2 1 _a?
@In = /_OO [n(n— Da™ 2e 207 — ng—; z'e 207 + ;m””e 207 | dx
2n+1 1
= n(n — 1)In_2 — TIn + ﬁ]—n—’—Q =0

Thus,
Inyo = 0*(2n+ 1)1, — o*n(n — 1)1, o

with initial conditions Iy = V2702, Iy = 0>v/2mwo2. We prove now that
I,=1x3x5x %X (n—1)c"V2ro?

The proof is by induction on n. For n = 2 it is certainly true since Iy = 02v/2mo2. We assume that
the relation holds for n and we will show that it is true for I,,49. Using the previous recursion we
have

Liyz = 1x3x5x % (n=1)0""(2n +1)V2mo?

—1x3x5x--x(n—-3)(n—1ne" 202102
= 1x3x5x---x(n—1)(n+1)c""?V2r02

Clearly E[X"] = \/2;7],1 and

EX"=1x3x5x---x(n—1)o"
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Problem 4.17
1) fx,y(z,y) is a PDF so that its integral over the support region of z, y should be one.

1 r1 1 r1
|| txv@ydady = & [ [ @+ y)dody
0 Jo 0 Jo
1 r1 1 r1
= K[/ / xdxdy—i—/ / ydxdy}
0 Jo 0 JoO
1

= K l;:cQ y\é+%y2 :c|(1)1
= K
Thus K = 1.
2)
p(X+Y >1) = P(X+Y <1)

11—z
= 1—// (z + y)dzdy
11—z 1-z
= 1—/$/ dydx—/dx/ ydy
0 0 0 0
1 11
—/ x(l—x)dac—/ —(1 —x)%dzx
0 0 2

1
2
3

3) By exploiting the symmetry of fxy and the fact that it has to integrate to 1, one immediately
sees that the answer to this question is 1/2. The “mechanical” solution is:

11
p(X>Y) = //(x—i—y)da:dy
0 Jy
1,1 1,1
= //xd:ndy+/ / ydxdy
0 Jy 0 Jy
11 1 1 1
= /73;2 dy+/ yx
02 |y 0

dy
1 1 9 1
5(1—y )dy+/0 y(1 —y)dy

)

Il
M‘Hc\

4)
PX>SYIX+2Y >1)=p(X >Y,X +2Y > 1)/p(X +2Y > 1)

The region over which we integrate in order to find p(X > Y, X 4+ 2Y > 1) is marked with an A in
the following figure.

Yy (1,1)

1/3  z+2y=1"
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Thus

p(X>Y, X+2Y >1) = // (x + y)dzdy

2

= /1<15:132—1x—1>dx
1 8 4 8
49

108

11
p(X +2Y >1) / :C-l—yda:dy
0

— /1[x(x—1_x)+;(x2—(1;$)2) dx

Hence, p(X > Y|X +2Y > 1) = (49/108)/(7/8) = 14/27

5) When X =Y the volume under integration has measure zero and thus

P(X=Y)=0

6) Conditioned on the fact that X =Y, the new p.d.f of X is

fxy(@,z)
fol [xy(z,x)d

In words, we re-normalize fx y (z,y) so that it integrates to 1 on the region characterized by X =Y.
The result depends only on . Then p(X > 3| X =Y) = f11/2 Ix|x=y(z)dr = 3/4.

fxix=v ()

7)

1
fx(@) = /0<z+y>dy_x+/ vy =+ 5
1
fy(y) = /()(m+y)d$:y+/0 xdr =y + %

8) Fy(z|X +2Y > 1) = p(X <2, X +2V > 1)/p(X +2Y > 1)

p(X <z, X+2Y >1) = // (v + y)dvdy

3
_/0[8 +4v+ ]dv

1 3 3
= P gt

Hence,
3.2 6 3
322+8x+3 3 6 3
X422y >1)=-3__"8""T8 _“,2, 2, 4=
x(@lX + s e s R e S
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1
EX|X+2Y >1] = / rfx(z|X +2Y > 1)dx
0

Problem 4.18

1)
Fy(y) =p(Y <y)=p(X1 <yUXy <yU---UX, <y)

Since the previous events are not necessarily disjoint, it is easier to work with the function 1 —
[Fy(y)] =1 —p(Y <y) in order to take advantage of the independence of X;’s. Clearly

-pY<y) = pY >y)=pX1>yNnXo>yn---NX, >y)
(1= Fx,(¥))(1 = Fx,(y)) - (1 = Fx, (v))

Differentiating the previous with respect to y we obtain

n n n

K@) =i [0 = Fx,() + fo() [T = Fx, @) + -+ + fx. () [[(1 = Fx, ()
i#1 i#2 i#n
2)
Fz(z) = P(Z<z2)=p(X1 <z, Xo<z-,X,<2)

= p(Xi <2)p(X2<2)---p(X, <2)

Differentiating the previous with respect to z we obtain

fz(2) = fx, (2 HFX )+ fxo(2) [ Fxo(2) + - + fx, (2) [ ] Fx.(2)
i1 2 in

Problem 4.19

0 X 12 1 o0 2 _i
E[X} = r—e T202dx = ) rée 202dx
0 (o} g= Jo
However for the Gaussian random variable of zero mean and variance o2

22e 2a2dx—a2

vV 271'0'2

Since the quantity under integratlon is even, we obtain that

2

1
22 202d:c—70
2

vV 271'0'2
Thus,

1 1
E[X]= §V27T02502 = U\/Z

In order to find VAR(X) we first calculate F[X?].

T

Y o0 _ a2
E[X? = 02/0 x’e 202d1::—/0 xdfe 202 ]

_z_
= —[[,‘26 202

o) 22
+/ 2xe 202dx
0

o0 12
= 0+ 202/ %ei 2.2 dr = 202
0o O
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Thus,

Problem 4.20

Let Z =X +4Y. Then,

Fe) =X+ <2 = [ [ peytay)dedy

Differentiating with respect to z we obtain

1220 = [ [ peteaydsdy
= /_o; fxy(z— y,y)%(z —y)dy
= /o:o fxy(z =y, y)dy
= [ G-ty

where the last line follows from the independence of X and Y. Thus fz(z) is the convolution of
fx(z) and fy(y). With fx(z) = ae™*u(x) and fy(y) = e P?u(x) we obtain

fz(z) = /z ae_o‘”ﬁe_ﬂ(z_”)dv

0
If @ = 3 then
fz(z) = /0 a?e”dy = aze " u_1(z)

If o # (8 then

af

fz(2) = afe Pz /OZ e(B=v gy = 7 a [e_az — 6_62} u_1(z)

Problem 4.21

1) fxv(z,y) is a PDF, hence its integral over the supporting region of z, and y is 1.

o0 o0 o0 o0
/ / Ixy(z,y)dzdy / / Ke ™ Ydady
0 Y 0 Y

= K/ e_y/ e *dxdy
0 y

= K/ 6_2ydy _ K(—f)e_Qy — K=
0 2 0 2
Thus K should be equal to 2.
2)
x x
fx(x) = / 2e " Ydy =2 F(—eY)| =2 (1 —€e")
0
o OOO
fY(y) = / Qeixiydy = 2@7y(_€*$) — 2672y
Y Yy
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fx@)fy(y) = 2751 —e®)2e % =2eY2e7Y(1 — e ®)
# 27V = fxy(z,y)

Thus X and Y are not independent.

4) If z < y then fxy(z|ly) = 0. If x >y, then with u = x —y > 0 we obtain

fu(u) = fxyy(zly) = fo;((z’)y) = 2;;27 ety _ g

o0

o0
EX|Y =y] = / e " TVdy = ey/ xe “dx
y y

+ / e“dm]
y y

= Hye VeV =y+1

= ¢Y l—xem

6) In this part of the problem we will use extensively the following definite integral

o0 1
/ ' leT My = — (v —1)!
0 [l

E[XY] = / / xy2e " yd:cdy—/ 2ye y/ Tdxdy
0 Yy Y
= / 2ue Y(ye Y +e y)dy—2/ y’e 23’dy+2/ ye Wy
0 0
1 1
= 25242510 =1
E[X] = 2 ze ¥(1— x—2/ xe wd:c—Q/ ze 2 dx
0
1 3
= 992 ="
22 2
E[Y] = 2/ e wgy—ot 1
E[X?] = 2/ 2271 — e %)dx :2/ :L‘Qe_xda:—Q/ e dx
0 0
~ o gla T
23 2
E[Y?] = 2/Ooy2e2ydy—212l—1
0 2372
Hence,
1
COV(X,Y) = E[XY] - E[X]E[Y] = 1 — g 2= %
and

COV(X,Y) 1
(BE[X?] — (BE[X])?)VA(E[Y?] — (E[Y)2)Y? V5

pPXY =
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Problem 4.22

1 /7 1
E[X] = —/ cosfdf = —sinf|j =0
7 Jo 77
1 /7 1 2
ElY] = ;/0 sin@d@z;(—cos@ﬂg:;
E[XY] = / cos 6 sin9ld0
0 m

1 7 . 1 2
= —/ Sln29d0:—/ sinzdx =0
27 Jo 41 Jo
COV(X,Y) = E[XY|-EX]E]Y]=0

Thus the random variables X and Y are uncorrelated. However they are not independent since
X2 +Y?% = 1. To see this consider the probability p(|X| < 1/2,Y > 1/2). Clearly p(|X| <
1/2)p(Y > 1/2) is different than zero whereas p(|X| < 1/2,Y > 1/2) = 0. This is because

|X| < 1/2 implies that 7/3 < 0 < 57/3 and for these values of , Y = sinf > 1/3/2 > 1/2.

Problem 4.23

1) Clearly X > r, Y > rimplies that X2 > 72, Y2 > r2 so that X2+Y? > 2r2 or VX2 + Y2 > /2r.
Thus the event E1(r) = {X >, Y > r} is a subset of the event Fa(r) = {V X2+ Y2 > /2r|X,Y >
0} and p(E1(r)) < p(Ea(r)).

2) Since X and Y are independent

p(Er(r)) =p(X > 1Y >71)=p(X >r)p(Y >r) = Q*(r)

3) Using the rectangular to polar transformation V = v X? + Y2, © = arctan % it is proved (see

text Eq. 4.1.22) that

v _ 1/2
26 202

fV,@(U7 9) =

2mo

Hence, with 02 = 1 we obtain

0o z 2
p(VX2+Y2>V2r|X,Y >0) = /2 /02 e~ T dvdd
1 oo

27
U2 ]_ U2 o0
= - ve 2dv=-(—e 2
4 J/2r 4( )\/ir
1
= 16_72
Combining the results of part 1), 2) and 3) we obtain
1 1 _2
Q*(r) < Ze_TQ or Q(r) < 56_7

Problem 4.24
The following is a program written in Fortran to compute the @ function

REAL*8 x,t,a,q,pi,p,bl,b2,b3,b4,b5
PARAMETER (p=.2316419d+00, b1=.31981530d+00,
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+ b2=-.356563782d+4-00, b3=1.781477937d+-00,
+ b4=-1.821255978d+00, b5=1.330274429d+-00)

C-
pi=4.*atan(1.)
C-INPUT
PRINT*, ’Enter -x-’
READ*, «x
C-

t=1./(1.+p*x)

a=bl*t 4+ b2*t**2. + b3*t**3. + ba*t**4. + bh*t**5.

q=(exp(-x**2./2.) /sqrt(2.*pi))*a
C-OUTPUT
PRINT*, q
C-
STOP
END

The results of this approximation along with the actual values of Q(x) (taken from text Table 4.1)
are tabulated in the following table. As it is observed a very good approximation is achieved.

’ x H Q(x) \ Approximation H
1. [[ 1.59 x 1071 | 1.587 x 107!
1.5 | 6.68 x 1072 | 6.685 x 102
2. || 228 x 1072 | 2.276 x 1072
251 621 x1073 | 6.214 x 1073
3. 1 1.35 x1073 | 1.351 x 1073
35| 233 x107% | 2328 x 1074
4. || 3.17x107° | 3.171 x 1075
4.5 | 3.40 x 1076 | 3.404 x 1076
5 || 2.87x 1077 | 2.874 x 1077
Problem 4.25
The n-dimensional joint Gaussian distribution is
o ; —(x-m)C~!(x—m)?
X&) = eSaee)

The Jacobian of the linear transformation Y = AX! + b is 1/det(A4) and the solution to this
equation is

x =y~ b)(47)
We may substitute for x in fx(x) to obtain fy(y).

1
(2m)"/2(det(C))1/2[det(A)|

Fx(y) = exp (~[(y = b)'(A™")" —m]C!

[(y = b)/(A™)) — m]')
1

T 02 (det(0)) 2 ldet(A)] T (~fy" — ¥ — ma(a)etAT

[y — b — Am"])

1 t t t N —
T @) (det (C)Pdet (A)] (~b' =0~ maAacan

[yt _ bt _ mAt]t)
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Thus fy(y) is a n-dimensional joint Gaussian distribution with mean and variance given by

my:b—i-Amt, Cy:ACAt

Problem 4.26
1) The joint distribution of X and Y is given by

o2
fX,Y(%Z/):QWlee’(p{_;(X Y)< 0 ;)2)(;()}

The linear transformations Z7 = X +Y and W = 2X — Y are written in matrix notation as

Z 1 1 X X
()= (2 )3 ) =(7)
Thus, (see Prob. 4.25)

1 1 _ Z
fzw(z,w) = Irdot(M)1/2 exp{—2< zZ W )M 1 < W )}

M—A o2 0 At — 202 o2 _ U% Pz w0 z0w
0 o2 o 502 Pz wOz0w O"%V

From the last equality we identify 02 = 202, 02, = 502 and p,w = 1/3/10

where

2)
Fr(r) = p(R<r)=p(

oo pryr 0 0o
= /0 fxy(z,y)dzdy + / / fxy(z,y)dzdy

—00 —oo Jyr

<r)

<>

Differentiating Fr(r) with respect to r we obtain the PDF fgr(r). Note that

d a
< /b f@dz = f(a)

da
[ s = —so)
& /. xr)dx =
Thus,
oo yr 0 d 0o
Fr(r) = / — fX,Y($,y)d$dy+/ */ I[xy(z,y)dxdy
0o dr - —oo dr yr
[e'e) 0
= /0 yfxy(yr,y)dy — /_ yfxy (yr, y)dy
= [ [yl fx,y (yr,y)dy
Hence,
00 1 _yPrlay? 00 1 . 2(&)
fR(r) = /_Oo‘y’27ra2e 202 dy:2/0 y27T02€ Y502 dy
1 202 1 1

2 i
270221 +1r2)  wl+7r?
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fr(r) is the Cauchy distribution; its mean is zero and the variance oco.

Problem 4.27
The binormal joint density function is

1 1
Jxy(@y) = 27r0102mexp {_2(1—/)2)><
[@ —mi)® L= ma)?  2p(x —ma)(y — m2)] }

J% O'% g102

1 - t
= Wexp{—(z—m)C 1(z—rn)}

where z = [z y], m = [m; ms] and

1) With

(4

we obtain 03 = 4, 05 = 9 and poioy = —4. Thus p = —%.

2) The transformation Z =2X +Y, W = X — 2Y is written in matrix notation as
Z\_(2 v\ [(x\_,[X
w ) {1 =2 Yy | Y
The ditribution fz (z,w) is binormal with mean m’ = mA?, and covariance matrix C' = AC A’
Hence
o — 2 1 4 —4 2 1 _ 9 2
1 -2 -4 9 1 -2 2 56
The off-diagonal elements of C’ are equal to po oy = COV(Z,W). Thus COV(Z,W) = 2.

3) Z will be Gaussian with variance 02 = 9 and mean

my = m m2][§]:4

Problem 4.28

fxy(z,y) V2moy

fX|Y(SU‘y) = fY(y) = 9oy ﬁ _ pg{yy

(x—mx)(y—my) (y—my)?

A= % )0% | 20— oy 2= hyoxoy 20}
2

exp[—A]

where

(x —mx)(y —my)ox
= _— — 2 — 2
20— )7 (“ T ” oy
o2




Thus

1 1 ox\]*
N o g [ (s o 22

which is a Gaussian PDF with mean my + (y — my)pox /oy and variance (1 — p% ,)o%. If p=0
then fxyv(z|ly) = fx(z) which implies that Y does not provide any information about X or X,
Y are independent. If p = +1 then the variance of fxv(z|y) is zero which means that X|Y is
deterministic. This is to be expected since p = 41 implies a linear relation X = AY + b so that
knowledge of Y provides all the information about X.

Problem 4.29

1) The random variables Z, W are a linear combination of the jointly Gaussian random variables
X, Y. Thus they are jointly Gaussian with mean m’ = mA? and covariance matrix C' = AC A,
where m, C is the mean and covariance matrix of the random variables X and Y and A is the
transformation matrix. The binormal joint density function is

1
(2m)"det(O)|det(A)]

faw(z,w) = exp {—([z w] — m’)C”_l([z w] — m’)t}

If m = 0, then m’ = mA’ = 0. With
o po? cosf sinf
¢= <p02 o? A= —sinf cosé
we obtain det(A) = cos?# +sin?# = 1 and
o - cosf sinf o po? cosf) —siné
N —sinf cosé po?  o? sinf  cosf
o?(1 + psin20)  po?(cos® § — sin? )
N po?(cos? @ —sin?0)  o%(1 — psin 20)
2) Since Z and W are jointly Gaussian with zero-mean, they are independent if they are uncorre-
lated. This implies that
COS29—Sin29:O:>0:%—|—]€g, ke Z

Note also that if X and Y are independent, then p = 0 and any rotation will produce independent
random variables again.

Problem 4.30
1) fxv(z,y) is a PDF and its integral over the supporting region of # and y should be one.

/:’0 /oo fxy(z,y)dedy
N
— 7/ _2dg;/000_2dx+ / _le./ e_gdx

-k {2(;\/%)2] =K

™

Thus K =1
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2) If z < 0 then

If x > 0 then

001 :132 2 1 12 o0 2
@ = [Ty = e [Ty
0 71— 0

7T
1 a2
= —e 2

1
2 V2T

N

Thus for every z, fx(z) = \/%76717 which implies that fx(x) is a zero-mean Gaussian random

variable with variance 1. Since fx y (z,y) is symmetric to its arguments and the same is true for the

region of integration we conclude that fy (y) is a zero-mean Gaussian random variable of variance
1.

3) fx,y(z,y) has not the same form as a binormal distribution. For zy < 0, fxy(z,y) =0 but a
binormal distribution is strictly positive for every x, y.

4) The random variables X and Y are not independent for if zy < 0 then fx(z)fy(y) # 0 whereas
Ixy(x,y)=0.

5)

1 0 0 22442 1 0o 0O 22402
E[XY] = — / / XYe 2" dudy + — / / e~ " ddy
T J—oJ—0 m™Jo 0

1 0 22 0 42 1 o] 22 o) 42
= —/ Xe_Tdac/ Ye_Tdy—i——/ Xe_Tdac/ Ye 2 dy
1 1 2

= _(=DED+—=—

Thus the random variables X and Y are correlated since F[XY] # 0 and E[X]| = E[Y] = 0, so
that E[XY]| — E[X]E[Y] # 0.

6) In general fx|y(z,y) = ij:((;:),y). If y > 0, then

z <0

0
fxpy(z,y) = { \/Ee*§ >0

If y <0, then
0 x>0
= :c2
fX|Y(xay) \/%677 <0
Thus
2 <2
fX|Y($ay) = ;6 2 u(zy)

which is not a Gaussian distribution.

Problem 4.31




With the transformation v
=vX24+Y? © = arctan —
+ , arctan X

we obtain

fV7®(v7 6) =
v { (vcosﬁ—m)Q—i—stinG}
= expq —

vfx,y(vcosf,vsinf)

2mo? 202

v v2 4+ m?2 — 2mw cosf
= exp{ —
2mo? P 202

To obtain the marginal probability density function for the magnitude, we integrate over 6 so that
2 2,2
v _vi+tm muv cos 6
fr(v) = / se 27 e o2 df
0o 2mo?

_ v +m2 27 mu cos 0 cos@
= —@ —_—

where

With m = 0 we obtain

which is the Rayleigh distribution.

Problem 4.32

1) Let X; be a random variable taking the values 1, 0, with probability % and % respectively. Then,
mx, = %-1—1—%0 = %. The weak law of large numbers states that the random variable Y = =37 , X;
has mean which converges to mx; With probability one. Using Chebychev’s inequality (see Problem

4.13) we have p(|[Y —myx,| > ¢€) < Y for every € > 0. Hence, with n = 2000, Z = 20 X;, mx, = +
we obtain

2

= p(500 — 2000e < Z < 500 + 2000¢) > 1 — —-

2
p(|1Z — 500] > 2000¢) < 7Y =
€2 =

3

The variance 0% of Y = 1 3% | X; is O'X , where O'X = p(1 — p) = 15 (see Problem 4.13). Thus,

with € = 0.001 we obtain
3/16
2 x 10~

2) Using the C.L.T. the CDF of the random variable ¥ = %
random variable N (myx;, f) Hence

p(480 < Z < 520) > 1 — — .063

1 X, converges to the CDF of the

n

480
Pzp( <Y<

4

b oo

With n = 2000, my, = 1, 0 = 21=2)

480 — 500
2000p(1 — p)> ¢ <

_ 1—2@( 20

520 L0 —my, 20y,
2ot o(F)

we obtain

520 — 500
2000p(1 — p)

— | = .682
\/375)
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Problem 4.33
Consider the random variable vector

x:[wl wtwy ... W twg+-r+wp ]t
where each w; is the outcome of a Gaussian random variable distributed according to N(0,1). Since
Mx; = Elwi +wa + -+ +w;)| = Elwi] + Elws] + - -+ + Elw;] =0

we obtain
mx =0
The covariance matrix is

C = E[(x — mx)(x — mx)'] = F[xx]

The i, j element (C; ;) of this matrix is

Ci,j = E[(w1 + w2 +--'+wi)(w1 —|—WQ+"'+Wj)]
= El(wi+w2+ -+ wnin@j) (W1 + w2 + -+ Wnin(i )]
+E[(w1 + w2 + - + Winin(i,j)) (Wmin(ij)+1 T 7+ Wmax(ij))]
The expectation in the last line of the previous equation is zero. This is true since all the ran-

dom variables inside the first parenthesis are different from the random variables in the second
parenthesis, and for uncorrelated random variables of zero mean F[wyw;] when k # [. Hence,

Cij = El[(wi+w2+- 4 wninay ) (w1 + w2+ + Wnin(i,j))]
min(z,5) min(4,5) min(z,5)
= Z Z E wkwl Z E wkwk] + Z Z E wkwl
k=1 =1 k=1 k#l
min

n(i.j
:Z:)

Thus
1 1 1
1 2 2
C =
1 2 n

Problem 4.34
The random variable X (¢¢) is uniformly distributed over [—1 1]. Hence,

mx (to) = E[X(to)] = E[X] =0

As it is observed the mean mx (tp) is independent of the time instant .

Problem 4.35

mx(t) = E[A+ Bt] = E[A]+ E[B]t =0

where the last equality follows from the fact that A, B are uniformly distributed over [-1 1] so
that E[A] = E[B] = 0.

Rx(tl, tg) = E[X(tl)X(tQ)] = E[(A + Bt1>(A + Btg)]
= E[A?] + E[AB]t, + E[BAJt; + E[B*|tita
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The random variables A, B are independent so that E[AB] = E[A]E[B] = 0. Furthermore

1 1
EAQ:EB2:/ Lgp—Lpp 1
[ ] [ ] —lx de Gx ‘71 3

Thus

Problem 4.36
Since the joint density function of {X(¢;}" is a jointly Gaussian density of zero-mean the auto-
correlation matrix of the random vector process is simply its covariance matrix. The 7,7 element
of the matrix is

Rx(ti tj) = COV(X(ti)X(t))) +mx(ti)mx(t;) = COV(X (L)X (1))

= O’2 min(ti, t]‘)

Problem 4.37
Since X (t) = X with the random variable uniformly distributed over [-1 1] we obtain

Ix(t),X (t2) o X (02) (X1, T2, -y Tn) = fx x, x (T1, 72, ..., Tp)

for all t1,...,t, and n. Hence, the statistical properties of the process are time independent and
by definition we have a stationary process.

Problem 4.38

The process is not wide sense stationary for the autocorrelation function depends on the values of
t1, to and not on their difference. To see this suppose that t; = to = t. If the process was wide sense
stationary, then Rx(t,t) = Rx(0). However, Rx(t,t) = 0t and it depends on t as it is opposed to
Rx(0) which is independent of ¢.

Problem 4.39
If a process X (t) is M'*® order stationary, then for all n < M, and A

Ix ()X (t2)-X (t0) (T15 T2y Tn) = [X(414A) X (tn42) (T1, - Tp)

If we let n = 1, then

mx(0) = BIXO) = [ wfxo@dr = [ afxom@)ds =mx(®)

— 00 —00

for all ¢. Hence, my(t) is constant. With n = 2 we obtain

X)X () (®1,72) = fxt40)X (1a+0) (T1,72), VA

If we let A = —t7, then
X)X (02) (1, 72) = fx(0)X (t2-11)(T1, T2)

which means that
o o0
Ry (t1,t2) = E[X (t1)X (t2)] = / / 122X (0)X (t2—t1)(T1, T2)dT1dT2
—o0 J—o00
depends only on the difference 7 = t; — to and not on the individual values of ¢y, to. Thus the

M*™ order stationary process, has a constant mean and an autocorrelation function dependent on
T =t1 — tg only. Hence, it is a wide sense stationary process.
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Problem 4.40
1) f(7) cannot be the autocorrelation function of a random process for f(0) =0 < f(1/4fp) = 1.
Thus the maximum absolute value of f(7) is not achieved at the origin 7 = 0.

2) f(1) cannot be the autocorrelation function of a random process for f(0) = 0 whereas f(7) # 0
for 7 # 0. The maximum absolute value of f(7) is not achieved at the origin.

3) f(0) =1 whereas f(7) > f(0) for |7| > 1. Thus f(7) cannot be the autocorrelation function of
a random process.

4) f(7) is even and the maximum is achieved at the origin (7 = 0). We can write f(7) as
f(r)=12A(7) = A(r —1) = A(T+1)
Taking the Fourier transform of both sides we obtain
S(f) = 1.2sinc®(f) — sinc?(f) (e_ﬂ”f + ej2”f> = sinc?(f)(1.2 — 2cos(27f))

As we observe the power spectrum S(f) can take negative values, i.e. for f = 0. Thus f(7) can
not be the autocorrelation function of a random process.

Problem 4.41
As we have seen in Problem 4.38 the process is not stationary and thus it is not ergodic. This in
accordance to our definition of ergodicity as a property of stationary and ergodic processes.

Problem 4.42
The random variable w; takes the values {1,2,...,6} with probability %. Thus

Ex = E UO:O X2(t)dt}

= FE [/ w?e_%ugl(t)dt} =F [/ w?e_%dt]
—00 0

= Elw?)e?tdt = / =N iteat
P >

[e.e]
— % * 6_2tdt — %(—16_%)
6 0 6 2 0
91
12
Thus the process is an energy-type process. However, this process is not stationary for

mx(t) = BIX(t) = Blwile tu_1(t) = %e—tu,l(t)

is not constant.

Problem 4.43
1) We find first the probability of an even number of transitions in the interval (0, 7].

pn(n=even) = pn(0)+pn(2) +pn(4) +---

B 1 i( aT )2
1—|-oz7'l:0 14+ ar

B 1 1

- (aT)?
1—|—Oé7'1_(1j‘_;7_)2

B 1+ ar

1+ 2ar
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The probability py(n = odd) is simply 1 — py(n = even) = 175-. The random process Z(t) takes
the value of 1 (at time instant ¢) if an even number of transitions occurred given that Z(0) =1, or
if an odd number of transitions occurred given that Z(0) = 0. Thus,

mz(t) = E[Z({t)] =1-p(Z(t) =1)+0-p(Z(t) = 0)
= 1

DN |

2) To determine Ryz(t1,t2) note that Z(t + 7) = 1 if Z(t) = 1 and an even number of transitions
occurred in the interval (¢,¢+ 7], or if Z(t) = 0 and an odd number of transitions have taken place
n (t,t + 7]. Hence,

Rz(t+7,t) = E[Z{t+7)Z(t)]
= 1 pZt+7)=1,Z(t)=1)+0-p(Z(t+7)=1,Z(t) =0)
+0-p(Z(t+7)=0,Z(t) =1)+0-p(Z(t +7) =0, Z(t) = 0)
1)

= pZt+7)=12(t)=1)=p(Z(t+71)=1]Z() =1)p(Z(t) =1)
1 1+ar
51—1—2047

As it is observed Rz(t + 7,t) depends only on 7 and thus the process is stationary. The process is
not cyclostationary.

3) Since the process is stationary

Pz =Rz(0) =

Problem 4.44
1)

mx(t) = E[X(t)] = E[X cos(2m fot)] + E[Y sin(27 fot)]
E[X] cos(27 fot) + E[Y]sin(27 fot)
= 0

where the last equality follows from the fact that E[X] = E[Y] = 0.
2)

Rx(t+7,t) = E[(Xcos2mfo(t+7))+Ysin2nfo(t+7)))
(X cos(2m fot) + Y sin(27 fot))]
= E[X?%cos(27fo(t + 7)) cos(2m fot)] +
E[XY cos(2r fo(t + 7)) sin(27 fot)] +
E[Y X sin(27 fo(t + 7)) cos(27 fot)] +
Y2 sin (27 fo(t + 7)) sin(27 fot)]

&

= ’ [cos(2m fo(2t + 7)) + cos(2m foT)] +

Q

[cos(2 foT) — cos(2m fo(2t + 7))]
= o cos(2mfoT)

IR
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where we have used the fact that EF[XY] = 0. Thus the process is stationary for Rx(t + 7,t)
depends only on 7.

3) Since the process is stationary Px = Rx(0) = o.

4) If 0% # 0%, then
mx (t) = E[X]cos(2 fot) + E[Y]sin(27 fot) = 0

and

Rx(t+7,t) = E[X%cos(2rfo(t+T))cos(2mfot) +

E[Y?]sin(27 fo(t + 7)) sin(27 fot)
2

= U2X [cos(2 fo(2t + 7)) — cos(27 foT)] +
o2
2Y [cos(27 foT) — cos(27 fo(2t + T))]
2

2
= % cos(2mfo(2t + 1) +

2 2
ox t oy cos(27 for)

The process is not stationary for Rx (t + 7,t) does not depend only on 7 but on ¢ as well. However
the process is cyclostationary with period Ty = ﬁ. Note that if X or Y is not of zero mean then

the period of the cyclostationary process is Ty = % The power spectral density of X (t) is

1 1% /52 _ g2 2 2
Px = lim T/Q (UXQUY cos(27rf02t)+$ dt = oo

Problem 4.45

1)
mx() = EX(M]=FE| Y Awlt—kT)
k=—0o0
S Bl kT)
k=—0o0
= m i p(t — kT)
k=—o00
2)
Rx(t+7,t) = E[X(t+7)X(t)]
= F io: i AApp(t + 7 — ET)p(t —IT)
k=—o0l=—00

= i i E[ARAp(t +7 — KT)p(t —IT)

k=—o0c0 l=—00
= > > Ra(k—Up(t+7—kT)p(t—IT)
k=—o00l=—00
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3)

Rx(t+T+7t+T) = > Y Ralk—Dpt+T+7—kD)p(t+T —IT)
k=—o00l=—00
= Y > RaW+1-("+1D))pt+7—KT)p(t—1UT)
k'=—o0l'=—00
= Z ZRA "~ p(t+7 — ET)p(t —1I'T)
k'=—oc0cl!=—00
= Rx(t+T,t)

where we have used the change of variables ¥’ = k —1, I’ =1 — 1. Since mx(t) and Rx(t+ 7,t) are
periodic, the process is cyclostationary.

4)
_ 1 (T
Rx(r) = T/ R (t + 7 t)dt
1
= 7 Z Z Ra(k —Dp(t + 71— kT)p(t —IT)dt
0 k=—o0l=—00
1 [o.¢]
= 7 > R Z/ (t+7 1T —nT)p(t —IT)dt
n=-—00 l=—0

1 oo T-IT
- 7 Z Z/ p(' + 7 — nT)p(t')dt’

_ % f: Ra(n) / p(t' + 7 — nT)p(t')dt’

= % i Ra(n)R,(T —nT)
where Ry(1 —nT) = [0 p(t' + 7 —nT)pt')dt' = p(t) * p(—t)|t=r—nT
5)
Sx(f) = FlRx(r)] = l 3 Rao T_m]
= % f: Ra(n) L O:O R, (1 — nT)e 7™/ dr

But, R,(7') = p(7’) * p(—7') so that

/ R 6 127rf7'd I / ( e J27rf‘rd / 6 ]27rf‘rd /
= P(NHP(f)=1P(f)

where we have used the fact that for real signals P(—f) = P*( f). Substituting the relation above
to the expression for Sx(f) we obtain

'SX(f) _ |P(,1{)2 i RA(n)eijanT

n=—oo
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= WJ{)Q lRA(O) +2 i R4(n)cos(2m fnT)
n=1

where we have used the assumption R4(n) = Ra(—n) and the fact e/27/T e=327/7T — 9 cos (27 fnT)

Problem 4.46
1) The autocorrelation function of A,’s is Ra(k — 1) = E[AxA;] = 6 where Ji; is the Kronecker’s

delta. Furthermore .

P(f)=F [H(TQ)] = TSinc(Tf)e*ﬂ”f%

Hence, using the results of Problem 4.45 we obtain

Sx(f) = Tsinc*(Tf)

2) In this case E[A,] = 1 and Ra(k — ) = E[A,A]. If k =1, then R4(0) = E[A2] = . If k # L,
then Ra(k — 1) = E[A3A)] = E[A;]E[A)] = 1. The power spectral density of the process is

Sx(f) = Tsinc*(Tf) 5

E + ! i Cos(27rk:fT)]
23

3) If p(t) = H(tfg’g/z) and A,, = £1 with equal probability, then

Sx(f) = P(%C)PRA(O) = % ‘3Tsinc(3Tf)e_j27rf§ 2

= 9Tsinc*(3Tf)

For the second part the power spectral density is

1

Sx(f) = 9Tsinc?(3T'f) 3 + % i Cos(27rka)]
k=1

Problem 4.47
1) E[B,] = E[A,] + E[A,,—1] = 0. To find the autocorrelation sequence of B,,’s we write

Rp(k—1) = E[BxB)| = FE[(Ax + Ak_1)(A; + Aj_1)]
= E[AkAl] + E[AkAlfl] + E[AkflAl] + E[Ak,IAlfl]

If k =1, then Rp(0) = E[A2]+ E[A? ] =2. If k =1—1, then Rp(1) = E[A;A;_1]] = 1. Similarly,
ifk=1+1, RB(—l) = E[Ak—lAlH = 1. Thus,

2 k—-1=0
Rpk—1)=< 1 k—-1l==+1
0 otherwise

Using the results of Problem 4.45 we obtain

Sx(f) = Wjjj)Q(RB(O)+2§:R3(k)cos(27rka)>
k=1

= |P(1:f)2 (24 2cos(2mfT))
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2) Consider the sample sequence of A,,’s {---,—-1,1,1,—1,—-1,—1,1,—1,1,—1,---}. Then the cor-
responding sequence of By,’s is {---,0,2,0,—2,—2,0,0,0,0,---}. The following figure depicts the
corresponding sample function X ().

If p(t) = H(tfg/z), then |P(f)|? = T?sinc?(Tf) and the power spectral density is
Sx(f) = Tsinc*(Tf)(2 + 2 cos(2n fT))

In the next figure we plot the power spectral density for 7= 1.

3) If B, = A, + @A,,_1, then
1+a? k—1=0
Rp(k—1) =} « k—1==1

0 otherwise

The power spectral density in this case is given by

Sx(f) = Wjjj)z(l + a2 4+ 2a cos(27fT))

Problem 4.48
In general the mean of a function of two random variables, g(X,Y’), can be found as

Elg(X,Y)] = E[E[g(X,Y)[X]]

where the outer expectation is with respect to the random variable X.

1)
my (t) = E[X(t+ 0)] = E[E[X(t + 0)|0]]

where

E[X(t + ©)[6] /X(t+ 0) fx v (20)dz

_ /X(t +0)fx((@)de = mx (t +0)

where we have used the independence of X (¢) and ©. Thus

my(t) = Elmx(t+0)] = ;/OTmX(t—i-H)dH =my
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where the last equality follows from the periodicity of mx (¢ 4 ). Similarly for the autocorrelation
function

Ry(t+7,t) = E[E[X(t+7+0)X(t+0)0]
= E[Rx(t+7+0,t+0)]

1 T
= —/ Rx(t+7+6,t+0)do
T Jo
1 T
= 7/ Rx(t' + 7,t")adt
T Jo

where we have used the change of variables ' =t 4+ 6 and the periodicity of Rx (¢t + 7,t)

2)
dl
| Xr(H)P
o, PO | [, B
= FEI[Sx(f)] =Sx(f)

3) Since Sy (f) = Fl# fOT Rx(t + 7,t)dt] and Sy (f) = Sx(f) we conclude that

T—o0 T—o00

_ _Yr(HP| V()2
Sy(f) = E[hm TT]—E[E[hm TT

- E lE [ f X

Sx(f)=7F [; /OT Rx(t—I—T,t)dt]

Problem 4.49
Using Parseval’s relation we obtain

[ psxinar = [T FAE Sk (Pldr

- [m—;ﬁ®hmﬂﬂw

T
1 d?
= —@(—1)2WRX(T)’T:0
1 &2

—RWRX(T)‘Tzo
Also,

| sx(h)dr = Rx(0)
Combining the two relations we obtain

[ RSx(df 1

Wrums = T Sx(f)df = _47T2RX(0) WRX(T)’TZO

Problem 4.50

Rxvy(t1,t2) = E[X(t1)Y (t2)] = E[Y (t2) X (t1)] = Ry x (t2,t1)

If we let 7 = t1 —t2, then using the previous result and the fact that X (¢), Y (¢) are jointly stationary,
so that Rxy (t1,t2) depends only on 7, we obtain

Rxy(t1,t2) = Rxy(t1 —t2) = Ryx(to —t1) = Ry x(—7)
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Taking the Fourier transform of both sides of the previous relation we obtain

Sxy(f) = FlRxy(r)] = FlRyx(-7)]
:/ Ry x(— e]%deT

- U Ry x(v)e > dr' | = Sy (f)

Problem 4.51
1) Sx(f) = %, Rx (1) = %5(7’). The autocorrelation function and the power spectral density of
the output are given by

Ry (t) = Rx(r) xh(m) x h(~7),  Sy(f)=Sx(NHIH(f)]?
With H(f) = TI(55) we have |H(f)|? = II?(5) = TI(5) so that

f

Sy(f) = *H(@)

Taking the inverse Fourier transform of the previous we obtain the autocorrelation function of the
output

N,
Ry(7) = 237%111(:(237) = BNysinc(2BT)
2) The output random process Y (t) is a zero mean Gaussian process with variance
oy = EY?(t)] = E[Y*(t +7)] = Ry (0) = BNo
The correlation coefficient of the jointly Gaussian processes Y (¢ + 1), Y (¢) is

_COV(Y(t+7)Y(t)) EYt+7)Y()] Ry(r)
PY (t+1)Y (t) = Ty (am) TV (1) = BN, ~ "BN,

With 7 = 55, we have Ry(%) = sinc(1) = 0 so that py 4y ) = 0. Hence the joint probability

density function of Y (¢) and Y (¢t 4 7) is

1 _ Y%H»;);Yz(t)
_ 2
Ty (eny () = 57BN, 0

Since the processes are Gaussian and uncorrelated they are also independent.

Problem 4.52
The impulse response of a delay line that introduces a delay equal to A is h(t) = §(t — A). The
output autocorrelation function is

Ry (1) = Rx(7) * h(7) x h(—7)

But,
h(r) % h(—1) — /_O; S(=(t — A)S(r — (t— A))dt
_ /O:O 5(t — A)Y(r — (t — A))dt
_ /_ O; S(E)5( — )t = 5(r)
Hence,

Ry(’i‘) = Rx(T)*(S(T) = Rx(T)
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This is to be expected since a delay line does not alter the spectral characteristics of the input
process.

Problem 4.53
The converse of the theorem is not true. Consider for example the random process X(t) =
cos(27 fot) + X where X is a random variable. Clearly

mx(t) = cos(27 fot) + mx

is a function of time. However, passing this process through the LTI system with transfer function
H(%) with W < f produces the stationary random process Y (t) = X.

Problem 4.54
1) Let Y(t) = [0, X(7)h(t — 7)dT = [°_ h(7)X(t — T)dr. Then the mean my () is

my(t) = E[/_O:O W)X (t — 7)dr] = /_O:O W) E[X(t — 7)]dr
- L O:o h(r)ymx (t — 7)dr
If X (t) is cyclostationary with period T’ then
my(t +T) = /_O:o h(r)mx(t + T — 7)dr = /_O:o h(F)mx (t — 7)dr = my (£)

Thus the mean of the output process is periodic with the same period of the cyclostationary process
X (t). The output autocorrelation function is

Ry(t+7,t) = E[Y( Y(t)]
= [/ / X(@t+71—38)h(v)X(t —v)dsdv
= / / h(s)h(v)Rx(t + 7 — s,t — v)dsdv

Hence,

Ry(t+T+1,t+T) = / / h(s)h(v)Rx(t+T + 71 —s,t+T —v)dsdv
/ / (WRx(t+T+71—s,t+T —v)dsdv
= Ry(t+T,t)

where we have used the periodicity of Rx (t+7,t) for the last equality. Since both my (t), Ry (t+7,t)
are periodic with period T, the output process Y (t) is cyclostationary.
2) The crosscorrelation function is

Rxy(t+7.t) = E[X(t+71)Y(t)]

_ B {X(t—i—r) /O;X(t—s)h(s)ds}
_ /_O:O E[X(t + 7)X(t — 5)]h(s)ds = /_O:O Rx(t + 7.t — s)h(s)ds

. . . 1e . . . . . . T T
which is periodic with period T'. Integrating the previous over one period, i.e. from —5 to 5 we
obtain

Rxy(r) = /oo T/,Z Rx(t +7,t — s)dth(s)ds

/ Rx (7 + s)h(s)ds
Rx(7) % h(—T)
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Similarly we can show that B B
Ry(T) = RXy(T) * h(T)

so that by combining the two we obtain
Ry (1) = Rx (1) x h(T) x h(—7)

3) Taking the Fourier transform of the previous equation we obtain the desired relation among the
spectral densities of the input and output.

Sy(f) = Sx(HIH(S)I?

Problem 4.55

1) Y(t) = %X (t) can be considered as the output process of a differentiator which is known to be

a LTT system with impulse response h(t) = ¢§'(t). Since X (¢) is stationary, its mean is constant so
that
my (t) = mx(t) = [mx ()] =0

To prove that X (t) and & X (¢) are uncorrelated we have to prove that Ry y/(0) —mx (t)mx/(t) =0
or since my(t) = 0 it suffices to prove that Rxx/(0) = 0. But,

Rxx/(1) = Rx (1) % &'(=7) = —=Rx (1) % '(1) = — R (7)

and since Ry (7) = Rx(—7) we obtain

Rxx/(1) = =R () = Rx(~7) = —Rxx/(~7)
Thus Rxx/(7) is an odd function and its value at the origin should be equal to zero

Rxx/(0) =0

The last proves that X (t) and 2 X (t) are uncorrelated.
2) The autocorrelation function of the sum Z(t) = X (t) + 4 X (t) is

Rz(1) = Rx(7) + Rx/(7) + Rxx/(7) + Rx/x(T)
If we take the Fourier transform of both sides we obtain

Sz(f) = Sx(f) + Sx:(f) + 2Re[Sx x(f)]
But, Sxx/(f) = F[-Rx (1) xd'(7)] = Sx(f)(—j2xf) so that Re[Sxx/(f)] = 0. Thus,

Sz(f) = Sx(f) + Sx/(f)

Problem 4.56

1) The impulse response of the system is h(t) = L[§(t)] = 0'(t) + §'(t — T'). Tt is a LTT system so
that the output process is a stationary. This is true since Y (t 4+ ¢) = L[ X (t 4 ¢)] for all ¢, so if X (¢)
and X (t 4 ¢) have the same statistical properties, so do the processes Y (¢) and Y (t + ¢).

2) Sy (f) = Sx(f)H(f)]*. But, H(f) = j2xf + j2n fe 72™/T so that
Sv(f) = Sx(faa?f2|1+e 7|’

= Sx(f)ar?f2[(1 + cos(2n fT))? + sin?(2n fT)]

= Sx(f)872f3(1 + cos(2n fT))
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3) The frequencies for which |H(f )|2 = 0 will not be present at the output These frequencies are

f =0, for which f2=0and f = T + T, k € Z, for which cos(2nfT) =

Problem 4.57
1) Y(t) = X(t)x(6(t) —0(t — T)). Hence,

Sy(f) = Sx(NH(P = Sx(Ht—e 2T
= Sx(f)2(1 —cos(2rm fT))
2) Y(t) = X(t) ~ (6'(t) — 6(t)). Hence,
Sy(f) = Sx(NIHF =Sx(Hli2nf -1
= Sx(f)1+4r*f?)
3) Y(t)=X(t)x(d'(t) — 6(t — T)). Hence,

Sy(f) = Sx(NHP = Sx(f)lj2nf — e >TTP
= Sx(f)(1 +4n%f? + dnfsin(2rfT))

Problem 4.58
Using Schwartz’s inequality

EP[X(t+ 7)Y (1)) < BIX?(t + )] E[Y?(t)] = Rx(0)Ry (0)

where equality holds for independent X (¢) and Y (¢). Thus

By (0] = (BX(t+ 1Y ()7 < RLO0)R0)

The second part of the inequality follows from the fact 2ab < a® 4+ b%. Thus, with a = Ry 12 (0) and

b= R%//Z(O) we obtain
1
R (0)Ry/*(0) < 5 [Rx(0) + Ry (0)]

Problem 4.59

1)
Rxy(1) = Rx(r)*0(—7—A)=Rx(7)*d(T+ A)
= el d(r+A) = e @ltAl
Ry(r) = Rxy(m)*d(r—A)=e T2 «5(r - A)
67a|7—|
2)
) e—a\v\
ny(T) = 6_06‘7'*(—%) :—/ t_vd’U

1 0o p—aly|
Ry(r) = Rxy(r / / ¢ dsdv

S—UVT—S
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The case of Ry (7) can be simplified as follows. Note that Ry (7) = F![Sy(f)] where Sy (f) =
Sx()IH(f)|?. In our case, Sx(f) = ﬁ?ﬂf? and |H(f)|> = m2sgn?(f). Since Sx(f) does not
contain any impulses at the origin (f = 0) for which |H(f)|?> = 0, we obtain

Ry (1) = F Sy (f)] = n2e el

3) The system’s transfer function is H(f) = _11;;]23:? Hence,
2o —1—j2nf
S = S H*(f) =
xv (f) x (f)H"(f) a? +472f2 1 — g2 f
B 4o 1 n a—1 1 n 1+a 1
C 1-a?2l1—j2nf l+4+aa+j2rf a—la-—j2nf
Thus,
Rxy(r) = F 'Sxv(f)
4 -1 1
= a s u_1(—7) + a e “Tu_1(r) + * ae‘”u,l(—T)

11—« 1+«

For the output power spectral density we have Sy (f) = Sx(f)|H(f)|?> = SX(f)M = Sx(f).
Hence,

Ry(r) = F'[Sx(f)] = e "

4) The impulse response of the system is h(t) = 5=11(5%). Hence,

1 —T 1 T
R — oaltl oy = a7l o
xv(7) e rgpilgp) =e o7
1 /T+T ~alel g
= — e v
2T 7T
If 7> T, then
Ry () 1 . T+T 1 ( —a(r—T) — (T+T)>
T)=——-¢ = — e
Xy 2T« —r 2T«
If0<7<T, then
T) = — e*’dv + — e v
Xy 2T J-_r 2T Jo
1
= — (9 a(t=T) —a(t+T)
2T« ( )
The autocorrelation of the output is given by
1 T 1 T
R — —Oé|7" 7]:[ . 71‘[ o
v () T ol Gp) * 5 lGT)
1 T
— —a|T\ A
€ (57)

_ |ZL‘| —al|r—z|
- 2T/ < ) o

If 7 > 2T, then

—QT

_ ¢ " [ 2aT | ,—2aT _
Ry (1) = 5T o [e +e 2}
If 0 <7 < 2T, then
672aT 1 T e— QT
Ry(r) = S [e o7 — —9
v(1) = iz 7 e 1L~ oz~ 2
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Problem 4.60
Consider the random processes X (t) = Xe/2™fot and Y (t) = Yei?™fot, Clearly

Rxy(t+7,t) = E[X(t +7)Y*(t)] = E[XY]e/2™fo7

However, both X (t) and Y (t) are nonstationary for E[X (t)] = E[X]e/?™fot and E[Y (t)] = E[Y]ei? /ot
are not constant.

Problem 4.61

1)
4 (7
E[X(t)] = —/ A cos(27 fot + 0)do
™ Jo
= 14 sin(27 fot + 6) !
T 0
= ﬁ[sin(27rf0t + E) — sin(27 fot)]
m 4
Thus, E[X(t)] is periodic with period T' = 4.
Rx(t+7,t) = E[A?cos(2nfo(t +7) + ©)cos(2mfot + O)]

- fE[Cos(wao(Qt +7) 4+ 0) + cos(27m for)]

2 2

- A? cos(2m for) + A?E[cos(%rfo(% +7) 4+ 0)]
2 2 o

= % cos(2m foT) + A?é /Z cos(2m fo(2t + 7) + 0)do
™ Jo

A? A2
= 5 cos(2m foT) + — (cos(2mfo(2t 4+ 7)) — sin(27w fo (2t + 7)))

which is periodic with period T = ﬁ Thus the process is cyclostationary with period T = %

Using the results of Problem 4.48 we obtain
1 T
Sx(f) = ,7-'[?/ Rx(t+ 7,t)dt]
0

2 2 T
— JfléCOS(?WfoT)Jr?ﬂ/o (cos(2m fo(2t + 7)) — sin(27 fo (2t + 7))dt

= flfcos(%rfm)

AQ
= T(&f = fo) +4(f + fo))
2)
Rx(t+7,t) = EX(t+71)X(t)]=E[(X+Y)X+Y)]
= E[X%+ E[Y? + E[YX]+ E[XY]
= E[X?|+ E[Y?] +2E[X][Y]
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where the last equality follows from the independence of X and Y. But, E[X] = 0 since X is
uniform on [—1, 1] so that

1 1 2
Rx(t+7,t) = E[X* + E[Y? = 3t3=3

The Fourier transform of Rx(t + 7,t) is the power spectral density of X (¢). Thus

Sx(f) = FIRx(t+7,1)] = 26()

Problem 4.62
h(t) = e Plu_q(t) = H(f) = m The power spectral density of the input process is Sx(f) =

Fleell] = #‘;‘Tgﬂ. If & = 3, then

2

Sy(f) =Sx(HIH(f)P = (02 + 4n2f2)2

If a # 3, then
2a

SY(f) = SX(f)’H(f)‘Q = (a2 +47T2f2)(52 —|—47T2f2)

Problem 4.63
1) Let Y(t) = X (¢t)+ N(t). The process X (t) is the response of the system h(¢) to the input process
Y'(t) so that

RYX'(T) = Ry(T)*h(—T)
= [RX(7'>+RN(7')+RXN(T)+RN)((T)}*}L(—7')

Also by definition

Ry¢(r) = E[(X({t+7)+N({Et+71)X(t)] =Ry (1) + Ryx(7)
= RX)A((T)+RN(T)*h(—T)-I-RNx(T)*h(—T)
Substituting this expression for R, ¢(7) in the previous one, and cancelling common terms we

obtain
Ry (1) = Rx (1) x h(—=7) + RxN(7T) % h(—T)

2)
E[(X(t) = X(£))?] = Rx(0) + Ry (0) = Ry (0) = Ry (0)

We can write F [(X(t) — X(t))ﬂ in terms of the spectral densities as

BIX@ - X02] = [ (Sx(f) +Sx(h) - 28 ()

—0o0

= [ [Sx(0) + (Sx () + Sw() + 2RelSxn (DDIH (P

—0o0

—2(Sx(f) + sXN<f>>H*<f>} dof

To find the H(f) that minimizes F [(X (t)— X (t))ﬂ we set the derivative of the previous expression,
with respect to H(f), to zero. By doing so we obtain

Sx(f)+Sxn(f)

H(f) = Sx(f)+Sn(f) + 2Re[Sxn(f)]
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3) If X(¢) and N(t) are independent, then
Rxn(7) = E[X(t+7)N(t)] = E[X(t 4 )| E[N(t)]
Since E[N(t)] = 0 we obtain Rxn(7) = 0 and the optimum filter is

Sx(f)
SX(f)%—%

The corresponding value of E {(X (t)— X (t))ﬂ is

H(f) =

Buin [(X (1) = X())?] :/OO Sx (f)No

— oo QSx(f) + Ny df

4) With Sy(f) =1, Sx(f) = # and Sxn(f) =0, then

1+f? 1
H(f)= =
=17 ar 2+

Problem 4.64
1) Let X (¢) and X (¢) be the outputs of the systems h(t) and g(¢) when the input Z(¢) is applied.
Then,

E[(X(t) - X(1))?] = E[(X(1) - X(t + X (1) —AX(t )’
= Bl(X(t) - X(t )] + E[(X(t) - X ()%
TE[(X(t) — X(1)) - (X(t) — X(2))]
But,
E[(X(t) - X(1) (X(0) - X))
= E[(X(t) — X()) - Z(t) » (h(t) — g(1))]
~ B[ - X() /_ w(hm ~ ol >>Z<t—v>d7]
= [w B [(X(t) - Z(t - )] (( =0
where the last equality follows from the assumption E [ Z(t— T)} = 0 for all ¢, 7.
Thus,

E[(X(t) - X(t)*] = E[(X(t) - X(1)*] + E[(X(t) - X())*]

and this proves that R .
E[(X(t) = X(1))%] < B[(X(t) - X(1))’]

2) ) 5
El(X(t)—X(#)Z({t—71)|=0=FEXt)Z(t—71)=E[X)Z(t—T1)]
or in terms of crosscorrelation functions Rxz(7) = R ,(7) = R, ¢(—7). However, R, ¢(—7) =
Rz(—7) % h(7) so that
RXz(T) = Rz(—T) * h(T) = Rz(T) * h(T)

3) Taking the Fourier of both sides of the previous equation we obtain

Sxz(f)

Sxz(f) = Sz()H(f) or H(f)= Sz(f)
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4)

ElE®)] = B[(X@) - XO)(X@) - X (1))
= E[X(1)X(1)] - BIX ()X (1)
— Ry(0)—FE [ [ "2 - v)h(v)X(t)dv]
— Ry(0) - /_ " Ryx(—0)h(v)dv

— Rx(0)— /_ " Rz ()h(v)d

where we have used the fact that E[(X(t) — X(£))X(t)] = E[(X(t) — X (t))Z(t) x h(t)] = 0

Problem 4.65
1) Using the results of Problem 4.45 we obtain

PP

Sx(f) T

[RA(O) +2 i R4 (k) cos(2nk fT')
k=1

Since, A,’s are independent random variables with zero mean Ra(k) = 025(k) so that

111 2 2
Sx(N) = 7| 1a)| o = i)
2) If T = 5> then
%) 2 2 w
()= [ genGhog =g [ =0
3)
Sx,(f) = % (%) = Rx, (1) = NoWsinc(2W)
Hence,
E[AzA;] = E[Xi(kT)X1(§T)] = Rx,((k —j)T)
= NoWsinc(2W (k — j)T') = NoWsinc(k — j)
(NW k=7
a 0 otherwise

Thus, we obtain the same conditions as in the first and second part of the problem with o2 = NoW.
The power spectral density and power content of X (¢) will be

I
2W

No

Sx(f) =1

. ), Px=NgW

X (t) is the random process formed by sampling X (¢) at the Nyquist rate.

Problem 4.66
the noise equivalent bandwidth of a filter is

S0 [ H(f)Pdf
2H?

max

Bneq =

108



If we have an ideal bandpass filter of bandwidth W, then H(f) =1 for |f — fo| < W where fj is
the central frequency of the filter. Hence,

B 1 —f0+%d fo+%d -
neq*§ /—fo—VQV f+/0_";/ f =

Problem 4.67
In general

Sx.(f) = Sx.(f) :{ gX(f_f0)+SX(f+f0) L{L;‘;Vf?se

If fo=f. — 2 in Example 4.6.1, then using the previous formula we obtain
¥ oyl
Sx.(f) =8x.(f) =9 No [fI<F

0 otherwise

The cross spectral density is given by

Sx.x.(f) = { g[5X<f +fo) = Sx(f = o)l IfI < fo

otherwise

Thus, with fo = f. — 2 we obtain

ST

0 fl< %=
Sx.x,(f) =19 .n 2

JTO 2 < f < W

0 otherwise

Problem 4.68
We have Px, = Px, = Px. For the process of the Example 4.6.1

B |f—fl<w
_ 2 c
Sx(f) _{ 0 otherwise

Hence,

f(‘“l‘WN fc+WN
Py = / Sx(f)df = / Y [ S
_ W 2 femW
N,

= 20 (2W + 2W) = 2N,W

For the first part of the example,

Sx.(f) = Sx,(f) { é\’o L{L;v‘\jl/se

Hence,

w
Px, = Px,6 = / Nodf = 2NgW = Px
-W
For the second part of Example 3.6.12

No (< < 2W
Sx.(f) = Sx,(f) { 02 othe’raise
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Thus,

2W N,
Py, = Px, — / S2df = 2NoW = Py

—2W

Problem 4.69
1) The power spectral density of the in-phase and quadrature components is given by

B C Sa(f = fo) +Su(f + fo) IfI<T
S (f) =Sn,(f) = { 0 ’ otherwise

If the passband of the ideal filter extends from 3 to 11 KHz, then fy =7 KHz is the mid-band
frequency so that

B ) No |fl<T
Snc(f)—SnS(f)—{ 00 otherwise

The cross spectral density is given by

_ ][Sn(f+f)_8n(f_f) ’f‘<7
Snens (£) _{ 0 ' ’ otherwise

However S,,(f + fo) = Su(f — fo) for |f| < 7 and therefore S, ., (f) = 0. It turns then that the
crosscorrelation Ry, . (7) is zero.
2) With fo=6 KHz
B 3<|fl<5
Sno(f) = Sn.(f) = No |f] <3

0 otherwise

The cross spectral density is given by

—jf —5<f<3
Snen(f) =14 7 3<f<5
0 otherwise

Hence,

N, t+4 N, t—4
1 .4YQ .4V0
]zn s = J —Jj—1(—— — (——

N . N, .
= —j9sinc(27)e 2™ 4 j—22sinc(27)el 2™
J 9 J 5

= —2Npsinc(27) sin(2747)

Problem 4.70
The in-phase component of X () is

X.(t) = X(t)cos(2mfot) + X (t)sin(27 fot)

= i App(t —nT) cos(2m fo(t — nT))

n=—0oo

+ i App(t —nT)sin(27 fo(t — nT))

n=—0oo

= i Ay, (p(t — nT)cos(2m fo(t — nT)) + p(t — nT) sin(27 fo(t — nT)))

= Z Anpc(t - nT)
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where we have used the fact p.(t) = p(t) cos(2 fot) + p(t) sin(2 fot). Similarly for the quadrature
component

X (t) = X(t)cos(2mfot) — X(t) sin(2n fot)
— nioo App(t — nT) cos(2m fo(t — nT))
— n:ioo Anp(t — nT) sin(27 fo(t — nT))
- nio Ay (p(t — nT) cos(27 fo(t — nT)) — p(t — nT) sin(27 fo(t — nT)))
- nioo Apps(t —nT)

Problem 4.71
The envelope V (t) of a bandpass process is defined to be

V() =/ X2(t) + X3(t)

where X (t) and X;(t) are the in-phase and quadrature components of X (¢) respectively. However,
both the in-phase and quadrature components are lowpass processes and this makes V (t) a lowpass
process independent of the choice of the center frequency fy.

Problem 4.72
1) The power spectrum of the bandpass signal is

oo |f—fl<W
_ 2 c
Sn(f) = { 0 otherwise

Hence,

B _J No [fl<W
Sne(f) = Sn.(f) = { 0 otherwise

The power content of the in-phase and quadrature components of n(t) is P, = fXVW Nodf = 2NoW

2) Since Sy, n, (f) = 0, the processes N,(t), Ns(t) are independent zero-mean Gaussian with variance
02 = P, = 2NgW. Hence, V(t) = /N2(t) + N2(t) is Rayleigh distributed and the PDF is given
by

2
filv) = { sgwe o7 20

0 otherwise

3) X(t) is given by
X(t) = (A+ N.(t)) cos(2m fot) — Ng(t) sin(27 fot)

The process A+N.(t) is Gaussian with mean A and variance 2NoW. Hence, V (t) = /(A + N.(t))? + N2(¢)
follows the Rician distribution (see Problem 4.31). The density function of the envelope is given by

U2+A2

A _vi4A”
fv(v) = Wﬁ](ﬁ)e ANW >0
0 otherwise

where
Io(ﬂ?) — 1/7T T CosU g,
2m J_x
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Problem 4.73
1) The power spectral density S,(f) is depicted in the following figure. The output bandpass
process has non-zero power content for frequencies in the band 49 x 105 < |f| < 51 x 10%. The
power content is

o /—49x106 10-8 (1+f) af + 51x10° 10-8 <1_f> of

—51x106 108 49%106 108
—49%106 1 —49%106 51x106 1 51x109
= 107 % + 10716242 +107 %z — 10716242
—51x106 2 | s51x106 49% 106 2 |49%106
= 2x1072
O—S
|
8
~5.107 5.107 10

2) The output process N(t) can be written as
N(t) = N.(t) cos(250 x 105¢) — Ny(t) sin(27w50 x 10°¢)
where N.(t) and Ng(t) are the in-phase and quadrature components respectively, given by

Ne(t) = N(t)cos(2r50 x 100) + N () sin(2750 x 105¢)
Ny(t) = N(t)cos(2m50 x 105t) — N (t)sin(2w50 x 10°¢)

The power content of the in-phase component is given by

E[|N.(t)]2] = E[N(#)|?]cos?(2r50 x 105¢) + E[|N (t)[?] sin? (2750 x 10°t)
= E[N®)]=2x10"2

where we have used the fact that E[|N(¢)|?] = E[[N(¢)|?]. Similarly we find that E[|Ny(t)]2] =
2x 1072

3) The power spectral density of N.(¢) and Ns(t) is

B | Sn(f =50 % 10% + Sn(f + 50 x 10°) | f] <50 x 10°
Sne(f) = Sn.(f) = { 0 otherwise
Sn,(f) is depicted in the next figure. The power content of Sy, (f) can now be found easily as
108
Py, = Py, = / 1078df =2 x 1072
_106

10-8

10—6 106

4) The power spectral density of the output is given by
Sy (f) = Sx(HIH()> = (|f] — 49 x 105) (1078 — 10716|f]) for 49 x 10° < |f| < 51 x 10°
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Hence, the power content of the output is

—49x106

Py = / (—f —49 x 10%)(107% + 1070 f)af
—51x106
51x106
- (f —49 x 10°)(1078 — 10716 f)af
49x106

4
= 2x 104—5102

The power spectral density of the in-phase and quadrature components of the output process is
given by

Sv.(f) =Svi(f) = ((f+50x10°) =49 x 10°) (1075 = 1071°(f + 50 x 10°))
+ (= (f = 50 x 10°) — 49 x 10°) (1075 + 10715(f — 50 x 10°))
= —2x10716f2 11072
for |f| < 105 and zero otherwise. The power content of the in-phase and quadrature component is

106

Py, =Py, = /106(—2 x 1071 f2 +107%)df
1 106 108
= —2x10716=3 +1072f
37 [-100 ~106

4
= 2X104—§102=Py
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Chapter 5

Problem 5.1

The spectrum of the signal at the output of the LPF is S, ,(f) = Ss(f)lﬂ(%)\? Hence, the signal
power is

B 00 B w PO
Ps,o - /_OOSS’O(f)df_/_W1—|—(f/B)2df

f w %%
= BB arctan()’ = 2PyB arctan(—)
B’ _w B

Similarly, noise power at the output of the lowpass filter is

Thus, the SNR is given by

2Py B arctan('%) 2R arctan(%)

w
NoW N Z

SNR =

In the next figure we plot SNR as a function of % and for 2]\7@ =1.
0
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0.6+

SNR

0.5¢
0.4+
0.3+
0.2+

0.1

0 1 2 3 4 § 6 7 8 9 10

Problem 5.2
1) The transfer function of the RC filter is

R RC's
H = =
)= TR~ 17RO

with s = j2n f. Hence, the magnitude frequency response is

47T2(RC)2f2 > %

‘H(f)| = (1 +47r2(RC)2f2

This function is plotted in the next figure for f in [~10,10] and 472(RC)? = 1.
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0.9¢
0.8+
0.7+
0.6
0.5¢
0.4+
03¢
0.2
0.1

IH(f)!

2) The overall system is the cascade of the RC and the LPF filter. If the bandwidth of the LPF is
W, then the transfer function of the system is

_ j2mRCf f
V(f)_1+j27rRCf (QW)

The next figure depicts [V (f)| for W = 5 and 47%(RC)? = 1.

I
09}
08/
07}
06/
05/
04}
03]
02/
01}
% % 6 4 2 0 3 4 6 § 10
f

IV ()l

3) The noise output power is

W 4n?(RO)%f? N,
P / (2 )f2 270df
_w 1+4n2(RC)2f2 2
No (W 1
= NoW -2 d
W= /W1—|—47r2(RC’)2f2 4
= NW—% ! arctan(2 RCf)W
- 9 2rRC AT W

No
= N, — 2
oW 5 RO arctan(2r RCW)

The output signal is a sinusoidal with frequency f. and amplitude A|V(f.)|. Since f. < W we
conclude that the amplitude of the sinusoidal ouput signal is

472 (RC)*f?2
1+ 472(RCO)2f2

A[H(fe)| = A\/

and the output signal power
L _ A an(RO P
2 1+4n2(RC)2f2
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Thus, the SNR at the ouput of the LPF is
A2 4n2(RC)2 42 A2 mRCf?
2 1+4n2(RC)2f2 No 1+4n2(RC)2 12

SNR = =
NoW — 271:7% arctan(2r ROW)  2rRCW — arctan(2r RCW)

In the next figure we plot

1

GW) = 2rRCW — arctan(2rRCW)

as a function of x = 2n RCW, when the latter varies from 0.1 to 0.5.
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Problem 5.3
The noise power content of the received signal r(t) = u(t) + n(t) is

© N
P, :/ Sulf)df = =2 x AW = 2NgW
If we write n(t) as
n(t) = ne(t) cos(2m fet) — ng(t) sin(2m fot)
then,

n(t) cos(2mfot) = ne(t)cos?(2mfot) — ng(t) cos(2m fot) sin(27 fot)

- %nc(t) + %nc(t) cos(272f,t) — na(t) sin(272f,t)

The noise signal at the output of the LPF is %nc(t) with power content

1 1 NoW
== - = 7P =
’ 4 "yt 2

If the DSB modulated signal is u(t) = m(t) cos(2m f.t), then its autocorrelation function is R, (7) =
3R (7) cos(2m fo7) and its power

Pu=Ruf0) = 3Ru(0) = [~ Su(/)df =2W R

From this relation we find Ry(0) = 4W P,. The signal at the output of the LPF is y(t) = imi(t)
with power content

1 1
P, = ZE[mQ(t)] = ;R (0) =Wr
Hence, the SNR at the output of the demodulator is

P, WPk 2F
SNR = —22 = =20
<E%1 o ZY%;@& ]\n)

)
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Problem 5.4
First we determine the baseband signal to noise ratio (%)b. With W = 1.5 x 10%, we obtain

(S) _ Pr Pg _ Pp1c®
N/, NoW 2x05x10"14x1.5x106 1.5

Since the channel attenuation is 90 db, then

P
10log P—T =90 = Pr = 10"Pr
R

Hence,

1.5 1.5 15

N

<S> _ Ppl0®  10°x107°Pp  Pr
b

1) If USSB is employed, then

<S> = (S> =10% = Py =15 x 10® = 15 KWatts
N/ o,ussB NJy

2) If conventional AM is used, then

(D=3,
Noanw \N),~"15

o*Par, Since, max[|m(t)| = 1, we have

where, ) = ——p"— TP

=Py = / fxzd:z = -

and, therefore

0.25 x g 1
’r] = -—
1+025x 5 13
Hence,

— = = 10° = Py = 195 KWatt
(N>OAM 315 e e

3) For DSB modulation

S S Pr

2 = (Z) =L =10 = Pr = 15 KWatt
<N)0DSB <N>b 15 ! o

Problem 5.5
1) Since |H(f)| =1 for f = |fc. £ fm|, the signal at the output of the noise-limiting filter is

r(t) = 10731 + a cos(27 ft + ¢)] cos(27 fot) + n(t)

The signal power is

Pr = Tlim . 107%[1 4 arcos(27 fint + ¢)]? cos®(2m f.t)dt
—00 ) — L
2
107° °
- I+ %] — 56.25 x 10
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The noise power at the output of the noise-limiting filter is

1 N
Pro=5Pn. = 5Pn =5 X 22500 = 25 x 1071

2) Multiplication of 7(t) by 2 cos(27 f.t) yields

-3
o) = %[1 + acos(2m ft)]2 + %nc(t)2

+ double frequency terms
The LPF rejects the double frequency components and therefore, the output of the filter is
v(t) = 1073[1 4+ o cos (2 fint)] + ne(t)
If the dc component is blocked, then the signal power at the output of the LPF is

106
P, = T0.52 =0.125 x 1076

whereas, the output noise power is
N
Poo=Py, =P, = 2702000 =40 x 10710

where we have used the fact that the lowpass filter has a bandwidth of 1000 Hz. Hence, the output

SNR is )
0.125 x 10
NR= " =31.25 14.95db
SNR = = =g = 3125 14.95

Problem 5.6
The one-sided noise equivalent bandwidth is defined as

e HG)
Bea =T (p)2

max

It is usually convenient to substitute |H (f) |?c:0 for |[H(f)|2,., in the denominator, since the peaking
of the magnitude transfer function may be high (especially for small {) creating in this way anoma-
lies. On the other hand if ¢ is less, but close, to one, |H(f)|%.. can be very well approximated by
|H(f)|3c:0. Hence,
5 S HU) P

T HWNES

and since ,
w2 + jorf <2Cwn - %n)
w2 — A2 f2 + 527 f2Cwy,

[H(f)I? =
we find that |H(0)| = 1. Therefore,
Beq = /0 ’H(f)‘gdf

For the passive second order filter

2
His) = s(2Cwy, — wf") +w%
s2 + 20wy + w2
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wy

71 > 1, so that 7:;11%0and
s2Cwy, + w2

His) =
(s) $2 + 2Cwy, + w2

The B4 can be written as

Bug = — /joo H(s)H(—s)ds

_Ej i

Since, H(s) = % we obtain limy_, H(s)H(—s) = 0. Hence, the integral for Be; can be
taken along a contour, which contains the imaginary axis and the left half plane. Furthermore,
since G(s) is a rational function of s, the integral is equal to half the sum of the residues of the left

half plane poles of H(s)H(—s). Hence,

(s + Cwn + wny/C? — 1)H(s)H(—s)

Beyy =

1
2

s=—Cwn—wny/(2—1

2

+(s 4 Cwp — wny/C2 — 1)H(s)H(—s) s=<wn+wn\/<271]

Wn 1. 1+4¢2
- s T R
_ Ltuln () +25e

8¢/ wn

14 “#217'22

¥ T8 wn

where we have used the approximation %2 ~ 0.

Problem 5.7
1) In the case of DSB, the output of the receiver noise-limiting filter is

r(t) = wu(t)+n(t)
= Acm(t) cos(2mfot + ¢c(t))
+ne(t) cos(2m fot) — ng(t) sin(27 fet)

The power of the received signal is P; = %ng, whereas the power of the noise
1 1
Pn,ozipnc‘l_ipns :Pn
Hence, the SNR at the output of the noise-limiting filter is
( S) AP,
N o,lim 2Pn

Assuming coherent demodulation, the output of the demodulator is

y(t) = 5[Aem(t) +

The output signal power is P, = %A%Pm whereas the output noise power

Hence,



and the demodulation gain is given by

dem. gain = @ =2

(%)

2) In the case of SSB, the output of the receiver noise-limiting filter is

—~
Zl»n

2w

r(t) = Aem(t) cos(27 fot) = Acm(t) sin(27 fet) 4+ n(t)

The received signal power is Py = Ang, whereas the received noise power is P, , = P,. At the
output of the demodulator

(1) = SEm(t) + el

with P, = iAng and P, , = %Pnc = %Pn. Therefore,
i) A2P,,
<N o,dem P,

dem. gain = (i) = Tepy = 1
N o,lim P

3) In the case of conventional AM modulation, the output of the receiver noise-limiting filter is
r(t) = [Ac(1 4+ amy(t)) + ne(t)] cos(2m fot) — ng(t) sin(27 fet)

The total pre-detection power in the signal is
2

A
P, = 70(1 +a?Py)

In this case, the demodulation gain is given by

(%)o,lim b a2PMn

The highest gain is achieved for a = 1, that is 100% modulation.

4) For an FM system, the output of the receiver front-end (bandwidth B.) is
r(t) = Accos(2mfet + ¢(t)) + n(t)
t
= Accos(2mfet + 2mky / m(7)dr) + n(t)

2
The total signal input power is P jim = %, whereas the pre-detection noise power is

N,
Prjim = 7023c = NoB. = No2(8; + )W

Hence,

(3) st
N o,lim B 2N02(ﬁf + 1)W

The output (post-detection) signal to noise ratio is

S 3k AZ Py
(N) o,dem B 2]\TOVV3
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Thus, the demodulation gain is

. (N)o,dem SQ%PM2(/8]C + 1)
dem. gain = =

(5) . maxm@D?

N

637(8f + 1) P,

5) Similarly for the PM case we find that

(), et
N o,lim B 2N02(ﬁp + 1)W

and
( S )  k2A2Py
o,dem

N T OANW

Thus, the demodulation gain for a PM system is

(F)sam  BPu2(5, +1)

(3) . (oaxlm(®)?

N

dem. gain = ZBg(ﬂp +1)Py,

Problem 5.8
1) Since the channel attenuation is 80 db, then

P
10log Pl =80 = Pr=10"3Pp = 1073 x 40 x 10> = 4 x 10~* Watts
R

If the noise limiting filter has bandwidth B, then the pre-detection noise power is

fc+§ N
P, = 2/ : 70df = NoB = 2 x 107198 Watts
fc_

B
2

In the case of DSB or conventional AM modulation, B = 2W = 2 x 10* Hz, whereas in SSB

modulation B = W = 10*. Thus, the pre-detection signal to noise ratio in DSB and conventional

AM is
Pr 4 %1074

== =102
P, 2x10710x2x 104

SNRpsB,AM =

and for SSB
4% 1074

_ 2
2><10—10><104_2><10

SNRgssB =

2) For DSB, the demodulation gain (see Problem 5.7) is 2. Hence,

SNRpsB,, = 2SNRpgp; = 2 x 102

3) The demodulation gain of a SSB system is 1. Thus,

SNRssB,0 = SNRgsp,; = 2 X 102

4) For conventional AM with a = 0.8 and Py, = 0.2, we have

042PMn

SNR ="
AM,o 1+ CK2PMn

SNRam,; = 0.1135 x 2 x 107
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Problem 5.9
1) For an FM system that utilizes the whole bandwidth B. = 2(3y + 1), therefore

100

Hence,

(8% Gl =+
N/opv 2 \max[m(t)]]/ NoW 2 " NgW

( S > _ A2a?Py,
NJoam  2NoW

For an AM system

Hence,

(

)o FM 3ﬁJ%
(7 = —= = 549.139 ~ 27.3967 dB

2
2) Since the PM and FM systems provide the same SNR

(S) kA2 Py 3KGAZ Py _(5)
o,PM o,FM

Zn| 2w

)07AM

N 2 NoW — 2W2 NoW ~ \ N
or
| By 1
- = :> _— —
3k§ W?2 3BJ%W2 w2
Hence,

BWpn  2(8, + D)W V36p +1
BWpn 28 + L)W B +1

Problem 5.10
1) The received signal power can be found from

P
10log 5~ =80 = P =10"%Pr = 10~" Watts
R

(S) _ a*Py, (S> _ a*Py, Pg
N), 14+a2Py, \N/, 1+ a2Py, NoW
Thus, with Pp = 1074, Py;, = 0.1, a = 0.8 and

NoW =2x05x1072 x5x%x10°=5x 107"

we find that g
— ] =1204 30.806 db
(N)o o9

2) Using Carson’s rule, we obtain
B, =2(B+1)W =100 x 10> =2(8+ 1)5 x 10° = 3 =9
We check now if the threshold imposes any restrictions.

S Pr 1074
- = =20 1) = — [ =999
<N>b,th NOW (ﬁ * ) 10_12 X B % 103 ﬁ
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Since we are limited in bandwidth we choose 3 = 9. The output signal to noise ratio is

SN L2 SN 2 10°
(N)o = 33“0.1 <N>b =3 x9°x0.1x - = 486000 56.866 db

Problem 5.11
1) First we check whether the threshold or the bandwidth impose a restrictive bound on the
modulation index. By Carson’s rule

B, =28+ 1)W =60 x 103 =2(f+1) x 8 x 10> = = 2.75

Using the relation
S

(N)o — 605%(5 + 1) P,

with (%) =10* and Py, = % we find
10 = 308%(+ 1) = 8 = 6.6158

Since we are limited in bandwidth we choose 8 = 2.75. Then,

S 5 S S 2 x 10
(%), =97 (), = (%), = sz —S5152

Thus,

S Pr —12 3 -5
— | = = 881.542 = Pp = 881.542 x 2 x 10 x 8 x 10° =1.41 x 10
(N)b NoW R

Since the channel attenuation is 40 db, we find

Pr =10*Pr = 0.141 Watts

2) If the minimum required SNR is increased to 60 db, then the 8 from Carson’s rule remains the
same, whereas from the relation

S

<N>O = 606%(8 + 1) Py, = 10°

we find 3 = 31.8531. As in part 1) we choose 3 = 2.75, and therefore

s 1 S .
(%), = sz (), =smot 0

Thus,
Pr = NoW8.8154 x 10* =2 x 10712 x 8 x 10% x 8.8154 x 10* = 0.0014

and
Pr = 10*Pg = 14 Watts

3) The frequency response of the receiver (de-emphasis) filter is given by

1
1+ i+

Hy(f)
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. _ 1
with fo = 5575775

From this relation we find

and therefore,

s = 2100 Hz. In this case,

() gy ().
N o,PD 3(w—arctanw) N/,

fo fo

<S> =1.3541 x 10° = Pr = 9.55 x 107°
(0]

N

Pr = 10*Pg = 0.955 Watts

Problem 5.12

1. To determine the autocorrelation function of U(t), we have

Ry(t,t+71) = E[U{t+7)U(t)]

= AZE[cos(2m fot + ®(t)) cos(2m folt + ) +
+ (¢ +7))

Obviously the process U(t) is not stationary.

This gives

_ T/2
=1 — ul(t,t dt
Ro(r) = Jim 7 [ & ppp 0BT dE

5 1 T/2
A hm —E[/ cos(2m ft + ®(t)) x
T—oo T _T/Q

x cos(2mfe(t +7) + ®(t + 7)) dt}

A2 1 T/2
—= lim —E[/ [cos(Amfet + 2mfor + @(t) + P(t + 7)) +
2 T—oo T -T/2

+ cos(2m for + @(t + 7) — ©(1))] dt]
Az 1 [7/2
5 Tlgréo T s E[Cos(27rfc7' +O(t+71)— @(t))} dt
A2 ) T/2

327 fet o3 (R(E+T)—2(t))
5 T_I)I;OT T/zRe[e Ele ]} dt

where the equality in (a) follows from the fact that cos(4w fet + 27 for + ®(t) + P(t + 7)) is
a bandpass signal centered at 2f, and its dc value (as demonstrated by the integral) is zero.
Now it remains to find

E {[ej(‘1>(t+7)—‘1>(t))ﬂ

Since ®(t) is a zero mean stationary Gaussian process with the autocorrelation function
denoted by Rg(7), we conclude that for fixed t and 7, the random variable Z(¢,7) = ®(t +
7) — ®(t) is a zero mean Gaussian random variable since it is a linear combination of two
jointly Gaussian random variables. The variance of this random variable is easily computed

to be

0% = 2Rg(0) — 2R (7)

124



Now we have

E[[ej@(tﬂ)f@(t))]} = B2t

2
zZ

= e %
—(Ra(0)=Ra (7))

o
= €

where we have used the fact that the characteristic function of a zero mean Gaussian random
variable is given by

Substituting we obtain

_ A2 1 T/2 .
Ru(r) = ?CTII_EI;OT » Re[ej2ﬂchef(Rq>(0)*R<I>(T)) dt
A2
— I COS(27TfC7-)e_(R<I> (0)—Ra(7))
2

2
= % cos(2m fe1)g(T)

where, by definition,
—(Re(0)—Ra(7))

g(r) =e
3. Now we can obtain the power spectral density of the modulated process U (t) by taking the
Fourier transform of Ry (7).

A2
Su(f) = ]:[76(308(2#]‘07')9(7)]
2
= 2O )+ U+ £
where

G(f) = equw(O)]:[eR@(T)]

Problem 5.13
1) In the next figure we plot a typical USSB spectrum for K = 3. Note that only the positive

frequency axis is shown.

0 W W IW f

USSB

2) The bandwidth of the signal m(t) is W,, = KW.

3) The noise power at the output of the LPF of the FM demodulator is

2NoW2,  2NoW?3

— K3
3A2 3A2

W,
Pn,o = /Wm Sn,o(f)df =

where A, is the amplitude of the FM signal. As it is observed the power of the noise that enters
the USSB demodulators is proportional to the cube of the number of multiplexed signals.
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The i*" message USSB signal occupies the frequency band [(i — 1)W,iW]. Since the power
spectral density of the noise at the output of the FM demodulator is Sy, ,(f) = % f?, we conclude

that the noise power at the output of the it USSB demodulator is

W W 3
0= gPu= 2 B = g L
T 4 4 —G—1D)W Ag 2Ag 3

P, (3i2 = 3i 4+ 1)

_-nw  6AZ
Hence, the noise power at the output of the i** USSB demodulator depends on i.

4) Using the results of the previous part, we obtain

Pro, 3 —3i+1
Pno  3j2-3j+1

J

2
5) The output signal power of the i** USSB demodulator is Ps, = %PMZ.. Hence, the SNR at the
output of the " demodulator is

A?P
SNR; = 2 - M
b NP (32 34 1)

Assuming that Py, is the same for all 7, then in order to guarantee a constant SNR; we have to
select A? proportional to 3i? — 37 + 1.

Problem 5.14
1) The power is given by

Hence, with R = 50, P = 20, we obtain

V2= PR =20 x 50 = 1000 = V = 10002 = 31.6228 Volts

2) The current through the load resistance is

V316228

R 20

= 0.6325 Amp

3) The dBm unit is defined as

actual power in Watts
10-3

dBm = 101log < > = 30 + 10log(actual power in Watts)

Hence,
P =30+ 10log(50) = 46.9897 dBm

Problem 5.15

1) The overall loss in 200 Km is 200 x 20 = 400 dB. Since the line is loaded with the characteristic
impedance, the delivered power to the line is twice the power delivered to the load in absence of
line loss. Hence, the required power is 20 4+ 400 = 420 dBm.

2) Each repeater provides a gain of 20 dB, therefore the spacing between two adjacent receivers

can be up to 20/2 = 10 Km to attain a constant signal level at the input of all repeaters. This
means that a total of 200/10 = 20 repeaters are required.
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Problem 5.16
1) Since the noise figure is 2 dB, we have

T.
101og ( 1 —2
0g<+2%>

and therefore 7, = 169.62° K.

2) To determine the output power we have
Pro = GkBueg(T + Te)
where 10log G = 35, and therefore, G = 10%.5 = 3162. From this we obtain
Pro = 3162 x 1.38 x 10723 x 10 x 10°(169.62 4 50) = 9.58 x 107! Watts ~ —161.6 dBm

Problem 5.17
Using the relation P,,, = GkByeq(7 +7¢) with P, = 108k Ty, Bpeq = 25 % 103, G =10% and 7 = Ty,
we obtain

(10% — 25 x 109 Ty = 25 x 107, = T, = 3T,

The noise figure of the amplifier is

7.
F—<1+T>—1+3—4

Problem 5.18

The proof is by induction on m, the number of the amplifiers. We assume that the physical
temperature 7 is the same for all the amplifiers. For m = 2, the overall gain of the cascade of the
two amplifiers is G = G1Go, whereas the total noise at the output of the second amplifier is due to
the source noise amplified by two stages, the first stage noise excess noise amplified by the second
stage, and the second stage excess noise. Hence,

PTL2 = ngQPnS + g2Pm,l + Pni,2
= ngQkTBneq + g2(g1aneq’Tel) + QQanquTez

The noise of a single stage model with effective noise temperature 7., and gain G1G» is
Pn — ngQaneq(T + 7—6)
Equating the two expressions for the output noise we obtain

G1G2(T + 1) = G1GoT + G1GoTe, + GoTe,

or T
Assume now that if the number of the amplifiers is m — 1, then
7. 7.
/]—e/:/]—el_i_ﬁ_i_ €m—1

g1 g1 Gm—2
Then for the cascade of m amplifiers

Tm

%:ﬂ+;

where G’ = Gy -+ - G,,_1 is the gain of the m — 1 amplifiers and we have used the results for m = 2.
Thus,

7. 7. 7.
T.=T, +-24... fm-1 4 em
Gy G- Gm-—2 Gi- - Gna
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Chapter 6

Problem 6.1

6
H(X) = = pilogypi =—(0.110g, 0.1 4 0.2log, 0.2
=1
+0.31og, 0.3 4 0.051og, 0.05 + 0.15log, 0.15 + 0.2 log, 0.2)
= 2.4087 bits/symbol

If the source symbols are equiprobable, then p; = % and

6
1
Hy(X) == pilogyp; = —logy 6= log, 6 = 2.5850  bits/symbol
=1

As it is observed the entropy of the source is less than that of a uniformly distributed source.

Problem 6.2
If the source is uniformly distributed with size N, then p; = % fori=1,...,N. Hence,
N N 4 1
HX) = - 1 ;= — Y —logy —
( ) ;pl Og2pl ;N Og2 N
1 1
= —NNIOgQ N = 10g2 N
Problem 6.3

1
H(X)=-=> pilogp;=> pi log -
7 7 g

By definition the probabilities p; satisfy 0 < p; < 1 so that p% > 1 and log p% > (. It turns out that
each term under summation is positive and thus H(X) > 0. If X is deterministic, then py = 1 for

some k and p; = 0 for all ¢ # k. Hence,

H(X)=-) pilogp; = —prlogl = —py0 =0

Note that lim,_,g xlogx = 0 so if we allow source symbols with probability zero, they contribute
nothing in the entropy.

Problem 6.4
1)
H(X) = — ip(l —p)*logy(p(1 — p)*1)
k=1
= plom) (19— plogy(1—p) S (k— 1)1 — p)*!
k=1 k=1
1 1—p
= *plogz(P)m — plogy(1 *p)m
= logy(p) — ~Llogy(1 - p)
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2) Clearly p(X =k|X > K)=0for k < K. If k > K, then

X=kX>K 1 —p)k-t
p(X:k|X>K):p( ) _p(1—p)

p(X>K)  p(X>K)
But,
0o o) K
pPX>K) = Y pll-pft=p (Z(l -p)ft=> —p)“>
k=K+1 k=1 k=1
_ 1 1-(1-p)") _
B p<1—(1—p) 1-(1-p) ) —(1-pt
so that a )kil
p(l—p
p(X:k‘|X>K):W

Ifwelet k = K +1withl=1,2,..., then

p(1—p)XQ—ptt
(1-p)K

that is p(X = k|X > K) is the geometrically distributed. Hence, using the results of the first part
we obtain

p(X =k|X >K)= — p(1— )t

H(X|X >K) = - ip(l —p)'Mogy (p(1 —p)' 1)
=1
1-p

= —logy(p) — logy (1 — p)

Problem 6.5

H(X,Y) = H(X,9(X))=H(X)+ H(g(X)|X)
= H(g(X)) + H(X[g(X))

But, H(g(X)|X) =0, since g(+) is deterministic. Therefore,
H(X) = H(9(X)) + H(X[g(X))
Since each term in the previous equation is non-negative we obtain
H(X) > H(g(X))

Equality holds when H(X|g(X)) = 0. This means that the values g(X) uniquely determine X, or
that g(-) is a one to one mapping.

Problem 6.6
The entropy of the source is

6
H(X)=- Zpi logy pi = 2.4087  bits/symbol
i=1

The sampling rate is
fs = 2000 + 2 - 6000 = 14000 Hz
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This means that 14000 samples are taken per each second. Hence, the entropy of the source in bits
per second is given by

H(X) =2.4087 x 14000 (bits/symbol) x (symbols/sec) = 33721.8 bits/second

Problem 6.7
Consider the function f(z) =2 —1—1Inz. For z > 1,
d 1
dz z

Thus, the function is monotonically increasing. Since, f(1) = 0, the latter implies that if z > 1
then, f(z) > f(1) =0orlnz <z —1. If 0 <z <1, then

df (x) 1

—1-=
dx :c<0

which means that the function is monotonically decreasing. Hence, for = < 1, f(x) > f(1) =0 or
Inz < z — 1. Therefore, for every x > 0,

Inzx<zx-—1
with equality if z = 0. Applying the inequality with x = lz/TN’ we obtain
1 1/N
In— —Inp; < -1
n —Inp; < P

Multiplying the previous by p; and adding, we obtain

N 1 N N o1
Zpilnﬁ — Zpilnpi < Z <N —pi) =0
=1 =1 =1
Hence,
N 1 N
H(X) < — In—=InN i =1In N
( )_ ;pz N ;pz

But, In N is the entropy (in nats/symbol) of the source when it is uniformly distributed (see Problem
6.2). Hence, for equiprobable symbols the entropy of the source achieves its maximum.

Problem 6.8

Suppose that ¢; is a distribution over 1,2,3, ... and that
o0
Z i =m
i=1

i—1
Let v; = (1 - %)2 and apply the inequality Inxz < z — 1 to v;. Then,

1 1 i—1 1 1 i—1
In|—(1-— —Ing < 1-— -1
m m gm m

Multiplying the previous by ¢; and adding, we obtain

1

9] 1 i—1 o0 © 1 1 . S
giln [ (1—) ] =Y gilng <Y —(1-=)""=Y =0

m
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But,

1 1.
= In(—)+In(l— — “1)g
n(m—i—n mgl
1 1
= In(— l — i i
R, [q ?ﬂ
(L) 41— 1) H(p)
= In(—)+In(1-— =—
m m P

where H(p) is the entropy of the geometric distribution (see Problem 6.4). Hence,

_H(p) _iqilnqi < 0= H(q) < H(p)
i=1

Problem 6.9
The marginal probabilities are given by

pX=0) = Y p(X=0Y=k=pX=0Y=0)+pX=0Y=

k

Hence,

! 1. 1 1, 1

H(X) = —Zpi logy pi = — (= logy = + = logy, =) = .9183
par 3 8237 3 %23
1

1 1 1 1

H(X) = —Zpi log, p; = —(glog2 3 + §log2 §) =.9183
i=0
21, 1

HX)Y) = - =1 — = 1.5850
( ) ) Z:Og Og23

H(X|Y) = H(X,Y)— H(Y)=1.5850—0.9183 = 0.6667
H(Y|X) = H(X,Y)— H(X)=1.5850 — 0.9183 = 0.6667

Problem 6.10

H(Y|X) ==Y p(z,y)logp(y|z)
7y

But, p(y|z) = p(g(z)|z) = 1. Hence, logp(g(z)|x) =0 and H(Y|X) = 0.

Problem 6.11
1)
H(X) = —(.05logy.05+ .1logy.1+ .1logy.1+ .15log, .15
+.05log, .05 + .25log,y .25 4 .31log, .3) = 2.5282
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2) After quantization, the new alphabet is B = {—4,0,4} and the corresponding symbol probabil-
ities are given by

p(=4) = p(=5)+p(-3)=.05+.1=".15
p(0) = p(=1)+p(0)+p(l)=.1+.15+.05=".3
p(4) = p(3)+p(5)=.25+.3=.55

Hence, H(Q(X)) = 1.4060. As it is observed quantization decreases the entropy of the source.

Problem 6.12
Using the first definition of the entropy rate, we have

H = lim H(X,|X1,... Xn_1)

n—oo

= nh—{go (H(X17X2> s 7Xn) - H(X17X27 s 7Xn71))

However, X;, X5, ... X, are independent, so that

H = lim (i: H(X) —nsz(Xi)) = lim H(X,)=H(X)
i=1 i=1

n—oo n—oo

where the last equality follows from the fact that X1,..., X, are identically distributed.
Using the second definition of the entropy rate, we obtain

1
H = lim *H(Xl,XQ,...,Xn)

n—oo n
1 n
= DD HCG)
.1
= nh_)HC}OEnH(X)—H(X)

The second line of the previous relation follows from the independence of X1, Xs, ... X,,, whereas the
third line from the fact that for a DMS the random variables X, ... X, are identically distributed
independent of n.

Problem 6.13

H = lim H(Xn|X1,..., Xn_1)
n—o0o
= nlggo - Z p(xlv'"axn)logQP(xn|xl7'"axn1)‘|
L z1,...,Zn

= lim |- Z p(l'l,---,Jin)logzp(xn‘xn—l)}

n—oo
L Z1,--,Tn
= nh—{go - Z p(xnaxn—l)10g2p(xn|xn—1)j|
Tn,Tn—1

—  lim H(X| X 1)

n—oo

However, for a stationary process p(zy, zp—1) and p(zy|z,—1) are independent of n, so that

H = lim H(Xu[Xp 1) = H(X,| X, 1)
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Problem 6.14

H(XY) = =) plz,y)logp(zly) = Zp z|y)p(y) log p(|y)
Ty

= Zp(y)( Zp |y logp;v\y> Zp X|Y_y)
Y

Problem 6.15
1) The marginal distribution p(z) is given by p(x) = 3, p(,y). Hence,

HOO) = =2 p@)logp(e) = =3 ) ple.y)logp()
= = pla,y)logp(x)

"E7y

Similarly it is proved that H(Y) = =3, p(z,y)logp(y).

p(z)p(y)

we obtain
p(z,y)

2) Using the inequality Inw < w — 1 with w =

p(2)p(y) _ p(@)p(y)

p(z,y) — plz,y) -

In

Multiplying the previous by p(x,y) and adding over x, y, we obtain

> p(z,y) Inp(x) prylnp:vy <Zp p(y) = > _p(z,y) =0
z,y

z,y

Hence,

H(X,Y) < =Y plz,y)Inp(@)p(y) = =Y _ p(z,y)(Inp(z) + Inp(y))

x,y Z,y
= —Zp:z: y) Inp(x Zp:v y)Inp(y) = HX)+ H(Y)
Y Y

Equality holds when %’g’) =1, i.e when X, Y are independent.

Problem 6.16

HX)Y)=HX)+HY|X)=H(Y)+ H(X|Y)
Also, from Problem 6.15, H(X,Y) < H(X) + H(Y). Combining the two relations, we obtain
HY)+HX|Y)<HX)+H(Y)= H(X|Y) <H(X)

Suppose now that the previous relation holds with equality. Then,

— > p(x)logp(xly) = Zp ) log p(z: éZp ) log( (x)):()

However, p(z) is always greater or equal to p(x|y), so that log(p(x)/p(z|y)) is non-negative. Since
p(x) > 0, the above equality holds if and only if log(p(z)/p(z]y)) = 0 or equivalently if and only if
p(z)/p(x|y) = 1. This implies that p(z|y) = p(z) meaning that X and Y are independent.
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Problem 6.17 B
To show that q = Ap1 + Ap2 is a legitimate probability vector we have to prove that 0 < ¢; < 1
and ) ;¢ = 1. Clearly 0 < p;; <1and 0 < pa; <1 so that

0<Ap1; <A, 0<Ap2; <A

)

If we add these two inequalities, we obtain
0<gG<A+A=0<¢g<1

Also,
ZQZ—ZAMWAP% )\ZPM-FS\ZPQJZ/\—F;\:I

Before we prove that H(X) is a concave function of the probability distribution on X we show that

1 @ 1 1 1 :
Inz >1— . S1ncelny<y—1 Wesetngsothat—lnx§5—1:>1na:21—5. Equality

holds when y = - =1orelse if z = 1.

H()\pl + ;\pg) — )\H(pl) — S\H(pg)

P, 3 D2,i
= A ilo + A ilog | ——————
Zpl g<Apll+)\p2”L> ZPQ’ g<>\p1¢+/\p2i>

AD1i Ap2i Ap1i + Ap2.i
/\Zpu<1—p1 P2 >+/\szz<1—pl - p2>

P1i D2,i
= A1-1)+A1-1)=0

v

Hence, B )
AH (p1) + AH (p2) < H(Ap1 + Ap2)

Problem 6.18
Let p;(x;) be the marginal distribution of the random variable X;. Then,

zn:H(Xi) = Zn: —Zpi(fvi)logpi(xi)]

=1 =1 x;
n
S D WCE ,nnog(npi(m)
1 T2 i=1

Therefore,

i=1
_ p($17x27"’7$n)
= ;%...%;p(xl,xg,...7xn)log( n 1pz($l) )
Hi:lpi(xi) )
> S 1—
> mzlg ;p(m,m, 7:1:)( p(fvl,xg,--‘,xn)
= ZZ“'ZP(xI’x%' ZZ Zpl pn(xn)
1 T2 Tn 1 T2
= 1-1=0
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where we have used the inequality Inz > 1 — 1 (see Problem 6.17.) Hence,

n

H(X1, Xa,- Xp) <> H(X;)

i=1
with equality if [T/ pi(z;) = p(z1,- -+, zy), i.e. a memoryless source.
Problem 6.19
1) The probability of an all zero sequence is
1 n
P = 0,2 = 0,0, X, = 0) = p(X1 = O)p(Xz = 0)-p(X, = 0) = ()

2) Similarly with the previous case

PO = 12X = L X = 1) = (0 = Dp(Xe = 1) p(X, = 1) = (5)

3)

p(Xl = 17”'7Xk = 1)Xk+1 :OaXn:O)
= p(X1=1) - p(Xig = D)p(Xp41 = 0) - p(Xp = 0)

1 k 1 n—~k 1\"
- 3@ -6)
4) The number of zeros or ones follows the binomial distribution. Hence

)= (1) 6 G- (2) 6

5) In case that p(X; = 1) = p, the answers of the previous questions change as follows
p(X1:01X2:0a"'7Xn:O) = (1_p)n
p(X1:11X2:1a"'7Xn:1) = pn

p(first k ones, next n — k zeros) = p*(1

P )n—k
p(k ones ) = (

p

Z ) pra—p)*

Problem 6.20

From the discussion in the beginning of Section 6.2 it follows that the total number of sequences
of length n of a binary DMS source producing the symbols 0 and 1 with probability p and 1 — p
respectively is 277 Thus if p = 0.3, we will observe sequences having np = 3000 zeros and
n(1 — p) = 7000 ones. Therefore,

# sequences with 3000 zeros ~ 25813

Another approach to the problem is via the Stirling’s approximation. In general the number of
binary sequences of length n with k zeros and n — k ones is the binomial coefficient

n n!
( k > T EKl(n—k)
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To get an estimate when n and k are large numbers we can use Stirling’s approximation

n
n
n!l~V2mn | —
e

_10000! 1 1010000
~3000!7000! 212730 - 70

Hence,

# sequences with 3000 zeros

Problem 6.21
1) The total number of typical sequences is approximately 2nH(X) where n = 1000 and

H(X)= - pilogyp; = 1.4855

Hence,

# typical sequences ~ 21485

2) The number of all sequences of length n is N™, where N is the size of the source alphabet.

Hence,
# typical sequences onH(X) ~ 1.14510-30

4 non-typical sequences N7 — 2nH(X)

3) The typical sequences are almost equiprobable. Thus,

p(X =x, x typical) ~ g—nH(X) _ 9—1485.5

(X)

4) Since the number of the total sequences is 2nH(X) the number of bits required to represent these

sequences is nH (X)) ~ 1486.

5) The most probable sequence is the one with all ag’s that is {as, as,...,as3}. The probability of
this sequence is
1\ " 1 1000
p({a37 ag, ... 7a3}) = <2> = <2>

6) The most probable sequence of the previous question is not a typical sequence. In general in a
typical sequence, symbol a; is repeated 1000p(a;) = 200 times, symbol as is repeated approximately
1000p(az) = 300 times and symbol ag is repeated almost 1000p(a3) = 500 times.

Problem 6.22
1) The entropy of the source is

4
H(X) =~ pla;)logy p(a;) = 1.8464 bits/output
i=1

2) The average codeword length is lower bounded by the entropy of the source for error free
reconstruction. Hence, the minimum possible average codeword length is H(X) = 1.8464.

3) The following figure depicts the Huffman coding scheme of the source. The average codeword
length is

R(X)=3x(24+.1)+2x.3+.4=19
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0 4 0

0 3__ 5 [
.6
110 .2 0 1
3 1y
111 .1 1
4) For the second extension of the source the alphabet of the source becomes A? = {(a1,a1), (a1,a2), ... (as,a4)}

and the probability of each pair is the product of the probabilities of each component, i.e. p((a1,a2)) =
.2. A Huffman code for this source is depicted in the next figure. The average codeword length in
bits per pair of source output is

Ro(X)=3x.49+4x.3245 x .16+ 6 x .03 = 3.7300

The average codeword length in bits per each source output is R (X) = Ra(X)/2 = 1.865.

5) Huffman coding of the original source requires 1.9 bits per source output letter whereas Huffman
coding of the second extension of the source requires 1.865 bits per source output letter and thus
it is more efficient.

000 (a4, CL4) d6 0
010 (a4,a3) 12 0
¢ 0
100 (as,aq) .12 0
110 (az,az) .09 0 .
0010  (a4,az) .08 0
1
0011  (as,as) .08 ::::::}I_ * )
0110  (a3,az) .06 0
3 0
1010 (ag,a3) .06 0
3 | |
1110 (aq,a1) .04 1
0 | e—1
01110 (ap,ap) .04
+—-1
01111 (a1,a4) .04 . ,
10110 (a3,a1) .03 .
10111 (ay,a3) .03 ::::::}h___l
11110 (ag,a1) .02 0
111110 (a1,a9) .02 0 1
1
111111 (a1,a1) .01 1

Problem 6.23

The following figure shows the design of the Huffman code. Note that at each step of the algorithm
the branches with the lowest probabilities (that merge together) are those at the bottom of the
tree.
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10 1 0
1
—1
0
1
111.10 55— !
111,11 me 1y !
The entropy of the source is
n—1 1 ) 1
H(X) = Z ? 10g2 QZ + F 10g2 2n_1
i=1
n—1 1 . 1
= 25210g22+ﬁ(n—1)10g22
i=1
i -1

= 2Z 2Tl

In the way that the code is constructed, the first codeword (0) has length one, the second codeword
(10) has length two and so on until the last two codewords (111...10, 111...11) which have length
n — 1. Thus, the average codeword length is

-1
j n—1

=1 2! 2n

~.

R = ) p@lx)=

zeX
= 2(1-(/2"") = HX)

Problem 6.24

The following figure shows the position of the codewords (black filled circles) in a binary tree.
Although the prefix condition is not violated the code is not optimum in the sense that it uses
more bits that is necessary. For example the upper two codewords in the tree (0001, 0011) can
be substituted by the codewords (000, 001) (un-filled circles) reducing in this way the average
codeword length. Similarly codewords 1111 and 1110 can be substituted by codewords 111 and
110.

-

vyetayy
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Problem 6.25
The following figure depicts the design of a ternary Huffman code.

0 22 0
10 .18 — 0
T 1 .50 |1
12 15 —2
20 13 —0
21 1 128 |,
2 05 ——2

The average codeword length is
R(X) = > p@)l(z) =22+ 2(.18 + .17+ .15+ .13 + .10 4 .05)
= 1.78 (ternary symbols/output)

For a fair comparison of the average codeword length with the entropy of the source, we compute
the latter with logarithms in base 3. Hence,

H(X)=->) p(x)logsp(x) = 1.7047

As it is expected H(X) < R(X).

Problem 6.26

If D is the size of the code alphabet, then the Huffman coding scheme takes D source outputs and
it merges them to 1 symbol. Hence, we have a decrease of output symbols by D — 1. In K steps of
the algorithm the decrease of the source outputs is K (D — 1). If the number of the source outputs
is K(D — 1)+ D, for some K, then we are in a good position since we will be left with D symbols
for which we assign the symbols 0,1,..., D — 1. To meet the above condition with a ternary code
the number of the source outputs should be 2K + 3. In our case that the number of source outputs
is six we can add a dummy symbol with zero probability so that 7= 2-2 + 3. The following figure
shows the design of the ternary Huffman code.

0 4 0
117 1
20 .15 0

21 .13 1 5
220 .1 0

221 .05 1 9

220 .0 2

Problem 6.27

Parsing the sequence by the rules of the Lempel-Ziv coding scheme we obtain the phrases

0, 00, 1, 001, 000, 0001, 10, 00010, 0000, 0010, 00000, 101, 00001,

000000, 11, 01, 0000000, 110, 0, ...

The number of the phrases is 19. For each phrase we need 5 bits plus an extra bit to represent the
new source output.
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Dictionary | Dictionary | Codeword

Location Contents
1 00001 0 00000 0
2 00010 00 00001 0
3 00011 1 00000 1
4 00100 001 00010 1
5 00101 000 00010 0
6 00110 0001 00101 1
7 00111 10 00011 0
8 01000 00010 00110 0
9 01001 0000 00101 0
10 01010 0010 00100 0
11 01011 00000 01001 0
12 01100 101 00111 1
13 01101 00001 01001 1
14 01110 000000 01011 0
15 01111 11 00011 1
16 10000 01 00001 1
17 10001 0000000 011100
18 10010 110 011110

19 0 00000

Problem 6.28

I(X;Y) = H(X)-HXY)

= —Zp( logp(z) + Y p(x,y) log p(x|y)
7y

= = pla,y)logp(z +Zp (z,y)log p(x]y)
Z,Yy

p(z,y)
= p(z,y) log p(z,y)log ———"~
Z Z p()p(y)
Using the inequality Iny <y —1 with y = 7, we obtain Inx > 1 — 7. Applying this inequality with
_ _p(zy)
T = o) Ve obtain
p(z,y)
I(X;Y) = ) p(z,y)log
2 p(@)p(y)
p\x)p\y
> Y p(x,y) (1 - ;(;;))> = plz,y) = > _plx)ply) =0

Inz > 1 — 1 holds with equality if 2 = 1. This means that I(X;Y) = 0 if p(z,y) = p(z)p(y) or in
other words if X and Y are independent.

Problem 6.29

1) I(X;Y) = H(X)—-H(X|Y). Since in general, H(X|Y) > 0, we have I(X;Y) < H(X). Also (see
Problem 6.30), I(X;Y) = H(Y) — H(Y|X) from which we obtain I(X;Y) < H(Y). Combining
the two inequalities, we obtain

I(X;Y) < min{H(X), H(Y)}

2) It can be shown (see Problem 6.7), that if X and Z are two random variables over the same set
X and Z is uniformly distributed, then H(X) < H(Z). Furthermore H(Z) = log |X|, where |X| is
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the size of the set X' (see Problem 6.2). Hence, H(X) < log|X| and similarly we can prove that
H(Y) <log|Y|. Using the result of the first part of the problem, we obtain

I(X;Y) <min{H(X), H(Y)} < min{log |X|,log|)|}

Problem 6.30
By definition I(X;Y) = H(X) — H(X|Y) and H(X,Y) = H(X)+ HY|X) = HY) + H(X|Y).
Combining the two equations we obtain
I(X;Y) = H(X)-HX[Y)=H(X)-(HX,Y)-H(Y))
= HX)+HY)-HX,)Y)=H(Y)-(HX,Y)—- H(X))
= HY)-HY|X)=1(Y;X)

Problem 6.31
1) The joint probability density is given by

p(Y =1,X=0) = p(Y =1{X =0)p(X =0) =ep
Y =0.X=1) = p(¥ = 01X = )p(X =1) = e(1 - p)
p(Y=1,X=1) = (1-¢)(1-p)
Y =0,X=0) = (1-c)p
The marginal distribution of Y is
pY=1) = ep+(1—€)(l—p)=1+2ep—€—p
pY=0) = e(l-p)+(1—€)p=€+p—2ep
Hence,
H(X) = —plogyp—(1—p)logy(1—p)
HY) = —(1+2ep—e—p)logy(l+2ep—e—p)
—(€+p — 2ep)logy(e + p — 2¢p)
HY|X) = =) plx,y)logy(p(ylx)) = —eplogye — e(1 — p)logy e

.y
—(1—€)(1 —p)logy(l —€) = (1 —€)plogy(1 —€)
= —elogye— (1 —€)logy(l —¢)

H(X,Y) = H(X)+HY|X)
= —plogyp — (1 —p)logy(l — p) — elogy e — (1 — €) logy(1 —¢)
HX|Y) = H(X,Y)—H(Y)

= —plogyp — (1 —p)logy(l —p) —€logy e — (1 — €) logy(1 —¢)
(14 2ep —€—p)logy(1+ 2ep — € —p)
+(e+p — 2ep) logy (e + p — 2ep)
I(X:Y) = H(X)—HX|Y)=H(Y) - HY|X)
= elogye+ (1 —¢€)logy(l —e€)
—(142ep — € — p) logy(1 + 2ep — € — p)
—(e+p — 2ep) logy(e + p — 2ep)

2) The mutual information is I(X;Y) = H(Y)— H(Y|X). As it was shown in the first question
H(Y|X) = —elogye — (1 — €)logy(l — €) and thus it does not depend on p. Hence, I(X;Y)
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is maximized when H(Y') is maximized. However, H(Y') is the binary entropy function with
probability ¢ = 1 + 2ep — € — p, that is

H(Y) = Hy(q) = Hp(1 +2ep — € — p)
Hy(q) achieves its maximum value, which is one, for ¢ = % Thus,

1
épzf

14+2p—€e—p= 5

N

3) Since I(X;Y) > 0, the minimum value of I(X;Y") is zero and it is obtained for independent X
and Y. In this case

pVY=1,X=0)=pY =1)p(X=0)=ep=(1+2ep—€—p)p

or € = % This value of epsilon also satisfies

pY=0,X=0) = pY=0pX=0
pY=1,X=1) = pY=1pX=1
p(Y =0,X=1) = p(Y =0)p(X =1)

resulting in independent X and Y.

Problem 6.32

I(X;YZW) = I(YZW; X)=H(YZW) - H(YZW|X)
= HY)+H(Z|Y)+ HW|YZ)
—HY|X)+ H(Z|XY)+ HW|XYZ)]
— [H(Y) = H(Y|X)| + [H(Z]Y) - H(Z|Y X)]
+HWI|YZ)—- HW|XYZ))
= I(X;Y)+1(Z)Y; X))+ I(W|ZY; X)
= I(X;Y)+1I(X;Z)Y)+ I(X;W|ZY)
This result can be interpreted as follows: The information that the triplet of random variables
(Y, Z,W) gives about the random variable X is equal to the information that Y gives about X

plus the information that Z gives about X, when Y is already known, plus the information that
W provides about X when Z, Y are already known.

Problem 6.33
1) Using Bayes rule, we obtain p(x,y, z) = p(z)p(x|2)p(y|x, z). Comparing this form with the one
given in the first part of the problem we conclude that p(y|x, z) = p(y|x). This implies that Y and
Z are independent given X so that, I(Y; Z|X) = 0. Hence,
I(V;ZX) = I(Y;Z)+I(Y;X|2)
= I(V;X)+1(Y; Z]X) = 1(Y; X)

Since I(Y;Z) > 0, we have

I(Y; X|Z) < I(Y; X)

2) Comparing p(x,y,z) = p(z)p(y|z)p(z|z,y) with the given form of p(z,y,z) we observe that
p(ylx) = p(y) or, in other words, random variables X and Y are independent. Hence,

I(Y;2ZX) = I(Y;2)+1(Y;X|Z)
= I(V;X)+1(Y;Z|X) = I(Y; Z|X)
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Since in general I(Y; X|Z) > 0, we have

1(Y;Z) <I(Y; Z]|X)

3) For the first case consider three random variables X, Y and Z, taking the values 0, 1 with equal
probability and such that X =Y = Z. Then, I[(YV;X|2) = HY|Z) - HY|ZX) =0—-0 =0,
whereas I(Y; X) =H(Y)—-H(Y|X) =1-0=1. Hence, I(Y; X|Z) < I(X;Y). For the second case
consider two independent random variables X, Y, taking the values 0, 1 with equal probability and
a random variable Z which is the sum of X and Y (Z = X+Y.) Then, I(Y;Z) = H(Y)-H(Y|Z) =
1—-1=0, whereas I(Y; Z|X)=H(Y|X)-HY|ZX)=1-0=1. Thus, I(Y;2) < I(Y; Z|X).

Problem 6.34

1)
I(X:Y) = H(X)-H(X]Y)

= = p(x)logp(x +Zprylogpw!y)
T

Using Bayes formula we can write p(z|y) as

~plz,y)  p(x)p(ylw)
(ly) = ply) 2. p@)p(yle)

Hence,

I(X;Y) = =) p(x)logp(z +Zprylogp zly)
_ o 2 log _P@PY[2)
=~ 2pl)lop(e) + 33 pledplyia)los 52 eS
B o p(ylx)
= 22 parll)les = o

Let p1 and p2 be given on & and let p = Ap1 + (I — A)p2. Then, p is a legitimate probability
vector, for its elements p(x) = Ap1(z) + Ap2(z) are non-negative, less or equal to one and

> p(x) =" Api(z) + Apa( AZpl J+AY po@) = A+ A=1

T

Furthermore,
M (p1; Q) + M (p2; Q) — I(Ap1 + Ap2; Q)
) g P
2.2 n@plvle)los = o o

p(ylx)
AL 2 pepbla) o O T

) o p(ylz)
ZZ ApL() + A (2))plyla) log =T e s

) 1og 1) £ A (@)plyl)
= 22 bl s =

(Apl (z) + Ap2(z))p(y|z)
2.2 (el log = )
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< ZZ)\pl y’x <()\p1($) + sz(x))p(yu) B 1>

NACEOD
(\p () + Apa(2))p(yle)
+2.2 (@) y"”( >, p2(@)p(yla) ‘1>
= 0

where we have used the inequality logz < x — 1. Thus, I(p; Q) is a concave function in p.

2) The matrix Q = Q1 + AQ, is a legitimate conditional probability matrix for its elements
p(ylz) = Ap1(y|x) + Ap2(y|z) are non-negative, less or equal to one and

Y Y plz) = D0 (pi(ylz) + Apa(ylz))
= A > pilyle) + 2D pe(ylz)

= A+A=A+1-A=1

I(p; AQ1 + AQ2) — M (p; Q1) + M (p; Q2)

= ZZP (Ap1(y|z) + Apa(y|z)) log Ap1(y|z) + Ap2(yla)

> p(@) p1 (ylz) + Apa2(y|z))

- A )1 pi(ylz
2.2 p@Pnle)og o o

B - p2(ylz
2. 2 p@Pnlle) o=t T

B 2o Ap1(ylz) + Ap2(y|x) > p(@)p1(ylx)
N Zzp el 1glzwpmupl(mx)+Ap2<yrm>> pi(ylz) ]

Av /\v

Ap1(ylz) + Ap2(y|z) > p(@)p2(ylz)
*Zzp Ppz(y1) 1°glzxpm(xpl(ym+Xp2<ym>> pa(y[z) ]

Api(yle) + Ape(ylz) X pl@)piyle)
2. 2 P pyla) [zxp@)upl(ym+Ap2<y\x>> O 1]

P el [ R Ep(ell)

IN

Yo P(@)Ap1(ylz) + Ap2(ylz))  pa2(yl2)

B >, p(x)p1(y|z) o) Ap1(ylz) + Apa(ylz))
N Z ) Om ) + dpalle)) 2 PP 1) pi(ylz)
(

—AZZP z)p1(ylw)
> p(@)pa(y|z) Apl(y!ff:)Jrsz(ylw))
*Zz 2 O (0]2) + Apayie)) 2= P p2(yle)
—AZZP(x)pz(ylw
- 0

Hence, I(p; Q) is a convex function on Q.

Problem 6.35
1) The PDF of the random variable Y = a X is
1

Fr() = 1 fx ()
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Hence,
W) = = [ fr@logfy (v)dy
1 Y
= - fX( )lo (fX()) dy
/oo |al lal""
1.y 1.y Y
= o (o) [ ity [T o (1)) ay
ol ) Jco [T e —o | a
1
— g (| ’) + h(X) = log|a| + h(X)
2) A similar relation does not hold if X is a discrete random variable. Suppose for example that

X takes the values {z1,z2,...,x,} with probabilities {p1,p2,...,pn}. Then, ¥ = aX takes the
values {az1, axy,...,ax,} with probabilities {p1,p2,...,pn}, so that

—> pilogp; = H(X)

Problem 6.36
1)

©1 _a 1
h(X) = - ; 3€ Aln()\e X)dx

1 ©
= —ln(x)/ —e Adm+/ —e Ab:l:\d:c
= ln)\+)\/0 Xe_?acd:z

= ln)\—l—%)\:1+ln)\
where we have used the fact [° $e” Sdr=1and E[z] = [°x Te “Xdz =\

2)

1. [ 1 -
= _ln<ﬁ)/_oo2A /\/ ’x‘ ~de

1 0 1 _=z
= ln(2>\)+x {/OO —xﬁexdaw—/ azﬁe Adx]

= In(2\) + ﬁx + ﬁx = 1+1n(2)\)

3)

O z+ A T+ A\ Az + A —z+ A
h(X) = —/_/\ 32 ln( 32 )d:z—/o 2 ln< 2 >d$
1 x4+ A —x+)\
= ln(/\Q) [/)\ dx —|—/

A —x+ A
_/_)\x; ln(x—i—)\)d:c—/o a:/\;i— In(—z + \)dx
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Problem 6.37
1) Applying the inequality Inz < z — 1 to the function z = %, we obtain

p(@)ply)

Inp(z) +Inp(y) — Inp(z,y) < pz,y)

Multiplying by p(z,y) and integrating over x, y, we obtain

/ / (z,y) (Inp(x) + Inp(y)) dedy — / / (z,y) Inp(x,y)dzdy

[ [ stamtnasasr— [~ [ stoasay

= 1-1=0

IN

Hence,

h(X,Y) < / / (z,y) Inp(z)dedy — / / (z,y) Inp(y)dxdy
Also, h(X,Y) = h(X|Y) + h(Y) so by combining the two, we obtain
MX|Y)+h(Y) < h(X)+h(Y) = h(X]Y) < h(X)

Equality holds if z = % =1 or, in other words, if X and Y are independent.

2) By definition I(X;Y) = h(X) — h(X]|Y). However, from the first part of the problem h(X]Y") <
h(X) so that
I(X;Y) >0

Problem 6.38
Let X be the exponential random variable with mean m, that is

fx(z) = { e w20

0 otherwise

Consider now another random variable Y with PDF fy (), which is non-zero for = > 0, and such
that

E[Y]| = /OOO zfy(z)de =m

Applying the inequality Inz < z — 1 to the function x = J;;( Eg, we obtain

(o (o)) < 1X(@)

Multiplying both sides by fy (x) and integrating, we obtain

/ " (@) In(fx(2))da — / " (@) n(fy(2))da < / " fx(@)da — / ” fy(@)dz =0

-1
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Hence,
hY) < —/Ooofy(:r)ln (;e—> dx
~ (;) /Ooofy<m)da;+;/oooxfy(m)d;c
= Im+ =1+ Im=h(X)

where we have used the results of Problem 6.36.

Problem 6.39
Let X be a zero-mean Gaussian random variable with variance 02 and Y another zero-mean random
variable such that

/_OO v fy (y)dy = o

Lo 2,2
Applying the inequality In z < z — 1 to the function z = 7%, we obtain
1 -2
1 a2 Vo2t ¥
ln< e2a2>—lnfya: G i —
V2mo? (=) fy(z)

Multiplying the inequality by fy (z) and integrating, we obtain

/O:Ofy(m) [111(\/2;?)—;52] dr+h(Y)<1—-1=0

Hence,

h(Y)

IN

1 1 o0
—In <W> + 292 /_Oo 2% fx (x)da
= In(V2ro?) + %‘202 = ln(e%) + In(V2710?)
= h(X)

Problem 6.40
1) The entropy of the source is

H(X) = —.25log, .25 — .75log, .75 = .8113 bits/symbol

Thus, we can transmit the output of the source using 2000H (X') = 1623 bits/sec with arbitrarily
small probability of error.

2) Since 0 < D < min{p, 1 —p} = .25 the rate distortion function for the binary memoryless source
is

R(D) = Hy(p) — Hy(D) = Hy(.25) — Hy(.1) = .8113 — .4690 = .3423
Hence, the required number of bits per second is 2000R(D) = 685.

3) For D = .25 the rate is R(D) = 0. We can reproduce the source at a distortion of D = .25 with
no transmission at all by setting the reproduction vector to be the all zero vector.
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Problem 6.41
1) For a zero-mean Gaussian source with variance 02 and with squared error distortion measure,
the rate distortion function is given by

1 o 2
slogs 0< D<o
R(D)=1<{ 2 D =7 =
(D) { 0 otherwise

With R =1 and 02 = 1, we obtain

1
2:10g5:>D:2*2:0.25

2) If we set D = 0.01, then
1 1
=-log— = 3 log 100 = 3.322 bits/sample

Hence, the required transmission capacity is 3.322 bits per source symbol.

Problem 6.42

1) Since R(D) = log % and D = %, we obtain R(D) = log(/\iﬂ) = log(2) = 1 bit/sample.

2) The following figure depicts R(D) for A = 0.1, .2 and .3. As it is observed from the figure, an
increase of the parameter A increases the required rate for a given distortion.

R(D)

015 02 025 03

Distortion D

Problem 6.43

1) For a Gaussian random variable of zero mean and variance o2 the rate-distortion function is
given by R(D) = % log, %. Hence, the upper bound is satisfied with equality. For the lower bound
recall that h(X) = 1 logy(2mec?). Thus,

1 1 1
h(X) — 3 logy(2meD) = 3 log, (2mec?) — 3 logy(2meD)

1 2rec?
9 082 <27reD> R(D)

As it is observed the upper and the lower bounds coincide.

2) The differential entropy of a Laplacian source with parameter A is h(X) = 1 + In(2X). The
variance of the Laplacian distribution is

2 gl sl 2
— r—e X dﬂf — 2)\
oo 2X
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Hence, with 0% = 1, we obtain A = /1/2 and h(X) = 1+In(2)\) = 1+In(v/2) = 1.3466 nats/symbol =
1500 bits/symbol. A plot of the lower and upper bound of R(D) is given in the next figure.

Laplacian Distribution, unit variance

R(D)
)

T ~-.____ Upper Bound

0 01 02 03 04 05 06 07 08 09 1
Distortion D

3) The variance of the triangular distribution is given by

s /j\(m—k)\) 2dx+/ ( x—i-/\) 2

N N A 14 /\3)A

= )\2<4x +3x>)\+)\2< 433 +3x .
)\2

6

Hence, with 02 = 1, we obtain A = v/6 and h(X) = In(6)—In(v/6)+1/2 = 1.7925 bits /source output.
A plot of the lower and upper bound of R(D) is given in the next figure.

Triangular distribution, unit variance

R(D)
)

~~-.___Upper Bound

Lower Bound

00 02 03 04 05 06 07 08 09 1

Distortion D

Problem 6.44
For a zero-mean Gaussian source of variance o2, the rate distortion function is given by R(D) =
%Iog %. Expressing D in terms of R, we obtain D(R) = 02272%, Hence,

D(R 02272 1 D(R
(Fa) _ = Ry — Ry = 7 logy (DERS)

D(Ry) 022 2Rz 2
With ggg;g = 1000, the number of extra bits needed is Ry — Ry = 1 log, 1000 = 5.
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Problem 6.45
1) Consider the memoryless system Y (¢t) = Q(X(¢)). At any given time ¢ = ¢, the output Y (1)
depends only on X (t;) and not on any other past or future values of X (¢). The n'® order density

Iy 1),y (62) (Y15 - - -, Yn) can be determined from the corresponding density fx(1,),....x (t,) (15 - - - s Tn)
using
J
Ixt) X (t0) (T15 -+, Tn)
fY(t1),...,Y(tn) <y17 cee 7y7’b) - Z - J 7 7
7=1 | ($1,...,$n)|
where J is the number of solutions to the system
Yy = Q(xl)a Y2 = Q(%Q), Ty Yn = Q(.’L’n)
and J(z, ..., 2J) is the Jacobian of the transformation system evaluated at the solution {z?, ..., x4 }.

Note that if the system has a unique solution, then
J(xl, ey -Tn) = Q’(xl) s Q/(I'Q)

From the stationarity of X (¢) it follows that the numerator of all the terms under summation, in the
expression for fy (4. v (t.) (U1, -+, Yn), is invariant to a shift of the time origin. Furthermore, the
denominators do not depend on ¢, so that fy(tl)y__wy(tn)(yl, ..., Yn) does not change if t; is replaced
by t; + 7. Hence, Y (¢) is a strictly stationary process.

2) X(t) — Q(X(

t)) is a memoryless function of X (¢) and since the latter is strictly stationary, we
conclude that X (¢

) = X(t) — Q(X(t)) is strictly stationary. Hence,

- E[X2(1)] B ) _
SONR = orx®m —otx 7] E[X2(t)]

Problem 6.46

1) From Table 6.2 we find that for a unit variance Gaussian process, the optimal level spacing for a
16-level uniform quantizer is .3352. This number has to be multiplied by ¢ to provide the optimal
level spacing when the variance of the process is ¢2. In our case 02 = 10 and A = /10 - 0.3352 =
1.060. The quantization levels are

T1=—21g = —7-1.060— 3 1.060 = —7.950
To=—215 = —6-1.060— % -1.060 = —6.890
T3 =—T14 = —5-1.060— % -1.060 = —5.830
T4 =—213 = —4-1.060— % -1.060 = —4.770
T5 = —212 = —3-1.060— % -1.060 = —3.710
T6=—211 = —2-1.060— % -1.060 = —2.650
Ty =—210 = —1-1.060— % -1.060 = —1.590
Tg=—%9g = —% -1.060 = —0.530

The boundaries of the quantization regions are given by

al; = aljy — —7-1.060 = —7.420
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ag =a14 = —6-1.060= —6.360

a3 =aiz3 = —5H-1.060= —5.300

ag =aj2 = —4-1.060= —4.240

as =a;; = —3-1.060= —3.180

ag =ayg = —2-1.060=—-2.120

ar=a9 = —1-1.060= —1.060
ag = 0

2) The resulting distortion is D = 2 - 0.01154 = 0.1154.

3) The entropy is available from Table 6.2. Nevertheless we will rederive the result here. The
probabilities of the 16 outputs are

ais

p(21) = p(216) = Q(

plEs) = plé1s) = QL) — Q(22) =0.0127

) = 0.0094

3l

V10 V10
pls) = plinn) = Q%) = Qi) = 0.0248
Pl = plin) = Q) - Q) = 0.0431
p(ds) = plinn) = @(%)—@(%):o.om
plis) = plin) = Q(AS) = Q) = 0.0940
p(Er) =plin) = Q(25) = Q) = 0.1175
p(@s) = p(9) = Q(%)—Q(%):O.Bll

Hence, the entropy of the quantized source is

1

H(X) = - 6p(#;) logy p(i;) = 3.6025
=1

This is the minimum number of bits per source symbol required to represent the quantized source.

4) Substituting 02 = 10 and D = 0.1154 in the rate-distortion bound, we obtain

0.2

1
R = log, o = 3.2186

5) The distortion of the 16-level optimal quantizer is Dig = o2 - 0.01154 whereas that of the 8-level
optimal quantizer is Dg = o2 - 0.03744. Hence, the amount of increase in SQNR. (db) is

SQNR 0.03744
101ogy, WRis _ 1.4 5

D=6 1)) 1og,) ~o e — 5.111 db
SQNRq 810 01154

Problem 6.47
With 8 quantization levels and 02 = 400 we obtain

A = 0.5860 = 20 - 0.5860 = 11.72
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Hence, the quantization levels are

T1=—-28 = —3-11.72— %11.72 = —41.020
To=—27 = —2-11.72 - %11.72 = —29.300
T3=—2¢ = —1-11.72— %11.72 = —17.580
Ty =—25 = —%11.72 = —5.860

The distortion of the optimum quantizer is

D = 02-.0.03744 = 14.976

As it is observed the distortion of the optimum quantizer is significantly less than that of Example
6.5.1. The informational entropy of the optimum quantizer is found from Table 6.2 to be 2.761.

Problem 6.48

Using Table 6.3 we find the quantization regions and the quantized values for N = 16. These values

should be multiplied by o = P;(/ L V10, since Table 6.3 provides the optimum values for a unit

variance Gaussian source.
a1 =—a;5 = —V10-2.401 = —7.5926
as = —ay = —V10-1.844 = —5.8312
as = —ai3 = —V10-1.437 = —4.5442
ag=—ayp = —v10-1.099 = —3.4753
as =—ay; = —v10-0.7996 = —2.5286
ag = —aig = —V10-0.5224 = —1.6520
a; = —ag = —/10-0.2582 = —0.8165

ag = 0

The quantized values are
i1 =—#1 = —V10-2.733 = —8.6425
fo=—&15 = —V10-2.069 = —6.5428
f3=—%14 = —V10-1.618 = —5.1166
fg=—&13 = —V/10-1.256 = —3.9718
i5=—#19 = —V10-0.9424 = —2.9801
ig=—i11 = —V10-0.6568 = —2.0770
i7=—#19p = —V10-0.3881 = —1.2273
iy = —iy = —V10-0.1284 = —0.4060

The resulting distortion is D = 10-0.009494 = 0.09494. From Table 6.3 we find that the minimum

A~ 2
number of bits per source symbol is H(X) = 3.765. Setting D = 0.09494, 0> = 10 in R = %log2 5
we obtain R = 3.3594. Thus, the minimum number of bits per source symbol is slightly larger that

the predicted one from the rate-distortion bound.

Problem 6.49

1) The area between the two squares is 4 x 4 — 2 x 2 = 12. Hence, fxy(z,y) =

probability fx(z) is given by fx(x) = fE fxy(z,y)dy. If =2 < X < —1, then

1 1

/fXYSUyy Y :g
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If -1 < X <1, then

U Y
)= [, v+ [ 55—
Finally, if 1 < X < 2, then
1 1
/ fxy(z,y)d 12y S 3
The next figure depicts the marginal distribution fx(x).
11/3.
1/6
-2 -1 1 2
Similarly we find that
% —2<y< -1
fr(y) = g —1<y<-1
3 I1<y<2

2) The quantization levels &1, 29, #3 and &4 are set to —3, —%, % and % respectively. The resulting

distortion is

0
px = 2 @i [ @t ) x
2 9 1
= §/ (2 + 3z + )d:c+6/ (z? +x+4)d
2( 5 +9>1+2(13+ 2+1>0
= = :C T |z —x -
3 47) 5 6\3 2 47) 1,
1
12
The total distortion is ) ) .
Digtal = Dx + Dy = — + — = —
total x + Dy = 12+12 6

whereas the resulting number of bits per (X,Y) pair

R =Rx + Ry =logy4+log,4 =14

3) Suppose that we divide the region over which p(z,y) # 0 into L equal subregions. The case of
L = 4 is depicted in the next figure.

For each subregion the quantization output vector (Z, %) is the centroid of the corresponding rect-
angle. Since, each subregion has the same shape (uniform quantization), a rectangle with width
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equal to one and length 12/L, the distortion of the vector quantizer is

b= [ e g e

= // {x— (y—;i)ﬂdfcdy

B 121+1231 1+12
B L12 L1212 I?

If we set D = %, we obtain

12 1

—=—=L=vV144=12

L2 12
Thus, we have to divide the area over which p(x,y) # 0, into 12 equal subregions in order to
achieve the same distortion. In this case the resulting number of bits per source output pair (X,Y)
is R = logy 12 = 3.585.

Problem 6.50
1) The joint probablhty density function is fxy(z,y) = @ f)2 = %. The marginal distribution

fx(@)is fx(z) = [, fxv(z,y)dy. If =2 <2 <0,then
z+2 - x+2
fx@) = [ pevlody = g, =4
—x—2
If 0 <z < 2,then
—x+2 71 — + 2
fx@) = [ fxrledy = ol 5 = =
The next figure depicts fx(x).
1
2
2 | 2

From the symmetry of the problem we have

w2 9 <y <0
_ 1 )
fY(y)—{ fy4+2 0<y<2

2)
Dy = / x+ )2 () dw+2/ z+ )fX()
1/ +2)dz + = / +1)( +2)d
= — .%' X i X X
2 2 2
1( 4+53+332+9)1+1<14+ +9 +1)0
= — —T X —T X X X X
2 3 8 27 ), 2\4 8 27 ) |4
_ L
12
The total distortion is ) ) )
Digtal = Dx + D — Y+ — ==
total x + Dy = 12+12 6



whereas the required number of bits per source output pair

R=Rx + Ry =logy,4+log,4 =14

3) We divide the square over which p(z,y) # 0 into 2% = 16 equal square regions. The area of each
square is % and the resulting distortion

1
D = // { 24 —Q}dd
) (y 2ﬂ) zdy
1
:4/ /” — —)%dad
A (z \/i)xy
4 [, o, 1 oz
= — +-— =)
2/0 (z S ﬂ)x
4(13+1 1 2)35
= — | —Xr — x
2\3 8 2v/2 0
1
12

Hence, using vector quantization and the same rate we obtain half the distortion.

Problem 6.51
X = = X/2. Hence,

Tmax

With v = 8 and X2 = % we obtain

1
SQNR = 3-4%. - =48 = 48.165(db)

w

Problem 6.52

1)
A2
0 = E[X*(t)) = Rx(7)lr=0 =
Hence,
VY2 v X2 v A?
SQNR=3-4"X?2=3-4 s— =34 oAz

max

With SQNR = 60 db, we obtain
3. 44
10log;q <2> =60 = ¢ =9.6733
The smallest integer larger that ¢ is 10. Hence, the required number of quantization levels is v = 10.

2) The minimum bandwidth requirement for transmission of a binary PCM signal is BW = vW.
Since v = 10, we have BW = 10W/.
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Problem 6.53

1)
0 2 2 _ 2
E[X2(1)] / x2<“ )dm—i—/ 2( s )d
-2 4 0 4
o171y 23>0 1(14 23)2
= 4<4x +3x _2+4 433 +3x .
_ 2
3
Hence,

= 512 = 27.093(db)

2) If the available bandwidth of the channel is 40 KHz, then the maximum rate of transmission is
v =40/5 = 8. In this case the highest achievable SQNR is

3 x 48 2

SQNR = "5~ = 32768 = 45.154(db)

3) In the case of a guard band of 2 KHz the sampling rate is f; = 2W + 2000 = 12 KHz. The

highest achievable rate is v = 2%W = 6.6667 and since v should be an integer we set v = 6. Thus,
the achievable SQNR is
3x45x 2
SQNR = ———= = 2048 = 33.11(db)

22

Problem 6.54
1) The probabilities of the quantized source outputs are

-1 -1

“lx+2 1 1 1

T = T = d = — 2 — —
p(21) = p(Z4) /_2 =T + 5% LT3
Tz +2 1 I 1|t 3

o) = p(a = der = — =2 Zal =2
P#2) =p(2s) /0 L R

Hence,
H(X) = Zp (2;) logy p(&;) = 1.8113 bits / output sample

Z;

2) Let X = X — Q(X). Clearly if |X| > 0.5, then p(X) = 0. If [ X| < 0.5, then there are four
solutions to the equation X = X — Q(X), which are denoted by x1, x2, 3 and x4. The solution
x1 corresponds to the case —2 < X < —1, x9 is the solution for —1 < X < 0 and so on. Hence,

1 4+2  (F-15)+2 —r34+2  —(E40.5)+2

Fx(@) = —p— = 1 fx(oy) = —7—= i
Fx(m2) = xzi—Z _ (33—04.15)4-2 Fx(aa) = —xz—i—Q _ —(x+i_5)+2

The absolute value of (X — Q(X))" is one for X = 21, ...,x4. Thus, for |X| < 0.5
4
~ fX 331
fe () T OV
X lzzl (i — Q(4))|

(—1.5)+2 (F-05)+2 —(2+05)+2 —(F+15)+2
4 * 4 + 4 * 4

=1
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Problem 6.55

1)
Rx(t+1,t) = E[X({+71)X(1)]
= E[Y?cos(2rfo(t + 7) + ©) cos(27 fot + ©)]
= %E[YQ]E[COS(%rfOT) + cos(2m fo(2t + 7) 4+ 20)]
and since

Elcos(2mfo(2t + 1) +20)] = 2i /027T cos(2m fo(2t + 7) + 20)d6 = 0

T
we conclude that ) 3
Rx(t+1,t) = §E[Y2] cos(2m foT) = 5 cos(27 for)

2)

41/
101og;) SQNR = 10logy, (3 x 47 x Bx(0) ) — 40

2
Lmax

Thus,

47/
].Og]_o <2) =4orv=2_8

The bandwidth of the process is W = fj, so that the minimum bandwidth requirement of the PCM
system is BW = 8fj.

3) If SQNR = 64 db, then
V' =log,(2-10%%) =12

Thus, v/ — v = 4 more bits are needed to increase SQNR by 24 db. The new minimum bandwidth
requirement is BW' = 12fj.

Problem 6.56
Suppose that the transmitted sequence is x. If an error occurs at the i*" bit of the sequence, then
the received sequence x’ is

x ' =x+10...010...0]

where addition is modulo 2. Thus the error sequence is e; = [0...010...0], which in natural binary
coding has the value 2'~!. If the spacing between levels is A, then the error introduced by the
channel is 207 1A.

2)

14
Dchannel = Zp(error in 7 bit) - (207 1A)?

i=1
- . 1-—4~
= Y pAMT = pA?
; 1-4
=1
4v —1
= A2
Pb 3
3) The total distortion is
4 -1 22
Dtotal = Dchannel + unantiz. = PbA2 + =

3 3. N2
422 4V —1 22

max max

N2 3 +3-N2

= P
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or since N = 2%

.1'2 x2 2
Diotar = 55 (1+4pp(4” = 1)) = ZRE(1 + dpp(N* 1)
4)
E[X? E[X?2]3N?2
S X7

Dtotal x?nax(l + 4pb(N2 - 1))

If we let X = =X~ then #Xﬂ = E[X?] = X2. Hence,

)
Tmax max

3INZX2 3.4vX2
L+4py(N2—1)  1+44py(4» —1)

SNR =

Problem 6.57
1)

|z

log(1+ pz=-)

Lmax
log(1 + 1)
Differentiating the previous using natural logarithms, we obtain

sgn(z)

1 N/xmax
L) (14 plth)

Tmax

70 = i sgn’(v)

Since, for the p-law compander ymax = g(Tmax) = 1, we obtain

yr2nax ee fX(x>
Do~ e | R

[ (1o o
3 x 41/#2 2

%

T
4ol

max X max

) fx(x)dz

o0

Thax (1 + p)]? 2 2 v
—  Tmax 14 12B[X?] + 2uE| X
S LT 2B X
xrznax[ln<1 + M)]2 2 2 %
= e |1+ #2B[X?] + 2uB]| X]]|

where N2 = 4" and X = X/Tmax-

2)
SQNR = E%Q]
_ E[X?] u?3 - N2
2Ry [In(1+ p)2(u2E[X?] + 2uB[| X ] + 1)

3u2N2E[X?]
(1 + p)]2(u2 E[X?] + 20 B[ X[] + 1)

3) Since SQNR i = 3 - N2E[X?2], we have

2
SQNR, = = SQNRu - .
[In(1 + p) 2 (2 E[X?] + 2pE[| X[ 4 1)

= SQNRunifG(Mv X)

158



where we identify
2
y 0
G(p, X) = YT 2
(In(1 + p)?(p*E[X?] + 2uE[| X]] + 1)

3) The truncated Gaussian distribution has a PDF given by

K -
= e 20_1’
fY(y) \/%O'x
where the constant K is such that
4oy L22 1
K/ e 29edr=1—K=———-=1.0001
4oz V 27'('0'5,; 1-2Q(4)
Hence,
y K [loe |g| -2
FllX]|| = / e 2% dx
H H V2moy, J—40, 4o,

2

2K /4% “57y
= — ze *edr
4+/2mo2

4o,

_K —ole 203
2\ 2mo?2 ‘ 0

K
= 1—e %) =0.1725

2+/ 27r( )

In the next figure we plot 101og;q SQNR,,;r and 101og;q SQNR,,,,_1aw VS. 101log;o E[X?] when the
latter varies from —100 to 100 db. As it is observed the p-law compressor is insensitive to the
dynamic range of the input signal for E[X?] > 1.

200

150+

uniform
100+

SQNR (db)

50+

mu-law

oo 80 60 40 20 0 20 40 60 80 100
E[XA2] db

Problem 6.58
The optimal compressor has the form

g(-T) = Ymax IQII [ ( )]gdv_]

S22

where Ymax = g(Tmax) = g(1).

/_O:O[fx(v)]édv B /_ll[fx(v)]éd”:/o (v+1)édv+/01(—v+1)§dv

-1
1 1 3

= 2 7d = —
/ox”” 2
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If x <0, then

If x > 0, then

/x [fx()5dv = /0(v+1)§dv+/0$(—v+1)§dv:i+ ' 25 ds

—00 -1 1-x
3 3 4
= 1+1@—u—@g
Hence,
@) g [z+1s-1] —1<z<0
€T =
J g)[1-(1-2)3| 0<z<1
The next figure depicts g(z) for g(1) = 1. Since the resulting distortion is (see Equation 6.6.17)
I
08
0.6
04
02}
z 0
02+
04}
06/
08

D=1 >1< 4v U_sz[fx““"”;’dxr T2 >1< 4 (2>3

E[X? 2 2 1 16
[ ]:3—><4”E[X2}:3—><4”-f:—4”
D 9 9 6 27

we have

SQNR =

Problem 6.59

The sampling rate is f; = 44100 meaning that we take 44100 samples per second. Each sample is
quantized using 16 bits so the total number of bits per second is 44100 x 16. For a music piece of
duration 50 min = 3000 sec the resulting number of bits per channel (left and right) is

44100 x 16 x 3000 = 2.1168 x 10°
and the overall number of bits is

2.1168 x 109 x 2 = 4.2336 x 10°
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Chapter 7

Problem 7.1

The amplitudes A,, take the values
d
Am:(2m—1—M)§, m=1,...M

Hence, the average energy is

1y, @2 X )
o = 77 Z_: St = 11750 Z(2m—1—M)
m=1 m=1
d? J 2 2
m=1
d2 M ) ) M
_4M@G§yn+wM+n—qM+an>
m=1 m=1
d? (M +1)(2M + 1) ) M(M +1)
= — 4 M(M+1)*—4(M+1)——=
o ( ) + MO+ 17 - a1+ )2 D)
. M?P-1d?
B 3 47
Problem 7.2
The correlation coefficient between the m™ and the n' signal points is
_ Sm " Sp
T [l lsal
where s, = (Sm1, Sm2, - - -, Smn) and Smj = :t\/%. Two adjacent signal points differ in only one

coordinate, for which s,,; and s,; have opposite signs. Hence,

N
Sm - 8p = Z SmjSnj = Z SmjSnj T SmkSnk
=1 7k
E & N-2
= N-1)—=—-—=—"-2¢E
Furthermore, [s,,| = [s,| = (85)% so that

N -2
Ymn = N

The Euclidean distance between the two adjacent signal points is

2
1= \fom ol = 12BN = il =[5
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Problem 7.3

a) To show that the waveforms v, (t), n =1,...,3 are orthogonal we have to prove that

/_Z DO n()dt =0,  m£n

Clearly,
e’} 4
clp = /_ wl(t)w(t)dt:/o Y1 ()2 (t)dt
2 4
- /O (B (t)dt + /2 (O (t)dt
1 /2 1 4 1 1
=0
Similarly,
o) 4
s = /_ (st = /0 D (£ ()t
1 1 1 2 1 3 1 4
_ Z/0 dt—Z/l dt—z/z dt+1/3 dt
=0
and

e = [ w0 = [ e@u

1
= — [ dt—— [ dt dt —— [ dt
iha-gfavifa-gf

= 0

Thus, the signals v, (t) are orthogonal.

b) We first determine the weighting coefficients

o = /Oo s(Oon(O)dt,  n=1,2,3

- /4x<>w1 Vdt = _7/ dt+ - /dt—f/ dt + /dt—O
= /0 =tk 2/
- /0433(t)1p3(t)dt:—2/0 dt—§/1 dt+;/23dt+;/:dt:0

As it is observed, x(t) is orthogonal to the signal waveforms 1, (t), n = 1,2,3 and thus it can not
represented as a linear combination of these functions.

Problem 7.4

a) The expansion coefficients {c,}, that minimize the mean square error, satisfy

0 4 T
en = / ()i ()dt = /0 sinztd;n(t)dt

—00
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Hence,

4 t I t I t
= /Osm%wl(t)dt—i/o sm%dt—ié sm%dt
2 7rt2+2 nt]*
= ——cos— —COos —
m 4 0 s 4 2
2 2
= —0-1)+—=(-1-0)=0
7r
Similarly,
4wt 14wt
= in —qo(t)dt = = [ sin—dt
o /Osm41/J2() 2/0 sin -
2 bt 2 4
= —Zeos =—(-1-1)=—
m 41 T m
and

4 t
c3 = /sinﬁ—wg(t)dt
0 4
= ;/ sm—d —f/ sm—dt—i— /sm—d —f/ sm—dt
0
=0

it

7 1s even with respect to the z = 2 axis and

Note that c¢1, co can be found by inspection since sin It
P1(t), ¥3(t) are odd with respect to the same axis.

b) The residual mean square error Ey,;, can be found from

oo
Emin - / 2dt Z |C’L‘2
—0o0

Thus,
17 mt\? 4\% 1 [ it 16
Emin = /0 (Sln 4) dt — (7]’) = 5 0 <1 — COS 2) dt — ﬁ
) 1 . #wt|* 16 16
= ——sin—| ——5=2— —
T 20y w2 w2
Problem 7.5

a) As an orthonormal set of basis functions we consider the set

1 0<t«1 )1 1<t
Yi(t) = { 0 ow Pat) = { 0 ow
1 2<t<3 )1 3<Zt<4
¢3(t) - { 0 oO.W @Z}4(t) - { 0 oO.W
In matrix notation, the four waveforms can be represented as
s1() 2 1 -1 -1\ [ e(®)
o) | | -2 1 1 o || e
s | T 1 -1 1 a1 || e
sa(t) 1 =2 =2 2 )\ w
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Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the
waveforms is 4

b) The representation vectors are

sio= [2 -1 -1 -1]
s = [-2 11 0]

ss = [1 -1 1 —1]
sio= [1 -2 -2 2]

c) The distance between the first and the second vector is

d1,2_\/‘51—s2\2_\/H4 -2 =2 —1”2:\/%

Similarly we find that

diz = |S1—83|2=\/_1 0 -2 01 =v5
r 112
dia = IS1—S4|2=\/ 111 =3[ =v12
r 112
da3 = |SQ—S3!2=\/ -3 2 01 =14
2
dosa = |sQ—s4!2—\/[—3 3 3 —2” =31
2
dzq = yS3—S4y2:\/[0 1 3 —3” — V19

Thus, the minimum distance between any pair of vectors is dyin = V5.

Problem 7.6

As a set of orthonormal functions we consider the waveforms

wl(t>={1 O=t<td %(t):{l bet<2 1,!)3(t)={1 2<t<3

0 ow 0 ow 0 ow

The vector representation of the signals is

sio= |22 2]
ss = [20 0]
s3:[0 92 —2]
sio= [220]

Note that s3(t) = sa(t) — s1(t) and that the dimensionality of the waveforms is 3.
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Problem 7.7

The energy of the signal waveform s/ (¢) is

5/

00 00 M
|t at= [ fsnte) - ﬁ > skl

[ dt+M2ZZ/

The correlation coefficient is given by

Ymn

k=11=1
5 o t—+z/
MQ};;e&,d—fg
5+A145—M5:(MA;1>5
)5 (t)dt

S5 st
/25 Istu @) Pat] * [

1 oo 1 ¥
g,/_oo<3m(t)_MZ

5, (0)2at]

n

—

Problem 7.8

Assuming that E[n?

E[an] =

(t)] = o2, we obtain

E [( / s tm (t)dt) ( /0 ! sz(v)n(v)dv)]
= / / s1(t)sa(v)En(t)n(v)]dtdv

— o2 / 51(£)sa(t)dt
0
— 0

where the last equality follows from the orthogonality of the signal waveforms s;(t) and sa(t).

Problem 7.9

a) The received signal may be expressed as

n(t)
A+n(t)

if so(t) was transmitted
if s1(t) was transmitted

r(t) = {
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Assuming that s(t) has unit energy, then the sampled outputs of the crosscorrelators are
r=Sm+n, m=20,1

where sg = 0, s1 = AVT and the noise term n is a zero-mean Gaussian random variable with
variance

o2 = E[\}T/()Tn(t)dt\/lf/:n(r)dv'l
_ % /0 ! /0 " B ln(tn(r)] didr

No (T (T Ny

The probability density function for the sampled output is

1 _r2
rls = e No
frlso) = =
1 _(r—AvT)?
f(rls1) = No

\/7TNO€

Since the signals are equally probable, the optimal detector decides in favor of sq if
PM(r,s0) = f(r|so) > f(r[s1) = PM(r,s1)

otherwise it decides in favor of s;. The decision rule may be expressed as

50
(r—AVT)2—r2 _ (2r—AVT)AVT
PM(I’, Sl)
S1
or equivalently
51
1
r z —AVT
50

The optimum threshold is %A\/T
b) The average probability of error is

Pe) = %P(e\so)—F%P(e\sl)
1 [ 1 [2AVT
= 2/éAﬁf(r\so)dr+2/oo f(r|s1)dr
1 [ 1 2 1 [z2AVT 1 oavmy?
= 2/§A\/T\/7T7Noe NOdr+§[m \/TTOe No  dr

WEST 2,

1 2 1 [/~
e 2dr+ - / e
V2T 2 J_x Vo

1 oo
2/5\/1\,7014\/?
= Q B\/N?()Aﬁl = Q[VSNR]
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where
TA’T
SNR = =——
No
Thus, the on-off signaling requires a factor of two more energy to achieve the same probability of
error as the antipodal signaling.

Problem 7.10

Since the rate of transmission is R = 10° bits/sec, the bit interval T} is 10~° sec. The probability

of error in a binary PAM system is
28
P(e) = —
()=Q [,/ NO]

where the bit energy is & = A?Ty. With P(e) = P, = 1075, we obtain

2&, 4.752 Ny

=475 — & = =0.112813
No

Thus
A2Tb =0.112813 = A = v/0.112813 x 10° = 106.21

Problem 7.11

a) For a binary PAM system for which the two signals have unequal probability, the optimum
detector is

S1
N, 1-—
> 0 p
T In—= =
48 p
52

The average probability of error is
P(e) = Ple|s1)P(s1) + P(els2) P(s2)
= pP(els1) + (1 —p)P(e]sz)
= o[ selsodr+ (1=p) [ frlsor

n

LA T GV _r+yE?
= p/_ 7TNoe No dr+(1-p / \/7 No dr

where

Thus,

b) If p = 0.3 and ]‘f,—’; = 10, then

P(e) = 0.3Q[4.3774] + 0.7Q[4.5668] = 0.3 x 6.01 x 1075 + 0.7 x 2.48 x 1076
= 3.539 x 1076
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If the symbols are equiprobable, then

P(e) = Q[y/ 5] = Q[V20] = 3.88 x 107°

Problem 7.12

a) The optimum threshold is given by

NO ] 1 —p Ng
= n =
gt Ty T ag

b) The average probability of error is (n = 4N?5 In2)
b

Pe) = o~ HVE) No g,

© 1
pam:—l/ —
( [
=) [ e

—00 VWNOe
o2 A+ VE&| 1 [V -1
= 3¢ No/2 +3Q[ N0/21

o 2 \/2N0/€b1n2 25{, 1 28[7 \/2N0/€b1n2
SRR S T e R L e e

Problem 7.13

a) The maximum likelihood criterion selects the maximum of f(r|s,,) over the M possible trans-
mitted signals. When M = 2, the ML criterion takes the form

S1

flrlsy) >
flrlsp) <

or, since

flrlss) = o~ (r+v&)?/No

the optimum maximum-likelihood decision rule is

b) The average probability of error is given by

o0 1 2 0 1 2
Ple) — L HVE? Nog, 4 (1 — / L V&) Noy
() = p /0 o re-p) [ e r
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o 1
p/,/ng/NO \/27re

- sal ] -a-mel 2]
- o[/%]

22 —\/28()/]\[0 1 22
_de+(1fp)/7 o

Problem 7.14

a) The impulse response of the filter matched to s(t) is

h(t) = s(T —t) = s(3 — t) = s(t)

where we have used the fact that s(t) is even with respect to the t = T = 3 axis.

b) The output of the matched filter is

y(t) = s(t)*s(t):/ots(T)s(t—T)dT

0 t<0
A%t 0<t<1
A2(2—t) 1<t<2
2A2(t—2) 2<t<3
24A%2(4—t) 3<t<4
A%(t—4) 4<t<5b
A%2(6-t) 5<t<6

0 6<t

A scetch of y(t) is depicted in the next figure

2A2 ................

A2l -

c) At the output of the matched filter and for ¢ = T' = 3 the noise is
T
np — / ()T — 7)dr
0

T T
= [ nms@ =@ = ar = [ nir)s(ryr

The variance of the noise is
T [T
0'721T = E[/o /0 n(T)n(v)s(T)s(v)dev]
T [T
_ /0 /0 s(7)5(0) E[n(r)n(v)|drdv
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T T
= NO/ / s(T)s(v)é(T — v)drdv
2 Jo Jo
T
= % s3(1)dr = Ny A?
0

d) For antipodal equiprobable signals the probability of error is

where (%) is the output SNR from the matched filter. Since
o

<S) _yA(T) _ 4A

N E[n2]  NyA?
we obtain
4A2
P = —_—
(=@ |\

Problem 7.15

a) Taking the inverse Fourier transform of H(f), we obtain

o—d2n T
Wy = FEE) =7 ] —fll 7 ]

t— T
= sgn(t)—sgn(t—T)zQH( T2>

b) The signal waveform, to which h(t) is matched, is

s(t) = h(T —t) = 211 <T_tT_g> = 2I1 (gT_t> = h(t)

T
=3

where we have used the symmetry of I1 < = ) with respect to the t = £

vl
®
.
%

Problem 7.16
If gp(t) = sinc(t), then its matched waveform is h(t) = sinc(—t) = sinc(t). Since, (see Problem

2.17)
sinc(t) % sinc(t) = sinc(t)

the output of the matched filter is the same sinc pulse. If

then the matched waveform is

(t) = gr(T — 1) = sine( (5 — 1)) = gr(1)

170



where the last equality follows from the fact that gr(¢) is even with respect to the ¢ = 2 axis. The
output of the matched filter is

y(t) = Fgr(t)*gr(t))
- 7! ljfﬂ(:gf)eﬂ“ﬁl
= gsinc(%(t -1)) = ggT(t - g)

Thus the output of the matched filter is the same sinc function, scaled by % and centered at t = T.

Problem 7.17

1) The output of the integrator is

y(t) = /0 Cr(r)dr = /0 55(7) + n(r)]dr

At time t = T we have

y(T):/ si(T dT*/ T)dr = \/?T-F/[)Tn(T)dT

The signal energy at the output of the integrator at t =T is

2

P, = [ / / dev]
— / / Y]drdo
— / / 57’—vd7'dv——T

whereas the noise power

Hence, the output SNR is

Es  2&
N = — = —
SNR N
2) The transfer function of the RC filter is
Hf)= — -
14 j27RCSf
Thus, the impulse response of the filter is
B(t) = e Tou s (1
RCG u—1
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and the output signal is given by

y(t) = RC/ T)e” " dr

= o [ s (e i
1 ¢ t

T 1 t T
= %6 RC/O Si(T)eﬁdT‘i‘ﬁ@i% /_OOH(T)BWdT

At time t = T we obtain

(T) = — %/q-()%d4—1 v%/T (r)eTed
Yy RCe 0 S;\T)€e T RC@ 7007’1/7-6 T

The signal energy at the output of the filter is

E = € RC/ / si(7)si(v eRCeRCdev

The noise power at the output of the filter is

T T
P, = 5€ RC/ E (v)]drdv
T T
= € RC/ / %6T—veRcd7dv

1 _ 27
= (RC)2€ RC [m 7eRcdq-

Hence,

3) The value of RC that maximizes SNR, can be found by setting the partial derivative of SNR
with respect to RC equal to zero. Thus, if a = RC, then

YSN T T
5 RzOz(l—ez)—ezz—ez(l—F)—l—l

Ja a a

Solving this transcendental equation numerically for a, we obtain

T T
=12 —a=-——
. 6 — RC =a 126

Problem 7.18

1) The matched filter is

—pt+1, 0<t<T
0 otherwise



The output of the matched filter is

yi(t) = / Y (Pt — 7)dr

—00

If t <0, then y1(¢) =0, If 0 < t < T, then

n(t) = /()w;<—;(t—7)+1>d7

tot 1ot
N /()T(T_T2>dT+T2/OTdT
G
= e tar

If T'<t<2T, then

yn(t) = /th;(—;<t—T)+l>dT

T 1 t 1 T
= —— — )dr + — 2d
/t_TT(T T?) T+T2/t_f T

(t-T)3 t—T+Z
672 2 3

For 2T < 0, we obtain y;(¢) = 0. In summary

0 t<0
t3 2
yl(t): —3@+f O0<t<T
CF T4 T T<t<or
0 2T < t

A sketch of y1(t) is given in the next figure. As it is observed the maximum of y;(t), which is %,
is achieved for t = T.

T/3

2) The signal waveform matched to sa(t) is

-1, 0<t< T
hQ(t)_{ 2, L<t<T
The output of the matched filter is
ya(t) = / so()ha(t — 7)dr

If t <0ort>2T, then yo(t) = 0. If 0 < t < T, then yo(t) = [y (~2)dr = —2t. If T < ¢ < T, then

t—L z t
(t):/ 24d¢+/2 (—2)dT+/ dr =7t — 21
b2 0 -7 -z 2
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IfT<t§%,then

t—f T 19T
ya(t) = / 4d7’+/ dT+/ dr = T Tt
T 2

For, % <t < 2T, we obtain
T
ya(t) = / (—2)dr = 2t — AT
t—T
In summary
0 t<0
—2t O<t
t-97 T <t
— 2
v2(t) %—71& T <t g
2t —4T 3L <t<or
0 2T < t

IAIA A
g =

A plot of ya(t) is shown in the next figure

5T
2

3) The signal waveform matched to s3(t) is

hs(t) = { (2)

t

<t<?
<t<T

N

The output of the matched filter is

4t —2T T <i<T
y3(t) = ha(t) x s3(t) = { 2~ 3T
—4t+67 T<t<?2f

In the next figure we have plotted ys(t).

Problem 7.19
1) Since ma(t) = —mgs(t) the dimensionality of the signal space is two.

2) As a basis of the signal space we consider the functions

1 T
— <t =
t) = ﬁ 0<tsT t) = S _<2T
“it) = 0 otherwise a(t) = VT 7 <ts
0 otherwise
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The vector representation of the signals is

3) The signal constellation is depicted in the next figure

® (0’ ﬁ)

4) The three possible outputs of the matched filters, corresponding to the three possible transmitted
signals are (ry,72) = (VT + n1,n2), (n1,VT + ng) and (ny, —v/T + na), where ny, ny are zero-
No

mean Gaussian random variables with variance <. If all the signals are equiprobable the optimum

decision rule selects the signal that maximizes the metric
C(r-m;) = 2r - m; — |m|?

or since |m;|? is the same for all i,
C'(r-m;)=r-m;

Thus the optimal decision region R; for m; is the set of points (71, 72), such that (r1,r2) - m; >
(r1,72) - mg and (r1,72) - my > (71,72) - m3. Since (r1,72) -m; = VTr, (ri,7m9) - Mg = VTrq and
(r1,72) - m3 = —/T'ry, the previous conditions are written as

ry>1ry and 11> —7o

Similarly we find that Ry is the set of points (r1,72) that satisfy ro > 0, 7o > 71 and Rj3 is the
region such that ro < 0 and r9 < —r1. The regions Ry, R2 and R3 are shown in the next figure.

Ry

R3

5) If the signals are equiprobable then,
P(elm;) = P(|r —my|? > [r — mof?|lmy) + P(jr — my[* > [r — ms[*|my)
When my; is transmitted then r = [v/T + n1,ns] and therefore, P(elm;) is written as

P(e|my) = P(ng —ny > VT) + P(ny +ng < —VT)
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Since, n1, no are zero-mean statistically independent Gaussian random variables, each with variance
NO , the random variables x = n1 — no and y = ny + no are zero-mean Gaussian with variance Ng.
Hence

— 2N —3¥,
P(elm;) \/T/ e dx—i—\/F/ e Ody

o] el -

When m; is transmitted then r = [ny,ng + VT | and therefore,

P(elmy) = P(ny —ng > VT)+ P(ng < —VT)

- o/ -/

Similarly from the symmetry of the problem, we obtain

P(e|my) = P(e|m3) = Q [ ;’;01 40 l 2T}

Since @[] is momononically decreasing, we obtain

o] <l

and therefore, the probability of error P(e|m;) is larger than P(e|ms) and P(e|/mgs). Hence, the
message m; is more vulnerable to errors.

Problem 7.20

The optimal receiver bases its decisions on the metrics
PM(r, 1) = f(x[s,n) P(sm)
For an additive noise channel r = s,,, + n, so
PM(r,sy,) = f(n)P(sp)
where f(n) is the N-dimensional PDF for the noise channel vector. If the noise is AWG, then

1 _lr—sml?
fn) = ~ € No
2

(mNo)

|1‘*5'm\2

Maximizing f(r|smy)P(sm) is the same as minimizing the reciprocal e N  /P(s,,), or by taking
the natural logarithm, minimizing the cost

D(r,8,) = |r — s;u|> — NoP(s;n)

This is equivalent to the maximization of the quantity

1 N,
C(I‘,Sm) =TI S,y — §|Sm’2 =+ ?Olnp(sm)
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If the vectors r, s, correspond to the waveforms r(t) and s,,(t), where
N
r(t) = > rahi(t)
i=1

N
Sm(t) = Zsm,iwi(t)
=1

then,

o0 o N N
/ r(8)sm(t)dt — /_ OOZriwi(t)Zsm7j¢j(t)dt
= 3 s [ ey

’Lljl

= 3 gt = Znsmz

i=1j=1
= T-Sy

Similarly we obtain
o0
[ lsmiPde = st = .,
—0o0

Therefore, the optimal receiver can use the costs

Clr,sm) = /OO r(£)sm(t dt—f/ 5 (£)] dt—|—N In P(s,,)

—0o0

. /°° r(£)$m ()t +

— 00

to base its decisions. This receiver can be implemented using M correlators to evaluate [ r(t)sm, (t)dt.
The bias constants ¢, can be precomputed and added to the output of the correlators. The struc-
ture of the receiver is shown in the next figure.

C1
P g
s1(t) c2 Select
4’@2—"“')6# =2 ™ the
(¢
— sa(t) . : | e
argest
cM
a@—bft)dt =
s (t)

Parallel to the development of the optimal receiver using N filters matched to the orthonormal
functions ¥;(t), i = 1,..., N, the M correlators can be replaced by M equivalent filters matched to
the signal waveforms s,,(t). The output of the m'™ matched filter h,,(t), at the time instant T is

T T
/ (P hon (T — 7)dr = / r(F)sm(T — (T — 7))dr
0 0

- /OTT(T)SW(T)dT

= r-Sp,
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The structure of this optimal receiver is shown in the next figure. The optimal receivers, derived
in this problem, are more costly than those derived in the text, since IV is usually less than M, the
number of signal waveforms. For example, in an M-ary PAM system, N = 1 always less than M.

c1
> o ()=s1(T—1) L
t=T Co Select
Ir-So
ha(t)=s2(T—t) —> the
r() .
largest
t=1T CM
> g () =sm (T—t I SM

Problem 7.21

1) The optimal receiver (see Problem 7.20) computes the metrics
o0 No
cm%gz/ r(t)s (ﬁ—f/ sm(®) Pt + = In P(s,)
—00

and decides in favor of the signal with the largest C(r,s,,). Since s1(t) = —s2(t), the energy of the
two message signals is the same, and therefore the detection rule is written as

51
o0 No, P(s2) No., p2
Hsy()dt = =21 =92
| s S Ty =g
59

2) If s1(t) is transmitted, then the output of the correlator is
00 T T
/ MWMWR::/(ﬁ@Pﬁ+/7mhMMt
—00 0 0
= &E+n

where & is the energy of the signal and n is a zero-mean Gaussian random variable with variance

02 = E [/OT /OTTL(T)?”L(U)Sl(T)Sl(’U)deU]
= /T /T s1(7)s1(v)En(r)n(v)]drdv
= / / s1(7)s1(v)d(T — v)drdv

ZA;mewm—*f

Hence, the probability of error P(e|sy) is

&IHQ—:‘: 1 22
P(6|Sl) = / Tge T NoSsdg
VT NoEs

-y

178




Similarly we find that

SR NN

The average probability of error is

P(e) = pP €|51 +p2P(€|52)

3) In the next figure we plot the probability of error as a function of p;, for two values of the
SNR = % As it is observed the probability of error attains its maximum for equiprobable
signals.

x0-24
8 .

0.1-

20.08]
[= W

P(e)

0.06}
0.04| SNR=10 db

SNR=100 20 db

0.02+

01 02 03 04 05 06 0.7 08 09 01 02 03 04 05 06 0.7 08 09
Probability p Probability p

Problem 7.22

1) The two equiprobable signals have the same energy and therefore the optimal receiver bases its
decisions on the rule

1
[ T rsi(tdt 2 [ () sa(t)dt
52

2) If the message signal s1(t) is transmitted, then r(t) = s1(¢) + n(t) and the decision rule becomes

[ 10+ (@) s1(0) = 520t

—00

_ /O:O s1(B) (s (£) — sa(t))dt + /o:o n()(s1() — $o(¢))dlt

51
B /OO s1(t)(s1(8) = s2(t))dt +n 2 0
52

where n is a zero mean Gaussian random variable with variance

/_O:O /_0:0(81(7) — 55(7))(51(v) — 52(v)) E[n(7)n(v)]drdv
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= /T /T(Sl(T) — 52(7))(s1(v) — 32(1)))%5(7 — v)drdv
o Jo

Since

the probability of error P(e|s;) is given by
2

AT
P(els1) = P(? +n<0)

1 /AiT ( 22 )
\/2rAENo oo 275

AT
= Q —
6Ny
Similarly we find that
A2T
P = —
(s = Q|| ox

and since the two signals are equiprobable, the average probability of error is given by

Pe) = %P(e[sl)—l—%P(dsz)
A2T &
= 1Von, :Q[ 2N0]

where & is the energy of the transmitted signals.

Problem 7.23

a) The PDF of the noise n is

The optimal receiver uses the criterion

A A
A Al Al— > >
FrlA)  _ —Xir—al-+al > >

7l — A) ’

1l—=—r
—A —A
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The average probability of error is
1 1
P(e) = §P(€|A) + §P(e| —A)
1 [0 1 [o°
= 5[ e+ [T el - Aar
2 )0 2 Jo

1 /0 1 oo
= = / Ao Ar=Algy 4 / Age N4l gy
2 ) 2 Jo

A A N A [o°
_ 2 —Alz| Z —Alz]
4/_00 e dr + 4/,4 e dzx

AL LT A Y
I _Oo+4(>\>€ |
1
_ 567,\,4
b) The variance of the noise is
A e ¢]
o2 = 5[@ e M2 dy
o0 2! 2
—Az,.2
= /\/0 e xdac:)\ﬁ:/\Q
Hence, the SNR is
AZ A2 2
3 2
2

and the probability of error is given by

Ple) = %eﬂrmz _ %ef\/zsNR

For P(e) = 1075 we obtain
In(2 x 107°) = —v/2SNR = SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then

Ple) =Q [\/%ﬂ -Q [\/SNR]

where SNR is the signal to noise ratio at the output of the matched filter. With P(e) = 107° we
find vVSNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to noise

ratio is 5 dB less when the additive noise is Gaussian.

Problem 7.24

The energy of the two signals s1(t) and sa(t) is
& = A’T

The dimensionality of the signal space is one, and by choosing the basis function as

1 T
w={ V1 S
—r 5 <t<T



we find the vector representation of the signals as
51,2 = ﬂ:A\/T +n

with n a zero-mean Gaussian random variable of variance 22. The probability of error for antipodal
signals is given by, where & = A?T. Hence,

P(e)=Q<,/2jfj> -

2A2T
No

Problem 7.25

The three symbols A, 0 and —A are used with equal probability. Hence, the optimal detector uses
two thresholds, which are % and —%, and it bases its decisions on the criterion

A
A —
r>3

' 72 ST
A
_A- _2
r< -3

If the variance of the AWG noise is 02, then the average probability of error is

P(e) ERE T o +1h /g* L5
e) = = e 2n dr+-[1-— e 27ndr
3 /-0 /2102 3 —4 /2702

1 00 _(rta)?
— 20% d,r.
"3 g\/ﬁ
1 A 1 1 A
= 3Q[20] 32 [zaanQ [za]
4 A
- 595,

Problem 7.26

The biorthogonal signal set has the form

= [V/€:,0,0,0] s5 = [~V/£:,0,0,0]
= [0,V/&,0,0] = [0, ~V/&;,0,0]
=[0,0, V&, 0] =[0,0, =&, 0]
[ ] [0,0 ]

Se
S7
=10,0,0,v&;s S8
For each point s;, there are M — 2 = 6 points at a distance

dig = |si —si| = V2&s

and one vector (—s;) at a distance d;,, = 2v/&. Hence, the union bound on the probability of
error P(els;) is given by

M
Pon(els) = 3 Q[m}:w[ mw[ 350]

) 707_\/55
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Since all the signals are equiprobable, we find that

Pyg(e) = 6Q [ ]6\‘%] +Q [ 258]

With M = 8 = 23, & = 3&, and therefore,

Pyg(e) ZGQ[ ?;55] +Q[ No]

Problem 7.27

It is convenient to find first the probability of a correct decision. Since all signals are equiprobable
Mo
P(C) =Y 1 P(Cls)

=1

All the P(C|s;), i = 1,..., M are identical because of the symmetry of the constellation. By
translating the vector s; to the origin we can find the probability of a correct decision, given that
s; was transmitted, as

[e.9]

f(n2)dny . .. - fny)dny

P(Cls;) = j fonydm [ "

d
2

where the number of the integrals on the right side of the equation is N, d is the minimum distance
between the points and

Hence,

Ple) = 1_P(C):1_§:]\1/[(1_Q[\/;TODN

Note that since
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Problem 7.28

Consider first the signal

= zn: cro(t — kT,)

k=1
The signal y(t) has duration 7' = nT, and its matched filter is

g(t) = y(T —t)=ynT,—1) Z cd(nT, — kT, — 1)

= S eid((i— )T —t) = ch_ma(t — (i —1)T)
i=1

=1

that is, a sequence of impulses starting at ¢ = 0 and weighted by the mirror image sequence of {c;}.
Since,

s(t) = i cxp(t — kT,) = p(t) * i cko(t — kTy)

k=1 k=1

the Fourier transform of the signal s(t) is

SU) = PU)Y exe2n0T

k=1

and therefore, the Fourier transform of the signal matched to s(t) is
Hf) = 87 (el = §r(f)e it

_ P*(f) Z CkejZﬂ'fche—jQanTc
k=1

_ P*(f) Z Cn7i+1€—j27rf(i—1)T—c
=1

= P(N)Flo(t)]

Thus, the matched filter H(f) can be considered as the cascade of a filter,with impulse response
p(—t), matched to the pulse p(¢) and a filter, with impulse response ¢(t), matched to the signal
y(t) = > f_q ckd(t — kT¢). The output of the matched filter at ¢t = nTy is

ﬁ}w2=§z/ 2t~ KT)de

where we have used the fact that p(t) is a rectangular pulse of unit amplitude and duration T..

Problem 7.29

The bandwidth required for transmission of an M-ary PAM signal is

R
= _Hyg
2logy M
Since,
1 bit bit
Ry =8 x 103 222 g IS 64w 1032
sec sample sec
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we obtain

16 KHz M=4
W =4 10.667 KHz M =38
8 KHz M =16

Problem 7.30

The vector r = [r1, 9] at the output of the integrators is

r = [r,re] = [/01'5 r(t)dt, /12 or

If s1(t) is transmitted, then

/Ol'sr(t)dt _ /Dm[sl(t)+n(t)]dt:1+/01'5n(t)dt

= 14+m

/12 r(t)dt = /12[51(15) +n(t)]dt = /12 n(t)dt

= n2

where nq is a zero-mean Gaussian random variable with variance

1.5 1.5 1.5
—E{/ / dev}:]\;O dr=1.5
0

and ng is is a zero-mean Gaussian random variable with variance

=5 [ [ [ ntrmtonarae] = 2 [ ar 1

Thus, the vector representation of the received signal (at the output of the integrators) is
= [1 +nq, no
Similarly we find that if so(¢) is transmitted, then
r =[0.5+ny, 1+ no]

Suppose now that the detector bases its decisions on the rule

S1
T1 —T9 z T

52
The probability of error P(e|s1) is obtained as
P(els1) = P(rl—rqy <T|sy)
= P(1+n1—n2 <T) :P(n1—n2 <T—1)

= Pn<T)
where the random variable n = n; — ng is zero-mean Gaussian with variance

02 = 02 402, —2Eniny]

n
1.5
= ail—i-anz—Z/ —OdT

= 1.5+1—2x0.5—1.5
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Hence,

Similarly we find that

P(elss) = P(05+n;—1—na>1T)
= P(nl—n2>T+05)

= e 2% dzx

\/ﬁ T+0.5

The average probability of error is

Ple) = %P(e\sl)+1P(e\32)

a:2

R — e 2% dx

ZW /T+05

To find the value of T' that minimizes the probability of error, we set the derivative of P(e) with
respect to T equal to zero. Using the Leibnitz rule for the differentiation of definite integrals, we

T—1
2\/27702 / €

obtain ) )
9P(e) 1 Sl = el I
9T 2/2mo?
or

(T —1)*=(T+0.5)* =T =0.25

Thus, the optimal decision rule is

T —T9 0.25

AV 2

52

Problem 7.31

a) The inner product of s;(t) and s;(¢) is

/ T s (Hdt = / S cuplt — KI)'S epplt — IT,)dt

% o0 k 1 =1

= Z Z czkcﬂ/ (t — kT,)p(t — IT,)dt
k=11=1

= D > cinciiEplu
k=11=1

= & Z CikCik

k=1

3

The quantity Y 7_; circji is the inner product of the row vectors C; and C - Since the rows of the
matrix H, are orthogonal by construction, we obtain

/_OO Si(t)Sj (t)dt — 8p Z C?k(sij = n€p52‘j

k=1

Thus, the waveforms s;(t) and s;(t) are orthogonal.
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b) Using the results of Problem 7.28, we obtain that the filter matched to the waveform

- Z Cikp(t - ch)

k=1

can be realized as the cascade of a filter matched to p(t) followed by a discrete-time filter matched
to the vector C; = [ci1,. .., Cin). Since the pulse p(t) is common to all the signal waveforms s;(¢),
we conclude that the n matched filters can be realized by a filter matched to p(t) followed by n
discrete-time filters matched to the vectors C;, i =1,...,n

Problem 7.32

a) The optimal ML detector selects the sequence C; that minimizes the quantity
n
= (e — V&Ci)?
k=1

The metrics of the two possible transmitted sequences are

DE.C) =3 - VEP T S (e V&Y
k=1 k=w+1

and
(r,Cy) :Z (rk—=V&)P+ D (e +V&)?
k=1 k=w+1

Since the first term of the right side is common for the two equations, we conclude that the optimal
ML detector can base its decisions only on the last n — w received elements of r. That is

C
= VE?P— Y e+ VE? 2 0
k=w+1 k=w+1 C
4}
or equivalently
Cy
Z Tk z 0
k=w-+1 C

2

b) Since r, = /&C i + ng, the probability of error P(e|Cy) is

P(elCy) = (ﬁbn— 3 nk<o)

k=w+1
= P( Zn: nk<—(n—w)\/5>b)
k=w+1

2

The random variable u = >}'_, .1 ny is zero-mean Gaussian with variance 02 = (n — w)o?. Hence

z? Ep(n —w)

P(e|Cy) = W / exp(—wwﬂf:Q[ =
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Similarly we find that P(e|Cy) = P(e|C;) and since the two sequences are equiprobable

Ep(n — w)

o2

P(@)ZQ[

c) The probability of error P(e) is minimized when 51;(?;; ) i maximized, that is for w = 0. This
implies that C; = —C and thus the distance between the two sequences is the maximum possible.

Problem 7.33

1) The dimensionality of the signal space is two. An orthonormal basis set for the signal space is
formed by the signals

w):{ 1, 0St<3 w2<t>={ﬁ’ sSt<T

0, otherwise 0, otherwise

2) The optimal receiver is shown in the next figure
t=1

2
r
r(t) "op(S —t _R - ™| Select
— the

¢2(T—t—ﬁt:T 12

A

largest

Y

3) Assuming that the signal s (t) is transmitted, the received vector at the output of the samplers
is

A2T
r=| — -t na]
where n1, ny are zero mean Gaussian random variables with variance 2. The probability of error
P(elsy) is
A2T
P(els1) = P(n—2-n1 > T)
AT
— e 2N0 dr = Q i
\/T A2T 2Ny

where we have used the fact the n = ny —ny is a zero-mean Gaussian random variable with variance

Ny. Similarly we find that P(e|s1) = Q {\/ ?;T} so that
AT
2N,

4) The signal waveform 11 (4 — ¢) matched to 11 () is exactly the same with the signal waveform
Yo (T — t) matched to 1a(t). That is,

P(e) = %P(e]sl) + %P(e[@) =Q

w1<T—t>—w2<T—t>—w1<t>—{ POSte s

2 0, otherwise
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Thus, the optimal receiver can be implemented by using just one filter followed by a sampler which
samples the output of the matched filter at ¢t = % and ¢t = T to produce the random variables 7
and ry respectively.

5) If the signal s;(¢) is transmitted, then the received signal r(t) is

(1) = 1(0) + ga(t — ) + )

The output of the sampler at t = % and t =T is given by

IWER I Y WL N
E ANy Ty Vg T T Ty T
_ AT fer
2T oy T T\ Ty T

If the optimal receiver uses a threshold V' to base its decisions, that is
51
KT —T9 z V

82

then the probability of error P(e|s;) is

P(e|s1) = P(n2 —ng > 24/ A;T -V)=Q

If so(t) is transmitted, then

0|2 V_
8Ny v Ny

r(t) = sa(t) + 2sa(t — L) + n(t)
%

2 2

The output of the sampler at t = 5 and t =T is given by

T = M

_ 42T 34 2T
2= T4 2 N7 ™

_ b AT,
)
The probability of error P(e|ss) is

5 [A?2T
P(e’SQ):P(TLl—n2>§ T—FV):Q

Thus, the average probability of error is given by

5 [T v
2\ sy T VNG

1 1
P(e) = §P(e]31)+§P(e]32)
1 A2T Vv 1 5 [A?2T Vv
= — 2 R —— — — R — _
5@ \8No VN 2@ |2 V3N TV
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The optimal value of V' can be found by setting 795‘(/6) equal to zero. Using Leibnitz rule to
differentiate definite integrals, we obtain

2
ﬁP(e)_O_ ) A2T 1% A2T+ 1%
9w 8N0 VNo 8N0 VNy

or by solving in terms of V'

A

oo\r—‘

6) Let a be fixed to some value between 0 and 1. Then, if we argue as in part 5) we obtain

P(e[s1,a) = P(nz—mn1 > 24 A;T —V(a))
P(e|sg,a) = P(ny—n2 > (a+ 2)\/ AZT +V(a))

and the probability of error is

1 1
P(ela) = §P(e|51,a) + §P(6|32,a)

For a given a, the optimal value of V' (a) is found by setting ﬁP(f";) equal to zero. By doing so we

find that

The mean square estimation of V(a) is
1 1 [A?T AT
V—/O V(a)f(a)da = 2\ /0 ada——é 5
Problem 7.34

For binary phase modulation, the error probability is

P2=Q[\/§V‘ﬂ=@

With P, = 107% we find from tables that

Ny

AT

474 — AT = 44.9352 x 10710
No

If the data rate is 10 Kbps, then the bit interval is T = 10~* and therefore, the signal amplitude is

A = /44.9352 x 10-10 x 104 = 6.7034 x 10~3

Similarly we find that when the rate is 10° bps and 10° bps, the required amplitude of the signal
is A =2.12x 1072 and A = 6.703 x 10~? respectively.

Problem 7.35
1) The impulse response of the matched filter is

S(t) = u(T — 1) = { P = eos@nf(T—1)) 0<t<T
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2) The output of the matched filter at ¢ = T is

T
o) = ul)estly = [ (T - s(rir

S R

0

v=T—7 114; /T v? cos?(2m fov)dv

0
_ A2 43 v? 1 . veos(dmfev) | |
= ﬁ [6+<4X2ﬂ_fc_8x(27ch)3>81n(47'(fc7))+4(27‘('.]%)2] 0
) A2 [73 72 1 ‘ T cos(4m f.T')
— ﬁ [6 + <4 » 27ch - ] x (27ch)3> Sln(47chT) + 4(27_‘_‘}[-6)2‘|

3) The output of the correlator at t = T is

T) = /OTu2(T)dT

A2 T 9 9
= ﬁ/o 7% cos® (2m fer)dT
However, this is the same expression with the case of the output of the matched filter sampled at
t = T. Thus, the correlator can substitute the matched filter in a demodulation system and vise

versa.

Problem 7.36
1) The signal r(t) can be written as

r(t) = +v/2Pscos(2mft + @) + /2P sin(27 fot + ¢)
= \/2(Pc+ Ps)sin (27cht + 6+ aytan~! < 5>>

= /2Prsin (27rfct+¢+ancos_1 ( Pc))

Pr
where a,, = £1 are the information symbols and Pr is the total transmitted power. As it is observed
the signal has the form of a PM signal where

P,
0,, = a, cos™ ' ( P;)

Any method used to extract the carrier phase from the received signal can be employed at the
receiver. The following figure shows the structure of a receiver that employs a decision-feedback
PLL. The operation of the PLL is described in the next part.

t="1Tp
v(t) j—> OTb(-)dt — & Threshold
» DFPLL
cos(2m fot + @)

2) At the receiver the signal is demodulated by crosscorrelating the received signal

r(t) = /2Prsin (27cht + ¢ + ay, cos ™ (ﬁ)) + n(t)
T
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with cos(27 f.t + é) and sin(27 f.t + (ﬁ) The sampled values at the output of the correlators are

- % [VZPr — ma(t)] sin(é — 6+ 8) + %nc(t) cos(é — &+ 0,)
v = 3 [VAPr —n(t)] cos(é— &4 0u) + Lrelt)sin(d— 6 0u)

where n.(t), ns(t) are the in-phase and quadrature components of the noise n(t). If the detector
has made the correct decision on the transmitted point, then by multiplying 1 by cos(6,) and
by sin(6,,) and subtracting the results, we obtain (after ignoring the noise)

rycos(6,) = % 2Pp {sin(gb — $) cos?(6,) + cos(¢ — ) sin(6,,) cos(@n)}
rosin(6,) = % 2Pp [cos(¢ — ) cos(9 ) sin(6,,) — sin(¢ — ¢) sinZ(Gn)}

e(t) = ricos(fy,) — rosin(f \/ 2Prsin(¢

The error e(t) is passed to the loop filter of the DFPLL that drives the VCO. As it is seen only the
phase 6, is used to estimate the carrier phase.

3) Having a correct carrier phase estimate, the output of the lowpass filter sampled at ¢ = T}, is

1 P,
= +—/2Pr (1 - —=—
5 T( PT)—i-n

where n is a zero-mean Gaussian random variable with variance

T, [Ty
o2 = [/ / T) cos(2m fet + @) cos(27 for + @)dtdr
b
= % cos? (2 fot + ¢)dt
0
_ M
4

Note that T} has been normalized to 1 since the problem has been stated in terms of the power of
the involved signals. The probability of error is given by

P(error) = @ [\/2NPZ (1 _ 5;)]

The loss due to the allocation of power to the pilot signal is

P
SNRIOSS =10 ].Og]_o (1 — >
Pr

When P./Pr = 0.1, then
SNRioss = 1010g;0(0.9) = —0.4576 dB

The negative sign indicates that the SNR is decreased by 0.4576 dB.
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Problem 7.37
1) If the received signal is

r(t) = £gr(t) cos(2m fot + @) + n(t)
then by crosscorrelating with the signal at the output of the PLL

W(t) = \/Eggt(t) cos(27 fot + })

/T r(t)y(t)dt = \/7/ G- (t) cos(2m fot + @) cos(2m fut + ¢)dt
0

we obtain

—gi(t) cos(2m fot + gf))

- \/>/ 2(t Cos (2m2ft + ¢ + </5) + cos(¢ — (;5)) dt +n

= :l:\/;cos(qS b)) +n

where n is a zero-mean Gaussian random variable with variance % If we assume that the signal
s1(t) = gr(t) cos(2m fet + ¢) was transmitted, then the probability of error is

P(error|si(t)) = P (\/gcos(qﬁ —d)+n< 0)
B £, cos2(d — P) | B 2€, cos?(¢ — ¢) |
- ¢ [\/ ] No - [\/ No J

where & = &;/2 is the energy of the transmitted signal. As it is observed the phase error ¢ — qg
reduces the SNR by a factor

ﬁ

~

SNRjoss = —101logyq cos®(¢ — @)

2) When ¢ — qg = 45°, then the loss due to the phase error is

1
SNRjess = —101logyq cos?(45°) = —10logy 5 = 3.01 dB

Problem 7.38
1) The closed loop transfer function is

B G(s)/s B G(s) B 1
B = T G)s = 5106~ 2+ vas+1

The poles of the system are the roots of the denominator, that is
—V2+2-14 1,1
pra=——-ap——=——F2Fj=
2 V2 TTV2

Since the real part of the roots is negative, the poles lie in the left half plane and therefore, the
system is stable.
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2) Writing the denominator in the form
D = 5%+ 2(w,s + w?

we identify the natural frequency of the loop as w, = 1 and the damping factor as ( =

S

Problem 7.39
1) The closed loop transfer function is

(s) = G(s)/s  G(s) K B %
_1+G(s)/s_s+G(s)_7'132—1—3—1—[(_324_71134_%

The gain of the system at f =0 is

[H(0)] = [H(s)|s=0 = 1

2) The poles of the system are the roots of the denominator, that is

~1+1-4K7

27‘1

P12 =

In order for the system to be stable the real part of the poles must be negative. Since K is greater
than zero, the latter implies that 7 is positive. If in addition we require that the damping factor

(= 5 \/;7 is less than 1, then the gain K should satisfy the condition
1
K>—
4’7’1

Problem 7.40

The transfer function of the RC circuit is

_ RQ#Lé _ 1+ RyC's _1—|—7’2$
N R1+R2+é N 1+(R1+R2)CS - 1+ 7s

G(s)

From the last equality we identify the time constants as

T2 = RaC, 11 = (R + Ry)C

Problem 7.41
Assuming that the input resistance of the operational amplifier is high so that no current flows
through it, then the voltage-current equations of the circuit are

Vi = —AV;
.
VieVy = (R1+CS>Z
Vi—-Vy = R

where, V7, V5 is the input and output voltage of the amplifier respectively, and Vj is the signal at
the input of the filter. Eliminating ¢ and V;, we obtain

R1+é
Va _ R
Vi 1 _ Ritgg
L+ - —ar~



If we let A — oo (ideal amplifier), then

% 1+ RCs 1+ ms

Vi  RCs 18

Hence, the constants 71, 7 of the active filter are given by

T1:RC, ngRlC

Problem 7.42
Using the Pythagorean theorem for the four-phase constellation, we find

d
r%+r%:d2:>r1:—

V2

The radius of the 8-PSK constellation is found using the cosine rule. Thus,
4
22

The average transmitted power of the 4-PSK and the 8-PSK constellation is given by

d* =713 + 13 — 2r} cos(45°) = ry =

d? d?
e P8av:7
2 ’ 2 -2

Thus, the additional transmitted power needed by the 8-PSK signal is

P4,av =

2d?
—_ =15.3329dB
(2 — V/2)d?

We obtain the same results if we use the probability of error given by

Py =2Q [ 2ps sin ]\Z}
where p; is the SNR per symbol. In this case, equal error probability for the two signaling schemes,
implies that

™

P8,s sin 1
— 101 =201 —= =15.3329 dB
3 0g10 Pis 0810 sing

o T

.o T .
P4, Sin 1= P8, Sin

Problem 7.43
The constellation of Fig. P-7.43(a) has four points at a distance 24 from the origin and four points
at a distance 2v/2A. Thus, the average transmitted power of the constellation is

P, = é [4x (24)2 4+ 4 x (2v24)?] = 642

The second constellation has four points at a distance v/7A from the origin, two points at a dis-
tance v/3A and two points at a distance A. Thus, the average transmitted power of the second

constellation is 9

= —A?
2

P, = é 4% (VTAP? +2 x (VBA)? + 247

Since P, < P, the second constellation is more power efficient.
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Problem 7.44

The optimum decision boundary of a point is determined by the perpendicular bisectors of each line
segment connecting the point with its neighbors. The decision regions for the V.29 constellation
are depicted in the next figure.

Problem 7.45

The following figure depicts a 4-cube and the way that one can traverse it in Gray-code order (see
John F. Wakerly, Digital Design Principles and Practices, Prentice Hall, 1990). Adjacent points
are connected with solid or dashed lines.
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One way to label the points of the V.29 constellation using the Gray-code is depicted in the next
figure. Note that the maximum Hamming distance between points with distance between them as
large as 3 is only 2. Having labeled the innermost points, all the adjacent nodes can be found using
the previous figure.

® 1000
1
1011 1 1001 2 0011
® -9 ®
1
2 1
0001
1 1
1 1 o101 1 1
® o ® @
1111 0111 ] 1 0000 0010 0110
2 0100
1
1
1 2
o ® —®
1110 1100 1010
1

T 1101

Problem 7.46
1) Consider the QAM constellation of Fig. P-7.46. Using the Pythagorean theorem we can find
the radius of the inner circle as

1

2 2 2
a+a"=A"=a=—A

V2
The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with ¢ and A the two other sides and angle between then equal to 8 = 75°, we obtain

1+ﬁA

b =a’?+ A% —2aAcosTh’ = b = 5

2) If we denote by r the radius of the circle, then using the cosine theorem we obtain

A2 =72 412 —2rcosdh’ — r= ———
2-2
3) The average transmitted power of the PSK constellation is

2
1 A A2
P =8X=-X|—| = P = —
PSK PSK
8 ( 2_\/5) 2—+/2
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whereas the average transmitted power of the QAM constellation

1[ A2 (1++3)?
PQAM:8<42+44 A? :>PQAM:

2+(1;ﬁ)21 A2

The relative power advantage of the PSK constellation over the QAM constellation is

. Ppsk 8
gain = = = 1.5927 dB
Poam 2+ (1+v3)?)(2-v?2)

Problem 7.47
1) The number of bits per symbol is

4800 4800
k=" = —2

R 2400

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary QAM
system with M = 2F, is

2
1 3kE
PM:“(l‘?(l‘m)Ql (M{’)ND

With Py; = 107° and k = 2 we obtain

Q [”N] =5x107° = No = 9.7682

2 If the bit rate of transmission is 9600 bps, then

9600
T 2400

In this case a 16-QAM constellation is used and the probability of error is

2
1 3x4x&E
PM—1‘<1‘2(1‘4>Ql\/MD
3><5b _1 _5 55_
Q[,/waO] =3 X107 = {2 = 25.3688

3 If the bit rate of transmission is 19200 bps, then

Thus,

19200
2400

In this case a 256-QAM constellation is used and the probability of error is

2
_ 1 3X8X&
PM_1_<1_2(1_16)Q[\/ 255><N0D

With Py; = 107° we obtain

&
— = 659.8922
No
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4) The following table gives the SNR per bit and the corresponding number of bits per symbol for
the constellations used in parts a)-c).

k 2 1 8
SNR (db) || 9.89 | 14.04 | 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.

Problem 7.48

1) Although it is possible to assign three bits to each point of the 8-PSK signal constellation so that
adjacent points differ in only one bit, this is not the case for the 8-QAM constellation of Figure
P-7.46. This is because there are fully connected graphs consisted of three points. To see this
consider an equilateral triangle with vertices A, B and C. If, without loss of generality, we assign
the all zero sequence {0,0,...,0} to point A, then point B and C' should have the form

B=1{0,...,0,1,0,...,0} C={0,...,0,1,0,...,0}

where the position of the 1 in the sequences is not the same, otherwise B=C. Thus, the sequences
of B and C differ in two bits.

2) Since each symbol conveys 3 bits of information, the resulted symbol rate is

90 x 109

s 3 = 30 x 10% symbols/sec

3) The probability of error for an M-ary PSK signal is

Py =20Q [1/ 2]55 sin Z\WJ]
0

whereas the probability of error for an M-ary QAM signal is upper bounded by

Py =4Q [ av ]

(M —1)No

Since, the probability of error is dominated by the argument of the () function, the two signals will
achieve the same probability of error if

. T [3SNR,
V 2SNRPSK S1n M == ﬁ

. 3SNRQAM SNRpsk 3
V2SNR T — - = 1.4627
PSS 7 SNRoav 7 x 2 x 0.38272

With M = 8 we obtain

4) Assuming that the magnitude of the signal points is detected correctly, then the detector for
the 8-PSK signal will make an error if the phase error (magnitude) is greater than 22.5°. In the
case of the 8-QAM constellation an error will be made if the magnitude phase error exceeds 45°.
Hence, the QAM constellation is more immune to phase errors.
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Problem 7.49
Consider the following waveforms of the binary FSK signaling:

ur(t) = 4/ 2?81) cos(27 f.t)
ug(t) = 2?&’ cos(2m fet + 2w A ft)

The correlation of the two signals is

1 T

Y2 = ?/ up (t)ug(t)dt
b Jo
1

T 28,
= — —- cos(27 f.t) cos(2m fot + 2w A ft)dt
EJo T

1 /T 1 (T
= = / cos(2rAft)dt + — / cos(2m2fet + 2w A ft)dt
T Jo T Jo

If fo> %, then
1 (T sin(2rAfT)
= — 2TA =7
Y12 T/o cos(2mr A ft)dt AT

To find the minimum value of the correlation, we set the derivative of v15 with respect to Af equal
to zero. Thus,
Uy 0= cos(2rAfT)2rT  sin(2nAfT)

IAf 9TAfT rafrE L

and therefore,
2rAfT = tan(2nAfT)

Solving numerically the equation z = tan(z), we obtain x = 4.4934. Thus,

7151
AT = 4.4934 — Af = 7T5

and the value of 715 is —0.2172. Note that when a gradient method like the Gauss-Newton is used
to solve the equation f(x) = = — tan(z) = 0, then in order to find the smallest nonzero root, the
initial value of the algorithm xo should be selected in the range (%, 3F).

The probability of error can be expressed in terms of the distance di2 between the signal points,

ol [ dt
pb—Q{ 2]\70:|

The two signal vectors uy, us are of equal energy

as

g [|* = Jluz* = &
and the angle 615 between them is such that

cos(f12) = 712

Hence,
diy = [lwr]* + [Juz]® — 2(jui[[Juz]| cos(f12) = 2E5(1 — 712)

and therefore,

o 255(1 - ’712) - 55(1 + 02172)
I ey B )
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Problem 7.50
1) The first set represents a 4-PAM signal constellation. The points of the constellation are

{£A,+3A}. The second set consists of four orthogonal signals. The geometric representation
of the signals is

s;=[A 00 0] s3=[0 0 A 0]
so=[0 A 0 0] si=[0 0 0 A]

This set can be classified as a 4-FSK signal. The third set can be classified as a 4-QAM signal
constellation. The geometric representation of the signals is

Slz[

52:[

SIS

2) The average transmitted energy for sets I, IT and III is
1< 1
_ 12 2 2 2 2y _ k42
gav,] = Z;HS'LH —Z(A + 94494+ A )—5A
1< 1
5(17),]] = Z Z HSzH2 = 1(4142) = A2
i=1

1< 1 A2 A2
Eovrtr = 7D [silP = (4 x (5 +5) =47
i=1

3) The probability of error for the 4-PAM signal is given by

b, 2M=1) 6wr | _ 3, 6x5x A2 3 242
R V] (M2 —1)No| 2 15Ny | 2 No

4) When coherent detection is employed, then an upper bound on the probability of error is given
by

Es
Py 11 coherent < (M —1)Q [ NJ =3Q

If the detection is performed noncoherently, then the probability of error is given by

Al 1( M -1 1
= + N - s =1
P} rrnoncoherent = > (-1)" ( N > —e nps/(n=1)

—_

_bs _20s 1 _3ps
e 2 —e 3 4+ —e 4
4
A2 242 1 _342
2Ng — ¢ 3Ng 4 _¢g 4Np

N W Nl w3

e

5) It is not possible to use noncoherent detection for the signal set III. This is because all signals
have the same square amplitude for every ¢ € [0, 277.

6) The following table shows the bit rate to bandwidth ratio for the different types of signaling
and the results for M = 4.
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Type R/W | M=4
PAM 2log, M | 4
QAM logy M 2
FSK (coherent) 2101%/} M 1
FSK (noncoherent) % 0.5

To achieve a ratio % of at least 2, we have to select either the first signal set (PAM) or the second
signal set (QAM).

Problem 7.51
1) If the transmitted signal is

ug(t) = 1/255 cos(2m f.t), 0<t<T
r(t) =4/ 2;5 cos(2m ft + @) + n(t)

In the phase-coherent demodulation of M-ary FSK signals, the received signal is correlated with
each of the M-possible received signals cos(27 f.t + 2rmA ft + ¢, ), where ¢, are the carrier phase
estimates. The output of the m™

then the received signal is

correlator is

T .
T = / r(t) cos(2m fot + 2nmA ft + ¢py,)dl
0
T [2€&, ;
= \/?cos(2wfct + @) cos(2m fot + 2mmA ft + ¢y )dt

0

T .
+/ n(t) cos(27 fet + 2rmA ft + ¢y, )dt
0

T n ~
= 253 /0 é (cos(27r2fct + 2rmAft + ¢ + @) + cos(2rmA ft + ¢py — ¢)> +n

T )
_ 2531/ cos(2TmASE + b — &)dE +n
V7T 2/
No

where n is a zero-mean Gaussian random variable with variance =

2) In order to obtain orthogonal signals at the demodulator, the expected value of ry,, Elrn,],
should be equal to zero for every m # 0. Since E[n| = 0, the latter implies that

/T cos(2rmA ft + B — @)dt =0, Ym #0
0

The equality is true when mA f is a multiple of % Since the smallest value of m is 1, the necessary
condition for orthogonality is

1
Af ==

Problem 7.52
The noise components in the sampled output of the two correlators for the m'" FSK signal, are
given by

T

Nme = / n(t)\/%cos(QﬁfCt—F27rmAft)dt
0
T 2

Nms = / n(t)\/fsin(wact—i—QﬁmAft)dt
0
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Clearly, ne, nms are zero-mean random variables since

Furthermore,

E [nmcnkc]

Elnm] = E l /0 L) \/z cos(2r fut + 2mmA ft)dt]
= /OT E[n(t)]\/gcos(%rfct +2rmAft)dt =0
T
Elnms) = E l /0 n(t)\/g Sin(27 fut + 27mA ft)dt]

_ /0 ' E[n(t)]ﬁ $in(27 fot + 2rmAf)dt = 0

7) cos(27 fet + 2mmA ft) cos(27 fot + QﬂkAfT)dth]

% / / 7)] cos(2m fot 4+ 2mmA ft) cos(27 fet + 2mkA fr)dtdr
2 Ny

T3 / cos(2m fot 4+ 2mmA ft) cos(27 fet + 2wk A ft)dt

2 Ny

e / (cos(272fut + 27(m + K)AJt) + cos(2m(m — k)AfL)) dt

2 Ny Ny

e / Skt = ~ S

where we have used the fact that for f. > %

and for Af = =

T
/ cos(2m2 fet + 2m(m + k)Aft)dt =~ 0
0

/T cos(2m(m — k)Aft)dt =0, m#k
0

Thus, nme, nge are uncorrelated for m # k and since they are zero-mean Gaussian they are inde-
pendent. Similarly we obtain

E[nmcnks]

E[nmsnks]

T T 9
E / / —n(t)n(1) cos(2m fet + 2rmA ft) sin(2w fot + 2wk A fr)dtdr
[ o Jo T

2 /T /T E[n(t)n(r)] cos(2m fot + 2rmA ft) sin(27 fot + 2wkA fr)dtdr
o Jo

2 Ny (T .

T3 / cos(27 fot 4 2mmA ft) sin(27 f ot + 2wkA ft)dt
0

2Ny [T1 . .

= / 5 (Sn(2r2f,t + 2n(m + B)Aft) — sin(2n(m — K)Af1)) de
0

0

No

2 Ok

Problem 7.53

1) The noncoherent envelope detector for the on-off keying signal is depicted in the next figure.
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———— N[O

Tc
r(t) 2 cos(2m f.t
JF eostentt) Tl
_ Vr
t=T Threshold
Hé—b— fot(-)dq'—¥ ()% Device

2) If so(t) is sent, then the received signal is r(t) = n(t) and therefore the sampled outputs 7,

rs are zero-mean independent Gaussian random variables with variance %. Hence, the random

variable r = /72 + 72 is Rayleigh distributed and the PDF is given by

r r? 2r _z2

t)) = —e 22 = —e Mo
plrlso(t)) = 3¢ 37 = e

If s1(t) is transmitted, then the received signal is

r(t) = \/gibcos(%rfct + ¢) +n(t)

Crosscorrelating r(t) by \/% cos(27 f.t) and sampling the output at t = T, results in

r. = /OT r(t)\/zcos(%rfct)dt
/oT 2V cos(2m fot 4 @) cos(2m fet)dt + /OT n(t)\/zcos(%rfct)dt

= 2\ﬁ (cos(2m2fct + @) + cos(¢)) dt + n.

= @cos(qf)) + ne

where n. is zero-mean Gaussian random variable with variance % Similarly, for the quadrature

component we have

rs = \/Epsin(¢) + ng
The PDF of the random variable r = \/r2 +r2 = /&, + nZ + n2 is (see Problem 4.31)

ro_rtE v Ep 2r _T2+5b 2rv/&y
t) =— a2 I —e No Iy
p(rlsi(t)) 026 o < o2 ) No ' < Ny

that is a Rician PDF.

3) For equiprobable signals the probability of error is given by

1 [Vr

P(error) = 3 /_OO p(r|si(t))dr + ;/‘:p(r]so(t))dr

Since r > 0 the expression for the probability of error takes the form

P(error) = 2/ (r|s1(t))dr + 2/ (r|so(t)
Vr 2t oo -2
= 2/ r 202b[0 <T\F> dr —|— > %67207261?”
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The optimum threshold level is the value of Vp that minimizes the probability of error. However,
when % > 1 the optimum value is close to @ and we will use this threshold to simplify the
analysis. The integral involving the Bessel function cannot be evaluated in closed form. Instead of

Iy(x) we will use the approximation

ex

\V2rx

which is valid for large x, that is for high SNR. In this case

1/VT r —Tigblo rf i~ / (r—VE)2 /20 g,
2Jo o2 27r02\/>

This integral is further simplified if we observe that for high SNR, the integrand is dominant in the
vicinity of /&, and therefore, the lower limit can be substituted by —oo. Also

Ip(z) =~

r N\/ 1
ono2\/& V27102

and therefore,

1
/ —<r /202 3. o L / 2L Va0,
2 27r02 2 ) 2mo?

&
= 50
2N0
Finally
1 & 1 [ 2 _:2
P = — - — - N, d
(error) QQ[ 5Ng +2 \/QENOG odr
1 &1 1 -8
< = = e AN
= 2Q[ oNg | T2

Problem 7.54

(a) Four phase PSK

If we use a pulse shape having a raised cosine spectrum with a rolloff «, the symbol rate is deter-
mined from the relation

1
— (14 ) = 50000

2T
Hence,
1 10°
T - 1+«
where W = 10° Hz is the channel bandwidth. The bit rate is
2 2x10°
T 1+« bps

(b) Binary FSK with noncoherent detection
In this case we select the two frequencies to have a frequency separation of A T, where % is the
symbol rate. Hence

fl fc

1
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where f. is the carrier in the center of the channel band. Thus, we have

1
— = 50000
2T
or equivalently
1
— =10
T

Hence, the bit rate is 10° bps.
(¢) M =4 FSK with noncoherent detection

In this case we require four frequencies with adjacent frequencies separation of % Hence, we select
1.5 1 1 1.5
fl—fc_|?7 f2_fc_ﬁ7 f3_fc+ﬁv f4—fc+?

where f. is the carrier frequency and % = 25000, or, equivalently,
1
— = 50000
T

Since the symbol rate is 50000 symbols per second and each symbol conveys 2 bits, the bit rate is
10° bps.

Problem 7.55

a) For n repeaters in cascade, the probability of i out of n repeaters to produce an error is given
by the binomial distribution

However, there is a bit error at the output of the terminal receiver only when an odd number of
repeaters produces an error. Hence, the overall probability of error is

Pn=Poaa= ), (?)Pi(l—p)”i

i=odd

Let Peyen be the probability that an even number of repeaters produces an error. Then

Poven = Y < TZ )pi(l —p)n

i=even

and therefore,
n

n . _

Peven+P0dd:Z< i >pz(1_p)n z:(p+1_p)n:1
i=0

One more relation between Peyen, and Pyqq can be provided if we consider the difference Peyen — Podd-

Clearly,

Peven = Poda = Y. <?>pi(1—p)”i— > (?)pi(l—p)”i

i=even i—odd
e <?>(‘p)i“‘p>“+ 2 (Tf)(—p)i(l—p)”i
i=even i—odd

= (1-p—p)"=0-2p)"

where the equality (a) follows from the fact that (—1)% is 1 for 4 even and —1 when i is odd. Solving
the system

Peven+P0dd =1
Peven_Podd = (1_2p)n
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we obtain

1
Pn:Poddzi(l_(1_2p)n)

b) Expanding the quantity (1 — 2p)"™, we obtain

(n—1)

n
(1=2p)" =1—n2p+ —— (2p)* + - --

Since, p < 1 we can ignore all the powers of p which are greater than one. Hence,

1
Py~ (1= 1+n2p) = np = 100 x 1076 =10"*

Problem 7.56

The overall probability of error is approximated by

-

Thus, with P(e) = 1076 and K = 100, we obtain the probability of each repeater P, = Q [ ]‘S,—% =
1078, The argument of the function Q[] that provides a value of 10~® is found from tables to be

Hence, the required ]% is 5.612 = 31.47

Problem 7.57

a) The antenna gain for a parabolic antenna of diameter D is

7D\ ?
Gr :77()\>

If we assume that the efficiency factor is 0.5, then with

c  3x10®

we obtain
Gr = Gr =45.8458 = 16.61 dB
b) The effective radiated power is

EIRP = PrGr = Gr = 16.61 dB

c) The received power is

 PrGrGp

()

Pr =2.995 x 107? = —85.23 dB = —55.23 dBm
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Note that

actual power in Watts
10-3

dBm = 10log;q < > = 30 + 10log;y(power in Watts )

Problem 7.58

a) The antenna gain for a parabolic antenna of diameter D is

7D\ ?
Gr=n|—
w=n(%)
If we assume that the efficiency factor is 0.5, then with
3x 108
:;_ >1<09 =03 m and D=1m

we obtain

Gr=Gr =54.83 =17.39 dB

b) The effective radiated power is

EIRP = PrGr = 0.1 x 54.83 = 7.39 dB

¢) The received power is

 PrGrGg

()

Pr =1.904 x 1071 = —97.20 dB = —67.20 dBm

Problem 7.59

The wavelength of the transmitted signal is

3 x 108
A= 0w 003 m
The gain of the parabolic antenna is
D\ 2 710\ 2
Gr=n(—) =06(—) =6.58 x 10> =58.18 dB
R "< ) ) <0.03> %

The received power at the output of the receiver antenna is

_ PrGpGr 3 x 105 x 6.58 x 10°

 _ PiGrGn
(rd (11100 G

=222x 107 = -126.53 dB

Problem 7.60

a) Since T = 300°K, it follows that
No = kT =1.38 x 1072 x 300 = 4.14 x 1072 W/Hz

If we assume that the receiving antenna has an efficiency n = 0.5, then its gain is given by

2
D\? 3.14159 x 50
Gr=n (W> =05 (MOSX) = 5.483 x 10° = 57.39 dB

2x 109

208



Hence, the received power level is

_ PrGpGr 10 x 10 x 5.483 x 10°

= =
(4%%)2 (4 x 3.14159 x %)2

=7.8125 x 1071 = —121.07 dB
b) If £2 =10 dB = 10, then

R

Pr [ &\ 7.8125 x 10713
K (”) = . x 1071 = 1.8871 x 107 = 18.871 Mbits/sec

T No \Ny) T 414x10-2t

Problem 7.61

The overall gain of the system is
Giot = Ga, + Gos + Gppr + Ga, =10 -5 —1+25=29 dB
Hence, the power of the signal at the input of the demodulator is
P, qem = (-113 —30) +29 = —114 dB
The noise-figure for the cascade of the first amplifier and the multiplier is

F.—1 1095 — 1
o8 =10%° + — = —3.3785
Ga1 + 10

F1=Fa1+

We assume that Fj is the spot noise-figure and therefore, it measures the ratio of the available PSD
out of the two devices to the available PSD out of an ideal device with the same available gain.

That is,
Sno(f)

Sn,i(f)Gal Gos

where S, ,(f) is the power spectral density of the noise at the input of the bandpass filter and
Sn,i(f) is the power spectral density at the input of the overall system. Hence,

F =

—175—-30
0

Sno(f) =107 10 x 10 x 107%% x 3.3785 = 3.3785 x 10~ 2°

The noise-figure of the cascade of the bandpass filter and the second amplifier is

Fa, —1 0o 109° —1
=107+ ————— =4.307
GBPF + 1001

Fy = Fgpr +
Hence, the power of the noise at the output of the system is
P, dem = 25n.0(f)BGrprGa, Fy = 7.31 x 1071? = —111.36 dB
The signal to noise ratio at the output of the system (input to the demodulator) is

Ps,dern
P

n,dem

SNR = =—-114+4111.36 = —2.64 dB

Problem 7.62

The wavelength of the transmission is



If 1 MHz is the passband bandwidth, then the rate of binary transmission is R, = W = 10° bps.
Hence, with Ny = 4.1 x 10721 W/Hz we obtain
Pr &

i Rbﬁo — 10% x 4.1 x 1072 x 10*° = 1.2965 x 10~ 13

The transmitted power is related to the received power through the relation

PrGrGr Pr < d)2
Prh=—7F"F—=Pr=—"— 47—

BT (and) T GrGRr A

Substituting in this expression the values Gp = 1096, G = 10°, d = 36 x 10% and XA = 0.75 we
obtain
Pr =0.1185 = —9.26 dBW

Problem 7.63

Since T = 290" + 15° = 305°K, it follows that
No=kT =1.38 x 10723 x 305 = 4.21 x 107! W/Hz

The transmitting wavelength A is

c 3 x 108
A=—=——"-=-=0.130

T 23% 109 o
Hence, the gain of the receiving antenna is

7D\ 2 3.14159 x 64
Gr=n (A) =095 ( 0.130

and therefore, the received power level is

2
) =1.3156 x 10% = 61.19 dB

_ PrGpGr 17 x 10%7 x 1.3156 x 109

R — —
(4m$)? (4 x 3.14159 x L6x100 )2

= 4.686 x 10712 = —113.29 dB

If &/Nog = 6 dB = 10°6, then

R Pr (gb )1 _ 4.686 x 10712

~ N. \ N, —7 o X1 06 —44 12 109:4_4312 bit
No \ Ny 421 x 1021~ 0 312 % Gbits/sec

Problem 7.64
In the non decision-directed timing recovery method we maximize the function

Ao (1) =D ypm(7)

with respect to 7. Thus, we obtain the condition

dAo(T) B Ay (1) B
dzT _2;‘%”(7-) dr =0

Suppose now that we approximate the derivative of the log-likelihood Ay (7) by the finite difference

dAQ(T) N A2(7‘+5) —AQ(T—d)
dr ~ 26
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Then, if we substitute the expression of Ay(7) in the previous approximation, we obtain

dAo(T)
dr
20

= 262 [(/ t—mT—7—5)dt>2 - (/r(t)u(t—mT—T—i—é)dt)T

where u(—t) = gr(t) is the impulse response of the matched filter in the receiver. However, this
is the expression of the early-late gate synchronizer, where the lowpass filter has been substituted
by the summation operator. Thus, the early-late gate synchronizer is a close approximation to the

timing recovery system.

Problem 7.65

An on-off keying signal is represented as

s1(t) = Acos(2mfet +60.), 0<t<T (binary 1)
s9(t) =0, 0 <t <T (binary 0)

Let r(t) be the received signal, that is

r(t) = s(t;0c) + n(t)

where s(t;60.) is either sq(t) or so(t) and n(t) is white Gaussian noise with variance % The
likelihood function, that is to be maximized with respect to 6. over the interval [0, T, is proportional
to

2 T
A(6e) = exp [_ |- s(t;@c)]2dt]
No Jo
Maximization of A(f.) is equivalent to the maximization of the log-likelihood function

2

T
Aol = /O [r(t) — s(t: 0.))%dt

2 T 4 T 2 T
_ —NO/O ()dt+NO/ (t)s(t;ec)dt—NO/O

Since the first term does not involve the parameter of interest 6. and the last term is simply a
constant equal to the signal energy of the signal over [0,7] which is independent of the carrier
phase, we can carry the maximization over the function

V(0,) = /O r(0)s(t:0.)dt

Note that s(t;0.) can take two different values, s1(¢) and s2(t), depending on the transmission of a
binary 1 or 0. Thus, a more appropriate function to maximize is the average log-likelihood

c 2/ 31 dt+ /

Since s3(t) = 0, the function V(6.) takes the form

6.) 2/ t)Acos(2m fot + 6.)dt
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Setting the derivative of V(f.) with respect to . equal to zero, we obtain

oV (6.)
90,

T
—0 = %/ r(£)Asin(2r fot + 0,)dt
= cosf.= / t)Asin(2m f.t)dt + sin .~ / t)A cos(2m f.t)dt

Thus, the maximum likelihood estimate of the carrier phase is

Jo T(t)ASiH(%fct)dt]
Jo r(t)Acos(2m fot)dt

Oc a1, = — arctan [
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Chapter 8

Problem 8.1

1) The following table shows the values of &,(W)/T obtained using an adaptive recursive Newton-
Cotes numerical integration rule.

wT 0.5 1.0 1.5 2.0 2.5 3.0
En(W)/T || 0.2253 | 0.3442 | 0.3730 | 0.3748 | 0.3479 | 0.3750

A plot of £,(W)/T as a function of W7 is given in the next figure

0.4

o IS
) I 139
G [ S
; : :

o
o
:

Energy / T

0.15¢-

0.1F

0.05,

2) The value of E,(W) as W — oo is

lim &(W) — /Oo g (t)dt:/OTg%(t)dt
1

W —o0 —00

Problem 8.2

We have
a+n— % with Prob.

y= a—i—n—i—% with Prob.
a+n with Prob.

[N

By symmetry, P. = P(ela =1) = P(e|la = —1), hence,
3

1 1 1
P.=Plela=-1) = 2P(n—1>0)+4P<n—2>0) P(n—2>0>

- 20() el e )
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Problem 8.3

a) If the transmitted signal is

r(t)= Y anh(t —nT) +n(t)
then the output of the receiving filter is
y(t) = Z anz(t —nT) + v(t)

where x(t) = h(t) * h(t) and v(t) = n(t) * h(t). If the sampling time is off by 10%, then the samples
at the output of the correlator are taken at ¢ = (m =+ 5)T. Assuming that ¢ = (m — 5)T without
loss of generality, then the sampled sequence is

o0

Ym = Z anz((m — %T —nT)+v((m— %)T)

n=—0oo

If the signal pulse is rectangular with amphtude A and duration T', then >0° _ __ apz((m— %OT —nT)

is nonzero only for n = m and n = m — 1 and therefore, the sampled sequence is given by
(~767) + amaa(T — = T) +w((m — =2)T)
= apr(—— am—12(T — — v((m— —
Ym m 10 m—1 10 10
9 1
= EamA T+ Ay — 17A2T + V((m — E)T)
The power spectral density of the noise at the output of the correlator is
S _ NO 22
V(f) = Sa(HIH(f)? = - A*T?sinc®(T)
Thus, the variance of the noise is
® N, N, 1 N
ont® = / 20 Q2 26in 2 (fTYdf = 04272 = — 20 g2
oo 2 2 T 2

and therefore, the SNR is

2 2
SNR — ( ) 2(APT)? _ 81 24%T
10) NoA2T ~ 100 N

As it is observed, there is a loss of 10log;, 18010 —0.9151 dB due to the mistiming.

b) Recall from part a) that the sampled sequence is

9
Ym = EamAzT + Q- 17A2T + Um
The term am,l% expresses the ISI introduced to the system. If a,, = 1 is transmitted, then the

probability of error is

1 1
Plelay, =1) = 5P(e\am =1,am-1=1)+ §P(€’am =1,am,_1=—1)
AT v2 -5 AT v2
= e NoATdy 4 ————— / e NoA’Tdy
2\/ 7I‘N0A2T/ 2\/ 7TN0A2T

= 50

[2A2T
No

oG A
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Since the symbols of the binary PAM system are equiprobable the previous derived expression is
the probability of error when a symbol by symbol detector is employed. Comparing this with the
probability of error of a system with no ISI, we observe that there is an increase of the probability
of error by
1 8 \? 2A2T 2A2T
P S 2
aiff(©) = 5@ [ <10) No No

1

2

Problem 8.4

1) The power spectral density of X (¢) is given by

§:(1) = 7 Sa(DIGr (I

The Fourier transform of g(t) is

sin WfTefjwa
wfT

Gr(f) = Flg(t)] = AT
Hence,
|G (f)]? = (AT)?sinc®(fT)

and therefore,
So(f) = A2TS,(f)sinc®(fT) = A*Tsinc?(fT)

2) If ¢1(¢) is used instead of g(¢) and the symbol interval is T', then

1

S:(f) = TSa(f)‘GQT(f)P

= %(AQT)QsinCZ( f2T) = 4A*Tsinc?(f27T)

3) If we precode the input sequence as b, = a,, + aa,_3, then

1402 m=0
Ry(m) = o' m = +3
0 otherwise

and therefore, the power spectral density Sy(f) is
So(f) =1+ a? + 2 cos(2m f3T)

To obtain a null at f = ?%T, the parameter o should be such that

1+a® +2acos(2mf3T), | =0=a=-1

=1

4) The answer to this question is no. This is because Sp(f) is an analytic function and unless it
is identical to zero it can have at most a countable number of zeros. This property of the analytic
functions is also referred as the theorem of isolated zeros.
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Problem 8.5

1) The power spectral density of s(t) is

0.2
§:() = Z21Gr(NP = ZIGr(P

The Fourier transform Gr(f) of the signal g() is

_T _ 3T
o = 7)o ()

T ; T T ;
= —sinc(;f)e_ﬂ”f% - §sinc(—f)e_32”f¥

= —sinc(gf)e*ﬂﬂf% {ej%rf% _ eszwfﬂ
T

T T ,
= Esinc(gf) Sin(27rfz)2je_]2ﬂf%

Hence,
T T
Gr()F = Tsinc (5 ) sin? (2 f )
and therefore,

Ss(f) = Tsincz(gf) sin2(27rf§)

2) If the precoding scheme b,, = a,, + ka,—1 is used, then

1+k m=0
Ry(m) = k m=+1
0 otherwise

Thus,
Sy(f) = 14 k? + 2k cos(2n fT)

and therefore the spectrum of s(t) is
2 BT PPN r
Ss(f) = (1 + k* 4 2k cos(2m fT')) T'sinc (§f) sin (27rfz)

In order to produce a frequency null at f = % we have to choose k in such a way that

14 k2 + 2k cos(2n fT) =1+k+2k=0

ly=1/7

The appropriate value of k is —1.

3) If the precoding scheme of the previous part is used, then in order to have nulls at frequencies
f = 17, the value of the parameter k should be such that

1+ k% 4 2k cos(2n fT) =1+k*=0

ly=1/a1

As it is observed it is not possible to achieve the desired nulls with real values of k. Instead of the
pre-coding scheme of the previous part we suggest pre-coding of the form

by, = an + kap—2
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In this case

14k m=0
Ry(m) = k m = 12
0 otherwise

Thus,
Sp(f) = 1+ k? + 2k cos(2m2fT)

and therefore Sy(55) = 0 for k = 1.

Problem 8.6

a) The power spectral density of the FSK signal may be evaluated by using equation (8.5.32) with
k = 2 (binary) signals and probabilities pg = p1 = % Thus, when the condition that the carrier
phase 6y and and 6, are fixed, we obtain

1 o

S(f)Z@ > \So( o)+ S 6)125(f—*)+f150() Si(f)P

where So(f) and Si(f) are the Fourier transforms of so(¢) and s1(¢). In particular,

s = | " so(t)e 2 dy

2
= ;b / cos(27 fot + 0p)e?2™ I dt, fo=fe— —f
\/ b

125 {smﬂ'Tb(f — fo) sin7T,(f + fo)} o7 ITy %

Ty 7(f = fo) m(f + fo)
Similarly,
Si(f) = /(]Tb51(t)€_j27rftdt
_ \/T&,[smﬂ'Tb(f f1) _i_SiIl?TTb(f‘i‘fl)} o—ITI Ty 0301
2\ Ty (f—h) m(f + f1)
where f1 = f. + 5. By expressing S(f) as
SU) = gz O[S0 + ISR + 2Relsu)SH NS - 7o)

bn—oo

+Tn [150() 2 + 181 (£)? — 2Re[So(£)S7 (/)]

we note that the carrier phases 6y and 6; affect only the terms Re(SpS7). If we average over the
random phases, these terms drop out. Hence, we have

S0 = gz X (S sG] o - )

+4T“b IS0 () + 1S1(£)?]

where

Se(f)P =

Ty& [Sinﬂ'Tb(f —fi) | sinmdTy(f + fi)
2 m(f — fx) m(f + fr)
Note that the first term in S(f) consists of a sequence of samples and the second term constitutes
the continuous spectrum.

}, k=01
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1

b) It is apparent from S(f) that the terms |Si(f)|> decay proportionally as T

() = Tk Ksianb(f - fk>>2 N <sin7rTb(f + mﬂ

2 m(f — fr) m(f + fi)

because the product

sin Ty (f — fk) " sin Ty (f + fx)
m(f — fr) m(f + fi)

due to the relation that the carrier frequency f. > T%,

~0

fr)?

also note that

Problem 8.7
1) The autocorrelation function of the information symbols {a,} is

1
Ra(k) = Elaga+n+k) = 7 % lan|?6(k) = 6(k)
Thus, the power spectral density of v(t) is

§v(f) = 7S (PIGE = HIG()P

where G(f) = Flg(t)]. If g(t) = AH(#), we obtain |G(f)|?> = A*T?sinc?(fT) and therefore,

Sv(f) = A?Tsinc®(fT)

In the next figure we plot Sy (f) for T'= A = 1.

1
0.9}
0.8}
0.7}
0.6]
0.5]
0.4}
0.3}
0.2}
0.1}
Os—% =3 5 1 6 1 2 3§ 4 5

frequency f

Sv(f)

2) If g(t) = Asin(ZHI(*=E2), then

1 1.1 1 I
g N Y - - . 7‘7271-]"7
G(f) A Qj‘s(f 4) 2j5(f+ 4)} x T'sinc(fT)e 2
AT 1 1 } .
= 7[5(f - Z) —o(f+ Z)] xsinc(fT)e I 5+3)
ﬂefjw[(ffi)ﬂ%]
2

4
Thus,

GUOPR = 55 [sine (7 + ) +sinc? (7 - 1)
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and the power spectral of the transmitted signal is
AQT 1 1
Sv(f) = 1 sinc?((f + Z)T) + sinc?((f — Z)T)
T

—2sinc((f + %)T)sinc((f - %)T) co8 -

In the next figure we plot Sy (f) for two special values of the time interval 7. The amplitude of
the signal A was set to 1 for both cases.

0.45 : : : : : : : : : 0.8
0.4 0.7L
035; 0.6}
0.3
0.5+
0.25 T=2
[y e
=2 < 04t
@ 0.2t @
0.3+
0.15¢
0.1 0.2+
0.05} 0.1¢
05— i s S5 2 T 0 1T 3z 3 & 3
frequency f frequency f

3) The first spectral null of the power spectrum density in part 1) is at position
1
Whan = T
The 3-dB bandwidth is specified by solving the equation:

1
Sv(W3qB) = 55v(0)
Since sinc?(0) = 1, we obtain

1 1
SinCQ(W?)dBT) = 5 —— Sin(ﬂ'ngBT) = EWW?)dBT

Solving the latter equation numerically we find that

1.3916  0.443
WagB=—7 =7

To find the first spectral null and the 3-dB bandwidth for the signal with power spectral density
in part 2) we assume that 7" = 1. In this case

2

Sv(f) = 7 [sine(( + 1) +sine(( — 1)

and as it is observed there is no value of f that makes Sy (f) equal to zero. Thus, W}, jj = co. To
find the 3-dB bandwidth note that

2 1 AQ
Sy (0) = —2sinc(~) = —1.6212
4 4
Solving numerically the equation
142
=-—1.6212
Sy(W34p) W 6

we find that WSdB = 0.5412. As it is observed the 3-dB bandwidth is more robust as a measure
for the bandwidth of the signal.

219



Problem 8.8

The transition probability matrix P is

010 1
1{oo0 11
P_§ 1100
1010
Hence,
102 1 2 4 4 6
12110 1142 6 4
2 1 4_ 1
PP=71011 2 and - Pr=gel 4 6 9 4
120 1 6 4 4 2
and therefore,
2 4 4 6 1 0 0 -1
1142 6 4 0 1 -1 0
4—7
Pv = %146 24 0 -1 1 0
6 4 4 2 1 0 0 1
4 0 0 4
1| 0o -4 4 o] 1
16| o 4 0 | T 7%
4 0 0 —4

Thus, P4y = —%7 and by pre-multiplying both sides by P*, we obtain

Pk+4,y — —*Pk’)/

4

Problem 8.9
a) Taking the inverse Fourier transform of H(f), we obtain
—1 (&% (0%
h(t)=F [H(f)] =46(t) + 5(5(1‘, —to) + 55(15 + o)

Hence,
«
—s

y(t) = s(t) x h(t) = s(t) + 5

o
t—t —
( o)+28

(t+to)
b) If the signal s(¢) is used to modulate the sequence {a,}, then the transmitted signal is

o

u(t) = Z ans(t —nT)

n=—oo

The received signal is the convolution of u(t) with h(t). Hence,

y(t) = u(t)xh(t) = ( i ans(t — nT)> * <5(t) + %5@ —to) + %5(75 + to))
= nioo ans(t —nT') + ;nioo ans(t —to —nT) + (;n:izo ans(t +to — nT)
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Thus, the output of the matched filter s(—t) at the time instant ¢; is

w(ty) = Z an/ s(t—nT)s(T —t1)dr
Q= >
+§ n:z_:oo an, /_OO s(t —tog—nT)s(T — t1)dr
o - o0
—1—5 n;w an [m s(t+tg —nT)s(T — t1)dr

If we denote the signal s(t) x s(t) by x(t), then the output of the matched filter at ¢; = kT is

o0

w(kT) = Z anz(kT —nT)
+2 i anx (kT —to —nT) + @ i anz(kT + tg —nT)
2 n=-—o0o 2 n=-—o00

c) With tg = T and k£ = n in the previous equation, we obtain

W = apTo + Z nTf—n
n#k
« (6% « (6%
ST+ = Y GnThn—1 + QT+ 5 D GnTh_pi1

2 Qn;ék 2 2n;£k

« [0 « «
ag (900 + -1+ 361) + Z Gn |:wkn + 5 Tk—n—-1+ 5 Tk—n+1
2 2 ik 2 2

_.I_

The terms under the summation is the ISI introduced by the channel.

Problem 8.10

a) Each segment of the wire-line can be considered as a bandpass filter with bandwidth W = 1200
Hz. Thus, the highest bit rate that can be transmitted without ISI by means of binary PAM is

R =2W = 2400 bps

b) The probability of error for binary PAM transmission is

ol

Hence, using mathematical tables for the function Q[-], we find that P, = 10~7 is obtained for

2& &
— =52— — =1352=11.30dB
No No
¢) The received power Pp is related to the desired SNR per bit through the relation

P &

SR _pob

Ny Ny
Hence, with Ny = 4.1 x 10~2! we obtain

Pp=4.1x 1072 x 1200 x 13.52 = 6.6518 x 10717 = —161.77 dBW
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Since the power loss of each segment is
L; =50 Km x1dB/Km =50dB
the transmitted power at each repeater should be

Pr=Pr+Ls;=-161.774 50 = —111.77 dBW

Problem 8.11

The pulse z(t) having the raised cosine spectrum is

) cos(mat/T)
x(t) = smc(t/T)TQtQ/T2
The function sinc(¢/7) is 1 when ¢ = 0 and 0 when ¢ = n7". On the other hand

o cos(mat/T) 1 t=0
9(t) = 1 —402t2/T? | bounded ¢ #0

The function g(t) needs to be checked only for those values of ¢ such that 4a%t?/T? = 1 or at = L

However,
s
lim_ cos(mat/T) — i cos(5x)
at—L 1-— 4Oz2t2/T2 z—1 1—=x

and by using L’Hospital’s rule

cos(§x)

. tim T s (71') T
11m = l1m — sin{ — = —
it B I AT RS T

Hence,
1 n=0
x(nT) = { 0 n#0

meaning that the pulse z(t) satisfies the Nyquist criterion.

Problem 8.12

Substituting the expression of X,.(f) in the desired integral, we obtain

| xunar = /f[H(

— _lta
o0 2T

11—«

S are [T T

2T

14+«

+/1ﬂ€[1+cos7f(f—l_a)} df

2T

1+

1—
— 9T 11—« ST T
_ /—IJT(’ df+T< - >+/ 5

2T

1—a +a
37T 7T l—« 2T T l—a
+/1+a cos?( 5T ) /12}“ cos?(f— 5T )df

2T

T T T
= 1 +/ cos Lxdq:Jr/T coS L:cda:
,g (8] 0 8]

= 1+ cos—a:dz:—l—l—()—l

— &
T
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Problem 8.13

Let X(f) be such that

Re[X(f)]:{ TU(fT)+U(f) |fI <7 Im[X(f)]:{ V() |fl <%

0 otherwise 0 otherwise
with U(f) even with respect to 0 and odd with respect to f = Since x(t) is real, V(f) is odd
with respect to 0 and by assumption it is even with respect to f . Then,

a(t) = FHX(S)]
_ /ﬁxgwwmﬁ+/fwaﬁwﬂ+/fxuw%mﬁ

= /f Teﬂ“ftdf+/ £)+3V(f)le* I taf
— sinc(t/T) + / )+ V()2 af

1 .
Consider first the integral [T, U(f)e/2™/*df. Clearly,
T

[vnwra - [

and by using the change of variables f' = f + % and f' = f — % for the two integrals on the right
hand side respectively, we obtain

U ]27rftdf + / U ]Qﬂftdf

1
T

1 1
_ ikt [T p L jempt e jze [T r oy A e g
= IR [T - e #+6T[£Wf+ﬂ% df

1
a (ej%t _efj%t) o (f' + %)ej%rf’tdf/
1
= 2j sin(ft)/ﬁ U + el !
T )L 2T

where for step (a) we used the odd symmetry of U(f’) with respect to f' = 2T’ that is

1

U~ ) = U + )

1 ,
For the integral [T, V(f)e/?™tdf we have
T

1

[ v

1
T

- ej27rf/tdfl

2T)

1 1
2T
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However, V(f) is odd with respect to 0 and since V (f'+ 5) and V(f'— 55) are even, the translated
spectra satisfy

/ V ) j2m f’ tdf / V )6]27rf tdf
Hence,
xz(t) = sinc(t/T) + 27 sin( / U(f ) jorf! b
—2sin( / U(f ) jernf’ tdf

and therefore,
1 n=0
x(nT) = { 0 n#0

Thus, the signal z(t) satisfies the Nyquist criterion.

Problem 8.14

The bandwidth of the channel is
W = 3000 — 300 = 2700 Hz

Since the minimum transmission bandwidth required for bandpass signaling is R, where R is the
rate of transmission, we conclude that the maximum value of the symbol rate for the given channel
is Rmax = 2700. If an M-ary PAM modulation is used for transmission, then in order to achieve
a bit-rate of 9600 bps, with maximum rate of Rya.x, the minimum size of the constellation is
M = 2% =16. In this case, the symbol rate is

9600

R = = 2400 symbols/sec

and the symbol interval T' = % = ﬁ sec. The roll-off factor a of the raised cosine pulse used for

transmission is is determined by noting that 1200(1 + «) = 1350, and hence, o = 0.125. Therefore,
the squared root raised cosine pulse can have a roll-off of a = 0.125.

Problem 8.15

Since the bandwidth of the ideal lowpass channel is W = 2400 Hz, the rate of transmission is
R = 2 x 2400 = 4800 symbols/sec

The number of bits per symbol is
14400

T 4800
Hence, the number of transmitted symbols is 22 = 8. If a duobinary pulse is used for transmission,
then the number of possible transmitted symbols is 2M — 1 = 15. These symbols have the form

b, = 0,+2d, +4d, ..., +12d

where 2d is the minimum distance between the points of the 8-PAM constellation. The probability
mass function of the received symbols is

8 —[m|

P(b=2md) = YR

m=0,+1,...,£7
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An upper bound of the probability of error is given by (see (8.4.33))

1 ™2 6 k&
PM<2<1_W>Q[\/<4> M2—1 N,

| I

With Py = 107 and M = 8 we obtain

kgb,av

=1.3193 x 10> = &, 4 = 0.088
No ’

Problem 8.16

a) The spectrum of the baseband signal is

_ 1 2 1 2
SV(f) - TSa(f)’ch(fM - T‘ch(f)‘
where T = Tloo and
r 0<If]< 4
Xoe(f) =8 LA +cos2rT(f| - &) 77 < IfI < 55
0 otherwise

If the carrier signal has the form ¢(t) = A cos(2n ft), then the spectrum of the DSB-SC modulated
signal, Sy(f), is
A
SU(f) = §[SV(f - fc) + SV(f + fc)]

A sketch of Sy (f) is shown in the next figure.

-fc-3/4T -fc -fc+3/4T fc-3/4T fc fc+3/4T

b) Assuming bandpass coherent demodulation using a matched filter, the received signal r(t) is
first passed through a linear filter with impulse response

gr(t) = Axpe(T — t) cos(2mfe(T — 1))

The output of the matched filter is sampled at ¢ = T and the samples are passed to the detector.
The detector is a simple threshold device that decides if a binary 1 or 0 was transmitted depending

on the sign of the input samples. The following figure shows a block diagram of the optimum
bandpass coherent demodulator.

Bandpass Detector
_r(t) | matched ﬁlter_EL. (Threshold[—
gr(?) device)
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Problem 8.17

a) If the power spectral density of the additive noise is S, (f), then the PSD of the noise at the
output of the prewhitening filter is

Su(f) = Su(HIHp ()
In order for S, (f) to be flat (white noise), Hp(f) should be such that

2) Let h,(t) be the impulse response of the prewhitening filter H,(f). That is, h,(t) = F1[H,(f)].
Then, the input to the matched filter is the signal 5(t) = s(t) * hy(t). The frequency response of
the filter matched to 5(t) is

Sim(f) = 8 (f)e It == S*(f)Hy (f)e 7?71t
where ty is some nominal time-delay at which we sample the filter output.

3) The frequency response of the overall system, prewhitening filter followed by the matched filter,

is .
S (f) e*j27l'ft0

G(P) = Sl F) (1) = S (NI H(F)Pe 00 =

4) The variance of the noise at the output of the generalized matched filter is

o= [sanenra = [ GG

At the sampling instant t = tg = T', the signal component at the output of the matched filter is

u) - / Y (eI T ~ / (M)g(T ~ r)dr

2

Hence, the output SNR is

AT e ISP
SNR =L _/_Oo X

Problem 8.18
The bandwidth of the bandpass channel is

W = 3300 — 300 = 3000 Hz

In order to transmit 9600 bps with a symbol rate R = 2400 symbols per second, the number of
information bits per symbol should be

9600
2400

Hence, a 2% = 16 QAM signal constellation is needed. The carrier frequency f. is set to 1800 Hz,
which is the mid-frequency of the frequency band that the bandpass channel occupies. If a pulse
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with raised cosine spectrum and roll-off factor « is used for spectral shaping, then for the bandpass
signal with bandwidth W
R =1200(1 + «) = 1500

and
a=0.25

A sketch of the spectrum of the transmitted signal pulse is shown in the next figure.

-3300 -1800 -300 300600 1800 3300
3000

Problem 8.19
The channel bandwidth is W = 4000 Hz.
(a) Binary PSK with a pulse shape that has o = % Hence

1
—(1 = 2000

TR
and = = 2667, the bit rate is 2667 bps.

(b) Four-phase PSK with a pulse shape that has o = 1. From (a) the symbol rate is 7 = 2667 and
the bit rate is 5334 bps.

(¢) M = 8 QAM with a pulse shape that has a = % From (a), the symbol rate is % = 2667 and
hence the bit rate % = 8001 bps.

(d) Binary FSK with noncoherent detection. Assuming that the frequency separation between the
two frequencies is Af = %, where % is the bit rate, the two frequencies are f. + % and f. — %
Since W = 4000 Hz, we may select % = 1000, or, equivalently, % = 2000. Hence, the bit rate is
2000 bps, and the two FSK signals are orthogonal.

(e) Four FSK with noncoherent detection. In this case we need four frequencies with separation
of % between adjacent frequencies. We select f1 = f. — %, fo=fo— %, f3 = fc+ %, and
fa=fe+ %, where % = 500 Hz. Hence, the symbol rate is % = 1000 symbols per second and
since each symbol carries two bits of information, the bit rate is 2000 bps.

(f) M = 8 FSK with noncoherent detection. In this case we require eight frequencies with frequency
separation of % = 500 Hz for orthogonality. Since each symbol carries 3 bits of information, the
bit rate is 1500 bps.

Problem 8.20
1) The bandwidth of the bandpass channel is

W = 3000 — 600 = 2400 Hz

Since each symbol of the QPSK constellation conveys 2 bits of information, the symbol rate of

transmission is 9400
R = — = 1200 symbols/sec

Thus, for spectral shaping we can use a signal pulse with a raised cosine spectrum and roll-off factor
a =1, that is

T 1
Xre(f) = G+ cos(xT| )] = 555 cos’ (;1!(1)‘())
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If the desired spectral characteristic is split evenly between the transmitting filter Gr(f) and the
receiving filter Gr(f), then

1 1
GT(f)ZGR(f)Z“lQOOCOS(;ZL‘(J)t(’))’ |f|<T:12OO

A block diagram of the transmitter is shown in the next figure.

a
n ‘ G to Channel
QP—>SK r(f) 4’(%)—>

cos (27 fet)

2) If the bit rate is 4800 bps, then the symbol rate is
4800

R
2

= 2400 symbols/sec

In order to satisfy the Nyquist criterion, the the signal pulse used for spectral shaping, should have
the spectrum
/

X(f)y=T1I | =
0-m(k)
Thus, the frequency response of the transmitting filter is Gr(f) = VT (%)

Problem 8.21

The bandwidth of the bandpass channel is W = 4 KHz. Hence, the rate of transmission should be
less or equal to 4000 symbols/sec. If a 8-QAM constellation is employed, then the required symbol
rate is R = 9600/3 = 3200. If a signal pulse with raised cosine spectrum is used for shaping, the
maximum allowable roll-off factor is determined by

1600(1 4+ o) = 2000

which yields a = 0.25. Since « is less than 50%, we consider a larger constellation. With a 16-QAM

constellation we obtain 9600
R = = 2400

and
1200(1 + o) = 2000

Or a = 2/3, which satisfies the required conditions. The probability of error for an M-QAM
constellation is given by

Py =1—(1—-P)°

where

re=2(o- 7)o [,

With Py; = 106 we obtain P\/M =5 x 1077 and therefore

1 3 .
2% (1~ S 2R
< (1-3)e [\/15><2><10—10] o 10

Using the last equation and the tabulation of the Q[] function, we find that the average transmitted
energy is

Eup = 24.70 x 1077
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Note that if the desired spectral characteristic X,.(f) is split evenly between the transmitting and
receiving filter, then the energy of the transmitting pulse is

| gkt = [ 1GrnPa = [ Xeoln)ar =1

Hence, the energy &,, = P, depends only on the amplitude of the transmitted points and the

symbol interval T'. Since T = ﬁ, the average transmitted power is
)
Pay =~ = 24.70 1077 x 2400 = 592.8 x 107

If the points of the 16-QAM constellation are evenly spaced with minimum distance between them
equal to d, then there are four points with coordinates (:t%,:l:%), four points with coordinates
(£3d, £34) four points with coordinates (3¢, +-4), and four points with coordinates (£4, £34).
Thus, the average transmitted power is

1 O 1 d? 9d> 104>
P, = A2 A2 )= |4x —+4x — ——| = 20d*
2x16;(mc+ ms) 2[X2+X2+8X 1 0
Since P,, = 592.8 x 10~7, we obtain
Pa'u
d=1/ = 0.00172
50 0.0017
Problem 8.22
The roll-off factor « is related to the bandwidth by the expression HTO‘ = 2W, or equivalently

R(1 4+ «) = 2W. The following table shows the symbol rate for the various values of the excess
bandwidth and for W = 1500 Hz.

.25 33 .50 .67 .75 | 1.00
R || 2400 | 2256 | 2000 | 1796 | 1714 | 1500

Q

Problem 8.23

The following table shows the precoded sequence, the transmitted amplitude levels, the received
signal levels and the decoded sequence, when the data sequence 10010110010 modulates a duobinary
transmitting filter.

Data seq. dy: 100 1 01 1 0 01 O
Precoded seq. py: 01 11 0 01 0 0 0 1 1
Transmitted seq. a,: | -1 1 1 1 -1 -1 1 -1 -1 -1 1 1
Received seq. by,: o 22 0 -2 0 0 -2 -2 0 2
Decoded seq. dj: 1 0 0 1.0 1 1 0 010

Problem 8.24

The following table shows the precoded sequence, the transmitted amplitude levels, the received
signal levels and the decoded sequence, when the data sequence 10010110010 modulates a modified
duobinary transmitting filter.

Data seq. dy: 1 001 0 1 1 0 01 O
Precoded seq. pn: 0O 01 0 1 1 1 0O 0 0 1 O
Transmitted seq. a,,: || -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
Received seq. by,: 2 0 0 2 0 -2 -2 0 0 2 O
Decoded seq. dj: 1 001 0 1 1 0 01 O




Problem 8.25
Let X (z) denote the Z-transform of the sequence z,, that is

X(z) = Z Tpz "

Then the precoding operation can be described as

D(z)
X(z)

P(z) = mod — M

where D(z) and P(z) are the Z-transforms of the data and precoded sequences respectively. For
example, if M =2 and X (z) = 1 + 27! (duobinary signaling), then

~ D(»)
142t

P(z2) — P(2) = D(2) — 2 ' P(2)

which in the time domain is written as

Pn = dn — Pn—1

and the subtraction is mod-2.

However, the inverse filter ﬁ exists only if xg, the first coefficient of X (z) is relatively prime
with M. If this is not the case, then the precoded symbols p,, cannot be determined uniquely from
the data sequence d,,.

Problem 8.26

In the case of duobinary signaling, the output of the matched filter is
x(t) = sinc(2W't) + sinc(2Wt — 1)
and the samples z,,_,, are given by

1 n—m=0
Tpnem =2(MT —mT)=¢ 1 n—m=1
0 otherwise

Therefore, the metric p(a) in the Viterbi algorithm becomes

pla) = 2 Z anTn — Z Z AnmTr—m
n n m
= QZanrn — Zai — Zanan,l
n n n
= Zan(Zrn —Qp — Ap—1)
n

Problem 8.27

The precoding for the duobinary signaling is given by
DPm = dm © Pm—1

The corresponding trellis has two states associated with the binary values of the history p,,_1. For
the modified duobinary signaling the precoding is

Pm = dm @D Pm—2
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Hence, the corresponding trellis has four states depending on the values of the pair (pm—2, Pm—1)-
The two trellises are depicted in the next figure. The branches have been labelled as x/y, where z
is the binary input data d,, and y is the actual transmitted symbol. Note that the trellis for the
modified duobinary signal has more states, but the minimum free distance between the paths is
dfree = 3, whereas the minimum free distance between paths for the duobinary signal is 2.

(Prm—2, Pm—1) Modified Duobinary
00
Duobinary
01
10
11
Problem 8.28
1) The output of the matched filter demodulator is
0 oo
y(t) = > ak/ gr(17 — kTy)gr(t — 7)d7 + v(t)
k=—00 -
o0
= Z arx(t — kTy) 4+ v(t)
k=—00
where,
sin 2t cos Tt
o(0) = gr(t) »grlt) = LTS
T 1—47=
Hence,
oo
y(mTy) = Z agz(mTy — kTy,) + v(mTy)
k=—00

1 1
= am+ —am-1+ —ams1 +v(mTy)
T ™

The term %am_l + %amﬂ represents the ISI introduced by doubling the symbol rate of transmission.
2) In the next figure we show one trellis stage for the ML sequence detector. Since there is postcursor
ISI, we delay the received signal, used by the ML decoder to form the metrics, by one sample. Thus,
the states of the trellis correspond to the sequence (a;,—1,ay, ), and the transition labels correspond
to the symbol a,,11. Two branches originate from each state. The upper branch is associated with
the transmission of —1, whereas the lower branch is associated with the transmission of 1.

(am—laam) Gm+1
1.1 et
-11
1-1
11
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Problem 8.29

a) The output of the matched filter at the time instant m7T is

1
Ym = Zamwkfm + U =am + Zam—l + Um
k

The autocorrelation function of the noise samples v, is

Thus, the variance of the noise is

If a symbol by symbol detector is employed and we assume that the symbols a,, = am—1 = V&
have been transmitted, then the probability of error P(e|a,, = am-1 = v/&) is

Plelam = am_1 = &) = P(ym < Olam = am—_1 = \/57))

= P(Vm<—g\/§b \/7/

2&
_ / W 2o [i 2&)]

v 2T No

e No dvVm,

If however a,,_1 = —/&p, then

P(e|lay, = VEp, am_1 = — &) = \/gb—i- Um < 0)=Q [ 3\%]
Since the two symbols /&, —/&, are used with equal probability, we conclude that
Pe) = Pl(e|am = V&) = Ple|am = —V/&)
S

b) In the next figure we plot the error probability obtained in part (a) (log;q(P(e))) vs. the SNR
per bit and the error probability for the case of no ISI. As it observed from the figure, the relative
difference in SNR of the error probability of 107° is 2 dB.

-2.5

-3.5

-4.5

log(P(e)

-5.5

-6.5

6 7 8 9 10 11 12 13 14
SNR/bit, dB
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Problem 8.30

The power spectral density of the noise at the output of the matched filter is

7

Ny 1 )
2w

X(Hl= oW cos(

Sf) = Sl PIGR(NI = 5

Hence, the autocorrelation function of the output noise is

Rr) = FUS(f)] =20 [F Leos(ZL

NQ >~ 1 7Tf s mf

T2 LW
- JZO/ " X(f)erz i) gf
No 1
= 2ty
and therefore,

_ Ng 1. Nof. 1. . 1\ 2Ny
RAO) = Sha(g) = 5 (sinelg) + sine(—3)) = =

B 1. No/. 3. . 1)\ 2N
RAT) = Rulgy) =55 (sinely) + sinc(5) ) = 5

Since the noise is of zero mean, the covariance matrix of the noise is given by

C:<Ry<o> RV<T>>:2NU< )

R,(T) R,(0) T
Let S; represent the state that the difference between the total number of accumulated zeros and
the total number of accumulated ones is ¢, with ¢ = —2,...,2. The state transition diagram of the
corresponding code is depicted in the next figure.

The state transition matrix is

o= =t
— =

Problem 8.31

01000
10100
D=|01010
001 01
00010

Setting det(D — AI) = 0, we obtain A\> —4\3 4+ 3\ = 0. The roots of the characteristic equation are
A=0, +1, +V3

Thus,
C = logy Amax = log, V3 =.7925
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Problem 8.32

The state transition matrix of the (0,1) runlength-limited code is
11

det(D—X)=-A1-X)—-1=X-)—1

The eigenvalues of D are the roots of

The roots of the characteristic equation are

Thus, the capacity of the (0,1) runlength-limited code is

1+v5

) = 0.6942

The capacity of a (1, 00) code is found from Table 8.3 to be 0.6942. As it is observed, the two codes
have exactly the same capacity. This result is to be expected since the (0,1) runlength-limited code
and the (1, 00) code produce the same set of code sequences of length n, N(n), with a renaming of
the bits from 0 to 1 and vise versa. For example, the (0,1) runlength-limited code with a renaming
of the bits, can be described as the code with no minimum number of 1’s between 0’s in a sequence,
and at most one 1 between two 0’s. In terms of 0’s, this is simply the code with no restrictions on
the number of adjacent 0’s and no consecutive 1’s, that is the (1, 00) code.

Problem 8.33

Let Sy represent the state that the running polarity is zero, and S the state that there exists some
polarity (dc component). The following figure depicts the transition state diagram of the AMI code

1/s(t)

0/0 @@Q Gl}g) 0/0
)

1/ —s(t

The state transition matrix is

11
The eigenvalues of the matrix D can be found from
det(D—A)=0=(1-X)?-1=00r A(2-X\) =0

The largest real eigenvalue is A\jax = 2, so that

C = 10g2 )\max =1
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Problem 8.34

Let {bx} be a binary sequence, taking the values 1, 0 depending on the existence of polarization at
the transmitted sequence up to the time instant k. For the AMI code, by, is expressed as

by =ap Dby_1=apDag_1Dar_2D...

where @ denotes modulo two addition. Thus, the AMI code can be described as the RDS code,
with RDS (=by) denoting the binary digital sum modulo 2 of the input bits.

Problem 8.35

Defining the efficiency as

) k

efficiency = 1oz, 3
we obtain

’ Code H Efficiency

1B1T 0.633

3B2T 0.949

4B3T 0.844

6B4T 0.949

Problem 8.36

a) The characteristic polynomial of D is

det(D — X) = det =\ -)2-1

1 -

1—\ 1|

The eigenvalues of D are the roots of the characteristic polynomial, that is

_1+V5
2

1,2

1+T\/5 and therefore

Thus, the largest eigenvalue of D is Apax =

1++5

C = log, 5

= 0.6942

b) The characteristic polynomial is det(D — AI) = (1 — \)? with roots A\; o = 1. Hence, C =
logy 1 = 0. The state diagram of this code is depicted in the next figure.

1 -
0@@?) @1

c) As it is observed the second code has zero capacity. This result is to be expected since with the
second code we can have at most n + 1 different sequences of length n, so that

.1 .1
C = lim —logy N(n) = JLIgoHlogQ(n +1)=0

n—oo N
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The n + 1 possible sequences are

0...01...1 (n sequences)
k n—=k

and the sequence 11...1, which occurs if we start from state Sy.

Problem 8.37

a) The two symbols, dot and dash, can be represented as 10 and 1110 respectively, where 1 denotes
line closure and 0 an open line. Hence, the constraints of the code are

e A 0 is always followed by 1.

e Only sequences having one or three repetitions of 1, are allowed.

The next figure depicts the state diagram of the code, where the state Sy denotes the reception of
a dot or a dash, and state S; denotes the reception of ¢ adjacent 1’s.

b) The state transition matrix is

o O O
O O = O
o= O O

0
1
0
1

¢) The characteristic equation of the matrix D is

det(D—AX)=0= X -X>-1=0

The roots of the characteristic equation are

1
1
A172:i< +\/5> A3q ==+

2

[V
/N
—_
ol !
S
~__—
=

Thus, the capacity of the code is

C = logy Amax = logy A1 = log, (

Problem 8.38

The state diagram of Fig. P-8-38 describes a runlength constrained code, that forbids any sequence
containing a run of more than three adjacent symbols of the same kind. The state transition matrix
is

0 00100
1 00100
010100
b= 001010
001001
0 01 00O
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The corresponding trellis is shown in the next figure
History

111
11
1
0
00
000

Problem 8.39

The state transition matrix of the (2,7) runlength-limited code is the 8 x 8 matrix

01 00O0O0O0DO
001 0O0O0O0O
10010000
D 10001000
110000100
100 00O0T1O0
100 00O0O0T1
100 00O0O0O
Problem 8.40
The frequency response of the RC filter is
1 ol 1
C(f) = 25— = ——
R+ iy 1+ j27RCS

The amplitude and the phase spectrum of the filter are

1 2
CUNI= (1 +47r2(R0)2f2> ’

The envelope delay is

O.(f) = arctan(—27RCf)

T.(f) = id@c(f) B _i —27RC B RC
NI o df 214+ 4n2(RC)2f2 14 4n2(RC)2f?
where we have used the formula
‘ 1 du
—ar n -
de MO T T 2 g

Problem 8.41

1) The envelope delay of the RC filter is (see Problem 8.40)

RC

Te(f) =1 + 4n2(RC)2#2

A plot of T(f) with RC = 107% is shown in the next figure
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2) The following figure is a plot of the amplitude characteristics of the RC filter, |C'(f)|. The values
of the vertical axis indicate that |C(f)| can be considered constant for frequencies up to 2000 Hz.
Since the same is true for the envelope delay, we conclude that a lowpass signal of bandwidth
Af =1 KHz will not be distorted if it passes the RC filter.

1

<
S
0.999 : : : : : : : : :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (f)

Problem 8.42

Let Gp(f) and Gg(f) be the frequency response of the transmitting and receiving filter. Then, the
condition for zero ISI implies

T 0<|f]< 77
Gr(f)C(N)Gr(f) = Xre(f) =< L1+ cos2rT(If| — )] 7= <|fI <
0 1> 47

Since the additive noise is white, the optimum transmitting and receiving filter characteristics are
given by (see Example 8.6.1)

=l el =EE

1C(f)
Thus,

1
T 2 1
{m} 0<|fl <
1

T(14cos2nT(|f|-%) |2 1 3
3(1+0.3 cos2n T } i <Ifl<4r
0 otherwise

Gr(f)l =I1Gr(f)| =
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Problem 8.43
A 4-PAM modulation can accommodate k = 2 bits per transmitted symbol. Thus, the symbol
interval duration is

k 1
= 9600 — 4800 sec
Since, the channel’s bandwidth is W = 2400 = %, in order to achieve the maximum rate of
transmission, Ryax = %, the spectrum of the signal pulse should be
X(f) =TI (f)
2W

Then, the magnitude frequency response of the optimum transmitting and receiving filter is (see
Section 8.6.1 and Example 8.6.1)

1

1+(fﬂin(f): 1+ ()| 11 < 2000

Gr(f)l = 1Gr(A)| = |1+ (5205 i '
0 otherwise

Problem 8.44

1) The equivalent discrete-time impulse response of the channel is

h(t) = i hnd(t —nT) = 0.35(t + T) + 0.95(t) + 0.35(t — T

n=—1
If by {¢,} we denote the coefficients of the FIR equalizer, then the equalized signal is

1
qdm = Z cnhm—n

n=-—1

which in matrix notation is written as

0.9 03 O c_1 0
0.3 09 0.3 co =1
0. 03 09 c1 0

The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.
Thus,

c_1 —0.4762
w | = 1.4286
1 —0.4762

2) The values of g, for m = +2, £3 are given by

1

q2 = Z Cnhgfn == Clhl = —0.1429
n=-—1
1
g2 = Y cphoop=c_1h_y = —0.1429
n=-—1
1
q3 = Z Cnh?)—n =0
n=-—1
1
q-3 = Z Cnh—S—n =0
n=-—1
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Problem 8.45

1) The output of the zero-force equalizer is

1
dm = Z CnTm,,

n=-—1

With go = 1 and ¢y, = 0 for m # 0, we obtain the system

1.0 01 -0.5 c—1 0
—0.2 1.0 0.1 co =11
0.06 —-0.2 1.0 c1 0

Solving the previous system in terms of the equalizer’s coefficients, we obtain

c_q 0.000
co =1 0.980
c1 0.196
2) The output of the equalizer is
0 m < —4
C_1Tx—9 = 0 m=—3
Cc_1T_1+cpr_o=-049 m=-2
0 m=—1
gm =1 1 m =0
0 m=1
coxo + x1c1 = 0.0098 m=2
c1re = 0.0098 m=3
0 m >4

Hence, the residual ISI sequence is
residual ISI = {...,0,-0.49,0,0,0,0.0098,0.0098,0, ...}

and its span is 6 symbols.

Problem 8.46

The MSE performance index at the time instant & is

N
J(er) =E || Y chnYr-n — ax|62
n=—N
If we define the gradient vector g as
_ VJ(ck)
8k = 219C1C
then its [t1 element is
’l9J(Ck) 1 N
9kl 219%1 B n;N Ckn¥Yk—n — Ak | Yk—1
= El-exyr—1] = —F [exyr—i]
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Thus, the vector g is

—Eleryr+n]
gr = : = —Eleyyx]
—Elexyr—n]
where yy, is the vector yr = [yr4n - -yk_N]T. Since g, = —ery, its expected value is

Elgr] = El—eryr] = —Elexyr] = gk

Problem 8.47

1) If {¢,} denote the coefficients of the zero-force equalizer and {g,,} is the sequence of the equal-
izer’s output samples, then

1
dm = Z CnTm—n
n=-—1

where {z} is the noise free response of the matched filter demodulator sampled at t = k7. With
q-1 =0, g0 = q1 = &, we obtain the system

& 0.9& 0.1& c—1 0
0.951, Sb 0.95{, () = Eb
0.1& 0.9& &y c1 Ep

The solution to the system is

( c1 ¢ € ) — ( 0.2137 —0.3846 1.3248 )

2) The set of noise variables {vy} at the output of the sampler is a Gaussian distributed sequence
with zero-mean and autocorrelation function

Nogr |k <2
— 5 Lk >~
Ry (k) { 0 otherwise

Thus, the autocorrelation function of the noise at the output of the equalizer is
R, (k) = R, (k) % c(k) x c(—k)

where ¢(k) denotes the discrete time impulse response of the equalizer. Therefore, the autocorrela-
tion sequence of the noise at the output of the equalizer is

0.9402 k=0
1.3577 k=+1
_ No& | —0.0546 k==+2
2 0.1956 k=43
0.0283 k==+4

0 otherwise

To find an estimate of the error probability for the sequence detector, we ignore the residual
interference due to the finite length of the equalizer, and we only consider paths of length two.
Thus, if we start at state ag = 1 and the transmitted symbols are (a1,a2) = (1,1) an error is made
by the sequence detector if the path (—1,1) is more probable, given the received values of r; and
ro. The metric for the path (a1,a2) = (1,1) is

_ —2&
Mg(l,l):[’r‘l—2(€b 7"2—25[) ]C 1 [ :;_2521
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where

C

_ No& [ 0.9402 1.3577
) 1.3577 0.9402

Similarly, the metric of the path (a1, a2) = (—1,1) is

pa(—1,1)=[r rp]JC7! [ " 1

2
Hence, the probability of error is
Py = Pus(~1,1) < pa(1, 1))
and upon substitution of r; = 2&, + ny, r9 = 2&, + no, we obtain
Py = P(ny +ngy < —2&,)

Since n1 and ng are zero-mean Gaussian variables, their sum is also zero-mean Gaussian with
variance

No&y No&

oy = (2 x 0.9402 + 2 x 1.3577) = 4.5958

and therefore

B 88,
P=Q [ 4.5958N0]

. o1 . P
The bit error probability is 5.

Problem 8.48

The optimum tap coefficients of the zero-force equalizer can be found by solving the system

1.0 0.3 0.0 c_1 0
0.2 1.0 0.3 co =11
0.0 0.2 1.0 cl 0
Hence,
c_1 —0.3409
co =1 1.1364
c1 —0.2273

b) The output of the equalizer is

A
|

—0.1023

P
)
5
.
I
|
N W

qm = 1

C1x1 = —0.0455
0

3333333
AVANI Il
W= o

Hence, the residual ISI sequence is

residual ISI = {...,0,—-0.1023,0,0,0, —0.0455,0, ...}
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Problem 8.49

1) If we assume that the signal pulse has duration 7', then the output of the matched filter at the
time instant ¢t =T is

y1) = [ re)strar
_ /OT(S(T) + as(r — T) + n(7))s(r)dr

= /OT s3(r)dr + /OT n(7)s(r)dr
= &E+n

where & is the energy of the signal pulse and n is a zero-mean Gaussian random variable with
variance o2 = NOTSS Similarly, the output of the matched filter at ¢ = 2T is

y(2T) = a/OT SQ(T)dT—i-/OTn(T)S(T)dT

= afs+n
2) If the transmitted sequence is
o
z(t) = Z ans(t —nT)
n=—oo

with a,, taking the values 1, —1 with equal probability, then the output of the demodulator at the
time instant ¢t = kT is
Yk = akSS + Oéak,1(‘:5 + Ny

The term aayr_1Es expresses the ISI due to the signal reflection. If a symbol by symbol detector is
employed and the ISI is ignored, then the probability of error is

1 1
Pe) = 5P(error|an =lap1=1)+ §P(error|an =1l,ap_1 =-1)
1 1
= §P((1 +a)s +n, <0)+ §P((1 —a)&s +ni <0)
1 2(1 4+ a)2& 1 2(1 — a)%&
= -Q Q +-Q Q
2 No 2 No

3) To find the error rate performance of the DFE, we assume that the estimation of the parameter
« is correct and that the probability of error at each time instant is the same. Since the transmitted
symbols are equiprobable, we obtain

P(e) = P(error at k|ax = 1)
= P(error at k — 1)P(error at k|ax = 1, error at k — 1)
+P(no error at k — 1)P(error at k|ay = 1,no error at k — 1)
= P(e)P(error at klay = 1,error at k — 1)
+(1 — P(e))P(error at k|ap = 1,no error at k — 1)
= Ple)p+(1—Ple))g
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where
p = P(error at klay = 1,error at k — 1)
= %P(error at klap = 1,ax_1 = 1,error at k — 1)
+%P(error at klay = 1,a,_1 = —1,error at k — 1)
_ %ﬂﬂ+ﬂ®&+ﬂk<m+%meﬁ®&+%k<®

1 2(1 4 2a0)%&s 1
= -Q { NO] +-Q

2 2 Ny

m1—2aﬁg]

and

g = P(error at klay = 1,no error at k — 1)

— P(€s+nk<0)—Q[ 3\21

Solving for P(e), we obtain
2&5
e cllkd
1- + )?Es —20)2&, s
PRO 14 | IERTE] - g | IR 4 o [/F]

A sketch of the detector structure is shown in the next figure.

Input ry, 1 Threshold Output ay,
i | device g
|, | Estimate | Delay | <
a

Problem 8.50

A discrete time transversal filter equivalent to the cascade of the transmitting filter gr(t), the
channel ¢(t), the matched filter at the receiver gr(t) and the sampler, has tap gain coefficients

{ym}, where
09 m=0
Yn =< 0.3 m==1
0 otherwise

The noise v, at the output of the sampler, is a zero-mean Gaussian sequence with autocorrelation
function
Elv] = o*yp_, k-1 <1

If the Z-transform of the sequence {y,,}, Y (z), assumes the factorization
Y(2) = F(z)F"(=7")

then the filter 1/F*(27!) can follow the sampler to white the noise sequence v;. In this case the
output of the whitening filter, and input to the MSE equalizer, is the sequence

Un =k frek +
k
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where ny, is zero mean Gaussian with variance 2. The optimum coefficients of the MSE equalizer,
ck, satisfy (see (8.6.35))

1
> enRu(n— k) = Rua(k), k=0,%+1

n=—1
where
1
Ru(n - k) = E[ul—kul—n] = Z fmfm—l—n—k + U26n,k
m=0

_ yn—k+02(5n,ka |TL—/€| <1

a 0 otherwise

_ _ f*/ﬁ -1< k <0

Rua(k) = Elantn] _{ 0 otherwise

With

Y(2) =0.32+0.94 0327 = (fo + fiz H(fo + f12)

we obtain the parameters fy and f; as

£ = +/0.7854 f = +1/0.1146
7Y +£0.1146 ° 7Y £0.7854

The parameters fp and f1 should have the same sign since fyf1 = 0.3. However, the sign itself does
not play any role if the data are differentially encoded. To have a stable inverse system 1/F*(z71),
we select fo and fi in such a way that the zero of the system F*(z~!) = fo + f12 is inside the unit

circle. Thus, we choose fy = 1/0.1146 and f; = v/0.7854 and therefore, the desired system for the
equalizer’s coefficients is

0.940.1 0.3 0.0 c—1 v0.7854
0.3 0.94+0.1 0.3 co = | +0.1146
0.0 0.3 09+0.1 c1 0

Solving this system, we obtain

c_1 =0.8596, cp=0.0886, c13 = —0.0266

Problem 8.51

1) The spectrum of the band limited equalized pulse is
_;mnf
X(f) = { wXii-wt(Ep)e’ ™ |flsW
0 otherwise

_ ﬁ{2+2008%] lfl<W
0 otherwise

w1+ 1eos T f <
0 otherwise

where W = ;L
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2) The following table lists the possible transmitted sequences of length 3 and the corresponding
output of the detector.

-1 -1 -1 -4
-1 -1 1 -2
-1 1 -1 0
-11 1

1 -1 -11}-2
1 -1 1] 0
1 1 -1 2
1 1 179 4

N

As it is observed there are 5 possible output levels b,,, with probability p(b,, = 0) =
p(bp = £2) = 1 and p(by, = +4) = 1.

3) The transmitting filter Gp(f), the receiving filter Gr(f) and the equalizer Gg(f) satisfy the
condition

Gr(f)Gr(f)Ge(f) = X(f)

The power spectral density of the noise at the output of the equalizer is

Su(f) = Su(NIGr(f)GE()I? = o”|Gr(f)GE(f)I?

With .
Gr(f) = Gr(f)=P(f) = %e*ﬂﬁom
the variance of the output noise is
2 = o2 20r _ o2 [ | XU [
7t = o [ Gatnesnle o [ [ a

02/W 4 \1+cos7ljv—f|2df
W 7T2T520W2 e—27rT50|f‘

852 W wf 2 2T
7Ts0 f
7r2T520W2./0 (1 oo W ) ey

The value of the previous integral can be found using the formula

/ e** cos” brdzx
1
= 2ioe {(a cos bz 4 nbsin bx)ex cos™ ' bx 4+ n(n — 1)b / e cos™ 2 bxdx]
a?+n
Thus, we obtain

2 I
0_2 _ 80 % (627TT50W . 1) 1 + 27TT50 + Ww212"50
Y T2 T5W? 2rTs0 42T + 47

47TT50 (627|'T50W 4 1)

T om0 a2
Am?TZ) + =

To find the probability of error using a symbol by symbol detector, we follow the same procedure
as in Section 8.4.3. The results are the same with that obtained from a 3-point PAM constellation
(0, £2) used with a duobinary signal with output levels having the probability mass function given
in part b). An upper bound of the symbol probability of error is
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Ple) < P(lym| > 1|bm = 0)P(by, = 0) 4+ 2P(|ym — 2| > 1|bp = 2)P(by, = 2)
+2P (Y + 4 > 1|by, = —4)P(by, = —4)
= P(’ym’ > Hbm = 0) [P(bm = 0) + 2P(bm = 2) + P(bm = _4)]

7
= gPUyml > 1w =0)

But
" 2 o0 —2/202
Plg] > 1o = 0) = = [ "= /baa
14
Therefore,

P =5Q |

Oy

Problem 8.52

Since the partial response signal has memory length equal to 2, the corresponding trellis has 4
states which we label as (a,—1,a,). The following figure shows three frames of the trellis. The
labels of the branches indicate the output of the partial response system. As it is observed the free
distance between merging paths is 3, whereas the Euclidean distance is equal to

dp =22 +4>+2° =24

Problem 8.53
a) The alternative expression for s(t) can be rewritten as

s(t) = Re Za%@(t—nT)

= Re Z an@?™ L g(t — nT) [cos 2n fo(t — nT) + jsin 27 f.(t — nT)]

= Re Z ang(t — nT) [cos 2w fenT + jsin 27 fonT] [cos 27 fo(t — nT') + j sin 27 fo(t — nT)]]

= Re Z ang(t — nT) [cos 2w fonT cos 2w fo(t — nT') — sin 27 fonT sin 27 f.(t — nT)
n

+j sin 27 fonT cos 2w fo(t — nT') + j cos 27 fenT sin 27 fo(t — nT)]]

= Re

Z ang(t —nT) [cos 27 ft + jsin 27rfct]]

= Re lz ang(t — nT)ejZﬂfCt]
= (1)

so indeed the alternative expression for s(¢) is a valid one.
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q(t) 4(1) o o2nfnT

QL
S
Q
©
1

4(1) 4 ="

Modulator Demodulator
(with phase rotator) (with phase derotator)

Problem 8.54

a) The impulse response of the pulse having a square-root raised cosine characteristic, is an even
function, i.e., z5q(t) = zsq(—t), i.e., the pulse g(t) is an even function. We know that the product
of an even function times an even function is an even function, while the product of an even function
times an odd function is an odd function. Hence ¢(t) is even while ¢(¢) is odd and their product
q(t)q(t) has odd symmetry. Therefore,

S K (1+pB)/2T R
[ awawde= [ gt de = o
—00 —(1+p8)/2T

b) We notice that when f. = k/T, where k is an integer, then the rotator/derotator of a carrierless
QAM system (described in Problem 8.53) gives a trivial rotation of an integer number of full circles
(2mkn), and the carrierless QAM /PSK is equivalent to CAP.

Problem 8.55
The analog signal is

N-1

1 A

=— N XpdTHIT 0<t<T
7 =

The subcarrier frequencies are: Fj, = k/T, k=0,1,..., N, and, hence, the maximum frequency
in the analog signal is: N/T. If we sample at the Nyquist rate: 2N /T = N/T, we obtain the
discrete-time sequence:

x(t)

1 = , 1 N=t .
z(n) =x(t =nT/N) = — 3 Xpd2kOT/N/T — _—_ N™ x;092kn/N -y —0,10,...,N — 1
N & N &

which is simply the IDFT of the information sequence {Xj}.
To show that x(t) is a real-valued signal, we make use of the condition: Xy_r = Xy, for k =
1.2...., N—1. By combining the pairs of complex conjugate terms, we obtain for k =1,2,... N—1

, A 2mkt
X, eI2m T | X em32mRT — 9] X, | cos <7; + 9k>

where Xj, = | Xj|e/%. We also note that Xy and Xy are real. Hence, z(t) is a real-valued signal.
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Problem 8.56

The filter with system function H,(z) has the impulse response h(k) = el2mk/N o — 0. 1,.. .. If we
pass the sequence {Xj, £ =0,1,..., N — 1} through such a filter, we obtain the sequence y,(m),
given as

yn(m) = Zth(m—k), m=0,1,...

k=0
m
— Z Xkej27rn(m—k)/N
k=0
At m = N, where y,(N) = Z{LO Xje—d2mnk/N — ]kV:_Ol Xpe~32mk/N gince Xy = 0. Therefore,

the IDFT of {X}} can be computed by passing { X} through the N filters H,(z) and sampling
their outputs at m = N.
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Chapter 9

Problem 9.1
The capacity of the channel is defined as

C=maxI(X;Y)=max [H(Y)—- H(Y|X)]
p(x) p(x)

The conditional entropy H(Y|X) is
HY|IX)=pX=a)HY|X =a)+p(X =bHY|X =b)+p(X =c)H(Y|X =¢)
However,
HY|X =a) = =Y p(Y =klX =a)logP(Y =k|X =a)
k

= —(0.2log0.2 + 0.310g0.3 4+ 0.510og 0.5)
— H(Y|X =b)= HY|X = ¢) = 14855

and therefore,
HY|X)= Zp(X =k)H(Y|X =k) = 1.4855
k
Thus,
I(X;Y)=H(Y)— 1.4855

To maximize I(X;Y), it remains to maximize H(Y). However, H(Y) is maximized when Y is a
uniformly distributed random variable, if such a distribution can be achieved by an appropriate
input distribution. Using the symmetry of the channel, we observe that a uniform input distribution
produces a uniform output. Thus, the maximum of I(X;Y) is achieved when p(X =a) = p(X =
b) = p(X = c) = % and the channel capacity is

C =logy3 — H(Y|X) = 0.0995 bits/transmission

Problem 9.2
The capacity of the channel is defined as

C=maxI(X;Y)=max [H(Y)— H(Y|X)]

p(x) p(x)

If the probability distribution p(x) that achieves capacity is

X =0
p(X)Z{ 1fp X -1

then,

HY|X) = pH(Y|X =0)+ (1 - p)H(Y|X =1)
= ph(e) + (1 p)h(e) = h(e)

where h(e) is the binary entropy function. As it is seen H(Y'|X) is independent on p and therefore
I(X;Y) is maximized when H(Y") is maximized. To find the distribution p(z) that maximizes the
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entropy H(Y') we reduce first the number of possible outputs as follows. Let V be a function of
the output defined as
1 Y=F
V- {

0 otherwise
Clearly H(V|Y) = 0 since V is a deterministic function of Y. Therefore,
HY, V) = HY)+H\V|Y)=H()
HV)+HY|V)

To find H(V) note that P(V =1) = P(Y = E) = pe+ (1 —p)e = €. Thus, H(V') = h(e), the binary
entropy function at e. To find H(Y|V') we write

H(Y|V) = p(V = ) H(Y|V = 0) + p(V = WH(Y|V = 1)
But H(Y|V = 1) = 0 since there is no ambiguity on the output when V' =1, and

HY|V=0)=— Y pY =klV =0)logyp(Y =k|V =0)
k=0,1

Using Bayes rule, we write the conditional probability P(Y = 0|V = 0) as

Thus, H(Y|V =0) is h(p) and H(Y|V) = (1 — €)h(p). The capacity is now written as
C = m(ag( [H(V)+ H(Y|V) — h(e)]
p(z

= I;}ng(Y!V) = I&g(l —e)h(p) = (1—¢)

and it is achieved for p = % The next figure shows the capacity of the channel as a function of e.

C(e)

Problem 9.3
The overall channel is a binary symmetric channel with crossover probability p. To find p note that
an error occurs if an odd number of channels produce an error. Thus,

p= Z (Z)ek(l—e)"_k

k=odd
Using the results of Problem 7.55, we find that
1 2
pfi[l—(l—Qe) ]
and therefore,
C'=1-h(p)

If n — oo, then (1 —2¢)” — 0 and p — % In this case

C = lim C(n)zl—h(%):()

n—oo
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Problem 9.4

Denoting € = 1—¢, we have n! ~ v/2rnn"e™", (ne)! ~ v/2mne(ne)"e="¢, and (ne)! ~ v/2mne(ne)*e "¢
n B n!
ne) — (ne)!(né)!
2mnnte™"
TV 2mne(ne) e "/ 2mne(ne) e e
1
vV 2mneeencene
From above
1 n 1 _ _ _
- log, <ne> Sl log,(2mneé) — elogy € — €log, €
—  —elogye —€logy€é asn — oo
= Hy(e)
This shows that as n — oo, (1) a 2nHs(9),
Problem 9.5
Due to the symmetry in channel, the capacity is achieved for uniform input distribution, i.e., for
p(X = A) = p(X = —A) = 3. For this input distribution, the output distribution is given by
1 2 2 1 2 2
_ - —(wtA)*/20 - —(y=A)?)/20
P = e + e
®) 2V 2mo? 2V 2mo?
and the mutual information between the input and the output is
1 = ply| X =A)
I(X:Y) = 7/ p(y| X = A)log, 1= =2 gy
s ply| X = ~A)
+*/ ply| X =—A)logy ———=dy
2 | o8 =0
1 1
= “L+=I
511 + 512
where
% ply| X =A
no= [ x = e, MULE =g,
oo p(y)
> ply| X =—-4)
I, = / ply| X =—-A)log, —"———=dy
P -
Now consider the first term in the above expression. Substituting for p(y | X = A) and p(y), we

obtain,

Y
o0 1 _w=4)? me 202
I, = / e 22 log, NS Gz Y
—eo V210 —L_e” y202 — y202
V2no? V2mo?

/OO 1 _(y/a—;l/a)2 ) 2 d
= e 08— 7=
—o0 V22 827 c-2yafo WY

using the change of variable v = y/o and denoting A/o by a we obtain

I /OO 1 _(“*2‘1)2 1 2 d
1 oo /271' 82 14+ e—2ua
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A similar approach can be applied to Iz, the second term in the expression for I(X;Y), resulting

in
1 A 1 A
I(X;Y) = §f (0) + §f <—0> (4)
where - 5
—(u—a)?
fl)= [ e gy g d )
Problem 9.6

The capacity of the channel is defined as

C=maxI(X;Y)=max[H(Y) - HY|X)]

p(z) p(x)
However,

H(Y|X) Zp H(Y|X =2)=) p(z)H(R) = H(R)

where H(R) is the entropy of a source with symbols having probabilities the elements of a row of
the probability transition matrix. The last equality in the previous equation follows from the fact
that H(R) is the same for each row since the channel is symmetric. Thus

C:m(aiiH(Y) — H(R)
p(x

H(Y) is maximized when Y is a uniform random variable. With a symmetric channel we can
always find an input distribution that makes Y uniformly distributed, and thus maximize H(Y").

To see this, let
= 3" p(@)P(Y = y|X = )

If p(x) = |71|’ where |X| is the cardinality of X, then

p(Y =y) = \XIZP =ylX =2)

But >, P(Y = y|X = x) is the same for each y since the columns of a symmetric channel are
permutations of each other. Thus,

C = log|Y| - H(R)
where |)| is the cardinality of the output alphabet.

Problem 9.7
a) The capacity of the channel is

Cy =max[H(Y) — H(Y|X)]

p(z)

But, H(Y|X) = 0 and therefore, C1 = max,,) H(Y) = 1 which is achieved for p(0) = p(1) = 3.

b) Let g be the probability of the input symbol 0, and thus (1 — ¢) the probability of the input
symbol 1. Then,

HY|X) = Zp H(Y|X =)

= qH(Y!X =0)+(1-qHY[X =1)
= (1=qHY[X =1)=(1-9¢)h(0.5) = (1—-q)
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The probability mass function of the output symbols is

PY =c¢) = gp(Y =c|X=0)+ (1 —-g)p(Y =c|X =1)
= ¢+ (1—-¢)0.5=0.5+0.5¢
p(Y =d) = (1-¢)0.5=05-0.5¢q

Hence,
Cy = In[?x[h(()ﬁ +0.5¢) — (1 —q)]

To find the probability g that achieves the maximum, we set the derivative of Cy with respect to ¢
equal to 0. Thus,

9Cs 0.5 1
—= =0 = 1-10.5logy(0.5+0.5 05+0.5¢)————
9q 0-51085(0-5+0.5) + (05 +0-50) =521 5
—-05 1
—[=0.51 b5 —0. b5 —=05¢)——m—FF—
[—0.510g,(0.5 — 0.5¢) + (0.5 05q)0.5—0.5q1n2]
= 1+ 0.510g,(0.5— 0.5¢) — 0.5logy(0.5 + 0.5¢)
Therefore,
0.5 — 0.5¢ 3
logy —o——4 = 9= g ==
%8205 1 0.5¢ 1= 5
and the channel capacity is
1 2
=h(=)—-=0.3219
Co (5) 5

3) The transition probability matrix of the third channel can be written as

1 1
Q= §Q1 + §Q2
where Q1, Q2 are the transition probability matrices of channel 1 and channel 2 respectively. We
have assumed that the output space of both channels has been augmented by adding two new
symbols so that the size of the matrices Q, Q1 and Q2 is the same. The transition probabilities to

these newly added output symbols is equal to zero. However, using the results of Problem 6.34 we
obtain

C = mgXI(X;Y):mIE’iXI(P;Q)

= I(p; 1Q + 1Q )

= max/(p; 5 Q1+ 5Q2
1 1

< §m§XI(p; Q1) + iméiXI(PS Q2)
1 1

= 01+ =C
g1 T3

Since Q1 and Q2 are different, the inequality is strict. Hence,

1 1
C< 501—#502

Problem 9.8
The capacity of a channel is

C=maxI(X;Y)=max[H(Y) - H(Y|X)] = max[H(X) — H(X|Y)]

p(z) p(z) p(z)
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Since in general H(X|Y) > 0 and H(Y|X) > 0, we obtain
C < min{max[H (Y)], max[H (X)]}

However, the maximum of H(X) is attained when X is uniformly distributed, in which case
max[H(X)] = log|X|. Similarly max[H(Y)] = log|Y| and by substituting in the previous in-
equality, we obtain
C < min{max[H(Y)],max[H(X)]} = min{log|Y|,log|X|}
= min{log M,log N}

Problem 9.9
1) Let ¢ be the probability of the input symbol 0, and therefore (1 — ¢) the probability of the input
symbol 1. Then,

HY|X) = Y p)HY|X =2)
— GHYIX =0)+ (1 QH(YX = 1
= (1-gHY[X =1)=(1-qg)h(e)
The probability mass function of the output symbols is
p(Y =0) = ¢p(Y =0[X =0)+ (1 -¢)p(Y =0[X =1)

= ¢+(1—-q¢)(1—€)=1—€+qe
p(Y=1) = (1-qle=¢€—qe

Hence,
O = max[h(e — ge) — (1 — q)h(e)]

To find the probability ¢ that achieves the maximum, we set the derivative of C with respect to ¢
equal to 0. Thus,

vC
Ja = 0 = h(e) + elogy(€ — ge) — elogy (1 — € + qe)
q
Therefore,
h(e)
€ — qe h(e e+2 "¢ (e—1
10g2 - - ( ) = q= (}L(e) )
1—6+q€ € 6(1+2_T)

and the channel capacity is

_h(9) _h(e
277 h(e)2™ "«
C=h R | T —h(©
1+27 e(l+277¢)
2) If € — 0, then using L’Hospital’s rule we find that

lim L(e) = 00, lim 7h(e)2_@ =0

e—0 € e—0 €
and therefore
lim C(e) = h(0) =0
e—0
If € = 0.5, then h(e) = 1 and C' = h(}) — 2 = 0.3219. In this case the probability of the input
symbol 0 is

he)

e+2 < (e—1) 05+025x(05-1) 3
(142" 0.5 x (14 0.25) 5

q:
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If e =1, then C'= h(0.5) = 1. The input distribution that achieves capacity is p(0) = p(1) = 0.5.

3) The following figure shows the topology of the cascade channels. If we start at the input
labelled 0, then the output will be 0. If however we transmit a 1, then the output will be zero with
probability

pY=0X=1) = (I-e+e(l—€+1—€)+--
= 1-e(l+et+e+--)
1_ n
= 1—61_66:1—6n

4) As n — o0, € — 0 and the capacity of the channel goes to 0.

Problem 9.10
The capacity of Channel A satisfies (see Problem 9.8)

C4 < min{logy, M,log, N}

where M, N is the size of the output and input alphabet respectively. Since M =2 < 3 = N, we
conclude that C4 < log,2 = 1. With input distribution p(A) = p(B) = 0.5 and p(C) = 0, we have
a noiseless channel, therefore C'4 = 1. Similarly, we find that C'g = 1, which is achieved when

pla’) = p(t)) = 0.5,

achieved when interpreting B’ and C’ as a single output. Therefore, the capacity of the cascade
channel is Cyp = 1.

Problem 9.11

The SNR is
2P P 10

No2W — 2W 1079 x 106

SNR = =10*

Thus the capacity of the channel is

C = Wlogy(1+ ) = 10%log, (1 4 10000) ~ 13.2879 x 10° bits/sec

NoW

Problem 9.12
The capacity of the additive white Gaussian channel is

1
C==log |1+ >

9 %8 ( NoW
For the nonwhite Gaussian noise channel, although the noise power is equal to the noise power in
the white Gaussian noise channel, the capacity is higher, The reason is that since noise samples
are correlated, knowledge of the previous noise samples provides partial information on the future
noise samples and therefore reduces their effective variance.
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Problem 9.13
1) The capacity of the binary symmetric channel with crossover probability e is

C=1-h(e)

where h(e) is the binary entropy function. The rate distortion function of a zero mean Gaussian
source with variance o per sample is

1 a? 2

s log D<o
R(D) = 27°82°D =
(D) { 0 D > o2

Since C' > 0, we obtain
2 2

1 o
510g25§1—h(6):>m

and therefore, the minimum value of the distortion attainable at the output of the channel is

<D

2) The capacity of the additive Gaussian channel is

1 P

n

Hence,
1 o2 o2 o2
—logy —<(C = = <D — <D
o %82 = 920 = 1+ 2=
U”
The minimum attainable distortion is
2
o
Doyin =
min 1 + O-%

3) Here the source samples are dependent and therefore one sample provides information about the
other samples. This means that we can achieve better results compared to the memoryless case at
a given rate. In other words the distortion at a given rate for a source with memory is less than the
distortion for a comparable source with memory. Differential coding methods discussed in Chapter
4 are suitable for such sources.

Problem 9.14
The capacity of the channel of the channel is given by

C=maxI(X;Y)=max[H(Y) - H(Y|X)]

p(x) p(x)

Let the probability of the inputs C, B and A be p, ¢ and 1 — p — ¢ respectively. From the symmetry
of the nodes B, C' we expect that the optimum distribution p(z) will satisfy p(B) = p(C) = p. The
entropy H(Y'|X) is given by

HY|X) = Zp(x)H(Y|X =z)=(1-2p)HY|X =A4)+2pH(Y|X = B)
0+ 2ph(0.5) = 2p
The probability mass function of the output is
p(Y=1) = > pl)p(Y =1|X=2)=(1-2p)+p=1-p
pY =2) = Zp(x)p(Y =2/X=2)=05p+05p=p
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Therefore,
C = max[H(Y) ~ H(Y|X)] = max(h(p) ~ 2)

To find the optimum value of p that maximizes I(X;Y'), we set the derivative of C' with respect to
p equal to zero. Thus,

9C 1 -1

— =0 = —logy(p) —p——=+logo(1—p)— (1 —p)———= —2

e e R e
= logy(1 —p) —logy(p) — 2

and therefore
1-p

log,

The capacity of the channel is

1 2
C = h(g) = 0.7219 — 0.4 = 0.3219 bits/transmission

Problem 9.15
The capacity of the “product” channel is given by

C = max I(XlXQ;Y1Y2)

p(r1,22)

However,

(X1 X0:V1Ya) = H(Y1Ys) — H(Y1Ya|X1X)
= HMYs) — HV1|X1) — H(Y2|X2)
< HW)+ H(Y2) — HY1[X1) — H(Y2|X2)
= I(X1;Y1) + [(X2;Ys)

and therefore,

C = max I(XlXQ;Yl}/Q) < max [I(Xl,Yl)—l-I(XQ,YQ)]

p(x1,x2) p(x1,22)
< maxI(X1;Y1) + max I (Xo;Ys)
p(z1 p(z2)
= C1+ 0y

The upper bound is achievable by choosing the input joint probability density p(z1,x2), in such a
way that

p(x1,22) = p(1)p(w2)

where p(x1), p(xz) are the input distributions that achieve the capacity of the first and second
channel respectively.

Problem 9.16
1) Let X = X + Xy, YV =1 + Vs and

) pyilz) ifxe X
pyl) { p(y2|xe) if z € &y

the conditional probability density function of ) and X. We define a new random variable M
taking the values 1,2 depending on the index ¢ of X. Note that M is a function of X or Y. This
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is because X; N Xy = () and therefore, knowing X we know the channel used for transmission. The
capacity of the sum channel is

C = maxI(X;Y)= r;l(%([H(Y) - HY|X)] = III)I(?SC[H(Y) — H(Y|X,M)]

p(z)
= maxH(Y) = p(M = DH(YIX.M = 1) = p(M = H(Y|X, M = 2)
= Igl(%i[H(Y) —AH (V1| X1) — (1= N H(Y2|X5)]

where A = p(M =1). Also,

H(Y) = H(Y,M)=H(M)+ H(Y|M)
HO\) + AH(Y1) + (1 — N H(Ys)

Substituting H(Y") in the previous expression for the channel capacity, we obtain

C =maxI(X;Y)

p(z)
— I&%([H(A) +A(X13Y7) + (1 = NI (X2; Y2)]

Since p(x) is function of A, p(z1) and p(x2), the maximization over p(z) can be substituted by a
joint maximization over A, p(z1) and p(x3). Furthermore, since A and 1 — A are nonnegative, we
let p(z1) to maximize I(X1;Y71) and p(x2) to maximize I(Xo;Y3). Thus,

C = m)z\lx[H()\) +AC1 + (1 —X\)Cq]

To find the value of A that maximizes C, we set the derivative of C' with respect to A equal to zero.

Hence,
dc =0=-1 A 1 1—A C C A= 2%
T)\ _032( )+0g2( - )+ 1— Uy =— m

Substituting this value of A in the expression for C, we obtain
2C1 2C1 92C1
¢ =17 (201 +202> Tom @t (1 24 +2Cz> e
201 201 201 201
_201 + 2C2 log, 2C1 4 9Ca —|\1- 2C1 4 9C% log, 2C1 4 9Ch

201 201
+7201 o0 Ci+(1- 50 190> 20 Cy
2¢1 oo 202
— 1 2
= 5600 logy(2°1 +2°%) + 50 1 200

= logy (2 +2%)

logy (2" +2%)

Hence
C = logy (29" +2¢2) = 2¢ = 2©1 4 2@

2)
20 =20 490 —90— (=1

Thus, the capacity of the sum channel is nonzero although the component channels have zero
capacity. In this case the information is transmitted through the process of selecting a channel.
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3) The channel can be considered as the sum of two channels. The first channel has capacity
Cy =logy 1 =0 and the second channel is BSC with capacity Cy =1 — h(0.5) = 0. Thus

C = logy (261 +2°2) = logy(2) = 1

Problem 9.17
1) The entropy of the source is
H(X)=h(0.3) =0.8813

and the capacity of the channel
C=1-h(0.1)=1-0.469 = 0.531
If the source is directly connected to the channel, then the probability of error at the destination is

P(error) = p(X =0pY =1X=0)+p(X =1)p(Y =0/X =1)
= 03x01+07x0.1=0.1

2) Since H(X) > C, some distortion at the output of the channel is inevitable. To find the
minimum distortion we set R(D) = C. For a Bernoulli type of source

_J h(p) = (D) 0< D <min(p,1-p)
R(D) = { 0 otherwise

and therefore, R(D) = h(p) — h(D) = h(0.3) — h(D). If we let R(D) = C = 0.531, we obtain
h(D) = 0.3503 = D = min(0.07,0.93) = 0.07
The probability of error is
P(error) < D = 0.07

3) For reliable transmission we must have H(X) = C =1 — h(e). Hence, with H(X) = 0.8813 we
obtain
0.8813 =1 — h(e) = € < 0.016 or € > 0.984

Problem 9.18
1) The rate-distortion function of the Gaussian source for D < o2 is

0.2

1
R(D) = B logy D

Hence, with 02 = 4 and D = 1, we obtain
1
R(D) = 5 logy 4 = 1 bits/sample = 8000 bits/sec
The capacity of the channel is

P
=Wl 14+ ——
C W0g2< +N0W)

In order to accommodate the rate R = 8000 bps, the channel capacity should satisfy
R(D) < C = R(D) < 4000logs(1 + SNR)

Therefore,
logy(1 + SNR) > 2 = SNRyin = 3
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2) The error probability for each bit is

2&,
m=Q [ NO}
and therefore, the capacity of the BSC channel is
2%,

¢ = l_h(Pb):l_h<Q[ No

2 x 4000 x [1 —h (Q l ?\fﬂ)] bits/sec
0

In this case, the condition R(D) < C results in

] > bits/transmission

28, B,
< () = @ [ No] 0 or SNR - 00

Problem 9.19
1) The maximum distortion in the compression of the source is

-Dma,x:U2 :/_OO Sx(f)df:2/_1100df:40

2) The rate-distortion function of the source is

R(D) = llogy s 0<D<o® _ [ flog, ¥ 0< D <40
0 otherwise 0 otherwise

3) With D = 10, we obtain
1 40 1
=—logy — ==log,4=1
R 5 082 10 2 082
Thus, the required rate is R = 1 bit per sample or, since the source can be sampled at a rate of 20

samples per second, the rate is R = 20 bits per second.

4) The capacity-cost function is
1 P
(XP%:Qb@<1+AJ
where,

N:/O;Sn(f)df:/44df:8

Hence,

1 P P
C(P) = B logy (1 + g) bits/transmission = 4 logy(1 + g) bits/sec

The required power such that the source can be transmitted via the channel with a distortion not
exceeding 10, is determined by R(10) < C(P). Hence,

P
20 < dlogy(1+ ) = P =8 x 31 = 248
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Problem 9.20
The differential entropy of the Laplacian noise is (see Problem 6.36)

hZ)=1+InA

where A is the mean of the Laplacian distribution, that is

o0 o0 1 .
E[Z] = / zp(z)dz = / z—e Xdz = A
0 0 A
The variance of the noise is

© o1 _:
N =E[(Z-)N?=E[Z’] -\ = / zzxe_Kdz — A2 =202 - N2 =2
0
In the next figure we plot the lower and upper bound of the capacity of the channel as a function of
A2 and for P = 1. As it is observed the bounds are tight for high SNR, small N, but they become
loose as the power of the noise increases.

35

Upper Bound

L5t N T ]
1+ ,
05, Lower Bound
%o -15 -10 5 0 5 10

Problem 9.21
Both channels can be viewed as binary symmetric channels with crossover probability the proba-
bility of decoding a bit erroneously. Since,

Q e antipodal signaling
Py = { [ Mo

Q [\/ﬁi‘;] orthogonal signaling

the capacity of the channel is

O = { L—=h (Q [\/%]) antipodal signaling

1—h (Q {\/%D orthogonal signaling

In the next figure we plot the capacity of the channel as a function of J% for the two signaling
schemes.
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Antipodal Signalling

Capacity C
o
W

0.4]

03 //(/)rthogonal Signalling

02 '

0.1%

%% =8 6 4 2 0 2 4 6 $§ 10
SNR dB

Problem 9.22
The codewords of the linear code of Example 9.5.1 are

ctc = [0000 0]
c2c = [1 010 0]
cs = [0 1 11 1]
¢, = [1 101 1]

Since the code is linear the minimum distance of the code is equal to the minimum weight of the
codewords. Thus,

min = Wiin = 2

There is only one codeword with weight equal to 2 and this is cs.

Problem 9.23
The parity check matrix of the code in Example 9.5.3 is

11100
H=] 01 010
010 01
The codewords of the code are
cic = [0 0 0 0 0]
coc = [1 010 0]
cs = [0 1 1 1 1]
cs = [1 101 1]

Any of the previous codewords when postmultiplied by H' produces an all-zero vector of length 3.
For example

coH' [1&1 0 0]=[0 0 0]
cH = [1®1 1®1 1®1]=[0 0 0]
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Problem 9.24

The following table lists all the codewords of the (7,4) Hamming code along with their weight.
Since the Hamming codes are linear dpj, = Wmin. As it is observed from the table the minimum
weight is 3 and therefore dpyi, = 3.

No. || Codewords || Weight
1 0000000 0
2 1000110 3
3 0100011 3
4 0010101 3
) 0001111 4
6 1100101 4
7 1010011 4
8 1001001 3
9 0110110 4
10 0101100 3
11 0011010 3
12 1110000 3
13 1101010 4
14 1011100 4
15 0111001 4
16 1111111 7

Problem 9.25
The parity check matrix H of the (15,11) Hamming code consists of all binary sequences of length
4, except the all zero sequence. The systematic form of the matrix H is

0 0 0

H=[P' | I ]|=

S = O =
_ =0 O
—_ = O =

1
1
1
1

o O O
O O = O
o= O O
o o O

1
1
0
1

S O ==
— o O
O = =

11 1
10 1
0 1 1

The corresponding generator matrix is

1

G=[I1 | P]

I

[y
— O R MMM OOORF = =
= O == OFkFE OO -
o= - O = O RO RO
H R R R O, PO, OO

Problem 9.26
Let C be an (n, k) linear block code with parity check matrix H. We can express the parity check
matrix in the form

H=[h; hy --- h,]

where h; is an n — k dimensional column vector. Let ¢ = [¢; - - ¢,]| be a codeword of the code C'
with [ nonzero elements which we denote as ¢;,, ¢, ..., ¢;,. Clearly ¢;;, = ¢, = ... =¢; =1 and
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since c¢ is a codeword

cH' =0 = cithy + cohy + -+ - 4+ ¢, h,
= cilhil +Ci2hi2 +"'+Cizhil
= h“—i—hm—i——i—h”:O

This proves that [ column vectors of the matrix H are linear dependent. Since for a linear code the
minimum value of [ is wyin and wyin = dmin, we conclude that there exist dpi, linear dependent
column vectors of the matrix H.

Now we assume that the minimum number of column vectors of the matrix H that are linear
dependent is dpyin, and we will prove that the minimum weight of the code is dpin. Let h;,, h;,, ..,
h; . be a set of linear dependent column vectors. If we form a vector ¢ with non-zero components

min

at pOSitionS il, ’ig, ceey id in) then
t
cH' = Cilhil —+ -+ Cig T 0

which implies that ¢ is a codeword with weight dpi,. Therefore, the minimum distance of a code
is equal to the minimum number of columns of its parity check matrix that are linear dependent.

For a Hamming code the columns of the matrix H are non-zero and distinct. Thus, no two
columns h;, h; add to zero and since H consists of all the n — k tuples as its columns, the sum
h; +h; = h;, should also be a column of H. Then,

h; +h; +h,, =0

and therefore the minimum distance of the Hamming code is 3.

Problem 9.27
The generator matrix of the (n,1) repetition code is a 1 X n matrix, consisted of the non-zero
codeword. Thus,

G = { 1|1 -1 }
This generator matrix is already in systematic form, so that the parity check matrix is given by
1110 ---0
1101 0
H= .
1100 1

Problem 9.28
1) The parity check matrix H, of the extended code is an (n + 1 — k) x (n + 1) matrix. The
codewords of the extended code have the form

Cei=lc | 7]

where z is 0 if the weight of c; is even and 1 if the weight of ¢; is odd. Since c.;H. = [c;|z]H! =0
and ¢;H! = 0, the first n —k columns of H. can be selected as the columns of H? with a zero added
in the last row. In this way the choice of = is immaterial. The last column of H! is selected in such
a way that the even-parity condition is satisfied for every codeword c. ;. Note that if c.; has even
weight, then

Cesiy T Cejip T+ Ceriniy :O:>Ce,i[ 11 --- 1 ]t:()
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for every i. Therefore the last column of HY is the all-one vector and the parity check matrix of
the extended code has the form

110 1
101 1
011 1 1101000
st 100 1] 1010100
He—(He>_o1o1_0110010
001 1 1111111
000 1

2) The original code has minimum distance equal to 3. But for those codewords with weight equal
to the minimum distance, a 1 is appended at the end of the codewords to produce even parity.
Thus, the minimum weight of the extended code is 4 and since the extended code is linear, the
minimum distance is de min = We,min = 4.

3) The coding gain of the extended code is

G deminRe = 4 x = =1.7143

| w

coding =

Problem 9.29
If no coding is employed, we have

where
P 1076

= =5
RNy 10* x 2 x 10~11

Thus,
pp = Q[V5] = 1.2682 x 1072

and therefore, the error probability for 11 bits is

P

_ 11,
error in 11 bits = 1 — (1 —pp) " =~ 0.1310

If coding is employed, then since the minimum distance of the (15,11) Hamming code is 3,

De S (M— 1)@ [ dmings‘| _ 1OQ [ 355‘|

No No
where P c P 1
s b _ — —
No T, = Hemny, T s 10 T 0007
Thus

pe < 10Q [\/3 x 3.6667} ~ 4.560 x 1073

As it is observed the probability of error decreases by a factor of 28. If hard decision is employed,
then

do
min dmm ; .
pe<(M—-1) > ( ; ) Ph(1 — pp)min

1
i= dmint1
2
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where M = 10, dyin = 3 and p, = Q [1 /RCRLM — 2.777 x 10~2. Hence,
Pe =10 x (3 x p2(1 — py) + p) = 0.0227

In this case coding has decreased the error probability by a factor of 6.

Problem 9.30
The following table shows the standard array for the (7,4) Hamming code.

€] €9 €3 €y €5 €g er
1000000 0100000 0010000 0001000 0000100 0000010 0000001
c; 0000000 || 1000000 0100000 0010000 0001000 0000100 0000010 0000001
c 1000110 || 0000110 1100110 1010110 1001110 1000010 1000100 1000111
c3 0100011 || 1100011 0000011 0110011 0101011 0100111 0100001 0100010
cy 0010101 || 1010101 0110101 0000101 0011101 0010001 0010111 0010100
cs 0001111 || 1001111 0101111 0011111 0000111 0001011 0001101 0001110
c¢ 1100101 || 0100101 1000101 1110101 1101101 1100001 1100111 1100100
c7 1010011 || 0010011 1110011 1000011 1011011 1010111 1010001 1010010
cg 1001001 || 0001001 1101001 1011001 1000001 1001101 1001011 1001000
cg 0110110 || 1110110 0010110 0100110 0111110 0110010 0110100 0110111
cip 0101100 || 1101100 0001100 0111100 0100100 0101000 0101110 0101101
cip 0011010 || 1011010 0111010 0001010 0010010 0011110 0011000 0011011
ci2 1110000 || 0110000 1010000 1100000 1111000 1110100 1110010 1110001
ciz 1101010 || 0101010 1001010 1111010 1100010 1101110 1101000 1101011
ci4 1011100 || 0011100 1111100 1001100 1010100 1011000 1011110 1011101
ci5 0111001 || 1111001 0011001 0101001 0110001 0111101 0111011 0111000
cie 1111111 \| 0111111 1011111 1101111 1110111 1111011 1111101 1111110

As it is observed the received vector y = [1110100] is in the 7** column of the table under the error
vector e;. Thus, the received vector will be decoded as

c=y+es=[1 11 00 0 0]=ci2

Problem 9.31
The generator polynomial of degree m = n — k should divide the polynomial p® 4+ 1. Since the
polynomial p 4+ 1 assumes the factorization

P+1=0p+1)p+1)°=0@+)E+D@E*+p+ P> +p+1)

we observe that m = n — k can take any value from 1 to 5. Thus, kK = n — m can be any number
in [1, 5]. The following table lists the possible values of k and the corresponding generator
polynomial(s).

9(p)
pPHptrpiEpPEp 1
prep?+lorpt+pP+p+1
pP+1
pPP+lorp’+p+1
p+1

U W N =3

Problem 9.32
To generate a (7,3) cyclic code we need a generator polynomial of degree 7 — 3 = 4. Since (see
Example 9.6.2))
P+l = e+ )@+’ + D) +p+1)
= @'+ Hp+ )@ +p+ 1)
= @+ + )@+’ 0"+ 1)
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either one of the polynomials p* +p?+p+1, p*+p3+p?+1 can be used as a generator polynomial.
With g(p) = p* + p? + p + 1 all the codeword polynomials ¢(p) can be written as

c(p) = X(p)glp) = X(p)(p* +p* +p+1)

where X (p) is the message polynomial. The following table shows the input binary sequences used
to represent X (p) and the corresponding codewords.

Input X(p) c(p) = X(p)g(p) | Codeword
000 0 0 0000000
001 1 pt+pP+p+1 0010111
010 P pS+p3+p?+p | 0101110
100 p? pS +pt+p3+p? | 1011100
011 p+1 po+pt+p>+1 | 0111001
101 p?+1 PP+pd+p+1 1001011
110 p?+p pS +p°+pt+p | 1110010
11 | p?+p+1 | pS+p°+p*+1 | 1100101

Since the cyclic code is linear and the minimum weight is wyi, = 4, we conclude that the minimum
distance of the (7,3) code is 4.

Problem 9.33

Using Table 9.1 we find that the coefficients of the generator polynomial of the (15,11) code are
given in octal form as 23. Since, the binary expansion of 23 is 010011, we conclude that the
generator polynomial is

gp)=p'+p+1
The encoder for the (15,11) cyclic code is depicted in the next figure.

c(p)
U
X(p)
Problem 9.34
The " row of the matrix G has the form
gi=[0 -~ 01 0:--0 pi1 pi2 - Pintk ) 1<i<k
where p; 1, pi2, ..., DPin—k are found by solving the equation
P A i T A piap” TR pi e =" mod g(p)

Thus, with g(p) = p* + p + 1 we obtain

pPmodp* +p+1 = (pH)?*p? mod p* +p+1=(p+1)*? mod p* +p+1
= PP+ +p+Dp*mod p* +p+1
= pP+pt+pP+pPmodpt+p+1
= (p+1)p+p+1+p°+p°modp*+p+1
— p3+1
pPmodp+p+1 = (P +p*+p+1)pmodp*+p+1
= p+pP+pP+pmodp*+p+1
= pP+p’+1
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p?modp'+p+1 = p3+p2+p+1

plmodp* +p+1 = (PH*P* modp? +p+1=(p+1)*® modp* +p+1

= (P*+1)p® mod p* +p+1=7p°+p* mod p* +p+1
(

p+1)p+p mod p* +p+ 1

= pP’+p’+p
pPmodp* +p+1 = (P*+1Dp*modp* +p+1=p*+p* modp* +p+1
— p2+p1
p’modp'+p+1 = (P*+1pmodp' +p+1=p>+p
pPmodp*+p+1 = p’+1lmodp*+p+1=p>+1
p'mod p*+p+1 = (p+1)p*modp* +p+1=p>+p+1
pPPmodp +p+1 = (p+1)p? mod p* +p+1 =p3 + p?
pP’modp'+p+1 = (p+pmodp'+p+1=p°+p
p*modp*+p+1 = p+lmodp*+p+l=p+1

The generator and the parity check matrix of the code are given by

1

Il

—
OO R RO OHFRKF R RF
O = O F O FFFF=O
R O, OFRFERFERFROO
OO RO O = =

— o O
—_ O = =
— ==
O = =
—_ == O
O = O
[ R
== o
OO ==
O = = O
= _=0 O
SO O
oo RO
o~ OO
_ o O O

Problem 9.35
1) Let g(p) = p® + pb 4+ p* +p? + 1 be the generator polynomial of an (n, k) cyclic code. Then,

n — k = 8 and the rate of the code is
k

n n

The rate R is minimum when % is maximum subject to the constraint that R is positive. Thus,
the first choice of n is n = 9. However, the generator polynomial g(p) does not divide p? + 1 and
therefore, it can not generate a (9,1) cyclic code. The next candidate value of n is 10. In this case

P+ 1=ygp)p*+1)

and therefore, n = 10 is a valid choice. The rate of the code is R = % =15 = %

2) In the next table we list the four codewords of the (10,2) cyclic code generated by g(p).

Input | X(p) | Codeword
00 0 0000000000
01 1 0101010101
10 P 1010101010
11 p+1| 1111111111
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As it is observed from the table, the minimum weight of the code is 5 and since the code is
linear dmin = Wmin = 5.

3) The coding gain of the (10, 2) cyclic code in part 1) is

2
:dminR:5Xf*1

G i

coding

Problem 9.36
1) For every n
L=+ )" " p )

where additions are modulo 2. Since p+ 1 divides p™ + 1 it can generate a (n, k) cyclic code, where
k=n-—1.

2) The i*" row of the generator matrix has the form

gi:[o ... 01 0 --- 0 pi,l]
where p; 1,9 =1,...,n — 1, can be found by solving the equations
p”_i+pi’1:pn_imodp+1, 1<i<n-1

Since p"~* mod p+ 1 = 1 for every i, the generator and the parity check matrix are given by

1 - 0 | 1
G=| : . cl, H=[11 -~ 1| 1]
0 1|1
3) A vector ¢ = [c1,¢a, ..., ¢y is a codeword of the (n,n — 1) cyclic code if it satisfies the condition
cH! = 0. But,
1
1
cH =0=c| . =c1+c+--cpy
1

Thus, the vector ¢ belongs to the code if it has an even weight. Therefore, the cyclic code generated
by the polynomial p + 1 is a simple parity check code.

Problem 9.37
1) Using the results of Problem 9.31, we find that the shortest possible generator polynomial of
degree 4 is

gp)=p*+p*+1
The i*" row of the generator matrix G has the form
where p; 1,...,pi4 are obtained from the relation
P+ piap® + pigp®pisp + pia = p° ' (mod p* +p® + 1)
Hence,
PP mod p*4+pP+1 = (p2+1)pmodp4+p2+1 —p4p
pmodpt +p*+1 = pPP+1lmodp*+p*+1=p>+1
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and therefore,

1 0] 1 010
G= < 0110101 )
The codewords of the code are
cc = [0 0000 0]
coc = [1 0101 0]
cs = [01 010 1]
cs = [1 1 111 1]

2) The minimum distance of the linear (6,2) cyclic code is dpin = Wmin = 3. Therefore, the code

can correct
dmin -1
e = —5 =1 error

3) An upper bound of the block error probability is given by

dmings
o= (M—1
Pe = ( )Q[ No]
With M = 2, dyy, = 3 and
gs 51) P 2 1
—_— = e = cT—— = — :1
Ne TN, TReRN, T 6 X 2x6x 10t xax 106 o8

we obtain

pe=Q [ 3% 1.3889] — 2.063 x 102

Problem 9.38
The block generated by the interleaving is a 5 x 23 block containing 115 binary symbols. Since the

Golay code can correct
dmin—1 7-—1 5
e, = = =
¢ 2 2

bits per codeword, the resulting block can correct a single burst of errors of duration less or equal
to b x 3 =15 bits.

Problem 9.39

1-Chax is not in general cyclic, because there is no guarantee that it is linear. For example
let n = 3 and let C; = {000,111} and Cy = {000,011,101,110}, then Cpax = C1 U Cy =
{000, 111,011,101, 110}, which is obviously nonlinear (for example 111 & 110 = 001 ¢ Chax) and
therefore can not be cyclic.

2-Chyin is cyclic, the reason is that €7 and C5 are both linear therefore any two elements of Cip,
are both in C; and C5 and therefore their linear combination is also in C; and C5 and therefore in
Chin- The intersection satisfies the cyclic property because if ¢ belongs to Chy, it belongs to C
and Cs and therefore all cyclic shifts of it belong to C7 and C5 and therefore to Cpin. All codeword
polynomials corresponding to the elements of C,i, are multiples of g1(p) and g2(p) and therefore
multiple of LCM{¢1(p), g2(p)}, which in turn divides p™ + 1. For any ¢ € Cpin, we have w(c) > d;y
and w(c) > dg, therefore the minimum distance of Cyyiy, is greater than or equal to max{dy, da}.
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Problem 9.40

1) Since for each time slot [mT, (m + 1)T] we have ¢1(t) = £¢p2(t), the signals are dependent and
thus only one dimension is needed to represent them in the interval [mT, (m 4 1)T]. In this case
the dimensionality of the signal space is upper bounded by the number of the different time slots
used to transmit the message signals.

2) If ¢1(t) # agpa(t), then the dimensionality of the signal space over each time slot is at most 2.
Since there are n slots over which we transmit the message signals, the dimensionality of the signal
space is upper bounded by 2n.

3) Let the decoding rule be that the first codeword is decoded when r is received if
p(r[x1) > p(rlxa)
The set of r that decode into x7 is
Ry = {r: p(r|x1) > p(r|x2)}

The characteristic function of this set x1(r) is by definition equal to 0 if r ¢ R; and equal to 1 if
r € Ry. The characteristic function can be bounded as

L) < (p<r|><2>>5

p(rlxi)

This inequality is true if x(r) = 1 because the right side is nonnegative. It is also true if x(r) =0
because in this case p(r|xz) > p(r|x;) and therefore,

_plrbe) (p(r\m))%

p(rlx1) p(r[x1)

Given that the first codeword is sent, then the probability of error is

P(error|x;) = /'”/RN . p(r|x;)dr
1

= [ p =l
oG
= [ etaixon

4) The result follows immediately if we use the union bound on the probability of error. Thus,
assuming that x,, was transmitted, then taking the signals x,,,, m’ # m, one at a time and ignoring
the presence of the rest, we can write

P(error|x,,) < Z: //RN \/p(r|xm)p(r\xm/)dr

1<m/ <M
m’ #m

5) Let r = x,,, + n with n an N-dimensional zero-mean Gaussian random variable with variance
per dimension equal to o2 = %. Then,

p(rlxpm) =pm)  and  p(rfxn) = po+ Xm — X
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and therefore,

//N \/p(r\xm)p(ﬂxm,)dr

_In? 1 _ It 17
_ / e
RN 7TN07 (71']V0)Z

lxm—x 012 24 ixm—x, 112 /2420 (xm =% /)
— 4Ny 2N
= 0 —xe€ 0 dn
RN 7TN[) 2

Xm =X, ./ |2

|xm x /| ‘n+f
= N, / / N No dn

|xm — xmll

= ei 4No

Using the union bound in part 4, we obtain

P(error|x,,(t) sent) < e  *No

Problem 9.41
1) The encoder for the (3, 1) convolutional code is depicted in the next figure.

’“:—14|||l

Y O
S

2) The state transition diagram for this code is depicted in the next figure.

() 0/000

00

0/01 1/111
0/001

01 10
1/100

1/110

11
O 1/101

3) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.

0/010

00

01
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4) The diagram used to find the transfer function is shown in the next figure.

Xq
D2N.J DJ
D3NJ DJ D?J
> > >
X, XN X, X
DN.J

Using the flow graph results, we obtain the system
X, = D)NJX, +DNJX,
Xy, = DIJX.+DJXy
X, = D?NJX.+ D*NJX,
X = D*JX,
Eliminating X;, X, and X, results in
X DPNJ?
Xy 1—D2NJ—D2NJ?

To find the free distance of the code we set N = J =1 in the transfer function, so that

T(D,N,J)

6

TI(D):T(D’N7J>|N:J:1: 2:D6+2D8+4D10+...

1-2D

Hence, dgoo = 6

5) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.

Problem 9.42

The number of branches leaving each state correspond to the number possible different inputs to
the encoder. Since the encoder at each state takes k binary symbols at its input, the number of
branches leaving each state of the trellis is 2¥. The number of branches entering each state is the
number of possible kL contents of the encoder shift register that have their first k(L — 1) bits
corresponding to that particular state (note that the destination state for a branch is determined
by the contents of the first k(L — 1) bits of the shift register). This means that the number of

branches is equal to the number of possible different contents of the last k bits of the encoder, i.e.,
2k,

Problem 9.43
1) The state diagram of the code is depicted in the next figure

() 0/000

00
0/01 1/111
/7 0/101
01 10
1/100

1/010
11
O 1/001
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2) The diagram used to find the transfer function of the code is depicted in the next figure

X, = D3NJX, +DNJX,

X, = D?JX.+D*JX,
Xy = DNJX.+DNJXy
X, = D*JX,
Eliminating X3, X. and X, we obtain
Xy D'N.J?
T(D,N,J)= "2 =
(D, N, J) X 1—DNJ — D3N J?
Thus,
D7 7 8 9
Ti(D)=T(D,N ey =—— =D D D
1(D) (D,N,J)|N=J=1 T D D3 +D°+ D° +

3) The minimum free distance of the code is dgee = 7

4) The following figure shows 7 frames of the trellis diagram used by the Viterbi decoder. It is
assumed that the input sequence is padded by to zeros, so that the actual length of the information
sequence is 5. The numbers on the nodes indicate the Hamming distance of the survivor paths.
The deleted branches have been marked with an X. In the case of a tie we deleted the lower branch.
The survivor path at the end of the decoding is denoted by a thick line.

110 9 110 110

The information sequence is 11000 and the corresponding codeword 111010110011000...
5) An upper to the bit error probability of the code is given by

“k  UN  |N=1,D=\/2p(1-p)
But

VTy(D,N) 9 DN _ D7
IN  ON B

- 1—(D+D)N| (1—DN—D3N)?

and since k =1, p = 107°, we obtain

D7
oy < ————— ~ 4.0993 x 10716
=0 "D D3y .

D=/1p(1—p)
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Problem 9.44
1) The state diagram of the code is depicted in the next figure

() 0/000

00
0/01 1/101
/7 0/111
01 10
1/110

1/010
11
O 1001

2) The diagram used to find the transfer function of the code is depicted in the next figure

0/100

Using the flow graph relations we write

X, = D?NJX, +D?NJX,

X, = DJX;+D3JX,
X, = DNJX;+DNJX,
X, = D*JX,
Eliminating X3, X. and X4, we obtain
. DSN2J* + D'NJ? — D8N2J*

T(D,N,J =
(D, N, J) Xy 1—DNJ— D*N?2J3 — D5NJ2 + DSN2J3

Thus,
DS+ D7 — D8

_ b 7 8
D i s s =D T2 D

T\(D)=T(D,N,J)|n=j=1 =

3) The minimum free distance of the code is dfe. = 6. The path, which is at a distance dfee from
the all zero path, is depicted with a double line in the next figure.

00

01

10

11
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4) The following figure shows 6 frames of the trellis diagram used by the Viterbi algorithm to
decode the sequence {111,111,111,111,111,111}. The numbers on the nodes indicate the Hamming
distance of the survivor paths from the received sequence. The branches that are dropped by the
Viterbi algorithm have been marked with an X. In the case of a tie of two merging paths, we delete
the lower path. The decoded sequence is {101,111,011,101,111,011} which corresponds to the
information sequence {z1, 2, x3,24} = {1,0,0, 1} followed by two zeros.

111 3 111 111 111 111 111
Avs

00 .

01 @ @ °
10 @ °

Problem 9.45

The code of Problem 9.41 is a (3,1) convolutional code with L = 3. The length of the received
sequence y is 15. This means that 5 symbols have been transmitted, and since we assume that the
information sequence has been padded by two 0’s, the actual length of the information sequence is
3. The following figure depicts 5 frames of the trellis used by the Viterbi decoder. The numbers on
the nodes denote the metric (Hamming distance) of the survivor paths. In the case of a tie of two
merging paths at a node, we have purged the lower path.

101 5001 5 011 4 110 5 111

00

01
10

11

The decoded sequence is {111,001,011,000,000} and corresponds to the information sequence
{1,0,0} followed by two zeros.

Problem 9.46
1) The encoder for the (3,1) convolutional code is depicted in the next figure.

T T

I S
.

2) The state transition diagram for this code is shown below

<
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() 0/000

00

0/01 1/111
/7 0/101

01 10
1/100

1/010

11
O 1/001

0/110

3) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.

00

01

10

11

Xa”

DNJ

Using the flow graph results, we obtain the system

X, = D3NJX, +DNJX,

X, = D*JX.+ D*JX,
X, = DNJX.+ DNJX,
X, = D*JX,
Eliminating X3, X, and X, results in
X D'NJ3

T(D,N,J) =

X, 1—DNJ— D3N.J2
To find the free distance of the code we set N = J =1 in the transfer function, so that

D7

_ N7 8 9
g =D DD

Ty(D)=T(D,N,J)|N=j=1 =
Hence, dgpoo =7

5) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.
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Problem 9.47
Using the diagram of Figure 9.28, we see that there are only two ways to go from state X, to
state X, with a total number of ones (sum of the exponents of D) equal to 6. The corresponding
transitions are:

2 2
Path1: X, 2 x.2x,2x,2 x,
2 2
Path2: X, 2x.2x,-x.2x,2 x,
These two paths correspond to the codewords

¢ = 0,0, 1,0, 1,0, 1,1, 0,0, 0,0,...
c; = 0,0, 0,1, 0,0, 0,1, 1,1, 0,0,...

Problem 9.48
1) The state transition diagram and the flow diagram used to find the transfer function for this
code are depicted in the next figure.

() 0/00

00
0/10 1/01

0/01
01 [ 10

1/11 NJ

1/00 D*J
0/11 - DNJ
Xy X X, X
O 1/10 D2NJ

Thus,

X, = DNJX, +D?>NJX,
X, = DJX.+ D*JX,
X, = NJX.+DNJX,
X, = DJX,

and by eliminating X, X. and X4, we obtain

X D3N J3
Xy 1—DNJ—-D3NJ?

T(D, N, J)

To find the transfer function of the code in the form T(D, N), we set J =1 in T'(D, N, J). Hence,

D3N
1— DN — D3N

T(D,N) =

2) To find the free distance of the code we set N =1 in the transfer function 7'(D, N), so that

D3

_ N3 4 5 6
T =D+ D+ DY+ 2D0

Ti(D) =T(D,N)|n=1 =
Hence, dgoe = 3
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3) An upper bound on the bit error probability, when hard decision decoding is used, is given by

5, < 1IT(D, N)‘
k VN N=1,D=+/4p(1—p)

Since
9T (D, N) v D3N D3

IN |yoi ON1—(D +D3>N‘N:1 T (- (D+DY)
with k = 1, p = 107% we obtain

=8.0321 x 1072
4p(1-p)

B, <

D3
(1= (D+D?%)? ‘D—

Problem 9.49
1) Let the decoding rule be that the first codeword is decoded when y; is received if

p(yilx1) > p(yilx2)
The set of y; that decode into x7 is
V1 ={yi: p(yilx1) > p(yilx2)}

The characteristic function of this set x1(y;) is by definition equal to 0 if y; € Y] and equal to 1 if
yi € Y1. The characteristic function can be bounded as (see Problem 9.40)

i< ()

Given that the first codeword is sent, then the probability of error is

Plerrorjx1) = Y plyilx1) = Y plyilx1)[1 — x1(ys)]
yiEY*YI yZGY
i|x

< Y plyilx) ( (y; 2 ) T \/p yvilx1)p(yi|x2)
Vi€Y (yilx1) yiey
2”

= Z\/p(yi!m)p(yi\m)
=1

where Y denotes the set of all possible sequences y;. Since, each element of the vector y; can take
two values, the cardinality of the set Y is 2.

2) Using the results of the previous part we have

. , Jnen) — = , P(Yifxl)\/P(YHXQ)
P(error) < Z\/p(yz\m)p(yz\m)—Zp(yz)\/ o\ o)

=1
- zp \/ "jly;)w;’;jj;’):;2p<yi>¢p<xnyi>p<xﬂyi>

However, given the vector y;, the probability of error depends only on those values that x; and x»
are different. In other words, if x1 = 29, then no matter what value is the k' element of y;, it
will not produce an error. Thus, if by d we denote the Hamming distance between x; and x5, then

p(x1lyi)p(xely:) = p*(1 — p)*
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and since p(y;) = 5, we obtain

P(error) = P(d) = 2pg(1 - p)% = [4p(1 - P)]%
Problem 9.50
1)
1 o0 Uzd
T = o e 2dv
Q(x) e ).
v=y/2t b et
VT2
12 [
= 5—/ e Pt
fRave
2 (3)
= —erfc|—=
2 V2

2) The average bit error probability can be bounded as (see (9.7.16))

Pp< 1Y aaf(@)Q (2R = 1 Y aaf(d)Q [VaRu)
k d:dfree NO k d:dfree
= i > aaf(d)erfe(y/Redy)
d:dfree

1 oo
= ﬂ Z ad+dfreef(d + dfree)erfc( Rc(d + dfree)’}’b)
d=1

1 - _
761‘&3( V RcdfreeVb) Z aderfreef(d + dfree>e Rede

<
2k d=1
But,
) o
T(D7 N) — Z ad-Dde(d) = Z ad+dfree DderfreeNf(derfree)
d:dfree d=1
and therefore,
9T (D, N) ' = drtdy
il St = Adtdgree DT fd + diree)
YN N=1 dz::l o )
o0
= Ddfrcc Z a’d+dfreeDdf(d + dfree)

d=1

Setting D = e R in the previous and substituting in the expression for the average bit error
probability, we obtain

5 o 1 T(D, N
Pb S %erfC(\/m)eRcdfrcc“/b’ﬁ(’)

UN ’Nl,De—Rc“fb

Problem 9.51
The partition of the 8-PAM constellation in four subsets is depicted in the figure below.
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7-5-3-1'13 57

2) The next figure shows one frame of the trellis used to decode the received sequence. Each branch
consists of two transitions which correspond to elements in the same coset in the final partition
level.

The operation of the Viterbi algorithm for the decoding of the sequence {—.2,1.1,6,4, —3, —4.8, 3.3}
is shown schematically in the next figure. It has been assumed that we start at the all zero state and
that a sequence of zeros terminates the input bit stream in order to clear the encoder. The numbers
at the nodes indicate the minimum Euclidean distance, and the branches have been marked with
the decoded transmitted symbol. The paths that have been purged are marked with an X.

Transmitted sequence:
1 3 5 3 -5 -3 3
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Chapter 10

Problem 10.1
1) The wavelength A is
3x 108 3
>\ = — 1NN =
109 10
Hence, the Doppler frequency shift is

u 100 Km /hr 100 x 10% x 10
=+- =4 =4 Hz = +£92.5926 H
Jp=%5 3m 3x 3600 ’

The plus sign holds when the vehicle travels towards the transmitter whereas the minus sign holds
when the vehicle moves away from the transmitter.

2) The maximum difference in the Doppler frequency shift, when the vehicle travels at speed 100
km/hr and f =1 GHz, is
Afpmax = 2fp = 185.1852 Hz

This should be the bandwidth of the Doppler frequency tracking loop.

3) The maximum Doppler frequency shift is obtain when f = 1 GHz + 1 MHz and the vehicle
moves towards the transmitter. In this case

3 x 108
Amin = —oo——m = 0.2
109 1 100 ™ 02T

and therefore
oo 100 10°
Pmax ™ 0 2997 x 3600
Thus, the Doppler frequency spread is By = 2fp . = 185.3706 Hz.

= 92.6853 Hz

Problem 10.2
1) Since T,, = 1 second, the coherence bandwidth

1
Bpy=—=05 H
b ST, 0.5 v/

and with By = 0.01 Hz, the coherence time is

1
T = 3B, =100/2 =50 seconds

(2) Since the channel bandwidth W >> b, the channel is frequency selective.
(3) Since the signal duration T' < Ty, the channel is slowly fading.
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(4) The ratio W/Bg, = 10. Hence, in principle up to tenth order diversity is available by subdividing
the channel bandwidth into 10 subchannels, each of width 0.5 Hz. If we employ binary PSK
with symbol duration 7" = 10 seconds, then the channel bandwidth can be subdivided into 25
subchannels, each of bandwidth % = 0.2 Hz. We may choose to have 5% order frequency diversity
and for each transmission, thus, have 5 parallel transmissions. Thus, we would have a data rate
of 5 bits per signal interval, i.e., a bit rate of 1/2 bps. By reducing the order of diversity, we may
increase the data rate, for example, with no diversity, the data rate becomes 2.5 bps.

(5) To answer the question we may use the approximate relation for the error probability given by
(10.1.37), or we may use the results in the graph shown in Figure 10.1.10. For example, for binary
PSK with D = 4, the SNR per bit required to achieve an error probability of 107 is 18 dB. This
the total SNR per bit for the four channels (with maximal ration combining). Hence, the SNR per
bit per channel is reduced to 12 dB (a factor of four smaller).

Problem 10.3
The Rayleigh distribution is

2 2
(a) = ;%eo‘/%a, a>0
pla) =4 % .
0, otherwise

Hence, the probability of error for the binary FSK and DPSK with noncoherent detection averaged
over all possible values of « is

2
001 _ a“&y o 2
P, = / ST e
0 2 04
]
= —2/ ae No da
20% Jo

But,
o 2n+1 —az? de = n 0
/0 T= o (a>0)

so that with n = 0 we obtain

0  _g2|%e 1
Py = 12/ ae " {NOJr%i]da:i—l
204

2 [ B2od v 1] 2 [cpp + 1]

where pp = 8*’20 . With ¢ =1 (DPSK) and ¢ = 3 (FSK) we have

2(%+ﬂb)
s, FSK

{ _1__ ppsSK
Py =
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Problem 10.4

(a)
cos 27 fit
—»@—»Matched Filter 1 ()?
—»@—vl\/[atched Filter 1 ( )2
i (t sin 27 f1t
1(#) cos 27 fot
—»é()—vl\/[atched Filter 2 ( )2
Y
o O
—»@—»Ma’cched Filter 2 ( )2
sin 27 fot T
Fa sample at t = kT
cos 27 fit l Detector
%cto output
Matched Filter 1 ()? the larger
—»@—vMatched Filter 1 ( )2
sin 27 f1t '
ro(t) —
2(t) cos 27 fot G*—)—>
—@—»Ma’cched Filter 2 ( )2
—»@—vl\/{atcbed Filter 2 ( )2
sin 27 fot

(b) The probability of error for binary FSK with square-law combining for D = 2 is given in Figure
10.1.10. The probability of error for D = 1 is also given in Figure 10.1.10. Note that an increase in
SNR by a factor of 10 reduces the error probability by a factor of 10 when D = 1 and by a factor
of 100 when D = 2.

Problem 10.5
(a) r is a Gaussian random variable. If \/&y is the transmitted signal point, then

B(r) = B(r1) + B(ra) = (1+ k)& = m,

and the variance is
o =o? + k%03

r =
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The probability density function of r is

and the probability of error is

0
P = f(r)dr
1 [~o _a?

where

’mj _ (1+ k)2gb

o2  o?+ k203
The value of k that maximizes this ratio is obtained by differentiating this expression and solving
for the value of k that forces the derivative to zero. Thus, we obtain

Note that if o1 > o9, then k > 1 and 79 is given greater weight than r;. On the other hand, if
o9 > 01, then k < 1 and rq is given greater weight than ro. When o1 = 09, £k = 1. In this case

m% _ (1 + %)251,
o2 o+ %(30%)

On the other hand, if k is set to unity we have

SN

4&, Ep

m

o2  o?+307 o}
Therefore, the optimum weighting provides a gain of

4
10log 3= 1.25 dB

Problem 10.6
1) The probability of error for a fixed value of a is

Pela) =@ ( 2?\:05)

since the given a takes two possible values, namely a = 0 and a = 2 with probabilities 0.1 and 0.9,
respectively, the average probability of error is

Pe:O'l+Q< 85) :0.05+Q< 85)

2 No No
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(2) As & — o0, P. — 0.05
(3) The probability of error for fixed values of a; and as is

P.(a1,a2) = Q ( 2(0,%]—\[5—0003)8)

In this case we have four possible values for the pair (a1, a2), namely, (0,0), (0,2),(2,0), and (2,2),
with corresponding probabilities ).01, 0.09, 0.09 and 0.81. Hence, the average probability of error

is
0.01 8E 16&

P.=— 1 — .81 —

=200 8Q<,/NO)+08Q< NO)

(4) As Nio — 00, P. — 0.005, which is a factor of 10 smaller than in (2).

Problem 10.7
We assume that the input bits 0, 1 are mapped to the symbols -1 and 1 respectively. The terminal
phase of an MSK signal at time instant n is given by

k
O(n;a) = gZak—i-Qo
k=0

where 6 is the initial phase and aj is =1 depending on the input bit at the time instant k. The
following table shows 0(n;a) for two different values of 6y (0,7), and the four input pairs of data:
{00,01,10,11}.

90 bo b1 apg ai 9(%, a)
0o O0}-1 -1 -7
oo 1]-1 1 0
01 0O 1 -1 0
0 1 1 1 1 s
| 0 O0|-1 -1 0
m | 0 1/|-1 1 s
| 1 O 1 -1 s
s 1 1 1 1 27

Problem 10.8
1) The envelope of the signal is

SO = /lsc()[2 + [ss(t)2
B 28 (i 28, ., ( 7rt>
B T cos <2Tb> * T, o 2T,

_ [
_ =

Thus, the signal has constant amplitude.
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2) The signal s(¢) has the form of the four-phase PSK signal with

t
gr(t) = cos <2WT) . 0<t<om,
b

Hence, it is an MSK signal. A block diagram of the modulator for synthesizing the signal is given
in the next figure.

42n :@ »(%)
A
Serial Serial / S . s(t)
— Parallel v cos(z7;) cos (2 fct)
data a, | Demux _x _ T
2 2

2/
a2n+1

3) A sketch of the demodulator is shown in the next figure.

Threshold

Y
Parallel to
Serial

A

s
2 t=2T,

4.@4.@% OZT”(-)dt—xThreshold

Problem 10.9
Since p =2, m is odd (m = 1) and M = 2, there are

N, = 2pM =8

phase states, which we denote as S,, = (6,,, an—1). The 2p = 4 phase states corresponding to 6,, are

™ 3
95 - {07 5771-7 2}

and therefore, the 8 states 5,, are

{(0, 1), (0,-1), <g1> (g,—1), (r,1), (m,—1), (327T1> (32”—1>}

Having at our disposal the state (6,,a,—1) and the transmitted symbol a,, we can find the new

phase state as
N T
(Gn; an—l) Ln, (971 + §an—17an) = (0n+17 an)

The following figure shows one frame of the phase-trellis of the partial response CPM signal.
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Problem 10.10
1) For a full response CPFSK signal, L is equal to 1. If h = %, then since m is even, there are p
terminal phase states. If h = %, the number of states is Ny = 2p.

2) With L =3 and h = %, the number of states is N, = p22 = 12. When L = 3 and h = %, the
number of states is Ny = 2p22 = 32.

Problem 10.11

(a) The coding gain is
1
R.dl = 5 X 10=5(7dB)

min

(b) The processing gain is W/R, where W = 10" Hz and R = 2000bps. Hence,

w 107 3
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(c) The jamming margin given by (10.3.43) is

(%>dB - <%)dB +(CG)ap — (%)dB

= 37+ 7—-10=34dB

Problem 10.12
The probability of error for DS spread spectrum with binary PSK may be expressed as

N
P=Q ( PJ/PS>

where W/ R is the processing gain and Pj/Pg is the jamming margin. If the jammer is a broadband,
WGN jammer, then

Py = Wl

Ps = 51,/Tb = &Ry

%)

which is identical to the performance obtained with a non-spread signal.

Therefore,

Problem 10.13

We assume that the interference is characterized as a zero-mean AWGN process with power spectral
density Jy. To achieve an error probability of 107, the required & /Jo = 10. Then, by using the
relation in (10.3.40) and (10.3.44), we have

W/R o W/R _ &
Py/Ps = Ny—1 7~ Jo
Wik = (%)W)
W= R(%)WNu-1)

where R = 10%bps, N, = 30 and &,/.Jy = 10. Therefore,
W =29x10° Hz

The minimum chip rate is 1/7. = W = 2.9 x 10° chips/sec.

Problem 10.14
To achieve an error probability of 1076, we require

5b>
— = 10.5dB
(Jo dB

Then, the number of users of the CDMA system is

_ W/R

__ 1000 _
= 15 T 1 = 89 users

If the processing gain is reduced to W/ R, = 500, then

500
N, = 113 + 1 = 45users
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Problem 10.15

(a) We are given a system where (P;/Ps),;z = 20 dB, R = 1000 bps and (&,/Jo),z = 10 dB.
Hence, using the relation in (10.3.40) we obtain

(%)us = ()t (%), =308
L = 1000
W = 1000R = 10°H >

(b) The duty cycle of a pulse jammer for worst-case jamming is

07 07
* = = - =007
&/Jo 10

(67

The corresponding probability of error for this worst-case jamming is

0.082  0.082
= =" —-82x1073
&/J 10 %

Py

Problem 10.16
The radio signal propagates at the speed of light, ¢ = 3 x 108m/ sec. The difference in propagation
delay for a distance of 300 meters is

300

BETET R

d

The minimum bandwidth of a DS spread spectrum signal required to resolve the propagation paths
is W =1 M H z. Hence, the minimum chip rate is 10% chips per second.

Problem 10.17

(a) We have N, = 15 users transmitting at a rate of 10,000 bps each, in a bandwidth of W =
1 MHz. The ¢,/ Jy is

£ W/R __ 105/10* _ 100
N.—1— 14 ~— 14

= 7.14(8.54 dB)

(b) The processing gain is 100.

(¢) With N, =30 and &,/Jy = 7.14, the processing gain should be increased to

W/R = (7.14) (29) = 207

Hence, the bandwidth must be increased to W = 2.07M H z.
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Problem 10.18

(a) The length of the shift-register sequence is

L =2m—1=25%_1
= 32767 bits

For binary FSK modulation, the minimum frequency separation is 2/T, where 1/T is the
symbol (bit) rate. The hop rate is 100 hops/sec. Since the shift register has N = 32767
states and each state utilizes a bandwidth of 2/T = 200 Hz, then the total bandwidth for
the FH signal is 6.5534 M Hz.

(b) The processing gain is W/R. We have,

W 6.5534 x 10° 4
—_— = — = 0. 4 1
7 100 6.5534 x 10* bps

(¢) If the noise is AWG with power spectral density Ny, the probability of error expression is

g W/R
neo(3) -e (/)

Problem 10.19

(a) If the hopping rate is 2 hops/bit and the bit rate is 100 bits/sec, then, the hop rate is 200
hops/sec. The minimum frequency separation for orthogonality 2/T = 400H z. Since there
are N = 32767 states of the shift register and for each state we select one of two frequencies
separated by 400 H z, the hopping bandwidth is 13.1068 M H z.

(b) The processing gain is W/R, where W = 13.1068 M Hz and R = 100bps. Hence

g = 0.131068 M H =

(c) The probability of error in the presence of AWGN is given by (10.3.61) with N = 2 chips per
hop.

Problem 10.20
a) The total SNR for three hops is 20 ~ 13 dB.Therefore the SNR per hop is 20/3. The probability
of a chip error with noncoherent detection is

1 _ &
= — 2Np
p 26

where E./Ny = 20/3. The probability of a bit error is

P = 1—-(1-p)?
R
= 2p—p’

_ £ 1 _ &
= e 2No — —¢ No
= 0.0013
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b) In the case of one hop per bit, the SNR per bit is 20, Hence,

1 _ £
Py = e %%

1 _
_ 110

2
= 227x107°

Therefore there is a loss in performance of a factor 57 AWGN due to splitting the total signal
energy into three chips and, then, using hard decision decoding.

Problem 10.21

(a) We are given a hopping bandwidth of 2 GHz and a bit rate of 10 kbs. Hence,

W 2x10°
— =" —92x%10°(53dB
= o x 10° (53dB)

(b) The bandwidth of the worst partial-band jammer is a*W, where
o =2/(&/J) =0.2

Hence
oW =0.4GHz

(¢) The probability of error with worst-case partial-band jamming is

—1 —1
P = =T
= 3.68x1072

Problem 10.22
The processing gain is given as

W _ 500 (27 dB)

Ry
The (&,/Jo) required to obtain an error probability of 1075 for binary PSK is 9.5 dB. Hence,
the jamming margin is
Py - (W _ (&
(PS>dB N (Rb>dB (JO)dB
= 27-95
= 17.5dB

Problem 10.23
If the jammer is a pulse jammer with a duty cycle a = 0.01, the probability of error for binary

PSK is given as
2W/ Ry
P =
2 = o) < PJ/PS>

For P, = 107°, and o = 0.01, we have

OW/R,\ s
“ < PJ/PS> -1
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Then,

W/Ry 500 5
P;/Ps  Pj/Ps
and p
J
— =100(20 dB
5. = 100(20dB)
Problem 10.24
c(t) = Z enp (t —nTy)

The power spectral density of ¢ () is given by

§e() = 78 () [P ()P

[

where
|P (f)|2 = (ATc)2 sin ¢ (fTe), T.=1lusec

and S, (f) is the power spectral density of the sequence {c,}. Since the autocorrelation of the
sequence {c,} is periodic with period L and is given as

L, m=0,+L,+2L,...
Re(m) =

—1, otherwise

then, R. (m) can be represented in a discrete Fourier series as
1 L1 '
Re(m) == rc(k) e m=01,...,L-1
L=

where {r. (k)} are the Fourier series coefficients, which are given as

L—-1
re(k) =Y Re(m)e*™m/L g =01,... L1

m=0

and 7. (k 4+ nL) = r. (k) for n =0,41,£2,.... The latter can be evaluated to yield

re(k) =L+1-— 271;—:10 e—J2mkm/L

(1, k=0,+L,42L, ...
| L+1, otherwise

The power spectral density of the sequence {c,} may be expressed in terms of {r. (k)}. These
coefficients represent the power in the spectral components at the frequencies f = k/L. Therefore,

we have
sN=1 % nts(r- 1)

k=—o00

Finally, we have
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Problem 10.25
Without loss of generality, let us assume that Ly < Ls. Then, the period of the sequence obtained
by forming the modulo-2 sum of the two periodic sequences is

L3 =kLo

where k is the smallest integer multiple of Lo such that kLy/L; is an integer. For example, suppose
that L1 = 15 and Lo = 63. Then, we find the smallest multiple of 63 which is divisible by L; = 15,
without a remainder. Clearly, if we take k = 5 periods of Lo, which yields a sequence of L3 = 315,
and divide Lg by Li, the result is 21. Hence, if we take 21L; and 5L, and modulo-2 add the
resulting sequences, we obtain a single period of length Ls = 21L, = 5Ly of the new sequence.

Problem 10.26

(a) The period of the maximum length shift register sequence is

L=2"_1=1023

Since Ty, = LT,, then the processing gain is

T,
L= 7?::1023(30d3)

[

(b) The jamming margin is
(%>d8 - (%)dB B (%)dB
= 30-10

= 20dB

where J,, = JOW =~ Jo/T. = Jo x 10°

Problem 10.27
At the bit rate of 270.8 Kbps, the bit interval is

_10°°
2708

Ty = 3.69usec

a) For the suburban channel model, the delay spread is 7 psec. Therefore, the number of bits
affected by intersymbol interference is at least 2. The number may be greater than 2 if the signal
pulse extends over more than one bit interval, as in the case of partial response signals, such as
CPM.

b) For the hilly terrain channel model, the delay spread is approximately 20 p sec. Therefore, the
number of bits affected by ISI is at least 6. The number may be greater than 6 if the signal pulse
extends over more than one bit interval.
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Problem 10.28

In the case of the urban channel model, the number of RAKE receiver taps will be at least 2. If the
signal pulse extends over more than one bit interval, the number of RAKE taps must be further
increased to account for the ISI over the time span of the signal pulse. For the hilly terrain channel
model, the minimum number of RAKE taps is at least 6 but only three will be active, one for the
first arriving signal and 2 for the delayed arrivals.

If the signal pulse extends over more than one bit interval, the number of RAKE taps must be
further increased to account for the ISI over the same span of the signal pulse. For this channel,
in which the multipath delay characteristic is zero in the range of 2 usec to 15 usec, as many as
3 RAKE taps between the first signal arrival and the delayed signal arrivals will contain no signal
components.

Problem 10.29
For an automobile travelling at a speed of 100 Km/hr,
vfp 10> 9 x 10%

/ c 3600~ 39 83.3Hz

For a train travelling at a speed of 200 Km/hr,
fm = 166.6Hz
The corresponding spread factors are

5.83 x 107%,  automobile

TnBa =T fm = { 1.166 x 1073, train

The plots of the power spectral density for the automobile and the train are shown below
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