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Chapter 2

Problem 2.1
1)

ε2 =
∫ ∞

−∞

∣∣∣∣∣x(t) −
N∑

i=1

αiφi(t)

∣∣∣∣∣
2

dt

=
∫ ∞

−∞

(
x(t) −

N∑
i=1

αiφi(t)

)x∗(t) −
N∑

j=1

α∗
jφ

∗
j (t)

 dt
=

∫ ∞

−∞
|x(t)|2dt−

N∑
i=1

αi

∫ ∞

−∞
φi(t)x∗(t)dt−

N∑
j=1

α∗
j

∫ ∞

−∞
φ∗

j (t)x(t)dt

+
N∑

i=1

N∑
j=1

αiα
∗
j

∫ ∞

−∞
φi(t)φ∗

jdt

=
∫ ∞

−∞
|x(t)|2dt+

N∑
i=1

|αi|2 −
N∑

i=1

αi

∫ ∞

−∞
φi(t)x∗(t)dt−

N∑
j=1

α∗
j

∫ ∞

−∞
φ∗

j (t)x(t)dt

Completing the square in terms of αi we obtain

ε2 =
∫ ∞

−∞
|x(t)|2dt−

N∑
i=1

∣∣∣∣∫ ∞

−∞
φ∗

i (t)x(t)dt
∣∣∣∣2 +

N∑
i=1

∣∣∣∣αi −
∫ ∞

−∞
φ∗

i (t)x(t)dt
∣∣∣∣2

The first two terms are independent of α’s and the last term is always positive. Therefore the
minimum is achieved for

αi =
∫ ∞

−∞
φ∗

i (t)x(t)dt

which causes the last term to vanish.

2) With this choice of αi’s

ε2 =
∫ ∞

−∞
|x(t)|2dt−

N∑
i=1

∣∣∣∣∫ ∞

−∞
φ∗

i (t)x(t)dt
∣∣∣∣2

=
∫ ∞

−∞
|x(t)|2dt−

N∑
i=1

|αi|2

Problem 2.2
1) The signal x1(t) is periodic with period T0 = 2. Thus

x1,n =
1
2

∫ 1

−1
Λ(t)e−j2π n

2 tdt =
1
2

∫ 1

−1
Λ(t)e−jπntdt

=
1
2

∫ 0

−1
(t+ 1)e−jπntdt+

1
2

∫ 1

0
(−t+ 1)e−jπntdt

=
1
2

(
j

πn
te−jπnt +

1
π2n2 e

−jπnt
) ∣∣∣∣0−1

+
j

2πn
e−jπnt

∣∣∣∣0−1

−1
2

(
j

πn
te−jπnt +

1
π2n2 e

−jπnt
) ∣∣∣∣1

0
+

j

2πn
e−jπnt

∣∣∣∣1
0

1
π2n2 − 1

2π2n2 (ejπn + e−jπn) =
1

π2n2 (1 − cos(πn))

1



When n = 0 then

x1,0 =
1
2

∫ 1

−1
Λ(t)dt =

1
2

Thus

x1(t) =
1
2

+ 2
∞∑

n=1

1
π2n2 (1 − cos(πn)) cos(πnt)

2) x2(t) = 1. It follows then that x2,0 = 1 and x2,n = 0, ∀n �= 0.

3) The signal is periodic with period T0 = 1. Thus

x3,n =
1
T0

∫ T0

0
ete−j2πntdt =

∫ 1

0
e(−j2πn+1)tdt

=
1

−j2πn+ 1
e(−j2πn+1)t

∣∣∣∣1
0

=
e(−j2πn+1) − 1

−j2πn+ 1

=
e− 1

1 − j2πn
=

e− 1√
1 + 4π2n2

(1 + j2πn)

4) The signal cos(t) is periodic with period T1 = 2π whereas cos(2.5t) is periodic with period
T2 = 0.8π. It follows then that cos(t)+cos(2.5t) is periodic with period T = 4π. The trigonometric
Fourier series of the even signal cos(t) + cos(2.5t) is

cos(t) + cos(2.5t) =
∞∑

n=1
αn cos(2π

n

T0
t)

=
∞∑

n=1
αn cos(

n

2
t)

By equating the coefficients of cos(n
2 t) of both sides we observe that an = 0 for all n unless n = 2, 5

in which case a2 = a5 = 1. Hence x4,2 = x4,5 = 1
2 and x4,n = 0 for all other values of n.

5) The signal x5(t) is periodic with period T0 = 1. For n = 0

x5,0 =
∫ 1

0
(−t+ 1)dt = (−1

2
t2 + t)

∣∣∣∣1
0

=
1
2

For n �= 0

x5,n =
∫ 1

0
(−t+ 1)e−j2πntdt

= −
(

j

2πn
te−j2πnt +

1
4π2n2 e

−j2πnt
) ∣∣∣∣1

0
+

j

2πn
e−j2πnt

∣∣∣∣1
0

= − j

2πn

Thus,

x5(t) =
1
2

+
∞∑

n=1

1
πn

sin 2πnt

6) The signal x6(t) is periodic with period T0 = 2T . We can write x6(t) as

x6(t) =
∞∑

n=−∞
δ(t− n2T ) −

∞∑
n=−∞

δ(t− T − n2T )

2



=
1

2T

∞∑
n=−∞

ejπ
n
T

t − 1
2T

∞∑
n=−∞

ejπ
n
T

(t−T )

=
∞∑

n=−∞

1
2T

(1 − e−jπn)ej2π n
2T

t

However, this is the Fourier series expansion of x6(t) and we identify x6,n as

x6,n =
1

2T
(1 − e−jπn) =

1
2T

(1 − (−1)n) =

{
0 n even
1
T n odd

7) The signal is periodic with period T . Thus,

x7,n =
1
T

∫ T
2

− T
2

δ′(t)e−j2π n
T

tdt

=
1
T

(−1)
d

dt
e−j2π n

T
t

∣∣∣∣
t=0

=
j2πn
T 2

8) The signal x8(t) is real even and periodic with period T0 = 1
2f0

. Hence, x8,n = a8,n/2 or

x8,n = 2f0

∫ 1
4f0

− 1
4f0

cos(2πf0t) cos(2πn2f0t)dt

= f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1 + 2n)t)dt+ f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1 − 2n)t)dt

=
1

2π(1 + 2n)
sin(2πf0(1 + 2n)t)|

1
4f0
1

4f0

+
1

2π(1 − 2n)
sin(2πf0(1 − 2n)t)|

1
4f0
1

4f0

=
(−1)n

π

[
1

(1 + 2n)
+

1
(1 − 2n)

]

9) The signal x9(t) = cos(2πf0t) + | cos(2πf0t)| is even and periodic with period T0 = 1/f0. It is
equal to 2 cos(2πf0t) in the interval [− 1

4f0
, 1

4f0
] and zero in the interval [ 1

4f0
, 3

4f0
]. Thus

x9,n = 2f0

∫ 1
4f0

− 1
4f0

cos(2πf0t) cos(2πnf0t)dt

= f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1 + n)t)dt+ f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1 − n)t)dt

=
1

2π(1 + n)
sin(2πf0(1 + n)t)|

1
4f0
1

4f0

+
1

2π(1 − n)
sin(2πf0(1 − n)t)|

1
4f0
1

4f0

=
1

π(1 + n)
sin(

π

2
(1 + n)) +

1
π(1 − n)

sin(
π

2
(1 − n))

Thus x9,n is zero for odd values of n unless n = ±1 in which case x9,±1 = 1
2 . When n is even

(n = 2l) then

x9,2l =
(−1)l

π

[
1

1 + 2l
+

1
1 − 2l

]

3



Problem 2.3
It follows directly from the uniqueness of the decomposition of a real signal in an even and odd
part. Nevertheless for a real periodic signal

x(t) =
a0

2
+

∞∑
n=1

[
an cos(2π

n

T0
t) + bn sin(2π

n

T0
t)
]

The even part of x(t) is

xe(t) =
x(t) + x(−t)

2

=
1
2

(
a0 +

∞∑
n=1

an(cos(2π
n

T0
t) + cos(−2π

n

T0
t))

+bn(sin(2π
n

T0
t) + sin(−2π

n

T0
t))
)

=
a0

2
+

∞∑
n=1

an cos(2π
n

T0
t)

The last is true since cos(θ) is even so that cos(θ)+cos(−θ) = 2 cos θ whereas the oddness of sin(θ)
provides sin(θ) + sin(−θ) = sin(θ) − sin(θ) = 0.
The odd part of x(t) is

xo(t) =
x(t) − x(−t)

2

−
∞∑

n=1
bn sin(2π

n

T0
t)

Problem 2.4
a) The signal is periodic with period T . Thus

xn =
1
T

∫ T

0
e−te−j2π n

T
tdt =

1
T

∫ T

0
e−(j2π n

T
+1)tdt

= − 1
T
(
j2π n

T + 1
)e−(j2π n

T
+1)t

∣∣∣∣T
0

= − 1
j2πn+ T

[
e−(j2πn+T ) − 1

]
=

1
j2πn+ T

[1 − e−T ] =
T − j2πn
T 2 + 4π2n2 [1 − e−T ]

If we write xn = an−jbn

2 we obtain the trigonometric Fourier series expansion coefficients as

an =
2T

T 2 + 4π2n2 [1 − e−T ], bn =
4πn

T 2 + 4π2n2 [1 − e−T ]

b) The signal is periodic with period 2T . Since the signal is odd we obtain x0 = 0. For n �= 0

xn =
1

2T

∫ T

−T
x(t)e−j2π n

2T
tdt =

1
2T

∫ T

−T

t

T
e−j2π n

2T
tdt

=
1

2T 2

∫ T

−T
te−jπ n

T
tdt

=
1

2T 2

(
jT

πn
te−jπ n

T
t +

T 2

π2n2 e
−jπ n

T
t

) ∣∣∣∣T−T

=
1

2T 2

[
jT 2

πn
e−jπn +

T 2

π2n2 e
−jπn +

jT 2

πn
ejπn − T 2

π2n2 e
jπn

]

=
j

πn
(−1)n

4



The trigonometric Fourier series expansion coefficients are:

an = 0, bn = (−1)n+1 2
πn

c) The signal is periodic with period T . For n = 0

x0 =
1
T

∫ T
2

− T
2

x(t)dt =
3
2

If n �= 0 then

xn =
1
T

∫ T
2

− T
2

x(t)e−j2π n
T

tdt

=
1
T

∫ T
2

− T
2

e−j2π n
T

tdt+
1
T

∫ T
4

− T
4

e−j2π n
T

tdt

=
j

2πn
e−j2π n

T
t

∣∣∣∣T
2

− T
2

+
j

2πn
e−j2π n

T
t

∣∣∣∣T
4

− T
4

=
j

2πn

[
e−jπn − ejπn + e−jπ n

2 − e−jπ n
2

]
=

1
πn

sin(π
n

2
) =

1
2
sinc(

n

2
)

Note that xn = 0 for n even and x2l+1 = 1
π(2l+1)(−1)l. The trigonometric Fourier series expansion

coefficients are:

a0 = 3, , a2l = 0, , a2l+1 =
2

π(2l + 1)
(−1)l, , bn = 0, ∀n

d) The signal is periodic with period T . For n = 0

x0 =
1
T

∫ T

0
x(t)dt =

2
3

If n �= 0 then

xn =
1
T

∫ T

0
x(t)e−j2π n

T
tdt =

1
T

∫ T
3

0

3
T
te−j2π n

T
tdt

+
1
T

∫ 2T
3

T
3

e−j2π n
T

tdt+
1
T

∫ T

2T
3

(− 3
T
t+ 3)e−j2π n

T
tdt

=
3
T 2

(
jT

2πn
te−j2π n

T
t +

T 2

4π2n2 e
−j2π n

T
t

) ∣∣∣∣T
3

0

− 3
T 2

(
jT

2πn
te−j2π n

T
t +

T 2

4π2n2 e
−j2π n

T
t

) ∣∣∣∣T2T
3

+
j

2πn
e−j2π n

T
t

∣∣∣∣ 2T
3

T
3

+
3
T

jT

2πn
e−j2π n

T
t

∣∣∣∣T2T
3

=
3

2π2n2 [cos(
2πn
3

) − 1]

The trigonometric Fourier series expansion coefficients are:

a0 =
4
3
, an =

3
π2n2 [cos(

2πn
3

) − 1], bn = 0, ∀n

5



e) The signal is periodic with period T . Since the signal is odd x0 = a0 = 0. For n �= 0

xn =
1
T

∫ T
2

− T
2

x(t)dt =
1
T

∫ T
4

− T
2

−e−j2π n
T

tdt

+
1
T

∫ T
4

− T
4

4
T
te−j2π n

T
tdt+

1
T

∫ T
2

T
4

e−j2π n
T

tdt

=
4
T 2

(
jT

2πn
te−j2π n

T
t +

T 2

4π2n2 e
−j2π n

T
t

) ∣∣∣∣T
4

− T
4

− 1
T

(
jT

2πn
e−j2π n

T
t
) ∣∣∣∣− T

4

− T
2

+
1
T

(
jT

2πn
e−j2π n

T
t
) ∣∣∣∣T

2

T
4

=
j

πn

[
(−1)n −

2 sin(πn
2 )

πn

]
=

j

πn

[
(−1)n − sinc(

n

2
)
]

For n even, sinc(n
2 ) = 0 and xn = j

πn . The trigonometric Fourier series expansion coefficients are:

an = 0, ∀n, bn =

{
− 1

πl n = 2l
2

π(2l+1) [1 + 2(−1)l

π(2l+1) ] n = 2l + 1

f) The signal is periodic with period T . For n = 0

x0 =
1
T

∫ T
3

− T
3

x(t)dt = 1

For n �= 0

xn =
1
T

∫ 0

− T
3

(
3
T
t+ 2)e−j2π n

T
tdt+

1
T

∫ T
3

0
(− 3
T
t+ 2)e−j2π n

T
tdt

=
3
T 2

(
jT

2πn
te−j2π n

T
t +

T 2

4π2n2 e
−j2π n

T
t

) ∣∣∣∣0− T
3

− 3
T 2

(
jT

2πn
te−j2π n

T
t +

T 2

4π2n2 e
−j2π n

T
t

) ∣∣∣∣T
3

0

+
2
T

jT

2πn
e−j2π n

T
t

∣∣∣∣0− T
3

+
2
T

jT

2πn
e−j2π n

T
t

∣∣∣∣T
3

0

=
3

π2n2

[
1
2

− cos(
2πn
3

)
]

+
1
πn

sin(
2πn
3

)

The trigonometric Fourier series expansion coefficients are:

a0 = 2, an = 2
[

3
π2n2

(
1
2

− cos(
2πn
3

)
)

+
1
πn

sin(
2πn
3

)
]
, bn = 0, ∀n

Problem 2.5
1) The signal y(t) = x(t− t0) is periodic with period T = T0.

yn =
1
T0

∫ α+T0

α
x(t− t0)e

−j2π n
T0

t
dt

=
1
T0

∫ α−t0+T0

α−t0
x(v)e−j2π n

T0 (v + t0)dv

= e
−j2π n

T0
t0 1
T0

∫ α−t0+T0

α−t0
x(v)e−j2π n

T0
v
dv

= xne
−j2π n

T0
t0

6



where we used the change of variables v = t− t0

2) For y(t) to be periodic there must exist T such that y(t + mT ) = y(t). But y(t + T ) =
x(t+ T )ej2πf0tej2πf0T so that y(t) is periodic if T = T0 (the period of x(t)) and f0T = k for some
k in Z. In this case

yn =
1
T0

∫ α+T0

α
x(t)e−j2π n

T0
t
ej2πf0tdt

=
1
T0

∫ α+T0

α
x(t)e−j2π

(n−k)
T0

t
dt = xn−k

3) The signal y(t) is periodic with period T = T0/α.

yn =
1
T

∫ β+T

β
y(t)e−j2π n

T
tdt =

α

T0

∫ β+T0
α

β
x(αt)e−j2π nα

T0
t
dt

=
1
T0

∫ βα+T0

βα
x(v)e−j2π n

T0
v
dv = xn

where we used the change of variables v = αt.

4)

yn =
1
T0

∫ α+T0

α
x′(t)e−j2π n

T0
t
dt

=
1
T0
x(t)e−j2π n

T0
t
∣∣∣∣α+T0

α
− 1
T0

∫ α+T0

α
(−j2π n

T0
)e−j2π n

T0
t
dt

= j2π
n

T0

1
T0

∫ α+T0

α
x(t)e−j2π n

T0
t
dt = j2π

n

T0
xn

Problem 2.6

1
T0

∫ α+T0

α
x(t)y∗(t)dt =

1
T0

∫ α+T0

α

∞∑
n=−∞

xne
j2πn
T0

t
∞∑

m=−∞
y∗

me
− j2πm

T0
t
dt

=
∞∑

n=−∞

∞∑
m=−∞

xny
∗
m

1
T0

∫ α+T0

α
e

j2π(n−m)
T0

t
dt

=
∞∑

n=−∞

∞∑
m=−∞

xny
∗
mδmn =

∞∑
n=−∞

xny
∗
n

Problem 2.7
Using the results of Problem 2.6 we obtain

1
T0

∫ α+T0

α
x(t)x∗(t)dt =

∞∑
n=−∞

|xn|2

Since the signal has finite power

1
T0

∫ α+T0

α
|x(t)|2dt = K < ∞

Thus,
∑∞

n=−∞ |xn|2 = K < ∞. The last implies that |xn| → 0 as n → ∞. To see this write

∞∑
n=−∞

|xn|2 =
−M∑

n=−∞
|xn|2 +

M∑
n=−M

|xn|2 +
∞∑

n=M

|xn|2

7



Each of the previous terms is positive and bounded by K. Assume that |xn|2 does not converge to
zero as n goes to infinity and choose ε = 1. Then there exists a subsequence of xn, xnk

, such that

|xnk
| > ε = 1, for nk > N ≥ M

Then ∞∑
n=M

|xn|2 ≥
∞∑

n=N

|xn|2 ≥
∑
nk

|xnk
|2 = ∞

This contradicts our assumption that
∑∞

n=M |xn|2 is finite. Thus |xn|, and consequently xn, should
converge to zero as n → ∞.

Problem 2.8
The power content of x(t) is

Px = lim
T→∞

1
T

∫ T
2

− T
2

|x(t)|2dt =
1
T0

∫ T0

0
|x(t)|2dt

But |x(t)|2 is periodic with period T0/2 = 1 so that

Px =
2
T0

∫ T0/2

0
|x(t)|2dt =

2
3T0

t3
∣∣∣∣T0/2

0
=

1
3

From Parseval’s theorem

Px =
1
T0

∫ α+T0

α
|x(t)|2dt =

∞∑
n=−∞

|xn|2 =
a2

0
4

+
1
2

∞∑
n=1

(a2
n + b2n)

For the signal under consideration

an =

{
− 4

π2n2 n odd
0 n even

bn =

{
− 2

πn n odd
0 n even

Thus,

1
3

=
1
2

∞∑
n=1

a2 +
1
2

∞∑
n=1

b2

=
8
π4

∞∑
l=0

1
(2l + 1)4

+
2
π2

∞∑
l=0

1
(2l + 1)2

But,
∞∑
l=0

1
(2l + 1)2

=
π2

8

and by substituting this in the previous formula we obtain

∞∑
l=0

1
(2l + 1)4

=
π4

96

Problem 2.9
1) Since (a− b)2 ≥ 0 we have that

ab ≤ a2

2
+
b2

2
with equality if a = b. Let

A =

[
n∑

i=1

α2
i

] 1
2

, B =

[
n∑

i=1

β2
i

] 1
2

8



Then substituting αi/A for a and βi/B for b in the previous inequality we obtain

αi

A

βi

B
≤ 1

2
α2

i

A2 +
1
2
β2

i

B2

with equality if αi
βi

= A
B = k or αi = kβi for all i. Summing both sides from i = 1 to n we obtain

n∑
i=1

αiβi

AB
≤ 1

2

n∑
i=1

α2
i

A2 +
1
2

n∑
i=1

β2
i

B2

=
1

2A2

n∑
i=1

α2
i +

1
2B2

n∑
i=1

β2
i =

1
2A2A

2 +
1

2B2B
2 = 1

Thus,

1
AB

n∑
i=1

αiβi ≤ 1 ⇒
n∑

i=1

αiβi ≤
[

n∑
i=1

α2
i

] 1
2
[

n∑
i=1

β2
i

] 1
2

Equality holds if αi = kβi, for i = 1, . . . , n.

2) The second equation is trivial since |xiy
∗
i | = |xi||y∗

i |. To see this write xi and yi in polar
coordinates as xi = ρxie

jθxi and yi = ρyie
jθyi . Then, |xiy

∗
i | = |ρxiρyie

j(θxi−θyi )| = ρxiρyi = |xi||yi| =
|xi||y∗

i |. We turn now to prove the first inequality. Let zi be any complex with real and imaginary
components zi,R and zi,I respectively. Then,∣∣∣∣∣

n∑
i=1

zi

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

zi,R + j
n∑

i=1

zi,I

∣∣∣∣∣
2

=

(
n∑

i=1

zi,R

)2

+

(
n∑

i=1

zi,I

)2

=
n∑

i=1

n∑
m=1

(zi,Rzm,R + zi,Izm,I)

Since (zi,Rzm,I − zm,Rzi,I)2 ≥ 0 we obtain

(zi,Rzm,R + zi,Izm,I)2 ≤ (z2
i,R + z2

i,I)(z
2
m,R + z2

m,I)

Using this inequality in the previous equation we get∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

=
n∑

i=1

n∑
m=1

(zi,Rzm,R + zi,Izm,I)

≤
n∑

i=1

n∑
m=1

(z2
i,R + z2

i,I)
1
2 (z2

m,R + z2
m,I)

1
2

=

(
n∑

i=1

(z2
i,R + z2

i,I)
1
2

)(
n∑

m=1
(z2

m,R + z2
m,I)

1
2

)
=

(
n∑

i=1

(z2
i,R + z2

i,I)
1
2

)2

Thus ∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

≤
(

n∑
i=1

(z2
i,R + z2

i,I)
1
2

)2

or

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≤
n∑

i=1

|zi|

The inequality now follows if we substitute zi = xiy
∗
i . Equality is obtained if zi,R

zi,I
= zm,R

zm,I
= k1 or

� zi = � zm = θ.

3) From 2) we obtain ∣∣∣∣∣
n∑

i=1

xiy
∗
i

∣∣∣∣∣
2

≤
n∑

i=1

|xi||yi|

9



But |xi|, |yi| are real positive numbers so from 1)

n∑
i=1

|xi||yi| ≤
[

n∑
i=1

|xi|2
] 1

2
[

n∑
i=1

|yi|2
] 1

2

Combining the two inequalities we get∣∣∣∣∣
n∑

i=1

xiy
∗
i

∣∣∣∣∣
2

≤
[

n∑
i=1

|xi|2
] 1

2
[

n∑
i=1

|yi|2
] 1

2

From part 1) equality holds if αi = kβi or |xi| = k|yi| and from part 2) xiy
∗
i = |xiy

∗
i |ejθ. Therefore,

the two conditions are {
|xi| = k|yi|
� xi − � yi = θ

which imply that for all i, xi = Kyi for some complex constant K.

3) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An
easier approach is obtained if one considers the inequality

|x(t) + αy(t)| ≥ 0, for all α

Then

0 ≤
∫ ∞

−∞
|x(t) + αy(t)|2dt =

∫ ∞

−∞
(x(t) + αy(t))(x∗(t) + α∗y∗(t))dt

=
∫ ∞

−∞
|x(t)|2dt+ α

∫ ∞

−∞
x∗(t)y(t)dt+ α∗

∫ ∞

−∞
x(t)y∗(t)dt+ |a|2

∫ ∞

−∞
|y(t)|2dt

The inequality is true for
∫∞
−∞ x∗(t)y(t)dt = 0. Suppose that

∫∞
−∞ x∗(t)y(t)dt �= 0 and set

α = −
∫∞
−∞ |x(t)|2dt∫∞

−∞ x∗(t)y(t)dt

Then,

0 ≤ −
∫ ∞

−∞
|x(t)|2dt+

[
∫∞
−∞ |x(t)|2dt]2

∫∞
−∞ |y(t)|2dt

|
∫∞
−∞ x(t)y∗(t)dt|2

and ∣∣∣∣∫ ∞

−∞
x(t)y∗(t)dt

∣∣∣∣ ≤
[∫ ∞

−∞
|x(t)|2dt

] 1
2
[∫ ∞

−∞
|y(t)|2dt

] 1
2

Equality holds if x(t) = −αy(t) a.e. for some complex α.

Problem 2.10
1) Using the Fourier transform pair

e−α|t| F−→ 2α
α2 + (2πf)2

=
2α
4π2

1
α2

4π2 + f2

and the duality property of the Fourier transform: X(f) = F [x(t)] ⇒ x(−f) = F [X(t)] we obtain(
2α
4π2

)
F
[

1
α2

4π2 + t2

]
= e−α|f |

With α = 2π we get the desired result

F
[

1
1 + t2

]
= πe−2π|f |

10



2)

F [x(t)] = F [Π(t− 3) + Π(t+ 3)]
= sinc(f)e−j2πf3 + sinc(f)ej2πf3

= 2sinc(f) cos(2π3f)

3)

F [x(t)] = F [Λ(2t+ 3) + Λ(3t− 2)]

= F [Λ(2(t+
3
2
)) + Λ(3(t− 2

3
)]

=
1
2
sinc2(

f

2
)ejπf3 +

1
3
sinc2(

f

3
)e−j2πf 2

3

4) T (f) = F [sinc3(t)] = F [sinc2(t)sinc(t)] = Λ(f) 	Π(f). But

Π(f) 	 Λ(f) =
∫ ∞

−∞
Π(θ)Λ(f − θ)dθ =

∫ 1
2

− 1
2

Λ(f − θ)dθ =
∫ f+ 1

2

f− 1
2

Λ(v)dv

For f ≤ −3
2

=⇒ T (f) = 0

For −3
2
< f ≤ −1

2
=⇒ T (f) =

∫ f+ 1
2

−1
(v + 1)dv = (

1
2
v2 + v)

∣∣∣∣f+ 1
2

−1
=

1
2
f2 +

3
2
f +

9
8

For −1
2
< f ≤ 1

2
=⇒ T (f) =

∫ 0

f− 1
2

(v + 1)dv +
∫ f+ 1

2

0
(−v + 1)dv

= (
1
2
v2 + v)

∣∣∣∣0
f− 1

2

+ (−1
2
v2 + v)

∣∣∣∣f+ 1
2

0
= −f2 +

3
4

For
1
2
< f ≤ 3

2
=⇒ T (f) =

∫ 1

f− 1
2

(−v + 1)dv = (−1
2
v2 + v)

∣∣∣∣1
f− 1

2

=
1
2
f2 − 3

2
f +

9
8

For
3
2
< f =⇒ T (f) = 0

Thus,

T (f) =



0 f ≤ −3
2

1
2f

2 + 3
2f + 9

8 −3
2 < f ≤ −1

2
−f2 + 3

4 −1
2 < f ≤ 1

2
1
2f

2 − 3
2f + 9

8
1
2 < f ≤ 3

2
0 3

2 < f

5)

F [tsinc(t)] =
1
π

F [sin(πt)] =
j

2π

[
δ(f +

1
2
) − δ(f − 1

2
)
]

The same result is obtain if we recognize that multiplication by t results in differentiation in the
frequency domain. Thus

F [tsinc] =
j

2π
d

df
Π(f) =

j

2π

[
δ(f +

1
2
) − δ(f − 1

2
)
]
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6)

F [t cos(2πf0t)] =
j

2π
d

df

(
1
2
δ(f − f0) +

1
2
δ(f + f0)

)
=

j

4π
(
δ′(f − f0) + δ′(f + f0)

)

7)

F [e−α|t| cos(βt)] =
1
2

[
2α

α2 + (2π(f − β
2π ))2

+
2α

α2 + (2π(f + β
2π ))2

]

8)

F [te−α|t| cos(βt)] =
j

2π
d

df

(
α

α2 + (2π(f − β
2π ))2

+
α

α2 + (2π(f + β
2π ))2

)

= −j

 2απ(f − β
2π )(

α2 + (2π(f − β
2π ))2

)2 +
2απ(f + β

2π )(
α2 + (2π(f + β

2π ))2
)2


Problem 2.11

F [
1
2
(δ(t+

1
2
) + δ(t− 1

2
))] =

∫ ∞

−∞
1
2
(δ(t+

1
2
) + δ(t− 1

2
))e−j2πftdt

=
1
2
(e−jπf + e−jπf ) = cos(πf)

Using the duality property of the Fourier transform:

X(f) = F [x(t)] =⇒ x(f) = F [X(−t)]

we obtain
F [cos(−πt)] = F [cos(πt)] =

1
2
(δ(f +

1
2
) + δ(f − 1

2
))

Note that sin(πt) = cos(πt+ π
2 ). Thus

F [sin(πt)] = F [cos(π(t+
1
2
))] =

1
2
(δ(f +

1
2
) + δ(f − 1

2
))ejπf

=
1
2
ejπ

1
2 δ(f +

1
2
) +

1
2
e−jπ 1

2 δ(f − 1
2
)

=
j

2
δ(f +

1
2
) − j

2
δ(f − 1

2
)

Problem 2.12
a) We can write x(t) as x(t) = 2Π( t

4) − 2Λ( t
2). Then

F [x(t)] = F [2Π(
t

4
)] − F [2Λ(

t

2
)] = 8sinc(4f) − 4sinc2(2f)

b)

x(t) = 2Π(
t

4
) − Λ(t) =⇒ F [x(t)] = 8sinc(4f) − sinc2(f)

12



c)

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt =

∫ 0

−1
(t+ 1)e−j2πftdt+

∫ 1

0
(t− 1)e−j2πftdt

=
(

j

2πf
t+

1
4π2f2

)
e−j2πft

∣∣∣∣0−1
+

j

2πf
e−j2πft

∣∣∣∣0−1

+
(

j

2πf
t+

1
4π2f2

)
e−j2πft

∣∣∣∣1
0
− j

2πf
e−j2πft

∣∣∣∣1
0

=
j

πf
(1 − sin(πf))

d) We can write x(t) as x(t) = Λ(t+ 1) − Λ(t− 1). Thus

X(f) = sinc2(f)ej2πf − sinc2(f)e−j2πf = 2jsinc2(f) sin(2πf)

e) We can write x(t) as x(t) = Λ(t+ 1) + Λ(t) + Λ(t− 1). Hence,

X(f) = sinc2(f)(1 + ej2πf + e−j2πf ) = sinc2(f)(1 + 2 cos(2πf)

f) We can write x(t) as

x(t) =
[
Π
(

2f0(t− 1
4f0

)
)

− Π
(

2f0(t− 1
4f0

)
)]

sin(2πf0t)

Then

X(f) =
[

1
2f0

sinc
(
f

2f0

)
e
−j2π 1

4f0
f − 1

2f0
sinc

(
f

2f0
)
)
e
j2π 1

4f0
f
]

	
j

2
(δ(f + f0) − δ(f + f0))

=
1

2f0
sinc

(
f + f0

2f0

)
sin

(
π
f + f0

2f0

)
− 1

2f0
sinc

(
f − f0

2f0

)
sin

(
π
f − f0

2f0

)

Problem 2.13
We start with

F [x(at)] =
∫

−∞
∞x(at)e−j2πftdt

and make the change in variable u = at, then,

F [x(at)] =
1
|a|

∫
−∞

∞x(u)e−j2πfu/adu

=
1
|a|X

(
f

a

)
where we have treated the cases a > 0 and a < 0 separately.

Note that in the above expression if a > 1, then x(at) is a contracted form of x(t) whereas if
a < 1, x(at) is an expanded version of x(t). This means that if we expand a signal in the time
domain its frequency domain representation (Fourier transform) contracts and if we contract a
signal in the time domain its frequency domain representation expands. This is exactly what one
expects since contracting a signal in the time domain makes the changes in the signal more abrupt,
thus, increasing its frequency content.
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Problem 2.14
We have

F [x(t) 	 y(t)] =
∫

−∞
∞
[∫

−∞
∞x(τ)y(t− τ) dτ

]
e−j2πftdt

=
∫

−∞
∞x(τ)

[∫
−∞

∞y(t− τ)e−j2πf(t−τ) dt

]
e−j2πfτdτ

Now with the change of variable u = t− τ , we have∫
−∞

∞y(t− τ)e−j2πf(t−τ)dt =
∫

−∞
∞fy(u)e−j2πfudu

= F [y(t)]
= Y (f)

and, therefore,

F [x(t) 	 y(t)] =
∫

−∞
∞x(τ)Y (f)e−j2πfτdτ

= X(f) · Y (f)

Problem 2.15
We start with the Fourier transform of x(t− t0),

F [x(t− t0)] =
∫

−∞
∞x(t− t0)e−j2πftdt

With a change of variable of u = t− t0, we obtain

F [x(t− t0)] =
∫

−∞
∞x(u)e−j2πft0e−j2πfudu

= e−j2πft0

∫
−∞

∞x(u)e−j2πfudu

= e−j2πft0F [x(t)]

Problem 2.16

∫
−∞

∞x(t)y∗(t) dt =
∫

−∞
∞
[∫

−∞
∞X(f)ej2πftdf

] [∫
−∞

∞Y (f ′)ej2πf ′tdf ′
]∗
dt

=
∫

−∞
∞
[∫

−∞
∞X(f)ej2πftdf

] [∫
−∞

∞Y ∗(f ′)e−j2πf ′tdf ′
]
dt

=
∫

−∞
∞X(f)

[∫
−∞

∞Y ∗(f ′)
[∫

−∞
∞ej2πt(f−f ′) dt

]
df ′
]
df

Now using properties of the impulse function.∫
−∞

∞ej2πt(f−f ′)dt = δ(f − f ′)

and therefore ∫
−∞

∞x(t)y∗(t) dt =
∫

−∞
∞X(f)

[∫
−∞

∞Y ∗(f ′)δ(f − f ′) df ′
]
df

=
∫

−∞
∞X(f)Y ∗(f) df

14



where we have employed the sifting property of the impulse signal in the last step.

Problem 2.17
(Convolution theorem:)

F [x(t) 	 y(t)] = F [x(t)]F [y(t)] = X(f)Y (f)

Thus

sinc(t) 	 sinc(t) = F−1[F [sinc(t) 	 sinc(t)]]
= F−1[F [sinc(t)] · F [sinc(t)]]
= F−1[Π(f)Π(f)] = F−1[Π(f)]
= sinc(t)

Problem 2.18

F [x(t)y(t)] =
∫ ∞

−∞
x(t)y(t)e−j2πftdt

=
∫ ∞

−∞

(∫ ∞

−∞
X(θ)ej2πθtdθ

)
y(t)e−j2πftdt

=
∫ ∞

−∞
X(θ)

(∫ ∞

−∞
y(t)e−j2π(f−θ)tdt

)
dθ

=
∫ ∞

−∞
X(θ)Y (f − θ)dθ = X(f) 	 Y (f)

Problem 2.19
1) Clearly

x1(t+ kT0) =
∞∑

n=−∞
x(t+ kT0 − nT0) =

∞∑
n=−∞

x(t− (n− k)T0)

=
∞∑

m=−∞
x(t−mT0) = x1(t)

where we used the change of variable m = n− k.

2)

x1(t) = x(t) 	
∞∑

n=−∞
δ(t− nT0)

This is because∫ ∞

−∞
x(τ)

∞∑
n=−∞

δ(t− τ − nT0)dτ =
∞∑

n=−∞

∫ ∞

−∞
x(τ)δ(t− τ − nT0)dτ =

∞∑
n=−∞

x(t− nT0)

3)

F [x1(t)] = F [x(t) 	
∞∑

n=−∞
δ(t− nT0)] = F [x(t)]F [

∞∑
n=−∞

δ(t− nT0)]

= X(f)
1
T0

∞∑
n=−∞

δ(f − n

T0
) =

1
T0

∞∑
n=−∞

X(
n

T0
)δ(f − n

T0
)
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Problem 2.20
1) By Parseval’s theorem∫ ∞

−∞
sinc5(t)dt =

∫ ∞

−∞
sinc3(t)sinc2(t)dt =

∫ ∞

−∞
Λ(f)T (f)df

where
T (f) = F [sinc3(t)] = F [sinc2(t)sinc(t)] = Π(f) 	 Λ(f)

But

Π(f) 	 Λ(f) =
∫ ∞

−∞
Π(θ)Λ(f − θ)dθ =

∫ 1
2

− 1
2

Λ(f − θ)dθ =
∫ f+ 1

2

f− 1
2

Λ(v)dv

For f ≤ −3
2

=⇒ T (f) = 0

For −3
2
< f ≤ −1

2
=⇒ T (f) =

∫ f+ 1
2

−1
(v + 1)dv = (

1
2
v2 + v)

∣∣∣∣f+ 1
2

−1
=

1
2
f2 +

3
2
f +

9
8

For −1
2
< f ≤ 1

2
=⇒ T (f) =

∫ 0

f− 1
2

(v + 1)dv +
∫ f+ 1

2

0
(−v + 1)dv

= (
1
2
v2 + v)

∣∣∣∣0
f− 1

2

+ (−1
2
v2 + v)

∣∣∣∣f+ 1
2

0
= −f2 +

3
4

For
1
2
< f ≤ 3

2
=⇒ T (f) =

∫ 1

f− 1
2

(−v + 1)dv = (−1
2
v2 + v)

∣∣∣∣1
f− 1

2

=
1
2
f2 − 3

2
f +

9
8

For
3
2
< f =⇒ T (f) = 0

Thus,

T (f) =



0 f ≤ −3
2

1
2f

2 + 3
2f + 9

8 −3
2 < f ≤ −1

2
−f2 + 3

4 −1
2 < f ≤ 1

2
1
2f

2 − 3
2f + 9

8
1
2 < f ≤ 3

2
0 3

2 < f

Hence, ∫ ∞

−∞
Λ(f)T (f)df =

∫ − 1
2

−1
(
1
2
f2 +

3
2
f +

9
8
)(f + 1)df +

∫ 0

− 1
2

(−f2 +
3
4
)(f + 1)df

+
∫ 1

2

0
(−f2 +

3
4
)(−f + 1)df +

∫ 1

1
2

(
1
2
f2 − 3

2
f +

9
8
)(−f + 1)df

=
41
64

2) ∫ ∞

0
e−αtsinc(t)dt =

∫ ∞

−∞
e−αtu−1(t)sinc(t)dt

=
∫ ∞

−∞
1

α+ j2πf
Π(f)df =

∫ 1
2

− 1
2

1
α+ j2πf

df

=
1
j2π

ln(α+ j2πf)|1/2
−1/2 =

1
j2π

ln(
α+ jπ

α− jπ
) =

1
π

tan−1 π

α
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3) ∫ ∞

0
e−αtsinc2(t)dt =

∫ ∞

−∞
e−αtu−1(t)sinc2(t)dt

=
∫ ∞

−∞
1

α+ j2πf
Λ(f)dfdf

=
∫ 0

−1

f + 1
α+ jπf

df +
∫ 1

0

−f + 1
α+ jπf

df

But
∫ x

a+bxdx = x
b − a

b2
ln(a+ bx) so that

∫ ∞

0
e−αtsinc2(t)dt = (

f

j2π
+

α

4π2 ln(α+ j2πf))
∣∣∣∣0−1

−(
f

j2π
+

α

4π2 ln(α+ j2πf))
∣∣∣∣1
0
+

1
j2π

ln(α+ j2πf)
∣∣∣∣1−1

=
1
π

tan−1(
2π
α

) +
α

2π2 ln(
α√

α2 + 4π2
)

4) ∫ ∞

0
e−αt cos(βt)dt =

∫ ∞

−∞
e−αtu−1(t) cos(βt)dt

=
1
2

∫ ∞

−∞
1

α+ j2πf
(δ(f − β

2π
) + δ(f +

β

2π
))dt

=
1
2
[

1
α+ jβ

+
1

α− jβ
] =

α

α2 + β2

Problem 2.21
Using the convolution theorem we obtain

Y (f) = X(f)H(f) = (
1

α+ j2πf
)(

1
β + j2πf

)

=
1

(β − α)
1

α+ j2πf
− 1

(β − α)
1

β + j2πf

Thus
y(t) = F−1[Y (f)] =

1
(β − α)

[e−αt − e−βt]u−1(t)

If α = β then X(f) = H(f) = 1
α+j2πf . In this case

y(t) = F−1[Y (f)] = F−1[(
1

α+ j2πf
)2] = te−αtu−1(t)

The signal is of the energy-type with energy content

Ey = lim
T→∞

∫ T
2

− T
2

|y(t)|2dt = lim
T→∞

∫ T
2

0

1
(β − α)2

(e−αt − e−βt)2dt

= lim
T→∞

1
(β − α)2

[
− 1

2α
e−2αt

∣∣∣∣T/2

0
− 1

2β
e−2βt

∣∣∣∣T/2

0
+

2
(α+ β)

e−(α+β)t
∣∣∣∣T/2

0

]

=
1

(β − α)2
[

1
2α

+
1
2β

− 2
α+ β

] =
1

2αβ(α+ β)
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Problem 2.22

xα(t) =

{
x(t) α ≤ t < α+ T0
0 otherwise

Thus

Xα(f) =
∫ ∞

−∞
xα(t)e−j2πftdt =

∫ α+T0

α
x(t)e−j2πftdt

Evaluating Xα(f) for f = n
T0

we obtain

Xα(
n

T0
) =

∫ α+T0

α
x(t)e−j2π n

T0
t
dt = T0xn

where xn are the coefficients in the Fourier series expansion of x(t). Thus Xα( n
T0

) is independent
of the choice of α.

Problem 2.23

∞∑
n=−∞

x(t− nTs) = x(t) 	
∞∑

n=−∞
δ(t− nTs) =

1
Ts
x(t) 	

∞∑
n=−∞

ej2π n
Ts

t

=
1
Ts

F−1

[
X(f)

∞∑
n=−∞

δ(f − n

Ts
)

]

=
1
Ts

F−1

[ ∞∑
n=−∞

X

(
n

Ts

)
δ(f − n

Ts
)

]

=
1
Ts

∞∑
n=−∞

X

(
n

Ts

)
ej2π n

Ts
t

If we set t = 0 in the previous relation we obtain Poisson’s sum formula

∞∑
n=−∞

x(−nTs) =
∞∑

m=−∞
x(mTs) =

1
Ts

∞∑
n=−∞

X

(
n

Ts

)

Problem 2.24
1) We know that

e−α|t| F−→ 2α
α2 + 4π2f2

Applying Poisson’s sum formula with Ts = 1 we obtain

∞∑
n=−∞

e−α|n| =
∞∑

n=−∞

2α
α2 + 4π2n2

2) Use the Fourier transform pair Π(t) → sinc(f) in the Poisson’s sum formula with Ts = K. Then

∞∑
n=−∞

Π(nK) =
1
K

∞∑
n=−∞

sinc(
n

K
)

But Π(nK) = 1 for n = 0 and Π(nK) = 0 for |n| ≥ 1 and K ∈ {1, 2, . . .}. Thus the left side of the
previous relation reduces to 1 and

K =
∞∑

n=−∞
sinc(

n

K
)

18



3) Use the Fourier transform pair Λ(t) → sinc2(f) in the Poisson’s sum formula with Ts = K. Then

∞∑
n=−∞

Λ(nK) =
1
K

∞∑
n=−∞

sinc2(
n

K
)

Reasoning as before we see that
∑∞

n=−∞ Λ(nK) = 1 since for K ∈ {1, 2, . . .}

Λ(nK) =

{
1 n = 0
0 otherwise

Thus, K =
∑∞

n=−∞ sinc2( n
K )

Problem 2.25
Let H(f) be the Fourier transform of h(t). Then

H(f)F [e−αtu−1(t)] = F [δ(t)] =⇒ H(f)
1

α+ j2πf
= 1 =⇒ H(f) = α+ j2πf

The response of the system to e−αt cos(βt)u−1(t) is

y(t) = F−1
[
H(f)F [e−αt cos(βt)u−1(t)]

]
But

F [e−αt cos(βt)u−1(t)] = F [
1
2
e−αtu−1(t)ejβt +

1
2
e−αtu−1(t)e−jβt]

=
1
2

[
1

α+ j2π(f − β
2π )

+
1

α+ j2π(f + β
2π )

]

so that

Y (f) = F [y(t)] =
α+ j2πf

2

[
1

α+ j2π(f − β
2π )

+
1

α+ j2π(f + β
2π )

]
Using the linearity property of the Fourier transform, the Convolution theorem and the fact that
δ′(t) F−→ j2πf we obtain

y(t) = αe−αt cos(βt)u−1(t) + (e−αt cos(βt)u−1(t)) 	 δ′(t)
= e−αt cos(βt)δ(t) − βe−αt sin(βt)u−1(t)
= δ(t) − βe−αt sin(βt)u−1(t)

Problem 2.26
1)

y(t) = x(t) 	 h(t) = x(t) 	 (δ(t) + δ′(t)

= x(t) +
d

dt
x(t)

With x(t) = e−α|t| we obtain y(t) = e−α|t| − αe−α|t|sgn(t).

2)

y(t) =
∫ ∞

−∞
h(τ)x(t− τ)dτ

=
∫ t

0
e−ατe−β(t−τ)dτ = e−βt

∫ t

0
e−(α−β)τdτ
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If α = β ⇒ y(t) = te−αtu−1(t)

α �= β ⇒ y(t) = e−βt 1
β − α

e−(α−β)t
∣∣∣∣t
0
u−1(t) =

1
β − α

[
e−αt − e−βt

]
u−1(t)

3)

y(t) =
∫ ∞

−∞
e−ατ cos(γτ)u−1(τ)e−β(t−τ)u−1(t− τ)dτ

=
∫ t

0
e−ατ cos(γτ)e−β(t−τ)dτ = e−βt

∫ t

0
e(β−α)τ cos(γτ)dτ

If α = β ⇒ y(t) = e−βt
∫ t

0
cos(γτ)dτu−1(t) =

e−βt

γ
sin(γt)u−1(t)

If α = β ⇒ y(t) = e−βt
∫ t

0
e(β−α)τ cos(γτ)dτu−1(t)

=
e−βt

(β − α)2 + γ2 ((β − α) cos(γτ) + γ sin(γτ)) e(β−α)τ
∣∣∣∣t
0
u−1(t)

=
e−αt

(β − α)2 + γ2 ((β − α) cos(γt) + γ sin(γt))u−1(t)

− e−βt(β − α)
(β − α)2 + γ2u−1(t)

4)

y(t) =
∫ ∞

−∞
e−α|τ |e−β(t−τ)u−1(t− τ)dτ =

∫ t

−∞
e−α|τ |e−β(t−τ)dτ

Consider first the case that α �= β. Then

If t < 0 ⇒ y(t) = e−βt
∫ t

−∞
e(β+α)τdτ =

1
α+ β

eαt

If t < 0 ⇒ y(t) =
∫ 0

−∞
eατe−β(t−τ)dτ +

∫ t

0
e−ατe−β(t−τ)dτ

=
e−βt

α+ β
e(α+β)τ

∣∣∣∣0−∞
+

e−βt

β − α
e(β−α)τ

∣∣∣∣t
0

= − 2αe−βt

β2 − α2 +
e−αt

β − α

Thus

y(t) =

{ 1
α+β e

αt t ≤ 0
−2αe−βt

β2−α2 + e−αt

β−α t > 0

In the case of α = β

If t < 0 ⇒ y(t) = e−αt
∫ t

−∞
e2ατdτ =

1
2α
eαt

If t < 0 ⇒ y(t) =
∫ 0

−∞
e−αte2ατdτ +

∫ t

0
e−αtdτ

=
e−αt

2α
e2ατ

∣∣∣∣0−∞
+ te−αt

= [
1
2α

+ t]e−αt
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5) Using the convolution theorem we obtain

Y (f) = Π(f)Λ(f) =


0 1

2 < |f |
f + 1 −1

2 < f ≤ 0
−f + 1 0 ≤ f < 1

2

Thus

y(t) = F−1[Y (f)] =
∫ 1

2

− 1
2

Y (f)ej2πftdf

=
∫ 0

− 1
2

(f + 1)ej2πftdf +
∫ 1

2

0
(−f + 1)ej2πftdf

=
(

1
j2πt

fej2πft +
1

4π2t2
ej2πft

) ∣∣∣∣0− 1
2

+
1

j2πt
ej2πft

∣∣∣∣0− 1
2

−
(

1
j2πt

fej2πft +
1

4π2t2
ej2πft

) ∣∣∣∣ 12
0

+
1

j2πt
ej2πft

∣∣∣∣ 12
0

=
1

2π2t2
[1 − cos(πt)] +

1
2πt

sin(πt)

Problem 2.27
Let the response of the LTI system be h(t) with Fourier transformH(f). Then, from the convolution
theorem we obtain

Y (f) = H(f)X(f) =⇒ Λ(f) = Π(f)H(f)

However, this relation cannot hold since Π(f) = 0 for 1
2 < |f | whereas Λ(f) �= 0 for 1 < |f | ≤ 1/2.

Problem 2.28
1) No. The input Π(t) has a spectrum with zeros at frequencies f = k, (k �= 0, k ∈ Z) and the
information about the spectrum of the system at those frequencies will not be present at the output.
The spectrum of the signal cos(2πt) consists of two impulses at f = ±1 but we do not know the
response of the system at these frequencies.

2)

h1(t) 	Π(t) = Π(t) 	Π(t) = Λ(t)
h2(t) 	Π(t) = (Π(t) + cos(2πt)) 	Π(t)

= Λ(t) +
1
2
F−1

[
δ(f − 1)sinc2(f) + δ(f + 1)sinc2(f)

]
= Λ(t) +

1
2
F−1

[
δ(f − 1)sinc2(1) + δ(f + 1)sinc2(−1)

]
= Λ(t)

Thus both signals are candidates for the impulse response of the system.

3) F [u−1(t)] = 1
2δ(f) + 1

j2πf . Thus the system has a nonzero spectrum for every f and all the
frequencies of the system will be excited by this input. F [e−atu−1(t)] = 1

a+j2πf . Again the spectrum
is nonzero for all f and the response to this signal uniquely determines the system. In general the
spectrum of the input must not vanish at any frequency. In this case the influence of the system
will be present at the output for every frequency.
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Problem 2.29
1)

Ex1 =
∫ ∞

−∞
x2

1(t) dt

=
∫ ∞

0
e−2t cos2 t dt

<

∫ ∞

0
e−2t dt =

1
2

where we have used cos2 t ≤ 1. Therefore, x1(t) is energy type. To find the energy we have∫ ∞

0
e−2t cos2 t dt =

1
2

∫ ∞

0
e−2t dt+

1
2

∫ ∞

0
e−2t cos 2t dt

=
1
4

+
1
2

[
−1

4
e−2t cos(2t) +

1
4
e−2∗t sin(2t)

]∞

0

=
3
8

2)

Ex2 =
∫ ∞

−∞
x2

2(t) dt =
∫ 0

−∞
e−2t cos2(t) dt+

∫ ∞

0
e−2t cos2(t) dt

=
∫ ∞

0
e2t cos2(t) dt+

3
8

=
3
8

− 3
8

+ lim
t→∞

e2t

8

(
2 cos2(t) + sin(2t) + 1

)
= lim

t→∞
e2t

8
f(t)

where f(t) = 2 cos2(t)+sin(2t)+1. By taking the derivative and setting it equal to zero we can find
the minimum of f(t) and show that f(t) > 0.5. This shows that limt→∞ e2t

8 f(t) ≥ limt→∞ e2t

16 = ∞.
This shows that the signal is not energy-type.

To check if the signal is power type, we obviously have limT→∞ 1
T

∫ T
0 e−2t cos2 t dt = 0. Therefore

P = lim
T→∞

1
T

∫ T

0
e2t cos2(t) dt

= lim
T→∞

1/4 e2 T (cos(T ))2 + 1/4 e2 T cos(T ) sin(T ) + 1/8
(
eT
)2

− 3/8

T
= ∞

Therefore x2(t) is neither power- nor energy-type.
3)

Ex3 =
∫ ∞

−∞
(sgn(t))2 dt =

∫ ∞

−∞
1 dt

= ∞

and hence the signal is not energy-type. To find the power

Px3 = lim
T→∞

1
2T

∫ T

−T
(sgn(t)))2 dt

= lim
T→∞

1
2T

∫ T

−T
12 dt

= lim
T→∞

1
2T

2T = 1
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4) Since x4(t) is periodic (or almost periodic when f1/f2 is not rational) the signal is not energy
type. To see whether it is power type, we have

Px4 = lim
T→∞

1
2T

∫ T

−T
(A cos 2πf1t+B cos 2πf2t)2 dt

= lim
T→∞

1
2T

∫ T

−T

(
A2 cos2 2πf1t+B2 cos2 2πf2t+ 2AB cos 2πf1t cos 2πf2t

)
dt

=
A2 +B2

2

Problem 2.30
1)

P = lim
T→∞

1
2T

∫ T

−T

∣∣∣Aej(2πf0t+θ)
∣∣∣2 dt

= lim
T→∞

1
2T

∫ T

−T
A2 dt

= A2

2)

P = lim
T→∞

1
2T

∫ T

0
12 dt

=
1
2

3)

E = lim
T→∞

∫ T

0
K2/

√
t dt

= lim
T→∞

[
2K2

√
t
]T
0

= lim
T→∞

2K2
√
T

= ∞

therefore, it is not energy-type. To find the power

P = lim
T→∞

1
2T

∫ T

−T
K2/

√
t dt

= lim
T→∞

1
2T

2K2
√
T

= 0

and hence it is not power-type either.

Problem 2.31
1) x(t) = e−αtu−1(t). The spectrum of the signal is X(f) = 1

α+j2πf and the energy spectral density

GX(f) = |X(f)|2 =
1

α2 + 4π2f2

Thus,

RX(τ) = F−1[GX(f)] =
1
2α
e−α|τ |
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The energy content of the signal is

EX = RX(0) =
1
2α

2) x(t) = sinc(t). Clearly X(f) = Π(f) so that GX(f) = |X(f)|2 = Π2(f) = Π(f). The energy
content of the signal is

EX =
∫ ∞

−∞
Π(f)df =

∫ 1
2

− 1
2

Π(f)df = 1

3) x(t) =
∑∞

n=−∞ Λ(t−2n). The signal is periodic and thus it is not of the energy type. The power
content of the signal is

Px =
1
2

∫ 1

−1
|x(t)|2dt =

1
2

∫ 0

−1
(t+ 1)2dt+

∫ 1

0
(−t+ 1)2dt

=
1
2

(
1
3
t3 + t2 + t

) ∣∣∣∣0−1
+

1
2

(
1
3
t3 − t2 + t

) ∣∣∣∣1
0

=
1
3

The same result is obtain if we let

SX(f) =
∞∑

n=−∞
|xn|2δ(f − n

2
)

with x0 = 1
2 , x2l = 0 and x2l+1 = 2

π(2l+1) (see Problem 2.2). Then

PX =
∞∑

n=−∞
|xn|2

=
1
4

+
8
π2

∞∑
l=0

1
(2l + 1)4

=
1
4

+
8
π2
π2

96
=

1
3

4)

EX = lim
T→∞

∫ T
2

− T
2

|u−1(t)|2dt = lim
T→∞

∫ T
2

0
dt = lim

T→∞
T

2
= ∞

Thus, the signal is not of the energy type.

PX = lim
T→∞

1
T

∫ T
2

− T
2

|u−1(t)|2dt = lim
T→∞

1
T

T

2
=

1
2

Hence, the signal is of the power type and its power content is 1
2 . To find the power spectral density

we find first the autocorrelation RX(τ).

RX(τ) = lim
T→∞

1
T

∫ T
2

− T
2

u−1(t)u−1(t− τ)dt

= lim
T→∞

1
T

∫ T
2

τ
dt

= lim
T→∞

1
T

(
T

2
− τ) =

1
2

Thus, SX(f) = F [RX(τ)] = 1
2δ(f).
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5) Clearly |X(f)|2 = π2sgn2(f) = π2 and EX = limT→∞
∫ T

2
− T

2
π2dt = ∞. The signal is not of the

energy type for the energy content is not bounded. Consider now the signal

xT (t) =
1
t
Π(

t

T
)

Then,
XT (f) = −jπsgn(f) 	 T sinc(fT )

and

SX(f) = lim
T→∞

|XT (f)|2
T

= lim
T→∞

π2T

∣∣∣∣∣
∫ f

−∞
sinc(vT )dv −

∫ ∞

f
sinc(vT )dv

∣∣∣∣∣
2

However, the squared term on the right side is bounded away from zero so that SX(f) is ∞. The
signal is not of the power type either.

Problem 2.32
1)
a) If α �= γ,

|Y (f)|2 = |X(f)|2|H(f)|2

=
1

(α2 + 4π2f2)(β2 + 4π2f2)

=
1

β2 − α2

[
1

α2 + 4π2f2 − 1
β2 + 4π2f2

]

From this, RY (τ) = 1
β2−α2

[
1
2αe

−α|τ | − 1
2β e

−β|τ |
]

and Ey = Ry(0) = 1
2αβ(α+β) .

If α = γ then

GY (f) = |Y (f)|2 = |X(f)|2|H(f)|2 =
1

(α2 + 4π2f2)2

The energy content of the signal is

EY =
∫ ∞

−∞
1

(α2 + 4π2f2)2

=
1

4α2

∫ ∞

−∞
2α

α2 + 4π2f2
2α

α2 + 4π2f2df

=
1

4α2

∫ ∞

−∞
e−2α|t|dt =

1
4α2 2

∫ ∞

0
e−2αtdt

=
1

2α2 − 1
2α
e−2αt

∣∣∣∣∞
0

=
1

4α3

b) H(f) = 1
γ+j2πf =⇒ |H(f)|2 = 1

γ2+4π2f2 . The energy spectral density of the output is

GY (f) = GX(f)|H(f)|2 =
1

γ2 + 4π2f2 Π(f)

The energy content of the signal is

EY =
∫ 1

2

− 1
2

1
γ2 + 4π2f2df =

1
2πγ

arctan
fγ

2π

∣∣∣∣ 12− 1
2

=
1
πγ

arctan
fγ

4π
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c) The power spectral density of the output is

SY (f) =
∞∑

n=−∞
|xn|2|H(

n

2
)|2δ(f − n

2
)

=
1

4γ2 δ(f) + 2
∞∑
l=0

|x2l+1|2
γ2 + π2(2l + 1)2

δ(f − 2l + 1
2

)

=
1

4γ2 δ(f) +
8
π2

∞∑
l=0

1
(2l + 1)4(γ2 + π2(2l + 1)2)

δ(f − 2l + 1
2

)

The power content of the output signal is

PY =
∞∑

n=−∞
|xn|2|H(

n

2
)|2

=
1

4γ2 +
8
π2

∞∑
l=0

[
1

γ2(2l + 1)4
+

π4

γ4(γ2 + π2(2l + 1)2)
− π2

γ4(2l + 1)2

]

=
1

4γ2 +
8
π2

(
π2

γ296
− π4

8γ4 +
π2

γ4

∞∑
l=0

1
γ2

π2 + (2l + 1)2

)

=
1

3γ2 − π2

γ4 +
2π2

γ5 tanh(
γ

2
)

where we have used the fact

tanh(
πx

2
) =

4x
π

∞∑
l=0

1
x2 + (2l + 1)2

, tanh(x) =
ex − e−x

ex + e−x

d) The power spectral density of the output signal is

SY (f) = SX(f)|H(f)|2 =
1
2

1
γ2 + 4π2f2 δ(f) =

1
2γ2 δ(f)

The power content of the signal is

PY =
∫ ∞

−∞
SY (f)df =

1
2γ2

e) X(f) = −jπsgn(f) so that |X(f)|2 = π2 for all f except f = 0 for which |X(f)|2 = 0. Thus,
the energy spectral density of the output is

GY (f) = |X(f)|2|H(f)|2 =
π2

γ2 + 4π2f2

and the energy content of the signal

EY = π2
∫ ∞

−∞
1

γ2 + 4π2f2df = π2 1
2πγ

arctan(
f2π
γ

)
∣∣∣∣∞−∞

=
π2

2γ

2)
a) h(t) = sinc(6t) =⇒ H(f) = 1

6Π(f
6 ) The energy spectral density of the output signal is GY (f) =

GX(f)|H(f)|2 and with GX(f) = 1
α2+4π2f2 we obtain

GY (f) =
1

α2 + 4π2f2
1
36

Π2(
f

6
) =

1
36(α2 + 4π2f2)

Π(
f

6
)
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The energy content of the signal is

EY =
∫ ∞

−∞
GY (f)df =

1
36

∫ 3

−3

1
α2 + 4π2f2df

=
1

36(2απ)
arctan(f

2π
α

)
∣∣∣∣3−3

=
1

36απ
arctan(

6π
α

)

b) The energy spectral density is GY (f) = 1
36Π(f

6 )Π(f) = 1
36Π(f) and the energy content of the

output

EY (f) =
1
36

∫ 1
2

− 1
2

df =
1
36

c)

SY (f) = SX(f)|H(f)|2 =
∞∑

n=−∞
|xn|2 1

36
Π(

n

12
)δ(f − n

2
)

Since Π( n
12) is nonzero only for n such that n

12 ≤ 1
2 and x0 = 1

2 , x2l = 0 and x2l+1 = 2
π(2l+1)2 (see

Problem 2.2), we obtain

SY (f) =
1

4 · 36
δ(f) +

2∑
l=−3

1
36

|x2l+1|2δ(f − 2l + 1
2

)

=
1

144
δ(f) +

1
9π2

2∑
l=−3

1
(2l + 1)4

δ(f − 2l + 1
2

)

The power content of the signal is

PY =
1

144
+

2
9π2 (1 +

1
81

+
1

625
) ==

1
144

+
.2253
π2

d) SX(f) = 1
2δ(f), |H(f)|2 = 1

36Π(f
6 ). Hence, SY (f) = 1

72Π(f
6 )δ(f) = 1

72δ(f). The power content
of the signal is PY =

∫∞
−∞

1
72δ(f)df = 1

72 .
e) y(t) = sinc(6t)	 1

t = πsinc(6t)	 1
πt . However, convolution with 1

πt is the Hilbert transform which
is known to conserve the energy of the signal provided that there are no impulses at the origin in
the frequency domain (f = 0). This is the case of πsinc(6t), so that

EY =
∫ ∞

−∞
π2sinc2(6t)dt = π2

∫ ∞

−∞
1
36

Π2(
f

36
)df =

π2

36

∫ 3

−3
df =

π2

6

The energy spectral density is

GY (f) =
1
36

Π2(
f

6
)π2sgn2(f)

3) 1
πt is the impulse response of the Hilbert transform filter, which is known to preserve the energy

of the input signal. |H(f)|2 = sgn2(f)
a) The energy spectral density of the output signal is

GY (f) = GX(f)sgn2(f) =

{
GX(f) f �= 0
0 f = 0

Since GX(f) does not contain any impulses at the origin

EY = EX =
1
2α
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b) Arguing as in the previous question

GY (f) = GX(f)sgn2(f) =

{
Π(f) f �= 0
0 f = 0

Since Π(f) does not contain any impulses at the origin

EY = EX = 1

c)

SY (f) = SX(f)sgn2(f) =
∞∑

n=−∞
|xn|2δ(f − n

2
), n �= 0

But, x2l = 0, x2l+1 = 1
π(2l+1) so that

SY (f) = 2
∞∑
l=0

|x2l+1|2δ(f − n

2
) =

8
π2

∞∑
l=0

1
(2l + 1)4

δ(f − n

2
)

The power content of the output signal is

PY =
8
π2

∞∑
l=0

1
(2l + 1)4

=
8
π2
π2

96
=

1
12

d) SX(f) = 1
2δ(f) and |H(f)|2 = sgn2(f). Thus SY (f) = SX(f)|H(f)|2 = 0, and the power

content of the signal is zero.
e) The signal 1

t has infinite energy and power content, and since GY (f) = GX(f)sgn2(f), SY (f) =
SX(f)sgn2(f) the same will be true for y(t) = 1

t 	
1
πt .

Problem 2.33
Note that

Px =
∫ ∞

−∞
Sx(f)df = lim

T→∞
1
T

∫ T
2

− T
2

|x(t)|2dt

But in the interval [−T
2 ,

T
2 ], |x(t)|2 = |xT (t)|2 so that

Px = lim
T→∞

1
T

∫ T
2

− T
2

|xT (t)|2dt

Using Rayleigh’s theorem

Px = lim
T→∞

1
T

∫ T
2

− T
2

|xT (t)|2dt = lim
T→∞

1
T

∫ ∞

−∞
|XT (f)|2df

= lim
T→∞

1
T

∫ ∞

−∞
GxT (f)df =

∫ ∞

−∞
lim

T→∞
1
T

GxT (f)df

Comparing the last with Px =
∫∞
−∞ Sx(f)df we see that

Sx(f) = lim
T→∞

1
T

GxT (f)
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Problem 2.34
Let y(t) be the output signal, which is the convolution of x(t), and h(t), y(t) =

∫∞
−∞ h(τ)x(t−τ)dτ .

Using Cauchy-Schwartz inequality we obtain

|y(t)| =
∣∣∣∣∫ ∞

−∞
h(τ)x(t− τ)dτ

∣∣∣∣
≤

[∫ ∞

−∞
|h(τ)|2dτ

] 1
2
[∫ ∞

−∞
|x(t− τ)|2dτ

] 1
2

≤ E
1
2
h

[∫ ∞

−∞
|x(t− τ)|2dτ

] 1
2

Squaring the previous inequality and integrating from −∞ to ∞ we obtain∫ ∞

−∞
|y(t)|2dt ≤ Eh

∫ ∞

−∞

∫ ∞

−∞
|x(t− τ)|2dτdt

But by assumption
∫∞
−∞

∫∞
−∞ |x(t− τ)|2dτdt, Eh are finite, so that the energy of the output signal

is finite.
Consider the LTI system with impulse response h(t) =

∑∞
n=−∞ Π(t−2n). The signal is periodic

with period T = 2, and the power content of the signal is PH = 1
2 . If the input to this system is

the energy type signal x(t) = Π(t), then

y(t) =
∞∑

n=−∞
Λ(t− 2n)

which is a power type signal with power content PY = 1
2 .

Problem 2.35
For no aliasing to occur we must sample at the Nyquist rate

fs = 2 · 6000 samples/sec = 12000 samples/sec

With a guard band of 2000
fs − 2W = 2000 =⇒ fs = 14000

The reconstruction filter should not pick-up frequencies of the images of the spectrum X(f). The
nearest image spectrum is centered at fs and occupies the frequency band [fs −W, fs +W ]. Thus
the highest frequency of the reconstruction filter (= 10000) should satisfy

10000 ≤ fs −W =⇒ fs ≥ 16000

For the value fs = 16000, K should be such that

K · fs = 1 =⇒ K = (16000)−1

Problem 2.36

x(t) = Asinc(1000πt) =⇒ X(f) =
A

1000
Π(

f

1000
)

Thus the bandwidth W of x(t) is 1000/2 = 500. Since we sample at fs = 2000 there is a gap
between the image spectra equal to

2000 − 500 −W = 1000

29



The reconstruction filter should have a bandwidth W ′ such that 500 < W ′ < 1500. A filter that
satisfy these conditions is

H(f) = TsΠ
(

f

2W ′

)
=

1
2000

Π
(

f

2W ′

)
and the more general reconstruction filters have the form

H(f) =


1

2000 |f | < 500
arbitrary 500 < |f | < 1500
0 |f | > 1500

Problem 2.37

1)

xp(t) =
∞∑

n=−∞
x(nTs)p(t− nTs)

= p(t) 	
∞∑

n=−∞
x(nTs)δ(t− nTs)

= p(t) 	 x(t)
∞∑

n=−∞
δ(t− nTs)

Thus

Xp(f) = P (f) · F
[
x(t)

∞∑
n=−∞

δ(t− nTs)

]

= P (f)X(f) 	 F
[ ∞∑

n=−∞
δ(t− nTs)

]

= P (f)X(f) 	
1
Ts

∞∑
n=−∞

δ(f − n

Ts
)

=
1
Ts
P (f)

∞∑
n=−∞

X(f − n

Ts
)

2) In order to avoid aliasing 1
Ts

> 2W . Furthermore the spectrum P (f) should be invertible for
|f | < W .

3) X(f) can be recovered using the reconstruction filter Π( f
2WΠ

) with W < WΠ < 1
Ts

−W . In this
case

X(f) = Xp(f)TsP
−1(f)Π(

f

2WΠ
)

Problem 2.38
1)

x1(t) =
∞∑

n=−∞
(−1)nx(nTs)δ(t− nTs) = x(t)

∞∑
n=−∞

(−1)nδ(t− nTs)

= x(t)

 ∞∑
l=−∞

δ(t− 2lTs) −
∞∑

l=−∞
δ(t− Ts − 2lTs)


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Thus

X1(f) = X(f) 	

 1
2Ts

∞∑
l=−∞

δ(f − l

2Ts
) − 1

2Ts

∞∑
l=−∞

δ(f − l

2Ts
)e−j2πfTs


=

1
2Ts

∞∑
l=−∞

X(f − l

2Ts
) − 1

2Ts

∞∑
l=−∞

X(f − l

2Ts
)e−j2π l

2Ts
Ts

=
1

2Ts

∞∑
l=−∞

X(f − l

2Ts
) − 1

2Ts

∞∑
l=−∞

X(f − l

2Ts
)(−1)l

=
1
Ts

∞∑
l=−∞

X(f − 1
2Ts

− l

Ts
)

2) The spectrum of x(t) occupies the frequency band [−W,W ]. Suppose that from the periodic
spectrum X1(f) we isolate Xk(f) = 1

Ts
X(f − 1

2Ts
− k

Ts
), with a bandpass filter, and we use it to

reconstruct x(t). Since Xk(f) occupies the frequency band [2kW, 2(k+ 1)W ], then for all k, Xk(f)
cannot cover the whole interval [−W,W ]. Thus at the output of the reconstruction filter there will
exist frequency components which are not present in the input spectrum. Hence, the reconstruction
filter has to be a time-varying filter. To see this in the time domain, note that the original spectrum
has been shifted by f ′ = 1

2Ts
. In order to bring the spectrum back to the origin and reconstruct

x(t) the sampled signal x1(t) has to be multiplied by e−j2π 1
2Ts

t = e−j2πWt. However the system
described by

y(t) = ej2πWtx(t)

is a time-varying system.

3) Using a time-varying system we can reconstruct x(t) as follows. Use the bandpass filter
TsΠ(f−W

2W ) to extract the component X(f − 1
2Ts

). Invert X(f − 1
2Ts

) and multiply the resultant
signal by e−j2πWt. Thus

x(t) = e−j2πWtF−1
[
TsΠ(

f −W

2W
)X1(f)

]

Problem 2.39
1) The linear interpolation system can be viewed as a linear filter where the sampled signal
x(t)

∑∞
n=−∞ δ(t− nTs) is passed through the filter with impulse response

h(t) =


1 + t

Ts
−Ts ≤ f ≤ 0

1 − t
Ts

0 ≤ f ≤ Ts

0 otherwise

To see this write

x1(t) =

[
x(t)

∞∑
n=−∞

δ(t− nTs)

]
	 h(t) =

∞∑
n=−∞

x(nTs)h(t− nTs)

Comparing this with the interpolation formula in the interval [nTs, (n+ 1)Ts]

x1(t) = x(nTs) +
t− nTs

Ts
(x((n+ 1)Ts) − x(nTs))

= x(nTs)
[
1 − t− nTs

Ts

]
+ x((n+ 1)Ts)

[
1 +

t− (n+ 1)Ts

Ts

]
= x(nTs)h(t− nTs) + x((n+ 1)Ts)h(t− (n+ 1)Ts)
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we observe that h(t) does not extend beyond [−Ts, Ts] and in this interval its form should be the
one described above. The power spectrum of x1(t) is SX1(f) = |X1(f)|2 where

X1(f) = F [x1(t)] = F
[
h(t) 	 x(t)

∞∑
n=−∞

δ(t− nTs)

]

= H(f)

[
X(f) 	

1
Ts

∞∑
n=−∞

δ(f − n

Ts
)

]

= sinc2(fTs)
∞∑

n=−∞
X(f − n

Ts
)

2) The system function sinc2(fTs) has zeros at the frequencies f such that

fTs = k, k ∈ Z − {0}

In order to recover X(f), the bandwidth W of x(t) should be smaller than 1/Ts, so that the whole
X(f) lies inside the main lobe of sinc2(fTs). This condition is automatically satisfied if we choose
Ts such that to avoid aliasing (2W < 1/Ts). In this case we can recover X(f) from X1(f) using
the lowpass filter Π( f

2W ).

Π(
f

2W
)X1(f) = sinc2(fTs)X(f)

or
X(f) = (sinc2(fTs))−1Π(

f

2W
)X1(f)

If Ts 
 1/W , then sinc2(fTs) ≈ 1 for |f | < W and X(f) is available using X(f) = Π( f
2W )X1(f).

Problem 2.40
1) W = 50Hz so that Ts = 1/2W = 10−2sec. The reconstructed signal is

x(t) =
∞∑

n=−∞
x(nTs)sinc(

t

Ts
− n)

= −
−1∑

n=−4
sinc(

t

Ts
− n) +

4∑
n=1

sinc(
t

Ts
− n)

With Ts = 10−2 and t = 5 · 10−3 we obtain

x(.005) = −
4∑

n=1
sinc(

1
2

+ n) +
4∑

n=1
sinc(

1
2

− n)

= −[sinc(
3
2
) + sinc(

5
2
) + sinc(

7
2
) + sinc(

9
2
)]

+[sinc(−1
2
) + sinc(−3

2
) + sinc(−5

2
) + sinc(−7

2
)]

= sinc(
1
2
) − sinc(

9
2
) =

2
π

sin(
π

2
) − 2

9π
sin(

9π
2

)

=
16
9π

where we have used the fact that sinc(t) is an even function.

2) Note that (see Problem 2.41)∫ ∞

−∞
sinc(2Wt−m)sinc∗(2Wt− n)dt =

1
2W

δmn
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with δmn the Kronecker delta. Thus,∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
x(t)x∗(t)dt

=
∞∑

n=−∞
x(nTs)x∗(mTs)

∫ ∞

−∞
sinc(2Wt−m)sinc∗(2Wt− n)dt

=
∞∑

n=−∞
|x(nTs)|2

1
2W

Hence ∫ ∞

−∞
|x(t)|2dt =

1
2W

 −1∑
n=−4

1 +
4∑

n=1
1

 =
4
W

= 8 · 10−2

Problem 2.41
1) Using Parseval’s theorem we obtain

A =
∫ ∞

−∞
sinc(2Wt−m)sinc(2Wt− n)dt

=
∫ ∞

−∞
F [sinc(2Wt−m)]F [sinc(2Wt− n)]dt

=
∫ ∞

−∞
(

1
2W

)2Π2(
f

2W
)e−j2πf m−n

2W df

=
1

4W 2

∫ W

−W
e−j2πf m−n

2W df =
1

2W
δmn

where δmn is the Kronecker’s delta. The latter implies that {sinc(2Wt −m)} form an orthogonal
set of signals. In order to generate an orthonormal set of signals we have to weight each function
by 1/

√
2W .

2) The bandlimited signal x(t) can be written as

x(t) =
∞∑

n=−∞
x(nTs)sinc(2Wt− n)

where x(nTs) are the samples taken at the Nyquist rate. This is an orthogonal expansion relation
where the basis functions {sinc(2Wt−m)} are weighted by x(mTs).

3) ∫ ∞

−∞
x(t)sinc(2Wt− n)dt =

∫ ∞

−∞

∞∑
m=−∞

x(mTs)sinc(2Wt−m)sinc(2Wt− n)dt

=
∞∑

m=−∞
x(mTs)

∫ ∞

−∞
sinc(2Wt−m)sinc(2Wt− n)dt

=
∞∑

m=−∞
x(mTs)

1
2W

δmn =
1

2W
x(nTs)
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Problem 2.42
We define a new signal y(t) = x(t + t0). Then y(t) is bandlimited with Y (f) = ej2πft0X(f) and
the samples of y(t) at {kTs}∞

k=−∞ are equal to the samples of x(t) at {t0 + kTs}∞
k=−∞. Applying

the sampling theorem to the reconstruction of y(t), we have

y(t) =
∞∑

k=−∞
y(kTs)sinc (2W (t− kTs)) (1)

=
∞∑

k=−∞
x(t0 + kTs)sinc (2W (t− kTs)) (2)

and, hence,

x(t+ t0) =
∞∑

k=−∞
x(t0 + kTs)sinc (2W (t− kTs))

Substituting t = −t0 we obtain the following important interpolation relation.

x(0) =
∞∑

k=−∞
x(t0 + kTs)sinc (2W (t0 + kTs))

Problem 2.43
We know that

x(t) = xc(t) cos(2πf0t) − xs(t) sin(2πf0t)
x̂(t) = xc(t) sin(2πf0t) + xs(t) cos(2πf0t)

We can write these relations in matrix notation as(
x(t)
x̂(t)

)
=

(
cos(2πf0t) − sin(2πf0t)
sin(2πf0t) cos(2πf0t)

)(
xc(t)
xs(t)

)
= R

(
xc(t)
xs(t)

)

The rotation matrix R is nonsingular (det(R) = 1) and its inverse is

R−1 =

(
cos(2πf0t) sin(2πf0t)

− sin(2πf0t) cos(2πf0t)

)

Thus (
xc(t)
xs(t)

)
= R−1

(
x(t)
x̂(t)

)
=

(
cos(2πf0t) sin(2πf0t)

− sin(2πf0t) cos(2πf0t)

)(
x(t)
x̂(t)

)
and the result follows.

Problem 2.44
xc(t) = Re[xl(t)]. Thus

xc(t) =
1
2
[xl(t) + x∗(t)]

Taking the Fourier transform of the previous relation we obtain

Xc(f) =
1
2
[Xl(f) +X∗

l (−f)]
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Problem 2.45

x1(t) = x(t) sin(2πf0t)

X1(f) = − 1
2j
X(f + f0) +

1
2j
X(f − f0)

x2(t) = x̂(t)
X2(f) = −jsgn(f)X(f)

x3(t) = x̂1(t) = ̂x(t) sin(2πf0t) = −x(t) cos(2πf0t)

X3(f) = −1
2
X(f + f0) − 1

2
X(f − f0)

x4(t) = x2(t) sin(2πf0t) = x̂(t) sin(2πf0t)

X4(f) = − 1
2j
X̂(f + f0) +

1
2j
X̂(f − f0)

= − 1
2j

[−jsgn(f + f0)X(f + f0)] +
1
2j

[−jsgn(f − f0)X(f − f0)]

=
1
2
sgn(f + f0)X(f + f0) − 1

2
sgn(f − f0)X(f − f0)

x5(t) = x̂(t) sin(2πf0t) + x(t) cos(2πf0t)

X5(f) = X4(f) −X3(f) =
1
2
X(f + f0)(sgn(f + f0) − 1) − 1

2
X(f − f0)(sgn(f − f0) + 1)

x6(t) = [x̂(t) sin(2πf0t) + x(t) cos(2πf0t)]2 cos(2πf0t)
X6(f) = X5(f + f0) +X5(f − f0)

=
1
2
X(f + 2f0)(sgn(f + 2f0) − 1) − 1

2
X(f)(sgn(f) + 1)

+
1
2
X(f)(sgn(f) − 1) − 1

2
X(f − 2f0)(sgn(f − 2f0) + 1)

= −X(f) +
1
2
X(f + 2f0)(sgn(f + 2f0) − 1) − 1

2
X(f − 2f0)(sgn(f − 2f0) + 1)

x7(t) = x6(t) 	 2W sinc(2Wt) = −x(t)

X7(f) = X6(f)Π(
f

2W
) = −X(f)
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X7(f)7)

−2f0 2f0
X6(f)6)

5)

−f0 f0

−f0 f0

X5(f)

2X3(f) 2X4(f)4)

−f0 f0

3)

−jX2(f)

2)1)

−f0 f0

2jX1(f)

Problem 2.46
If x(t) is even then X(f) is a real and even function and therefore −j sgn(f)X(f) is an imaginary
and odd function. Hence, its inverse Fourier transform x̂(t) will be odd. If x(t) is odd then X(f)
is imaginary and odd and −j sgn(f)X(f) is real and even and, therefore, x̂(t) is even.

Problem 2.47
Using Rayleigh’s theorem of the Fourier transform we have

Ex =
∫

−∞
∞|x(t)|2dt =

∫
−∞

∞|X(f)|2df

and
Ex̂ =

∫
−∞

∞|x̂(t)|2dt =
∫

−∞
∞| − jsgn(f)X(f)|2df

Noting the fact that | − jsgn(f)|2 = 1 except for f = 0, and the fact that X(f) does not contain
any impulses at the origin we conclude that Ex = Ex̂.

Problem 2.48
Here we use Parseval’s Theorem of the Fourier Transform to obtain∫

−∞
∞x(t)x̂(t) dt =

∫
−∞

∞X(f)[−jsgn(f)X(f)]∗df
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= −j
∫ 0

−∞
|X(f)|2df + j

∫ +∞

0
|X(f)|2df

= 0

where in the last step we have used the fact that X(f) is Hermitian and therefore |X(f)|2 is even.

Problem 2.49
We note that C(f) = M(f) 	 X(f). From the assumption on the bandwidth of m(t) and x(t) we
see that C(f) consists of two separate positive frequency and negative frequency regions that do
not overlap. Let us denote these regions by C+(f) and C−(f) respectively. A moment’s thought
shows that

C+(f) = M(f) 	 X+(f)

and
C−(f) = M(f) 	 X−(f)

To find the Hilbert Transform of c(t) we note that

F [ĉ(t)] = −jsgn(f)C(f)
= −jC+(f) + jC−(f)
= −jM(f) 	 X+(f) + jM(f) 	 X−(f)
= M(f) 	 [−jX+(f) + jX−(f)]
= M(f) 	 [−jsgn(f)X(f)]
= M(f) 	 F [x̂(t)]

Returning to the time domain we obtain

ĉ(t) = m(t)x̂(t)

Problem 2.50
It is enough to note that

F [ˆ̂x(t)] = (−jsgn(f))2X(f)

and hence
F [ˆ̂x(t)] = −X(f)

where we have used the fact that X(f) does not contain any impulses at the origin.

Problem 2.51
Using the result of Problem 2.49 and noting that the Hilbert transform of cos is sin we have

̂x(t) cos(2πf0t) = x(t) sin(2πf0t)

Problem 2.52

F [ ̂A sin(2πf0t+ θ)] = −jsgn(f)A
[
− 1

2j
δ(f + f0)e

j2πf θ
2f0 +

1
2j
δ(f − f0)e

−j2πf θ
2f0

]
=

A

2

[
sgn(−f0)δ(f + f0)e

j2πf θ
2f0 − sgn(−f0)δ(f − f0)e

−j2πf θ
2f0

]
= −A

2

[
δ(f + f0)e

j2πf θ
2f0 + δ(f − f0)e

−j2πf θ
2f0

]
= −AF [cos(2πf0t+ θ)]
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Thus, Â sin(2πf0t+ θ) = −A cos(2πf0t+ θ)

Problem 2.53

Taking the Fourier transform of ̂ej2πf0t we obtain

F [ ̂ej2πf0t] = −jsgn(f)δ(f − f0) = −jsgn(f0)δ(f − f0)

Thus, ̂ej2πf0t = F−1[−jsgn(f0)δ(f − f0)] = −jsgn(f0)ej2πf0t

Problem 2.54

F
[ ̂d
dt
x(t)

]
= F [ ̂x(t) 	 δ′(t)] = −jsgn(f)F [x(t) 	 δ′(t)]

= −jsgn(f)j2πfX(f) = 2πfsgn(f)X(f)
= 2π|f |X(f)

Problem 2.55
We need to prove that x̂′(t) = (x̂(t))′.

F [x̂′(t)] = F [ ̂x(t) 	 δ′(t)] = −jsgn(f)F [x(t) 	 δ′(t)] = −jsgn(f)X(f)j2πf
= F [x̂(t)]j2πf = F [(x̂(t))′]

Taking the inverse Fourier transform of both sides of the previous relation we obtain, x̂′(t) = (x̂(t))′

Problem 2.56

x(t) = sinct cos 2πf0t =⇒ X(f) =
1
2
Π(f + f0)) +

1
2
Π(f − f0))

h(t) = sinc2t sin 2πf0t =⇒ H(f) = − 1
2j

Λ(f + f0)) +
1
2j

Λ(f − f0))

The lowpass equivalents are

Xl(f) = 2u(f + f0)X(f + f0) = Π(f)

Hl(f) = 2u(f + f0)H(f + f0) =
1
j
Λ(f)

Yl(f) =
1
2
Xl(f)Hl(f) =


1
2j (f + 1) −1

2 < f ≤ 0
1
2j (−f + 1) 0 ≤ f < 1

2
0 otherwise

Taking the inverse Fourier transform of Yl(f) we can find the lowpass equivalent response of the
system. Thus,

yl(t) = F−1[Yl(f)]

=
1
2j

∫ 0

− 1
2

(f + 1)ej2πftdf +
1
2j

∫ 1
2

0
(−f + 1)ej2πftdf

=
1
2j

[
1

j2πt
fej2πft +

1
4π2t2

ej2πft
] ∣∣∣∣0− 1

2

+
1
2j

1
j2πt

ej2πft

∣∣∣∣0− 1
2

− 1
2j

[
1

j2πt
fej2πft +

1
4π2t2

ej2πft
] ∣∣∣∣ 12

0
+

1
2j

1
j2πt

ej2πft

∣∣∣∣ 12
0

= j

[
− 1

4πt
sinπt+

1
4π2t2

(cosπt− 1)
]

38



The output of the system y(t) can now be found from y(t) = Re[yl(t)ej2πf0t]. Thus

y(t) = Re
[
(j[− 1

4πt
sinπt+

1
4π2t2

(cosπt− 1)])(cos 2πf0t+ j sin 2πf0t)
]

= [
1

4π2t2
(1 − cosπt) +

1
4πt

sinπt] sin 2πf0t

Problem 2.57
1) The spectrum of the output signal y(t) is the product of X(f) and H(f). Thus,

Y (f) = H(f)X(f) = X(f)A(f0)ej(θ(f0)+(f−f0)θ′(f)|f=f0 )

y(t) is a narrowband signal centered at frequencies f = ±f0. To obtain the lowpass equivalent
signal we have to shift the spectrum (positive band) of y(t) to the right by f0. Hence,

Yl(f) = u(f + f0)X(f + f0)A(f0)ej(θ(f0)+fθ′(f)|f=f0 ) = Xl(f)A(f0)ej(θ(f0)+fθ′(f)|f=f0 )

2) Taking the inverse Fourier transform of the previous relation, we obtain

yl(t) = F−1
[
Xl(f)A(f0)ejθ(f0)ejfθ′(f)|f=f0

]
= A(f0)xl(t+

1
2π
θ′(f)|f=f0)

With y(t) = Re[yl(t)ej2πf0t] and xl(t) = Vx(t)ejΘx(t) we get

y(t) = Re[yl(t)ej2πf0t]

= Re
[
A(f0)xl(t+

1
2π
θ′(f)|f=f0)e

jθ(f0)ej2πf0t
]

= Re
[
A(f0)Vx(t+

1
2π
θ′(f)|f=f0)e

j2πf0tejΘx(t+ 1
2π

θ′(f)|f=f0 )
]

= A(f0)Vx(t− tg) cos(2πf0t+ θ(f0) + Θx(t+
1
2π
θ′(f)|f=f0))

= A(f0)Vx(t− tg) cos(2πf0(t+
θ(f0)
2πf0

) + Θx(t+
1
2π
θ′(f)|f=f0))

= A(f0)Vx(t− tg) cos(2πf0(t− tp) + Θx(t+
1
2π
θ′(f)|f=f0))

where
tg = − 1

2π
θ′(f)|f=f0 , tp = − 1

2π
θ(f0)
f0

= − 1
2π

θ(f)
f

∣∣∣∣
f=f0

3) tg can be considered as a time lag of the envelope of the signal, whereas tp is the time
corresponding to a phase delay of 1

2π
θ(f0)

f0
.

Problem 2.58
1) We can write Hθ(f) as follows

Hθ(f) =


cos θ − j sin θ f > 0
0 f = 0
cos θ + j sin θ f < 0

= cos θ − jsgn(f) sin θ

Thus,

hθ(t) = F−1[Hθ(f)] = cos θδ(t) +
1
πt

sin θ
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2)

xθ(t) = x(t) 	 hθ(t) = x(t) 	 (cos θδ(t) +
1
πt

sin θ)

= cos θx(t) 	 δ(t) + sin θ
1
πt
	 x(t)

= cos θx(t) + sin θx̂(t)

3) ∫ ∞

−∞
|xθ(t)|2dt =

∫ ∞

−∞
| cos θx(t) + sin θx̂(t)|2dt

= cos2 θ
∫ ∞

−∞
|x(t)|2dt+ sin2 θ

∫ ∞

−∞
|x̂(t)|2dt

+ cos θ sin θ
∫ ∞

−∞
x(t)x̂∗(t)dt+ cos θ sin θ

∫ ∞

−∞
x∗(t)x̂(t)dt

But
∫∞
−∞ |x(t)|2dt =

∫∞
−∞ |x̂(t)|2dt = Ex and

∫∞
−∞ x(t)x̂∗(t)dt = 0 since x(t) and x̂(t) are orthogonal.

Thus,
Exθ

= Ex(cos2 θ + sin2 θ) = Ex

Problem 2.59
1)

z(t) = x(t) + jx̂(t) = m(t) cos(2πf0t) − m̂(t) sin(2πf0t)

+j[m(t) ̂cos(2πf0t) − m̂(t) ̂sin(2πf0t)
= m(t) cos(2πf0t) − m̂(t) sin(2πf0t)

+jm(t) sin(2πf0t) + jm̂(t) cos(2πf0t)
= (m(t) + jm̂(t))ej2πf0t

The lowpass equivalent signal is given by

xl(t) = z(t)e−j2πf0t = m(t) + jm̂(t)

2) The Fourier transform of m(t) is Λ(f). Thus

X(f) =
Λ(f + f0) + Λ(f − f0)

2
− (−jsgn(f)Λ(f)) 	[

− 1
2j
δ(f + f0) +

1
2j
δ(f − f0)

]
=

1
2
Λ(f + f0) [1 − sgn(f + f0)] +

1
2
Λ(f − f0) [1 + sgn(f − f0)]

.......

. . . . . . .

�
�
�

�
�
�

1

−f0 − 1 −f0 f0 + 1f0

The bandwidth of x(t) is W = 1.
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3)

z(t) = x(t) + jx̂(t) = m(t) cos(2πf0t) + m̂(t) sin(2πf0t)

+j[m(t) ̂cos(2πf0t) + m̂(t) ̂sin(2πf0t)
= m(t) cos(2πf0t) + m̂(t) sin(2πf0t)

+jm(t) sin(2πf0t) − jm̂(t) cos(2πf0t)
= (m(t) − jm̂(t))ej2πf0t

The lowpass equivalent signal is given by

xl(t) = z(t)e−j2πf0t = m(t) − jm̂(t)

The Fourier transform of x(t) is

X(f) =
Λ(f + f0) + Λ(f − f0)

2
− (jsgn(f)Λ(f)) 	[

− 1
2j
δ(f + f0) +

1
2j
δ(f − f0)

]
=

1
2
Λ(f + f0) [1 + sgn(f + f0)] +

1
2
Λ(f − f0) [1 − sgn(f − f0)]

�
�
�.

.

.

.

......... . . . . .
.
.
.
.. . . . . . ......

�
�
�

1

−f0 + 1−f0 f0 − 1 f0
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Chapter 3

Problem 3.1
The modulated signal is

u(t) = m(t)c(t) = Am(t) cos(2π4 × 103t)

= A

[
2 cos(2π

200
π
t) + 4 sin(2π

250
π
t+

π

3
)
]
cos(2π4 × 103t)

= A cos(2π(4 × 103 +
200
π

)t) +A cos(2π(4 × 103 − 200
π

)t)

+2A sin(2π(4 × 103 +
250
π

)t+
π

3
) − 2A sin(2π(4 × 103 − 250

π
)t− π

3
)

Taking the Fourier transform of the previous relation, we obtain

U(f) = A

[
δ(f − 200

π
) + δ(f +

200
π

) +
2
j
ej

π
3 δ(f − 250

π
) − 2

j
e−j π

3 δ(f +
250
π

)
]

	
1
2
[δ(f − 4 × 103) + δ(f + 4 × 103)]

=
A

2

[
δ(f − 4 × 103 − 200

π
) + δ(f − 4 × 103 +

200
π

)

+2e−j π
6 δ(f − 4 × 103 − 250

π
) + 2ej

π
6 δ(f − 4 × 103 +

250
π

)

+δ(f + 4 × 103 − 200
π

) + δ(f + 4 × 103 +
200
π

)

+2e−j π
6 δ(f + 4 × 103 − 250

π
) + 2ej

π
6 δ(f + 4 × 103 +

250
π

)
]

The next figure depicts the magnitude and the phase of the spectrum U(f).
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π

−π
6

π
6

A/2

A

To find the power content of the modulated signal we write u2(t) as

u2(t) = A2 cos2(2π(4 × 103 +
200
π

)t) +A2 cos2(2π(4 × 103 − 200
π

)t)

+4A2 sin2(2π(4 × 103 +
250
π

)t+
π

3
) + 4A2 sin2(2π(4 × 103 − 250

π
)t− π

3
)

+terms of cosine and sine functions in the first power

Hence,

P = lim
T→∞

∫ T
2

− T
2

u2(t)dt =
A2

2
+
A2

2
+

4A2

2
+

4A2

2
= 5A2
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Problem 3.2

u(t) = m(t)c(t) = A(sinc(t) + sinc2(t)) cos(2πfct)

Taking the Fourier transform of both sides, we obtain

U(f) =
A

2
[Π(f) + Λ(f)] 	 (δ(f − fc) + δ(f + fc))

=
A

2
[Π(f − fc) + Λ(f − fc) + Π(f + fc) + Λ(f + fc)]

Π(f − fc) �= 0 for |f − fc| < 1
2 , whereas Λ(f − fc) �= 0 for |f − fc| < 1. Hence, the bandwidth of

the bandpass filter is 2.

Problem 3.3
The following figure shows the modulated signals for A = 1 and f0 = 10. As it is observed
both signals have the same envelope but there is a phase reversal at t = 1 for the second signal
Am2(t) cos(2πf0t) (right plot). This discontinuity is shown clearly in the next figure where we
plotted Am2(t) cos(2πf0t) with f0 = 3.
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Problem 3.4

y(t) = x(t) +
1
2
x2(t)
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= m(t) + cos(2πfct) +
1
2

(
m2(t) + cos2(2πfct) + 2m(t) cos(2πfct)

)
= m(t) + cos(2πfct) +

1
2
m2(t) +

1
4

+
1
4

cos(2π2fct) +m(t) cos(2πfct)

Taking the Fourier transform of the previous, we obtain

Y (f) = M(f) +
1
2
M(f) 	 M(f) +

1
2

(M(f − fc) +M(f + fc))

+
1
4
δ(f) +

1
2

(δ(f − fc) + δ(f + fc)) +
1
8

(δ(f − 2fc) + δ(f + 2fc))

The next figure depicts the spectrum Y (f)

1/4

-2fc -fc -2W 2W fc 2fc

1/8

1/2

Problem 3.5

u(t) = m(t) · c(t)
= 100(2 cos(2π2000t) + 5 cos(2π3000t)) cos(2πfct)

Thus,

U(f) =
100
2

[
δ(f − 2000) + δ(f + 2000) +

5
2
(δ(f − 3000) + δ(f + 3000))

]
	 [δ(f − 50000) + δ(f + 50000)]

= 50
[
δ(f − 52000) + δ(f − 48000) +

5
2
δ(f − 53000) +

5
2
δ(f − 47000)

+δ(f + 52000) + δ(f + 48000) +
5
2
δ(f + 53000) +

5
2
δ(f + 47000)

]
A plot of the spectrum of the modulated signal is given in the next figure
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Problem 3.6
The mixed signal y(t) is given by

y(t) = u(t) · xL(t) = Am(t) cos(2πfct) cos(2πfct+ θ)

=
A

2
m(t) [cos(2π2fct+ θ) + cos(θ)]
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The lowpass filter will cut-off the frequencies above W , where W is the bandwidth of the message
signal m(t). Thus, the output of the lowpass filter is

z(t) =
A

2
m(t) cos(θ)

If the power of m(t) is PM , then the power of the output signal z(t) is Pout = PM
A2

4 cos2(θ). The
power of the modulated signal u(t) = Am(t) cos(2πfct) is PU = A2

2 PM . Hence,

Pout

PU
=

1
2

cos2(θ)

A plot of Pout
PU

for 0 ≤ θ ≤ π is given in the next figure.
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Problem 3.7
1) The spectrum of u(t) is

U(f) =
20
2

[δ(f − fc) + δ(f + fc)]

+
2
4

[δ(f − fc − 1500) + δ(f − fc + 1500)

+δ(f + fc − 1500) + δ(f + fc + 1500)]

+
10
4

[δ(f − fc − 3000) + δ(f − fc + 3000)

+δ(f + fc − 3000) + δ(f + fc + 3000)]

The next figure depicts the spectrum of u(t).
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2) The square of the modulated signal is

u2(t) = 400 cos2(2πfct) + cos2(2π(fc − 1500)t) + cos2(2π(fc + 1500)t)
+25 cos2(2π(fc − 3000)t) + 25 cos2(2π(fc + 3000)t)
+ terms that are multiples of cosines
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If we integrate u2(t) from −T
2 to T

2 , normalize the integral by 1
T and take the limit as T → ∞,

then all the terms involving cosines tend to zero, whereas the squares of the cosines give a value of
1
2 . Hence, the power content at the frequency fc = 105 Hz is Pfc = 400

2 = 200, the power content
at the frequency Pfc+1500 is the same as the power content at the frequency Pfc−1500 and equal to
1
2 , whereas Pfc+3000 = Pfc−3000 = 25

2 .

3)

u(t) = (20 + 2 cos(2π1500t) + 10 cos(2π3000t)) cos(2πfct)

= 20(1 +
1
10

cos(2π1500t) +
1
2

cos(2π3000t)) cos(2πfct)

This is the form of a conventional AM signal with message signal

m(t) =
1
10

cos(2π1500t) +
1
2

cos(2π3000t)

= cos2(2π1500t) +
1
10

cos(2π1500t) − 1
2

The minimum of g(z) = z2 + 1
10z − 1

2 is achieved for z = − 1
20 and it is min(g(z)) = −201

400 . Since
z = − 1

20 is in the range of cos(2π1500t), we conclude that the minimum value of m(t) is −201
400 .

Hence, the modulation index is

α = −201
400

4)

u(t) = 20 cos(2πfct) + cos(2π(fc − 1500)t) + cos(2π(fc − 1500)t)
= 5 cos(2π(fc − 3000)t) + 5 cos(2π(fc + 3000)t)

The power in the sidebands is

Psidebands =
1
2

+
1
2

+
25
2

+
25
2

= 26

The total power is Ptotal = Pcarrier + Psidebands = 200 + 26 = 226. The ratio of the sidebands power
to the total power is

Psidebands

Ptotal
=

26
226

Problem 3.8
1)

u(t) = m(t)c(t)
= 100(cos(2π1000t) + 2 cos(2π2000t)) cos(2πfct)
= 100 cos(2π1000t) cos(2πfct) + 200 cos(2π2000t) cos(2πfct)

=
100
2

[cos(2π(fc + 1000)t) + cos(2π(fc − 1000)t)]

200
2

[cos(2π(fc + 2000)t) + cos(2π(fc − 2000)t)]

Thus, the upper sideband (USB) signal is

uu(t) = 50 cos(2π(fc + 1000)t) + 100 cos(2π(fc + 2000)t)
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2) Taking the Fourier transform of both sides, we obtain

Uu(f) = 25 (δ(f − (fc + 1000)) + δ(f + (fc + 1000)))
+50 (δ(f − (fc + 2000)) + δ(f + (fc + 2000)))

A plot of Uu(f) is given in the next figure.
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Problem 3.9
If we let

x(t) = −Π

(
t+ Tp

4
Tp

2

)
+ Π

(
t− Tp

4
Tp

2

)
then using the results of Problem 2.23, we obtain

v(t) = m(t)s(t) = m(t)
∞∑

n=−∞
x(t− nTp)

= m(t)
1
Tp

∞∑
n=−∞

X(
n

Tp
)ej2π n

Tp
t

where

X(
n

Tp
) = F

[
−Π

(
t+ Tp

4
Tp

2

)
+ Π

(
t− Tp

4
Tp

2

)] ∣∣∣∣
f= n

Tp

=
Tp

2
sinc(f

Tp

2
)
(
e−j2πf

Tp
4 − ej2πf

Tp
4

) ∣∣∣∣
f= n

Tp

=
Tp

2
sinc(

n

2
)(−2j) sin(n

π

2
)

Hence, the Fourier transform of v(t) is

V (f) =
1
2

∞∑
n=−∞

sinc(
n

2
)(−2j) sin(n

π

2
)M(f − n

Tp
)

The bandpass filter will cut-off all the frequencies except the ones centered at 1
Tp

, that is for n = ±1.
Thus, the output spectrum is

U(f) = sinc(
1
2
)(−j)M(f − 1

Tp
) + sinc(

1
2
)jM(f +

1
Tp

)

= − 2
π
jM(f − 1

Tp
) +

2
π
jM(f +

1
Tp

)

=
4
π
M(f) 	

[
1
2j
δ(f − 1

Tp
) − 1

2j
δ(f +

1
Tp

)

]

Taking the inverse Fourier transform of the previous expression, we obtain

u(t) =
4
π
m(t) sin(2π

1
Tp
t)
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which has the form of a DSB-SC AM signal, with c(t) = 4
π sin(2π 1

Tp
t) being the carrier signal.

Problem 3.10
Assume that s(t) is a periodic signal with period Tp, i.e. s(t) =

∑
n x(t− nTp). Then

v(t) = m(t)s(t) = m(t)
∞∑

n=−∞
x(t− nTp)

= m(t)
1
Tp

∞∑
n=−∞

X(
n

Tp
)ej2π n

Tp
t

=
1
Tp

∞∑
n=−∞

X(
n

Tp
)m(t)ej2π n

Tp
t

where X( n
Tp

) = F [x(t)]|f= n
Tp

. The Fourier transform of v(t) is

V (f) =
1
Tp

F
[ ∞∑

n=−∞
X(

n

Tp
)m(t)ej2π n

Tp
t

]

=
1
Tp

∞∑
n=−∞

X(
n

Tp
)M(f − n

Tp
)

The bandpass filter will cut-off all the frequency components except the ones centered at fc = ± 1
Tp

.
Hence, the spectrum at the output of the BPF is

U(f) =
1
Tp
X(

1
Tp

)M(f − 1
Tp

) +
1
Tp
X(− 1

Tp
)M(f +

1
Tp

)

In the time domain the output of the BPF is given by

u(t) =
1
Tp
X(

1
Tp

)m(t)ej2π 1
Tp

t +
1
Tp
X∗(

1
Tp

)m(t)e−j2π 1
Tp

t

=
1
Tp
m(t)

[
X(

1
Tp

)ej2π 1
Tp

t +X∗(
1
Tp

)e−j2π 1
Tp

t

]

=
1
Tp

2Re(X(
1

Tp
))m(t) cos(2π

1
Tp

t)

As it is observed u(t) has the form a modulated DSB-SC signal. The amplitude of the modulating
signal is Ac = 1

Tp
2Re(X( 1

Tp
)) and the carrier frequency fc = 1

Tp
.

Problem 3.11
1) The spectrum of the modulated signal Am(t) cos(2πfct) is

V (f) =
A

2
[M(f − fc) +M(f + fc)]

The spectrum of the signal at the output of the highpass filter is

U(f) =
A

2
[M(f + fc)u−1(−f − fc) +M(f − fc)u−1(f − fc)]

Multiplying the output of the HPF with A cos(2π(fc +W )t) results in the signal z(t) with spectrum

Z(f) =
A

2
[M(f + fc)u−1(−f − fc) +M(f − fc)u−1(f − fc)]

	
A

2
[δ(f − (fc +W )) + δ(f + fc +W )]
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=
A2

4
(M(f + fc − fc −W )u−1(−f + fc +W − fc)

+M(f + fc − fc +W )u−1(f + fc +W − fc)
+M(f − 2fc −W )u−1(f − 2fc −W )
+M(f + 2fc +W )u−1(−f − 2fc −W ))

=
A2

4
(M(f −W )u−1(−f +W ) +M(f +W )u−1(f +W )

+M(f − 2fc −W )u−1(f − 2fc −W ) +M(f + 2fc +W )u−1(−f − 2fc −W ))

The LPF will cut-off the double frequency components, leaving the spectrum

Y (f) =
A2

4
[M(f −W )u−1(−f +W ) +M(f +W )u−1(f +W )]

The next figure depicts Y (f) for M(f) as shown in Fig. P-5.12.

Y(f)

-W W

2) As it is observed from the spectrum Y (f), the system shifts the positive frequency components
to the negative frequency axis and the negative frequency components to the positive frequency
axis. If we transmit the signal y(t) through the system, then we will get a scaled version of the
original spectrum M(f).

Problem 3.12
The modulated signal can be written as

u(t) = m(t) cos(2πfct+ φ)
= m(t) cos(2πfct) cos(φ) −m(t) sin(2πfct) sin(φ)
= uc(t) cos(2πfct) − us(t) sin(2πfct)

where we identify uc(t) = m(t) cos(φ) as the in-phase component and us(t) = m(t) sin(φ) as the
quadrature component. The envelope of the bandpass signal is

Vu(t) =
√
u2

c(t) + u2
s(t) =

√
m2(t) cos2(φ) +m2(t) sin2(φ)

=
√
m2(t) = |m(t)|

Hence, the envelope is proportional to the absolute value of the message signal.

Problem 3.13
1) The modulated signal is

u(t) = 100[1 +m(t)] cos(2π8 × 105t)
= 100 cos(2π8 × 105t) + 100 sin(2π103t) cos(2π8 × 105t)

+500 cos(2π2 × 103t) cos(2π8 × 105t)
= 100 cos(2π8 × 105t) + 50[sin(2π(103 + 8 × 105)t) − sin(2π(8 × 105 − 103)t)]

+250[cos(2π(2 × 103 + 8 × 105)t) + cos(2π(8 × 105 − 2 × 103)t)]
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Taking the Fourier transform of the previous expression, we obtain

U(f) = 50[δ(f − 8 × 105) + δ(f + 8 × 105)]

+25
[
1
j
δ(f − 8 × 105 − 103) − 1

j
δ(f + 8 × 105 + 103)

]
−25

[
1
j
δ(f − 8 × 105 + 103) − 1

j
δ(f + 8 × 105 − 103)

]
+125

[
δ(f − 8 × 105 − 2 × 103) + δ(f + 8 × 105 + 2 × 103)

]
+125

[
δ(f − 8 × 105 − 2 × 103) + δ(f + 8 × 105 + 2 × 103)

]
= 50[δ(f − 8 × 105) + δ(f + 8 × 105)]

+25
[
δ(f − 8 × 105 − 103)e−j π

2 + δ(f + 8 × 105 + 103)ej
π
2

]
+25

[
δ(f − 8 × 105 + 103)ej

π
2 + δ(f + 8 × 105 − 103)e−j π

2

]
+125

[
δ(f − 8 × 105 − 2 × 103) + δ(f + 8 × 105 + 2 × 103)

]
+125

[
δ(f − 8 × 105 − 2 × 103) + δ(f + 8 × 105 + 2 × 103)

]
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|U(f)|

� U(f)

−π
2

π
2

fc+2×103fc−2×103 fc−2×103

fc−103 fc+103

−fc fc fc+2×103

25
50

125

2) The average power in the carrier is

Pcarrier =
A2

c

2
=

1002

2
= 5000

The power in the sidebands is

Psidebands =
502

2
+

502

2
+

2502

2
+

2502

2
= 65000

3) The message signal can be written as

m(t) = sin(2π103t) + 5 cos(2π2 × 103t)
= −10 sin(2π103t) + sin(2π103t) + 5

As it is seen the minimum value of m(t) is −6 and is achieved for sin(2π103t) = −1 or t =
3

4×103 + 1
103k, with k ∈ Z. Hence, the modulation index is α = 6.

4) The power delivered to the load is

Pload =
|u(t)|2

50
=

1002(1 +m(t))2 cos2(2πfct)
50

50



The maximum absolute value of 1 + m(t) is 6.025 and is achieved for sin(2π103t) = 1
20 or t =

arcsin( 1
20 )

2π103 + k
103 . Since 2 × 103 
 fc the peak power delivered to the load is approximately equal to

max(Pload) =
(100 × 6.025)2

50
= 72.6012

Problem 3.14
1)

u(t) = 5 cos(1800πt) + 20 cos(2000πt) + 5 cos(2200πt)

= 20(1 +
1
2

cos(200πt)) cos(2000πt)

The modulating signal is m(t) = cos(2π100t) whereas the carrier signal is c(t) = 20 cos(2π1000t).

2) Since −1 ≤ cos(2π100t) ≤ 1, we immediately have that the modulation index is α = 1
2 .

3) The power of the carrier component is Pcarrier = 400
2 = 200, whereas the power in the sidebands

is Psidebands = 400α2

2 = 50. Hence,
Psidebands

Pcarrier
=

50
200

=
1
4

Problem 3.15
1) The modulated signal is written as

u(t) = 100(2 cos(2π103t) + cos(2π3 × 103t)) cos(2πfct)
= 200 cos(2π103t) cos(2πfct) + 100 cos(2π3 × 103t) cos(2πfct)

= 100
[
cos(2π(fc + 103)t) + cos(2π(fc − 103)t)

]
+50

[
cos(2π(fc + 3 × 103)t) + cos(2π(fc − 3 × 103)t)

]
Taking the Fourier transform of the previous expression, we obtain

U(f) = 50
[
δ(f − (fc + 103)) + δ(f + fc + 103)

+ δ(f − (fc − 103)) + δ(f + fc − 103)
]

+ 25
[
δ(f − (fc + 3 × 103)) + δ(f + fc + 3 × 103)

+ δ(f − (fc − 3 × 103)) + δ(f + fc − 3 × 103)
]

The spectrum of the signal is depicted in the next figure
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2) The average power in the frequencies fc + 1000 and fc − 1000 is

Pfc+1000 = Pfc−1000 =
1002

2
= 5000

The average power in the frequencies fc + 3000 and fc − 3000 is

Pfc+3000 = Pfc−3000 =
502

2
= 1250
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Problem 3.16
1) The Hilbert transform of cos(2π1000t) is sin(2π1000t), whereas the Hilbert transform ofsin(2π1000t)
is − cos(2π1000t). Thus

m̂(t) = sin(2π1000t) − 2 cos(2π1000t)

2) The expression for the LSSB AM signal is

ul(t) = Acm(t) cos(2πfct) +Acm̂(t) sin(2πfct)

SubstitutingAc = 100,m(t) = cos(2π1000t)+2 sin(2π1000t) and m̂(t) = sin(2π1000t)−2 cos(2π1000t)
in the previous, we obtain

ul(t) = 100 [cos(2π1000t) + 2 sin(2π1000t)] cos(2πfct)
+ 100 [sin(2π1000t) − 2 cos(2π1000t)] sin(2πfct)
= 100 [cos(2π1000t) cos(2πfct) + sin(2π1000t) sin(2πfct)]
+ 200 [cos(2πfct) sin(2π1000t) − sin(2πfct) cos(2π1000t)]
= 100 cos(2π(fc − 1000)t) − 200 sin(2π(fc − 1000)t)

3) Taking the Fourier transform of the previous expression we obtain

Ul(f) = 50 (δ(f − fc + 1000) + δ(f + fc − 1000))
+ 100j (δ(f − fc + 1000) − δ(f + fc − 1000))
= (50 + 100j)δ(f − fc + 1000) + (50 − 100j)δ(f + fc − 1000)

Hence, the magnitude spectrum is given by

|Ul(f)| =
√

502 + 1002 (δ(f − fc + 1000) + δ(f + fc − 1000))
= 10

√
125 (δ(f − fc + 1000) + δ(f + fc − 1000))

Problem 3.17
The input to the upper LPF is

uu(t) = cos(2πfmt) cos(2πf1t)

=
1
2

[cos(2π(f1 − fm)t) + cos(2π(f1 + fm)t)]

whereas the input to the lower LPF is

ul(t) = cos(2πfmt) sin(2πf1t)

=
1
2

[sin(2π(f1 − fm)t) + sin(2π(f1 + fm)t)]

If we select f1 such that |f1 − fm| < W and f1 + fm > W , then the two lowpass filters will cut-off
the frequency components outside the interval [−W,W ], so that the output of the upper and lower
LPF is

yu(t) = cos(2π(f1 − fm)t)
yl(t) = sin(2π(f1 − fm)t)

The output of the Weaver’s modulator is

u(t) = cos(2π(f1 − fm)t) cos(2πf2t) − sin(2π(f1 − fm)t) sin(2πf2t)
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which has the form of a SSB signal since sin(2π(f1 − fm)t) is the Hilbert transform of cos(2π(f1 −
fm)t). If we write u(t) as

u(t) = cos(2π(f1 + f2 − fm)t)

then with f1+f2−fm = fc+fm we obtain an USSB signal centered at fc, whereas with f1+f2−fm =
fc − fm we obtain the LSSB signal. In both cases the choice of fc and f1 uniquely determine f2.

Problem 3.18
The signal x(t) is m(t) + cos(2πf0t). The spectrum of this signal is X(f) = M(f) + 1

2(δ(f − f0) +
δ(f + f0)) and its bandwidth equals to Wx = f0. The signal y1(t) after the Square Law Device is

y1(t) = x2(t) = (m(t) + cos(2πf0t))2

= m2(t) + cos2(2πf0t) + 2m(t) cos(2πf0t)

= m2(t) +
1
2

+
1
2

cos(2π2f0t) + 2m(t) cos(2πf0t)

The spectrum of this signal is given by

Y1(f) = M(f) 	 M(f) +
1
2
δ(f) +

1
4
(δ(f − 2f0) + δ(f + 2f0)) +M(f − f0) +M(f + f0)

and its bandwidth is W1 = 2f0. The bandpass filter will cut-off the low-frequency components
M(f)	M(f)+ 1

2δ(f) and the terms with the double frequency components 1
4(δ(f−2f0)+δ(f+2f0)).

Thus the spectrum Y2(f) is given by

Y2(f) = M(f − f0) +M(f + f0)

and the bandwidth of y2(t) is W2 = 2W . The signal y3(t) is

y3(t) = 2m(t) cos2(2πf0t) = m(t) +m(t) cos(2πf0t)

with spectrum

Y3(t) = M(f) +
1
2
(M(f − f0) +M(f + f0))

and bandwidth W3 = f0 +W . The lowpass filter will eliminate the spectral components 1
2(M(f −

f0) +M(f + f0)), so that y4(t) = m(t) with spectrum Y4 = M(f) and bandwidth W4 = W . The
next figure depicts the spectra of the signals x(t), y1(t), y2(t), y3(t) and y4(t).
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1
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−W W
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−2f0 −f0−W −f0+W −2W 2W f0−W f0+W 2f0

−W W−f0 f0

Y4(f)

Y3(f)

Y2(f)

Y1(f)

X(f)

Problem 3.19
1)

y(t) = ax(t) + bx2(t)
= a(m(t) + cos(2πf0t)) + b(m(t) + cos(2πf0t))2

= am(t) + bm2(t) + a cos(2πf0t)
+b cos2(2πf0t) + 2bm(t) cos(2πf0t)

2) The filter should reject the low frequency components, the terms of double frequency and pass
only the signal with spectrum centered at f0. Thus the filter should be a BPF with center frequency
f0 and bandwidth W such that f0 − WM > f0 − W

2 > 2WM where WM is the bandwidth of the
message signal m(t).

3) The AM output signal can be written as

u(t) = a(1 +
2b
a
m(t)) cos(2πf0t)

Since Am = max[|m(t)|] we conclude that the modulation index is

α =
2bAm

a
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Problem 3.20
1) When USSB is employed the bandwidth of the modulated signal is the same with the bandwidth
of the message signal. Hence,

WUSSB = W = 104 Hz

2) When DSB is used, then the bandwidth of the transmitted signal is twice the bandwidth of the
message signal. Thus,

WDSB = 2W = 2 × 104 Hz

3) If conventional AM is employed, then

WAM = 2W = 2 × 104 Hz

4) Using Carson’s rule, the effective bandwidth of the FM modulated signal is

Bc = (2β + 1)W = 2
(
kf max[|m(t)|]

W
+ 1

)
W = 2(kf +W ) = 140000 Hz

Problem 3.21
1) The lowpass equivalent transfer function of the system is

Hl(f) = 2u−1(f + fc)H(f + fc) = 2

{
1
W f + 1

2 |f | ≤ W
2

1 W
2 < f ≤ W

Taking the inverse Fourier transform, we obtain

hl(t) = F−1[Hl(f)] =
∫ W

− W
2

Hl(f)ej2πftdf

= 2
∫ W

2

− W
2

(
1
W
f +

1
2
)ej2πftdf + 2

∫ W

W
2

ej2πftdf

=
2
W

(
1

j2πt
fej2πft +

1
4π2t2

ej2πft
) ∣∣∣∣W

2

− W
2

+
1

j2πt
ej2πft

∣∣∣∣W
2

− W
2

+
2

j2πt
ej2πft

∣∣∣∣W
W
2

=
1
jπt

ej2πWt +
j

π2t2W
sin(πWt)

=
j

πt

[
sinc(Wt) − ej2πWt

]

2) An expression for the modulated signal is obtained as follows

u(t) = Re[(m(t) 	 hl(t))ej2πfct]

= Re
[
(m(t) 	

j

πt
(sinc(Wt) − ej2πWt))ej2πfct

]
= Re

[
(m(t) 	 (

j

πt
sinc(Wt)))ej2πfct + (m(t) 	

1
jπt

ej2πWt)ej2πfct
]

Note that
F [m(t) 	

1
jπt

ej2πWt] = −M(f)sgn(f −W ) = M(f)
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since sgn(f −W ) = −1 for f < W . Thus,

u(t) = Re
[
(m(t) 	 (

j

πt
sinc(Wt)))ej2πfct +m(t)ej2πfct

]
= m(t) cos(2πfct) −m(t) 	 (

1
πt

sinc(Wt)) sin(2πfct)

Problem 3.22
a) A DSB modulated signal is written as

u(t) = Am(t) cos(2πf0t+ φ)
= Am(t) cos(φ) cos(2πf0t) −Am(t) sin(φ) sin(2πf0t)

Hence,

xc(t) = Am(t) cos(φ)
xs(t) = Am(t) sin(φ)

V (t) =
√
A2m2(t)(cos2(φ) + sin2(φ)) = |Am(t)|

Θ(t) = arctan
(
Am(t) cos(φ)
Am(t) sin(φ)

)
= arctan(tan(φ)) = φ

b) A SSB signal has the form

uSSB(t) = Am(t) cos(2πf0t) ∓Am̂(t) sin(2πf0t)

Thus, for the USSB signal (minus sign)

xc(t) = Am(t)
xs(t) = Am̂(t)

V (t) =
√
A2(m2(t) + m̂2(t)) = A

√
m2(t) + m̂2(t)

Θ(t) = arctan
(
m̂(t)
m(t)

)
For the LSSB signal (plus sign)

xc(t) = Am(t)
xs(t) = −Am̂(t)

V (t) =
√
A2(m2(t) + m̂2(t)) = A

√
m2(t) + m̂2(t)

Θ(t) = arctan
(

−m̂(t)
m(t)

)

c) If conventional AM is employed, then

u(t) = A(1 +m(t)) cos(2πf0t+ φ)
= A(1 +m(t)) cos(φ) cos(2πf0t) −A(1 +m(t)) sin(φ) sin(2πf0t)

Hence,

xc(t) = A(1 +m(t)) cos(φ)
xs(t) = A(1 +m(t)) sin(φ)

V (t) =
√
A2(1 +m(t))2(cos2(φ) + sin2(φ)) = A|(1 +m(t))|

Θ(t) = arctan
(
A(1 +m(t)) cos(φ)
A(1 +m(t)) sin(φ)

)
= arctan(tan(φ)) = φ
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d) A PM modulated signal has the form

u(t) = A cos(2πfct+ kpm(t))

= Re
[
Aej2πfctejkpm(t)

]
From the latter expression we identify the lowpass equivalent signal as

ul(t) = Aejkpm(t) = xc(t) + jxs(t)

Thus,

xc(t) = A cos(kpm(t))
xs(t) = A sin(kpm(t))

V (t) =
√
A2(cos2(kpm(t)) + sin2(kpm(t))) = A

Θ(t) = arctan

(
A cos(kpm(t))
A sin(kpm(t))

)
= kpm(t)

e) To get the expressions for an FM signal we replace kpm(t) by 2πkf

∫ t
−∞m(τ)dτ in the previous

relations. Hence,

xc(t) = A cos(2πkf

∫ t

−∞
m(τ)dτ)

xs(t) = A sin(2πkf

∫ t

−∞
m(τ)dτ)

V (t) = A

Θ(t) = 2πkf

∫ t

−∞
m(τ)dτ

Problem 3.23
1) If SSB is employed, the transmitted signal is

u(t) = Am(t) cos(2πf0t) ∓Am̂(t) sin(2πf0t)

Provided that the spectrum of m(t) does not contain any impulses at the origin PM = PM̂ = 1
2 and

PSSB =
A2PM

2
+
A2PM̂

2
= A2PM = 400

1
2

= 200

The bandwidth of the modulated signal u(t) is the same with that of the message signal. Hence,

WSSB = 10000 Hz

2) In the case of DSB-SC modulation u(t) = Am(t) cos(2πf0t). The power content of the modulated
signal is

PDSB =
A2PM

2
= 200

1
2

= 100

and the bandwidth WDSB = 2W = 20000 Hz.

3) If conventional AM is employed with modulation index α = 0.6, the transmitted signal is

u(t) = A[1 + αm(t)] cos(2πf0t)
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The power content is

PAM =
A2

2
+
A2α2PM

2
= 200 + 200 · 0.62 · 0.5 = 236

The bandwidth of the signal is WAM = 2W = 20000 Hz.

4) If the modulation is FM with kf = 50000, then

PFM =
A2

2
= 200

and the effective bandwidth is approximated by Carson’s rule as

Bc = 2(β + 1)W = 2
(

50000
W

+ 1
)
W = 120000 Hz

Problem 3.24
1) Since F [sinc(400t)] = 1

400Π( f
400), the bandwidth of the message signal is W = 200 and the

resulting modulation index

βf =
kf max[|m(t)|]

W
=
kf10
W

= 6 =⇒ kf = 120

Hence, the modulated signal is

u(t) = A cos(2πfct+ 2πkf

∫ t

−∞
m(τ)dτ)

= 100 cos(2πfct+ +2π1200
∫ t

−∞
sinc(400τ)dτ)

2) The maximum frequency deviation of the modulated signal is

∆fmax = βfW = 6 × 200 = 1200

3) Since the modulated signal is essentially a sinusoidal signal with amplitude A = 100, we have

P =
A2

2
= 5000

4) Using Carson’s rule, the effective bandwidth of the modulated signal can be approximated by

Bc = 2(βf + 1)W = 2(6 + 1)200 = 2800 Hz

Problem 3.25
1) The maximum phase deviation of the PM signal is

∆φmax = kp max[|m(t)|] = kp

The phase of the FM modulated signal is

φ(t) = 2πkf

∫ t

−∞
m(τ)dτ = 2πkf

∫ t

0
m(τ)dτ

=


2πkf

∫ t
0 τdτ = πkf t

2 0 ≤ t < 1
πkf + 2πkf

∫ t
1 dτ = πkf + 2πkf (t− 1) 1 ≤ t < 2

πkf + 2πkf − 2πkf

∫ t
2 dτ = 3πkf − 2πkf (t− 2) 2 ≤ t < 3

πkf 3 ≤ t
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The maximum value of φ(t) is achieved for t = 2 and is equal to 3πkf . Thus, the desired relation
between kp and kf is

kp = 3πkf

2) The instantaneous frequency for the PM modulated signal is

fi(t) = fc +
1
2π

d

dt
φ(t) = fc +

1
2π
kp
d

dt
m(t)

For the m(t) given in Fig. P-3.25, the maximum value of d
dtm(t) is achieved for t in [0, 1] and it is

equal to one. Hence,

max(fi(t)) = fc +
1
2π

For the FM signal fi(t) = fc + kfm(t). Thus, the maximum instantaneous frequency is

max(fi(t)) = fc + kf = fc + 1

Problem 3.26
1) Since an angle modulated signal is essentially a sinusoidal signal with constant amplitude, we
have

P =
A2

c

2
=⇒ P =

1002

2
= 5000

The same result is obtained if we use the expansion

u(t) =
∞∑

n=−∞
AcJn(β) cos(2π(fc + nfm)t)

along with the identity

J2
0 (β) + 2

∞∑
n=1

J2
n(β) = 1

2) The maximum phase deviation is

∆φmax = max |4 sin(2000πt)| = 4

3) The instantaneous frequency is

fi = fc +
1
2π

d

dt
φ(t)

= fc +
4
2π

cos(2000πt)2000π = fc + 4000 cos(2000πt)

Hence, the maximum frequency deviation is

∆fmax = max |fi − fc| = 4000

4) The angle modulated signal can be interpreted both as a PM and an FM signal. It is a PM
signal with phase deviation constant kp = 4 and message signal m(t) = sin(2000πt) and it is an
FM signal with frequency deviation constant kf = 4000 and message signal m(t) = cos(2000πt).
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Problem 3.27
The modulated signal can be written as

u(t) =
∞∑

n=−∞
AcJn(β) cos(2π(fc + nfm)t)

The power in the frequency component f = fc + kfm is Pk = A2
c

2 J
2
n(β). Hence, the power in the

carrier is Pcarrier = A2
c

2 J
2
0 (β) and in order to be zero the modulation index β should be one of the

roots of J0(x). The smallest root of J0(x) is found from tables to be equal 2.404. Thus,

βmin = 2.404

Problem 3.28
1) If the output of the narrowband FM modulator is,

u(t) = A cos(2πf0t+ φ(t))

then the output of the upper frequency multiplier (×n1) is

u1(t) = A cos(2πn1f0t+ n1φ(t))

After mixing with the output of the second frequency multiplier u2(t) = A cos(2πn2f0t) we obtain
the signal

y(t) = A2 cos(2πn1f0t+ n1φ(t)) cos(2πn2f0t)

=
A2

2
(cos(2π(n1 + n2)f0 + n1φ(t)) + cos(2π(n1 − n2)f0 + n1φ(t)))

The bandwidth of the signal is W = 15 KHz, so the maximum frequency deviation is ∆f = βfW =
0.1 × 15 = 1.5 KHz. In order to achieve a frequency deviation of f = 75 KHz at the output of the
wideband modulator, the frequency multiplier n1 should be equal to

n1 =
f

∆f
=

75
1.5

= 50

Using an up-converter the frequency modulated signal is given by

y(t) =
A2

2
cos(2π(n1 + n2)f0 + n1φ(t))

Since the carrier frequency fc = (n1 + n2)f0 is 104 MHz, n2 should be such that

(n1 + n2)100 = 104 × 103 =⇒ n1 + n2 = 1040 or n2 = 990

2) The maximum allowable drift (df ) of the 100 kHz oscillator should be such that

(n1 + n2)df = 2 =⇒ df =
2

1040
= .0019 Hz

Problem 3.29
The modulated PM signal is given by

u(t) = Ac cos(2πfct+ kpm(t)) = AcRe
[
ej2πfctejkpm(t)

]
= AcRe

[
ej2πfctejm(t)

]
60



The signal ejm(t) is periodic with period Tm = 1
fm

and Fourier series expansion

cn =
1
Tm

∫ Tm

0
ejm(t)e−j2πnfmtdt

=
1
Tm

∫ Tm
2

0
eje−j2πnfmtdt+

1
Tm

∫ Tm

Tm
2

e−je−j2πnfmtdt

= − ej

Tmj2πnfm
e−j2πnfmt

∣∣∣∣Tm
2

0
− e−j

Tmj2πnfm
e−j2πnfmt

∣∣∣∣Tm

Tm
2

=
(−1)n − 1

2πn
j(ej − e−j) =

{
0 n = 2l

2
π(2l+1) sin(1) n = 2l + 1

Hence,

ejm(t) =
∞∑

l=−∞

2
π(2l + 1)

sin(1)ej2πlfmt

and

u(t) = AcRe
[
ej2πfctejm(t)

]
= AcRe

ej2πfct
∞∑

l=−∞

2
π(2l + 1)

sin(1)ej2πlfmt


= Ac

∞∑
l=−∞

∣∣∣∣ 2 sin(1)
π(2l + 1)

∣∣∣∣ cos(2π(fc + lfm)t+ φl)

where φl = 0 for l ≥ 0 and φl = π for negative values of l.

Problem 3.30
1) The instantaneous frequency is given by

fi(t) = fc +
1
2π

d

dt
φ(t) = fc +

1
2π

100m(t)

A plot of fi(t) is given in the next figure

. . .

. . . . .

. . . . . . . . . . . . . . . .

fc − 500
2π

fc + 500
2π

fc

0

fi(t)

t

2) The peak frequency deviation is given by

∆fmax = kf max[|m(t)|] =
100
2π

5 =
250
π

Problem 3.31
1) The modulation index is

β =
kf max[|m(t)|]

fm
=

∆fmax

fm
=

20 × 103

104 = 2
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The modulated signal u(t) has the form

u(t) =
∞∑

n=−∞
AcJn(β) cos(2π(fc + nfm)t+ φn)

=
∞∑

n=−∞
100Jn(2) cos(2π(108 + n104)t+ φn)

The power of the unmodulated carrier signal is P = 1002

2 = 5000. The power in the frequency
component f = fc + k104 is

Pfc+kfm =
1002J2

k (2)
2

The next table shows the values of Jk(2), the frequency fc + kfm, the amplitude 100Jk(2) and the
power Pfc+kfm for various values of k.

Index k Jk(2) Frequency Hz Amplitude 100Jk(2) Power Pfc+kfm

0 .2239 108 22.39 250.63
1 .5767 108 + 104 57.67 1663.1
2 .3528 108 + 2 × 104 35.28 622.46
3 .1289 108 + 3 × 104 12.89 83.13
4 .0340 108 + 4 × 104 3.40 5.7785

As it is observed from the table the signal components that have a power level greater than
500 (= 10% of the power of the unmodulated signal) are those with frequencies 108 + 104 and
108 + 2 × 104. Since J2

n(β) = J2−n(β) it is conceivable that the signal components with frequency
108 −104 and 108 −2×104 will satisfy the condition of minimum power level. Hence, there are four
signal components that have a power of at least 10% of the power of the unmodulated signal. The
components with frequencies 108 + 104, 108 − 104 have an amplitude equal to 57.67, whereas the
signal components with frequencies 108 + 2 × 104, 108 − 2 × 104 have an amplitude equal to 35.28.

2) Using Carson’s rule, the approximate bandwidth of the FM signal is

Bc = 2(β + 1)fm = 2(2 + 1)104 = 6 × 104 Hz

Problem 3.32
1)

βp = kp max[|m(t)|] = 1.5 × 2 = 3

βf =
kf max[|m(t)|]

fm
=

3000 × 2
1000

= 6

2) Using Carson’s rule we obtain

BPM = 2(βp + 1)fm = 8 × 1000 = 8000
BFM = 2(βf + 1)fm = 14 × 1000 = 14000

3) The PM modulated signal can be written as

u(t) =
∞∑

n=−∞
AJn(βp) cos(2π(106 + n103)t)
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The next figure shows the amplitude of the spectrum for positive frequencies and for these compo-
nents whose frequencies lie in the interval [106 − 4 × 103, 106 + 4 × 103]. Note that J0(3) = −.2601,
J1(3) = 0.3391, J2(3) = 0.4861, J3(3) = 0.3091 and J4(3) = 0.1320.

. . . . .

. . . . . . . .
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2

8×103
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In the case of the FM modulated signal

u(t) = A cos(2πfct+ βf sin(2000πt))

=
∞∑

n=−∞
AJn(6) cos(2π(106 + n103)t+ φn)

The next figure shows the amplitude of the spectrum for positive frequencies and for these com-
ponents whose frequencies lie in the interval [106 − 7 × 103, 106 − 7 × 103]. The values of Jn(6) for
n = 0, . . . , 7 are given in the following table.

n 0 1 2 3 4 5 6 7
Jn(6) .1506 -.2767 -.2429 .1148 .3578 .3621 .2458 .1296

��

. . . . . . . . . .

�
�
��

�
��

�
�

��

�
���

14 × 103

AJ5(6)
2

f106

4) If the amplitude of m(t) is decreased by a factor of two, then m(t) = cos(2π103t) and

βp = kp max[|m(t)|] = 1.5

βf =
kf max[|m(t)|]

fm
=

3000
1000

= 3

The bandwidth is determined using Carson’s rule as

BPM = 2(βp + 1)fm = 5 × 1000 = 5000
BFM = 2(βf + 1)fm = 8 × 1000 = 8000

The amplitude spectrum of the PM and FM modulated signals is plotted in the next figure for
positive frequencies. Only those frequency components lying in the previous derived bandwidth are
plotted. Note that J0(1.5) = .5118, J1(1.5) = .5579 and J2(1.5) = .2321.
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5) If the frequency of m(t) is increased by a factor of two, then m(t) = 2 cos(2π2 × 103t) and

βp = kp max[|m(t)|] = 1.5 × 2 = 3

βf =
kf max[|m(t)|]

fm
=

3000 × 2
2000

= 3

The bandwidth is determined using Carson’s rule as

BPM = 2(βp + 1)fm = 8 × 2000 = 16000
BFM = 2(βf + 1)fm = 8 × 2000 = 16000

The amplitude spectrum of the PM and FM modulated signals is plotted in the next figure for
positive frequencies. Only those frequency components lying in the previous derived bandwidth
are plotted. Note that doubling the frequency has no effect on the number of harmonics in the
bandwidth of the PM signal, whereas it decreases the number of harmonics in the bandwidth of
the FM signal from 14 to 8.
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Problem 3.33
1) The PM modulated signal is

u(t) = 100 cos(2πfct+
π

2
cos(2π1000t))

=
∞∑

n=−∞
100Jn(

π

2
) cos(2π(108 + n103)t)

The next table tabulates Jn(β) for β = π
2 and n = 0, . . . , 4.

n 0 1 2 3 4
Jn(β) .4720 .5668 .2497 .0690 .0140

The total power of the modulated signal is Ptot = 1002

2 = 5000. To find the effective bandwidth
of the signal we calculate the index k such that

k∑
n=−k

1002

2
J2

n(
π

2
) ≥ 0.99 × 5000 =⇒

k∑
n=−k

J2
n(
π

2
) ≥ 0.99

By trial end error we find that the smallest index k is 2. Hence the effective bandwidth is

Beff = 4 × 103 = 4000

In the the next figure we sketch the magnitude spectrum for the positive frequencies.

� �

�

��

�

�

�

�

f Hz

103

108

100
2 J1(π

2 )

2) Using Carson’s rule, the approximate bandwidth of the PM signal is

BPM = 2(βp + 1)fm = 2(
π

2
+ 1)1000 = 5141.6
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As it is observed, Carson’s rule overestimates the effective bandwidth allowing in this way some
margin for the missing harmonics.

Problem 3.34
1) Assuming that u(t) is an FM signal it can be written as

u(t) = 100 cos(2πfct+ 2πkf

∫ ∞

−∞
α cos(2πfmτ)dτ)

= 100 cos(2πfct+
kfα

fm
sin(2πfmt))

Thus, the modulation index is βf = kf α
fm

= 4 and the bandwidth of the transmitted signal

BFM = 2(βf + 1)fm = 10 KHz

2) If we double the frequency, then

u(t) = 100 cos(2πfct+ 4 sin(2π2fmt))

Using the same argument as before we find that βf = 4 and

BFM = 2(βf + 1)2fm = 20 KHz

3) If the signal u(t) is PM modulated, then

βp = ∆φmax = max[4 sin(2πfmt)] = 4

The bandwidth of the modulated signal is

BPM = 2(βp + 1)fm = 10 KHz

4) If fm is doubled, then βp = ∆φmax remains unchanged whereas

BPM = 2(βp + 1)2fm = 20 KHz

Problem 3.35
1) If the signal m(t) = m1(t) + m2(t) DSB modulates the carrier Ac cos(2πfct) the result is the
signal

u(t) = Acm(t) cos(2πfct)
= Ac(m1(t) +m2(t)) cos(2πfct)
= Acm1(t) cos(2πfct) +Acm2(t) cos(2πfct)
= u1(t) + u2(t)

where u1(t) and u2(t) are the DSB modulated signals corresponding to the message signals m1(t)
and m2(t). Hence, AM modulation satisfies the superposition principle.

2) If m(t) frequency modulates a carrier Ac cos(2πfct) the result is

u(t) = Ac cos(2πfct+ 2πkf

∫ ∞

−∞
(m1(τ) +m2(τ))dτ)

�= Ac cos(2πfct+ 2πkf

∫ ∞

−∞
m1(τ)dτ)

+Ac cos(2πfct+ 2πkf

∫ ∞

−∞
m2(τ)dτ)

= u1(t) + u2(t)
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where the inequality follows from the nonlinearity of the cosine function. Hence, angle modulation
is not a linear modulation method.

Problem 3.36
The transfer function of the FM discriminator is

H(s) =
R

R+ Ls+ 1
Cs

=
R
Ls

s2 + R
Ls+ 1

LC

Thus,

|H(f)|2 =
4π2

(
R
L

)2
f2(

1
LC − 4π2f2

)2
+ 4π2(R

L )2f2

As it is observed |H(f)|2 ≤ 1 with equality if

f =
1

2π
√
LC

Since this filter is to be used as a slope detector, we require that the frequency content of the signal,
which is [80 − 6, 80 + 6] MHz, to fall inside the region over which |H(f)| is almost linear. Such
a region can be considered the interval [f10, f90], where f10 is the frequency such that |H(f10)| =
10% max[|H(f)|] and f90 is the frequency such that |H(f10)| = 90% max[|H(f)|].

With max[|H(f)| = 1, f10 = 74 × 106 and f90 = 86 × 106, we obtain the system of equations

4π2f2
10 +

50 × 103

L
2πf10[1 − 0.12]

1
2 − 1

LC
= 0

4π2f2
90 +

50 × 103

L
2πf90[1 − 0.92]

1
2 − 1

LC
= 0

Solving this system, we obtain

L = 14.98 mH C = 0.018013 pF

Problem 3.37
The case of φ(t) = β cos(2πfmt) has been treated in the text (see Section 3.3.2). the modulated
signal is

u(t) =
∞∑

n=−∞
AcJn(β) cos(2π(fc + nfm))

=
∞∑

n=−∞
100Jn(5) cos(2π(103 + n10))

The following table shows the values of Jn(5) for n = 0, . . . , 5.

n 0 1 2 3 4 5
Jn(5) -.178 -.328 .047 .365 .391 .261

In the next figure we plot the magnitude and the phase spectrum for frequencies in the range
[950, 1050] Hz. Note that J−n(β) = Jn(β) if n is even and J−n(β) = −Jn(β) if n is odd.
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The Fourier Series expansion of ejβ sin(2πfmt) is

cn = fm

∫ 5
4fm

1
4fm

ejβ sin(2πfmt)e−j2πnfmtdt

=
1
2π

∫ 2π

0
ejβ cos u−jnuej

nπ
2 du

= ej
nπ
2 Jn(β)

Hence,

u(t) = AcRe

[ ∞∑
n=−∞

cne
j2πfctej2πnfmt

]

= AcRe

[ ∞∑
n=−∞

ej2π(fc+nfm)t+nπ
2

]

The magnitude and the phase spectra of u(t) for β = 5 and frequencies in the interval [950, 1000]
Hz are shown in the next figure. Note that the phase spectrum has been plotted modulo 2π in the
interval (−π, π].
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Problem 3.38
The frequency deviation is given by

fd(t) = fi(t) − fc = kfm(t)
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whereas the phase deviation is obtained from

φd(t) = 2πkf

∫ t

−∞
m(τ)dτ

In the next figure we plot the frequency and the phase deviation when m(t) is as in Fig. P-3.38
with kf = 25.
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Problem 3.39
Using Carson’s rule we obtain

Bc = 2(β + 1)W = 2(
kf max[|m(t)|]

W
+ 1)W =


20020 kf = 10
20200 kf = 100
22000 kf = 1000

Problem 3.40
The modulation index is

β =
kf max[|m(t)|]

fm
=

10 × 10
8

= 12.5

The output of the FM modulator can be written as

u(t) = 10 cos(2π2000t+ 2πkf

∫ t

−∞
10 cos(2π8τ)dτ)

=
∞∑

n=−∞
10Jn(12.5) cos(2π(2000 + n8)t+ φn)

At the output of the BPF only the signal components with frequencies in the interval [2000 −
32, 2000 + 32] will be present. These components are the terms of u(t) for which n = −4, . . . , 4.
The power of the output signal is then

102

2
J2

0 (12.5) + 2
4∑

n=1

102

2
J2

n(12.5) = 50 × 0.2630 = 13.15

Since the total transmitted power is Ptot = 102

2 = 50, the power at the output of the bandpass filter
is only 26.30% of the transmitted power.

Problem 3.41
1) The instantaneous frequency is

fi(t) = fc + kfm1(t)

The maximum of fi(t) is

max[fi(t)] = max[fc + kfm1(t)] = 106 + 5 × 105 = 1.5 MHz
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2) The phase of the PM modulated signal is φ(t) = kpm1(t) and the instantaneous frequency

fi(t) = fc +
1
2π

d

dt
φ(t) = fc +

kp

2π
d

dt
m1(t)

The maximum of fi(t) is achieved for t in [0, 1] where d
dtm1(t) = 1. Hence, max[fi(t)] = 106 + 3

2π .

3) The maximum value of m2(t) = sinc(2 × 104t) is 1 and it is achieved for t = 0. Hence,

max[fi(t)] = max[fc + kfm2(t)] = 106 + 103 = 1.001 MHz

Since, F [sinc(2 × 104t)] = 1
2×104 Π( f

2×104 ) the bandwidth of the message signal is W = 104. Thus,
using Carson’s rule, we obtain

B = 2(
kf max[|m(t)|]

W
+ 1)W = 22 KHz

Problem 3.42
1) The next figure illustrates the spectrum of the SSB signal assuming that USSB is employed and
K=3. Note, that only the spectrum for the positive frequencies has been plotted.

K=3

KHz211713 181410

2) With LK = 60 the possible values of the pair (L,K) (or (K,L)) are {(1, 60), (2, 30), (3, 20), (4, 15), (6, 10)}.
As it is seen the minimum value of L+K is achieved for L = 6, K = 10 (or L = 10, K = 6).

3) Assuming that L = 6 and K = 10 we need 16 carriers with frequencies

fk1 = 10 KHz fk2 = 14 KHz
fk3 = 18 KHz fk4 = 22 KHz
fk5 = 26 KHz fk6 = 30 KHz
fk7 = 34 KHz fk8 = 38 KHz
fk9 = 42 KHz fk10 = 46 KHz

and

fl1 = 290 KHz fl2 = 330 KHz
fl3 = 370 KHz fl4 = 410 KHz
fl5 = 450 KHz fl6 = 490 KHz

Problem 3.43
Since 88 MHz < fc < 108 MHz and

|fc − f ′
c| = 2fIF if fIF < fLO

we conclude that in order for the image frequency f ′
c to fall outside the interval [88, 108] MHZ, the

minimum frequency fIF is such that

2fIF = 108 − 88 =⇒ fIF = 10 MHz

If fIF = 10 MHz, then the range of fLO is [88 + 10, 108 + 10] = [98, 118] MHz.
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Chapter 4

Problem 4.1
Let us denote by rn (bn) the event of drawing a red (black) ball with number n. Then

1. E1 = {r2, r4, b2}
2. E2 = {r2, r3, r4}
3. E3 = {r1, r2, b1, b2}
4. E4 = {r1, r2, r4, b1, b2}
5. E5 = {r2, r4, b2} ∪ [{r2, r3, r4} ∩ {r1, r2, b1, b2}]

= {r2, r4, b2} ∪ {r2} = {r2, r4, b2}

Problem 4.2
Solution:
Since the seven balls equally likely to be drawn, the probability of each event Ei is proportional to
its cardinality.

P (E1) =
3
7
, P (E2) =

3
7
, P (E3) =

4
7
, P (E4) =

5
7
, P (E5) =

3
7

Problem 4.3
Solution:
Let us denote by X the event that a car is of brand X, and by R the event that a car needs repair
during its first year of purchase. Then
1)

P (R) = P (A,R) + P (B,R) + P (C,R)
= P (R|A)P (A) + P (R|B)P (B) + P (R|C)P (C)

=
5

100
20
100

+
10
100

30
100

+
15
100

50
100

=
11.5
100

2)

P (A|R) =
P (A,R)
P (R)

=
P (R|A)P (A)

P (R)
=
.05.20
.115

= .087

Problem 4.4
Solution:
If two events are mutually exclusive (disjoint) then P (A ∪ B) = P (A) ∪ P (B) which implies that
P (A∩B) = 0. If the events are independent then P (A∩B) = P (A) ∩P (B). Combining these two
conditions we obtain that two disjoint events are independent if

P (A ∩B) = P (A)P (B) = 0

Thus, at least on of the events should be of zero probability.
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Problem 4.5
Let us denote by nS the event that n was produced by the source and sent over the channel, and
by nC the event that n was observed at the output of the channel. Then
1)

P (1C) = P (1C|1S)P (1S) + P (1C|0C)P (0C)
= .8 · .7 + .2 · .3 = .62

where we have used the fact that P (1S) = .7, P (0C) = .3, P (1C|0C) = .2 and P (1C|1S) = 1− .2 =
.8
2)

P (1S|1C) =
P (1C, 1S)
P (1C)

=
P (1C|1S)P (1S)

P (1C)
=
.8 · .7
.62

= .9032

Problem 4.6
1) X can take four different values. 0, if no head shows up, 1, if only one head shows up in the four
flips of the coin, 2, for two heads and 3 if the outcome of each flip is head.
2) X follows the binomial distribution with n = 3. Thus

P (X = k) =


(

3
k

)
pk(1 − p)3−k for 0 ≤ k ≤ 3

0 otherwise

3)

FX(k) =
k∑

m=0

(
3
m

)
pm(1 − p)3−m

Hence

FX(k) =



0 k < 0
(1 − p)3 k = 0
(1 − p)3 + 3p(1 − p)2 k = 1
(1 − p)3 + 3p(1 − p)2 + 3p2(1 − p) k = 2
(1 − p)3 + 3p(1 − p)2 + 3p2(1 − p) + p3 = 1 k = 3
1 k > 3

. . . . . . . . . . . . .

. . . . . . . . .

. . . . .

CDF
1

(1−p)3

43210-1

4)

P (X > 1) =
3∑

k=2

(
3
k

)
pk(1 − p)3−k = 3p2(1 − p) + (1 − p)3

Problem 4.7
1) The random variables X and Y follow the binomial distribution with n = 4 and p = 1/4 and
1/2 respectively. Thus

p(X = 0) =

(
4
0

)(
1
4

)0 (3
4

)4
=

34

28 p(Y = 0) =

(
4
0

)(
1
2

)4
=

1
24
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p(X = 1) =

(
4
1

)(
1
4

)1 (3
4

)3
=

334
28 p(Y = 1) =

(
4
1

)(
1
2

)4
=

4
24

p(X = 2) =

(
4
2

)(
1
4

)2 (3
4

)2
=

332
28 p(Y = 2) =

(
4
2

)(
1
2

)4
=

6
24

p(X = 3) =

(
4
3

)(
1
4

)3 (3
4

)1
=

3 · 4
28 p(Y = 3) =

(
4
3

)(
1
2

)4
=

4
24

p(X = 4) =

(
4
4

)(
1
4

)4 (3
4

)0
=

1
28 p(Y = 4) =

(
4
4

)(
1
2

)4
=

1
24

Since X and Y are independent we have

p(X = Y = 2) = p(X = 2)p(Y = 2) =
332
28

6
24 =

81
1024

2)

p(X = Y ) = p(X = 0)p(Y = 0) + p(X = 1)p(Y = 1) + p(X = 2)p(Y = 2)
+p(X = 3)p(Y = 3) + p(X = 4)p(Y = 4)

=
34

212
+

33 · 42

212
+

34 · 22

212
+

3 · 42

212
+

1
212

=
886
4096

3)

p(X > Y ) = p(Y = 0) [p(X = 1) + p(X = 2) + p(X = 3) + p(X = 4)] +
p(Y = 1) [p(X = 2) + p(X = 3) + p(X = 4)] +
p(Y = 2) [p(X = 3) + p(X = 4)] +
p(Y = 3) [p(X = 4)]

=
535
4096

4) In general p(X + Y ≤ 5) =
∑5

l=0
∑l

m=0 p(X = l − m)p(Y = m). However it is easier to find
p(X + Y ≤ 5) through p(X + Y ≤ 5) = 1 − p(X + Y > 5) because fewer terms are involved in the
calculation of the probability p(X + Y > 5). Note also that p(X + Y > 5|X = 0) = p(X + Y >
5|X = 1) = 0.

p(X + Y > 5) = p(X = 2)p(Y = 4) + p(X = 3)[p(Y = 3) + p(Y = 4)] +
p(X = 4)[p(Y = 2) + p(Y = 3) + p(Y = 4)]

=
125
4096

Hence, p(X + Y ≤ 5) = 1 − p(X + Y > 5) = 1 − 125
4096

Problem 4.8
1) Since limx→∞ FX(x) = 1 and FX(x) = 1 for all x ≥ 1 we obtain K = 1.

2) The random variable is of the mixed-type since there is a discontinuity at x = 1. limε→0 FX(1 −
ε) = 1/2 whereas limε→0 FX(1 + ε) = 1

3)

P (
1
2
< X ≤ 1) = FX(1) − FX(

1
2
) = 1 − 1

4
=

3
4
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4)

P (
1
2
< X < 1) = FX(1−) − FX(

1
2
) =

1
2

− 1
4

=
1
4

5)
P (X > 2) = 1 − P (X ≤ 2) = 1 − FX(2) = 1 − 1 = 0

Problem 4.9
1)

x < −1 ⇒ FX(x) = 0

−1 ≤ x ≤ 0 ⇒ FX(x) =
∫ x

−1
(v + 1)dv = (

1
2
v2 + v)

∣∣∣∣x−1
=

1
2
x2 + x+

1
2

0 ≤ x ≤ 1 ⇒ FX(x) =
∫ 0

−1
(v + 1)dv +

∫ x

0
(−v + 1)dv = −1

2
x2 + x+

1
2

1 ≤ x ⇒ FX(x) = 1

2)

p(X >
1
2
) = 1 − FX(

1
2
) = 1 − 7

8
=

1
8

3)

p(X > 0|X <
1
2
) =

p(X > 0, X < 1
2)

p(X < 1
2)

=
FX(1

2) − FX(0)
1 − p(X > 1

2)
=

3
7

4) We find first the CDF

FX(x|X >
1
2
) = p(X ≤ x|X >

1
2
) =

p(X ≤ x, X > 1
2)

p(X > 1
2)

If x ≤ 1
2 then p(X ≤ x|X > 1

2) = 0 since the events E1 = {X ≤ 1
2} and E1 = {X > 1

2} are disjoint.
If x > 1

2 then p(X ≤ x|X > 1
2) = FX(x) − FX(1

2) so that

FX(x|X >
1
2
) =

FX(x) − FX(1
2)

1 − FX(1
2)

Differentiating this equation with respect to x we obtain

fX(x|X >
1
2
) =

{
fX(x)

1−FX( 1
2 )

x > 1
2

0 x ≤ 1
2

5)

E[X|X > 1/2] =
∫ ∞

−∞
xfX(x|X > 1/2)dx

=
1

1 − FX(1/2)

∫ ∞
1
2

xfX(x)dx

= 8
∫ ∞

1
2

x(−x+ 1)dx = 8(−1
3
x3 +

1
2
x2)

∣∣∣∣11
2

=
2
3
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Problem 4.10
1) The random variable X is Gaussian with zero mean and variance σ2 = 10−8. Thus p(X > x) =
Q(x

σ ) and

p(X > 10−4) = Q

(
10−4

10−4

)
= Q(1) = .159

p(X > 4 × 10−4) = Q

(
4 × 10−4

10−4

)
= Q(4) = 3.17 × 10−5

p(−2 × 10−4 < X ≤ 10−4) = 1 −Q(1) −Q(2) = .8182

2)

p(X > 10−4|X > 0) =
p(X > 10−4, X > 0)

p(X > 0)
=
p(X > 10−4)
p(X > 0)

=
.159
.5

= .318

3) y = g(x) = xu(x). Clearly fY (y) = 0 and FY (y) = 0 for y < 0. If y > 0, then the equation
y = xu(x) has a unique solution x1 = y. Hence, FY (y) = FX(y) and fY (y) = fX(y) for y > 0.
FY (y) is discontinuous at y = 0 and the jump of the discontinuity equals FX(0).

FY (0+) − FY (0−) = FX(0) =
1
2

In summary the PDF fY (y) equals

fY (y) = fX(y)u(y) +
1
2
δ(y)

The general expression for finding fY (y) can not be used because g(x) is constant for some interval
so that there is an uncountable number of solutions for x in this interval.

4)

E[Y ] =
∫ ∞

−∞
yfY (y)dy

=
∫ ∞

−∞
y

[
fX(y)u(y) +

1
2
δ(y)

]
dy

=
1√

2πσ2

∫ ∞

0
ye−

y2

2σ2 dy =
σ√
2π

5) y = g(x) = |x|. For a given y > 0 there are two solutions to the equation y = g(x) = |x|, that is
x1,2 = ±y. Hence for y > 0

fY (y) =
fX(x1)

|sgn(x1)|
+

fX(x2)
|sgn(x2)|

= fX(y) + fX(−y)

=
2√

2πσ2
e−

y2

2σ2

For y < 0 there are no solutions to the equation y = |x| and fY (y) = 0.

E[Y ] =
2√

2πσ2

∫ ∞

0
ye−

y2

2σ2 dy =
2σ√
2π
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Problem 4.11
1) y = g(x) = ax2. Assume without loss of generality that a > 0. Then, if y < 0 the equation
y = ax2 has no real solutions and fY (y) = 0. If y > 0 there are two solutions to the system, namely
x1,2 =

√
y/a. Hence,

fY (y) =
fX(x1)
|g′(x1)|

+
fX(x2)
|g′(x2)|

=
fX(

√
y/a)

2a
√
y/a

+
fX(−

√
y/a)

2a
√
y/a

=
1

√
ay

√
2πσ2

e−
y

2aσ2

2) The equation y = g(x) has no solutions if y < −b. Thus FY (y) and fY (y) are zero for y < −b. If
−b ≤ y ≤ b, then for a fixed y, g(x) < y if x < y; hence FY (y) = FX(y). If y > b then g(x) ≤ b < y
for every x; hence FY (y) = 1. At the points y = ±b, FY (y) is discontinuous and the discontinuities
equal to

FY (−b+) − FY (−b−) = FX(−b)

and
FY (b+) − FY (b−) = 1 − FX(b)

The PDF of y = g(x) is

fY (y) = FX(−b)δ(y + b) + (1 − FX(b))δ(y − b) + fX(y)[u−1(y + b) − u−1(y − b)]

= Q

(
b

σ

)
(δ(y + b) + δ(y − b)) +

1√
2πσ2

e−
y2

2σ2 [u−1(y + b) − u−1(y − b)]

3) In the case of the hard limiter

p(Y = b) = p(X < 0) = FX(0) =
1
2

p(Y = a) = p(X > 0) = 1 − FX(0) =
1
2

Thus FY (y) is a staircase function and

fY (y) = FX(0)δ(y − b) + (1 − FX(0))δ(y − a)

4) The random variable y = g(x) takes the values yn = xn with probability

p(Y = yn) = p(an ≤ X ≤ an+1) = FX(an+1) − FX(an)

Thus, FY (y) is a staircase function with FY (y) = 0 if y < x1 and FY (y) = 1 if y > xN . The PDF
is a sequence of impulse functions, that is

fY (y) =
N∑

i=1

[FX(ai+1) − FX(ai)] δ(y − xi)

=
N∑

i=1

[
Q

(
ai

σ

)
−Q

(
ai+1

σ

)]
δ(y − xi)
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Problem 4.12
The equation x = tanφ has a unique solution in [−π

2 ,
π
2 ], that is

φ1 = arctanx

Furthermore

x′(φ) =
(

sinφ
cosφ

)′
=

1
cos2 φ

= 1 +
sin2 φ

cos2 φ
= 1 + x2

Thus,

fX(x) =
fΦ(φ1)
|x′(φ1)|

=
1

π(1 + x2)
We observe that fX(x) is the Cauchy density. Since fX(x) is even we immediately get E[X] = 0.
However, the variance is

σ2
X = E[X2] − (E[X])2

=
1
π

∫ ∞

−∞
x2

1 + x2dx = ∞

Problem 4.13
1)

E[Y ] =
∫ ∞

0
yfY (y)dy ≥

∫ ∞

α
yfY (y)dy

≥ α

∫ ∞

α
yfY (y)dy = αp(Y ≥ α)

Thus p(Y ≥ α) ≤ E[Y ]/α.

2) Clearly p(|X − E[X]| > ε) = p((X − E[X])2 > ε2). Thus using the results of the previous
question we obtain

p(|X − E[X]| > ε) = p((X − E[X])2 > ε2) ≤ E[(X − E[X])2]
ε2

=
σ2

ε2

Problem 4.14
The characteristic function of the binomial distribution is

ψX(v) =
n∑

k=0

ejvk

(
n
k

)
pk(1 − p)n−k

=
n∑

k=0

(
n
k

)
(pejv)k(1 − p)n−k = (pejv + (1 − p))n

Thus

E[X] = m
(1)
X =

1
j

d

dv
(pejv + (1 − p))n

∣∣∣∣
v=0

=
1
j
n(pejv + (1 − p))n−1pjejv

∣∣∣∣
v=0

= n(p+ 1 − p)n−1p = np

E[X2] = m
(2)
X = (−1)

d2

dv2 (pejv + (1 − p))n

∣∣∣∣
v=0

= (−1)
d

dv

[
n(pejv + (1 − p)n−1pjejv

] ∣∣∣∣
v=0

=
[
n(n− 1)(pejv + (1 − p))n−2p2e2jv + n(pejv + (1 − p))n−1pejv

] ∣∣∣∣
v=0

= n(n− 1)(p+ 1 − p)p2 + n(p+ 1 − p)p
= n(n− 1)p2 + np
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Hence the variance of the binomial distribution is

σ2 = E[X2] − (E[X])2 = n(n− 1)p2 + np− n2p2 = np(1 − p)

Problem 4.15
The characteristic function of the Poisson distribution is

ψX(v) =
∞∑

k=0

ejvkλ
k

k!
e−k =

∞∑
k=0

(ejv−1λ)k

k!

But
∑∞

k=0
ak

k! = ea so that ψX(v) = eλ(ejv−1). Hence

E[X] = m
(1)
X =

1
j

d

dv
ψX(v)

∣∣∣∣
v=0

=
1
j
eλ(ejv−1)jλejv

∣∣∣∣
v=0

= λ

E[X2] = m
(2)
X = (−1)

d2

dv2ψX(v)
∣∣∣∣
v=0

= (−1)
d

dv

[
λeλ(ejv−1)ejvj

] ∣∣∣∣
v=0

=
[
λ2eλ(ejv−1)ejv + λeλ(ejv−1)ejv

] ∣∣∣∣
v=0

= λ2 + λ

Hence the variance of the Poisson distribution is

σ2 = E[X2] − (E[X])2 = λ2 + λ− λ2 = λ

Problem 4.16
For n odd, xn is odd and since the zero-mean Gaussian PDF is even their product is odd. Since
the integral of an odd function over the interval [−∞,∞] is zero, we obtain E[Xn] = 0 for n even.
Let In =

∫∞
−∞ xnexp(−x2/2σ2)dx with n even. Then,

d

dx
In =

∫ ∞

−∞

[
nxn−1e−

x2

2σ2 − 1
σ2x

n+1e−
x2

2σ2

]
dx = 0

d2

dx2 In =
∫ ∞

−∞

[
n(n− 1)xn−2e−

x2

2σ2 − 2n+ 1
σ2 xne−

x2

2σ2 +
1
σ4x

n+2e−
x2

2σ2

]
dx

= n(n− 1)In−2 − 2n+ 1
σ2 In +

1
σ4 In+2 = 0

Thus,
In+2 = σ2(2n+ 1)In − σ4n(n− 1)In−2

with initial conditions I0 =
√

2πσ2, I2 = σ2
√

2πσ2. We prove now that

In = 1 × 3 × 5 × · · · × (n− 1)σn
√

2πσ2

The proof is by induction on n. For n = 2 it is certainly true since I2 = σ2
√

2πσ2. We assume that
the relation holds for n and we will show that it is true for In+2. Using the previous recursion we
have

In+2 = 1 × 3 × 5 × · · · × (n− 1)σn+2(2n+ 1)
√

2πσ2

−1 × 3 × 5 × · · · × (n− 3)(n− 1)nσn−2σ4
√

2πσ2

= 1 × 3 × 5 × · · · × (n− 1)(n+ 1)σn+2
√

2πσ2

Clearly E[Xn] = 1√
2πσ2 In and

E[Xn] = 1 × 3 × 5 × · · · × (n− 1)σn
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Problem 4.17
1) fX,Y (x, y) is a PDF so that its integral over the support region of x, y should be one.∫ 1

0

∫ 1

0
fX,Y (x, y)dxdy = K

∫ 1

0

∫ 1

0
(x+ y)dxdy

= K

[∫ 1

0

∫ 1

0
xdxdy +

∫ 1

0

∫ 1

0
ydxdy

]
= K

[
1
2
x2
∣∣∣∣1
0
y|10 +

1
2
y2
∣∣∣∣1
0
x|10

]
= K

Thus K = 1.

2)

p(X + Y > 1) = 1 − P (X + Y ≤ 1)

= 1 −
∫ 1

0

∫ 1−x

0
(x+ y)dxdy

= 1 −
∫ 1

0
x

∫ 1−x

0
dydx−

∫ 1

0
dx

∫ 1−x

0
ydy

= 1 −
∫ 1

0
x(1 − x)dx−

∫ 1

0

1
2
(1 − x)2dx

=
2
3

3) By exploiting the symmetry of fX,Y and the fact that it has to integrate to 1, one immediately
sees that the answer to this question is 1/2. The “mechanical” solution is:

p(X > Y ) =
∫ 1

0

∫ 1

y
(x+ y)dxdy

=
∫ 1

0

∫ 1

y
xdxdy +

∫ 1

0

∫ 1

y
ydxdy

=
∫ 1

0

1
2
x2
∣∣∣∣1
y
dy +

∫ 1

0
yx

∣∣∣∣1
y
dy

=
∫ 1

0

1
2
(1 − y2)dy +

∫ 1

0
y(1 − y)dy

=
1
2

4)
p(X > Y |X + 2Y > 1) = p(X > Y,X + 2Y > 1)/p(X + 2Y > 1)

The region over which we integrate in order to find p(X > Y,X + 2Y > 1) is marked with an A in
the following figure.

�
�
�





....�
�
�
�
�












x

y

1/3

(1,1)

x+2y=1

A
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Thus

p(X > Y,X + 2Y > 1) =
∫ 1

1
3

∫ x

1−x
2

(x+ y)dxdy

=
∫ 1

1
3

[
x(x− 1 − x

2
) +

1
2
(x2 − (

1 − x

2
)2)
]
dx

=
∫ 1

1
3

(
15
8
x2 − 1

4
x− 1

8

)
dx

=
49
108

p(X + 2Y > 1) =
∫ 1

0

∫ 1

1−x
2

(x+ y)dxdy

=
∫ 1

0

[
x(1 − 1 − x

2
) +

1
2
(1 − (

1 − x

2
)2)
]
dx

=
∫ 1

0

(
3
8
x2 +

3
4
x+

3
8

)
dx

=
3
8

× 1
3
x3
∣∣∣∣1
0
+

3
4

× 1
2
x2
∣∣∣∣1
0
+

3
8
x

∣∣∣∣1
0

=
7
8

Hence, p(X > Y |X + 2Y > 1) = (49/108)/(7/8) = 14/27

5) When X = Y the volume under integration has measure zero and thus

P (X = Y ) = 0

6) Conditioned on the fact that X = Y , the new p.d.f of X is

fX|X=Y (x) =
fX,Y (x, x)∫ 1

0 fX,Y (x, x)dx
= 2x.

In words, we re-normalize fX,Y (x, y) so that it integrates to 1 on the region characterized by X = Y .
The result depends only on x. Then p(X > 1

2 |X = Y ) =
∫ 1
1/2 fX|X=Y (x)dx = 3/4.

7)

fX(x) =
∫ 1

0
(x+ y)dy = x+

∫ 1

0
ydy = x+

1
2

fY (y) =
∫ 1

0
(x+ y)dx = y +

∫ 1

0
xdx = y +

1
2

8) FX(x|X + 2Y > 1) = p(X ≤ x,X + 2Y > 1)/p(X + 2Y > 1)

p(X ≤ x,X + 2Y > 1) =
∫ x

0

∫ 1

1−v
2

(v + y)dvdy

=
∫ x

0

[
3
8
v2 +

3
4
v +

3
8

]
dv

=
1
8
x3 +

3
8
x2 +

3
8
x

Hence,

fX(x|X + 2Y > 1) =
3
8x

2 + 6
8x+ 3

8
p(X + 2Y > 1)

=
3
7
x2 +

6
7
x+

3
7
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E[X|X + 2Y > 1] =
∫ 1

0
xfX(x|X + 2Y > 1)dx

=
∫ 1

0

(
3
7
x3 +

6
7
x2 +

3
7
x

)
=

3
7

× 1
4
x4
∣∣∣∣1
0
+

6
7

× 1
3
x3
∣∣∣∣1
0
+

3
7

× 1
2
x2
∣∣∣∣1
0

=
17
28

Problem 4.18
1)

FY (y) = p(Y ≤ y) = p(X1 ≤ y ∪X2 ≤ y ∪ · · · ∪Xn ≤ y)

Since the previous events are not necessarily disjoint, it is easier to work with the function 1 −
[FY (y)] = 1 − p(Y ≤ y) in order to take advantage of the independence of Xi’s. Clearly

1 − p(Y ≤ y) = p(Y > y) = p(X1 > y ∩X2 > y ∩ · · · ∩Xn > y)
= (1 − FX1(y))(1 − FX2(y)) · · · (1 − FXn(y))

Differentiating the previous with respect to y we obtain

fY (y) = fX1(y)
n∏

i�=1

(1 − FXi(y)) + fX2(y)
n∏

i�=2

(1 − FXi(y)) + · · · + fXn(y)
n∏

i�=n

(1 − FXi(y))

2)

FZ(z) = P (Z ≤ z) = p(X1 ≤ z,X2 ≤ z, · · · , Xn ≤ z)
= p(X1 ≤ z)p(X2 ≤ z) · · · p(Xn ≤ z)

Differentiating the previous with respect to z we obtain

fZ(z) = fX1(z)
n∏

i�=1

FXi(z) + fX2(z)
n∏

i�=2

FXi(z) + · · · + fXn(z)
n∏

i�=n

FXi(z)

Problem 4.19

E[X] =
∫ ∞

0
x
x

σ2 e
− x2

2σ2 dx =
1
σ2

∫ ∞

0
x2e−

x2

2σ2 dx

However for the Gaussian random variable of zero mean and variance σ2

1√
2πσ2

∫ ∞

−∞
x2e−

x2

2σ2 dx = σ2

Since the quantity under integration is even, we obtain that

1√
2πσ2

∫ ∞

0
x2e−

x2

2σ2 dx =
1
2
σ2

Thus,

E[X] =
1
σ2

√
2πσ2 1

2
σ2 = σ

√
π

2
In order to find V AR(X) we first calculate E[X2].

E[X2] =
1
σ2

∫ ∞

0
x3e−

x2

2σ2 dx = −
∫ ∞

0
xd[e−

x2

2σ2 ]

= −x2e−
x2

2σ2

∣∣∣∣∞
0

+
∫ ∞

0
2xe−

x2

2σ2 dx

= 0 + 2σ2
∫ ∞

0

x

σ2 e
− x2

2σ2 dx = 2σ2
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Thus,
V AR(X) = E[X2] − (E[X])2 = 2σ2 − π

2
σ2 = (2 − π

2
)σ2

Problem 4.20

Let Z = X + Y . Then,

FZ(z) = p(X + Y ≤ z) =
∫ ∞

−∞

∫ z−y

−∞
fX,Y (x, y)dxdy

Differentiating with respect to z we obtain

fZ(z) =
∫ ∞

−∞
d

dz

∫ z−y

−∞
fX,Y (x, y)dxdy

=
∫ ∞

−∞
fX,Y (z − y, y)

d

dz
(z − y)dy

=
∫ ∞

−∞
fX,Y (z − y, y)dy

=
∫ ∞

−∞
fX(z − y)fY (y)dy

where the last line follows from the independence of X and Y . Thus fZ(z) is the convolution of
fX(x) and fY (y). With fX(x) = αe−αxu(x) and fY (y) = βe−βxu(x) we obtain

fZ(z) =
∫ z

0
αe−αvβe−β(z−v)dv

If α = β then

fZ(z) =
∫ z

0
α2e−αzdv = α2ze−αzu−1(z)

If α �= β then

fZ(z) = αβe−βz
∫ z

0
e(β−α)vdv =

αβ

β − α

[
e−αz − e−βz

]
u−1(z)

Problem 4.21

1) fX,Y (x, y) is a PDF, hence its integral over the supporting region of x, and y is 1.∫ ∞

0

∫ ∞

y
fX,Y (x, y)dxdy =

∫ ∞

0

∫ ∞

y
Ke−x−ydxdy

= K

∫ ∞

0
e−y

∫ ∞

y
e−xdxdy

= K

∫ ∞

0
e−2ydy = K(−1

2
)e−2y

∣∣∣∣∞
0

= K
1
2

Thus K should be equal to 2.

2)

fX(x) =
∫ x

0
2e−x−ydy = 2e−x(−e−y)

∣∣∣∣x
0

= 2e−x(1 − e−x)

fY (y) =
∫ ∞

y
2e−x−ydy = 2e−y(−e−x)

∣∣∣∣∞
y

= 2e−2y
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3)

fX(x)fY (y) = 2e−x(1 − e−x)2e−2y = 2e−x−y2e−y(1 − e−x)
�= 2e−x−y = fX,Y (x, y)

Thus X and Y are not independent.

4) If x < y then fX|Y (x|y) = 0. If x ≥ y, then with u = x− y ≥ 0 we obtain

fU (u) = fX|Y (x|y) =
fX,Y (x, y)
fY (y)

=
2e−x−y

2e−2y
= e−x+y = e−u

5)

E[X|Y = y] =
∫ ∞

y
xe−x+ydx = ey

∫ ∞

y
xe−xdx

= ey
[
−xe−x

∣∣∣∣∞
y

+
∫ ∞

y
e−xdx

]
= ey(ye−y + e−y) = y + 1

6) In this part of the problem we will use extensively the following definite integral∫ ∞

0
xν−1e−µxdx =

1
µν

(ν − 1)!

E[XY ] =
∫ ∞

0

∫ ∞

y
xy2e−x−ydxdy =

∫ ∞

0
2ye−y

∫ ∞

y
xe−xdxdy

=
∫ ∞

0
2ye−y(ye−y + e−y)dy = 2

∫ ∞

0
y2e−2ydy + 2

∫ ∞

0
ye−2ydy

= 2
1
23 2! + 2

1
22 1! = 1

E[X] = 2
∫ ∞

0
xe−x(1 − e−x)dx = 2

∫ ∞

0
xe−xdx− 2

∫ ∞

0
xe−2xdx

= 2 − 2
1
22 =

3
2

E[Y ] = 2
∫ ∞

0
ye−2ydy = 2

1
22 =

1
2

E[X2] = 2
∫ ∞

0
x2e−x(1 − e−x)dx = 2

∫ ∞

0
x2e−xdx− 2

∫ ∞

0
x2e−2xdx

= 2 · 2! − 2
1
23 2! =

7
2

E[Y 2] = 2
∫ ∞

0
y2e−2ydy = 2

1
23 2! =

1
2

Hence,

COV (X,Y ) = E[XY ] − E[X]E[Y ] = 1 − 3
2

· 1
2

=
1
4

and
ρX,Y =

COV (X,Y )
(E[X2] − (E[X])2)1/2(E[Y 2] − (E[Y ])2)1/2 =

1√
5
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Problem 4.22

E[X] =
1
π

∫ π

0
cos θdθ =

1
π

sin θ|π0 = 0

E[Y ] =
1
π

∫ π

0
sin θdθ =

1
π

(− cos θ)|π0 =
2
π

E[XY ] =
∫ π

0
cos θ sin θ

1
π
dθ

=
1
2π

∫ π

0
sin 2θdθ =

1
4π

∫ 2π

0
sinxdx = 0

COV (X,Y ) = E[XY ] − E[X]E[Y ] = 0

Thus the random variables X and Y are uncorrelated. However they are not independent since
X2 + Y 2 = 1. To see this consider the probability p(|X| < 1/2, Y ≥ 1/2). Clearly p(|X| <
1/2)p(Y ≥ 1/2) is different than zero whereas p(|X| < 1/2, Y ≥ 1/2) = 0. This is because
|X| < 1/2 implies that π/3 < θ < 5π/3 and for these values of θ, Y = sin θ >

√
3/2 > 1/2.

Problem 4.23
1) Clearly X > r, Y > r implies that X2 > r2, Y 2 > r2 so that X2+Y 2 > 2r2 or

√
X2 + Y 2 >

√
2r.

Thus the event E1(r) = {X > r, Y > r} is a subset of the event E2(r) = {
√
X2 + Y 2 >

√
2r|X,Y >

0} and p(E1(r)) ≤ p(E2(r)).

2) Since X and Y are independent

p(E1(r)) = p(X > r, Y > r) = p(X > r)p(Y > r) = Q2(r)

3) Using the rectangular to polar transformation V =
√
X2 + Y 2, Θ = arctan Y

X it is proved (see
text Eq. 4.1.22) that

fV,Θ(v, θ) =
v

2πσ2 e
− v2

2σ2

Hence, with σ2 = 1 we obtain

p(
√
X2 + Y 2 >

√
2r|X,Y > 0) =

∫ ∞
√

2r

∫ π
2

0

v

2π
e−

v2
2 dvdθ

=
1
4

∫ ∞
√

2r
ve−

v2
2 dv =

1
4
(−e− v2

2 )
∣∣∣∣∞√

2r

=
1
4
e−r2

Combining the results of part 1), 2) and 3) we obtain

Q2(r) ≤ 1
4
e−r2

or Q(r) ≤ 1
2
e−

r2
2

Problem 4.24
The following is a program written in Fortran to compute the Q function

REAL*8 x,t,a,q,pi,p,b1,b2,b3,b4,b5
PARAMETER (p=.2316419d+00, b1=.31981530d+00,
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+ b2=-.356563782d+00, b3=1.781477937d+00,
+ b4=-1.821255978d+00, b5=1.330274429d+00)

C-
pi=4.*atan(1.)

C-INPUT
PRINT*, ’Enter -x-’
READ*, x

C-
t=1./(1.+p*x)
a=b1*t + b2*t**2. + b3*t**3. + b4*t**4. + b5*t**5.
q=(exp(-x**2./2.)/sqrt(2.*pi))*a

C-OUTPUT
PRINT*, q

C-
STOP
END

The results of this approximation along with the actual values of Q(x) (taken from text Table 4.1)
are tabulated in the following table. As it is observed a very good approximation is achieved.

x Q(x) Approximation
1. 1.59 × 10−1 1.587 × 10−1

1.5 6.68 × 10−2 6.685 × 10−2

2. 2.28 × 10−2 2.276 × 10−2

2.5 6.21 × 10−3 6.214 × 10−3

3. 1.35 × 10−3 1.351 × 10−3

3.5 2.33 × 10−4 2.328 × 10−4

4. 3.17 × 10−5 3.171 × 10−5

4.5 3.40 × 10−6 3.404 × 10−6

5. 2.87 × 10−7 2.874 × 10−7

Problem 4.25
The n-dimensional joint Gaussian distribution is

fX(x) =
1√

(2π)ndet(C)
e−(x−m)C−1(x−m)t

The Jacobian of the linear transformation Y = AXt + b is 1/det(A) and the solution to this
equation is

x = (y − b)t(A−1)t

We may substitute for x in fX(x) to obtain fY(y).

fY(y) =
1

(2π)n/2(det(C))1/2|det(A)|
exp

(
−[(y − b)t(A−1)t − m]C−1

[(y − b)t(A−1)t − m]t
)

=
1

(2π)n/2(det(C))1/2|det(A)|
exp

(
−[yt − bt − mAt](At)−1C−1A−1

[y − b −Amt]
)

=
1

(2π)n/2(det(C))1/2|det(A)|
exp

(
−[yt − bt − mAt](ACAt)−1

[yt − bt − mAt]t
)
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Thus fY(y) is a n-dimensional joint Gaussian distribution with mean and variance given by

mY = b + Amt, CY = ACAt

Problem 4.26
1) The joint distribution of X and Y is given by

fX,Y (x, y) =
1

2πσ2 exp

{
−1

2

(
X Y

)( σ2 0
0 σ2

)(
X
Y

)}

The linear transformations Z = X + Y and W = 2X − Y are written in matrix notation as(
Z
W

)
=

(
1 1
2 −1

)(
X
Y

)
= A

(
X
Y

)

Thus, (see Prob. 4.25)

fZ,W (z, w) =
1

2πdet(M)1/2 exp

{
−1

2

(
Z W

)
M−1

(
Z
W

)}

where

M = A

(
σ2 0
0 σ2

)
At =

(
2σ2 σ2

σ2 5σ2

)
=

(
σ2

Z ρZ,WσZσW

ρZ,WσZσW σ2
W

)

From the last equality we identify σ2
Z = 2σ2, σ2

W = 5σ2 and ρZ,W = 1/
√

10

2)

FR(r) = p(R ≤ r) = p(
X

Y
≤ r)

=
∫ ∞

0

∫ yr

−∞
fX,Y (x, y)dxdy +

∫ 0

−∞

∫ ∞

yr
fX,Y (x, y)dxdy

Differentiating FR(r) with respect to r we obtain the PDF fR(r). Note that

d

da

∫ a

b
f(x)dx = f(a)

d

db

∫ a

b
f(x)dx = −f(b)

Thus,

FR(r) =
∫ ∞

0

d

dr

∫ yr

−∞
fX,Y (x, y)dxdy +

∫ 0

−∞
d

dr

∫ ∞

yr
fX,Y (x, y)dxdy

=
∫ ∞

0
yfX,Y (yr, y)dy −

∫ 0

−∞
yfX,Y (yr, y)dy

=
∫ ∞

−∞
|y|fX,Y (yr, y)dy

Hence,

fR(r) =
∫ ∞

−∞
|y| 1

2πσ2 e
− y2r2+y2

2σ2 dy = 2
∫ ∞

0
y

1
2πσ2 e

−y2( 1+r2

2σ2 )dy

= 2
1

2πσ2
2σ2

2(1 + r2)
=

1
π

1
1 + r2
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fR(r) is the Cauchy distribution; its mean is zero and the variance ∞.

Problem 4.27
The binormal joint density function is

fX,Y (x, y) =
1

2πσ1σ2
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)
×[

(x−m1)2

σ2
1

+
(y −m2)2

σ2
2

− 2ρ(x−m1)(y −m2)
σ1σ2

]}

=
1√

(2π)ndet(C)
exp

{
−(z − m)C−1(z − m)t

}
where z = [x y], m = [m1 m2] and

C =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)

1) With

C =

(
4 −4

−4 9

)
we obtain σ2

1 = 4, σ2
2 = 9 and ρσ1σ2 = −4. Thus ρ = −2

3 .

2) The transformation Z = 2X + Y , W = X − 2Y is written in matrix notation as(
Z
W

)
=

(
2 1
1 −2

)(
X
Y

)
= A

(
X
Y

)

The ditribution fZ,W (z, w) is binormal with mean m′ = mAt, and covariance matrix C ′ = ACAt.
Hence

C ′ =

(
2 1
1 −2

)(
4 −4

−4 9

)(
2 1
1 −2

)
=

(
9 2
2 56

)
The off-diagonal elements of C ′ are equal to ρσZσW = COV (Z,W ). Thus COV (Z,W ) = 2.

3) Z will be Gaussian with variance σ2
Z = 9 and mean

mZ = [ m1 m2 ]

[
2
1

]
= 4

Problem 4.28

fX|Y (x|y) =
fX,Y (x, y)
fY (y)

=
√

2πσY

2πσXσY

√
1 − ρ2

X,Y

exp[−A]

where

A =
(x−mX)2

2(1 − ρ2
X,Y )σ2

X

+
(y −mY )2

2(1 − ρ2
X,Y )σ2

Y

− 2ρ
(x−mX)(y −mY )
2(1 − ρ2

X,Y )σXσY
− (y −mY )2

2σ2
Y

=
1

2(1 − ρ2
X,Y )σ2

X

(
(x−mX)2 +

(y −mY )2σ2
Xρ

2
X,Y

σ2
Y

− 2ρ
(x−mX)(y −mY )σX

σY

)

=
1

2(1 − ρ2
X,Y )σ2

X

[
x−

(
mX + (y −mY )

ρσX

σY

)]2
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Thus

fX|Y (x|y) =
1

√
2πσX

√
1 − ρ2

X,Y

exp

{
− 1

2(1 − ρ2
X,Y )σ2

X

[
x−

(
mX + (y −mY )

ρσX

σY

)]2
}

which is a Gaussian PDF with mean mX + (y −mY )ρσX/σY and variance (1 − ρ2
X,Y )σ2

X . If ρ = 0
then fX|Y (x|y) = fX(x) which implies that Y does not provide any information about X or X,
Y are independent. If ρ = ±1 then the variance of fX|Y (x|y) is zero which means that X|Y is
deterministic. This is to be expected since ρ = ±1 implies a linear relation X = AY + b so that
knowledge of Y provides all the information about X.

Problem 4.29
1) The random variables Z, W are a linear combination of the jointly Gaussian random variables
X, Y . Thus they are jointly Gaussian with mean m′ = mAt and covariance matrix C ′ = ACAt,
where m, C is the mean and covariance matrix of the random variables X and Y and A is the
transformation matrix. The binormal joint density function is

fZ,W (z, w) =
1√

(2π)ndet(C)|det(A)|
exp

{
−([z w] − m′)C ′−1([z w] − m′)t

}
If m = 0, then m′ = mAt = 0. With

C =

(
σ2 ρσ2

ρσ2 σ2

)
A =

(
cos θ sin θ

− sin θ cos θ

)

we obtain det(A) = cos2 θ + sin2 θ = 1 and

C ′ =

(
cos θ sin θ

− sin θ cos θ

)(
σ2 ρσ2

ρσ2 σ2

)(
cos θ − sin θ
sin θ cos θ

)

=

(
σ2(1 + ρ sin 2θ) ρσ2(cos2 θ − sin2 θ)

ρσ2(cos2 θ − sin2 θ) σ2(1 − ρ sin 2θ)

)

2) Since Z and W are jointly Gaussian with zero-mean, they are independent if they are uncorre-
lated. This implies that

cos2 θ − sin2 θ = 0 =⇒ θ =
π

4
+ k

π

2
, k ∈ Z

Note also that if X and Y are independent, then ρ = 0 and any rotation will produce independent
random variables again.

Problem 4.30
1) fX,Y (x, y) is a PDF and its integral over the supporting region of x and y should be one.∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy

=
∫ 0

−∞

∫ 0

−∞
K

π
e−

x2+y2

2 dxdy +
∫ ∞

0

∫ ∞

0

K

π
e−

x2+y2

2 dxdy

=
K

π

∫ 0

−∞
e−

x2
2 dx

∫ 0

−∞
e−

y2

2 dx+
K

π

∫ ∞

0
e−

x2
2 dx

∫ ∞

0
e−

y2

2 dx

=
K

π

[
2(

1
2

√
2π)2

]
= K

Thus K = 1
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2) If x < 0 then

fX(x) =
∫ 0

−∞
1
π
e−

x2+y2

2 dy =
1
π
e−

x2
2

∫ 0

−∞
e−

y2

2 dy

=
1
π
e−

x2
2

1
2

√
2π =

1√
2π
e−

x2
2

If x > 0 then

fX(x) =
∫ ∞

0

1
π
e−

x2+y2

2 dy =
1
π
e−

x2
2

∫ ∞

0
e−

y2

2 dy

=
1
π
e−

x2
2

1
2

√
2π =

1√
2π
e−

x2
2

Thus for every x, fX(x) = 1√
2π
e−

x2
2 which implies that fX(x) is a zero-mean Gaussian random

variable with variance 1. Since fX,Y (x, y) is symmetric to its arguments and the same is true for the
region of integration we conclude that fY (y) is a zero-mean Gaussian random variable of variance
1.

3) fX,Y (x, y) has not the same form as a binormal distribution. For xy < 0, fX,Y (x, y) = 0 but a
binormal distribution is strictly positive for every x, y.

4) The random variables X and Y are not independent for if xy < 0 then fX(x)fY (y) �= 0 whereas
fX,Y (x, y) = 0.

5)

E[XY ] =
1
π

∫ 0

−∞

∫ 0

−∞
XY e−

x2+y2

2 dxdy +
1
π

∫ ∞

0

∫ ∞

0
e−

x2+y2

2 dxdy

=
1
π

∫ 0

−∞
Xe−

x2
2 dx

∫ 0

−∞
Y e−

y2

2 dy +
1
π

∫ ∞

0
Xe−

x2
2 dx

∫ ∞

0
Y e−

y2

2 dy

=
1
π

(−1)(−1) +
1
π

=
2
π

Thus the random variables X and Y are correlated since E[XY ] �= 0 and E[X] = E[Y ] = 0, so
that E[XY ] − E[X]E[Y ] �= 0.

6) In general fX|Y (x, y) = fX,Y (x,y)
fY (y) . If y > 0, then

fX|Y (x, y) =

{
0 x < 0√

2
πe

− x2
2 x ≥ 0

If y ≤ 0, then

fX|Y (x, y) =

{
0 x > 0√

2
πe

− x2
2 x < 0

Thus

fX|Y (x, y) =
√

2
π
e−

x2
2 u(xy)

which is not a Gaussian distribution.

Problem 4.31

fX,Y (x, y) =
1

2πσ2 exp

{
−(x−m)2 + y2

2σ2

}
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With the transformation
V =

√
X2 + Y 2, Θ = arctan

Y

X
we obtain

fV,Θ(v, θ) = vfX,Y (v cos θ, v sin θ)

=
v

2πσ2 exp

{
−(v cos θ −m)2 + v2 sin θ

2σ2

}

=
v

2πσ2 exp

{
−v

2 +m2 − 2mv cos θ
2σ2

}
To obtain the marginal probability density function for the magnitude, we integrate over θ so that

fV (v) =
∫ 2π

0

v

2πσ2 e
− v2+m2

2σ2 e
mv cos θ

σ2 dθ

=
v

σ2 e
− v2+m2

2σ2
1
2π

∫ 2π

0
e

mv cos θ
σ2 dθ

=
v

σ2 e
− v2+m2

2σ2 I0(
mv

σ2 )

where

I0(
mv

σ2 ) =
1
2π

∫ 2π

0
e

mv cos θ
σ2 dθ

With m = 0 we obtain

fV (v) =

{
v
σ2 e

− v2

2σ2 v > 0
0 v ≤ 0

which is the Rayleigh distribution.

Problem 4.32
1) Let Xi be a random variable taking the values 1, 0, with probability 1

4 and 3
4 respectively. Then,

mXi = 1
4 ·1+3

4 ·0 = 1
4 . The weak law of large numbers states that the random variable Y = 1

n

∑n
i=1Xi

has mean which converges to mXi with probability one. Using Chebychev’s inequality (see Problem

4.13) we have p(|Y −mXi | ≥ ε) ≤ σ2
Y

ε2
for every ε > 0. Hence, with n = 2000, Z =

∑2000
i=1 Xi, mXi = 1

4
we obtain

p(|Z − 500| ≥ 2000ε) ≤ σ2
Y

ε2
⇒ p(500 − 2000ε ≤ Z ≤ 500 + 2000ε) ≥ 1 − σ2

Y

ε2

The variance σ2
Y of Y = 1

n

∑n
i=1Xi is 1

nσ
2
Xi

, where σ2
Xi

= p(1 − p) = 3
16 (see Problem 4.13). Thus,

with ε = 0.001 we obtain

p(480 ≤ Z ≤ 520) ≥ 1 − 3/16
2 × 10−1 = .063

2) Using the C.L.T. the CDF of the random variable Y = 1
n

∑n
i=1Xi converges to the CDF of the

random variable N(mXi ,
σ√
n
). Hence

P = p

(
480
n

≤ Y ≤ 520
n

)
= Q

(
480
n −mXi

σ

)
−Q

(
520
n −mXi

σ

)

With n = 2000, mXi = 1
4 , σ2 = p(1−p)

n we obtain

P = Q

(
480 − 500√
2000p(1 − p)

)
−Q

(
520 − 500√
2000p(1 − p)

)

= 1 − 2Q
(

20√
375

)
= .682
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Problem 4.33
Consider the random variable vector

x = [ ω1 ω1 + ω2 . . . ω1 + ω2 + · · · + ωn ]t

where each ωi is the outcome of a Gaussian random variable distributed according to N(0, 1). Since

mx,i = E[ω1 + ω2 + · · · + ωi)] = E[ω1] + E[ω2] + · · · + E[ωi] = 0

we obtain
mx = 0

The covariance matrix is
C = E[(x −mx)(x −mx)t] = E[xxt]

The i, j element (Ci,j) of this matrix is

Ci,j = E[(ω1 + ω2 + · · · + ωi)(ω1 + ω2 + · · · + ωj)]
= E[(ω1 + ω2 + · · · + ωmin(i,j))(ω1 + ω2 + · · · + ωmin(i,j))]

+E[(ω1 + ω2 + · · · + ωmin(i,j))(ωmin(i,j)+1 + · · · + ωmax(i,j))]

The expectation in the last line of the previous equation is zero. This is true since all the ran-
dom variables inside the first parenthesis are different from the random variables in the second
parenthesis, and for uncorrelated random variables of zero mean E[ωkωl] when k �= l. Hence,

Ci,j = E[(ω1 + ω2 + · · · + ωmin(i,j))(ω1 + ω2 + · · · + ωmin(i,j))]

=
min(i,j)∑

k=1

min(i,j)∑
l=1

E[ωkωl] =
min(i,j)∑

k=1

E[ωkωk] +
∑

k,l=1 k �=l

∑
E[ωkωl]

=
min(i,j)∑

k=1

1 = min(i, j)

Thus

C =


1 1 · · · 1
1 2 2
...

. . .
...

1 2 · · · n


Problem 4.34
The random variable X(t0) is uniformly distributed over [−1 1]. Hence,

mX(t0) = E[X(t0)] = E[X] = 0

As it is observed the mean mX(t0) is independent of the time instant t0.

Problem 4.35

mX(t) = E[A+Bt] = E[A] + E[B]t = 0

where the last equality follows from the fact that A, B are uniformly distributed over [−1 1] so
that E[A] = E[B] = 0.

RX(t1, t2) = E[X(t1)X(t2)] = E[(A+Bt1)(A+Bt2)]
= E[A2] + E[AB]t2 + E[BA]t1 + E[B2]t1t2
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The random variables A, B are independent so that E[AB] = E[A]E[B] = 0. Furthermore

E[A2] = E[B2] =
∫ 1

−1
x2 1

2
dx =

1
6
x3|1−1 =

1
3

Thus
RX(t1, t2) =

1
3

+
1
3
t1t2

Problem 4.36
Since the joint density function of {X(ti}n

i=1 is a jointly Gaussian density of zero-mean the auto-
correlation matrix of the random vector process is simply its covariance matrix. The i, j element
of the matrix is

RX(ti, tj) = COV (X(ti)X(tj)) +mX(ti)mX(tj) = COV (X(ti)X(tj))
= σ2 min(ti, tj)

Problem 4.37
Since X(t) = X with the random variable uniformly distributed over [−1 1] we obtain

fX(t1),X(t2),···,X(tn)(x1, x2, . . . , xn) = fX,X,···,X(x1, x2, . . . , xn)

for all t1, . . . , tn and n. Hence, the statistical properties of the process are time independent and
by definition we have a stationary process.

Problem 4.38
The process is not wide sense stationary for the autocorrelation function depends on the values of
t1, t2 and not on their difference. To see this suppose that t1 = t2 = t. If the process was wide sense
stationary, then RX(t, t) = RX(0). However, RX(t, t) = σ2t and it depends on t as it is opposed to
RX(0) which is independent of t.

Problem 4.39
If a process X(t) is M th order stationary, then for all n ≤ M , and ∆

fX(t1)X(t2)···X(tn)(x1, x2, · · · , xn) = fX(t1+∆)···X(tn+∆)(x1, · · ·xn)

If we let n = 1, then

mX(0) = E[X(0)] =
∫ ∞

−∞
xfX(0)(x)dx =

∫ ∞

−∞
xfX(0+t)(x)dx = mX(t)

for all t. Hence, mx(t) is constant. With n = 2 we obtain

fX(t1)X(t2)(x1, x2) = fX(t1+∆)X(t2+∆)(x1, x2), ∀∆

If we let ∆ = −t1, then
fX(t1)X(t2)(x1, x2) = fX(0)X(t2−t1)(x1, x2)

which means that

Rx(t1, t2) = E[X(t1)X(t2)] =
∫ ∞

−∞

∫ ∞

−∞
x1x2fX(0)X(t2−t1)(x1, x2)dx1dx2

depends only on the difference τ = t1 − t2 and not on the individual values of t1, t2. Thus the
M th order stationary process, has a constant mean and an autocorrelation function dependent on
τ = t1 − t2 only. Hence, it is a wide sense stationary process.
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Problem 4.40
1) f(τ) cannot be the autocorrelation function of a random process for f(0) = 0 < f(1/4f0) = 1.
Thus the maximum absolute value of f(τ) is not achieved at the origin τ = 0.

2) f(τ) cannot be the autocorrelation function of a random process for f(0) = 0 whereas f(τ) �= 0
for τ �= 0. The maximum absolute value of f(τ) is not achieved at the origin.

3) f(0) = 1 whereas f(τ) > f(0) for |τ | > 1. Thus f(τ) cannot be the autocorrelation function of
a random process.

4) f(τ) is even and the maximum is achieved at the origin (τ = 0). We can write f(τ) as

f(τ) = 1.2Λ(τ) − Λ(τ − 1) − Λ(τ + 1)

Taking the Fourier transform of both sides we obtain

S(f) = 1.2sinc2(f) − sinc2(f)
(
e−j2πf + ej2πf

)
= sinc2(f)(1.2 − 2 cos(2πf))

As we observe the power spectrum S(f) can take negative values, i.e. for f = 0. Thus f(τ) can
not be the autocorrelation function of a random process.

Problem 4.41
As we have seen in Problem 4.38 the process is not stationary and thus it is not ergodic. This in
accordance to our definition of ergodicity as a property of stationary and ergodic processes.

Problem 4.42
The random variable ωi takes the values {1, 2, . . . , 6} with probability 1

6 . Thus

EX = E

[∫ ∞

−∞
X2(t)dt

]
= E

[∫ ∞

−∞
ω2

i e
−2tu2

−1(t)dt
]

= E

[∫ ∞

0
ω2

i e
−2tdt

]

=
∫ ∞

0
E[ω2

i ]e
−2tdt =

∫ ∞

0

1
6

6∑
i=1

i2e−2tdt

=
91
6

∫ ∞

0
e−2tdt =

91
6

(−1
2
e−2t)

∣∣∣∣∞
0

=
91
12

Thus the process is an energy-type process. However, this process is not stationary for

mX(t) = E[X(t) = E[ωi]e−tu−1(t) =
21
6
e−tu−1(t)

is not constant.

Problem 4.43
1) We find first the probability of an even number of transitions in the interval (0, τ ].

pN (n = even) = pN (0) + pN (2) + pN (4) + · · ·

=
1

1 + ατ

∞∑
l=0

(
ατ

1 + ατ

)2

=
1

1 + ατ

1

1 − (ατ)2
(1+ατ)2

=
1 + ατ

1 + 2ατ
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The probability pN (n = odd) is simply 1 − pN (n = even) = ατ
1+2ατ . The random process Z(t) takes

the value of 1 (at time instant t) if an even number of transitions occurred given that Z(0) = 1, or
if an odd number of transitions occurred given that Z(0) = 0. Thus,

mZ(t) = E[Z(t)] = 1 · p(Z(t) = 1) + 0 · p(Z(t) = 0)
= p(Z(t) = 1|Z(0) = 1)p(Z(0) = 1) + p(Z(t) = 1|Z(0) = 0)p(Z(0) = 0)

= pN (n = even)
1
2

+ pN (n = odd)
1
2

=
1
2

2) To determine RZ(t1, t2) note that Z(t + τ) = 1 if Z(t) = 1 and an even number of transitions
occurred in the interval (t, t+ τ ], or if Z(t) = 0 and an odd number of transitions have taken place
in (t, t+ τ ]. Hence,

RZ(t+ τ, t) = E[Z(t+ τ)Z(t)]
= 1 · p(Z(t+ τ) = 1, Z(t) = 1) + 0 · p(Z(t+ τ) = 1, Z(t) = 0)

+0 · p(Z(t+ τ) = 0, Z(t) = 1) + 0 · p(Z(t+ τ) = 0, Z(t) = 0)
= p(Z(t+ τ) = 1, Z(t) = 1) = p(Z(t+ τ) = 1|Z(t) = 1)p(Z(t) = 1)

=
1
2

1 + ατ

1 + 2ατ

As it is observed RZ(t+ τ, t) depends only on τ and thus the process is stationary. The process is
not cyclostationary.

3) Since the process is stationary

PZ = RZ(0) =
1
2

Problem 4.44
1)

mX(t) = E[X(t)] = E[X cos(2πf0t)] + E[Y sin(2πf0t)]
= E[X] cos(2πf0t) + E[Y ] sin(2πf0t)
= 0

where the last equality follows from the fact that E[X] = E[Y ] = 0.

2)

RX(t+ τ, t) = E[(X cos(2πf0(t+ τ)) + Y sin(2πf0(t+ τ)))
(X cos(2πf0t) + Y sin(2πf0t))]

= E[X2 cos(2πf0(t+ τ)) cos(2πf0t)] +
E[XY cos(2πf0(t+ τ)) sin(2πf0t)] +
E[Y X sin(2πf0(t+ τ)) cos(2πf0t)] +
E[Y 2 sin(2πf0(t+ τ)) sin(2πf0t)]

=
σ2

2
[cos(2πf0(2t+ τ)) + cos(2πf0τ)] +

σ2

2
[cos(2πf0τ) − cos(2πf0(2t+ τ))]

= σ2 cos(2πf0τ)
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where we have used the fact that E[XY ] = 0. Thus the process is stationary for RX(t + τ, t)
depends only on τ .

3) Since the process is stationary PX = RX(0) = σ2.

4) If σ2
X �= σ2

Y , then
mX(t) = E[X] cos(2πf0t) + E[Y ] sin(2πf0t) = 0

and

RX(t+ τ, t) = E[X2] cos(2πf0(t+ τ)) cos(2πf0t) +
E[Y 2] sin(2πf0(t+ τ)) sin(2πf0t)

=
σ2

X

2
[cos(2πf0(2t+ τ)) − cos(2πf0τ)] +

σ2
Y

2
[cos(2πf0τ) − cos(2πf0(2t+ τ))]

=
σ2

X − σ2
Y

2
cos(2πf0(2t+ τ) +

σ2
X + σ2

Y

2
cos(2πf0τ)

The process is not stationary for RX(t+ τ, t) does not depend only on τ but on t as well. However
the process is cyclostationary with period T0 = 1

2f0
. Note that if X or Y is not of zero mean then

the period of the cyclostationary process is T0 = 1
f0

. The power spectral density of X(t) is

PX = lim
T→∞

1
T

∫ T
2

− T
2

(
σ2

X − σ2
Y

2
cos(2πf02t) +

σ2
X + σ2

Y

2

)
dt = ∞

Problem 4.45
1)

mX(t) = E [X(t)] = E

 ∞∑
k=−∞

Akp(t− kT )


=

∞∑
k=−∞

E[Ak]p(t− kT )

= m
∞∑

k=−∞
p(t− kT )

2)

RX(t+ τ, t) = E [X(t+ τ)X(t)]

= E

 ∞∑
k=−∞

∞∑
l=−∞

AkAlp(t+ τ − kT )p(t− lT )


=

∞∑
k=−∞

∞∑
l=−∞

E[AkAl]p(t+ τ − kT )p(t− lT )

=
∞∑

k=−∞

∞∑
l=−∞

RA(k − l)p(t+ τ − kT )p(t− lT )
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3)

RX(t+ T + τ, t+ T ) =
∞∑

k=−∞

∞∑
l=−∞

RA(k − l)p(t+ T + τ − kT )p(t+ T − lT )

=
∞∑

k′=−∞

∞∑
l′=−∞

RA(k′ + 1 − (l′ + 1))p(t+ τ − k′T )p(t− l′T )

=
∞∑

k′=−∞

∞∑
l′=−∞

RA(k′ − l′)p(t+ τ − k′T )p(t− l′T )

= RX(t+ τ, t)

where we have used the change of variables k′ = k− 1, l′ = l− 1. Since mX(t) and RX(t+ τ, t) are
periodic, the process is cyclostationary.
4)

R̄X(τ) =
1
T

∫ T

0
RX(t+ τ, t)dt

=
1
T

∫ T

0

∞∑
k=−∞

∞∑
l=−∞

RA(k − l)p(t+ τ − kT )p(t− lT )dt

=
1
T

∞∑
n=−∞

RA(n)
∞∑

l=−∞

∫ T

0
p(t+ τ − lT − nT )p(t− lT )dt

=
1
T

∞∑
n=−∞

RA(n)
∞∑

l=−∞

∫ T−lT

−lT
p(t′ + τ − nT )p(t′)dt′

=
1
T

∞∑
n=−∞

RA(n)
∫ ∞

−∞
p(t′ + τ − nT )p(t′)dt′

=
1
T

∞∑
n=−∞

RA(n)Rp(τ − nT )

where Rp(τ − nT ) =
∫∞
−∞ p(t′ + τ − nT )p(t′)dt′ = p(t) 	 p(−t)|t=τ−nT

5)

SX(f) = F [R̄X(τ)] = F
[

1
T

∞∑
n=−∞

RA(n)Rp(τ − nT )

]

=
1
T

∞∑
n=−∞

RA(n)
∫ ∞

−∞
Rp(τ − nT )e−j2πfτdτ

=
1
T

∞∑
n=−∞

RA(n)
∫ ∞

−∞
Rp(τ ′)e−j2πf(τ ′+nT )dτ ′

=
1
T

∞∑
n=−∞

RA(n)e−j2πfnT
∫ ∞

−∞
Rp(τ ′)e−j2πfτ ′

dτ ′

But, Rp(τ ′) = p(τ ′) 	 p(−τ ′) so that∫ ∞

−∞
Rp(τ ′)e−j2πfτ ′

dτ ′ =
∫ ∞

−∞
p(τ ′)e−j2πfτ ′

dτ ′
∫ ∞

−∞
p(−τ ′)e−j2πfτ ′

dτ ′

= P (f)P ∗(f) = |P (f)|2

where we have used the fact that for real signals P (−f) = P ∗(f). Substituting the relation above
to the expression for SX(f) we obtain

SX(f) =
|P (f)|2
T

∞∑
n=−∞

RA(n)e−j2πfnT
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=
|P (f)|2
T

[
RA(0) + 2

∞∑
n=1

RA(n) cos(2πfnT )

]

where we have used the assumptionRA(n) = RA(−n) and the fact ej2πfnT +e−j2πfnT = 2 cos(2πfnT )

Problem 4.46
1) The autocorrelation function of An’s is RA(k − l) = E[AkAl] = δkl where δkl is the Kronecker’s
delta. Furthermore

P (f) = F
[
Π(
t− T

2
T

)

]
= T sinc(Tf)e−j2πf T

2

Hence, using the results of Problem 4.45 we obtain

SX(f) = T sinc2(Tf)

2) In this case E[An] = 1
2 and RA(k − l) = E[AkAl]. If k = l, then RA(0) = E[A2

k] = 1
2 . If k �= l,

then RA(k − l) = E[AkAl] = E[Ak]E[Al] = 1
4 . The power spectral density of the process is

SX(f) = T sinc2(Tf)

[
1
2

+
1
2

∞∑
k=1

cos(2πkfT )

]

3) If p(t) = Π( t−3T/2
3T ) and An = ±1 with equal probability, then

SX(f) =
|P (f)|2
T

RA(0) =
1
T

∣∣∣3T sinc(3Tf)e−j2πf 3T
2

∣∣∣2
= 9T sinc2(3Tf)

For the second part the power spectral density is

SX(f) = 9T sinc2(3Tf)

[
1
2

+
1
2

∞∑
k=1

cos(2πkfT )

]

Problem 4.47
1) E[Bn] = E[An] + E[An−1] = 0. To find the autocorrelation sequence of Bn’s we write

RB(k − l) = E[BkBl] = E[(Ak +Ak−1)(Al +Al−1)]
= E[AkAl] + E[AkAl−1] + E[Ak−1Al] + E[Ak−1Al−1]

If k = l, then RB(0) = E[A2
k]+E[A2

k−1] = 2. If k = l−1, then RB(1) = E[AkAl−1]] = 1. Similarly,
if k = l + 1, RB(−1) = E[Ak−1Al]] = 1. Thus,

RB(k − l) =


2 k − l = 0
1 k − l = ±1
0 otherwise

Using the results of Problem 4.45 we obtain

SX(f) =
|P (f)|2
T

(
RB(0) + 2

∞∑
k=1

RB(k) cos(2πkfT )

)

=
|P (f)|2
T

(2 + 2 cos(2πfT ))
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2) Consider the sample sequence of An’s {· · · ,−1, 1, 1,−1,−1,−1, 1,−1, 1,−1, · · ·}. Then the cor-
responding sequence of Bn’s is {· · · , 0, 2, 0,−2,−2, 0, 0, 0, 0, · · ·}. The following figure depicts the
corresponding sample function X(t).

......

If p(t) = Π( t−T/2
T ), then |P (f)|2 = T 2sinc2(Tf) and the power spectral density is

SX(f) = T sinc2(Tf)(2 + 2 cos(2πfT ))

In the next figure we plot the power spectral density for T = 1.
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3) If Bn = An + αAn−1, then

RB(k − l) =


1 + α2 k − l = 0
α k − l = ±1
0 otherwise

The power spectral density in this case is given by

SX(f) =
|P (f)|2
T

(1 + α2 + 2α cos(2πfT ))

Problem 4.48
In general the mean of a function of two random variables, g(X,Y ), can be found as

E[g(X,Y )] = E[E[g(X,Y )|X]]

where the outer expectation is with respect to the random variable X.
1)

mY (t) = E[X(t+ Θ)] = E[E[X(t+ Θ)|Θ]]

where

E[X(t+ Θ)|Θ] =
∫
X(t+ θ)fX(t)|Θ(x|θ)dx

=
∫
X(t+ θ)fX(t)(x)dx = mX(t+ θ)

where we have used the independence of X(t) and Θ. Thus

mY (t) = E[mX(t+ θ)] =
1
T

∫ T

0
mX(t+ θ)dθ = mY
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where the last equality follows from the periodicity of mX(t+ θ). Similarly for the autocorrelation
function

RY (t+ τ, t) = E [E[X(t+ τ + Θ)X(t+ Θ)|Θ]]
= E [RX(t+ τ + θ, t+ θ)]

=
1
T

∫ T

0
RX(t+ τ + θ, t+ θ)dθ

=
1
T

∫ T

0
RX(t′ + τ, t′)dt′

where we have used the change of variables t′ = t+ θ and the periodicity of RX(t+ τ, t)
2)

SY (f) = E

[
lim

T→∞
|YT (f)|2

T

]
= E

[
E

[
lim

T→∞
|YT (f)|2

T

∣∣∣∣Θ
]]

= E

[
E

[
lim

T→∞
|XT (f)ej2πfθ|2

T

∣∣∣∣Θ
]]

= E

[
E

[
lim

T→∞
|XT (f)|2

T

]]
= E [SX(f)] = SX(f)

3) Since SY (f) = F [ 1
T

∫ T
0 RX(t+ τ, t)dt] and SY (f) = SX(f) we conclude that

SX(f) = F
[

1
T

∫ T

0
RX(t+ τ, t)dt

]

Problem 4.49
Using Parseval’s relation we obtain∫ ∞

−∞
f2SX(f)df =

∫ ∞

−∞
F−1[f2]F−1[SX(f)]dτ

=
∫ ∞

−∞
− 1

4π2 δ
(2)(τ)RX(τ)dτ

= − 1
4π2 (−1)2

d2

dτ2RX(τ)|τ=0

= − 1
4π2

d2

dτ2RX(τ)|τ=0

Also, ∫ ∞

−∞
SX(f)df = RX(0)

Combining the two relations we obtain

WRMS =
∫∞
−∞ f2SX(f)df∫∞

−∞ SX(f)df
= − 1

4π2RX(0)
d2

dτ2RX(τ)|τ=0

Problem 4.50

RXY (t1, t2) = E[X(t1)Y (t2)] = E[Y (t2)X(t1)] = RY X(t2, t1)

If we let τ = t1−t2, then using the previous result and the fact thatX(t), Y (t) are jointly stationary,
so that RXY (t1, t2) depends only on τ , we obtain

RXY (t1, t2) = RXY (t1 − t2) = RY X(t2 − t1) = RY X(−τ)
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Taking the Fourier transform of both sides of the previous relation we obtain

SXY (f) = F [RXY (τ)] = F [RY X(−τ)]

=
∫ ∞

−∞
RY X(−τ)e−j2πfτdτ

=
[∫ ∞

−∞
RY X(τ ′)e−j2πfτ ′

dτ ′
]∗

= S∗
Y X(f)

Problem 4.51
1) SX(f) = N0

2 , RX(τ) = N0
2 δ(τ). The autocorrelation function and the power spectral density of

the output are given by

RY (t) = RX(τ) 	 h(τ) 	 h(−τ), SY (f) = SX(f)|H(f)|2

With H(f) = Π( f
2B ) we have |H(f)|2 = Π2( f

2B ) = Π( f
2B ) so that

SY (f) =
N0

2
Π(

f

2B
)

Taking the inverse Fourier transform of the previous we obtain the autocorrelation function of the
output

RY (τ) = 2B
N0

2
sinc(2Bτ) = BN0sinc(2Bτ)

2) The output random process Y (t) is a zero mean Gaussian process with variance

σ2
Y (t) = E[Y 2(t)] = E[Y 2(t+ τ)] = RY (0) = BN0

The correlation coefficient of the jointly Gaussian processes Y (t+ τ), Y (t) is

ρY (t+τ)Y (t) =
COV (Y (t+ τ)Y (t))

σY (t+τ)σY (t)
=
E[Y (t+ τ)Y (t)]

BN0
=
RY (τ)
BN0

With τ = 1
2B , we have RY ( 1

2B ) = sinc(1) = 0 so that ρY (t+τ)Y (t) = 0. Hence the joint probability
density function of Y (t) and Y (t+ τ) is

fY (t+τ)Y (t) =
1

2πBN0
e
− Y 2(t+τ)+Y 2(t)

2BN0

Since the processes are Gaussian and uncorrelated they are also independent.

Problem 4.52
The impulse response of a delay line that introduces a delay equal to ∆ is h(t) = δ(t − ∆). The
output autocorrelation function is

RY (τ) = RX(τ) 	 h(τ) 	 h(−τ)

But,

h(τ) 	 h(−τ) =
∫ ∞

−∞
δ(−(t− ∆))δ(τ − (t− ∆))dt

=
∫ ∞

−∞
δ(t− ∆)δ(τ − (t− ∆))dt

=
∫ ∞

−∞
δ(t′)δ(τ − t′)dt′ = δ(τ)

Hence,
RY (τ) = RX(τ) 	 δ(τ) = RX(τ)
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This is to be expected since a delay line does not alter the spectral characteristics of the input
process.

Problem 4.53
The converse of the theorem is not true. Consider for example the random process X(t) =
cos(2πf0t) +X where X is a random variable. Clearly

mX(t) = cos(2πf0t) +mX

is a function of time. However, passing this process through the LTI system with transfer function
Π( f

2W ) with W < f0 produces the stationary random process Y (t) = X.

Problem 4.54
1) Let Y (t) =

∫∞
−∞X(τ)h(t− τ)dτ =

∫∞
−∞ h(τ)X(t− τ)dτ . Then the mean mY (t) is

mY (t) = E[
∫ ∞

−∞
h(τ)X(t− τ)dτ ] =

∫ ∞

−∞
h(τ)E[X(t− τ)]dτ

=
∫ ∞

−∞
h(τ)mX(t− τ)dτ

If X(t) is cyclostationary with period T then

mY (t+ T ) =
∫ ∞

−∞
h(τ)mX(t+ T − τ)dτ =

∫ ∞

−∞
h(τ)mX(t− τ)dτ = mY (t)

Thus the mean of the output process is periodic with the same period of the cyclostationary process
X(t). The output autocorrelation function is

RY (t+ τ, t) = E[Y (t+ τ)Y (t)]

= E

[∫ ∞

−∞

∫ ∞

−∞
h(s)X(t+ τ − s)h(v)X(t− v)dsdv

]
=

∫ ∞

−∞

∫ ∞

−∞
h(s)h(v)RX(t+ τ − s, t− v)dsdv

Hence,

RY (t+ T + τ, t+ T ) =
∫ ∞

−∞

∫ ∞

−∞
h(s)h(v)RX(t+ T + τ − s, t+ T − v)dsdv

=
∫ ∞

−∞

∫ ∞

−∞
h(s)h(v)RX(t+ T + τ − s, t+ T − v)dsdv

= RY (t+ τ, t)

where we have used the periodicity of RX(t+τ, t) for the last equality. Since bothmY (t), RY (t+τ, t)
are periodic with period T , the output process Y (t) is cyclostationary.
2) The crosscorrelation function is

RXY (t+ τ, t) = E[X(t+ τ)Y (t)]

= E

[
X(t+ τ)

∫ ∞

−∞
X(t− s)h(s)ds

]
=

∫ ∞

−∞
E[X(t+ τ)X(t− s)]h(s)ds =

∫ ∞

−∞
RX(t+ τ, t− s)h(s)ds

which is periodic with period T . Integrating the previous over one period, i.e. from −T
2 to T

2 we
obtain

R̄XY (τ) =
∫ ∞

−∞
1
T

∫ T
2

− T
2

RX(t+ τ, t− s)dth(s)ds

=
∫ ∞

−∞
R̄X(τ + s)h(s)ds

= R̄X(τ) 	 h(−τ)
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Similarly we can show that
R̄Y (τ) = R̄XY (τ) 	 h(τ)

so that by combining the two we obtain

R̄Y (τ) = R̄X(τ) 	 h(τ) 	 h(−τ)

3) Taking the Fourier transform of the previous equation we obtain the desired relation among the
spectral densities of the input and output.

SY (f) = SX(f)|H(f)|2

Problem 4.55
1) Y (t) = d

dtX(t) can be considered as the output process of a differentiator which is known to be
a LTI system with impulse response h(t) = δ′(t). Since X(t) is stationary, its mean is constant so
that

mY (t) = mX′(t) = [mX(t)]′ = 0

To prove that X(t) and d
dtX(t) are uncorrelated we have to prove that RXX′(0)−mX(t)mX′(t) = 0

or since mX′(t) = 0 it suffices to prove that RXX′(0) = 0. But,

RXX′(τ) = RX(τ) 	 δ′(−τ) = −RX(τ) 	 δ′(τ) = −R′
X(τ)

and since RX(τ) = RX(−τ) we obtain

RXX′(τ) = −R′
X(τ) = R′

X(−τ) = −RXX′(−τ)

Thus RXX′(τ) is an odd function and its value at the origin should be equal to zero

RXX′(0) = 0

The last proves that X(t) and d
dtX(t) are uncorrelated.

2) The autocorrelation function of the sum Z(t) = X(t) + d
dtX(t) is

RZ(τ) = RX(τ) +RX′(τ) +RXX′(τ) +RX′X(τ)

If we take the Fourier transform of both sides we obtain

SZ(f) = SX(f) + SX′(f) + 2Re[SXX′(f)]

But, SXX′(f) = F [−RX(τ) 	 δ′(τ)] = SX(f)(−j2πf) so that Re[SXX′(f)] = 0. Thus,

SZ(f) = SX(f) + SX′(f)

Problem 4.56
1) The impulse response of the system is h(t) = L[δ(t)] = δ′(t) + δ′(t − T ). It is a LTI system so
that the output process is a stationary. This is true since Y (t+ c) = L[X(t+ c)] for all c, so if X(t)
and X(t+ c) have the same statistical properties, so do the processes Y (t) and Y (t+ c).

2) SY (f) = SX(f)|H(f)|2. But, H(f) = j2πf + j2πfe−j2πfT so that

SY (f) = SX(f)4π2f2
∣∣∣1 + e−j2πfT

∣∣∣2
= SX(f)4π2f2[(1 + cos(2πfT ))2 + sin2(2πfT )]
= SX(f)8π2f2(1 + cos(2πfT ))
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3) The frequencies for which |H(f)|2 = 0 will not be present at the output. These frequencies are
f = 0, for which f2 = 0 and f = 1

2T + k
T , k ∈ Z, for which cos(2πfT ) = −1.

Problem 4.57
1) Y (t) = X(t) 	 (δ(t) − δ(t− T )). Hence,

SY (f) = SX(f)|H(f)|2 = SX(f)|1 − e−j2πfT |2

= SX(f)2(1 − cos(2πfT ))

2) Y (t) = X(t) 	 (δ′(t) − δ(t)). Hence,

SY (f) = SX(f)|H(f)|2 = SX(f)|j2πf − 1|2

= SX(f)(1 + 4π2f2)

3) Y (t) = X(t) 	 (δ′(t) − δ(t− T )). Hence,

SY (f) = SX(f)|H(f)|2 = SX(f)|j2πf − e−j2πfT |2

= SX(f)(1 + 4π2f2 + 4πf sin(2πfT ))

Problem 4.58
Using Schwartz’s inequality

E2[X(t+ τ)Y (t)] ≤ E[X2(t+ τ)]E[Y 2(t)] = RX(0)RY (0)

where equality holds for independent X(t) and Y (t). Thus

|RXY (τ)| =
(
E2[X(t+ τ)Y (t)]

) 1
2 ≤ R

1/2
X (0)R1/2

Y (0)

The second part of the inequality follows from the fact 2ab ≤ a2 + b2. Thus, with a = R
1/2
X (0) and

b = R
1/2
Y (0) we obtain

R
1/2
X (0)R1/2

Y (0) ≤ 1
2

[RX(0) +RY (0)]

Problem 4.59
1)

RXY (τ) = RX(τ) 	 δ(−τ − ∆) = RX(τ) 	 δ(τ + ∆)
= e−α|τ | 	 δ(τ + ∆) = e−α|τ+∆|

RY (τ) = RXY (τ) 	 δ(τ − ∆) = e−α|τ+∆| 	 δ(τ − ∆)
= e−α|τ |

2)

RXY (τ) = e−α|τ | 	 (−1
τ
) = −

∫ ∞

−∞
e−α|v|

t− v
dv

RY (τ) = RXY (τ) 	
1
τ

= −
∫ ∞

−∞

∫ ∞

−∞
e−α|v|

s− v

1
τ − s

dsdv

(3)
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The case of RY (τ) can be simplified as follows. Note that RY (τ) = F−1[SY (f)] where SY (f) =
SX(f)|H(f)|2. In our case, SX(f) = 2α

α2+4π2f2 and |H(f)|2 = π2sgn2(f). Since SX(f) does not
contain any impulses at the origin (f = 0) for which |H(f)|2 = 0, we obtain

RY (τ) = F−1[SY (f)] = π2e−α|τ |

3) The system’s transfer function is H(f) = −1+j2πf
1+j2πf . Hence,

SXY (f) = SX(f)H∗(f) =
2α

α2 + 4π2f2
−1 − j2πf
1 − j2πf

=
4α

1 − α2
1

1 − j2πf
+
α− 1
1 + α

1
α+ j2πf

+
1 + α

α− 1
1

α− j2πf

Thus,

RXY (τ) = F−1[SXY (f)]

=
4α

1 − α2 e
τu−1(−τ) +

α− 1
1 + α

e−ατu−1(τ) +
1 + α

α− 1
eατu−1(−τ)

For the output power spectral density we have SY (f) = SX(f)|H(f)|2 = SX(f)1+4π2f2

1+4π2f2 = SX(f).
Hence,

RY (τ) = F−1[SX(f)] = e−α|τ |

4) The impulse response of the system is h(t) = 1
2T Π( t

2T ). Hence,

RXY (τ) = e−α|τ | 	
1

2T
Π(

−τ
2T

) = e−α|τ | 	
1

2T
Π(

τ

2T
)

=
1

2T

∫ τ+T

τ−T
e−α|v|dv

If τ ≥ T , then

RXY (τ) = − 1
2Tα

e−αv

∣∣∣∣τ+T

τ−T
=

1
2Tα

(
e−α(τ−T ) − e−α(τ+T )

)
If 0 ≤ τ < T , then

RXY (τ) =
1

2T

∫ 0

τ−T
eαvdv +

1
2T

∫ τ+T

0
e−αvdv

=
1

2Tα

(
2 − eα(τ−T ) − e−α(τ+T )

)
The autocorrelation of the output is given by

RY (τ) = e−α|τ | 	
1

2T
Π(

τ

2T
) 	

1
2T

Π(
τ

2T
)

= e−α|τ | 	
1

2T
Λ(

τ

2T
)

=
1

2T

∫ 2T

−2T

(
1 − |x|

2T

)
e−α|τ−x|dx

If τ ≥ 2T , then

RY (τ) =
e−ατ

2Tα2

[
e2αT + e−2αT − 2

]
If 0 ≤ τ < 2T , then

RY (τ) =
e−2αT

4T 2α2

[
e−ατ + eατ ]+

1
Tα

− τ

2T 2α2 − 2
e−ατ

4T 2α2
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Problem 4.60
Consider the random processes X(t) = Xej2πf0t and Y (t) = Y ej2πf0t. Clearly

RXY (t+ τ, t) = E[X(t+ τ)Y ∗(t)] = E[XY ]ej2πf0τ

However, bothX(t) and Y (t) are nonstationary forE[X(t)] = E[X]ej2πf0t andE[Y (t)] = E[Y ]ej2πf0t

are not constant.

Problem 4.61

1)

E[X(t)] =
4
π

∫ π
4

0
A cos(2πf0t+ θ)dθ

=
4A
π

sin(2πf0t+ θ)
∣∣∣∣π

4

0

=
4A
π

[sin(2πf0t+
π

4
) − sin(2πf0t)]

Thus, E[X(t)] is periodic with period T = 1
f0

.

RX(t+ τ, t) = E[A2 cos(2πf0(t+ τ) + Θ) cos(2πf0t+ Θ)]

=
A2

2
E[cos(2πf0(2t+ τ) + Θ) + cos(2πf0τ)]

=
A2

2
cos(2πf0τ) +

A2

2
E[cos(2πf0(2t+ τ) + Θ)]

=
A2

2
cos(2πf0τ) +

A2

2
4
π

∫ π
4

0
cos(2πf0(2t+ τ) + θ)dθ

=
A2

2
cos(2πf0τ) +

A2

π
(cos(2πf0(2t+ τ)) − sin(2πf0(2t+ τ)))

which is periodic with period T ′ = 1
2f0

. Thus the process is cyclostationary with period T = 1
f0

.
Using the results of Problem 4.48 we obtain

SX(f) = F [
1
T

∫ T

0
RX(t+ τ, t)dt]

= F
[
A2

2
cos(2πf0τ) +

A2

Tπ

∫ T

0
(cos(2πf0(2t+ τ)) − sin(2πf0(2t+ τ))dt

]

= F
[
A2

2
cos(2πf0τ)

]

=
A2

4
(δ(f − f0) + δ(f + f0))

2)

RX(t+ τ, t) = E[X(t+ τ)X(t)] = E[(X + Y )(X + Y )]
= E[X2] + E[Y 2] + E[Y X] + E[XY ]
= E[X2] + E[Y 2] + 2E[X][Y ]
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where the last equality follows from the independence of X and Y . But, E[X] = 0 since X is
uniform on [−1, 1] so that

RX(t+ τ, t) = E[X2] + E[Y 2] =
1
3

+
1
3

=
2
3

The Fourier transform of RX(t+ τ, t) is the power spectral density of X(t). Thus

SX(f) = F [RX(t+ τ, t)] =
2
3
δ(f)

Problem 4.62
h(t) = e−βtu−1(t) ⇒ H(f) = 1

β+j2πf . The power spectral density of the input process is SX(f) =
F [e−α|τ |] = 2α

α2+4π2f2 . If α = β, then

SY (f) = SX(f)|H(f)|2 =
2α

(α2 + 4π2f2)2

If α �= β, then

SY (f) = SX(f)|H(f)|2 =
2α

(α2 + 4π2f2)(β2 + 4π2f2)

Problem 4.63
1) Let Y (t) = X(t)+N(t). The process X̂(t) is the response of the system h(t) to the input process
Y (t) so that

RY X̂(τ) = RY (τ) 	 h(−τ)
= [RX(τ) +RN (τ) +RXN (τ) +RNX(τ)] 	 h(−τ)

Also by definition

RY X̂(τ) = E[(X(t+ τ) +N(t+ τ))X̂(t)] = RXX̂(τ) +RNX̂(τ)
= RXX̂(τ) +RN (τ) 	 h(−τ) +RNX(τ) 	 h(−τ)

Substituting this expression for RY X̂(τ) in the previous one, and cancelling common terms we
obtain

RXX̂(τ) = RX(τ) 	 h(−τ) +RXN (τ) 	 h(−τ)

2)
E
[
(X(t) − X̂(t))2

]
= RX(0) +RX̂(0) −RXX̂(0) −RX̂X(0)

We can write E
[
(X(t) − X̂(t))2

]
in terms of the spectral densities as

E
[
(X(t) − X̂(t))2

]
=

∫ ∞

−∞
(SX(f) + SX̂(f) − 2SXX̂(f))df

=
∫ ∞

−∞

[
SX(f) + (SX(f) + SN (f) + 2Re[SXN (f)])|H(f)|2

−2(SX(f) + SXN (f))H∗(f)
]
df

To find theH(f) that minimizes E
[
(X(t) − X̂(t))2

]
we set the derivative of the previous expression,

with respect to H(f), to zero. By doing so we obtain

H(f) =
SX(f) + SXN (f)

SX(f) + SN (f) + 2Re[SXN (f)]
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3) If X(t) and N(t) are independent, then

RXN (τ) = E[X(t+ τ)N(t)] = E[X(t+ τ)]E[N(t)]

Since E[N(t)] = 0 we obtain RXN (τ) = 0 and the optimum filter is

H(f) =
SX(f)

SX(f) + N0
2

The corresponding value of E
[
(X(t) − X̂(t))2

]
is

Emin

[
(X(t) − X̂(t))2

]
=
∫ ∞

−∞
SX(f)N0

2SX(f) +N0
df

4) With SN (f) = 1, SX(f) = 1
1+f2 and SXN (f) = 0, then

H(f) =
1

1+f2

1 + 1
1+f2

=
1

2 + f2

Problem 4.64
1) Let X̂(t) and X̃(t) be the outputs of the systems h(t) and g(t) when the input Z(t) is applied.
Then,

E[(X(t) − X̃(t))2] = E[(X(t) − X̂(t) + X̂(t) − X̃(t))2]
= E[(X(t) − X̂(t))2] + E[(X̂(t) − X̃(t))2]

+E[(X(t) − X̂(t)) · (X̂(t) − X̃(t))]

But,

E[(X(t) − X̂(t)) · (X̂(t) − X̃(t))]
= E[(X(t) − X̂(t)) · Z(t) 	 (h(t) − g(t))]

= E

[
(X(t) − X̂(t))

∫ ∞

−∞
(h(τ) − g(τ))Z(t− τ)dτ

]
=

∫ ∞

−∞
E
[
(X(t) − X̂(t))Z(t− τ)

]
(h(τ) − g(τ))dτ = 0

where the last equality follows from the assumption E
[
(X(t) − X̂(t))Z(t− τ)

]
= 0 for all t, τ .

Thus,
E[(X(t) − X̃(t))2] = E[(X(t) − X̂(t))2] + E[(X̂(t) − X̃(t))2]

and this proves that
E[(X(t) − X̂(t))2] ≤ E[(X(t) − X̃(t))2]

2)
E[(X(t) − X̂(t))Z(t− τ)] = 0 ⇒ E[X(t)Z(t− τ)] = E[X̂(t)Z(t− τ)]

or in terms of crosscorrelation functions RXZ(τ) = RX̂Z(τ) = RZX̂(−τ). However, RZX̂(−τ) =
RZ(−τ) 	 h(τ) so that

RXZ(τ) = RZ(−τ) 	 h(τ) = RZ(τ) 	 h(τ)

3) Taking the Fourier of both sides of the previous equation we obtain

SXZ(f) = SZ(f)H(f) or H(f) =
SXZ(f)
SZ(f)

107



4)

E[ε2(t)] = E
[
(X(t) − X̂(t))((X(t) − X̂(t))

]
= E[X(t)X(t)] − E[X̂(t)X(t)]

= RX(0) − E

[∫ ∞

−∞
Z(t− v)h(v)X(t)dv

]
= RX(0) −

∫ ∞

−∞
RZX(−v)h(v)dv

= RX(0) −
∫ ∞

−∞
RXZ(v)h(v)dv

where we have used the fact that E[(X(t) − X̂(t))X̂(t)] = E[(X(t) − X̂(t))Z(t) 	 h(t)] = 0

Problem 4.65
1) Using the results of Problem 4.45 we obtain

SX(f) =
|P (f)|2
T

[
RA(0) + 2

∞∑
k=1

RA(k) cos(2πkfT )

]

Since, An’s are independent random variables with zero mean RA(k) = σ2δ(k) so that

SX(f) =
1
T

∣∣∣∣ 1
2W

Π(
f

2W
)
∣∣∣∣2 σ2 =

σ2

4W 2T
Π(

f

2W
)

2) If T = 1
2W then

PX(f) =
∫ ∞

−∞
σ2

2W
Π(

f

2W
)df =

σ2

2W

∫ W

−W
df = σ2

3)

SX1(f) =
N0

2
Π(

f

2W
) ⇒ RX1(τ) = N0W sinc(2Wτ)

Hence,

E[AkAj ] = E[X1(kT )X1(jT )] = RX1((k − j)T )
= N0W sinc(2W (k − j)T ) = N0W sinc(k − j)

=

{
N0W k = j
0 otherwise

Thus, we obtain the same conditions as in the first and second part of the problem with σ2 = N0W .
The power spectral density and power content of X(t) will be

SX(f) =
N0

2
Π(

f

2W
), PX = N0W

X(t) is the random process formed by sampling X1(t) at the Nyquist rate.

Problem 4.66
the noise equivalent bandwidth of a filter is

Bneq =
∫∞
−∞ |H(f)|2df

2H2
max
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If we have an ideal bandpass filter of bandwidth W , then H(f) = 1 for |f − f0| < W where f0 is
the central frequency of the filter. Hence,

Bneq =
1
2

[∫ −f0+W
2

−f0− W
2

df +
∫ f0+W

2

f0− W
2

df

]
= W

Problem 4.67
In general

SXc(f) = SXs(f) =

{
SX(f − f0) + SX(f + f0) |f | < f0
0 otherwise

If f0 = fc − W
2 in Example 4.6.1, then using the previous formula we obtain

SXc(f) = SXs(f) =


N0
2

W
2 < |f | < 3W

2
N0 |f | < W

2
0 otherwise

The cross spectral density is given by

SXcXs(f) =

{
j[SX(f + f0) − SX(f − f0)] |f | < f0
0 otherwise

Thus, with f0 = fc − W
2 we obtain

SXcXs(f) =


−jN0

2 −3W
2 < f < W

2
0 |f | < W

2
jN0

2
W
2 < f < 3W

2
0 otherwise

Problem 4.68
We have PXc = PXs = PX . For the process of the Example 4.6.1

SX(f) =

{
N0
2 |f − fc| < W

0 otherwise

Hence,

PX =
∫ ∞

−∞
SX(f)df =

∫ −fc+W

−fc−W

N0

2
df +

∫ fc+W

fc−W

N0

2
df

=
N0

2
(2W + 2W ) = 2N0W

For the first part of the example,

SXc(f) = SXs(f)

{
N0 |f | < W
0 otherwise

Hence,

PXc = PXs =
∫ W

−W
N0df = 2N0W = PX

For the second part of Example 3.6.12

SXc(f) = SXs(f)

{
N0
2 0 < |f | < 2W

0 otherwise
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Thus,

PXc = PXs =
∫ 2W

−2W

N0

2
df = 2N0W = PX

Problem 4.69
1) The power spectral density of the in-phase and quadrature components is given by

Snc(f) = Sns(f) =

{
Sn(f − f0) + Sn(f + f0) |f | < 7
0 otherwise

If the passband of the ideal filter extends from 3 to 11 KHz, then f0 =7 KHz is the mid-band
frequency so that

Snc(f) = Sns(f) =

{
N0 |f | < 7
0 otherwise

The cross spectral density is given by

Sncns(f) =

{
j[Sn(f + f0) − Sn(f − f0) |f | < 7
0 otherwise

However Sn(f + f0) = Sn(f − f0) for |f | < 7 and therefore Sncns(f) = 0. It turns then that the
crosscorrelation Rncns(τ) is zero.
2) With f0=6 KHz

Snc(f) = Sns(f) =


N0
2 3 < |f | < 5
N0 |f | < 3
0 otherwise

The cross spectral density is given by

Sncns(f) =


−jN0

2 −5 < f < 3
jN0

2 3 < f < 5
0 otherwise

Hence,

Rncns(τ) = F−1
[
−jN0

2
Π(
t+ 4

2
) + j

N0

2
Π(
t− 4

2
)
]

= −jN0

2
2sinc(2τ)e−j2π4τ + j

N0

2
2sinc(2τ)ej2π4τ

= −2N0sinc(2τ) sin(2π4τ)

Problem 4.70
The in-phase component of X(t) is

Xc(t) = X(t) cos(2πf0t) + X̂(t) sin(2πf0t)

=
∞∑

n=−∞
Anp(t− nT ) cos(2πf0(t− nT ))

+
∞∑

n=−∞
Anp̂(t− nT ) sin(2πf0(t− nT ))

=
∞∑

n=−∞
An (p(t− nT ) cos(2πf0(t− nT )) + p̂(t− nT ) sin(2πf0(t− nT )))

=
∞∑

n=−∞
Anpc(t− nT )
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where we have used the fact pc(t) = p(t) cos(2πf0t) + p̂(t) sin(2πf0t). Similarly for the quadrature
component

Xs(t) = X̂(t) cos(2πf0t) −X(t) sin(2πf0t)

=
∞∑

n=−∞
Anp̂(t− nT ) cos(2πf0(t− nT ))

−
∞∑

n=−∞
Anp(t− nT ) sin(2πf0(t− nT ))

=
∞∑

n=−∞
An (p̂(t− nT ) cos(2πf0(t− nT )) − p(t− nT ) sin(2πf0(t− nT )))

=
∞∑

n=−∞
Anps(t− nT )

Problem 4.71
The envelope V (t) of a bandpass process is defined to be

V (t) =
√
X2

c (t) +X2
s (t)

where Xc(t) and Xs(t) are the in-phase and quadrature components of X(t) respectively. However,
both the in-phase and quadrature components are lowpass processes and this makes V (t) a lowpass
process independent of the choice of the center frequency f0.

Problem 4.72
1) The power spectrum of the bandpass signal is

Sn(f) =

{
N0
2 |f − fc| < W
0 otherwise

Hence,

Snc(f) = Sns(f) =

{
N0 |f | < W
0 otherwise

The power content of the in-phase and quadrature components of n(t) is Pn =
∫W
−W N0df = 2N0W

2) Since Sncns(f) = 0, the processesNc(t), Ns(t) are independent zero-mean Gaussian with variance
σ2 = Pn = 2N0W . Hence, V (t) =

√
N2

c (t) +N2
s (t) is Rayleigh distributed and the PDF is given

by

fV (v) =

 v2

2N0W e
− v2

4N0W v ≥ 0
0 otherwise

3) X(t) is given by
X(t) = (A+Nc(t)) cos(2πf0t) −NS(t) sin(2πf0t)

The processA+Nc(t) is Gaussian with meanA and variance 2N0W . Hence, V (t) =
√

(A+Nc(t))2 +N2
s (t)

follows the Rician distribution (see Problem 4.31). The density function of the envelope is given by

fV (v) =

 v
2N0W I0( Av

2N0W )e−
v2+A2
4N0W v ≥ 0

0 otherwise

where
I0(x) =

1
2π

∫ π

−π
ex cos udu
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Problem 4.73
1) The power spectral density Sn(f) is depicted in the following figure. The output bandpass
process has non-zero power content for frequencies in the band 49 × 106 ≤ |f | ≤ 51 × 106. The
power content is

P =
∫ −49×106

−51×106
10−8

(
1 +

f

108

)
df +

∫ 51×106

49×106
10−8

(
1 − f

108

)
df

= 10−8x

∣∣∣∣−49×106

−51×106
+ 10−16 1

2
x2
∣∣∣∣−49×106

−51×106
+ 10−8x

∣∣∣∣51×106

49×106
− 10−16 1

2
x2
∣∣∣∣51×106

49×106

= 2 × 10−2

��
��

��
���

���������

−5·107 5·107

10−8

108

2) The output process N(t) can be written as

N(t) = Nc(t) cos(2π50 × 106t) −Ns(t) sin(2π50 × 106t)

where Nc(t) and Ns(t) are the in-phase and quadrature components respectively, given by

Nc(t) = N(t) cos(2π50 × 106t) + N̂(t) sin(2π50 × 106t)
Ns(t) = N̂(t) cos(2π50 × 106t) −N(t) sin(2π50 × 106t)

The power content of the in-phase component is given by

E[|Nc(t)|2] = E[|N(t)|2] cos2(2π50 × 106t) + E[|N̂(t)|2] sin2(2π50 × 106t)
= E[|N(t)|2] = 2 × 10−2

where we have used the fact that E[|N(t)|2] = E[|N̂(t)|2]. Similarly we find that E[|Ns(t)|2] =
2 × 10−2.

3) The power spectral density of Nc(t) and Ns(t) is

SNc(f) = SNs(f) =

{
SN (f − 50 × 106) + SN (f + 50 × 106) |f | ≤ 50 × 106

0 otherwise

SNc(f) is depicted in the next figure. The power content of SNc(f) can now be found easily as

PNc = PNs =
∫ 106

−106
10−8df = 2 × 10−2

10−8

10−6 106

4) The power spectral density of the output is given by

SY (f) = SX(f)|H(f)|2 = (|f | − 49 × 106)(10−8 − 10−16|f |) for 49 × 106 ≤ |f | ≤ 51 × 106
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Hence, the power content of the output is

PY =
∫ −49×106

−51×106
(−f − 49 × 106)(10−8 + 10−16f)df

+
∫ 51×106

49×106
(f − 49 × 106)(10−8 − 10−16f)df

= 2 × 104 − 4
3
102

The power spectral density of the in-phase and quadrature components of the output process is
given by

SYc(f) = SYs(f) =
(
(f + 50 × 106) − 49 × 106

) (
10−8 − 10−16(f + 50 × 106)

)
+
(
−(f − 50 × 106) − 49 × 106

) (
10−8 + 10−16(f − 50 × 106)

)
= −2 × 10−16f2 + 10−2

for |f | ≤ 106 and zero otherwise. The power content of the in-phase and quadrature component is

PYc = PYs =
∫ 106

−106
(−2 × 10−16f2 + 10−2)df

= −2 × 10−16 1
3
f3
∣∣∣∣106

−106
+ 10−2f

∣∣∣∣106

−106

= 2 × 104 − 4
3
102 = PY
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Chapter 5

Problem 5.1
The spectrum of the signal at the output of the LPF is Ss,o(f) = Ss(f)|Π( f

2W )|2. Hence, the signal
power is

Ps,o =
∫ ∞

−∞
Ss,o(f)df =

∫ W

−W

P0

1 + (f/B)2
df

= P0B arctan(
f

B
)
∣∣∣∣W−W

= 2P0B arctan(
W

B
)

Similarly, noise power at the output of the lowpass filter is

Pn,o =
∫ W

−W

N0

2
df = N0W

Thus, the SNR is given by

SNR =
2P0B arctan(W

B )
N0W

=
2P0

N0

arctan(W
B )

W
B

In the next figure we plot SNR as a function of W
B and for 2P0

N0
= 1.
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Problem 5.2
1) The transfer function of the RC filter is

H(s) =
R

1
Cs +R

=
RCs

1 +RCs

with s = j2πf . Hence, the magnitude frequency response is

|H(f)| =

(
4π2(RC)2f2

1 + 4π2(RC)2f2

) 1
2

This function is plotted in the next figure for f in [−10, 10] and 4π2(RC)2 = 1.
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2) The overall system is the cascade of the RC and the LPF filter. If the bandwidth of the LPF is
W , then the transfer function of the system is

V (f) =
j2πRCf

1 + j2πRCf
Π(

f

2W
)

The next figure depicts |V (f)| for W = 5 and 4π2(RC)2 = 1.
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3) The noise output power is

Pn =
∫ W

−W

4π2(RC)2f2

1 + 4π2(RC)2f2
N0

2
df

= N0W − N0

2

∫ W

−W

1
1 + 4π2(RC)2f2df

= N0W − N0

2
1

2πRC
arctan(2πRCf)

∣∣∣∣W−W

= N0W − N0

2πRC
arctan(2πRCW )

The output signal is a sinusoidal with frequency fc and amplitude A|V (fc)|. Since fc < W we
conclude that the amplitude of the sinusoidal ouput signal is

A|H(fc)| = A

√
4π2(RC)2f2

c

1 + 4π2(RC)2f2
c

and the output signal power

Ps =
A2

2
4π2(RC)2f2

c

1 + 4π2(RC)2f2
c
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Thus, the SNR at the ouput of the LPF is

SNR =
A2

2
4π2(RC)2f2

c
1+4π2(RC)2f2

c

N0W − N0
2πRC arctan(2πRCW )

=
A2

N0

πRCf2
c

1+4π2(RC)2f2
c

2πRCW − arctan(2πRCW )

In the next figure we plot

G(W ) =
1

2πRCW − arctan(2πRCW )

as a function of x = 2πRCW , when the latter varies from 0.1 to 0.5.
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Problem 5.3
The noise power content of the received signal r(t) = u(t) + n(t) is

Pn =
∫ ∞

−∞
Sn(f)df =

N0

2
× 4W = 2N0W

If we write n(t) as
n(t) = nc(t) cos(2πfct) − ns(t) sin(2πfct)

then,

n(t) cos(2πfct) = nc(t) cos2(2πfct) − ns(t) cos(2πfct) sin(2πfct)

=
1
2
nc(t) +

1
2
nc(t) cos(2π2fct) − ns(t) sin(2π2fct)

The noise signal at the output of the LPF is 1
2nc(t) with power content

Pn,o =
1
4
Pnc =

1
4
Pn =

N0W

2

If the DSB modulated signal is u(t) = m(t) cos(2πfct), then its autocorrelation function is R̄u(τ) =
1
2RM (τ) cos(2πfcτ) and its power

Pu = R̄u(0) =
1
2
RM (0) =

∫ ∞

−∞
Su(f)df = 2WP0

From this relation we find RM (0) = 4WP0. The signal at the output of the LPF is y(t) = 1
2m(t)

with power content

Ps,o =
1
4
E[m2(t)] =

1
4
RM (0) = WP0

Hence, the SNR at the output of the demodulator is

SNR =
Ps,o

Pn,o
=
WP0
N0W

2

=
2P0

N0
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Problem 5.4
First we determine the baseband signal to noise ratio ( S

N )b. With W = 1.5 × 106, we obtain(
S

N

)
b
=

PR

N0W
=

PR

2 × 0.5 × 10−14 × 1.5 × 106 =
PR108

1.5

Since the channel attenuation is 90 db, then

10 log
PT

PR
= 90 =⇒ PR = 10−9PT

Hence, (
S

N

)
b
=
PR108

1.5
=

108 × 10−9PT

1.5
=
PT

15

1) If USSB is employed, then(
S

N

)
o,USSB

=
(
S

N

)
b
= 103 =⇒ PT = 15 × 103 = 15 KWatts

2) If conventional AM is used, then(
S

N

)
o,AM

= η

(
S

N

)
b
= η

PT

15

where, η = α2PMn
1+α2PMn

. Since, max[|m(t)| = 1, we have

PMn = PM =
∫ 1

−1

1
2
x2dx =

1
3

and, therefore

η =
0.25 × 1

3

1 + 0.25 × 1
3

=
1
13

Hence, (
S

N

)
o,AM

=
1
13
PT

15
= 103 =⇒ PT = 195 KWatts

3) For DSB modulation(
S

N

)
o,DSB

=
(
S

N

)
b
=
PT

15
= 103 =⇒ PT = 15 KWatts

Problem 5.5
1) Since |H(f)| = 1 for f = |fc ± fm|, the signal at the output of the noise-limiting filter is

r(t) = 10−3[1 + α cos(2πfmt+ φ)] cos(2πfct) + n(t)

The signal power is

PR = lim
T→∞

∫ T
2

− T
2

10−6[1 + α cos(2πfmt+ φ)]2 cos2(2πfct)dt

=
10−6

2
[1 +

α2

2
] = 56.25 × 10−6
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The noise power at the output of the noise-limiting filter is

Pn,o =
1
2
Pnc =

1
2
Pn =

1
2
N0

2
× 2 × 2500 = 25 × 10−10

2) Multiplication of r(t) by 2 cos(2πfct) yields

y(t) =
10−3

2
[1 + α cos(2πfmt)]2 +

1
2
nc(t)2

+ double frequency terms

The LPF rejects the double frequency components and therefore, the output of the filter is

v(t) = 10−3[1 + α cos(2πfmt)] + nc(t)

If the dc component is blocked, then the signal power at the output of the LPF is

Po =
10−6

2
0.52 = 0.125 × 10−6

whereas, the output noise power is

Pn,o = Pnc = Pn = 2
N0

2
2000 = 40 × 10−10

where we have used the fact that the lowpass filter has a bandwidth of 1000 Hz. Hence, the output
SNR is

SNR =
0.125 × 10−6

40 × 10−10 = 31.25 14.95 db

Problem 5.6
The one-sided noise equivalent bandwidth is defined as

Beq =
∫∞
0 |H(f)|2df
|H(f)|2max

It is usually convenient to substitute |H(f)|2f=0 for |H(f)|2max in the denominator, since the peaking
of the magnitude transfer function may be high (especially for small ζ) creating in this way anoma-
lies. On the other hand if ζ is less, but close, to one, |H(f)|2max can be very well approximated by
|H(f)|2f=0. Hence,

Beq =
∫∞
0 |H(f)|2df
|H(f)|2f=0

and since

|H(f)|2 =
ω2

n + j2πf
(
2ζωn − ω2

n
K

)
ω2

n − 4π2f2 + j2πf2ζωn

we find that |H(0)| = 1. Therefore,

Beq =
∫ ∞

0
|H(f)|2df

For the passive second order filter

H(s) =
s(2ζωn − ω2

n
K ) + ω2

n

s2 + 2ζωn + ω2
n
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τ1 � 1, so that ω2
n

K = 1
τ1

≈ 0 and

H(s) =
s2ζωn + ω2

n

s2 + 2ζωn + ω2
n

The Beq can be written as

Beq =
1

4πj

∫ j∞

−j∞
H(s)H(−s)ds

Since, H(s) = KG(s)/s
1+KG(s)/s we obtain lim|s|→∞H(s)H(−s) = 0. Hence, the integral for Beq can be

taken along a contour, which contains the imaginary axis and the left half plane. Furthermore,
since G(s) is a rational function of s, the integral is equal to half the sum of the residues of the left
half plane poles of H(s)H(−s). Hence,

Beq =
1
2

[
(s+ ζωn + ωn

√
ζ2 − 1)H(s)H(−s)

∣∣∣∣
s=−ζωn−ωn

√
ζ2−1

+(s+ ζωn − ωn

√
ζ2 − 1)H(s)H(−s)

∣∣∣∣
s=−ζωn+ωn

√
ζ2−1

]

=
ωn

8
(4ζ +

1
ζ
) =

1 + 4ζ2

8ζ/ωn

=
1 + ω2

nτ
2
2 + (ωn

K )2 + 2ω2
nτ2
K

8ζ/ωn

≈ 1 + ω2
nτ

2
2

8ζ/ωn

where we have used the approximation ωn
K ≈ 0.

Problem 5.7
1) In the case of DSB, the output of the receiver noise-limiting filter is

r(t) = u(t) + n(t)
= Acm(t) cos(2πfct+ φc(t))

+nc(t) cos(2πfct) − ns(t) sin(2πfct)

The power of the received signal is Ps = A2
c

2 Pm, whereas the power of the noise

Pn,o =
1
2
Pnc +

1
2
Pns = Pn

Hence, the SNR at the output of the noise-limiting filter is(
S

N

)
o,lim

=
A2

cPm

2Pn

Assuming coherent demodulation, the output of the demodulator is

y(t) =
1
2
[Acm(t) + nc]

The output signal power is Po = 1
4A

2
cPm whereas the output noise power

Pn,o =
1
4
Pnc =

1
4
Pn

Hence, (
S

N

)
o,dem

=
A2

cPm

Pn
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and the demodulation gain is given by

dem. gain =

(
S
N

)
o,dem(

S
N

)
o,lim

= 2

2) In the case of SSB, the output of the receiver noise-limiting filter is

r(t) = Acm(t) cos(2πfct) ±Acm̂(t) sin(2πfct) + n(t)

The received signal power is Ps = A2
cPm, whereas the received noise power is Pn,o = Pn. At the

output of the demodulator

y(t) =
Ac

2
m(t) +

1
2
nc(t)

with Po = 1
4A

2
cPm and Pn,o = 1

4Pnc = 1
4Pn. Therefore,

dem. gain =

(
S
N

)
o,dem(

S
N

)
o,lim

=
A2

cPm

Pn

A2
cPm

Pn

= 1

3) In the case of conventional AM modulation, the output of the receiver noise-limiting filter is

r(t) = [Ac(1 + αmn(t)) + nc(t)] cos(2πfct) − ns(t) sin(2πfct)

The total pre-detection power in the signal is

Ps =
A2

c

2
(1 + α2PMn)

In this case, the demodulation gain is given by

dem. gain =

(
S
N

)
o,dem(

S
N

)
o,lim

=
2α2PMn

1 + α2PMn

The highest gain is achieved for α = 1, that is 100% modulation.

4) For an FM system, the output of the receiver front-end (bandwidth Bc) is

r(t) = Ac cos(2πfct+ φ(t)) + n(t)

= Ac cos(2πfct+ 2πkf

∫ t

−∞
m(τ)dτ) + n(t)

The total signal input power is Ps,lim = A2
c

2 , whereas the pre-detection noise power is

Pn,lim =
N0

2
2Bc = N0Bc = N02(βf + 1)W

Hence, (
S

N

)
o,lim

=
A2

c

2N02(βf + 1)W

The output (post-detection) signal to noise ratio is(
S

N

)
o,dem

=
3k2

fA
2
cPM

2N0W 3
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Thus, the demodulation gain is

dem. gain =

(
S
N

)
o,dem(

S
N

)
o,lim

=
3β2

fPM2(βf + 1)
(max[|m(t)|])2 = 6β2

f (βf + 1)PMn

5) Similarly for the PM case we find that(
S

N

)
o,lim

=
A2

c

2N02(βp + 1)W

and (
S

N

)
o,dem

=
k2

pA
2
cPM

2N0W

Thus, the demodulation gain for a PM system is

dem. gain =

(
S
N

)
o,dem(

S
N

)
o,lim

=
β2

pPM2(βp + 1)
(max[|m(t)|])2 = 2β2

p(βp + 1)PMn

Problem 5.8
1) Since the channel attenuation is 80 db, then

10 log
PT

PR
= 80 =⇒ PR = 10−8PT = 10−8 × 40 × 103 = 4 × 10−4 Watts

If the noise limiting filter has bandwidth B, then the pre-detection noise power is

Pn = 2
∫ fc+B

2

fc− B
2

N0

2
df = N0B = 2 × 10−10B Watts

In the case of DSB or conventional AM modulation, B = 2W = 2 × 104 Hz, whereas in SSB
modulation B = W = 104. Thus, the pre-detection signal to noise ratio in DSB and conventional
AM is

SNRDSB,AM =
PR

Pn
=

4 × 10−4

2 × 10−10 × 2 × 104 = 102

and for SSB

SNRSSB =
4 × 10−4

2 × 10−10 × 104 = 2 × 102

2) For DSB, the demodulation gain (see Problem 5.7) is 2. Hence,

SNRDSB,o = 2SNRDSB,i = 2 × 102

3) The demodulation gain of a SSB system is 1. Thus,

SNRSSB,o = SNRSSB,i = 2 × 102

4) For conventional AM with α = 0.8 and PMn = 0.2, we have

SNRAM,o =
α2PMn

1 + α2PMn

SNRAM,i = 0.1135 × 2 × 102
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Problem 5.9
1) For an FM system that utilizes the whole bandwidth Bc = 2(βf + 1)W , therefore

2(βf + 1) =
100
4

=⇒ bf = 11.5

Hence, (
S

N

)
o,FM

= 3
A2

c

2

(
βf

max[|m(t)|]

)2 PM

N0W
= 3

A2
c

2
β2

f

PMn

N0W

For an AM system (
S

N

)
o,AM

=
A2

cα
2PMn

2N0W

Hence, (
S
N

)
o,FM(

S
N

)
o,AM

=
3β2

f

α2 = 549.139 ∼ 27.3967 dB

2) Since the PM and FM systems provide the same SNR(
S

N

)
o,PM

=
k2

pA
2
c

2
PM

N0W
=

3k2
fA

2
c

2W 2
PM

N0W
=
(
S

N

)
o,FM

or
k2

p

3k2
f

=
1
W 2 =⇒

β2
p

3β2
fW

2 =
1
W 2

Hence,
BWPM

BWFM
=

2(βp + 1)W
2(βf + 1)W

=
√

3βf + 1
βf + 1

Problem 5.10
1) The received signal power can be found from

10 log
PT

PR
= 80 =⇒ PR = 10−8PT = 10−4 Watts

(
S

N

)
o

=
α2PMn

1 + α2PMn

(
S

N

)
b
=

α2PMn

1 + α2PMn

PR

N0W

Thus, with PR = 10−4, PMn = 0.1, α = 0.8 and

N0W = 2 × 0.5 × 10−12 × 5 × 103 = 5 × 10−9

we find that (
S

N

)
o

= 1204 30.806 db

2) Using Carson’s rule, we obtain

Bc = 2(β + 1)W =⇒ 100 × 103 = 2(β + 1)5 × 103 =⇒ β = 9

We check now if the threshold imposes any restrictions.(
S

N

)
b,th

=
PR

N0W
= 20(β + 1) =

10−4

10−12 × 5 × 103 =⇒ β = 999
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Since we are limited in bandwidth we choose β = 9. The output signal to noise ratio is(
S

N

)
o

= 3β20.1
(
S

N

)
b
= 3 × 92 × 0.1 × 105

5
= 486000 56.866 db

Problem 5.11
1) First we check whether the threshold or the bandwidth impose a restrictive bound on the
modulation index. By Carson’s rule

Bc = 2(β + 1)W =⇒ 60 × 103 = 2(β + 1) × 8 × 103 =⇒ β = 2.75

Using the relation (
S

N

)
o

= 60β2(β + 1)PMn

with
(

S
N

)
o

= 104 and PMn = 1
2 we find

104 = 30β2(β + 1) =⇒ β = 6.6158

Since we are limited in bandwidth we choose β = 2.75. Then,(
S

N

)
o

= 3β2PMn

(
S

N

)
b
=⇒

(
S

N

)
b
=

2 × 104

3 × 2.752 = 881.542

Thus, (
S

N

)
b
=

PR

N0W
= 881.542 =⇒ PR = 881.542 × 2 × 10−12 × 8 × 103 = 1.41 × 10−5

Since the channel attenuation is 40 db, we find

PT = 104PR = 0.141 Watts

2) If the minimum required SNR is increased to 60 db, then the β from Carson’s rule remains the
same, whereas from the relation (

S

N

)
o

= 60β2(β + 1)PMn = 106

we find β = 31.8531. As in part 1) we choose β = 2.75, and therefore(
S

N

)
b
=

1
3β2PMn

(
S

N

)
o

= 8.8154 × 104

Thus,
PR = N0W8.8154 × 104 = 2 × 10−12 × 8 × 103 × 8.8154 × 104 = 0.0014

and
PT = 104PR = 14 Watts

3) The frequency response of the receiver (de-emphasis) filter is given by

Hd(f) =
1

1 + j f
f0
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with f0 = 1
2π×75×10−6 = 2100 Hz. In this case,

(
S

N

)
o,PD

=
(W

f0
)3

3
(

W
f0

− arctan W
f0

) ( S
N

)
o

= 106

From this relation we find (
S

N

)
o

= 1.3541 × 105 =⇒ PR = 9.55 × 10−5

and therefore,
PT = 104PR = 0.955 Watts

Problem 5.12

1. To determine the autocorrelation function of U(t), we have

RU (t, t+ τ) = E[U(t+ τ)U(t)]
= A2

cE[cos(2πfct+ Φ(t)) cos(2πfc(t+ τ) +
+ Φ(t+ τ))]

Obviously the process U(t) is not stationary.

2.

R̄U (τ) = lim
T→∞

1
T

∫ T/2

−T/2
RU (t, t+ τ) dt

This gives

R̄U (τ) = A2
c lim

T→∞
1
T
E
[ ∫ T/2

−T/2
cos(2πfct+ Φ(t)) ×

× cos(2πfc(t+ τ) + Φ(t+ τ)) dt
]

=
A2

c

2
lim

T→∞
1
T
E
[ ∫ T/2

−T/2
[ cos(4πfct+ 2πfcτ + Φ(t) + Φ(t+ τ)) +

+ cos(2πfcτ + Φ(t+ τ) − Φ(t))] dt
]

a
=

A2
c

2
lim

T→∞
1
T

∫ T/2

−T/2
E
[
cos(2πfcτ + Φ(t+ τ) − Φ(t))

]
dt

=
A2

c

2
lim

T→∞
1
T

∫ T/2

−T/2
Re
[
ej2πfcτE[ej(Φ(t+τ)−Φ(t))]

]
dt

where the equality in (a) follows from the fact that cos(4πfct + 2πfcτ + Φ(t) + Φ(t + τ)) is
a bandpass signal centered at 2fc and its dc value (as demonstrated by the integral) is zero.
Now it remains to find

E
[
[ej(Φ(t+τ)−Φ(t))]

]
Since Φ(t) is a zero mean stationary Gaussian process with the autocorrelation function
denoted by RΦ(τ), we conclude that for fixed t and τ , the random variable Z(t, τ) = Φ(t +
τ) − Φ(t) is a zero mean Gaussian random variable since it is a linear combination of two
jointly Gaussian random variables. The variance of this random variable is easily computed
to be

σ2
Z = 2RΦ(0) − 2RΦ(τ)
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Now we have

E[[ej(Φ(t+τ)−Φ(t))]
]

= E[ejZ(t,τ)]

= e−
1
2σ2

Z

= e−(RΦ(0)−RΦ(τ))

where we have used the fact that the characteristic function of a zero mean Gaussian random
variable is given by

E[ejωX ] = e−
1
2ω2σ2

X

Substituting we obtain

R̄U (τ) =
A2

c

2
lim

T→∞
1
T

∫ T/2

T/2
Re
[
ej2πfcτe−(RΦ(0)−RΦ(τ))

]
dt

=
A2

c

2
cos(2πfcτ)e−(RΦ(0)−RΦ(τ))

=
A2

c

2
cos(2πfcτ)g(τ)

where, by definition,
g(τ) = e−(RΦ(0)−RΦ(τ))

3. Now we can obtain the power spectral density of the modulated process U(t) by taking the
Fourier transform of R̄U (τ).

SU (f) = F [
A2

c

2
cos(2πfcτ)g(τ)]

=
A2

c

4
[G(f − fc) +G(f + fc)]

where
G(f) = e−RΦ(0)F [eRΦ(τ)]

Problem 5.13
1) In the next figure we plot a typical USSB spectrum for K = 3. Note that only the positive
frequency axis is shown.

USSB

f3W2WW0

2) The bandwidth of the signal m(t) is Wm = KW .

3) The noise power at the output of the LPF of the FM demodulator is

Pn,o =
∫ Wm

−Wm

Sn,o(f)df =
2N0W

3
m

3A2
c

=
2N0W

3

3A2
c

K3

where Ac is the amplitude of the FM signal. As it is observed the power of the noise that enters
the USSB demodulators is proportional to the cube of the number of multiplexed signals.
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The ith message USSB signal occupies the frequency band [(i − 1)W, iW ]. Since the power
spectral density of the noise at the output of the FM demodulator is Sn,o(f) = N0

A2
c
f2, we conclude

that the noise power at the output of the ith USSB demodulator is

Pn,oi
=

1
4
Pni =

1
4
2
∫ iW

−(i−1)W

N0

A2
c

f2df =
N0

2A2
c

1
3
f3
∣∣∣∣iW−(i−1)W

=
N0W

3

6A2
c

(3i2 − 3i+ 1)

Hence, the noise power at the output of the ith USSB demodulator depends on i.

4) Using the results of the previous part, we obtain

Pn,oi

Pn,oj

=
3i2 − 3i+ 1
3j2 − 3j + 1

5) The output signal power of the ith USSB demodulator is Psi = A2
i

4 PMi . Hence, the SNR at the
output of the ith demodulator is

SNRi =
A2

i
4 PMi

N0W 3

6A2
c

(3i2 − 3i+ 1)

Assuming that PMi is the same for all i, then in order to guarantee a constant SNRi we have to
select A2

i proportional to 3i2 − 3i+ 1.

Problem 5.14
1) The power is given by

P =
V 2

R

Hence, with R = 50, P = 20, we obtain

V 2 = PR = 20 × 50 = 1000 =⇒ V = 1000
1
2 = 31.6228 Volts

2) The current through the load resistance is

i =
V

R
=

31.6228
50

= 0.6325 Amp

3) The dBm unit is defined as

dBm = 10 log
(

actual power in Watts
10−3

)
= 30 + 10 log(actual power in Watts)

Hence,
P = 30 + 10 log(50) = 46.9897 dBm

Problem 5.15
1) The overall loss in 200 Km is 200 × 20 = 400 dB. Since the line is loaded with the characteristic
impedance, the delivered power to the line is twice the power delivered to the load in absence of
line loss. Hence, the required power is 20 + 400 = 420 dBm.

2) Each repeater provides a gain of 20 dB, therefore the spacing between two adjacent receivers
can be up to 20/2 = 10 Km to attain a constant signal level at the input of all repeaters. This
means that a total of 200/10 = 20 repeaters are required.
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Problem 5.16
1) Since the noise figure is 2 dB, we have

10 log
(

1 +
Te

290

)
= 2

and therefore Te = 169.62◦ K.

2) To determine the output power we have

Pno = GkBneq(T + Te)

where 10 log G = 35, and therefore, G = 103.5 = 3162. From this we obtain

Pno = 3162 × 1.38 × 10−23 × 10 × 106(169.62 + 50) = 9.58 × 10−11 Watts ∼ −161.6 dBm

Problem 5.17
Using the relation Pno = GkBneq(T +Te) with Pno = 108kT0, Bneq = 25×103, G = 103 and T = T0,
we obtain

(108 − 25 × 106)T0 = 25 × 106Te =⇒ Te = 3T0

The noise figure of the amplifier is

F =
(

1 +
Te

T

)
= 1 + 3 = 4

Problem 5.18
The proof is by induction on m, the number of the amplifiers. We assume that the physical
temperature T is the same for all the amplifiers. For m = 2, the overall gain of the cascade of the
two amplifiers is G = G1G2, whereas the total noise at the output of the second amplifier is due to
the source noise amplified by two stages, the first stage noise excess noise amplified by the second
stage, and the second stage excess noise. Hence,

Pn2 = G1G2Pns + G2Pni,1 + Pni,2

= G1G2kT Bneq + G2(G1kBneqTe1) + G2kBneqTe2

The noise of a single stage model with effective noise temperature Te, and gain G1G2 is

Pn = G1G2kBneq(T + Te)

Equating the two expressions for the output noise we obtain

G1G2(T + Te) = G1G2T + G1G2Te1 + G2Te2

or
Te = Te1 +

Te2

G1

Assume now that if the number of the amplifiers is m− 1, then

T ′
e = Te1 +

Te2

G1
+ · · · Tem−1

G1 · · · Gm−2

Then for the cascade of m amplifiers

Te = T ′
e +

Tem

G′

where G′ = G1 · · · Gm−1 is the gain of the m− 1 amplifiers and we have used the results for m = 2.
Thus,

Te = Te1 +
Te2

G1
+ · · · Tem−1

G1 · · · Gm−2
+

Tem

G1 · · · Gm−1
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Chapter 6

Problem 6.1

H(X) = −
6∑

i=1

pi log2 pi = −(0.1 log2 0.1 + 0.2 log2 0.2

+0.3 log2 0.3 + 0.05 log2 0.05 + 0.15 log2 0.15 + 0.2 log2 0.2)
= 2.4087 bits/symbol

If the source symbols are equiprobable, then pi = 1
6 and

Hu(X) = −
6∑

i=1

pi log2 pi = − log2
1
6

= log2 6 = 2.5850 bits/symbol

As it is observed the entropy of the source is less than that of a uniformly distributed source.

Problem 6.2
If the source is uniformly distributed with size N , then pi = 1

N for i = 1, . . . , N . Hence,

H(X) = −
N∑

i=1

pi log2 pi = −
N∑

i=1

1
N

log2
1
N

= − 1
N
N log2

1
N

= log2N

Problem 6.3

H(X) = −
∑

i

pi log pi =
∑

i

pi log
1
pi

By definition the probabilities pi satisfy 0 < pi ≤ 1 so that 1
pi

≥ 1 and log 1
pi

≥ 0. It turns out that
each term under summation is positive and thus H(X) ≥ 0. If X is deterministic, then pk = 1 for
some k and pi = 0 for all i �= k. Hence,

H(X) = −
∑

i

pi log pi = −pk log 1 = −pk0 = 0

Note that limx→0 x log x = 0 so if we allow source symbols with probability zero, they contribute
nothing in the entropy.

Problem 6.4
1)

H(X) = −
∞∑

k=1

p(1 − p)k−1 log2(p(1 − p)k−1)

= −p log2(p)
∞∑

k=1

(1 − p)k−1 − p log2(1 − p)
∞∑

k=1

(k − 1)(1 − p)k−1

= −p log2(p)
1

1 − (1 − p)
− p log2(1 − p)

1 − p

(1 − (1 − p))2

= − log2(p) − 1 − p

p
log2(1 − p)
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2) Clearly p(X = k|X > K) = 0 for k ≤ K. If k > K, then

p(X = k|X > K) =
p(X = k,X > K)

p(X > K)
=
p(1 − p)k−1

p(X > K)

But,

p(X > K) =
∞∑

k=K+1

p(1 − p)k−1 = p

( ∞∑
k=1

(1 − p)k−1 −
K∑

k=1

(1 − p)k−1

)

= p

(
1

1 − (1 − p)
− 1 − (1 − p)K

1 − (1 − p)

)
= (1 − p)K

so that

p(X = k|X > K) =
p(1 − p)k−1

(1 − p)K

If we let k = K + l with l = 1, 2, . . ., then

p(X = k|X > K) =
p(1 − p)K(1 − p)l−1

(1 − p)K
= p(1 − p)l−1

that is p(X = k|X > K) is the geometrically distributed. Hence, using the results of the first part
we obtain

H(X|X > K) = −
∞∑
l=1

p(1 − p)l−1 log2(p(1 − p)l−1)

= − log2(p) − 1 − p

p
log2(1 − p)

Problem 6.5

H(X,Y ) = H(X, g(X)) = H(X) +H(g(X)|X)
= H(g(X)) +H(X|g(X))

But, H(g(X)|X) = 0, since g(·) is deterministic. Therefore,

H(X) = H(g(X)) +H(X|g(X))

Since each term in the previous equation is non-negative we obtain

H(X) ≥ H(g(X))

Equality holds when H(X|g(X)) = 0. This means that the values g(X) uniquely determine X, or
that g(·) is a one to one mapping.

Problem 6.6
The entropy of the source is

H(X) = −
6∑

i=1

pi log2 pi = 2.4087 bits/symbol

The sampling rate is
fs = 2000 + 2 · 6000 = 14000 Hz
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This means that 14000 samples are taken per each second. Hence, the entropy of the source in bits
per second is given by

H(X) = 2.4087 × 14000 (bits/symbol) × (symbols/sec) = 33721.8 bits/second

Problem 6.7
Consider the function f(x) = x− 1 − lnx. For x > 1,

df(x)
dx

= 1 − 1
x
> 0

Thus, the function is monotonically increasing. Since, f(1) = 0, the latter implies that if x > 1
then, f(x) > f(1) = 0 or lnx < x− 1. If 0 < x < 1, then

df(x)
dx

= 1 − 1
x
< 0

which means that the function is monotonically decreasing. Hence, for x < 1, f(x) > f(1) = 0 or
lnx < x− 1. Therefore, for every x > 0,

lnx ≤ x− 1

with equality if x = 0. Applying the inequality with x = 1/N
pi

, we obtain

ln
1
N

− ln pi ≤ 1/N
pi

− 1

Multiplying the previous by pi and adding, we obtain

N∑
i=1

pi ln
1
N

−
N∑

i=1

pi ln pi ≤
N∑

i=1

(
1
N

− pi

)
= 0

Hence,

H(X) ≤ −
N∑

i=1

pi ln
1
N

= lnN
N∑

i=1

pi = lnN

But, lnN is the entropy (in nats/symbol) of the source when it is uniformly distributed (see Problem
6.2). Hence, for equiprobable symbols the entropy of the source achieves its maximum.

Problem 6.8
Suppose that qi is a distribution over 1, 2, 3, . . . and that

∞∑
i=1

iqi = m

Let vi = 1
qim

(
1 − 1

m

)i−1
and apply the inequality lnx ≤ x− 1 to vi. Then,

ln

[
1
m

(
1 − 1

m

)i−1
]

− ln qi ≤ 1
qim

(
1 − 1

m

)i−1
− 1

Multiplying the previous by qi and adding, we obtain

∞∑
i=1

qi ln

[
1
m

(
1 − 1

m

)i−1
]

−
∞∑
i=1

qi ln qi ≤
∞∑
i=1

1
m

(1 − 1
m

)i−1 −
∞∑
i=1

qi = 0
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But,
∞∑
i=1

qi ln

[
1
m

(
1 − 1

m

)i−1
]

=
∞∑
i=1

qi

[
ln(

1
m

) + (i− 1) ln(1 − 1
m

)
]

= ln(
1
m

) + ln(1 − 1
m

)
∞∑
i=1

(i− 1)qi

= ln(
1
m

) + ln(1 − 1
m

)

[ ∞∑
i=1

iqi −
∞∑
i=1

qi

]

= ln(
1
m

) + ln(1 − 1
m

)(m− 1) = −H(p)

where H(p) is the entropy of the geometric distribution (see Problem 6.4). Hence,

−H(p) −
∞∑
i=1

qi ln qi ≤ 0 =⇒ H(q) ≤ H(p)

Problem 6.9
The marginal probabilities are given by

p(X = 0) =
∑
k

p(X = 0, Y = k) = p(X = 0, Y = 0) + p(X = 0, Y = 1) =
2
3

p(X = 1) =
∑
k

p(X = 1, Y = k) = p(X = 1, Y = 1) =
1
3

p(Y = 0) =
∑
k

p(X = k, Y = 0) = p(X = 0, Y = 0) =
1
3

p(Y = 1) =
∑
k

p(X = k, Y = 1) = p(X = 0, Y = 1) + p(X = 1, Y = 1) =
2
3

Hence,

H(X) = −
1∑

i=0

pi log2 pi = −(
1
3

log2
1
3

+
1
3

log2
1
3
) = .9183

H(X) = −
1∑

i=0

pi log2 pi = −(
1
3

log2
1
3

+
1
3

log2
1
3
) = .9183

H(X,Y ) = −
2∑

i=0

1
3

log2
1
3

= 1.5850

H(X|Y ) = H(X,Y ) −H(Y ) = 1.5850 − 0.9183 = 0.6667
H(Y |X) = H(X,Y ) −H(X) = 1.5850 − 0.9183 = 0.6667

Problem 6.10

H(Y |X) = −
∑
x,y

p(x, y) log p(y|x)

But, p(y|x) = p(g(x)|x) = 1. Hence, log p(g(x)|x) = 0 and H(Y |X) = 0.

Problem 6.11
1)

H(X) = −(.05 log2 .05 + .1 log2 .1 + .1 log2 .1 + .15 log2 .15
+.05 log2 .05 + .25 log2 .25 + .3 log2 .3) = 2.5282
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2) After quantization, the new alphabet is B = {−4, 0, 4} and the corresponding symbol probabil-
ities are given by

p(−4) = p(−5) + p(−3) = .05 + .1 = .15
p(0) = p(−1) + p(0) + p(1) = .1 + .15 + .05 = .3
p(4) = p(3) + p(5) = .25 + .3 = .55

Hence, H(Q(X)) = 1.4060. As it is observed quantization decreases the entropy of the source.

Problem 6.12
Using the first definition of the entropy rate, we have

H = lim
n→∞H(Xn|X1, . . . Xn−1)

= lim
n→∞ (H(X1, X2, . . . , Xn) −H(X1, X2, . . . , Xn−1))

However, X1, X2, . . . Xn are independent, so that

H = lim
n→∞

(
n∑

i=1

H(Xi) −
n−1∑
i=1

H(Xi)

)
= lim

n→∞H(Xn) = H(X)

where the last equality follows from the fact that X1, . . . , Xn are identically distributed.
Using the second definition of the entropy rate, we obtain

H = lim
n→∞

1
n
H(X1, X2, . . . , Xn)

= lim
n→∞

1
n

n∑
i=1

H(Xi)

= lim
n→∞

1
n
nH(X) = H(X)

The second line of the previous relation follows from the independence ofX1,X2, . . . Xn, whereas the
third line from the fact that for a DMS the random variables X1, . . . Xn are identically distributed
independent of n.

Problem 6.13

H = lim
n→∞H(Xn|X1, . . . , Xn−1)

= lim
n→∞

[
−

∑
x1,...,xn

p(x1, . . . , xn) log2 p(xn|x1, . . . , xn−1)

]

= lim
n→∞

[
−

∑
x1,...,xn

p(x1, . . . , xn) log2 p(xn|xn−1)

]

= lim
n→∞

−
∑

xn,xn−1

p(xn, xn−1) log2 p(xn|xn−1)


= lim

n→∞H(Xn|Xn−1)

However, for a stationary process p(xn, xn−1) and p(xn|xn−1) are independent of n, so that

H = lim
n→∞H(Xn|Xn−1) = H(Xn|Xn−1)
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Problem 6.14

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y) = −
∑
x,y

p(x|y)p(y) log p(x|y)

=
∑
y

p(y)

(
−
∑
x

p(x|y) log p(x|y)
)

=
∑
y

p(y)H(X|Y = y)

Problem 6.15
1) The marginal distribution p(x) is given by p(x) =

∑
y p(x, y). Hence,

H(X) = −
∑
x

p(x) log p(x) = −
∑
x

∑
y

p(x, y) log p(x)

= −
∑
x,y

p(x, y) log p(x)

Similarly it is proved that H(Y ) = −∑
x,y p(x, y) log p(y).

2) Using the inequality lnw ≤ w − 1 with w = p(x)p(y)
p(x,y) , we obtain

ln
p(x)p(y)
p(x, y)

≤ p(x)p(y)
p(x, y)

− 1

Multiplying the previous by p(x, y) and adding over x, y, we obtain∑
x,y

p(x, y) ln p(x)p(y) −
∑
x,y

p(x, y) ln p(x, y) ≤
∑
x,y

p(x)p(y) −
∑
x,y

p(x, y) = 0

Hence,

H(X,Y ) ≤ −
∑
x,y

p(x, y) ln p(x)p(y) = −
∑
x,y

p(x, y)(ln p(x) + ln p(y))

= −
∑
x,y

p(x, y) ln p(x) −
∑
x,y

p(x, y) ln p(y) = H(X) +H(Y )

Equality holds when p(x)p(y)
p(x,y) = 1, i.e when X, Y are independent.

Problem 6.16

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

Also, from Problem 6.15, H(X,Y ) ≤ H(X) +H(Y ). Combining the two relations, we obtain

H(Y ) +H(X|Y ) ≤ H(X) +H(Y ) =⇒ H(X|Y ) ≤ H(X)

Suppose now that the previous relation holds with equality. Then,

−
∑
x

p(x) log p(x|y) = −
∑
x

p(x) log p(x) ⇒
∑
x

p(x) log(
p(x)
p(x|y)) = 0

However, p(x) is always greater or equal to p(x|y), so that log(p(x)/p(x|y)) is non-negative. Since
p(x) > 0, the above equality holds if and only if log(p(x)/p(x|y)) = 0 or equivalently if and only if
p(x)/p(x|y) = 1. This implies that p(x|y) = p(x) meaning that X and Y are independent.
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Problem 6.17
To show that q = λp1 + λ̄p2 is a legitimate probability vector we have to prove that 0 ≤ qi ≤ 1
and

∑
i qi = 1. Clearly 0 ≤ p1,i ≤ 1 and 0 ≤ p2,i ≤ 1 so that

0 ≤ λp1,i ≤ λ, 0 ≤ λ̄p2,i ≤ λ̄

If we add these two inequalities, we obtain

0 ≤ qi ≤ λ+ λ̄ =⇒ 0 ≤ qi ≤ 1

Also, ∑
i

qi =
∑

i

(λp1,i + λ̄p2,i) = λ
∑

i

p1,i + λ̄
∑

i

p2,i = λ+ λ̄ = 1

Before we prove that H(X) is a concave function of the probability distribution on X we show that
lnx ≥ 1 − 1

x . Since ln y ≤ y − 1, we set x = 1
y so that − lnx ≤ 1

x − 1 ⇒ lnx ≥ 1 − 1
x . Equality

holds when y = 1
x = 1 or else if x = 1.

H(λp1 + λ̄p2) − λH(p1) − λ̄H(p2)

= λ
∑

i

p1,i log

(
p1,i

λp1,i + λ̄p2,i

)
+ λ̄

∑
i

p2,i log

(
p2,i

λp1,i + λ̄p2,i

)

≥ λ
∑

i

p1,i

(
1 − λp1,i + λ̄p2,i

p1,i

)
+ λ̄

∑
i

p2,i

(
1 − λp1,i + λ̄p2,i

p2,i

)
= λ(1 − 1) + λ̄(1 − 1) = 0

Hence,
λH(p1) + λ̄H(p2) ≤ H(λp1 + λ̄p2)

Problem 6.18
Let pi(xi) be the marginal distribution of the random variable Xi. Then,

n∑
i=1

H(Xi) =
n∑

i=1

[
−
∑
xi

pi(xi) log pi(xi)

]

= −
∑
x1

∑
x2

· · ·
∑
xn

p(x1, x2, · · · , xn) log

(
n∏

i=1

pi(xi)

)

Therefore,

n∑
i=1

H(Xi) −H(X1, X2, · · ·Xn)

=
∑
x1

∑
x2

· · ·
∑
xn

p(x1, x2, · · · , xn) log
(
p(x1, x2, · · · , xn)∏n

i=1 pi(xi)

)

≥
∑
x1

∑
x2

· · ·
∑
xn

p(x1, x2, · · · , xn)
(

1 −
∏n

i=1 pi(xi)
p(x1, x2, · · · , xn)

)
=

∑
x1

∑
x2

· · ·
∑
xn

p(x1, x2, · · · , xn) −
∑
x1

∑
x2

· · ·
∑
xn

p1(x1)p2(x2) · · · pn(xn)

= 1 − 1 = 0
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where we have used the inequality lnx ≥ 1 − 1
x (see Problem 6.17.) Hence,

H(X1, X2, · · ·Xn) ≤
n∑

i=1

H(Xi)

with equality if
∏n

i=1 pi(xi) = p(x1, · · · , xn), i.e. a memoryless source.

Problem 6.19
1) The probability of an all zero sequence is

p(X1 = 0, X2 = 0, · · · , Xn = 0) = p(X1 = 0)p(X2 = 0) · · · p(Xn = 0) =
(

1
2

)n

2) Similarly with the previous case

p(X1 = 1, X2 = 1, · · · , Xn = 1) = p(X1 = 1)p(X2 = 1) · · · p(Xn = 1) =
(

1
2

)n

3)

p(X1 = 1, · · · , Xk = 1, Xk+1 = 0, · · ·Xn = 0)
= p(X1 = 1) · · · p(Xk = 1)p(Xk+1 = 0) · · · p(Xn = 0)

=
(

1
2

)k (1
2

)n−k

=
(

1
2

)n

4) The number of zeros or ones follows the binomial distribution. Hence

p(k ones ) =

(
n
k

)(
1
2

)k (1
2

)n−k

=

(
n
k

)(
1
2

)n

5) In case that p(Xi = 1) = p, the answers of the previous questions change as follows

p(X1 = 0, X2 = 0, · · · , Xn = 0) = (1 − p)n

p(X1 = 1, X2 = 1, · · · , Xn = 1) = pn

p(first k ones, next n− k zeros) = pk(1 − p)n−k

p(k ones ) =

(
n
k

)
pk(1 − p)n−k

Problem 6.20
From the discussion in the beginning of Section 6.2 it follows that the total number of sequences
of length n of a binary DMS source producing the symbols 0 and 1 with probability p and 1 − p
respectively is 2nH(p). Thus if p = 0.3, we will observe sequences having np = 3000 zeros and
n(1 − p) = 7000 ones. Therefore,

# sequences with 3000 zeros ≈ 28813

Another approach to the problem is via the Stirling’s approximation. In general the number of
binary sequences of length n with k zeros and n− k ones is the binomial coefficient(

n
k

)
=

n!
k!(n− k)!
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To get an estimate when n and k are large numbers we can use Stirling’s approximation

n! ≈
√

2πn
(
n

e

)n

Hence,

# sequences with 3000 zeros =
10000!

3000!7000!
≈ 1

21
√

2π30 · 70
1010000

Problem 6.21
1) The total number of typical sequences is approximately 2nH(X) where n = 1000 and

H(X) = −
∑

i

pi log2 pi = 1.4855

Hence,
# typical sequences ≈ 21485.5

2) The number of all sequences of length n is Nn, where N is the size of the source alphabet.
Hence,

# typical sequences
# non-typical sequences

≈ 2nH(X)

Nn − 2nH(X) ≈ 1.14510−30

3) The typical sequences are almost equiprobable. Thus,

p(X = x, x typical) ≈ 2−nH(X) = 2−1485.5

4) Since the number of the total sequences is 2nH(X) the number of bits required to represent these
sequences is nH(X) ≈ 1486.

5) The most probable sequence is the one with all a3’s that is {a3, a3, . . . , a3}. The probability of
this sequence is

p({a3, a3, . . . , a3}) =
(

1
2

)n

=
(

1
2

)1000

6) The most probable sequence of the previous question is not a typical sequence. In general in a
typical sequence, symbol a1 is repeated 1000p(a1) = 200 times, symbol a2 is repeated approximately
1000p(a2) = 300 times and symbol a3 is repeated almost 1000p(a3) = 500 times.

Problem 6.22
1) The entropy of the source is

H(X) = −
4∑

i=1

p(ai) log2 p(ai) = 1.8464 bits/output

2) The average codeword length is lower bounded by the entropy of the source for error free
reconstruction. Hence, the minimum possible average codeword length is H(X) = 1.8464.

3) The following figure depicts the Huffman coding scheme of the source. The average codeword
length is

R̄(X) = 3 × (.2 + .1) + 2 × .3 + .4 = 1.9
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4) For the second extension of the source the alphabet of the source becomes A2 = {(a1, a1), (a1, a2), . . . (a4, a4)}
and the probability of each pair is the product of the probabilities of each component, i.e. p((a1, a2)) =
.2. A Huffman code for this source is depicted in the next figure. The average codeword length in
bits per pair of source output is

R̄2(X) = 3 × .49 + 4 × .32 + 5 × .16 + 6 × .03 = 3.7300

The average codeword length in bits per each source output is R̄1(X) = R̄2(X)/2 = 1.865.

5) Huffman coding of the original source requires 1.9 bits per source output letter whereas Huffman
coding of the second extension of the source requires 1.865 bits per source output letter and thus
it is more efficient.
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111111

111110

11110

10111

10110

01111

01110

1110
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0110

0011

0010

110

100

010

000

(a1, a1)

(a1, a2)

(a2, a1)

(a1, a3)

(a3, a1)

(a1, a4)

(a2, a2)

(a4, a1)

(a2, a3)

(a3, a2)

(a2, a4)

(a4, a2)

(a3, a3)

(a3, a4)

(a4, a3)

(a4, a4)

.01

.02

.02

.03

.03

.04

.04

.04

.06

.06

.08

.08

.09

.12

.12

.16

Problem 6.23
The following figure shows the design of the Huffman code. Note that at each step of the algorithm
the branches with the lowest probabilities (that merge together) are those at the bottom of the
tree.
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111...11

111...10

11...10

10

0

1

0
1

0
1

0

1

0
1

0

1
2n−2

1
2n−1

1
2n−1

1
4

1
2

The entropy of the source is

H(X) =
n−1∑
i=1

1
2i

log2 2i +
1

2n−1 log2 2n−1

=
n−1∑
i=1

1
2i
i log2 2 +

1
2n−1 (n− 1) log2 2

=
n−1∑
i=1

i

2i
+
n− 1
2n−1

In the way that the code is constructed, the first codeword (0) has length one, the second codeword
(10) has length two and so on until the last two codewords (111...10, 111...11) which have length
n− 1. Thus, the average codeword length is

R̄ =
∑
x∈X

p(x)l(x) =
n−1∑
i=1

i

2i
+
n− 1
2n−1

= 2
(
1 − (1/2)n−1

)
= H(X)

Problem 6.24
The following figure shows the position of the codewords (black filled circles) in a binary tree.
Although the prefix condition is not violated the code is not optimum in the sense that it uses
more bits that is necessary. For example the upper two codewords in the tree (0001, 0011) can
be substituted by the codewords (000, 001) (un-filled circles) reducing in this way the average
codeword length. Similarly codewords 1111 and 1110 can be substituted by codewords 111 and
110.
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Problem 6.25
The following figure depicts the design of a ternary Huffman code.
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.50

.28

.05

.1

.13

.15

.17

.18

.22

The average codeword length is

R̄(X) =
∑
x

p(x)l(x) = .22 + 2(.18 + .17 + .15 + .13 + .10 + .05)

= 1.78 (ternary symbols/output)

For a fair comparison of the average codeword length with the entropy of the source, we compute
the latter with logarithms in base 3. Hence,

H(X) = −
∑
x

p(x) log3 p(x) = 1.7047

As it is expected H(X) ≤ R̄(X).

Problem 6.26
If D is the size of the code alphabet, then the Huffman coding scheme takes D source outputs and
it merges them to 1 symbol. Hence, we have a decrease of output symbols by D− 1. In K steps of
the algorithm the decrease of the source outputs is K(D− 1). If the number of the source outputs
is K(D − 1) +D, for some K, then we are in a good position since we will be left with D symbols
for which we assign the symbols 0, 1, . . . , D − 1. To meet the above condition with a ternary code
the number of the source outputs should be 2K+3. In our case that the number of source outputs
is six we can add a dummy symbol with zero probability so that 7 = 2 · 2 + 3. The following figure
shows the design of the ternary Huffman code.
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Problem 6.27
Parsing the sequence by the rules of the Lempel-Ziv coding scheme we obtain the phrases
0, 00, 1, 001, 000, 0001, 10, 00010, 0000, 0010, 00000, 101, 00001,
000000, 11, 01, 0000000, 110, 0, ...
The number of the phrases is 19. For each phrase we need 5 bits plus an extra bit to represent the
new source output.
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Dictionary Dictionary Codeword
Location Contents
1 00001 0 00000 0
2 00010 00 00001 0
3 00011 1 00000 1
4 00100 001 00010 1
5 00101 000 00010 0
6 00110 0001 00101 1
7 00111 10 00011 0
8 01000 00010 00110 0
9 01001 0000 00101 0
10 01010 0010 00100 0
11 01011 00000 01001 0
12 01100 101 00111 1
13 01101 00001 01001 1
14 01110 000000 01011 0
15 01111 11 00011 1
16 10000 01 00001 1
17 10001 0000000 01110 0
18 10010 110 01111 0

19 0 00000

Problem 6.28

I(X;Y ) = H(X) −H(X|Y )
= −

∑
x

p(x) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

=
∑
x,y

p(x, y) log
p(x|y)
p(x)

=
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

Using the inequality ln y ≤ y− 1 with y = 1
x , we obtain lnx ≥ 1− 1

x . Applying this inequality with
x = p(x,y)

p(x)p(y) we obtain

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

≥
∑
x,y

p(x, y)
(

1 − p(x)p(y)
p(x, y)

)
=
∑
x,y

p(x, y) −
∑
x,y

p(x)p(y) = 0

lnx ≥ 1 − 1
x holds with equality if x = 1. This means that I(X;Y ) = 0 if p(x, y) = p(x)p(y) or in

other words if X and Y are independent.

Problem 6.29
1) I(X;Y ) = H(X)−H(X|Y ). Since in general, H(X|Y ) ≥ 0, we have I(X;Y ) ≤ H(X). Also (see
Problem 6.30), I(X;Y ) = H(Y ) − H(Y |X) from which we obtain I(X;Y ) ≤ H(Y ). Combining
the two inequalities, we obtain

I(X;Y ) ≤ min{H(X), H(Y )}

2) It can be shown (see Problem 6.7), that if X and Z are two random variables over the same set
X and Z is uniformly distributed, then H(X) ≤ H(Z). Furthermore H(Z) = log |X |, where |X | is
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the size of the set X (see Problem 6.2). Hence, H(X) ≤ log |X | and similarly we can prove that
H(Y ) ≤ log |Y|. Using the result of the first part of the problem, we obtain

I(X;Y ) ≤ min{H(X), H(Y )} ≤ min{log |X |, log |Y|}

Problem 6.30
By definition I(X;Y ) = H(X) − H(X|Y ) and H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).
Combining the two equations we obtain

I(X;Y ) = H(X) −H(X|Y ) = H(X) − (H(X,Y ) −H(Y ))
= H(X) +H(Y ) −H(X,Y ) = H(Y ) − (H(X,Y ) −H(X))
= H(Y ) −H(Y |X) = I(Y ;X)

Problem 6.31
1) The joint probability density is given by

p(Y = 1, X = 0) = p(Y = 1|X = 0)p(X = 0) = εp

p(Y = 0, X = 1) = p(Y = 0|X = 1)p(X = 1) = ε(1 − p)
p(Y = 1, X = 1) = (1 − ε)(1 − p)
p(Y = 0, X = 0) = (1 − ε)p

The marginal distribution of Y is

p(Y = 1) = εp+ (1 − ε)(1 − p) = 1 + 2εp− ε− p

p(Y = 0) = ε(1 − p) + (1 − ε)p = ε+ p− 2εp

Hence,

H(X) = −p log2 p− (1 − p) log2(1 − p)
H(Y ) = −(1 + 2εp− ε− p) log2(1 + 2εp− ε− p)

−(ε+ p− 2εp) log2(ε+ p− 2εp)
H(Y |X) = −

∑
x,y

p(x, y) log2(p(y|x)) = −εp log2 ε− ε(1 − p) log2 ε

−(1 − ε)(1 − p) log2(1 − ε) − (1 − ε)p log2(1 − ε)
= −ε log2 ε− (1 − ε) log2(1 − ε)

H(X,Y ) = H(X) +H(Y |X)
= −p log2 p− (1 − p) log2(1 − p) − ε log2 ε− (1 − ε) log2(1 − ε)

H(X|Y ) = H(X,Y ) −H(Y )
= −p log2 p− (1 − p) log2(1 − p) − ε log2 ε− (1 − ε) log2(1 − ε)

(1 + 2εp− ε− p) log2(1 + 2εp− ε− p)
+(ε+ p− 2εp) log2(ε+ p− 2εp)

I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X)
= ε log2 ε+ (1 − ε) log2(1 − ε)

−(1 + 2εp− ε− p) log2(1 + 2εp− ε− p)
−(ε+ p− 2εp) log2(ε+ p− 2εp)

2) The mutual information is I(X;Y ) = H(Y )−H(Y |X). As it was shown in the first question
H(Y |X) = −ε log2 ε − (1 − ε) log2(1 − ε) and thus it does not depend on p. Hence, I(X;Y )
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is maximized when H(Y ) is maximized. However, H(Y ) is the binary entropy function with
probability q = 1 + 2εp− ε− p, that is

H(Y ) = Hb(q) = Hb(1 + 2εp− ε− p)

Hb(q) achieves its maximum value, which is one, for q = 1
2 . Thus,

1 + 2εp− ε− p =
1
2

=⇒ p =
1
2

3) Since I(X;Y ) ≥ 0, the minimum value of I(X;Y ) is zero and it is obtained for independent X
and Y . In this case

p(Y = 1, X = 0) = p(Y = 1)p(X = 0) =⇒ εp = (1 + 2εp− ε− p)p

or ε = 1
2 . This value of epsilon also satisfies

p(Y = 0, X = 0) = p(Y = 0)p(X = 0)
p(Y = 1, X = 1) = p(Y = 1)p(X = 1)
p(Y = 0, X = 1) = p(Y = 0)p(X = 1)

resulting in independent X and Y .

Problem 6.32

I(X;Y ZW ) = I(Y ZW ;X) = H(Y ZW ) −H(Y ZW |X)
= H(Y ) +H(Z|Y ) +H(W |Y Z)

−[H(Y |X) +H(Z|XY ) +H(W |XY Z)]
= [H(Y ) −H(Y |X)] + [H(Z|Y ) −H(Z|Y X)]

+[H(W |Y Z) −H(W |XY Z)]
= I(X;Y ) + I(Z|Y ;X) + I(W |ZY ;X)
= I(X;Y ) + I(X;Z|Y ) + I(X;W |ZY )

This result can be interpreted as follows: The information that the triplet of random variables
(Y,Z,W ) gives about the random variable X is equal to the information that Y gives about X
plus the information that Z gives about X, when Y is already known, plus the information that
W provides about X when Z, Y are already known.

Problem 6.33
1) Using Bayes rule, we obtain p(x, y, z) = p(z)p(x|z)p(y|x, z). Comparing this form with the one
given in the first part of the problem we conclude that p(y|x, z) = p(y|x). This implies that Y and
Z are independent given X so that, I(Y ;Z|X) = 0. Hence,

I(Y ;ZX) = I(Y ;Z) + I(Y ;X|Z)
= I(Y ;X) + I(Y ;Z|X) = I(Y ;X)

Since I(Y ;Z) ≥ 0, we have
I(Y ;X|Z) ≤ I(Y ;X)

2) Comparing p(x, y, z) = p(x)p(y|x)p(z|x, y) with the given form of p(x, y, z) we observe that
p(y|x) = p(y) or, in other words, random variables X and Y are independent. Hence,

I(Y ;ZX) = I(Y ;Z) + I(Y ;X|Z)
= I(Y ;X) + I(Y ;Z|X) = I(Y ;Z|X)
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Since in general I(Y ;X|Z) ≥ 0, we have

I(Y ;Z) ≤ I(Y ;Z|X)

3) For the first case consider three random variables X, Y and Z, taking the values 0, 1 with equal
probability and such that X = Y = Z. Then, I(Y ;X|Z) = H(Y |Z) − H(Y |ZX) = 0 − 0 = 0,
whereas I(Y ;X) = H(Y )−H(Y |X) = 1−0 = 1. Hence, I(Y ;X|Z) < I(X;Y ). For the second case
consider two independent random variables X, Y , taking the values 0, 1 with equal probability and
a random variable Z which is the sum ofX and Y (Z = X+Y .) Then, I(Y ;Z) = H(Y )−H(Y |Z) =
1 − 1 = 0, whereas I(Y ;Z|X) = H(Y |X) −H(Y |ZX) = 1 − 0 = 1. Thus, I(Y ;Z) < I(Y ;Z|X).

Problem 6.34
1)

I(X;Y ) = H(X) −H(X|Y )
= −

∑
x

p(x) log p(x) +
∑
x

∑
y

p(x, y) log p(x|y)

Using Bayes formula we can write p(x|y) as

p(x|y) =
p(x, y)
p(y)

=
p(x)p(y|x)∑
x p(x)p(y|x)

Hence,

I(X;Y ) = −
∑
x

p(x) log p(x) +
∑
x

∑
y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x) +
∑
x

∑
y

p(x)p(y|x) log
p(x)p(y|x)∑
x p(x)p(y|x)

=
∑
x

∑
y

p(x)p(y|x) log
p(y|x)∑

x p(x)p(y|x)

Let p1 and p2 be given on X and let p = λp1 + (1 − λ)p2. Then, p is a legitimate probability
vector, for its elements p(x) = λp1(x) + λ̄p2(x) are non-negative, less or equal to one and∑

x

p(x) =
∑
x

λp1(x) + λ̄p2(x) = λ
∑
x

p1(x) + λ̄
∑
x

p2(x) = λ+ λ̄ = 1

Furthermore,

λI(p1;Q) + λ̄I(p2;Q) − I(λp1 + λ̄p2;Q)

= λ
∑
x

∑
y

p1(x)p(y|x) log
p(y|x)∑

x p1(x)p(y|x)

+λ̄
∑
x

∑
y

p2(x)p(y|x) log
p(y|x)∑

x p2(x)p(y|x)

−
∑
x

∑
y

(λp1(x) + λ̄p2(x))p(y|x) log
p(y|x)∑

x(λp1(x) + λ̄p2(x))p(y|x)

=
∑
x

∑
y

λp1(x)p(y|x) log
(λp1(x) + λ̄p2(x))p(y|x)∑

x p1(x)p(y|x)

+
∑
x

∑
y

λ̄p2(x)p(y|x) log
(λp1(x) + λ̄p2(x))p(y|x)∑

x p2(x)p(y|x)
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≤
∑
x

∑
y

λp1(x)p(y|x)
(

(λp1(x) + λ̄p2(x))p(y|x)∑
x p1(x)p(y|x)

− 1

)

+
∑
x

∑
y

λ̄p2(x)p(y|x)
(

(λp1(x) + λ̄p2(x))p(y|x)∑
x p2(x)p(y|x)

− 1

)
= 0

where we have used the inequality log x ≤ x− 1. Thus, I(p;Q) is a concave function in p.

2) The matrix Q = λQ1 + λ̄Q2 is a legitimate conditional probability matrix for its elements
p(y|x) = λp1(y|x) + λ̄p2(y|x) are non-negative, less or equal to one and∑

x

∑
y

p(y|x) =
∑
x

∑
y

(
λp1(y|x) + λ̄p2(y|x)

)
= λ

∑
x

∑
y

p1(y|x) + λ̄
∑
x

∑
y

p2(y|x)

= λ+ λ̄ = λ+ 1 − λ = 1

I(p;λQ1 + λ̄Q2) − λI(p;Q1) + λ̄I(p;Q2)

=
∑
x

∑
y

p(x)(λp1(y|x) + λ̄p2(y|x)) log
λp1(y|x) + λ̄p2(y|x)∑

x p(x)(λp1(y|x) + λ̄p2(y|x))

−
∑
x

∑
y

p(x)λp1(y|x) log
p1(y|x)∑

x p(x)p1(y|x)

−
∑
x

∑
y

p(x)λ̄p2(y|x) log
p2(y|x)∑

x p(x)p2(y|x)

=
∑
x

∑
y

p(x)λp1(y|x) log

[
λp1(y|x) + λ̄p2(y|x)∑

x p(x)(λp1(y|x) + λ̄p2(y|x))

∑
x p(x)p1(y|x)
p1(y|x)

]

+
∑
x

∑
y

p(x)λ̄p2(y|x) log

[
λp1(y|x) + λ̄p2(y|x)∑

x p(x)(λp1(y|x) + λ̄p2(y|x))

∑
x p(x)p2(y|x)
p2(y|x)

]

≤
∑
x

∑
y

p(x)λp1(y|x)
[

λp1(y|x) + λ̄p2(y|x)∑
x p(x)(λp1(y|x) + λ̄p2(y|x))

∑
x p(x)p1(y|x)
p1(y|x)

− 1

]

+
∑
x

∑
y

p(x)λ̄p2(y|x)
[

λp1(y|x) + λ̄p2(y|x)∑
x p(x)(λp1(y|x) + λ̄p2(y|x))

∑
x p(x)p2(y|x)
p2(y|x)

− 1

]

=
∑
y

∑
x p(x)p1(y|x)∑

x p(x)(λp1(y|x) + λ̄p2(y|x))
∑
x

λp(x)p1(y|x)
λp1(y|x) + λ̄p2(y|x))

p1(y|x)

−λ
∑
x

∑
y

p(x)p1(y|x)

+
∑
y

∑
x p(x)p2(y|x)∑

x p(x)(λp1(y|x) + λ̄p2(y|x))
∑
x

λ̄p(x)p2(y|x)
λp1(y|x) + λ̄p2(y|x))

p2(y|x)

−λ̄
∑
x

∑
y

p(x)p2(y|x)

= 0

Hence, I(p;Q) is a convex function on Q.

Problem 6.35
1) The PDF of the random variable Y = αX is

fY (y) =
1

|α|fX(
y

α
)
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Hence,

h(Y ) = −
∫ ∞

−∞
fY (y) log(fY (y))dy

= −
∫ ∞

−∞
1

|α|fX(
y

α
) log

(
1

|α|fX(
y

α
)
)
dy

= − log
(

1
|α|

)∫ ∞

−∞
1

|α|fX(
y

α
)dy −

∫ ∞

−∞
1

|α|fX(
y

α
) log

(
fX(

y

α
)
)
dy

= − log
(

1
|α|

)
+ h(X) = log |α| + h(X)

2) A similar relation does not hold if X is a discrete random variable. Suppose for example that
X takes the values {x1, x2, . . . , xn} with probabilities {p1, p2, . . . , pn}. Then, Y = αX takes the
values {αx1, αx2, . . . , αxn} with probabilities {p1, p2, . . . , pn}, so that

H(Y ) = −
∑

i

pi log pi = H(X)

Problem 6.36
1)

h(X) = −
∫ ∞

0

1
λ
e−

x
λ ln(

1
λ
e−

x
λ )dx

= − ln(
1
λ

)
∫ ∞

0

1
λ
e−

x
λdx+

∫ ∞

0

1
λ
e−

x
λ
x

λ
dx

= lnλ+
1
λ

∫ ∞

0

1
λ
e−

x
λxdx

= lnλ+
1
λ
λ = 1 + lnλ

where we have used the fact
∫∞
0

1
λe

− x
λdx = 1 and E[x] =

∫∞
0 x 1

λe
− x

λdx = λ.

2)

h(X) = −
∫ ∞

−∞
1
2λ
e−

|x|
λ ln(

1
2λ
e−

|x|
λ )dx

= − ln(
1
2λ

)
∫ ∞

−∞
1
2λ
e−

|x|
λ dx+

1
λ

∫ ∞

−∞
|x| 1

2λ
e−

|x|
λ dx

= ln(2λ) +
1
λ

[∫ 0

−∞
−x 1

2λ
e

x
λdx+

∫ ∞

0
x

1
2λ
e−

x
λdx

]
= ln(2λ) +

1
2λ
λ+

1
2λ
λ = 1 + ln(2λ)

3)

h(X) = −
∫ 0

−λ

x+ λ

λ2 ln
(
x+ λ

λ2

)
dx−

∫ λ

0

−x+ λ

λ2 ln
(−x+ λ

λ2

)
dx

= − ln
(

1
λ2

)[∫ 0

−λ

x+ λ

λ2 dx+
∫ λ

0

−x+ λ

λ2 dx

]

−
∫ 0

−λ

x+ λ

λ2 ln(x+ λ)dx−
∫ λ

0

−x+ λ

λ2 ln(−x+ λ)dx
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= ln(λ2) − 2
λ2

∫ λ

0
z ln zdz

= ln(λ2) − 2
λ2

[
z2 ln z

2
− z2

4

]λ

0

= ln(λ2) − ln(λ) +
1
2

Problem 6.37
1) Applying the inequality ln z ≤ z − 1 to the function z = p(x)p(y)

p(x,y) , we obtain

ln p(x) + ln p(y) − ln p(x, y) ≤ p(x)p(y)
p(x, y)

− 1

Multiplying by p(x, y) and integrating over x, y, we obtain∫ ∞

−∞

∫ ∞

−∞
p(x, y) (ln p(x) + ln p(y)) dxdy −

∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(x, y)dxdy

≤
∫ ∞

−∞

∫ ∞

−∞
p(x)p(y)dxdy −

∫ ∞

−∞

∫ ∞

−∞
p(x, y)dxdy

= 1 − 1 = 0

Hence,

h(X,Y ) ≤ −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(x)dxdy −

∫ ∞

−∞

∫ ∞

−∞
p(x, y) ln p(y)dxdy

= h(X) + h(Y )

Also, h(X,Y ) = h(X|Y ) + h(Y ) so by combining the two, we obtain

h(X|Y ) + h(Y ) ≤ h(X) + h(Y ) =⇒ h(X|Y ) ≤ h(X)

Equality holds if z = p(x)p(y)
p(x,y) = 1 or, in other words, if X and Y are independent.

2) By definition I(X;Y ) = h(X)−h(X|Y ). However, from the first part of the problem h(X|Y ) ≤
h(X) so that

I(X;Y ) ≥ 0

Problem 6.38
Let X be the exponential random variable with mean m, that is

fX(x) =

{
1
me

− x
m x ≥ 0

0 otherwise

Consider now another random variable Y with PDF fY (x), which is non-zero for x ≥ 0, and such
that

E[Y ] =
∫ ∞

0
xfY (x)dx = m

Applying the inequality ln z ≤ z − 1 to the function x = fX(x)
fY (x) , we obtain

ln(fX(x)) − ln(fY (x)) ≤ fX(x)
fY (x)

− 1

Multiplying both sides by fY (x) and integrating, we obtain∫ ∞

0
fY (x) ln(fX(x))dx−

∫ ∞

0
fY (x) ln(fY (x))dx ≤

∫ ∞

0
fX(x)dx−

∫ ∞

0
fY (x)dx = 0
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Hence,

h(Y ) ≤ −
∫ ∞

0
fY (x) ln

(
1
m
e−

x
m

)
dx

= − ln
(

1
m

)∫ ∞

0
fY (x)dx+

1
m

∫ ∞

0
xfY (x)dx

= lnm+
1
m
m = 1 + lnm = h(X)

where we have used the results of Problem 6.36.

Problem 6.39
Let X be a zero-mean Gaussian random variable with variance σ2 and Y another zero-mean random
variable such that ∫ ∞

−∞
y2fY (y)dy = σ2

Applying the inequality ln z ≤ z − 1 to the function z =
1√

2πσ2
e
− x2

2σ2

fY (x) , we obtain

ln
(

1√
2πσ2

e−
x2

2σ2

)
− ln fY (x) ≤

1√
2πσ2 e

− x2

2σ2

fY (x)
− 1

Multiplying the inequality by fY (x) and integrating, we obtain∫ ∞

−∞
fY (x)

[
ln
(

1√
2πσ2

)
− x2

2σ2

]
dx+ h(Y ) ≤ 1 − 1 = 0

Hence,

h(Y ) ≤ − ln
(

1√
2πσ2

)
+

1
2σ2

∫ ∞

−∞
x2fX(x)dx

= ln(
√

2πσ2) +
1

2σ2σ
2 = ln(e

1
2 ) + ln(

√
2πσ2)

= h(X)

Problem 6.40
1) The entropy of the source is

H(X) = −.25 log2 .25 − .75 log2 .75 = .8113 bits/symbol

Thus, we can transmit the output of the source using 2000H(X) = 1623 bits/sec with arbitrarily
small probability of error.

2) Since 0 ≤ D ≤ min{p, 1−p} = .25 the rate distortion function for the binary memoryless source
is

R(D) = Hb(p) −Hb(D) = Hb(.25) −Hb(.1) = .8113 − .4690 = .3423

Hence, the required number of bits per second is 2000R(D) = 685.

3) For D = .25 the rate is R(D) = 0. We can reproduce the source at a distortion of D = .25 with
no transmission at all by setting the reproduction vector to be the all zero vector.
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Problem 6.41
1) For a zero-mean Gaussian source with variance σ2 and with squared error distortion measure,
the rate distortion function is given by

R(D) =

{
1
2 log σ2

D 0 ≤ D ≤ σ2

0 otherwise

With R = 1 and σ2 = 1, we obtain

2 = log
1
D

=⇒ D = 2−2 = 0.25

2) If we set D = 0.01, then

R =
1
2

log
1

0.01
=

1
2

log 100 = 3.322 bits/sample

Hence, the required transmission capacity is 3.322 bits per source symbol.

Problem 6.42
1) Since R(D) = log λ

D and D = λ
2 , we obtain R(D) = log( λ

λ/2) = log(2) = 1 bit/sample.
2) The following figure depicts R(D) for λ = 0.1, .2 and .3. As it is observed from the figure, an
increase of the parameter λ increases the required rate for a given distortion.
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Problem 6.43
1) For a Gaussian random variable of zero mean and variance σ2 the rate-distortion function is
given by R(D) = 1

2 log2
σ2

D . Hence, the upper bound is satisfied with equality. For the lower bound
recall that h(X) = 1

2 log2(2πeσ2). Thus,

h(X) − 1
2

log2(2πeD) =
1
2

log2(2πeσ
2) − 1

2
log2(2πeD)

=
1
2

log2

(
2πeσ2

2πeD

)
= R(D)

As it is observed the upper and the lower bounds coincide.

2) The differential entropy of a Laplacian source with parameter λ is h(X) = 1 + ln(2λ). The
variance of the Laplacian distribution is

σ2 =
∫ ∞

−∞
x2 1

2λ
e−

|x|
λ dx = 2λ2
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Hence, with σ2 = 1, we obtain λ =
√

1/2 and h(X) = 1+ln(2λ) = 1+ln(
√

2) = 1.3466 nats/symbol =
1500 bits/symbol. A plot of the lower and upper bound of R(D) is given in the next figure.

-1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Bound

Lower Bound

R
(D

)

Distortion D
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3) The variance of the triangular distribution is given by

σ2 =
∫ 0

−λ

(
x+ λ

λ2

)
x2dx+

∫ λ

0

(−x+ λ

λ2

)
x2dx

=
1
λ2

(
1
4
x4 +

λ

3
x3
) ∣∣∣∣0−λ

+
1
λ2

(
−1

4
x4 +

λ

3
x3
) ∣∣∣∣λ

0

=
λ2

6

Hence, with σ2 = 1, we obtain λ =
√

6 and h(X) = ln(6)−ln(
√

6)+1/2 = 1.7925 bits /source output.
A plot of the lower and upper bound of R(D) is given in the next figure.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Bound

Lower Bound

R
(D

)

Distortion D

Triangular distribution, unit variance

Problem 6.44
For a zero-mean Gaussian source of variance σ2, the rate distortion function is given by R(D) =
1
2 log σ2

D . Expressing D in terms of R, we obtain D(R) = σ22−2R. Hence,

D(R1)
D(R2)

=
σ22−2R1

σ22−2R2
=⇒ R2 −R1 =

1
2

log2

(
D(R1)
D(R2)

)
With D(R1)

D(R2) = 1000, the number of extra bits needed is R2 −R1 = 1
2 log2 1000 = 5.
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Problem 6.45
1) Consider the memoryless system Y (t) = Q(X(t)). At any given time t = t1, the output Y (t1)
depends only on X(t1) and not on any other past or future values of X(t). The nth order density
fY (t1),...,Y (tn)(y1, . . . , yn) can be determined from the corresponding density fX(t1),...,X(tn)(x1, . . . , xn)
using

fY (t1),...,Y (tn)(y1, . . . , yn) =
J∑

j=1

fX(t1),...,X(tn)(x1, . . . , xn)

|J(xj
1, . . . , x

j
n)|

where J is the number of solutions to the system

y1 = Q(x1), y2 = Q(x2), · · · , yn = Q(xn)

and J(xj
1, . . . , x

j
n) is the Jacobian of the transformation system evaluated at the solution {xj

1, . . . , x
j
n}.

Note that if the system has a unique solution, then

J(x1, . . . , xn) = Q′(x1) · · · Q′(x2)

From the stationarity of X(t) it follows that the numerator of all the terms under summation, in the
expression for fY (t1),...,Y (tn)(y1, . . . , yn), is invariant to a shift of the time origin. Furthermore, the
denominators do not depend on t, so that fY (t1),...,Y (tn)(y1, . . . , yn) does not change if ti is replaced
by ti + τ . Hence, Y (t) is a strictly stationary process.

2) X(t) − Q(X(t)) is a memoryless function of X(t) and since the latter is strictly stationary, we
conclude that X̃(t) = X(t) − Q(X(t)) is strictly stationary. Hence,

SQNR =
E[X2(t)]

E[(X(t) − Q(X(t)))2]
=
E[X2(t)]
E[X̃2(t)]

=
RX(0)
RX̃(0)

=
PX

PX̃

Problem 6.46
1) From Table 6.2 we find that for a unit variance Gaussian process, the optimal level spacing for a
16-level uniform quantizer is .3352. This number has to be multiplied by σ to provide the optimal
level spacing when the variance of the process is σ2. In our case σ2 = 10 and ∆ =

√
10 · 0.3352 =

1.060. The quantization levels are

x̂1 = −x̂16 = −7 · 1.060 − 1
2

· 1.060 = −7.950

x̂2 = −x̂15 = −6 · 1.060 − 1
2

· 1.060 = −6.890

x̂3 = −x̂14 = −5 · 1.060 − 1
2

· 1.060 = −5.830

x̂4 = −x̂13 = −4 · 1.060 − 1
2

· 1.060 = −4.770

x̂5 = −x̂12 = −3 · 1.060 − 1
2

· 1.060 = −3.710

x̂6 = −x̂11 = −2 · 1.060 − 1
2

· 1.060 = −2.650

x̂7 = −x̂10 = −1 · 1.060 − 1
2

· 1.060 = −1.590

x̂8 = −x̂9 = −1
2

· 1.060 = −0.530

The boundaries of the quantization regions are given by

a1 = a15 = −7 · 1.060 = −7.420

150



a2 = a14 = −6 · 1.060 = −6.360
a3 = a13 = −5 · 1.060 = −5.300
a4 = a12 = −4 · 1.060 = −4.240
a5 = a11 = −3 · 1.060 = −3.180
a6 = a10 = −2 · 1.060 = −2.120
a7 = a9 = −1 · 1.060 = −1.060

a8 = 0

2) The resulting distortion is D = σ2 · 0.01154 = 0.1154.

3) The entropy is available from Table 6.2. Nevertheless we will rederive the result here. The
probabilities of the 16 outputs are

p(x̂1) = p(x̂16) = Q(
a15√
10

) = 0.0094

p(x̂2) = p(x̂15) = Q(
a14√
10

) −Q(
a15√
10

) = 0.0127

p(x̂3) = p(x̂14) = Q(
a13√
10

) −Q(
a14√
10

) = 0.0248

p(x̂4) = p(x̂13) = Q(
a12√
10

) −Q(
a13√
10

) = 0.0431

p(x̂5) = p(x̂12) = Q(
a11√
10

) −Q(
a12√
10

) = 0.0674

p(x̂6) = p(x̂11) = Q(
a10√
10

) −Q(
a11√
10

) = 0.0940

p(x̂7) = p(x̂10) = Q(
a9√
10

) −Q(
a10√
10

) = 0.1175

p(x̂8) = p(x̂9) = Q(
a8√
10

) −Q(
a9√
10

) = 0.1311

Hence, the entropy of the quantized source is

H(X̂) = −
1∑

i=1

6p(x̂i) log2 p(x̂i) = 3.6025

This is the minimum number of bits per source symbol required to represent the quantized source.

4) Substituting σ2 = 10 and D = 0.1154 in the rate-distortion bound, we obtain

R =
1
2

log2
σ2

D
= 3.2186

5) The distortion of the 16-level optimal quantizer is D16 = σ2 · 0.01154 whereas that of the 8-level
optimal quantizer is D8 = σ2 · 0.03744. Hence, the amount of increase in SQNR (db) is

10 log10
SQNR16

SQNR8
= 10 · log10

0.03744
0.01154

= 5.111 db

Problem 6.47
With 8 quantization levels and σ2 = 400 we obtain

∆ = σ.5860 = 20 · 0.5860 = 11.72
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Hence, the quantization levels are

x̂1 = −x̂8 = −3 · 11.72 − 1
2
11.72 = −41.020

x̂2 = −x̂7 = −2 · 11.72 − 1
2
11.72 = −29.300

x̂3 = −x̂6 = −1 · 11.72 − 1
2
11.72 = −17.580

x̂4 = −x̂5 = −1
2
11.72 = −5.860

The distortion of the optimum quantizer is

D = σ2 · 0.03744 = 14.976

As it is observed the distortion of the optimum quantizer is significantly less than that of Example
6.5.1. The informational entropy of the optimum quantizer is found from Table 6.2 to be 2.761.

Problem 6.48
Using Table 6.3 we find the quantization regions and the quantized values for N = 16. These values
should be multiplied by σ = P

1/2
X =

√
10, since Table 6.3 provides the optimum values for a unit

variance Gaussian source.

a1 = −a15 = −
√

10 · 2.401 = −7.5926
a2 = −a14 = −

√
10 · 1.844 = −5.8312

a3 = −a13 = −
√

10 · 1.437 = −4.5442
a4 = −a12 = −

√
10 · 1.099 = −3.4753

a5 = −a11 = −
√

10 · 0.7996 = −2.5286
a6 = −a10 = −

√
10 · 0.5224 = −1.6520

a7 = −a9 = −
√

10 · 0.2582 = −0.8165
a8 = 0

The quantized values are

x̂1 = −x̂16 = −
√

10 · 2.733 = −8.6425
x̂2 = −x̂15 = −

√
10 · 2.069 = −6.5428

x̂3 = −x̂14 = −
√

10 · 1.618 = −5.1166
x̂4 = −x̂13 = −

√
10 · 1.256 = −3.9718

x̂5 = −x̂12 = −
√

10 · 0.9424 = −2.9801
x̂6 = −x̂11 = −

√
10 · 0.6568 = −2.0770

x̂7 = −x̂10 = −
√

10 · 0.3881 = −1.2273
x̂8 = −x̂9 = −

√
10 · 0.1284 = −0.4060

The resulting distortion is D = 10 · 0.009494 = 0.09494. From Table 6.3 we find that the minimum
number of bits per source symbol is H(X̂) = 3.765. Setting D = 0.09494, σ2 = 10 in R = 1

2 log2
σ2

D
we obtain R = 3.3594. Thus, the minimum number of bits per source symbol is slightly larger that
the predicted one from the rate-distortion bound.

Problem 6.49
1) The area between the two squares is 4 × 4 − 2 × 2 = 12. Hence, fX,Y (x, y) = 1

12 . The marginal
probability fX(x) is given by fX(x) =

∫ 2
−2 fX,Y (x, y)dy. If −2 ≤ X < −1, then

fX(x) =
∫ 2

−2
fX,Y (x, y)dy =

1
12
y

∣∣∣∣2−2
=

1
3
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If −1 ≤ X < 1, then

fX(x) =
∫ −1

−2

1
12
dy +

∫ 2

1

1
12
dy =

1
6

Finally, if 1 ≤ X ≤ 2, then

fX(x) =
∫ 2

−2
fX,Y (x, y)dy =

1
12
y

∣∣∣∣2−2
=

1
3

The next figure depicts the marginal distribution fX(x).
. . . . . . . . .

1/6
1/3

-2 -1 1 2

Similarly we find that

fY (y) =


1
3 −2 ≤ y < −1
1
6 −1 ≤ y < −1
1
3 1 ≤ y ≤ 2

2) The quantization levels x̂1, x̂2, x̂3 and x̂4 are set to −3
2 , −1

2 , 1
2 and 3

2 respectively. The resulting
distortion is

DX = 2
∫ −1

−2
(x+

3
2
)2fX(x)dx+ 2

∫ 0

−1
(x+

1
2
)2fX(x)dx

=
2
3

∫ −1

−2
(x2 + 3x+

9
4
)dx+

2
6

∫ 0

−1
(x2 + x+

1
4
)dx

=
2
3

(
1
3
x3 +

3
2
x2 +

9
4
x

) ∣∣∣∣−1

−2
+

2
6

(
1
3
x3 +

1
2
x2 +

1
4
x

) ∣∣∣∣0−1

=
1
12

The total distortion is
Dtotal = DX +DY =

1
12

+
1
12

=
1
6

whereas the resulting number of bits per (X,Y ) pair

R = RX +RY = log2 4 + log2 4 = 4

3) Suppose that we divide the region over which p(x, y) �= 0 into L equal subregions. The case of
L = 4 is depicted in the next figure.

For each subregion the quantization output vector (x̂, ŷ) is the centroid of the corresponding rect-
angle. Since, each subregion has the same shape (uniform quantization), a rectangle with width
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equal to one and length 12/L, the distortion of the vector quantizer is

D =
∫ 1

0

∫ 12
L

0
[(x, y) − (

1
2
,
12
2L

)]2
L

12
dxdy

=
L

12

∫ 1

0

∫ 12
L

0

[
(x− 1

2
)2 + (y − 12

2L
)2
]
dxdy

=
L

12

[
12
L

1
12

+
123

L3
1
12

]
=

1
12

+
12
L2

If we set D = 1
6 , we obtain

12
L2 =

1
12

=⇒ L =
√

144 = 12

Thus, we have to divide the area over which p(x, y) �= 0, into 12 equal subregions in order to
achieve the same distortion. In this case the resulting number of bits per source output pair (X,Y )
is R = log2 12 = 3.585.

Problem 6.50
1) The joint probability density function is fXY (x, y) = 1

(2
√

2)2
= 1

8 . The marginal distribution
fX(x) is fX(x) =

∫
y fXY (x, y)dy. If −2 ≤ x ≤ 0,then

fX(x) =
∫ x+2

−x−2
fX,Y (x, y)dy =

1
8
y|x+2

−x−2 =
x+ 2

4

If 0 ≤ x ≤ 2,then

fX(x) =
∫ −x+2

x−2
fX,Y (x, y)dy =

1
8
y|−x+2

x−2 =
−x+ 2

4

The next figure depicts fX(x).

��
��

��
��������

−2 2

1
2

From the symmetry of the problem we have

fY (y) =

{
y+2
4 −2 ≤ y < 0

−y+2
4 0 ≤ y ≤ 2

2)

DX = 2
∫ −1

−2
(x+

3
2
)2fX(x)dx+ 2

∫ 0

−1
(x+

1
2
)2fX(x)dx

=
1
2

∫ −1

−2
(x+

3
2
)2(x+ 2)dx+

1
2

∫ 0

−1
(x+

1
2
)2(−x+ 2)dx

=
1
2

(
1
4
x4 +

5
3
x3 +

33
8
x2 +

9
2
x

) ∣∣∣∣−1

−2
+

1
2

(
1
4
x4 + x3 +

9
8
x2 +

1
2
x

) ∣∣∣∣0−1

=
1
12

The total distortion is
Dtotal = DX +DY =

1
12

+
1
12

=
1
6
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whereas the required number of bits per source output pair

R = RX +RY = log2 4 + log2 4 = 4

3) We divide the square over which p(x, y) �= 0 into 24 = 16 equal square regions. The area of each
square is 1

2 and the resulting distortion

D =
16
8

∫ 1√
2

0

∫ 1√
2

0

[
(x− 1

2
√

2
)2 + (y − 1

2
√

2
)2
]
dxdy

= 4
∫ 1√

2

0

∫ 1√
2

0
(x− 1

2
√

2
)2dxdy

=
4√
2

∫ 1√
2

0
(x2 +

1
8

− x√
2
)dx

=
4√
2

(
1
3
x3 +

1
8
x− 1

2
√

2
x2
) ∣∣∣∣ 1√

2

0

=
1
12

Hence, using vector quantization and the same rate we obtain half the distortion.

Problem 6.51
X̆ = X

xmax
= X/2. Hence,

E[X̆2] =
1
4

∫ 2

−2

X2

4
dx =

1
16 · 3

x3
∣∣∣∣2−2

=
1
3

With ν = 8 and X̆2 = 1
3 , we obtain

SQNR = 3 · 48 · 1
3

= 48 = 48.165(db)

Problem 6.52
1)

σ2 = E[X2(t)] = RX(τ)|τ=0 =
A2

2
Hence,

SQNR = 3 · 4νX̆2 = 3 · 4ν X2

x2
max

= 3 · 4ν A
2

2A2

With SQNR = 60 db, we obtain

10 log10

(
3 · 4q

2

)
= 60 =⇒ q = 9.6733

The smallest integer larger that q is 10. Hence, the required number of quantization levels is ν = 10.

2) The minimum bandwidth requirement for transmission of a binary PCM signal is BW = νW .
Since ν = 10, we have BW = 10W .
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Problem 6.53
1)

E[X2(t)] =
∫ 0

−2
x2
(
x+ 2

4

)
dx+

∫ 2

0
x2
(−x+ 2

4

)
dx

=
1
4

(
1
4
x4 +

2
3
x3
) ∣∣∣∣0−2

+
1
4

(
−1

4
x4 +

2
3
x3
) ∣∣∣∣2

0

=
2
3

Hence,

SQNR =
3 × 4ν × 2

3
x2

max
=

3 × 45 × 2
3

22 = 512 = 27.093(db)

2) If the available bandwidth of the channel is 40 KHz, then the maximum rate of transmission is
ν = 40/5 = 8. In this case the highest achievable SQNR is

SQNR =
3 × 48 × 2

3
22 = 32768 = 45.154(db)

3) In the case of a guard band of 2 KHz the sampling rate is fs = 2W + 2000 = 12 KHz. The
highest achievable rate is ν = 2BW

fs
= 6.6667 and since ν should be an integer we set ν = 6. Thus,

the achievable SQNR is

SQNR =
3 × 46 × 2

3
22 = 2048 = 33.11(db)

Problem 6.54
1) The probabilities of the quantized source outputs are

p(x̂1) = p(x̂4) =
∫ −1

−2

x+ 2
4

dx =
1
8
x2
∣∣∣∣−1

−2
+

1
2
x

∣∣∣∣−1

−2
=

1
8

p(x̂2) = p(x̂3) =
∫ 1

0

−x+ 2
4

dx = −1
8
x2
∣∣∣∣1
0
+

1
2
x

∣∣∣∣1
0

=
3
8

Hence,
H(X̂) = −

∑
x̂i

p(x̂i) log2 p(x̂i) = 1.8113 bits / output sample

2) Let X̃ = X − Q(X). Clearly if |X̃| > 0.5, then p(X̃) = 0. If |X̃| ≤ 0.5, then there are four
solutions to the equation X̃ = X − Q(X), which are denoted by x1, x2, x3 and x4. The solution
x1 corresponds to the case −2 ≤ X ≤ −1, x2 is the solution for −1 ≤ X ≤ 0 and so on. Hence,

fX(x1) =
x1 + 2

4
=

(x̃− 1.5) + 2
4

fX(x3) =
−x3 + 2

4
=

−(x̃+ 0.5) + 2
4

fX(x2) =
x2 + 2

4
=

(x̃− 0.5) + 2
4

fX(x4) =
−x4 + 2

4
=

−(x̃+ 1.5) + 2
4

The absolute value of (X − Q(X))′ is one for X = x1, . . . , x4. Thus, for |X̃| ≤ 0.5

fX̃(x̃) =
4∑

i=1

fX(xi)
|(xi − Q(xi))′|

=
(x̃− 1.5) + 2

4
+

(x̃− 0.5) + 2
4

+
−(x̃+ 0.5) + 2

4
+

−(x̃+ 1.5) + 2
4

= 1
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Problem 6.55
1)

RX(t+ τ, t) = E[X(t+ τ)X(t)]
= E[Y 2 cos(2πf0(t+ τ) + Θ) cos(2πf0t+ Θ)]

=
1
2
E[Y 2]E[cos(2πf0τ) + cos(2πf0(2t+ τ) + 2Θ)]

and since

E[cos(2πf0(2t+ τ) + 2Θ)] =
1
2π

∫ 2π

0
cos(2πf0(2t+ τ) + 2θ)dθ = 0

we conclude that
RX(t+ τ, t) =

1
2
E[Y 2] cos(2πf0τ) =

3
2

cos(2πf0τ)

2)

10 log10 SQNR = 10 log10

(
3 × 4ν ×RX(0)

x2
max

)
= 40

Thus,

log10

(
4ν

2

)
= 4 or ν = 8

The bandwidth of the process is W = f0, so that the minimum bandwidth requirement of the PCM
system is BW = 8f0.

3) If SQNR = 64 db, then
ν ′ = log4(2 · 106.4) = 12

Thus, ν ′ − ν = 4 more bits are needed to increase SQNR by 24 db. The new minimum bandwidth
requirement is BW′ = 12f0.

Problem 6.56
Suppose that the transmitted sequence is x. If an error occurs at the ith bit of the sequence, then
the received sequence x′ is

x′ = x + [0 . . . 010 . . . 0]

where addition is modulo 2. Thus the error sequence is ei = [0 . . . 010 . . . 0], which in natural binary
coding has the value 2i−1. If the spacing between levels is ∆, then the error introduced by the
channel is 2i−1∆.

2)

Dchannel =
ν∑

i=1

p(error in i bit) · (2i−1∆)2

=
ν∑

i=1

pb∆24i−1 = pb∆2 1 − 4ν

1 − 4

= pb∆2 4ν − 1
3

3) The total distortion is

Dtotal = Dchannel +Dquantiz. = pb∆2 4ν − 1
3

+
x2

max

3 ·N2

= pb
4 · x2

max

N2
4ν − 1

3
+

x2
max

3 ·N2
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or since N = 2ν

Dtotal =
x2

max

3 · 4ν
(1 + 4pb(4ν − 1)) =

x2
max

3N2 (1 + 4pb(N2 − 1))

4)

SNR =
E[X2]
Dtotal

=
E[X2]3N2

x2
max(1 + 4pb(N2 − 1))

If we let X̆ = X
xmax

, then E[X2]
x2
max

= E[X̆2] = X̆2. Hence,

SNR =
3N2X̆2

1 + 4pb(N2 − 1)
=

3 · 4νX̆2

1 + 4pb(4ν − 1)

Problem 6.57
1)

g(x) =
log(1 + µ |x|

xmax
)

log(1 + µ)
sgn(x)

Differentiating the previous using natural logarithms, we obtain

g′(x) =
1

ln(1 + µ)
µ/xmax

(1 + µ |x|
xmax

)
sgn2(x)

Since, for the µ-law compander ymax = g(xmax) = 1, we obtain

D ≈ y2
max

3 × 4ν

∫ ∞

−∞
fX(x)
[g′(x)]2

dx

=
x2

max[ln(1 + µ)]2

3 × 4νµ2

∫ ∞

−∞

(
1 + µ2 |x|2

x2
max

+ 2µ
|x|
xmax

)
fX(x)dx

=
x2

max[ln(1 + µ)]2

3 × 4νµ2

[
1 + µ2E[X̆2] + 2µE[|X̆|]

]
=

x2
max[ln(1 + µ)]2

3 ×N2µ2

[
1 + µ2E[X̆2] + 2µE[|X̆|]

]
where N2 = 4ν and X̆ = X/xmax.

2)

SQNR =
E[X2]
D

=
E[X2]
x2

max

µ23 ·N2

[ln(1 + µ)]2(µ2E[X̆2] + 2µE[|X̆|] + 1)

=
3µ2N2E[X̆2]

[ln(1 + µ)]2(µ2E[X̆2] + 2µE[|X̆|] + 1)

3) Since SQNRunif = 3 ·N2E[X̆2], we have

SQNRµlaw
= SQNRunif

µ2

[ln(1 + µ)]2(µ2E[X̆2] + 2µE[|X̆|] + 1)

= SQNRunifG(µ, X̆)
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where we identify

G(µ, X̆) =
µ2

[ln(1 + µ)]2(µ2E[X̆2] + 2µE[|X̆|] + 1)

3) The truncated Gaussian distribution has a PDF given by

fY (y) =
K√
2πσx

e
− x2

2σ2
x

where the constant K is such that

K

∫ 4σx

−4σx

1√
2πσx

e
− x2

2σ2
x dx = 1 =⇒ K =

1
1 − 2Q(4)

= 1.0001

Hence,

E[|X̆|] =
K√
2πσx

∫ 4σx

−4σx

|x|
4σx

e
− x2

2σ2
x dx

=
2K

4
√

2πσ2
x

∫ 4σx

0
xe

− x2

2σ2
x dx

=
K

2
√

2πσ2
x

[
−σ2

xe
− x2

2σ2
x

]4σx

0

=
K

2
√

2π
(1 − e−2) = 0.1725

In the next figure we plot 10 log10 SQNRunif and 10 log10 SQNRmu−law vs. 10 log10E[X̆2] when the
latter varies from −100 to 100 db. As it is observed the µ-law compressor is insensitive to the
dynamic range of the input signal for E[X̆2] > 1.
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Problem 6.58
The optimal compressor has the form

g(x) = ymax

2
∫ x
−∞[fX(v)]

1
3dv∫∞

−∞[fX(v)]
1
3dv

−


where ymax = g(xmax) = g(1).∫ ∞

−∞
[fX(v)]

1
3dv =

∫ 1

−1
[fX(v)]

1
3dv =

∫ 0

−1
(v + 1)

1
3dv +

∫ 1

0
(−v + 1)

1
3dv

= 2
∫ 1

0
x

1
3dx =

3
2
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If x ≤ 0, then ∫ x

−∞
[fX(v)]

1
3dv =

∫ x

−1
(v + 1)

1
3dv =

∫ x+1

0
z

1
3dz =

3
4
z

4
3

∣∣∣∣x+1

0

=
3
4
(x+ 1)

4
3

If x > 0, then∫ x

−∞
[fX(v)]

1
3dv =

∫ 0

−1
(v + 1)

1
3dv +

∫ x

0
(−v + 1)

1
3dv =

3
4

+
∫ 1

1−x
z

1
3dz

=
3
4

+
3
4

(
1 − (1 − x)

4
3

)
Hence,

g(x) =

 g(1)
[
(x+ 1)

4
3 − 1

]
−1 ≤ x < 0

g(1)
[
1 − (1 − x)

4
3

]
0 ≤ x ≤ 1

The next figure depicts g(x) for g(1) = 1. Since the resulting distortion is (see Equation 6.6.17)
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x

D =
1

12 × 4ν

[∫ ∞

−infty
[fX(x)]

1
3dx

]3
=

1
12 × 4ν

(
3
2

)3

we have

SQNR =
E[X2]
D

=
32
9

× 4νE[X2] =
32
9

× 4ν · 1
6

=
16
27

4ν

Problem 6.59
The sampling rate is fs = 44100 meaning that we take 44100 samples per second. Each sample is
quantized using 16 bits so the total number of bits per second is 44100 × 16. For a music piece of
duration 50 min = 3000 sec the resulting number of bits per channel (left and right) is

44100 × 16 × 3000 = 2.1168 × 109

and the overall number of bits is

2.1168 × 109 × 2 = 4.2336 × 109
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Chapter 7

Problem 7.1

The amplitudes Am take the values

Am = (2m− 1 −M)
d

2
, m = 1, . . .M

Hence, the average energy is

Eav =
1
M

M∑
m=1

s2m =
d2

4M
Eg

M∑
m=1

(2m− 1 −M)2

=
d2

4M
Eg

M∑
m=1

[4m2 + (M + 1)2 − 4m(M + 1)]

=
d2

4M
Eg

(
4

M∑
m=1

m2 +M(M + 1)2 − 4(M + 1)
M∑

m=1
m

)

=
d2

4M
Eg

(
4
M(M + 1)(2M + 1)

6
+M(M + 1)2 − 4(M + 1)

M(M + 1)
2

)
=

M2 − 1
3

d2

4
Eg

Problem 7.2

The correlation coefficient between the mth and the nth signal points is

γmn =
sm · sn

|sm||sn|

where sm = (sm1, sm2, . . . , smN ) and smj = ±
√

Es
N . Two adjacent signal points differ in only one

coordinate, for which smk and snk have opposite signs. Hence,

sm · sn =
N∑

j=1

smjsnj =
∑
j �=k

smjsnj + smksnk

= (N − 1)
Es

N
− Es

N
=
N − 2
N

Es

Furthermore, |sm| = |sn| = (Es)
1
2 so that

γmn =
N − 2
N

The Euclidean distance between the two adjacent signal points is

d =
√

|sm − sn|2 =

√∣∣∣∣±2
√

Es/N

∣∣∣∣2 =

√
4
Es

N
= 2

√
Es

N
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Problem 7.3

a) To show that the waveforms ψn(t), n = 1, . . . , 3 are orthogonal we have to prove that∫ ∞

−∞
ψm(t)ψn(t)dt = 0, m �= n

Clearly,

c12 =
∫ ∞

−∞
ψ1(t)ψ2(t)dt =

∫ 4

0
ψ1(t)ψ2(t)dt

=
∫ 2

0
ψ1(t)ψ2(t)dt+

∫ 4

2
ψ1(t)ψ2(t)dt

=
1
4

∫ 2

0
dt− 1

4

∫ 4

2
dt =

1
4

× 2 − 1
4

× (4 − 2)

= 0

Similarly,

c13 =
∫ ∞

−∞
ψ1(t)ψ3(t)dt =

∫ 4

0
ψ1(t)ψ3(t)dt

=
1
4

∫ 1

0
dt− 1

4

∫ 2

1
dt− 1

4

∫ 3

2
dt+

1
4

∫ 4

3
dt

= 0

and

c23 =
∫ ∞

−∞
ψ2(t)ψ3(t)dt =

∫ 4

0
ψ2(t)ψ3(t)dt

=
1
4

∫ 1

0
dt− 1

4

∫ 2

1
dt+

1
4

∫ 3

2
dt− 1

4

∫ 4

3
dt

= 0

Thus, the signals ψn(t) are orthogonal.

b) We first determine the weighting coefficients

xn =
∫ ∞

−∞
x(t)ψn(t)dt, n = 1, 2, 3

x1 =
∫ 4

0
x(t)ψ1(t)dt = −1

2

∫ 1

0
dt+

1
2

∫ 2

1
dt− 1

2

∫ 3

2
dt+

1
2

∫ 4

3
dt = 0

x2 =
∫ 4

0
x(t)ψ2(t)dt =

1
2

∫ 4

0
x(t)dt = 0

x3 =
∫ 4

0
x(t)ψ3(t)dt = −1

2

∫ 1

0
dt− 1

2

∫ 2

1
dt+

1
2

∫ 3

2
dt+

1
2

∫ 4

3
dt = 0

As it is observed, x(t) is orthogonal to the signal waveforms ψn(t), n = 1, 2, 3 and thus it can not
represented as a linear combination of these functions.

Problem 7.4

a) The expansion coefficients {cn}, that minimize the mean square error, satisfy

cn =
∫ ∞

−∞
x(t)ψn(t)dt =

∫ 4

0
sin

πt

4
ψn(t)dt
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Hence,

c1 =
∫ 4

0
sin

πt

4
ψ1(t)dt =

1
2

∫ 2

0
sin

πt

4
dt− 1

2

∫ 4

2
sin

πt

4
dt

= − 2
π

cos
πt

4

∣∣∣∣2
0
+

2
π

cos
πt

4

∣∣∣∣4
2

= − 2
π

(0 − 1) +
2
π

(−1 − 0) = 0

Similarly,

c2 =
∫ 4

0
sin

πt

4
ψ2(t)dt =

1
2

∫ 4

0
sin

πt

4
dt

= − 2
π

cos
πt

4

∣∣∣∣4
0

= − 2
π

(−1 − 1) =
4
π

and

c3 =
∫ 4

0
sin

πt

4
ψ3(t)dt

=
1
2

∫ 1

0
sin

πt

4
dt− 1

2

∫ 2

1
sin

πt

4
dt+

1
2

∫ 3

2
sin

πt

4
dt− 1

2

∫ 4

3
sin

πt

4
dt

= 0

Note that c1, c2 can be found by inspection since sin πt
4 is even with respect to the x = 2 axis and

ψ1(t), ψ3(t) are odd with respect to the same axis.

b) The residual mean square error Emin can be found from

Emin =
∫ ∞

−∞
|x(t)|2dt−

3∑
i=1

|ci|2

Thus,

Emin =
∫ 4

0

(
sin

πt

4

)2
dt−

(
4
π

)2
=

1
2

∫ 4

0

(
1 − cos

πt

2

)
dt− 16

π2

= 2 − 1
π

sin
πt

2

∣∣∣∣4
0
− 16
π2 = 2 − 16

π2

Problem 7.5

a) As an orthonormal set of basis functions we consider the set

ψ1(t) =

{
1 0 ≤ t < 1
0 o.w

ψ2(t) =

{
1 1 ≤ t < 2
0 o.w

ψ3(t) =

{
1 2 ≤ t < 3
0 o.w

ψ4(t) =

{
1 3 ≤ t < 4
0 o.w

In matrix notation, the four waveforms can be represented as
s1(t)
s2(t)
s3(t)
s4(t)

 =


2 −1 −1 −1

−2 1 1 0
1 −1 1 −1
1 −2 −2 2



ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)


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Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the
waveforms is 4

b) The representation vectors are

s1 =
[

2 −1 −1 −1
]

s2 =
[

−2 1 1 0
]

s3 =
[

1 −1 1 −1
]

s4 =
[

1 −2 −2 2
]

c) The distance between the first and the second vector is

d1,2 =
√

|s1 − s2|2 =
√∣∣∣[ 4 −2 −2 −1

]∣∣∣2 =
√

25

Similarly we find that

d1,3 =
√

|s1 − s3|2 =
√∣∣∣[ 1 0 −2 0

]∣∣∣2 =
√

5

d1,4 =
√

|s1 − s4|2 =
√∣∣∣[ 1 1 1 −3

]∣∣∣2 =
√

12

d2,3 =
√

|s2 − s3|2 =
√∣∣∣[ −3 2 0 1

]∣∣∣2 =
√

14

d2,4 =
√

|s2 − s4|2 =
√∣∣∣[ −3 3 3 −2

]∣∣∣2 =
√

31

d3,4 =
√

|s3 − s4|2 =
√∣∣∣[ 0 1 3 −3

]∣∣∣2 =
√

19

Thus, the minimum distance between any pair of vectors is dmin =
√

5.

Problem 7.6

As a set of orthonormal functions we consider the waveforms

ψ1(t) =

{
1 0 ≤ t < 1
0 o.w

ψ2(t) =

{
1 1 ≤ t < 2
0 o.w

ψ3(t) =

{
1 2 ≤ t < 3
0 o.w

The vector representation of the signals is

s1 =
[

2 2 2
]

s2 =
[

2 0 0
]

s3 =
[

0 −2 −2
]

s4 =
[

2 2 0
]

Note that s3(t) = s2(t) − s1(t) and that the dimensionality of the waveforms is 3.
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Problem 7.7

The energy of the signal waveform s′
m(t) is

E ′ =
∫ ∞

−∞

∣∣s′
m(t)

∣∣2 dt =
∫ ∞

−∞

∣∣∣∣∣sm(t) − 1
M

M∑
k=1

sk(t)

∣∣∣∣∣
2

dt

=
∫ ∞

−∞
s2m(t)dt+

1
M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

− 1
M

M∑
k=1

∫ ∞

−∞
sm(t)sk(t)dt− 1

M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

= E +
1
M2

M∑
k=1

M∑
l=1

Eδkl − 2
M

E

= E +
1
M

E − 2
M

E =
(
M − 1
M

)
E

The correlation coefficient is given by

γmn =
∫∞
−∞ s′

m(t)s′
n(t)dt[∫∞

−∞ |s′
m(t)|2dt

] 1
2
[∫∞

−∞ |s′
n(t)|2dt

] 1
2

=
1
E ′

∫ ∞

−∞

(
sm(t) − 1

M

M∑
k=1

sk(t)

)(
sn(t) − 1

M

M∑
l=1

sl(t)

)
dt

=
1
E ′

(∫ ∞

−∞
sm(t)sn(t)dt+

1
M2

M∑
k=1

M∑
l=1

∫ ∞

−∞
sk(t)sl(t)dt

)

− 1
E ′

(
1
M

M∑
k=1

∫ ∞

−∞
sn(t)sk(t)dt+

1
M

M∑
l=1

∫ ∞

−∞
sm(t)sl(t)dt

)

=
1

M2ME − 1
M E − 1

M E
M−1

M E
= − 1

M − 1

Problem 7.8

Assuming that E[n2(t)] = σ2
n, we obtain

E[n1n2] = E

[(∫ T

0
s1(t)n(t)dt

)(∫ T

0
s2(v)n(v)dv

)]

=
∫ T

0

∫ T

0
s1(t)s2(v)E[n(t)n(v)]dtdv

= σ2
n

∫ T

0
s1(t)s2(t)dt

= 0

where the last equality follows from the orthogonality of the signal waveforms s1(t) and s2(t).

Problem 7.9

a) The received signal may be expressed as

r(t) =

{
n(t) if s0(t) was transmitted

A+ n(t) if s1(t) was transmitted
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Assuming that s(t) has unit energy, then the sampled outputs of the crosscorrelators are

r = sm + n, m = 0, 1

where s0 = 0, s1 = A
√
T and the noise term n is a zero-mean Gaussian random variable with

variance

σ2
n = E

[
1√
T

∫ T

0
n(t)dt

1√
T

∫ T

0
n(τ)dτ

]

=
1
T

∫ T

0

∫ T

0
E [n(t)n(τ)] dtdτ

=
N0

2T

∫ T

0

∫ T

0
δ(t− τ)dtdτ =

N0

2

The probability density function for the sampled output is

f(r|s0) =
1√
πN0

e
− r2

N0

f(r|s1) =
1√
πN0

e
− (r−A

√
T )2

N0

Since the signals are equally probable, the optimal detector decides in favor of s0 if

PM(r, s0) = f(r|s0) > f(r|s1) = PM(r, s1)

otherwise it decides in favor of s1. The decision rule may be expressed as

PM(r, s0)
PM(r, s1)

= e
(r−A

√
T )2−r2

N0 = e
− (2r−A

√
T )A

√
T

N0

s0
>
<
s1

1

or equivalently

r

s1
>
<
s0

1
2
A

√
T

The optimum threshold is 1
2A

√
T .

b) The average probability of error is

P (e) =
1
2
P (e|s0) +

1
2
P (e|s1)

=
1
2

∫ ∞
1
2A

√
T
f(r|s0)dr +

1
2

∫ 1
2A

√
T

−∞
f(r|s1)dr

=
1
2

∫ ∞
1
2A

√
T

1√
πN0

e
− r2

N0 dr +
1
2

∫ 1
2A

√
T

−∞
1√
πN0

e
− (r−A

√
T )2

N0 dr

=
1
2

∫ ∞
1
2

√
2

N0
A

√
T

1√
2π
e−

x2
2 dx+

1
2

∫ − 1
2

√
2

N0
A

√
T

−∞
1√
2π
e−

x2
2 dx

= Q

[
1
2

√
2
N0

A
√
T

]
= Q

[√
SNR

]
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where

SNR =
1
2A

2T

N0

Thus, the on-off signaling requires a factor of two more energy to achieve the same probability of
error as the antipodal signaling.

Problem 7.10

Since the rate of transmission is R = 105 bits/sec, the bit interval Tb is 10−5 sec. The probability
of error in a binary PAM system is

P (e) = Q

[√
2Eb

N0

]
where the bit energy is Eb = A2Tb. With P (e) = P2 = 10−6, we obtain√

2Eb

N0
= 4.75 =⇒ Eb =

4.752N0

2
= 0.112813

Thus
A2Tb = 0.112813 =⇒ A =

√
0.112813 × 105 = 106.21

Problem 7.11

a) For a binary PAM system for which the two signals have unequal probability, the optimum
detector is

r

s1
>
<
s2

N0

4
√

Eb
ln

1 − p

p
= η

The average probability of error is

P (e) = P (e|s1)P (s1) + P (e|s2)P (s2)
= pP (e|s1) + (1 − p)P (e|s2)

= p

∫ η

−∞
f(r|s1)dr + (1 − p)

∫ ∞

η
f(r|s1)dr

= p

∫ η

−∞
1√
πN0

e
− (r−√Eb)2

N0 dr + (1 − p)
∫ ∞

η

1√
πN0

e
− (r+

√Eb)2

N0 dr

= p
1√
2π

∫ η1

−∞
e−

x2
2 dx+ (1 − p)

1√
2π

∫ ∞

η2

e−
x2
2 dx

where

η1 = −
√

2Eb

N0
+ η

√
2
N0

η2 =

√
2Eb

N0
+ η

√
2
N0

Thus,

P (e) = pQ

[√
2Eb

N0
− η

√
2
N0

]
+ (1 − p)Q

[√
2Eb

N0
+ η

√
2
N0

]

b) If p = 0.3 and Eb
N0

= 10, then

P (e) = 0.3Q[4.3774] + 0.7Q[4.5668] = 0.3 × 6.01 × 10−6 + 0.7 × 2.48 × 10−6

= 3.539 × 10−6
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If the symbols are equiprobable, then

P (e) = Q[

√
2Eb

N0
] = Q[

√
20] = 3.88 × 10−6

Problem 7.12

a) The optimum threshold is given by

η =
N0

4
√

Eb
ln

1 − p

p
=

N0

4
√

Eb
ln 2

b) The average probability of error is (η = N0
4
√Eb

ln 2)

P (e) = p(am = −1)
∫ ∞

η

1√
πN0

e−(r+
√Eb)2/N0dr

+p(am = 1)
∫ η

−∞
1√
πN0

e−(r−√Eb)2/N0dr

=
2
3
Q

[
η +

√
Eb√

N0/2

]
+

1
3
Q

[√
Eb − η√
N0/2

]

=
2
3
Q

[√
2N0/Eb ln 2

4
+

√
2Eb

N0

]
+

1
3
Q

[√
2Eb

N0
−
√

2N0/Eb ln 2
4

]

Problem 7.13

a) The maximum likelihood criterion selects the maximum of f(r|sm) over the M possible trans-
mitted signals. When M = 2, the ML criterion takes the form

f(r|s1)
f(r|s2)

s1
>
<
s2

1

or, since

f(r|s1) =
1√
πN0

e−(r−√Eb)2/N0

f(r|s2) =
1√
πN0

e−(r+
√Eb)2/N0

the optimum maximum-likelihood decision rule is

r

s1
>
<
s2

0

b) The average probability of error is given by

P (e) = p

∫ ∞

0

1√
πN0

e−(r+
√Eb)2/N0dr + (1 − p)

∫ 0

−∞
1√
πN0

e−(r−√Eb)2/N0dr
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= p

∫ ∞
√

2Eb/N0

1√
2π
e−

x2
2 dx+ (1 − p)

∫ −
√

2Eb/N0

−∞
1√
2π
e−

x2
2 dx

= pQ

[√
2Eb

N0

]
+ (1 − p)Q

[√
2Eb

N0

]

= Q

[√
2Eb

N0

]

Problem 7.14

a) The impulse response of the filter matched to s(t) is

h(t) = s(T − t) = s(3 − t) = s(t)

where we have used the fact that s(t) is even with respect to the t = T
2 = 3

2 axis.

b) The output of the matched filter is

y(t) = s(t) 	 s(t) =
∫ t

0
s(τ)s(t− τ)dτ

=



0 t < 0
A2t 0 ≤ t < 1

A2(2 − t) 1 ≤ t < 2
2A2(t− 2) 2 ≤ t < 3
2A2(4 − t) 3 ≤ t < 4
A2(t− 4) 4 ≤ t < 5
A2(6 − t) 5 ≤ t < 6

0 6 ≤ t

A scetch of y(t) is depicted in the next figure
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c) At the output of the matched filter and for t = T = 3 the noise is

nT =
∫ T

0
n(τ)h(T − τ)dτ

=
∫ T

0
n(τ)s(T − (T − τ))dτ =

∫ T

0
n(τ)s(τ)dτ

The variance of the noise is

σ2
nT

= E

[∫ T

0

∫ T

0
n(τ)n(v)s(τ)s(v)dτdv

]

=
∫ T

0

∫ T

0
s(τ)s(v)E[n(τ)n(v)]dτdv
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=
N0

2

∫ T

0

∫ T

0
s(τ)s(v)δ(τ − v)dτdv

=
N0

2

∫ T

0
s2(τ)dτ = N0A

2

d) For antipodal equiprobable signals the probability of error is

P (e) = Q

[√(
S

N

)
o

]

where
(

S
N

)
o

is the output SNR from the matched filter. Since

(
S

N

)
o

=
y2(T )
E[n2

T ]
=

4A4

N0A2

we obtain

P (e) = Q

√4A2

N0


Problem 7.15

a) Taking the inverse Fourier transform of H(f), we obtain

h(t) = F−1[H(f)] = F−1
[

1
j2πf

]
− F−1

[
e−j2πfT

j2πf

]

= sgn(t) − sgn(t− T ) = 2Π

(
t− T

2
T

)

b) The signal waveform, to which h(t) is matched, is

s(t) = h(T − t) = 2Π

(
T − t− T

2
T

)
= 2Π

(
T
2 − t

T

)
= h(t)

where we have used the symmetry of Π
(

t− T
2

T

)
with respect to the t = T

2 axis.

Problem 7.16

If gT (t) = sinc(t), then its matched waveform is h(t) = sinc(−t) = sinc(t). Since, (see Problem
2.17)

sinc(t) 	 sinc(t) = sinc(t)

the output of the matched filter is the same sinc pulse. If

gT (t) = sinc(
2
T

(t− T

2
))

then the matched waveform is

h(t) = gT (T − t) = sinc(
2
T

(
T

2
− t)) = gT (t)
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where the last equality follows from the fact that gT (t) is even with respect to the t = T
2 axis. The

output of the matched filter is

y(t) = F−1[gT (t) 	 gT (t)]

= F−1

[
T 2

4
Π(
T

2
f)e−j2πfT

]

=
T

2
sinc(

2
T

(t− T )) =
T

2
gT (t− T

2
)

Thus the output of the matched filter is the same sinc function, scaled by T
2 and centered at t = T .

Problem 7.17

1) The output of the integrator is

y(t) =
∫ t

0
r(τ)dτ =

∫ t

0
[si(τ) + n(τ)]dτ

=
∫ t

0
si(τ)dτ +

∫ t

0
n(τ)dτ

At time t = T we have

y(T ) =
∫ T

0
si(τ)dτ +

∫ T

0
n(τ)dτ = ±

√
Eb

T
T +

∫ T

0
n(τ)dτ

The signal energy at the output of the integrator at t = T is

Es =

±
√

Eb

T
T

2

= EbT

whereas the noise power

Pn = E

[∫ T

0

∫ T

0
n(τ)n(v)dτdv

]

=
∫ T

0

∫ T

0
E[n(τ)n(v)]dτdv

=
N0

2

∫ T

0

∫ T

0
δ(τ − v)dτdv =

N0

2
T

Hence, the output SNR is

SNR =
Es

Pn
=

2Eb

N0

2) The transfer function of the RC filter is

H(f) =
1

1 + j2πRCf

Thus, the impulse response of the filter is

h(t) =
1
RC

e−
t

RC u−1(t)
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and the output signal is given by

y(t) =
1
RC

∫ t

−∞
r(τ)e−

t−τ
RC dτ

=
1
RC

∫ t

−∞
(si(τ) + n(τ))e−

t−τ
RC dτ

=
1
RC

e−
t

RC

∫ t

0
si(τ)e

τ
RC dτ +

1
RC

e−
t

RC

∫ t

−∞
n(τ)e

τ
RC dτ

At time t = T we obtain

y(T ) =
1
RC

e−
T

RC

∫ T

0
si(τ)e

τ
RC dτ +

1
RC

e−
T

RC

∫ T

−∞
n(τ)e

τ
RC dτ

The signal energy at the output of the filter is

Es =
1

(RC)2
e−

2T
RC

∫ T

0

∫ T

0
si(τ)si(v)e

τ
RC e

v
RC dτdv

=
1

(RC)2
e−

2T
RC

Eb

T

(∫ T

0
e

τ
RC dτ

)2

= e−
2T
RC

Eb

T

(
e

T
RC − 1

)2

=
Eb

T

(
1 − e−

T
RC

)2

The noise power at the output of the filter is

Pn =
1

(RC)2
e−

2T
RC

∫ T

−∞

∫ T

−∞
E[n(τ)n(v)]dτdv

=
1

(RC)2
e−

2T
RC

∫ T

−∞

∫ T

−∞
N0

2
δ(τ − v)e

τ+v
RC dτdv

=
1

(RC)2
e−

2T
RC

∫ T

−∞
N0

2
e

2τ
RC dτ

=
1

2RC
e−

2T
RC
N0

2
e

2T
RC =

1
2RC

N0

2

Hence,

SNR =
Es

Pn
=

4EbRC

TN0

(
1 − e−

T
RC

)2

3) The value of RC that maximizes SNR, can be found by setting the partial derivative of SNR
with respect to RC equal to zero. Thus, if a = RC, then

ϑSNR
ϑa

= 0 = (1 − e−
T
a ) − T

a
e−

T
a = −e− T

a

(
1 +

T

a

)
+ 1

Solving this transcendental equation numerically for a, we obtain

T

a
= 1.26 =⇒ RC = a =

T

1.26

Problem 7.18

1) The matched filter is

h1(t) = s1(T − t) =

{
− 1

T t+ 1, 0 ≤ t < T
0 otherwise
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The output of the matched filter is

y1(t) =
∫ ∞

−∞
s1(τ)h1(t− τ)dτ

If t ≤ 0, then y1(t) = 0, If 0 < t ≤ T , then

y1(t) =
∫ ∞

0

τ

T

(
− 1
T

(t− τ) + 1
)
dτ

=
∫ t

0
τ

(
1
T

− t

T 2

)
dτ +

1
T 2

∫ t

0
τ2dτ

= − t3

6T 2 +
t2

2T

If T ≤ t ≤ 2T , then

y1(t) =
∫ T

t−τ

τ

T

(
− 1
T

(t− τ) + 1
)
dτ

=
∫ T

t−τ
τ

(
1
T

− t

T 2

)
dτ +

1
T 2

∫ T

t−τ
τ2dτ

=
(t− T )3

6T 2 − t− T

2
+
T

3

For 2T < 0, we obtain y1(t) = 0. In summary

y1(t) =


0 t ≤ 0

− t3

6T 2 + t2

2T 0 < t ≤ T
(t−T )3

6T 2 − t−T
2 + T

3 T < t ≤ 2T
0 2T < t

A sketch of y1(t) is given in the next figure. As it is observed the maximum of y1(t), which is T
3 ,

is achieved for t = T .

T/3

T 2T

2) The signal waveform matched to s2(t) is

h2(t) =

{
−1, 0 ≤ t ≤ T

2
2, T

2 < t ≤ T

The output of the matched filter is

y2(t) =
∫ ∞

−∞
s2(τ)h2(t− τ)dτ

If t ≤ 0 or t ≥ 2T , then y2(t) = 0. If 0 < t ≤ T
2 , then y2(t) =

∫ t
0(−2)dτ = −2t. If T

2 < t ≤ T , then

y2(t) =
∫ t− T

2

0
4dτ +

∫ T
2

t− T
2

(−2)dτ +
∫ t

− T
2

dτ = 7t− 9
2
T
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If T < t ≤ 3T
2 , then

y2(t) =
∫ T

2

t−T
4dτ +

∫ t− T
2

T
2

(−2)dτ +
∫ T

t− T
2

dτ =
19T
2

− 7t

For, 3T
2 < t ≤ 2T , we obtain

y2(t) =
∫ T

t−T
(−2)dτ = 2t− 4T

In summary

y2(t) =



0 t ≤ 0
−2t 0 < t ≤ T

2
7t− 9

2T
T
2 < t ≤ T

19T
2 − 7t T < t ≤ 3T

2
2t− 4T 3T

2 < t ≤ 2T
0 2T < t

A plot of y2(t) is shown in the next figure
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T

5T
2

−T
2T

3) The signal waveform matched to s3(t) is

h3(t) =

{
2 0 ≤ t ≤ T

2
0 T

2 < t ≤ T

The output of the matched filter is

y3(t) = h3(t) 	 s3(t) =

{
4t− 2T T

2 ≤ t < T

−4t+ 6T T ≤ t ≤ 3T
2

In the next figure we have plotted y3(t).
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Problem 7.19

1) Since m2(t) = −m3(t) the dimensionality of the signal space is two.

2) As a basis of the signal space we consider the functions

ψ1(t) =

{
1√
T

0 ≤ t ≤ T

0 otherwise
ψ2(t) =


1√
T

0 ≤ t ≤ T
2

− 1√
T

T
2 < t ≤ T

0 otherwise
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The vector representation of the signals is

m1 = [
√
T , 0]

m2 = [0,
√
T ]

m3 = [0, −
√
T ]

3) The signal constellation is depicted in the next figure

�

�
�

(0,−
√
T )

(0,
√
T )

(
√
T , 0)

4) The three possible outputs of the matched filters, corresponding to the three possible transmitted
signals are (r1, r2) = (

√
T + n1, n2), (n1,

√
T + n2) and (n1,−

√
T + n2), where n1, n2 are zero-

mean Gaussian random variables with variance N0
2 . If all the signals are equiprobable the optimum

decision rule selects the signal that maximizes the metric

C(r · mi) = 2r · mi − |mi|2

or since |mi|2 is the same for all i,
C ′(r · mi) = r · mi

Thus the optimal decision region R1 for m1 is the set of points (r1, r2), such that (r1, r2) · m1 >
(r1, r2) · m2 and (r1, r2) · m1 > (r1, r2) · m3. Since (r1, r2) · m1 =

√
Tr1, (r1, r2) · m2 =

√
Tr2 and

(r1, r2) · m3 = −
√
Tr2, the previous conditions are written as

r1 > r2 and r1 > −r2

Similarly we find that R2 is the set of points (r1, r2) that satisfy r2 > 0, r2 > r1 and R3 is the
region such that r2 < 0 and r2 < −r1. The regions R1, R2 and R3 are shown in the next figure.
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0

R3

R2

R1

5) If the signals are equiprobable then,

P (e|m1) = P (|r − m1|2 > |r − m2|2|m1) + P (|r − m1|2 > |r − m3|2|m1)

When m1 is transmitted then r = [
√
T + n1, n2] and therefore, P (e|m1) is written as

P (e|m1) = P (n2 − n1 >
√
T ) + P (n1 + n2 < −

√
T )
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Since, n1, n2 are zero-mean statistically independent Gaussian random variables, each with variance
N0
2 , the random variables x = n1 − n2 and y = n1 + n2 are zero-mean Gaussian with variance N0.

Hence,

P (e|m1) =
1√

2πN0

∫ ∞
√

T
e
− x2

2N0 dx+
1√

2πN0

∫ −√
T

−∞
e
− y2

2N0 dy

= Q

[√
T

N0

]
+Q

[√
T

N0

]
= 2Q

[√
T

N0

]

When m2 is transmitted then r = [n1, n2 +
√
T ] and therefore,

P (e|m2) = P (n1 − n2 >
√
T ) + P (n2 < −

√
T )

= Q

[√
T

N0

]
+Q

[√
2T
N0

]

Similarly from the symmetry of the problem, we obtain

P (e|m2) = P (e|m3) = Q

[√
T

N0

]
+Q

[√
2T
N0

]

Since Q[·] is momononically decreasing, we obtain

Q

[√
2T
N0

]
< Q

[√
T

N0

]

and therefore, the probability of error P (e|m1) is larger than P (e|m2) and P (e|m3). Hence, the
message m1 is more vulnerable to errors.

Problem 7.20

The optimal receiver bases its decisions on the metrics

PM(r, sm) = f(r|sm)P (sm)

For an additive noise channel r = sm + n, so

PM(r, sm) = f(n)P (sm)

where f(n) is the N -dimensional PDF for the noise channel vector. If the noise is AWG, then

fn) =
1

(πN0)
N
2

e
− |r−sm|2

N0

Maximizing f(r|sm)P (sm) is the same as minimizing the reciprocal e
|r−sm|2

N0 /P (sm), or by taking
the natural logarithm, minimizing the cost

D(r, sm) = |r − sm|2 −N0P (sm)

This is equivalent to the maximization of the quantity

C(r, sm) = r · sm − 1
2
|sm|2 +

N0

2
lnP (sm)
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If the vectors r, sm correspond to the waveforms r(t) and sm(t), where

r(t) =
N∑

i=1

riψi(t)

sm(t) =
N∑

i=1

sm,iψi(t)

then, ∫ ∞

−∞
r(t)sm(t)dt =

∫ ∞

−∞

N∑
i=1

riψi(t)
N∑

j=1

sm,jψj(t)dt

=
N∑

i=1

N∑
j=1

rism,j

∫ ∞

−∞
ψi(t)ψj(t)dt

=
N∑

i=1

N∑
j=1

rism,jδi,j =
N∑

i=1

rism,i

= r · sm

Similarly we obtain ∫ ∞

−∞
|sm(t)|2dt = |sm|2 = Esm

Therefore, the optimal receiver can use the costs

C(r, sm) =
∫ ∞

−∞
r(t)sm(t)dt− 1

2

∫ ∞

−∞
|sm(t)|2dt+

N0

2
lnP (sm)

=
∫ ∞

−∞
r(t)sm(t)dt+ cm

to base its decisions. This receiver can be implemented usingM correlators to evaluate
∫∞
−∞ r(t)sm(t)dt.

The bias constants cm can be precomputed and added to the output of the correlators. The struc-
ture of the receiver is shown in the next figure.
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. largest

the

Select

cM

c2

c1
r · s1

r · sM

r · s2

∫
(·)dt

∫
(·)dt

∫
(·)dt

sM (t)

s2(t)

s1(t)

r(t)

Parallel to the development of the optimal receiver using N filters matched to the orthonormal
functions ψi(t), i = 1, . . . , N , the M correlators can be replaced by M equivalent filters matched to
the signal waveforms sm(t). The output of the mth matched filter hm(t), at the time instant T is∫ T

0
r(τ)hm(T − τ)dτ =

∫ T

0
r(τ)sm(T − (T − τ))dτ

=
∫ T

0
r(τ)sm(τ)dτ

= r · sm
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The structure of this optimal receiver is shown in the next figure. The optimal receivers, derived
in this problem, are more costly than those derived in the text, since N is usually less than M , the
number of signal waveforms. For example, in an M -ary PAM system, N = 1 always less than M .
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Problem 7.21

1) The optimal receiver (see Problem 7.20) computes the metrics

C(r, sm) =
∫ ∞

−∞
r(t)sm(t)dt− 1

2

∫ ∞

−∞
|sm(t)|2dt+

N0

2
lnP (sm)

and decides in favor of the signal with the largest C(r, sm). Since s1(t) = −s2(t), the energy of the
two message signals is the same, and therefore the detection rule is written as

∫ ∞

−∞
r(t)s1(t)dt

s1
>
<
s2

N0

4
ln
P (s2)
P (s1)

=
N0

4
ln
p2

p1

2) If s1(t) is transmitted, then the output of the correlator is∫ ∞

−∞
r(t)s1(t)dt =

∫ T

0
(s1(t))2dt+

∫ T

0
n(t)s1(t)dt

= Es + n

where Es is the energy of the signal and n is a zero-mean Gaussian random variable with variance

σ2
n = E

[∫ T

0

∫ T

0
n(τ)n(v)s1(τ)s1(v)dτdv

]

=
∫ T

0

∫ T

0
s1(τ)s1(v)E[n(τ)n(v)]dτdv

=
N0

2

∫ T

0

∫ T

0
s1(τ)s1(v)δ(τ − v)dτdv

=
N0

2

∫ T

0
|s1(τ)|2dτ =

N0

2
Es

Hence, the probability of error P (e|s1) is

P (e|s1) =
∫ N0

4 ln p2
p1

−Es

−∞
1√

πN0Es
e
− x2

N0Es dx

= Q

[√
2Es

N0
− 1

4

√
2N0

Es
ln
p2

p1

]
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Similarly we find that

P (e|s2) = Q

[√
2Es

N0
+

1
4

√
2N0

Es
ln
p2

p1

]
The average probability of error is

P (e) = p1P (e|s1) + p2P (e|s2)

= p1Q

[√
2Es

N0
− 1

4

√
2N0

Es
ln

1 − p1

p1

]
+ (1 − p1)Q

[√
2Es

N0
+

1
4

√
2N0

Es
ln

1 − p1

p1

]

3) In the next figure we plot the probability of error as a function of p1, for two values of the
SNR = 2Es

N0
. As it is observed the probability of error attains its maximum for equiprobable

signals.
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Problem 7.22

1) The two equiprobable signals have the same energy and therefore the optimal receiver bases its
decisions on the rule

∫ ∞

−∞
r(t)s1(t)dt

s1
>
<
s2

∫ ∞

−∞
r(t)s2(t)dt

2) If the message signal s1(t) is transmitted, then r(t) = s1(t)+n(t) and the decision rule becomes∫ ∞

−∞
(s1(t) + n(t))(s1(t) − s2(t))dt

=
∫ ∞

−∞
s1(t)(s1(t) − s2(t))dt+

∫ ∞

−∞
n(t)(s1(t) − s2(t))dt

=
∫ ∞

−∞
s1(t)(s1(t) − s2(t))dt+ n

s1
>
<
s2

0

where n is a zero mean Gaussian random variable with variance

σ2
n =

∫ ∞

−∞

∫ ∞

−∞
(s1(τ) − s2(τ))(s1(v) − s2(v))E[n(τ)n(v)]dτdv
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=
∫ T

0

∫ T

0
(s1(τ) − s2(τ))(s1(v) − s2(v))

N0

2
δ(τ − v)dτdv

=
N0

2

∫ T

0
(s1(τ) − s2(τ))2dτ

=
N0

2

∫ T

0

∫ T

0

(
2Aτ
T

−A

)2
dτ

=
N0

2
A2T

3

Since ∫ ∞

−∞
s1(t)(s1(t) − s2(t))dt =

∫ T

0

At

T

(
2At
T

−A

)
dt

=
A2T

6

the probability of error P (e|s1) is given by

P (e|s1) = P (
A2T

6
+ n < 0)

=
1√

2πA2TN0
6

∫ − A2T
6

−∞
exp

(
− x2

2A2TN0
6

)
dx

= Q

√A2T

6N0


Similarly we find that

P (e|s2) = Q

√A2T

6N0


and since the two signals are equiprobable, the average probability of error is given by

P (e) =
1
2
P (e|s1) +

1
2
P (e|s2)

= Q

√A2T

6N0

 = Q

[√
Es

2N0

]

where Es is the energy of the transmitted signals.

Problem 7.23

a) The PDF of the noise n is

f(n) =
λ

2
e−λ|n|

The optimal receiver uses the criterion

f(r|A)
f(r| −A)

= e−λ[|r−A|−|r+A|]
A
>
<

−A
1 =⇒ r

A
>
<

−A
0
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The average probability of error is

P (e) =
1
2
P (e|A) +

1
2
P (e| −A)

=
1
2

∫ 0

−∞
f(r|A)dr +

1
2

∫ ∞

0
f(r| −A)dr

=
1
2

∫ 0

−∞
λ2e

−λ|r−A|dr +
1
2

∫ ∞

0
λ2e

−λ|r+A|dr

=
λ

4

∫ −A

−∞
e−λ|x|dx+

λ

4

∫ ∞

A
e−λ|x|dx

=
λ

4
1
λ
eλx

∣∣∣∣−A

−∞
+
λ

4

(
− 1
λ

)
e−λx

∣∣∣∣∞
A

=
1
2
e−λA

b) The variance of the noise is

σ2
n =

λ

2

∫ ∞

−∞
e−λ|x|x2dx

= λ

∫ ∞

0
e−λxx2dx = λ

2!
λ3 =

2
λ2

Hence, the SNR is

SNR =
A2

2
λ2

=
A2λ2

2

and the probability of error is given by

P (e) =
1
2
e−

√
λ2A2

=
1
2
e−

√
2SNR

For P (e) = 10−5 we obtain

ln(2 × 10−5) = −
√

2SNR =⇒ SNR = 58.534 = 17.6741 dB

If the noise was Gaussian, then

P (e) = Q

[√
2Eb

N0

]
= Q

[√
SNR

]
where SNR is the signal to noise ratio at the output of the matched filter. With P (e) = 10−5 we
find

√
SNR = 4.26 and therefore SNR = 18.1476 = 12.594 dB. Thus the required signal to noise

ratio is 5 dB less when the additive noise is Gaussian.

Problem 7.24

The energy of the two signals s1(t) and s2(t) is

Eb = A2T

The dimensionality of the signal space is one, and by choosing the basis function as

ψ(t) =

{ 1√
T

0 ≤ t < T
2

− 1√
T

T
2 ≤ t ≤ T
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we find the vector representation of the signals as

s1,2 = ±A
√
T + n

with n a zero-mean Gaussian random variable of variance N0
2 . The probability of error for antipodal

signals is given by, where Eb = A2T . Hence,

P (e) = Q

(√
2Eb

N0

)
= Q

√2A2T

N0


Problem 7.25

The three symbols A, 0 and −A are used with equal probability. Hence, the optimal detector uses
two thresholds, which are A

2 and −A
2 , and it bases its decisions on the criterion

A : r >
A

2

0 : −A
2
< r <

A

2

−A : r < −A
2

If the variance of the AWG noise is σ2
n, then the average probability of error is

P (e) =
1
3

∫ A
2

−∞
1√

2πσ2
n

e
− (r−A)2

2σ2
n dr +

1
3

(
1 −

∫ A
2

− A
2

1√
2πσ2

n

e
− r2

2σ2
n dr

)

+
1
3

∫ ∞

− A
2

1√
2πσ2

n

e
− (r+A)2

2σ2
n dr

=
1
3
Q

[
A

2σn

]
+

1
3
2Q

[
A

2σn

]
+

1
3
Q

[
A

2σn

]
=

4
3
Q

[
A

2σn

]

Problem 7.26

The biorthogonal signal set has the form

s1 = [
√

Es, 0, 0, 0] s5 = [−
√

Es, 0, 0, 0]
s2 = [0,

√
Es, 0, 0] s6 = [0,−

√
Es, 0, 0]

s3 = [0, 0,
√

Es, 0] s7 = [0, 0,−
√

Es, 0]
s4 = [0, 0, 0,

√
Es] s8 = [0, 0, 0,−

√
Es]

For each point si, there are M − 2 = 6 points at a distance

di,k = |si − sk| =
√

2Es

and one vector (−si) at a distance di,m = 2
√

Es. Hence, the union bound on the probability of
error P (e|si) is given by

PUB(e|si) =
M∑

k=1,k �=i

Q

[
di,k√
2N0

]
= 6Q

[√
Es

N0

]
+Q

[√
2Es

N0

]
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Since all the signals are equiprobable, we find that

PUB(e) = 6Q

[√
Es

N0

]
+Q

[√
2Es

N0

]

With M = 8 = 23, Es = 3Eb and therefore,

PUB(e) = 6Q

[√
3Eb

N0

]
+Q

[√
6Eb

N0

]

Problem 7.27

It is convenient to find first the probability of a correct decision. Since all signals are equiprobable

P (C) =
M∑
i=1

1
M
P (C|si)

All the P (C|si), i = 1, . . . ,M are identical because of the symmetry of the constellation. By
translating the vector si to the origin we can find the probability of a correct decision, given that
si was transmitted, as

P (C|si) =
∫ ∞

− d
2

f(n1)dn1

∫ ∞

− d
2

f(n2)dn2 . . .

∫ ∞

− d
2

f(nN )dnN

where the number of the integrals on the right side of the equation is N , d is the minimum distance
between the points and

f(ni) =
1

πN0
e
− n2

i
N0

Hence,

P (C|si) =

(∫ ∞

− d
2

f(n)dn

)N

=

(
1 −

∫ − d
2

−∞
f(n)dn

)N

=
(

1 −Q

[
d√
2N0

])N

and therefore, the probability of error is given by

P (e) = 1 − P (C) = 1 −
M∑
i=1

1
M

(
1 −Q

[
d√
2N0

])N

= 1 −
(

1 −Q

[
d√
2N0

])N

Note that since

Es =
N∑

i=1

s2m,i =
N∑

i=1

(
d

2
)2 = N

d2

4

the probability of error can be written as

P (e) = 1 −
(

1 −Q

[√
2Es

NN0

])N
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Problem 7.28

Consider first the signal

y(t) =
n∑

k=1

ckδ(t− kTc)

The signal y(t) has duration T = nTc and its matched filter is

g(t) = y(T − t) = y(nTc − t) =
n∑

k=1

ckδ(nTc − kTc − t)

=
n∑

i=1

cn−i+1δ((i− 1)Tc − t) =
n∑

i=1

cn−i+1δ(t− (i− 1)Tc)

that is, a sequence of impulses starting at t = 0 and weighted by the mirror image sequence of {ci}.
Since,

s(t) =
n∑

k=1

ckp(t− kTc) = p(t) 	
n∑

k=1

ckδ(t− kTc)

the Fourier transform of the signal s(t) is

S(f) = P (f)
n∑

k=1

cke
−j2πfkTc

and therefore, the Fourier transform of the signal matched to s(t) is

H(f) = S∗(f)e−j2πfT = S∗(f)e−j2πfnTc

= P ∗(f)
n∑

k=1

cke
j2πfkTce−j2πfnTc

= P ∗(f)
n∑

i=1

cn−i+1e
−j2πf(i−1)T−c

= P ∗(f)F [g(t)]

Thus, the matched filter H(f) can be considered as the cascade of a filter,with impulse response
p(−t), matched to the pulse p(t) and a filter, with impulse response g(t), matched to the signal
y(t) =

∑n
k=1 ckδ(t− kTc). The output of the matched filter at t = nTc is∫ ∞

−∞
|s(t)|2 =

n∑
k=1

c2k

∫ ∞

−∞
p2(t− kTc)dt

= Tc

n∑
k=1

c2k

where we have used the fact that p(t) is a rectangular pulse of unit amplitude and duration Tc.

Problem 7.29

The bandwidth required for transmission of an M -ary PAM signal is

W =
Rb

2 log2M
Hz

Since,

Rb = 8 × 103 samples
sec

× 8
bits

sample
= 64 × 103 bits

sec
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we obtain

W =


16 KHz M = 4
10.667 KHz M = 8
8 KHz M = 16

Problem 7.30

The vector r = [r1, r2] at the output of the integrators is

r = [r1, r2] = [
∫ 1.5

0
r(t)dt,

∫ 2

1
r(t)dt]

If s1(t) is transmitted, then∫ 1.5

0
r(t)dt =

∫ 1.5

0
[s1(t) + n(t)]dt = 1 +

∫ 1.5

0
n(t)dt

= 1 + n1∫ 2

1
r(t)dt =

∫ 2

1
[s1(t) + n(t)]dt =

∫ 2

1
n(t)dt

= n2

where n1 is a zero-mean Gaussian random variable with variance

σ2
n1

= E

[∫ 1.5

0

∫ 1.5

0
n(τ)n(v)dτdv

]
=
N0

2

∫ 1.5

0
dτ = 1.5

and n2 is is a zero-mean Gaussian random variable with variance

σ2
n2

= E

[∫ 2

1

∫ 2

1
n(τ)n(v)dτdv

]
=
N0

2

∫ 2

1
dτ = 1

Thus, the vector representation of the received signal (at the output of the integrators) is

r = [1 + n1, n2]

Similarly we find that if s2(t) is transmitted, then

r = [0.5 + n1, 1 + n2]

Suppose now that the detector bases its decisions on the rule

r1 − r2

s1
>
<
s2

T

The probability of error P (e|s1) is obtained as

P (e|s1) = P (r1 − r2 < T |s1)
= P (1 + n1 − n2 < T ) = P (n1 − n2 < T − 1)
= P (n < T )

where the random variable n = n1 − n2 is zero-mean Gaussian with variance

σ2
n = σ2

n1
+ σ2

n2
− 2E[n1n2]

= σ2
n1

+ σ2
n2

− 2
∫ 1.5

1

N0

2
dτ

= 1.5 + 1 − 2 × 0.5 = 1.5
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Hence,

P (e|s1) =
1√

2πσ2
n

∫ T−1

−∞
e
− x2

2σ2
n dx

Similarly we find that

P (e|s2) = P (0.5 + n1 − 1 − n2 > T )
= P (n1 − n2 > T + 0.5)

=
1√

2πσ2
n

∫ ∞

T+0.5
e
− x2

2σ2
n dx

The average probability of error is

P (e) =
1
2
P (e|s1) +

1
2
P (e|s2)

=
1

2
√

2πσ2
n

∫ T−1

−∞
e
− x2

2σ2
n dx+

1
2
√

2πσ2
n

∫ ∞

T+0.5
e
− x2

2σ2
n dx

To find the value of T that minimizes the probability of error, we set the derivative of P (e) with
respect to T equal to zero. Using the Leibnitz rule for the differentiation of definite integrals, we
obtain

ϑP (e)
ϑT

=
1

2
√

2πσ2
n

[
e
− (T−1)2

2σ2
n − e

− (T+0.5)2

2σ2
n

]
= 0

or
(T − 1)2 = (T + 0.5)2 =⇒ T = 0.25

Thus, the optimal decision rule is

r1 − r2

s1
>
<
s2

0.25

Problem 7.31

a) The inner product of si(t) and sj(t) is∫ ∞

−∞
si(t)sj(t)dt =

∫ ∞

−∞

n∑
k=1

cikp(t− kTc)
n∑

l=1

cjlp(t− lTc)dt

=
n∑

k=1

n∑
l=1

cikcjl

∫ ∞

−∞
p(t− kTc)p(t− lTc)dt

=
n∑

k=1

n∑
l=1

cikcjlEpδkl

= Ep

n∑
k=1

cikcjk

The quantity
∑n

k=1 cikcjk is the inner product of the row vectors Ci and Cj . Since the rows of the
matrix Hn are orthogonal by construction, we obtain∫ ∞

−∞
si(t)sj(t)dt = Ep

n∑
k=1

c2ikδij = nEpδij

Thus, the waveforms si(t) and sj(t) are orthogonal.
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b) Using the results of Problem 7.28, we obtain that the filter matched to the waveform

si(t) =
n∑

k=1

cikp(t− kTc)

can be realized as the cascade of a filter matched to p(t) followed by a discrete-time filter matched
to the vector Ci = [ci1, . . . , cin]. Since the pulse p(t) is common to all the signal waveforms si(t),
we conclude that the n matched filters can be realized by a filter matched to p(t) followed by n
discrete-time filters matched to the vectors Ci, i = 1, . . . , n.

Problem 7.32

a) The optimal ML detector selects the sequence Ci that minimizes the quantity

D(r, Ci) =
n∑

k=1

(rk −
√

EbCik)2

The metrics of the two possible transmitted sequences are

D(r, C1) =
w∑

k=1

(rk −
√

Eb)2 +
n∑

k=w+1

(rk −
√

Eb)2

and

D(r, C2) =
w∑

k=1

(rk −
√

Eb)2 +
n∑

k=w+1

(rk +
√

Eb)2

Since the first term of the right side is common for the two equations, we conclude that the optimal
ML detector can base its decisions only on the last n− w received elements of r. That is

n∑
k=w+1

(rk −
√

Eb)2 −
n∑

k=w+1

(rk +
√

Eb)2
C2
>
<

C1

0

or equivalently

n∑
k=w+1

rk

C1
>
<

C2

0

b) Since rk =
√

EbCik + nk, the probability of error P (e|C1) is

P (e|C1) = P

√Eb(n− w) +
n∑

k=w+1

nk < 0


= P

 n∑
k=w+1

nk < −(n− w)
√

Eb


The random variable u =

∑n
k=w+1 nk is zero-mean Gaussian with variance σ2

u = (n−w)σ2. Hence

P (e|C1) =
1√

2π(n− w)σ2

∫ −√Eb(n−w)

−∞
exp(− x2

2π(n− w)σ2 )dx = Q

√Eb(n− w)
σ2


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Similarly we find that P (e|C2) = P (e|C1) and since the two sequences are equiprobable

P (e) = Q

√Eb(n− w)
σ2



c) The probability of error P (e) is minimized when Eb(n−w)
σ2 is maximized, that is for w = 0. This

implies that C1 = −C2 and thus the distance between the two sequences is the maximum possible.

Problem 7.33

1) The dimensionality of the signal space is two. An orthonormal basis set for the signal space is
formed by the signals

ψ1(t) =

{ √
2
T , 0 ≤ t < T

2
0, otherwise

ψ2(t) =

{ √
2
T ,

T
2 ≤ t < T

0, otherwise

2) The optimal receiver is shown in the next figure

��	�

��	�
��

��

�

�

�

�

�

largest

the
Select

t = T

t = T
2

r2

r1

ψ2(T − t)

ψ1(T
2 − t)

r(t)

3) Assuming that the signal s1(t) is transmitted, the received vector at the output of the samplers
is

r = [

√
A2T

2
+ n1, n2]

where n1, n2 are zero mean Gaussian random variables with variance N0
2 . The probability of error

P (e|s1) is

P (e|s1) = P (n− 2 − n1 >

√
A2T

2
)

=
1√

2πN0

∫ ∞
A2T

2

e
− x2

2N0 dx = Q

√A2T

2N0


where we have used the fact the n = n2−n1 is a zero-mean Gaussian random variable with variance
N0. Similarly we find that P (e|s1) = Q

[√
A2T
2N0

]
, so that

P (e) =
1
2
P (e|s1) +

1
2
P (e|s2) = Q

√A2T

2N0



4) The signal waveform ψ1(T
2 − t) matched to ψ1(t) is exactly the same with the signal waveform

ψ2(T − t) matched to ψ2(t). That is,

ψ1(
T

2
− t) = ψ2(T − t) = ψ1(t) =

{ √
2
T , 0 ≤ t < T

2
0, otherwise
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Thus, the optimal receiver can be implemented by using just one filter followed by a sampler which
samples the output of the matched filter at t = T

2 and t = T to produce the random variables r1
and r2 respectively.

5) If the signal s1(t) is transmitted, then the received signal r(t) is

r(t) = s1(t) +
1
2
s1(t− T

2
) + n(t)

The output of the sampler at t = T
2 and t = T is given by

r1 = A

√
2
T

T

4
+

3A
2

√
2
T

T

4
+ n1 =

5
2

√
A2T

8
+ n1

r2 =
A

2

√
2
T

T

4
+ n2 =

1
2

√
A2T

8
+ n2

If the optimal receiver uses a threshold V to base its decisions, that is

r1 − r2

s1
>
<
s2

V

then the probability of error P (e|s1) is

P (e|s1) = P (n2 − n1 > 2

√
A2T

8
− V ) = Q

2

√
A2T

8N0
− V√

N0


If s2(t) is transmitted, then

r(t) = s2(t) +
1
2
s2(t− T

2
) + n(t)

The output of the sampler at t = T
2 and t = T is given by

r1 = n1

r2 = A

√
2
T

T

4
+

3A
2

√
2
T

T

4
+ n2

=
5
2

√
A2T

8
+ n2

The probability of error P (e|s2) is

P (e|s2) = P (n1 − n2 >
5
2

√
A2T

8
+ V ) = Q

5
2

√
A2T

8N0
+

V√
N0


Thus, the average probability of error is given by

P (e) =
1
2
P (e|s1) +

1
2
P (e|s2)

=
1
2
Q

2

√
A2T

8N0
− V√

N0

+
1
2
Q

5
2

√
A2T

8N0
+

V√
N0


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The optimal value of V can be found by setting ϑP (e)
ϑV equal to zero. Using Leibnitz rule to

differentiate definite integrals, we obtain

ϑP (e)
ϑV

= 0 =

2

√
A2T

8N0
− V√

N0

2

−

5
2

√
A2T

8N0
+

V√
N0

2

or by solving in terms of V

V = −1
8

√
A2T

2

6) Let a be fixed to some value between 0 and 1. Then, if we argue as in part 5) we obtain

P (e|s1, a) = P (n2 − n1 > 2

√
A2T

8
− V (a))

P (e|s2, a) = P (n1 − n2 > (a+ 2)

√
A2T

8
+ V (a))

and the probability of error is

P (e|a) =
1
2
P (e|s1, a) +

1
2
P (e|s2, a)

For a given a, the optimal value of V (a) is found by setting ϑP (e|a)
ϑV (a) equal to zero. By doing so we

find that

V (a) = −a
4

√
A2T

2

The mean square estimation of V (a) is

V =
∫ 1

0
V (a)f(a)da = −1

4

√
A2T

2

∫ 1

0
ada = −1

8

√
A2T

2

Problem 7.34
For binary phase modulation, the error probability is

P2 = Q

[√
2Eb

N0

]
= Q

√A2T

N0


With P2 = 10−6 we find from tables that√

A2T

N0
= 4.74 =⇒ A2T = 44.9352 × 10−10

If the data rate is 10 Kbps, then the bit interval is T = 10−4 and therefore, the signal amplitude is

A =
√

44.9352 × 10−10 × 104 = 6.7034 × 10−3

Similarly we find that when the rate is 105 bps and 106 bps, the required amplitude of the signal
is A = 2.12 × 10−2 and A = 6.703 × 10−2 respectively.

Problem 7.35
1) The impulse response of the matched filter is

s(t) = u(T − t) =

{
A
T (T − t) cos(2πfc(T − t)) 0 ≤ t ≤ T
0 otherwise
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2) The output of the matched filter at t = T is

g(T ) = u(t) 	 s(t)|t=T =
∫ T

0
u(T − τ)s(τ)dτ

=
A2

T 2

∫ T

0
(T − τ)2 cos2(2πfc(T − τ))dτ

v=T−τ=
A2

T 2

∫ T

0
v2 cos2(2πfcv)dv

=
A2

T 2

[
v3

6
+

(
v2

4 × 2πfc
− 1

8 × (2πfc)3

)
sin(4πfcv) +

v cos(4πfcv)
4(2πfc)2

] ∣∣∣∣T
0

=
A2

T 2

[
T 3

6
+

(
T 2

4 × 2πfc
− 1

8 × (2πfc)3

)
sin(4πfcT ) +

T cos(4πfcT )
4(2πfc)2

]

3) The output of the correlator at t = T is

q(T ) =
∫ T

0
u2(τ)dτ

=
A2

T 2

∫ T

0
τ2 cos2(2πfcτ)dτ

However, this is the same expression with the case of the output of the matched filter sampled at
t = T . Thus, the correlator can substitute the matched filter in a demodulation system and vise
versa.

Problem 7.36
1) The signal r(t) can be written as

r(t) = ±
√

2Ps cos(2πfct+ φ) +
√

2Pc sin(2πfct+ φ)

=
√

2(Pc + Ps) sin

(
2πfct+ φ+ an tan−1

(√
Ps

Pc

))

=
√

2PT sin

(
2πfct+ φ+ an cos−1

(√
Pc

PT

))
where an = ±1 are the information symbols and PT is the total transmitted power. As it is observed
the signal has the form of a PM signal where

θn = an cos−1

(√
Pc

PT

)
Any method used to extract the carrier phase from the received signal can be employed at the
receiver. The following figure shows the structure of a receiver that employs a decision-feedback
PLL. The operation of the PLL is described in the next part.


 �
�

��

�
�

�� × Threshold

t = Tb∫ Tb
0 (·)dt

cos(2πfct+ φ)
DFPLL

v(t)

2) At the receiver the signal is demodulated by crosscorrelating the received signal

r(t) =
√

2PT sin

(
2πfct+ φ+ an cos−1

(√
Pc

PT

))
+ n(t)
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with cos(2πfct+ φ̂) and sin(2πfct+ φ̂). The sampled values at the output of the correlators are

r1 =
1
2

[√
2PT − ns(t)

]
sin(φ− φ̂+ θn) +

1
2
nc(t) cos(φ− φ̂+ θn)

r2 =
1
2

[√
2PT − ns(t)

]
cos(φ− φ̂+ θn) +

1
2
nc(t) sin(φ̂− φ− θn)

where nc(t), ns(t) are the in-phase and quadrature components of the noise n(t). If the detector
has made the correct decision on the transmitted point, then by multiplying r1 by cos(θn) and r2
by sin(θn) and subtracting the results, we obtain (after ignoring the noise)

r1 cos(θn) =
1
2

√
2PT

[
sin(φ− φ̂) cos2(θn) + cos(φ− φ̂) sin(θn) cos(θn)

]
r2 sin(θn) =

1
2

√
2PT

[
cos(φ− φ̂) cos(θn) sin(θn) − sin(φ− φ̂) sin2(θn)

]
e(t) = r1 cos(θn) − r2 sin(θn) =

1
2

√
2PT sin(φ− φ̂)

The error e(t) is passed to the loop filter of the DFPLL that drives the VCO. As it is seen only the
phase θn is used to estimate the carrier phase.

3) Having a correct carrier phase estimate, the output of the lowpass filter sampled at t = Tb is

r = ±1
2

√
2PT sin cos−1

(√
Pc

PT

)
+ n

= ±1
2

√
2PT

√
1 − Pc

PT
+ n

= ±1
2

√
2PT

(
1 − Pc

PT

)
+ n

where n is a zero-mean Gaussian random variable with variance

σ2
n = E

[∫ Tb

0

∫ Tb

0
n(t)n(τ) cos(2πfct+ φ) cos(2πfcτ + φ)dtdτ

]

=
N0

2

∫ Tb

0
cos2(2πfct+ φ)dt

=
N0

4

Note that Tb has been normalized to 1 since the problem has been stated in terms of the power of
the involved signals. The probability of error is given by

P (error) = Q

[√
2PT

N0

(
1 − Pc

PT

)]

The loss due to the allocation of power to the pilot signal is

SNRloss = 10 log10

(
1 − Pc

PT

)
When Pc/PT = 0.1, then

SNRloss = 10 log10(0.9) = −0.4576 dB

The negative sign indicates that the SNR is decreased by 0.4576 dB.
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Problem 7.37
1) If the received signal is

r(t) = ±gT (t) cos(2πfct+ φ) + n(t)

then by crosscorrelating with the signal at the output of the PLL

ψ(t) =

√
2
Eg
gt(t) cos(2πfct+ φ̂)

we obtain∫ T

0
r(t)ψ(t)dt = ±

√
2
Eg

∫ T

0
g2
T (t) cos(2πfct+ φ) cos(2πfct+ φ̂)dt

+
∫ T

0
n(t)

√
2
Eg
gt(t) cos(2πfct+ φ̂)dt

= ±
√

2
Eg

∫ T

0

g2
T (t)
2

(
cos(2π2fct+ φ+ φ̂) + cos(φ− φ̂)

)
dt+ n

= ±
√

Eg

2
cos(φ− φ̂) + n

where n is a zero-mean Gaussian random variable with variance N0
2 . If we assume that the signal

s1(t) = gT (t) cos(2πfct+ φ) was transmitted, then the probability of error is

P (error|s1(t)) = P

√Eg

2
cos(φ− φ̂) + n < 0


= Q

√Eg cos2(φ− φ̂)
N0

 = Q

√2Es cos2(φ− φ̂)
N0


where Es = Eg/2 is the energy of the transmitted signal. As it is observed the phase error φ − φ̂
reduces the SNR by a factor

SNRloss = −10 log10 cos2(φ− φ̂)

2) When φ− φ̂ = 45o, then the loss due to the phase error is

SNRloss = −10 log10 cos2(45o) = −10 log10
1
2

= 3.01 dB

Problem 7.38
1) The closed loop transfer function is

H(s) =
G(s)/s

1 +G(s)/s
=

G(s)
s+G(s)

=
1

s2 +
√

2s+ 1

The poles of the system are the roots of the denominator, that is

ρ1,2 =
−

√
2 ±

√
2 − 4

2
= − 1√

2
± j

1√
2

Since the real part of the roots is negative, the poles lie in the left half plane and therefore, the
system is stable.
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2) Writing the denominator in the form

D = s2 + 2ζωns+ ω2
n

we identify the natural frequency of the loop as ωn = 1 and the damping factor as ζ = 1√
2
.

Problem 7.39
1) The closed loop transfer function is

H(s) =
G(s)/s

1 +G(s)/s
=

G(s)
s+G(s)

=
K

τ1s2 + s+K
=

K
τ1

s2 + 1
τ1
s+ K

τ1

The gain of the system at f = 0 is

|H(0)| = |H(s)|s=0 = 1

2) The poles of the system are the roots of the denominator, that is

ρ1,2 =
−1 ±

√
1 − 4Kτ1

2τ1
=

In order for the system to be stable the real part of the poles must be negative. Since K is greater
than zero, the latter implies that τ1 is positive. If in addition we require that the damping factor
ζ = 1

2
√

τ1K
is less than 1, then the gain K should satisfy the condition

K >
1

4τ1

Problem 7.40
The transfer function of the RC circuit is

G(s) =
R2 + 1

Cs

R1 +R2 + 1
Cs

=
1 +R2Cs

1 + (R1 +R2)Cs
=

1 + τ2s

1 + τ1s

From the last equality we identify the time constants as

τ2 = R2C, τ1 = (R1 +R2)C

Problem 7.41
Assuming that the input resistance of the operational amplifier is high so that no current flows
through it, then the voltage-current equations of the circuit are

V2 = −AV1

V1 − V2 =
(
R1 +

1
Cs

)
i

V1 − V0 = iR

where, V1, V2 is the input and output voltage of the amplifier respectively, and V0 is the signal at
the input of the filter. Eliminating i and V1, we obtain

V2

V1
=

R1+ 1
Cs

R

1 + 1
A − R1+ 1

Cs
AR
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If we let A → ∞ (ideal amplifier), then

V2

V1
=

1 +R1Cs

RCs
=

1 + τ2s

τ1s

Hence, the constants τ1, τ2 of the active filter are given by

τ1 = RC, τ2 = R1C

Problem 7.42
Using the Pythagorean theorem for the four-phase constellation, we find

r21 + r21 = d2 =⇒ r1 =
d√
2

The radius of the 8-PSK constellation is found using the cosine rule. Thus,

d2 = r22 + r22 − 2r22 cos(45o) =⇒ r2 =
d√

2 −
√

2

The average transmitted power of the 4-PSK and the 8-PSK constellation is given by

P4,av =
d2

2
, P8,av =

d2

2 −
√

2

Thus, the additional transmitted power needed by the 8-PSK signal is

P = 10 log10
2d2

(2 −
√

2)d2
= 5.3329 dB

We obtain the same results if we use the probability of error given by

PM = 2Q
[√

2ρs sin
π

M

]
where ρs is the SNR per symbol. In this case, equal error probability for the two signaling schemes,
implies that

ρ4,s sin2 π

4
= ρ8,s sin2 π

8
=⇒ 10 log10

ρ8,s

ρ4,s
= 20 log10

sin π
4

sin π
8

= 5.3329 dB

Problem 7.43
The constellation of Fig. P-7.43(a) has four points at a distance 2A from the origin and four points
at a distance 2

√
2A. Thus, the average transmitted power of the constellation is

Pa =
1
8

[
4 × (2A)2 + 4 × (2

√
2A)2

]
= 6A2

The second constellation has four points at a distance
√

7A from the origin, two points at a dis-
tance

√
3A and two points at a distance A. Thus, the average transmitted power of the second

constellation is
Pb =

1
8

[
4 × (

√
7A)2 + 2 × (

√
3A)2 + 2A2

]
=

9
2
A2

Since Pb < Pa the second constellation is more power efficient.
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Problem 7.44
The optimum decision boundary of a point is determined by the perpendicular bisectors of each line
segment connecting the point with its neighbors. The decision regions for the V.29 constellation
are depicted in the next figure.

Problem 7.45
The following figure depicts a 4-cube and the way that one can traverse it in Gray-code order (see
John F. Wakerly, Digital Design Principles and Practices, Prentice Hall, 1990). Adjacent points
are connected with solid or dashed lines.

0000 0001

0011

0010

0110

0111

0101
0100

1100 1101

11111110

1010
1011

1000
1001
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One way to label the points of the V.29 constellation using the Gray-code is depicted in the next
figure. Note that the maximum Hamming distance between points with distance between them as
large as 3 is only 2. Having labeled the innermost points, all the adjacent nodes can be found using
the previous figure.

0000

0001

0101

0100

1100

1101

1010

01100010

00111001

1000

1011

01111111

1110

11

11

1 1

1

1

11

1

1

2

2

1

21

2

2

1 2

1

Problem 7.46
1) Consider the QAM constellation of Fig. P-7.46. Using the Pythagorean theorem we can find
the radius of the inner circle as

a2 + a2 = A2 =⇒ a =
1√
2
A

The radius of the outer circle can be found using the cosine rule. Since b is the third side of a
triangle with a and A the two other sides and angle between then equal to θ = 75o, we obtain

b2 = a2 +A2 − 2aA cos 75o =⇒ b =
1 +

√
3

2
A

2) If we denote by r the radius of the circle, then using the cosine theorem we obtain

A2 = r2 + r2 − 2r cos 45o =⇒ r =
A√

2 −
√

2

3) The average transmitted power of the PSK constellation is

PPSK = 8 × 1
8

×

 A√
2 −

√
2

2

=⇒ PPSK =
A2

2 −
√

2
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whereas the average transmitted power of the QAM constellation

PQAM =
1
8

(
4
A2

2
+ 4

(1 +
√

3)2

4
A2

)
=⇒ PQAM =

[
2 + (1 +

√
3)2

8

]
A2

The relative power advantage of the PSK constellation over the QAM constellation is

gain =
PPSK
PQAM

=
8

(2 + (1 +
√

3)2)(2 −
√

2)
= 1.5927 dB

Problem 7.47
1) The number of bits per symbol is

k =
4800
R

=
4800
2400

= 2

Thus, a 4-QAM constellation is used for transmission. The probability of error for an M-ary QAM
system with M = 2k, is

PM = 1 −
(

1 − 2
(

1 − 1√
M

)
Q

[√
3kEb

(M − 1)N0

])2

With PM = 10−5 and k = 2 we obtain

Q

[√
2Eb

N0

]
= 5 × 10−6 =⇒ Eb

N0
= 9.7682

2 If the bit rate of transmission is 9600 bps, then

k =
9600
2400

= 4

In this case a 16-QAM constellation is used and the probability of error is

PM = 1 −
(

1 − 2
(

1 − 1
4

)
Q

[√
3 × 4 × Eb

15 ×N0

])2

Thus,

Q

[√
3 × Eb

15 ×N0

]
=

1
3

× 10−5 =⇒ Eb

N0
= 25.3688

3 If the bit rate of transmission is 19200 bps, then

k =
19200
2400

= 8

In this case a 256-QAM constellation is used and the probability of error is

PM = 1 −
(

1 − 2
(

1 − 1
16

)
Q

[√
3 × 8 × Eb

255 ×N0

])2

With PM = 10−5 we obtain
Eb

N0
= 659.8922
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4) The following table gives the SNR per bit and the corresponding number of bits per symbol for
the constellations used in parts a)-c).

k 2 4 8
SNR (db) 9.89 14.04 28.19

As it is observed there is an increase in transmitted power of approximately 3 dB per additional
bit per symbol.

Problem 7.48
1) Although it is possible to assign three bits to each point of the 8-PSK signal constellation so that
adjacent points differ in only one bit, this is not the case for the 8-QAM constellation of Figure
P-7.46. This is because there are fully connected graphs consisted of three points. To see this
consider an equilateral triangle with vertices A, B and C. If, without loss of generality, we assign
the all zero sequence {0, 0, . . . , 0} to point A, then point B and C should have the form

B = {0, . . . , 0, 1, 0, . . . , 0} C = {0, . . . , 0, 1, 0, . . . , 0}

where the position of the 1 in the sequences is not the same, otherwise B=C. Thus, the sequences
of B and C differ in two bits.

2) Since each symbol conveys 3 bits of information, the resulted symbol rate is

Rs =
90 × 106

3
= 30 × 106 symbols/sec

3) The probability of error for an M-ary PSK signal is

PM = 2Q

[√
2Es

N0
sin

π

M

]

whereas the probability of error for an M-ary QAM signal is upper bounded by

PM = 4Q

[√
3Eav

(M − 1)N0

]

Since, the probability of error is dominated by the argument of the Q function, the two signals will
achieve the same probability of error if

√
2SNRPSK sin

π

M
=

√
3SNRQAM

M − 1

With M = 8 we obtain

√
2SNRPSK sin

π

8
=

√
3SNRQAM

7
=⇒ SNRPSK

SNRQAM
=

3
7 × 2 × 0.38272 = 1.4627

4) Assuming that the magnitude of the signal points is detected correctly, then the detector for
the 8-PSK signal will make an error if the phase error (magnitude) is greater than 22.5o. In the
case of the 8-QAM constellation an error will be made if the magnitude phase error exceeds 45o.
Hence, the QAM constellation is more immune to phase errors.
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Problem 7.49
Consider the following waveforms of the binary FSK signaling:

u1(t) =

√
2Eb

T
cos(2πfct)

u2(t) =

√
2Eb

T
cos(2πfct+ 2π∆ft)

The correlation of the two signals is

γ12 =
1
Eb

∫ T

0
u1(t)u2(t)dt

=
1
Eb

∫ T

0

2Eb

T
cos(2πfct) cos(2πfct+ 2π∆ft)dt

=
1
T

∫ T

0
cos(2π∆ft)dt+

1
T

∫ T

0
cos(2π2fct+ 2π∆ft)dt

If fc � 1
T , then

γ12 =
1
T

∫ T

0
cos(2π∆ft)dt =

sin(2π∆fT )
2π∆fT

To find the minimum value of the correlation, we set the derivative of γ12 with respect to ∆f equal
to zero. Thus,

ϑγ12

ϑ∆f
= 0 =

cos(2π∆fT )2πT
2π∆fT

− sin(2π∆fT )
(2π∆fT )2

2πT

and therefore,
2π∆fT = tan(2π∆fT )

Solving numerically the equation x = tan(x), we obtain x = 4.4934. Thus,

2π∆fT = 4.4934 =⇒ ∆f =
0.7151
T

and the value of γ12 is −0.2172. Note that when a gradient method like the Gauss-Newton is used
to solve the equation f(x) = x − tan(x) = 0, then in order to find the smallest nonzero root, the
initial value of the algorithm x0 should be selected in the range (π

2 ,
3π
2 ).

The probability of error can be expressed in terms of the distance d12 between the signal points,
as

pb = Q

√ d2
12

2N0


The two signal vectors u1, u2 are of equal energy

‖u1‖2 = ‖u2‖2 = Eb

and the angle θ12 between them is such that

cos(θ12) = γ12

Hence,
d2

12 = ‖u1‖2 + ‖u2‖2 − 2‖u1‖‖u2‖ cos(θ12) = 2Es(1 − γ12)

and therefore,

pb = Q

√2Es(1 − γ12)
2N0

 = Q

√Es(1 + 0.2172)
N0


200



Problem 7.50
1) The first set represents a 4-PAM signal constellation. The points of the constellation are
{±A,±3A}. The second set consists of four orthogonal signals. The geometric representation
of the signals is

s1 = [ A 0 0 0 ] s3 = [ 0 0 A 0 ]
s2 = [ 0 A 0 0 ] s4 = [ 0 0 0 A ]

This set can be classified as a 4-FSK signal. The third set can be classified as a 4-QAM signal
constellation. The geometric representation of the signals is

s1 = [ A√
2

A√
2 ] s3 = [ − A√

2
− A√

2 ]
s2 = [ A√

2
− A√

2 ] s4 = [ − A√
2

A√
2 ]

2) The average transmitted energy for sets I, II and III is

Eav,I =
1
4

4∑
i=1

‖si‖2 =
1
4
(A2 + 9A2 + 9A2 +A2) = 5A2

Eav,II =
1
4

4∑
i=1

‖si‖2 =
1
4
(4A2) = A2

Eav,III =
1
4

4∑
i=1

‖si‖2 =
1
4
(4 × (

A2

2
+
A2

2
)) = A2

3) The probability of error for the 4-PAM signal is given by

P4,I =
2(M − 1)

M
Q

[√
6Eav,I

(M2 − 1)N0

]
=

3
2
Q

√6 × 5 ×A2

15N0

 =
3
2
Q

√2A2

N0



4) When coherent detection is employed, then an upper bound on the probability of error is given
by

P4,II,coherent ≤ (M − 1)Q

[√
Es

N0

]
= 3Q

√A2

N0


If the detection is performed noncoherently, then the probability of error is given by

P4,II,noncoherent =
M−1∑
n=1

(−1)n+1

(
M − 1
n

)
1

n+ 1
e−nρs/(n=1)

=
3
2
e−

ρs
2 − e−

2ρs
3 +

1
4
e−

3ρs
4

=
3
2
e
− A2

2N0 − e
− 2A2

3N0 +
1
4
e
− 3A2

4N0

5) It is not possible to use noncoherent detection for the signal set III. This is because all signals
have the same square amplitude for every t ∈ [0, 2T ].

6) The following table shows the bit rate to bandwidth ratio for the different types of signaling
and the results for M = 4.
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Type R/W M = 4
PAM 2 log2M 4
QAM log2M 2
FSK (coherent) 2 log2 M

M 1
FSK (noncoherent) log2 M

M 0.5
To achieve a ratio R

W of at least 2, we have to select either the first signal set (PAM) or the second
signal set (QAM).

Problem 7.51
1) If the transmitted signal is

u0(t) =

√
2Es

T
cos(2πfct), 0 ≤ t ≤ T

then the received signal is

r(t) =

√
2Es

T
cos(2πfct+ φ) + n(t)

In the phase-coherent demodulation of M -ary FSK signals, the received signal is correlated with
each of the M -possible received signals cos(2πfct+2πm∆ft+ φ̂m), where φ̂m are the carrier phase
estimates. The output of the mth correlator is

rm =
∫ T

0
r(t) cos(2πfct+ 2πm∆ft+ φ̂m)dt

=
∫ T

0

√
2Es

T
cos(2πfct+ φ) cos(2πfct+ 2πm∆ft+ φ̂m)dt

+
∫ T

0
n(t) cos(2πfct+ 2πm∆ft+ φ̂m)dt

=

√
2Es

T

∫ T

0

1
2

(
cos(2π2fct+ 2πm∆ft+ φ̂m + φ) + cos(2πm∆ft+ φ̂m − φ)

)
+ n

=

√
2Es

T

1
2

∫ T

0
cos(2πm∆ft+ φ̂m − φ)dt+ n

where n is a zero-mean Gaussian random variable with variance N0
2 .

2) In order to obtain orthogonal signals at the demodulator, the expected value of rm, E[rm],
should be equal to zero for every m �= 0. Since E[n] = 0, the latter implies that∫ T

0
cos(2πm∆ft+ φ̂m − φ)dt = 0, ∀m �= 0

The equality is true when m∆f is a multiple of 1
T . Since the smallest value of m is 1, the necessary

condition for orthogonality is

∆f =
1
T

Problem 7.52
The noise components in the sampled output of the two correlators for the mth FSK signal, are
given by

nmc =
∫ T

0
n(t)

√
2
T

cos(2πfct+ 2πm∆ft)dt

nms =
∫ T

0
n(t)

√
2
T

sin(2πfct+ 2πm∆ft)dt

202



Clearly, nmc, nms are zero-mean random variables since

E[nmc] = E

[∫ T

0
n(t)

√
2
T

cos(2πfct+ 2πm∆ft)dt

]

=
∫ T

0
E[n(t)]

√
2
T

cos(2πfct+ 2πm∆ft)dt = 0

E[nms] = E

[∫ T

0
n(t)

√
2
T

sin(2πfct+ 2πm∆ft)dt

]

=
∫ T

0
E[n(t)]

√
2
T

sin(2πfct+ 2πm∆ft)dt = 0

Furthermore,

E[nmcnkc] = E

[∫ T

0

∫ T

0

2
T
n(t)n(τ) cos(2πfct+ 2πm∆ft) cos(2πfct+ 2πk∆fτ)dtdτ

]

=
2
T

∫ T

0

∫ T

0
E[n(t)n(τ)] cos(2πfct+ 2πm∆ft) cos(2πfct+ 2πk∆fτ)dtdτ

=
2
T

N0

2

∫ T

0
cos(2πfct+ 2πm∆ft) cos(2πfct+ 2πk∆ft)dt

=
2
T

N0

2

∫ T

0

1
2

(cos(2π2fct+ 2π(m+ k)∆ft) + cos(2π(m− k)∆ft)) dt

=
2
T

N0

2

∫ T

0

1
2
δmkdt =

N0

2
δmk

where we have used the fact that for fc � 1
T∫ T

0
cos(2π2fct+ 2π(m+ k)∆ft)dt ≈ 0

and for ∆f = 1
T ∫ T

0
cos(2π(m− k)∆ft)dt = 0, m �= k

Thus, nmc, nkc are uncorrelated for m �= k and since they are zero-mean Gaussian they are inde-
pendent. Similarly we obtain

E[nmcnks] = E

[∫ T

0

∫ T

0

2
T
n(t)n(τ) cos(2πfct+ 2πm∆ft) sin(2πfct+ 2πk∆fτ)dtdτ

]

=
2
T

∫ T

0

∫ T

0
E[n(t)n(τ)] cos(2πfct+ 2πm∆ft) sin(2πfct+ 2πk∆fτ)dtdτ

=
2
T

N0

2

∫ T

0
cos(2πfct+ 2πm∆ft) sin(2πfct+ 2πk∆ft)dt

=
2
T

N0

2

∫ T

0

1
2

(sin(2π2fct+ 2π(m+ k)∆ft) − sin(2π(m− k)∆ft)) dt

= 0

E[nmsnks] =
N0

2
δmk

Problem 7.53
1) The noncoherent envelope detector for the on-off keying signal is depicted in the next figure.
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r

rs

rc

(·)2

(·)2

t = T

t = T

√
2
T cos(2πfct)

Device
Threshold

VT

×

−π
2

×

+
r(t)

∫ t
0(·)dτ

∫ t
0(·)dτ

2) If s0(t) is sent, then the received signal is r(t) = n(t) and therefore the sampled outputs rc,
rs are zero-mean independent Gaussian random variables with variance N0

2 . Hence, the random
variable r =

√
r2c + r2s is Rayleigh distributed and the PDF is given by

p(r|s0(t)) =
r

σ2 e
− r2

2σ2 =
2r
N0

e
− r2

N0

If s1(t) is transmitted, then the received signal is

r(t) =

√
2Eb

Tb
cos(2πfct+ φ) + n(t)

Crosscorrelating r(t) by
√

2
T cos(2πfct) and sampling the output at t = T , results in

rc =
∫ T

0
r(t)

√
2
T

cos(2πfct)dt

=
∫ T

0

2
√

Eb

Tb
cos(2πfct+ φ) cos(2πfct)dt+

∫ T

0
n(t)

√
2
T

cos(2πfct)dt

=
2
√

Eb

Tb

∫ T

0

1
2

(cos(2π2fct+ φ) + cos(φ)) dt+ nc

=
√

Eb cos(φ) + nc

where nc is zero-mean Gaussian random variable with variance N0
2 . Similarly, for the quadrature

component we have
rs =

√
Eb sin(φ) + ns

The PDF of the random variable r =
√
r2c + r2s =

√
Eb + n2

c + n2
s is (see Problem 4.31)

p(r|s1(t)) =
r

σ2 e
− r2+Eb

2σ2 I0

(
r
√

Eb

σ2

)
=

2r
N0

e
− r2+Eb

N0 I0

(
2r

√
Eb

N0

)

that is a Rician PDF.

3) For equiprobable signals the probability of error is given by

P (error) =
1
2

∫ VT

−∞
p(r|s1(t))dr +

1
2

∫ ∞

VT

p(r|s0(t))dr

Since r > 0 the expression for the probability of error takes the form

P (error) =
1
2

∫ VT

0
p(r|s1(t))dr +

1
2

∫ ∞

VT

p(r|s0(t))dr

=
1
2

∫ VT

0

r

σ2 e
− r2+Eb

2σ2 I0

(
r
√

Eb

σ2

)
dr +

1
2

∫ ∞

VT

r

σ2 e
− r2

2σ2 dr
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The optimum threshold level is the value of VT that minimizes the probability of error. However,
when Eb

N0
� 1 the optimum value is close to

√Eb
2 and we will use this threshold to simplify the

analysis. The integral involving the Bessel function cannot be evaluated in closed form. Instead of
I0(x) we will use the approximation

I0(x) ≈ ex√
2πx

which is valid for large x, that is for high SNR. In this case

1
2

∫ VT

0

r

σ2 e
− r2+Eb

2σ2 I0

(
r
√

Eb

σ2

)
dr ≈ 1

2

∫ √Eb
2

0

√
r

2πσ2
√

Eb
e−(r−√Eb)2/2σ2

dr

This integral is further simplified if we observe that for high SNR, the integrand is dominant in the
vicinity of

√
Eb and therefore, the lower limit can be substituted by −∞. Also√

r

2πσ2
√

Eb
≈
√

1
2πσ2

and therefore,

1
2

∫ √Eb
2

0

√
r

2πσ2
√

Eb
e−(r−√Eb)2/2σ2

dr ≈ 1
2

∫ √Eb
2

−∞

√
1

2πσ2 e
−(r−√Eb)2/2σ2

dr

=
1
2
Q

[√
Eb

2N0

]

Finally

P (error) =
1
2
Q

[√
Eb

2N0

]
+

1
2

∫ ∞
√Eb

2

2r
N0

e
− r2

N0 dr

≤ 1
2
Q

[√
Eb

2N0

]
+

1
2
e
− Eb

4N0

Problem 7.54
(a) Four phase PSK
If we use a pulse shape having a raised cosine spectrum with a rolloff α, the symbol rate is deter-
mined from the relation

1
2T

(1 + α) = 50000

Hence,
1
T

=
105

1 + α

where W = 105 Hz is the channel bandwidth. The bit rate is

2
T

=
2 × 105

1 + α
bps

(b) Binary FSK with noncoherent detection
In this case we select the two frequencies to have a frequency separation of 1

T , where 1
T is the

symbol rate. Hence

f1 = fc − 1
2T

f2 = f + c+
1

2T
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where fc is the carrier in the center of the channel band. Thus, we have

1
2T

= 50000

or equivalently
1
T

= 105

Hence, the bit rate is 105 bps.
(c) M = 4 FSK with noncoherent detection
In this case we require four frequencies with adjacent frequencies separation of 1

T . Hence, we select

f1 = fc − |1.5
T
, f2 = fc − 1

2T
, f3 = fc +

1
2T

, f4 = fc +
1.5
T

where fc is the carrier frequency and 1
2T = 25000, or, equivalently,

1
T

= 50000

Since the symbol rate is 50000 symbols per second and each symbol conveys 2 bits, the bit rate is
105 bps.

Problem 7.55

a) For n repeaters in cascade, the probability of i out of n repeaters to produce an error is given
by the binomial distribution

Pi =

(
n
i

)
pi(1 − p)n−i

However, there is a bit error at the output of the terminal receiver only when an odd number of
repeaters produces an error. Hence, the overall probability of error is

Pn = Podd =
∑

i=odd

(
n
i

)
pi(1 − p)n−i

Let Peven be the probability that an even number of repeaters produces an error. Then

Peven =
∑

i=even

(
n
i

)
pi(1 − p)n−i

and therefore,

Peven + Podd =
n∑

i=0

(
n
i

)
pi(1 − p)n−i = (p+ 1 − p)n = 1

One more relation between Peven and Podd can be provided if we consider the difference Peven−Podd.
Clearly,

Peven − Podd =
∑

i=even

(
n
i

)
pi(1 − p)n−i −

∑
i=odd

(
n
i

)
pi(1 − p)n−i

a=
∑

i=even

(
n
i

)
(−p)i(1 − p)n−i +

∑
i=odd

(
n
i

)
(−p)i(1 − p)n−i

= (1 − p− p)n = (1 − 2p)n

where the equality (a) follows from the fact that (−1)i is 1 for i even and −1 when i is odd. Solving
the system

Peven + Podd = 1
Peven − Podd = (1 − 2p)n
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we obtain
Pn = Podd =

1
2
(1 − (1 − 2p)n)

b) Expanding the quantity (1 − 2p)n, we obtain

(1 − 2p)n = 1 − n2p+
n(n− 1)

2
(2p)2 + · · ·

Since, p 
 1 we can ignore all the powers of p which are greater than one. Hence,

Pn ≈ 1
2
(1 − 1 + n2p) = np = 100 × 10−6 = 10−4

Problem 7.56

The overall probability of error is approximated by

P (e) = KQ

[√
Eb

N0

]

Thus, with P (e) = 10−6 and K = 100, we obtain the probability of each repeater Pr = Q
[√ Eb

N0

]
=

10−8. The argument of the function Q[·] that provides a value of 10−8 is found from tables to be√
Eb

N0
= 5.61

Hence, the required Eb
N0

is 5.612 = 31.47

Problem 7.57

a) The antenna gain for a parabolic antenna of diameter D is

GR = η

(
πD

λ

)2

If we assume that the efficiency factor is 0.5, then with

λ =
c

f
=

3 × 108

109 = 0.3 m D = 3 × 0.3048 m

we obtain
GR = GT = 45.8458 = 16.61 dB

b) The effective radiated power is

EIRP = PTGT = GT = 16.61 dB

c) The received power is

PR =
PTGTGR(

4πd
λ

)2 = 2.995 × 10−9 = −85.23 dB = −55.23 dBm
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Note that

dBm = 10 log10

(
actual power in Watts

10−3

)
= 30 + 10 log10(power in Watts )

Problem 7.58

a) The antenna gain for a parabolic antenna of diameter D is

GR = η

(
πD

λ

)2

If we assume that the efficiency factor is 0.5, then with

λ =
c

f
=

3 × 108

109 = 0.3 m and D = 1 m

we obtain
GR = GT = 54.83 = 17.39 dB

b) The effective radiated power is

EIRP = PTGT = 0.1 × 54.83 = 7.39 dB

c) The received power is

PR =
PTGTGR(

4πd
λ

)2 = 1.904 × 10−10 = −97.20 dB = −67.20 dBm

Problem 7.59

The wavelength of the transmitted signal is

λ =
3 × 108

10 × 109 = 0.03 m

The gain of the parabolic antenna is

GR = η

(
πD

λ

)2
= 0.6

(
π10
0.03

)2
= 6.58 × 105 = 58.18 dB

The received power at the output of the receiver antenna is

PR =
PTGTGR

(4π d
λ)2

=
3 × 101.5 × 6.58 × 105

(4 × 3.14159 × 4×107

0.03 )2
= 2.22 × 10−13 = −126.53 dB

Problem 7.60

a) Since T = 3000K, it follows that

N0 = kT = 1.38 × 10−23 × 300 = 4.14 × 10−21 W/Hz

If we assume that the receiving antenna has an efficiency η = 0.5, then its gain is given by

GR = η

(
πD

λ

)2
= 0.5

3.14159 × 50
3×108

2×109

2

= 5.483 × 105 = 57.39 dB
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Hence, the received power level is

PR =
PTGTGR

(4π d
λ)2

=
10 × 10 × 5.483 × 105

(4 × 3.14159 × 108

0.15)2
= 7.8125 × 10−13 = −121.07 dB

b) If Eb
N0

= 10 dB = 10, then

R =
PR

N0

( Eb

N0

)−1
=

7.8125 × 10−13

4.14 × 10−21 × 10−1 = 1.8871 × 107 = 18.871 Mbits/sec

Problem 7.61

The overall gain of the system is

Gtot = Ga1 +Gos +GBPF +Ga2 = 10 − 5 − 1 + 25 = 29 dB

Hence, the power of the signal at the input of the demodulator is

Ps,dem = (−113 − 30) + 29 = −114 dB

The noise-figure for the cascade of the first amplifier and the multiplier is

F1 = Fa1 +
Fos − 1
Ga1

= 100.5 +
100.5 − 1

10
= 3.3785

We assume that F1 is the spot noise-figure and therefore, it measures the ratio of the available PSD
out of the two devices to the available PSD out of an ideal device with the same available gain.
That is,

F1 =
Sn,o(f)

Sn,i(f)Ga1Gos

where Sn,o(f) is the power spectral density of the noise at the input of the bandpass filter and
Sn,i(f) is the power spectral density at the input of the overall system. Hence,

Sn,o(f) = 10
−175−30

10 × 10 × 10−0.5 × 3.3785 = 3.3785 × 10−20

The noise-figure of the cascade of the bandpass filter and the second amplifier is

F2 = FBPF +
Fa2 − 1
GBPF

= 100.2 +
100.5 − 1
10−0.1 = 4.307

Hence, the power of the noise at the output of the system is

Pn,dem = 2Sn,o(f)BGBPFGa2F2 = 7.31 × 10−12 = −111.36 dB

The signal to noise ratio at the output of the system (input to the demodulator) is

SNR =
Ps,dem
Pn,dem

= −114 + 111.36 = −2.64 dB

Problem 7.62

The wavelength of the transmission is

λ =
c

f
=

3 × 108

4 × 109 = 0.75 m
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If 1 MHz is the passband bandwidth, then the rate of binary transmission is Rb = W = 106 bps.
Hence, with N0 = 4.1 × 10−21 W/Hz we obtain

PR

N0
= Rb

Eb

N0
=⇒ 106 × 4.1 × 10−21 × 101.5 = 1.2965 × 10−13

The transmitted power is related to the received power through the relation

PR =
PTGTGR

(4π d
λ)2

=⇒ PT =
PR

GTGR

(
4π
d

λ

)2

Substituting in this expression the values GT = 100.6, GR = 105, d = 36 × 106 and λ = 0.75 we
obtain

PT = 0.1185 = −9.26 dBW

Problem 7.63

Since T = 2900 + 150 = 3050K, it follows that

N0 = kT = 1.38 × 10−23 × 305 = 4.21 × 10−21 W/Hz

The transmitting wavelength λ is

λ =
c

f
=

3 × 108

2.3 × 109 = 0.130 m

Hence, the gain of the receiving antenna is

GR = η

(
πD

λ

)2
= 0.55

(
3.14159 × 64

0.130

)2
= 1.3156 × 106 = 61.19 dB

and therefore, the received power level is

PR =
PTGTGR

(4π d
λ)2

=
17 × 102.7 × 1.3156 × 106

(4 × 3.14159 × 1.6×1011

0.130 )2
= 4.686 × 10−12 = −113.29 dB

If Eb/N0 = 6 dB = 100.6, then

R =
PR

N0

( Eb

N0

)−1
=

4.686 × 10−12

4.21 × 10−21 × 10−0.6 = 4.4312 × 109 = 4.4312 Gbits/sec

Problem 7.64

In the non decision-directed timing recovery method we maximize the function

Λ2(τ) =
∑
m

y2
m(τ)

with respect to τ . Thus, we obtain the condition

dΛ2(τ)
dτ

= 2
∑
m

ym(τ)
dym(τ)
dτ

= 0

Suppose now that we approximate the derivative of the log-likelihood Λ2(τ) by the finite difference

dΛ2(τ)
dτ

≈ Λ2(τ + δ) − Λ2(τ − δ)
2δ
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Then, if we substitute the expression of Λ2(τ) in the previous approximation, we obtain

dΛ2(τ)
dτ

=
∑

m y2
m(τ + δ) −∑

m y2
m(τ − δ)

2δ

=
1
2δ

∑
m

[(∫
r(t)u(t−mT − τ − δ)dt

)2
−
(∫

r(t)u(t−mT − τ + δ)dt
)2
]

where u(−t) = gR(t) is the impulse response of the matched filter in the receiver. However, this
is the expression of the early-late gate synchronizer, where the lowpass filter has been substituted
by the summation operator. Thus, the early-late gate synchronizer is a close approximation to the
timing recovery system.

Problem 7.65

An on-off keying signal is represented as

s1(t) = A cos(2πfct+ θc), 0 ≤ t ≤ T (binary 1)
s2(t) = 0, 0 ≤ t ≤ T (binary 0)

Let r(t) be the received signal, that is

r(t) = s(t; θc) + n(t)

where s(t; θc) is either s1(t) or s2(t) and n(t) is white Gaussian noise with variance N0
2 . The

likelihood function, that is to be maximized with respect to θc over the interval [0, T ], is proportional
to

Λ(θc) = exp

[
− 2
N0

∫ T

0
[r(t) − s(t; θc)]2dt

]
Maximization of Λ(θc) is equivalent to the maximization of the log-likelihood function

ΛL(θc) = − 2
N0

∫ T

0
[r(t) − s(t; θc)]2dt

= − 2
N0

∫ T

0
r2(t)dt+

4
N0

∫ T

0
r(t)s(t; θc)dt− 2

N0

∫ T

0
s2(t; θc)dt

Since the first term does not involve the parameter of interest θc and the last term is simply a
constant equal to the signal energy of the signal over [0, T ] which is independent of the carrier
phase, we can carry the maximization over the function

V (θc) =
∫ T

0
r(t)s(t; θc)dt

Note that s(t; θc) can take two different values, s1(t) and s2(t), depending on the transmission of a
binary 1 or 0. Thus, a more appropriate function to maximize is the average log-likelihood

V̄ (θc) =
1
2

∫ T

0
r(t)s1(t)dt+

1
2

∫ T

0
r(t)s2(t)dt

Since s2(t) = 0, the function V̄ (θc) takes the form

V̄ (θc) =
1
2

∫ T

0
r(t)A cos(2πfct+ θc)dt
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Setting the derivative of V̄ (θc) with respect to θc equal to zero, we obtain

ϑV̄ (θc)
ϑθc

= 0 =
1
2

∫ T

0
r(t)A sin(2πfct+ θc)dt

= cos θc
1
2

∫ T

0
r(t)A sin(2πfct)dt+ sin θc

1
2

∫ T

0
r(t)A cos(2πfct)dt

Thus, the maximum likelihood estimate of the carrier phase is

θc,ML = − arctan

[ ∫ T
0 r(t)A sin(2πfct)dt∫ T
0 r(t)A cos(2πfct)dt

]
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Chapter 8

Problem 8.1

1) The following table shows the values of Eh(W )/T obtained using an adaptive recursive Newton-
Cotes numerical integration rule.

WT 0.5 1.0 1.5 2.0 2.5 3.0
Eh(W )/T 0.2253 0.3442 0.3730 0.3748 0.3479 0.3750

A plot of Eh(W )/T as a function of WT is given in the next figure
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2) The value of Eh(W ) as W → ∞ is

lim
W→∞

Eh(W ) =
∫ ∞

−∞
g2
T (t)dt =

∫ T

0
g2
T (t)dt

=
1
4

∫ T

0

(
1 + cos

2π
T

(
t− T

2

))2
dt

=
T

4
+

1
2

∫ T

0
cos

2π
T

(
t− T

2

)
dt

+
1
8

∫ T

0

[
1 + cos

2π
T

2
(
t− T

2

)]
dt

=
T

4
+
T

8
=

3T
8

= 0.3750T

Problem 8.2
We have

y =


a+ n− 1

2 with Prob. 1
4

a+ n+ 1
2 with Prob. 1

4
a+ n with Prob. 1

2

By symmetry, Pe = P (e|a = 1) = P (e|a = −1), hence,

Pe = P (e|a = −1) =
1
2
P (n− 1 > 0) +

1
4
P

(
n− 3

2
> 0

)
+

1
4
P

(
n− 1

2
> 0

)
=

1
2
Q

(
1
σn

)
+

1
4
Q

(
3

2σn

)
+

1
4
Q

(
1

2σn

)
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Problem 8.3

a) If the transmitted signal is

r(t) =
∞∑

n=−∞
anh(t− nT ) + n(t)

then the output of the receiving filter is

y(t) =
∞∑

n=−∞
anx(t− nT ) + ν(t)

where x(t) = h(t) 	h(t) and ν(t) = n(t) 	h(t). If the sampling time is off by 10%, then the samples
at the output of the correlator are taken at t = (m± 1

10)T . Assuming that t = (m− 1
10)T without

loss of generality, then the sampled sequence is

ym =
∞∑

n=−∞
anx((m− 1

10
T − nT ) + ν((m− 1

10
)T )

If the signal pulse is rectangular with amplitude A and duration T , then
∑∞

n=−∞ anx((m− 1
10T−nT )

is nonzero only for n = m and n = m− 1 and therefore, the sampled sequence is given by

ym = amx(−
1
10
T ) + am−1x(T − 1

10
T ) + ν((m− 1

10
)T )

=
9
10
amA

2T + am−1
1
10
A2T + ν((m− 1

10
)T )

The power spectral density of the noise at the output of the correlator is

Sν(f) = Sn(f)|H(f)|2 =
N0

2
A2T 2sinc2(fT )

Thus, the variance of the noise is

σnu
2 =

∫ ∞

−∞
N0

2
A2T 2sinc2(fT )df =

N0

2
A2T 2 1

T
=
N0

2
A2T

and therefore, the SNR is

SNR =
(

9
10

)2 2(A2T )2

N0A2T
=

81
100

2A2T

N0

As it is observed, there is a loss of 10 log10
81
100 = −0.9151 dB due to the mistiming.

b) Recall from part a) that the sampled sequence is

ym =
9
10
amA

2T + am−1
1
10
A2T + νm

The term am−1
A2T
10 expresses the ISI introduced to the system. If am = 1 is transmitted, then the

probability of error is

P (e|am = 1) =
1
2
P (e|am = 1, am−1 = 1) +

1
2
P (e|am = 1, am−1 = −1)

=
1

2
√
πN0A2T

∫ −A2T

−∞
e
− ν2

N0A2T dν +
1

2
√
πN0A2T

∫ − 8
10A2T

−∞
e
− ν2

N0A2T dν

=
1
2
Q

√2A2T

N0

+
1
2
Q

√(
8
10

)2 2A2T

N0


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Since the symbols of the binary PAM system are equiprobable the previous derived expression is
the probability of error when a symbol by symbol detector is employed. Comparing this with the
probability of error of a system with no ISI, we observe that there is an increase of the probability
of error by

Pdiff(e) =
1
2
Q

√(
8
10

)2 2A2T

N0

− 1
2
Q

√2A2T

N0


Problem 8.4

1) The power spectral density of X(t) is given by

Sx(f) =
1
T

Sa(f)|GT (f)|2

The Fourier transform of g(t) is

GT (f) = F [g(t)] = AT
sinπfT
πfT

e−jπfT

Hence,
|GT (f)|2 = (AT )2sinc2(fT )

and therefore,
Sx(f) = A2TSa(f)sinc2(fT ) = A2T sinc2(fT )

2) If g1(t) is used instead of g(t) and the symbol interval is T , then

Sx(f) =
1
T

Sa(f)|G2T (f)|2

=
1
T

(A2T )2sinc2(f2T ) = 4A2T sinc2(f2T )

3) If we precode the input sequence as bn = an + αan−3, then

Rb(m) =


1 + α2 m = 0
α m = ±3
0 otherwise

and therefore, the power spectral density Sb(f) is

Sb(f) = 1 + α2 + 2α cos(2πf3T )

To obtain a null at f = 1
3T , the parameter α should be such that

1 + α2 + 2α cos(2πf3T )|
f=1

3
= 0 =⇒ α = −1

4) The answer to this question is no. This is because Sb(f) is an analytic function and unless it
is identical to zero it can have at most a countable number of zeros. This property of the analytic
functions is also referred as the theorem of isolated zeros.
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Problem 8.5

1) The power spectral density of s(t) is

Ss(f) =
σ2

a

T
|GT (f)|2 =

1
T

|GT (f)|2

The Fourier transform GT (f) of the signal g(t) is

GT (f) = F
[
Π

(
t− T

4
T
2

)
− Π

(
t− 3T

4
T
2

)]

=
T

2
sinc(

T

2
f)e−j2πf T

4 − T

2
sinc(

T

2
f)e−j2πf 3T

4

=
T

2
sinc(

T

2
f)e−j2πf T

2

[
ej2πf T

4 − e−j2πf T
4

]
=

T

2
sinc(

T

2
f) sin(2πf

T

4
)2je−j2πf T

2

Hence,

|GT (f)|2 = T 2sinc2(
T

2
f) sin2(2πf

T

4
)

and therefore,

Ss(f) = T sinc2(
T

2
f) sin2(2πf

T

4
)

2) If the precoding scheme bn = an + kan−1 is used, then

Rb(m) =


1 + k2 m = 0
k m = ±1
0 otherwise

Thus,
Sb(f) = 1 + k2 + 2k cos(2πfT )

and therefore the spectrum of s(t) is

Ss(f) = (1 + k2 + 2k cos(2πfT ))T sinc2(
T

2
f) sin2(2πf

T

4
)

In order to produce a frequency null at f = 1
T we have to choose k in such a way that

1 + k2 + 2k cos(2πfT )|f=1/T
= 1 + k2 + 2k = 0

The appropriate value of k is −1.

3) If the precoding scheme of the previous part is used, then in order to have nulls at frequencies
f = n

4T , the value of the parameter k should be such that

1 + k2 + 2k cos(2πfT )|f=1/4T
= 1 + k2 = 0

As it is observed it is not possible to achieve the desired nulls with real values of k. Instead of the
pre-coding scheme of the previous part we suggest pre-coding of the form

bn = an + kan−2
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In this case

Rb(m) =


1 + k2 m = 0
k m = ±2
0 otherwise

Thus,
Sb(f) = 1 + k2 + 2k cos(2π2fT )

and therefore Sb( n
2T ) = 0 for k = 1.

Problem 8.6
a) The power spectral density of the FSK signal may be evaluated by using equation (8.5.32) with
k = 2 (binary) signals and probabilities p0 = p1 = 1

2 . Thus, when the condition that the carrier
phase θ0 and and θ1 are fixed, we obtain

S(f) =
1

4T 2
b

∞∑
n=−∞

|S0(
n

Tb
) + S1(

n

Tb
)|2δ(f − n

Tb
) +

1
4Tb

|S0(f) − S1(f)|2

where S0(f) and S1(f) are the Fourier transforms of s0(t) and s1(t). In particular,

S0(f) =
∫ Tb

0
s0(t)e−j2πft dt

=

√
2Eb

Tb

∫ Tb

0
cos(2πf0t+ θ0)ej2πft dt, f0 = fc − ∆f

2

=
1
2

√
2Eb

Tb

[
sinπTb(f − f0)
π(f − f0)

+
sinπTb(f + f0)
π(f + f0)

]
e−jπfTbejθ0

Similarly,

S1(f) =
∫ Tb

0
s1(t)e−j2πft dt

=
1
2

√
2Eb

Tb

[
sinπTb(f − f1)
π(f − f1)

+
sinπTb(f + f1)
π(f + f1)

]
e−jπfTbejθ1

where f1 = fc + ∆f
2 . By expressing S(f) as

S(f) =
1

4T 2
b

∞∑
n=−∞

[
|S0(

n

Tb
)|2 + |S1(

n

Tb
)|2 + 2Re[S0(

n

Tb
)S∗

1(
n

Tb
)]δ(f − n

Tb
)
]

+
1

4Tb

[
|S0(f)|2 + |S1(f)|2 − 2Re[S0(f)S∗

1(f)]
]

we note that the carrier phases θ0 and θ1 affect only the terms Re(S0S
∗
1). If we average over the

random phases, these terms drop out. Hence, we have

S(f) =
1

4T 2
b

∞∑
n=−∞

[
|S0(

n

Tb
)|2+ |S1(

n

Tb
)|2
]
δ(f − n

Tb
)
]

+
1

4Tb

[
|S0(f)|2 + |S1(f)|2

]
where

|Sk(f)|2 =
TbEb

2

[
sinπTb(f − fk)
π(f − fk)

+
sinπTb(f + fk)
π(f + fk)

]
, k = 0, 1

Note that the first term in S(f) consists of a sequence of samples and the second term constitutes
the continuous spectrum.
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b) It is apparent from S(f) that the terms |Sk(f)|2 decay proportionally as 1
(f−fk)2 . also note that

|Sk(f)|2 =
TbEb

2

[(
sinπTb(f − fk)
π(f − fk)

)2

+
(

sinπTb(f + fk)
π(f + fk)

)2
]

because the product
sinπTb(f − fk)
π(f − fk)

× sinπTb(f + fk)
π(f + fk)

≈ 0

due to the relation that the carrier frequency fc � 1
Tb

.

Problem 8.7
1) The autocorrelation function of the information symbols {an} is

Ra(k) = E[a∗
na+ n+ k] =

1
4

× |an|2δ(k) = δ(k)

Thus, the power spectral density of v(t) is

SV (f) =
1
T

Sa(f)|G(f)|2 =
1
T

|G(f)|2

where G(f) = F [g(t)]. If g(t) = AΠ( t− T
2

T ), we obtain |G(f)|2 = A2T 2sinc2(fT ) and therefore,

SV (f) = A2T sinc2(fT )

In the next figure we plot SV (f) for T = A = 1.
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2) If g(t) = A sin(πt
2 )Π( t−T/2

T ), then

G(f) = A

[
1
2j
δ(f − 1

4
) − 1

2j
δ(f +

1
4
)
]
	 T sinc(fT )e−j2πf T

2

=
AT

2
[δ(f − 1

4
) − δ(f +

1
4
)] 	 sinc(fT )e−j(2πf T

2 +π
2 )

=
AT

2
e−jπ[(f− 1

4 )T+ 1
2 ]
[
sinc((f − 1

4
)T ) − sinc((f − 1

4
)T )e−j πT

2

]
Thus,

|G(f)|2 =
A2T 2

4

[
sinc2((f +

1
4
)T ) + sinc2((f − 1

4
)T )

−2sinc((f +
1
4
)T )sinc((f − 1

4
)T ) cos

πT

2

]
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and the power spectral of the transmitted signal is

SV (f) =
A2T

4

[
sinc2((f +

1
4
)T ) + sinc2((f − 1

4
)T )

−2sinc((f +
1
4
)T )sinc((f − 1

4
)T ) cos

πT

2

]
In the next figure we plot SV (f) for two special values of the time interval T . The amplitude of
the signal A was set to 1 for both cases.
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3) The first spectral null of the power spectrum density in part 1) is at position

Wnull =
1
T

The 3-dB bandwidth is specified by solving the equation:

SV (W3dB) =
1
2
SV (0)

Since sinc2(0) = 1, we obtain

sinc2(W3dBT ) =
1
2

=⇒ sin(πW3dBT ) =
1√
2
πW3dBT

Solving the latter equation numerically we find that

W3dB =
1.3916
πT

=
0.443
T

To find the first spectral null and the 3-dB bandwidth for the signal with power spectral density
in part 2) we assume that T = 1. In this case

SV (f) =
A2

4

[
sinc2((f +

1
4
)) + sinc2((f − 1

4
))
]

and as it is observed there is no value of f that makes SV (f) equal to zero. Thus, Wnull = ∞. To
find the 3-dB bandwidth note that

SV (0) =
A2

4
2sinc(

1
4
) =

A2

4
1.6212

Solving numerically the equation

SV (W3dB) =
1
2
A2

4
1.6212

we find that W3dB = 0.5412. As it is observed the 3-dB bandwidth is more robust as a measure
for the bandwidth of the signal.
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Problem 8.8

The transition probability matrix P is

P =
1
2


0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0


Hence,

P2 =
1
4


1 0 2 1
2 1 1 0
0 1 1 2
1 2 0 1

 and P4 =
1
16


2 4 4 6
4 2 6 4
4 6 2 4
6 4 4 2


and therefore,

P4γ =
1
16


2 4 4 6
4 2 6 4
4 6 2 4
6 4 4 2




1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1



=
1
16


−4 0 0 4

0 −4 4 0
0 4 −4 0
4 0 0 −4

 = −1
4
γ

Thus, P4γ = −1
4γ and by pre-multiplying both sides by Pk, we obtain

Pk+4γ = −1
4
Pkγ

Problem 8.9

a) Taking the inverse Fourier transform of H(f), we obtain

h(t) = F−1[H(f)] = δ(t) +
α

2
δ(t− t0) +

α

2
δ(t+ t0)

Hence,
y(t) = s(t) 	 h(t) = s(t) +

α

2
s(t− t0) +

α

2
s(t+ t0)

b) If the signal s(t) is used to modulate the sequence {an}, then the transmitted signal is

u(t) =
∞∑

n=−∞
ans(t− nT )

The received signal is the convolution of u(t) with h(t). Hence,

y(t) = u(t) 	 h(t) =

( ∞∑
n=−∞

ans(t− nT )

)
	

(
δ(t) +

α

2
δ(t− t0) +

α

2
δ(t+ t0)

)

=
∞∑

n=−∞
ans(t− nT ) +

α

2

∞∑
n=−∞

ans(t− t0 − nT ) +
α

2

∞∑
n=−∞

ans(t+ t0 − nT )
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Thus, the output of the matched filter s(−t) at the time instant t1 is

w(t1) =
∞∑

n=−∞
an

∫ ∞

−∞
s(τ − nT )s(τ − t1)dτ

+
α

2

∞∑
n=−∞

an

∫ ∞

−∞
s(τ − t0 − nT )s(τ − t1)dτ

+
α

2

∞∑
n=−∞

an

∫ ∞

−∞
s(τ + t0 − nT )s(τ − t1)dτ

If we denote the signal s(t) 	 s(t) by x(t), then the output of the matched filter at t1 = kT is

w(kT ) =
∞∑

n=−∞
anx(kT − nT )

+
α

2

∞∑
n=−∞

anx(kT − t0 − nT ) +
α

2

∞∑
n=−∞

anx(kT + t0 − nT )

c) With t0 = T and k = n in the previous equation, we obtain

wk = akx0 +
∑
n�=k

anxk−n

+
α

2
akx−1 +

α

2

∑
n�=k

anxk−n−1 +
α

2
akx1 +

α

2

∑
n�=k

anxk−n+1

= ak

(
x0 +

α

2
x−1 +

α

2
x1

)
+
∑
n�=k

an

[
xk−n +

α

2
xk−n−1 +

α

2
xk−n+1

]

The terms under the summation is the ISI introduced by the channel.

Problem 8.10

a) Each segment of the wire-line can be considered as a bandpass filter with bandwidth W = 1200
Hz. Thus, the highest bit rate that can be transmitted without ISI by means of binary PAM is

R = 2W = 2400 bps

b) The probability of error for binary PAM transmission is

P2 = Q

[√
2Eb

N0

]

Hence, using mathematical tables for the function Q[·], we find that P2 = 10−7 is obtained for√
2Eb

N0
= 5.2 =⇒ Eb

N0
= 13.52 = 11.30 dB

c) The received power PR is related to the desired SNR per bit through the relation

PR

N0
= R

Eb

N0

Hence, with N0 = 4.1 × 10−21 we obtain

PR = 4.1 × 10−21 × 1200 × 13.52 = 6.6518 × 10−17 = −161.77 dBW
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Since the power loss of each segment is

Ls = 50 Km × 1 dB/Km = 50 dB

the transmitted power at each repeater should be

PT = PR + Ls = −161.77 + 50 = −111.77 dBW

Problem 8.11

The pulse x(t) having the raised cosine spectrum is

x(t) = sinc(t/T )
cos(παt/T )

1 − 4α2t2/T 2

The function sinc(t/T ) is 1 when t = 0 and 0 when t = nT . On the other hand

g(t) =
cos(παt/T )

1 − 4α2t2/T 2 =

{
1 t = 0

bounded t �= 0

The function g(t) needs to be checked only for those values of t such that 4α2t2/T 2 = 1 or αt = T
2 .

However,

lim
αt→ T

2

cos(παt/T )
1 − 4α2t2/T 2 = lim

x→1

cos(π
2x)

1 − x

and by using L’Hospital’s rule

lim
x→1

cos(π
2x)

1 − x
= lim

x→1

π

2
sin(

π

2
x) =

π

2
< ∞

Hence,

x(nT ) =

{
1 n = 0
0 n �= 0

meaning that the pulse x(t) satisfies the Nyquist criterion.

Problem 8.12

Substituting the expression of Xrc(f) in the desired integral, we obtain

∫ ∞

−∞
Xrc(f)df =

∫ − 1−α
2T

− 1+α
2T

T

2

[
1 + cos

πT

α
(−f − 1 − α

2T
)
]
df +

∫ 1−α
2T

− 1−α
2T

Tdf

+
∫ 1+α

2T

1−α
2T

T

2

[
1 + cos

πT

α
(f − 1 − α

2T
)
]
df

=
∫ − 1−α

2T

− 1+α
2T

T

2
df + T

(
1 − α

T

)
+
∫ 1+α

2T

1−α
2T

T

2
df

+
∫ − 1−α

2T

− 1+α
2T

cos
πT

α
(f +

1 − α

2T
)df +

∫ 1+α
2T

1−α
2T

cos
πT

α
(f − 1 − α

2T
)df

= 1 +
∫ 0

− α
T

cos
πT

α
xdx+

∫ α
T

0
cos

πT

α
xdx

= 1 +
∫ α

T

− α
T

cos
πT

α
xdx = 1 + 0 = 1
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Problem 8.13

Let X(f) be such that

Re[X(f)] =

{
TΠ(fT ) + U(f) |f | < 1

T
0 otherwise

Im[X(f)] =

{
V (f) |f | < 1

T
0 otherwise

with U(f) even with respect to 0 and odd with respect to f = 1
2T Since x(t) is real, V (f) is odd

with respect to 0 and by assumption it is even with respect to f = 1
2T . Then,

x(t) = F−1[X(f)]

=
∫ 1

2T

− 1
T

X(f)ej2πftdf +
∫ 1

2T

− 1
2T

X(f)ej2πftdf +
∫ 1

T

1
2T

X(f)ej2πftdf

=
∫ 1

2T

− 1
2T

Tej2πftdf +
∫ 1

T

− 1
T

[U(f) + jV (f)]ej2πftdf

= sinc(t/T ) +
∫ 1

T

− 1
T

[U(f) + jV (f)]ej2πftdf

Consider first the integral
∫ 1

T

− 1
T

U(f)ej2πftdf . Clearly,

∫ 1
T

− 1
T

U(f)ej2πftdf =
∫ 0

− 1
T

U(f)ej2πftdf +
∫ 1

T

0
U(f)ej2πftdf

and by using the change of variables f ′ = f + 1
2T and f ′ = f − 1

2T for the two integrals on the right
hand side respectively, we obtain∫ 1

T

− 1
T

U(f)ej2πftdf

= e−j π
T

t
∫ 1

2T

− 1
2T

U(f ′ − 1
2T

)ej2πf ′tdf ′ + ej
π
T

t
∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf ′tdf ′

a=
(
ej

π
T

t − e−j π
T

t
) ∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf ′tdf ′

= 2j sin(
π

T
t)
∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf ′tdf ′

where for step (a) we used the odd symmetry of U(f ′) with respect to f ′ = 1
2T , that is

U(f ′ − 1
2T

) = −U(f ′ +
1

2T
)

For the integral
∫ 1

T

− 1
T

V (f)ej2πftdf we have

∫ 1
T

− 1
T

V (f)ej2πftdf

=
∫ 0

− 1
T

V (f)ej2πftdf +
∫ 1

T

0
V (f)ej2πftdf

= e−j π
T

t
∫ 1

2T

− 1
2T

V (f ′ − 1
2T

)ej2πf ′tdf ′ + ej
π
T

t
∫ 1

2T

− 1
2T

V (f ′ +
1

2T
)ej2πf ′tdf ′
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However, V (f) is odd with respect to 0 and since V (f ′+ 1
2T ) and V (f ′− 1

2T ) are even, the translated
spectra satisfy ∫ 1

2T

− 1
2T

V (f ′ − 1
2T

)ej2πf ′tdf ′ = −
∫ 1

2T

− 1
2T

V (f ′ +
1

2T
)ej2πf ′tdf ′

Hence,

x(t) = sinc(t/T ) + 2j sin(
π

T
t)
∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf ′tdf ′

−2 sin(
π

T
t)
∫ 1

2T

− 1
2T

U(f ′ +
1

2T
)ej2πf ′tdf ′

and therefore,

x(nT ) =

{
1 n = 0
0 n �= 0

Thus, the signal x(t) satisfies the Nyquist criterion.

Problem 8.14

The bandwidth of the channel is

W = 3000 − 300 = 2700 Hz

Since the minimum transmission bandwidth required for bandpass signaling is R, where R is the
rate of transmission, we conclude that the maximum value of the symbol rate for the given channel
is Rmax = 2700. If an M -ary PAM modulation is used for transmission, then in order to achieve
a bit-rate of 9600 bps, with maximum rate of Rmax, the minimum size of the constellation is
M = 2k = 16. In this case, the symbol rate is

R =
9600
k

= 2400 symbols/sec

and the symbol interval T = 1
R = 1

2400 sec. The roll-off factor α of the raised cosine pulse used for
transmission is is determined by noting that 1200(1 +α) = 1350, and hence, α = 0.125. Therefore,
the squared root raised cosine pulse can have a roll-off of α = 0.125.

Problem 8.15

Since the bandwidth of the ideal lowpass channel is W = 2400 Hz, the rate of transmission is

R = 2 × 2400 = 4800 symbols/sec

The number of bits per symbol is

k =
14400
4800

= 3

Hence, the number of transmitted symbols is 23 = 8. If a duobinary pulse is used for transmission,
then the number of possible transmitted symbols is 2M − 1 = 15. These symbols have the form

bn = 0,±2d,±4d, . . . ,±12d

where 2d is the minimum distance between the points of the 8-PAM constellation. The probability
mass function of the received symbols is

P (b = 2md) =
8 − |m|

64
, m = 0,±1, . . . ,±7
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An upper bound of the probability of error is given by (see (8.4.33))

PM < 2
(

1 − 1
M2

)
Q

√(
π

4

)2 6
M2 − 1

kEb,av

N0


With PM = 10−6 and M = 8 we obtain

kEb,av

N0
= 1.3193 × 103 =⇒ Eb,av = 0.088

Problem 8.16

a) The spectrum of the baseband signal is

SV (f) =
1
T

Sa(f)|Xrc(f)|2 =
1
T

|Xrc(f)|2

where T = 1
2400 and

Xrc(f) =


T 0 ≤ |f | ≤ 1

4T
T
2 (1 + cos(2πT (|f | − 1

4T )) 1
4T ≤ |f | ≤ 3

4T
0 otherwise

If the carrier signal has the form c(t) = A cos(2πfct), then the spectrum of the DSB-SC modulated
signal, SU (f), is

SU (f) =
A

2
[SV (f − fc) + SV (f + fc)]

A sketch of SU (f) is shown in the next figure.

2

2AT

-fc-3/4T -fc+3/4T fcfc-3/4T fc+3/4T-fc

b) Assuming bandpass coherent demodulation using a matched filter, the received signal r(t) is
first passed through a linear filter with impulse response

gR(t) = Axrc(T − t) cos(2πfc(T − t))

The output of the matched filter is sampled at t = T and the samples are passed to the detector.
The detector is a simple threshold device that decides if a binary 1 or 0 was transmitted depending
on the sign of the input samples. The following figure shows a block diagram of the optimum
bandpass coherent demodulator.

��
	.............��� ���

device)
(Threshold
Detectort = T

r(t)
gR(t)

matched filter
Bandpass
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Problem 8.17

a) If the power spectral density of the additive noise is Sn(f), then the PSD of the noise at the
output of the prewhitening filter is

Sν(f) = Sn(f)|Hp(f)|2

In order for Sν(f) to be flat (white noise), Hp(f) should be such that

Hp(f) =
1√

Sn(f)

2) Let hp(t) be the impulse response of the prewhitening filter Hp(f). That is, hp(t) = F−1[Hp(f)].
Then, the input to the matched filter is the signal s̃(t) = s(t) 	 hp(t). The frequency response of
the filter matched to s̃(t) is

S̃m(f) = S̃∗(f)e−j2πft0 == S∗(f)H∗
p (f)e−j2πft0

where t0 is some nominal time-delay at which we sample the filter output.

3) The frequency response of the overall system, prewhitening filter followed by the matched filter,
is

G(f) = S̃m(f)Hp(f) = S∗(f)|Hp(f)|2e−j2πft0 =
S∗(f)
Sn(f)

e−j2πft0

4) The variance of the noise at the output of the generalized matched filter is

σ2 =
∫ ∞

−∞
Sn(f)|G(f)|2df =

∫ ∞

−∞
|S(f)|2
Sn(f)

df

At the sampling instant t = t0 = T , the signal component at the output of the matched filter is

y(T ) =
∫ ∞

−∞
Y (f)ej2πfTdf =

∫ ∞

−∞
s(τ)g(T − τ)dτ

=
∫ ∞

−∞
S(f)

S∗(f)
Sn(f)

df =
∫ ∞

−∞
|S(f)|2
Sn(f)

df

Hence, the output SNR is

SNR =
y2(T )
σ2 =

∫ ∞

−∞
|S(f)|2
Sn(f)

df

Problem 8.18
The bandwidth of the bandpass channel is

W = 3300 − 300 = 3000 Hz

In order to transmit 9600 bps with a symbol rate R = 2400 symbols per second, the number of
information bits per symbol should be

k =
9600
2400

= 4

Hence, a 24 = 16 QAM signal constellation is needed. The carrier frequency fc is set to 1800 Hz,
which is the mid-frequency of the frequency band that the bandpass channel occupies. If a pulse

226



with raised cosine spectrum and roll-off factor α is used for spectral shaping, then for the bandpass
signal with bandwidth W

R = 1200(1 + α) = 1500

and
α = 0.25

A sketch of the spectrum of the transmitted signal pulse is shown in the next figure.

-1800 -300-3300 300 33001800

1/2T

f600
3000

Problem 8.19
The channel bandwidth is W = 4000 Hz.
(a) Binary PSK with a pulse shape that has α = 1

2 . Hence

1
2T

(1 + α) = 2000

and 1
T = 2667, the bit rate is 2667 bps.

(b) Four-phase PSK with a pulse shape that has α = 1
2 . From (a) the symbol rate is 1

T = 2667 and
the bit rate is 5334 bps.
(c) M = 8 QAM with a pulse shape that has α = 1

2 . From (a), the symbol rate is 1
T = 2667 and

hence the bit rate 3
T = 8001 bps.

(d) Binary FSK with noncoherent detection. Assuming that the frequency separation between the
two frequencies is ∆f = 1

T , where 1
T is the bit rate, the two frequencies are fc + 1

2T and fc − 1
2T .

Since W = 4000 Hz, we may select 1
2T = 1000, or, equivalently, 1

T = 2000. Hence, the bit rate is
2000 bps, and the two FSK signals are orthogonal.
(e) Four FSK with noncoherent detection. In this case we need four frequencies with separation
of 1

T between adjacent frequencies. We select f1 = fc − 1.5
T , f2 = fc − 1

2T , f3 = fc + 1
2T , and

f4 = fc + 1.5
T , where 1

2T = 500 Hz. Hence, the symbol rate is 1
T = 1000 symbols per second and

since each symbol carries two bits of information, the bit rate is 2000 bps.
(f) M = 8 FSK with noncoherent detection. In this case we require eight frequencies with frequency
separation of 1

T = 500 Hz for orthogonality. Since each symbol carries 3 bits of information, the
bit rate is 1500 bps.

Problem 8.20
1) The bandwidth of the bandpass channel is

W = 3000 − 600 = 2400 Hz

Since each symbol of the QPSK constellation conveys 2 bits of information, the symbol rate of
transmission is

R =
2400

2
= 1200 symbols/sec

Thus, for spectral shaping we can use a signal pulse with a raised cosine spectrum and roll-off factor
α = 1, that is

Xrc(f) =
T

2
[1 + cos(πT |f |)] =

1
2400

cos2
(
π|f |
2400

)
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If the desired spectral characteristic is split evenly between the transmitting filter GT (f) and the
receiving filter GR(f), then

GT (f) = GR(f) =
√

1
1200

cos
(
π|f |
2400

)
, |f | < 1

T
= 1200

A block diagram of the transmitter is shown in the next figure.

�×� �

�

� to Channel

cos(2πfct)

GT (f)
QPSK
an

2) If the bit rate is 4800 bps, then the symbol rate is

R =
4800

2
= 2400 symbols/sec

In order to satisfy the Nyquist criterion, the the signal pulse used for spectral shaping, should have
the spectrum

X(f) = TΠ
(
f

W

)
Thus, the frequency response of the transmitting filter is GT (f) =

√
TΠ

(
f
W

)
.

Problem 8.21
The bandwidth of the bandpass channel is W = 4 KHz. Hence, the rate of transmission should be
less or equal to 4000 symbols/sec. If a 8-QAM constellation is employed, then the required symbol
rate is R = 9600/3 = 3200. If a signal pulse with raised cosine spectrum is used for shaping, the
maximum allowable roll-off factor is determined by

1600(1 + α) = 2000

which yields α = 0.25. Since α is less than 50%, we consider a larger constellation. With a 16-QAM
constellation we obtain

R =
9600

4
= 2400

and
1200(1 + α) = 2000

0r α = 2/3, which satisfies the required conditions. The probability of error for an M -QAM
constellation is given by

PM = 1 − (1 − P√
M )2

where

P√
M = 2

(
1 − 1√

M

)
Q

[√
3Eav

(M − 1)N0

]
With PM = 10−6 we obtain P√

M = 5 × 10−7 and therefore

2 × (1 − 1
4
)Q

√ 3Eav

15 × 2 × 10−10

 = 5 × 10−7

Using the last equation and the tabulation of the Q[·] function, we find that the average transmitted
energy is

Eav = 24.70 × 10−9
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Note that if the desired spectral characteristic Xrc(f) is split evenly between the transmitting and
receiving filter, then the energy of the transmitting pulse is∫ ∞

−∞
g2
T (t)dt =

∫ ∞

−∞
|GT (f)|2df =

∫ ∞

−∞
Xrc(f)df = 1

Hence, the energy Eav = PavT depends only on the amplitude of the transmitted points and the
symbol interval T . Since T = 1

2400 , the average transmitted power is

Pav =
Eav

T
= 24.70 × 10−9 × 2400 = 592.8 × 10−7

If the points of the 16-QAM constellation are evenly spaced with minimum distance between them
equal to d, then there are four points with coordinates (±d

2 ,±
d
2), four points with coordinates

(±3d
2 ,±

3d
2 ), four points with coordinates (±3d

2 ,±
d
2), and four points with coordinates (±d

2 ,±
3d
2 ).

Thus, the average transmitted power is

Pav =
1

2 × 16

16∑
i=1

(A2
mc +A2

ms) =
1
2

[
4 × d2

2
+ 4 × 9d2

2
+ 8 × 10d2

4

]
= 20d2

Since Pav = 592.8 × 10−7, we obtain

d =

√
Pav

20
= 0.00172

Problem 8.22

The roll-off factor α is related to the bandwidth by the expression 1+α
T = 2W , or equivalently

R(1 + α) = 2W . The following table shows the symbol rate for the various values of the excess
bandwidth and for W = 1500 Hz.

α .25 .33 .50 .67 .75 1.00
R 2400 2256 2000 1796 1714 1500

Problem 8.23

The following table shows the precoded sequence, the transmitted amplitude levels, the received
signal levels and the decoded sequence, when the data sequence 10010110010 modulates a duobinary
transmitting filter.

Data seq. dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. pn: 0 1 1 1 0 0 1 0 0 0 1 1
Transmitted seq. an: -1 1 1 1 -1 -1 1 -1 -1 -1 1 1
Received seq. bn: 0 2 2 0 -2 0 0 -2 -2 0 2
Decoded seq. dn: 1 0 0 1 0 1 1 0 0 1 0

Problem 8.24

The following table shows the precoded sequence, the transmitted amplitude levels, the received
signal levels and the decoded sequence, when the data sequence 10010110010 modulates a modified
duobinary transmitting filter.

Data seq. dn: 1 0 0 1 0 1 1 0 0 1 0
Precoded seq. pn: 0 0 1 0 1 1 1 0 0 0 0 1 0
Transmitted seq. an: -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
Received seq. bn: 2 0 0 2 0 -2 -2 0 0 2 0
Decoded seq. dn: 1 0 0 1 0 1 1 0 0 1 0
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Problem 8.25

Let X(z) denote the Z-transform of the sequence xn, that is

X(z) =
∑
n

xnz
−n

Then the precoding operation can be described as

P (z) =
D(z)
X(z)

mod −M

where D(z) and P (z) are the Z-transforms of the data and precoded sequences respectively. For
example, if M = 2 and X(z) = 1 + z−1 (duobinary signaling), then

P (z) =
D(z)

1 + z−1 =⇒ P (z) = D(z) − z−1P (z)

which in the time domain is written as

pn = dn − pn−1

and the subtraction is mod-2.
However, the inverse filter 1

X(z) exists only if x0, the first coefficient of X(z) is relatively prime
with M . If this is not the case, then the precoded symbols pn cannot be determined uniquely from
the data sequence dn.

Problem 8.26

In the case of duobinary signaling, the output of the matched filter is

x(t) = sinc(2Wt) + sinc(2Wt− 1)

and the samples xn−m are given by

xn−m = x(nT −mT ) =


1 n−m = 0
1 n−m = 1
0 otherwise

Therefore, the metric µ(a) in the Viterbi algorithm becomes

µ(a) = 2
∑
n

anrn −
∑
n

∑
m

anamxn−m

= 2
∑
n

anrn −
∑
n

a2
n −

∑
n

anan−1

=
∑
n

an(2rn − an − an−1)

Problem 8.27

The precoding for the duobinary signaling is given by

pm = dm � pm−1

The corresponding trellis has two states associated with the binary values of the history pm−1. For
the modified duobinary signaling the precoding is

pm = dm ⊕ pm−2
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Hence, the corresponding trellis has four states depending on the values of the pair (pm−2, pm−1).
The two trellises are depicted in the next figure. The branches have been labelled as x/y, where x
is the binary input data dm and y is the actual transmitted symbol. Note that the trellis for the
modified duobinary signal has more states, but the minimum free distance between the paths is
dfree = 3, whereas the minimum free distance between paths for the duobinary signal is 2.
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Problem 8.28

1) The output of the matched filter demodulator is

y(t) =
∞∑

k=−∞
ak

∫ ∞

−∞
gT (τ − kTb)gR(t− τ)dτ + ν(t)

=
∞∑

k=−∞
akx(t− kTb) + ν(t)

where,

x(t) = gT (t) 	 gR(t) =
sin πt

T
πt
T

cos πt
T

1 − 4 t2

T 2

Hence,

y(mTb) =
∞∑

k=−∞
akx(mTb − kTb) + v(mTb)

= am +
1
π
am−1 +

1
π
am+1 + ν(mTb)

The term 1
πam−1+ 1

πam+1 represents the ISI introduced by doubling the symbol rate of transmission.

2) In the next figure we show one trellis stage for the ML sequence detector. Since there is postcursor
ISI, we delay the received signal, used by the ML decoder to form the metrics, by one sample. Thus,
the states of the trellis correspond to the sequence (am−1, am), and the transition labels correspond
to the symbol am+1. Two branches originate from each state. The upper branch is associated with
the transmission of −1, whereas the lower branch is associated with the transmission of 1.
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Problem 8.29

a) The output of the matched filter at the time instant mT is

ym =
∑
k

amxk−m + νm = am +
1
4
am−1 + νm

The autocorrelation function of the noise samples νm is

E[νkνj ] =
N0

2
xk−j

Thus, the variance of the noise is

σ2
ν =

N0

2
x0 =

N0

2
If a symbol by symbol detector is employed and we assume that the symbols am = am−1 =

√
Eb

have been transmitted, then the probability of error P (e|am = am−1 =
√

Eb) is

P (e|am = am−1 =
√

Eb) = P (ym < 0|am = am−1 =
√

Eb)

= P (νm < −5
4

√
Eb) =

1√
πN0

∫ − 5
4

√Eb

−∞
e
− ν2

m
N0 dνm

=
1√
2π

∫ − 5
4

√
2Eb
N0

−∞
e−

ν2
2 dν = Q

[
5
4

√
2Eb

N0

]

If however am−1 = −
√

Eb, then

P (e|am =
√

Eb, am−1 = −
√

Eb) = P (
3
4

√
Eb + νm < 0) = Q

[
3
4

√
2Eb

N0

]

Since the two symbols
√

Eb, −
√

Eb are used with equal probability, we conclude that

P (e) = P (e|am =
√

Eb) = P (e|am = −
√

Eb)

=
1
2
Q

[
5
4

√
2Eb

N0

]
+

1
2
Q

[
3
4

√
2Eb

N0

]

b) In the next figure we plot the error probability obtained in part (a) (log10(P (e))) vs. the SNR
per bit and the error probability for the case of no ISI. As it observed from the figure, the relative
difference in SNR of the error probability of 10−6 is 2 dB.
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Problem 8.30

The power spectral density of the noise at the output of the matched filter is

Sν(f) = Sn(f)|GR(f)|2 =
N0

2
|X(f)| =

N0

2
1
W

cos(
πf

2W
)

Hence, the autocorrelation function of the output noise is

Rν(τ) = F−1[Sν(f)] =
N0

2

∫ ∞

−∞
1
W

cos(
πf

2W
)ej2πfτdf

=
N0

2

∫ ∞

−∞
1
W

cos(
πf

2W
)e−j πf

2W ej2πf(τ+ 1
4W

)df

=
N0

2

∫ ∞

−∞
X(f)ej2πf(τ+ 1

4W
)df

=
N0

2
x(τ +

1
4W

)

and therefore,

Rν(0) =
N0

2
x(

1
4W

) =
N0

2

(
sinc(

1
2
) + sinc(−1

2
)
)

=
2N0

π

Rν(T ) = Rν(
1

2W
) =

N0

2

(
sinc(

3
2
) + sinc(

1
2
)
)

=
2N0

3π

Since the noise is of zero mean, the covariance matrix of the noise is given by

C =

(
Rν(0) Rν(T )
Rν(T ) Rν(0)

)
=

2N0

π

(
1 1

3
1
3 1

)

Problem 8.31

Let Si represent the state that the difference between the total number of accumulated zeros and
the total number of accumulated ones is i, with i = −2, . . . , 2. The state transition diagram of the
corresponding code is depicted in the next figure.


�
��


�
��


�
��


�
��


�
��
� � � �

����
S−2S−1S0S1S2

0 0 0 0

1111

The state transition matrix is

D =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


Setting det(D−λI) = 0, we obtain λ5 − 4λ3 + 3λ = 0. The roots of the characteristic equation are

λ = 0, ±1, ±
√

3

Thus,
C = log2 λmax = log2

√
3 = .7925
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Problem 8.32

The state transition matrix of the (0,1) runlength-limited code is

D =

(
1 1
1 0

)

The eigenvalues of D are the roots of

det(D − λI) = −λ(1 − λ) − 1 = λ2 − λ− 1

The roots of the characteristic equation are

λ1,2 =
1 ±

√
5

2

Thus, the capacity of the (0,1) runlength-limited code is

C(0, 1) = log2(
1 ±

√
5

2
) = 0.6942

The capacity of a (1,∞) code is found from Table 8.3 to be 0.6942. As it is observed, the two codes
have exactly the same capacity. This result is to be expected since the (0,1) runlength-limited code
and the (1,∞) code produce the same set of code sequences of length n, N(n), with a renaming of
the bits from 0 to 1 and vise versa. For example, the (0,1) runlength-limited code with a renaming
of the bits, can be described as the code with no minimum number of 1’s between 0’s in a sequence,
and at most one 1 between two 0’s. In terms of 0’s, this is simply the code with no restrictions on
the number of adjacent 0’s and no consecutive 1’s, that is the (1,∞) code.

Problem 8.33

Let S0 represent the state that the running polarity is zero, and S1 the state that there exists some
polarity (dc component). The following figure depicts the transition state diagram of the AMI code

��
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��
��

��
��

��
��

� �

�

�0/0

1/− s(t)

0/0

1/s(t)

S1S0

The state transition matrix is

D =

(
1 1
1 1

)
The eigenvalues of the matrix D can be found from

det(D − λI) = 0 =⇒ (1 − λ)2 − 1 = 0 or λ(2 − λ) = 0

The largest real eigenvalue is λmax = 2, so that

C = log2 λmax = 1
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Problem 8.34

Let {bk} be a binary sequence, taking the values 1, 0 depending on the existence of polarization at
the transmitted sequence up to the time instant k. For the AMI code, bk is expressed as

bk = ak ⊕ bk−1 = ak ⊕ ak−1 ⊕ ak−2 ⊕ . . .

where ⊕ denotes modulo two addition. Thus, the AMI code can be described as the RDS code,
with RDS (=bk) denoting the binary digital sum modulo 2 of the input bits.

Problem 8.35

Defining the efficiency as

efficiency =
k

n log2 3

we obtain
Code Efficiency
1B1T 0.633
3B2T 0.949
4B3T 0.844
6B4T 0.949

Problem 8.36

a) The characteristic polynomial of D is

det(D − λI) = det

∣∣∣∣∣ 1 − λ 1
1 −λ

∣∣∣∣∣ = λ2 − λ− 1

The eigenvalues of D are the roots of the characteristic polynomial, that is

λ1,2 =
1 ±

√
5

2

Thus, the largest eigenvalue of D is λmax = 1+
√

5
2 and therefore

C = log2
1 +

√
5

2
= 0.6942

b) The characteristic polynomial is det(D − λI) = (1 − λ)2 with roots λ1,2 = 1. Hence, C =
log2 1 = 0. The state diagram of this code is depicted in the next figure.
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0 S1S0

c) As it is observed the second code has zero capacity. This result is to be expected since with the
second code we can have at most n+ 1 different sequences of length n, so that

C = lim
n→∞

1
n

log2N(n) = lim
n→∞

1
n

log2(n+ 1) = 0
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The n+ 1 possible sequences are

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
n−k

(n sequences)

and the sequence 11 . . . 1, which occurs if we start from state S1.

Problem 8.37

a) The two symbols, dot and dash, can be represented as 10 and 1110 respectively, where 1 denotes
line closure and 0 an open line. Hence, the constraints of the code are

• A 0 is always followed by 1.

• Only sequences having one or three repetitions of 1, are allowed.

The next figure depicts the state diagram of the code, where the state S0 denotes the reception of
a dot or a dash, and state Si denotes the reception of i adjacent 1’s.
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b) The state transition matrix is

D =


0 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0


c) The characteristic equation of the matrix D is

det(D − λI) = 0 =⇒ λ4 − λ2 − 1 = 0

The roots of the characteristic equation are

λ1,2 = ±
(

1 +
√

5
2

) 1
2

λ3,4 = ±
(

1 −
√

5
2

) 1
2

Thus, the capacity of the code is

C = log2 λmax = log2 λ1 = log2

(
1 +

√
5

2

) 1
2

= 0.3471

Problem 8.38

The state diagram of Fig. P-8-38 describes a runlength constrained code, that forbids any sequence
containing a run of more than three adjacent symbols of the same kind. The state transition matrix
is

D =



0 0 0 1 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 1 0 0 0


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The corresponding trellis is shown in the next figure
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Problem 8.39

The state transition matrix of the (2,7) runlength-limited code is the 8 × 8 matrix

D =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


Problem 8.40

The frequency response of the RC filter is

C(f) =
1

j2πRCf

R+ 1
j2πRCf

=
1

1 + j2πRCf

The amplitude and the phase spectrum of the filter are

|C(f)| =
(

1
1 + 4π2(RC)2f2

) 1
2
, Θc(f) = arctan(−2πRCf)

The envelope delay is

Tc(f) = − 1
2π

dΘc(f)
df

= − 1
2π

−2πRC
1 + 4π2(RC)2f2 =

RC

1 + 4π2(RC)2f2

where we have used the formula
d

dx
arctanu =

1
1 + u2

du

dx

Problem 8.41

1) The envelope delay of the RC filter is (see Problem 8.40)

Tc(f) =
RC

1 + 4π2(RC)2f2

A plot of T (f) with RC = 10−6 is shown in the next figure
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2) The following figure is a plot of the amplitude characteristics of the RC filter, |C(f)|. The values
of the vertical axis indicate that |C(f)| can be considered constant for frequencies up to 2000 Hz.
Since the same is true for the envelope delay, we conclude that a lowpass signal of bandwidth
∆f = 1 KHz will not be distorted if it passes the RC filter.
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Problem 8.42

Let GT (f) and GR(f) be the frequency response of the transmitting and receiving filter. Then, the
condition for zero ISI implies

GT (f)C(f)GR(f) = Xrc(f) =


T 0 ≤ |f | ≤ 1

4T
T
2 [1 + cos(2πT (|f | − 1

T )] 1
4T ≤ |f | ≤ 3

4T
0 |f | > 3

4T

Since the additive noise is white, the optimum transmitting and receiving filter characteristics are
given by (see Example 8.6.1)

|GT (f)| =
|Xrc(f)| 1

2

|C(f)| 1
2
, |GR(f)| =

|Xrc(f)| 1
2

|C(f)| 1
2

Thus,

|GT (f)| = |GR(f)| =



[
T

1+0.3 cos 2πfT

] 1
2 0 ≤ |f | ≤ 1

4T[
T (1+cos(2πT (|f |− 1

T
)

2(1+0.3 cos 2πfT )

] 1
2 1

4T ≤ |f | ≤ 3
4T

0 otherwise
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Problem 8.43
A 4-PAM modulation can accommodate k = 2 bits per transmitted symbol. Thus, the symbol
interval duration is

T =
k

9600
=

1
4800

sec

Since, the channel’s bandwidth is W = 2400 = 1
2T , in order to achieve the maximum rate of

transmission, Rmax = 1
2T , the spectrum of the signal pulse should be

X(f) = TΠ
(
f

2W

)
Then, the magnitude frequency response of the optimum transmitting and receiving filter is (see
Section 8.6.1 and Example 8.6.1)

|GT (f)| = |GR(f)| =

[
1 +

(
f

2400

)2
] 1

4

Π
(
f

2W

)
=


[
1 +

(
f

2400

)2
] 1

4
, |f | < 2400

0 otherwise

Problem 8.44

1) The equivalent discrete-time impulse response of the channel is

h(t) =
1∑

n=−1
hnδ(t− nT ) = 0.3δ(t+ T ) + 0.9δ(t) + 0.3δ(t− T )

If by {cn} we denote the coefficients of the FIR equalizer, then the equalized signal is

qm =
1∑

n=−1
cnhm−n

which in matrix notation is written as 0.9 0.3 0.
0.3 0.9 0.3
0. 0.3 0.9


 c−1

c0
c1

 =

 0
1
0


The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.
Thus,  c−1

c0
c1

 =

 −0.4762
1.4286

−0.4762


2) The values of qm for m = ±2,±3 are given by

q2 =
1∑

n=−1
cnh2−n = c1h1 = −0.1429

q−2 =
1∑

n=−1
cnh−2−n = c−1h−1 = −0.1429

q3 =
1∑

n=−1
cnh3−n = 0

q−3 =
1∑

n=−1
cnh−3−n = 0
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Problem 8.45

1) The output of the zero-force equalizer is

qm =
1∑

n=−1
cnxmn

With q0 = 1 and qm = 0 for m �= 0, we obtain the system 1.0 0.1 −0.5
−0.2 1.0 0.1
0.05 −0.2 1.0


 c−1
c0
c1

 =

 0
1
0


Solving the previous system in terms of the equalizer’s coefficients, we obtain c−1

c0
c1

 =

 0.000
0.980
0.196



2) The output of the equalizer is

qm =



0 m ≤ −4
c−1x−2 = 0 m = −3
c−1x−1 + c0x−2 = −0.49 m = −2
0 m = −1
1 m = 0
0 m = 1
c0x2 + x1c1 = 0.0098 m = 2
c1x2 = 0.0098 m = 3
0 m ≥ 4

Hence, the residual ISI sequence is

residual ISI = {. . . , 0,−0.49, 0, 0, 0, 0.0098, 0.0098, 0, . . .}

and its span is 6 symbols.

Problem 8.46

The MSE performance index at the time instant k is

J(ck) = E

∣∣∣∣∣∣
N∑

n=−N

ck,nyk−n − ak

∣∣∣∣∣∣ 62


If we define the gradient vector gk as

gk =
ϑJ(ck)
2ϑck

then its lth element is

gk,l =
ϑJ(ck)
2ϑck,l

=
1
2
E

2

 N∑
n=−N

ck,nyk−n − ak

 yk−l


= E [−ekyk−l] = −E [ekyk−l]
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Thus, the vector gk is

gk =

 −E[ekyk+N ]
...

−E[ekyk−N ]

 = −E[ekyk]

where yk is the vector yk = [yk+N · · · yk−N ]T . Since ĝk = −ekyk, its expected value is

E[ĝk] = E[−ekyk] = −E[ekyk] = gk

Problem 8.47

1) If {cn} denote the coefficients of the zero-force equalizer and {qm} is the sequence of the equal-
izer’s output samples, then

qm =
1∑

n=−1
cnxm−n

where {xk} is the noise free response of the matched filter demodulator sampled at t = kT . With
q−1 = 0, q0 = q1 = Eb, we obtain the system Eb 0.9Eb 0.1Eb

0.9Eb Eb 0.9Eb

0.1Eb 0.9Eb Eb


 c−1

c0
c1

 =

 0
Eb

Eb


The solution to the system is(

c−1 c0 c1
)

=
(

0.2137 −0.3846 1.3248
)

2) The set of noise variables {νk} at the output of the sampler is a Gaussian distributed sequence
with zero-mean and autocorrelation function

Rν(k) =

{
N0
2 xk |k| ≤ 2

0 otherwise

Thus, the autocorrelation function of the noise at the output of the equalizer is

Rn(k) = Rν(k) 	 c(k) 	 c(−k)

where c(k) denotes the discrete time impulse response of the equalizer. Therefore, the autocorrela-
tion sequence of the noise at the output of the equalizer is

Rn(k) =
N0Eb

2



0.9402 k = 0
1.3577 k = ±1

−0.0546 k = ±2
0.1956 k = ±3
0.0283 k = ±4

0 otherwise

To find an estimate of the error probability for the sequence detector, we ignore the residual
interference due to the finite length of the equalizer, and we only consider paths of length two.
Thus, if we start at state a0 = 1 and the transmitted symbols are (a1, a2) = (1, 1) an error is made
by the sequence detector if the path (−1, 1) is more probable, given the received values of r1 and
r2. The metric for the path (a1, a2) = (1, 1) is

µ2(1, 1) = [ r1 − 2Eb r2 − 2Eb ]C−1

[
r1 − 2Eb

r2 − 2Eb

]
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where

C =
N0Eb

2

(
0.9402 1.3577
1.3577 0.9402

)
Similarly, the metric of the path (a1, a2) = (−1, 1) is

µ2(−1, 1) = [ r1 r2 ]C−1

[
r1
r2

]

Hence, the probability of error is

P2 = P (µ2(−1, 1) < µ2(1, 1))

and upon substitution of r1 = 2Eb + n1, r2 = 2Eb + n2, we obtain

P2 = P (n1 + n2 < −2Eb)

Since n1 and n2 are zero-mean Gaussian variables, their sum is also zero-mean Gaussian with
variance

σ2 = (2 × 0.9402 + 2 × 1.3577)
N0Eb

2
= 4.5958

N0Eb

2
and therefore

P2 = Q

[√
8Eb

4.5958N0

]

The bit error probability is P2
2 .

Problem 8.48

The optimum tap coefficients of the zero-force equalizer can be found by solving the system 1.0 0.3 0.0
0.2 1.0 0.3
0.0 0.2 1.0


 c−1
c0
c1

 =

 0
1
0


Hence,  c−1

c0
c1

 =

 −0.3409
1.1364
−0.2273



b) The output of the equalizer is

qm =



0 m ≤ −3
c−1x−1 = −0.1023 m = −2
0 m = −1
1 m = 0
0 m = 1
c1x1 = −0.0455 m = 2
0 m ≥ 3

Hence, the residual ISI sequence is

residual ISI = {. . . , 0,−0.1023, 0, 0, 0,−0.0455, 0, . . .}
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Problem 8.49

1) If we assume that the signal pulse has duration T , then the output of the matched filter at the
time instant t = T is

y(T ) =
∫ T

0
r(τ)s(τ)dτ

=
∫ T

0
(s(τ) + αs(τ − T ) + n(τ))s(τ)dτ

=
∫ T

0
s2(τ)dτ +

∫ T

0
n(τ)s(τ)dτ

= Es + n

where Es is the energy of the signal pulse and n is a zero-mean Gaussian random variable with
variance σ2

n = N0Es
2 . Similarly, the output of the matched filter at t = 2T is

y(2T ) = α

∫ T

0
s2(τ)dτ +

∫ T

0
n(τ)s(τ)dτ

= αEs + n

2) If the transmitted sequence is

x(t) =
∞∑

n=−∞
ans(t− nT )

with an taking the values 1,−1 with equal probability, then the output of the demodulator at the
time instant t = kT is

yk = akEs + αak−1Es + nk

The term αak−1Es expresses the ISI due to the signal reflection. If a symbol by symbol detector is
employed and the ISI is ignored, then the probability of error is

P (e) =
1
2
P (error|an = 1, an−1 = 1) +

1
2
P (error|an = 1, an−1 = −1)

=
1
2
P ((1 + α)Es + nk < 0) +

1
2
P ((1 − α)Es + nk < 0)

=
1
2
Q

√2(1 + α)2Es

N0

+
1
2
Q

√2(1 − α)2Es

N0



3) To find the error rate performance of the DFE, we assume that the estimation of the parameter
α is correct and that the probability of error at each time instant is the same. Since the transmitted
symbols are equiprobable, we obtain

P (e) = P (error at k|ak = 1)
= P (error at k − 1)P (error at k|ak = 1, error at k − 1)

+P (no error at k − 1)P (error at k|ak = 1,no error at k − 1)
= P (e)P (error at k|ak = 1, error at k − 1)

+(1 − P (e))P (error at k|ak = 1,no error at k − 1)
= P (e)p+ (1 − P (e))q
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where

p = P (error at k|ak = 1, error at k − 1)

=
1
2
P (error at k|ak = 1, ak−1 = 1, error at k − 1)

+
1
2
P (error at k|ak = 1, ak−1 = −1, error at k − 1)

=
1
2
P ((1 + 2α)Es + nk < 0) +

1
2
P ((1 − 2α)Es + nk < 0)

=
1
2
Q

√2(1 + 2α)2Es

N0

+
1
2
Q

√2(1 − 2α)2Es

N0


and

q = P (error at k|ak = 1,no error at k − 1)

= P (Es + nk < 0) = Q

[√
2Es

N0

]

Solving for P (e), we obtain

P (e) =
q

1 − p+ q
=

Q
[√

2Es
N0

]
1 − 1

2Q

[√
2(1+2α)2Es

N0

]
− 1

2Q

[√
2(1−2α)2Es

N0

]
+Q

[√
2Es
N0

]
A sketch of the detector structure is shown in the next figure.
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Problem 8.50

A discrete time transversal filter equivalent to the cascade of the transmitting filter gT (t), the
channel c(t), the matched filter at the receiver gR(t) and the sampler, has tap gain coefficients
{ym}, where

ym =


0.9 m = 0
0.3 m = ±1
0 otherwise

The noise νk, at the output of the sampler, is a zero-mean Gaussian sequence with autocorrelation
function

E[νkνl] = σ2yk−l, |k − l| ≤ 1

If the Z-transform of the sequence {ym}, Y (z), assumes the factorization

Y (z) = F (z)F ∗(z−1)

then the filter 1/F ∗(z−1) can follow the sampler to white the noise sequence νk. In this case the
output of the whitening filter, and input to the MSE equalizer, is the sequence

un =
∑
k

akfn−k + nk
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where nk is zero mean Gaussian with variance σ2. The optimum coefficients of the MSE equalizer,
ck, satisfy (see (8.6.35))

1∑
n=−1

cnRu(n− k) = Rua(k), k = 0,±1

where

Ru(n− k) = E[ul−kul−n] =
1∑

m=0
fmfm+n−k + σ2δn,k

=

{
yn−k + σ2δn,k, |n− k| ≤ 1
0 otherwise

Rua(k) = E[anun−k] =

{
f−k, −1 ≤ k ≤ 0
0 otherwise

With
Y (z) = 0.3z + 0.9 + 0.3z−1 = (f0 + f1z

−1)(f0 + f1z)

we obtain the parameters f0 and f1 as

f0 =

{
±

√
0.7854

±
√

0.1146
, f1 =

{
±

√
0.1146

±
√

0.7854

The parameters f0 and f1 should have the same sign since f0f1 = 0.3. However, the sign itself does
not play any role if the data are differentially encoded. To have a stable inverse system 1/F ∗(z−1),
we select f0 and f1 in such a way that the zero of the system F ∗(z−1) = f0 + f1z is inside the unit
circle. Thus, we choose f0 =

√
0.1146 and f1 =

√
0.7854 and therefore, the desired system for the

equalizer’s coefficients is 0.9 + 0.1 0.3 0.0
0.3 0.9 + 0.1 0.3
0.0 0.3 0.9 + 0.1


 c−1

c0
c1

 =


√

0.7854√
0.1146

0


Solving this system, we obtain

c−1 = 0.8596, c0 = 0.0886, c1 = −0.0266

Problem 8.51

1) The spectrum of the band limited equalized pulse is

X(f) =

{
1

2W

∑∞
n=−∞ x( n

2W )e−j πnf
W |f | ≤ W

0 otherwise

=

{
1

2W

[
2 + 2 cos πf

W

]
|f | ≤ W

0 otherwise

=

{
1
W

[
1 + 1 cos πf

W

]
|f | ≤ W

0 otherwise

where W = 1
2Tb
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2) The following table lists the possible transmitted sequences of length 3 and the corresponding
output of the detector.

-1 -1 -1 -4
-1 -1 1 -2
-1 1 -1 0
-1 1 1 2
1 -1 -1 -2
1 -1 1 0
1 1 -1 2
1 1 1 4

As it is observed there are 5 possible output levels bm, with probability p(bm = 0) = 1
4 ,

p(bm = ±2) = 1
4 and p(bm = ±4) = 1

8 .

3) The transmitting filter GT (f), the receiving filter GR(f) and the equalizer GE(f) satisfy the
condition

GT (f)GR(f)GE(f) = X(f)

The power spectral density of the noise at the output of the equalizer is

Sν(f) = Sn(f)|GR(f)GE(f)|2 = σ2|GR(f)GE(f)|2

With
GT (f) = GR(f) = P (f) =

πT50

2
e−πT50|f |

the variance of the output noise is

σ2
ν = σ2

∫ ∞

−∞
|GR(f)GE(f)|2df = σ2

∫ ∞

−∞

∣∣∣∣ X(f)
GT (f)

∣∣∣∣2 df
= σ2

∫ W

−W

4
π2T 2

50W
2

|1 + cos πf
W |2

e−2πT50|f | df

=
8σ2

π2T 2
50W

2

∫ W

0

(
1 + cos

πf

W

)2
e2πT50fdf

The value of the previous integral can be found using the formula∫
eax cosn bxdx

=
1

a2 + n2b2

[
(a cos bx+ nb sin bx)eax cosn−1 bx+ n(n− 1)b2

∫
eax cosn−2 bxdx

]
Thus, we obtain

σ2
ν =

8σ2

π2T 2
50W

2 ×
[(
e2πT50W − 1

)( 1
2πT50

+
2πT50 + π 1

W 2T50

4π2T 2
50 + 4 π2

W 2

)

− 4πT50

4π2T 2
50 + π2

W 2

(
e2πT50W + 1

)]

To find the probability of error using a symbol by symbol detector, we follow the same procedure
as in Section 8.4.3. The results are the same with that obtained from a 3-point PAM constellation
(0,±2) used with a duobinary signal with output levels having the probability mass function given
in part b). An upper bound of the symbol probability of error is
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P (e) < P (|ym| > 1|bm = 0)P (bm = 0) + 2P (|ym − 2| > 1|bm = 2)P (bm = 2)
+2P (ym + 4 > 1|bm = −4)P (bm = −4)

= P (|ym| > 1|bm = 0) [P (bm = 0) + 2P (bm = 2) + P (bm = −4)]

=
7
8
P (|ym| > 1|bm = 0)

But
P (|ym| > 1|bm = 0) =

2√
2πσν

∫ ∞

1
e−x2/2σ2

νdx

Therefore,

P (e) =
14
8
Q

[
1
σν

]
Problem 8.52

Since the partial response signal has memory length equal to 2, the corresponding trellis has 4
states which we label as (an−1, an). The following figure shows three frames of the trellis. The
labels of the branches indicate the output of the partial response system. As it is observed the free
distance between merging paths is 3, whereas the Euclidean distance is equal to

dE = 22 + 42 + 22 = 24
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Problem 8.53
a) The alternative expression for s(t) can be rewritten as

s(t) = Re

[∑
n

a′
nQ(t− nT )

]

= Re

[∑
n

ane
j2πfcnT g(t− nT ) [cos 2πfc(t− nT ) + j sin 2πfc(t− nT )]

]

= Re

[∑
n

ang(t− nT ) [cos 2πfcnT + j sin 2πfcnT ] [cos 2πfc(t− nT ) + j sin 2πfc(t− nT )]

]

= Re

[∑
n

ang(t− nT ) [cos 2πfcnT cos 2πfc(t− nT ) − sin 2πfcnT sin 2πfc(t− nT )

+j sin 2πfcnT cos 2πfc(t− nT ) + j cos 2πfcnT sin 2πfc(t− nT )]

]

= Re

[∑
n

ang(t− nT ) [cos 2πfct+ j sin 2πfct]

]

= Re

[∑
n

ang(t− nT )ej2πfct

]
= s(t)

so indeed the alternative expression for s(t) is a valid one.
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b)

++
anr

ani

a'nr

a'ni

q(t)

q(t)^
-

e j2πfnT
q(t)

q(t)^

e-j2πfnT

Modulator
(with phase rotator)

Demodulator
(with phase derotator)

+

Problem 8.54
a) The impulse response of the pulse having a square-root raised cosine characteristic, is an even
function, i.e., xSQ(t) = xSQ(−t), i.e., the pulse g(t) is an even function. We know that the product
of an even function times an even function is an even function, while the product of an even function
times an odd function is an odd function. Hence q(t) is even while q̂(t) is odd and their product
q(t)q̂(t) has odd symmetry. Therefore,∫ ∞

−∞
q(t)q̂(t) dt =

∫ (1+β)/2T

−(1+β)/2T
q(t)q̂(t) dt = 0

b) We notice that when fc = k/T , where k is an integer, then the rotator/derotator of a carrierless
QAM system (described in Problem 8.53) gives a trivial rotation of an integer number of full circles
(2πkn), and the carrierless QAM/PSK is equivalent to CAP.

Problem 8.55
The analog signal is

x(t) =
1√
N

N−1∑
k=0

Xke
j2πkt/T , 0 ≤ t < T

The subcarrier frequencies are: Fk = k/T, k = 0, 1, . . . , Ñ , and, hence, the maximum frequency
in the analog signal is: Ñ/T . If we sample at the Nyquist rate: 2Ñ/T = N/T , we obtain the
discrete-time sequence:

x(n) = x(t = nT/N) =
1√
N

N−1∑
k=0

Xke
j2πk(nT/N)/T =

1√
N

N−1∑
k=0

Xke
j2πkn/N , n = 0, 10, . . . , N − 1

which is simply the IDFT of the information sequence {Xk}.
To show that x(t) is a real-valued signal, we make use of the condition: XN−k = X∗

k , for k =
1.2. . . . , Ñ−1. By combining the pairs of complex conjugate terms, we obtain for k = 1, 2, . . . , Ñ−1

Xke
j2πkt/T +X∗

ke
−j2πkt/T = 2|Xk| cos

(
2πkt
T

+ θk

)
where Xk = |Xk|ejθk . We also note that X0 and XÑ are real. Hence, x(t) is a real-valued signal.
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Problem 8.56
The filter with system function Hn(z) has the impulse response h(k) = ej2πnk/N , k = 0, 1, . . . . If we
pass the sequence {Xk, k = 0, 1, . . . , N − 1} through such a filter, we obtain the sequence yn(m),
given as

yn(m) =
m∑

k=0

Xkh(m− k), m = 0, 1, . . .

=
m∑

k=0

Xke
j2πn(m−k)/N

At m = N , where yn(N) =
∑N

k=0Xke
−j2πnk/N =

∑N−1
k=0 Xke

−j2πnk/N , since XN = 0. Therefore,
the IDFT of {Xk} can be computed by passing {Xk} through the N filters Hn(z) and sampling
their outputs at m = N .
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Chapter 9

Problem 9.1
The capacity of the channel is defined as

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)]

The conditional entropy H(Y |X) is

H(Y |X) = p(X = a)H(Y |X = a) + p(X = b)H(Y |X = b) + p(X = c)H(Y |X = c)

However,

H(Y |X = a) = −
∑
k

p(Y = k|X = a) logP (Y = k|X = a)

= −(0.2 log 0.2 + 0.3 log 0.3 + 0.5 log 0.5)
= H(Y |X = b) = H(Y |X = c) = 1.4855

and therefore,
H(Y |X) =

∑
k

p(X = k)H(Y |X = k) = 1.4855

Thus,
I(X;Y ) = H(Y ) − 1.4855

To maximize I(X;Y ), it remains to maximize H(Y ). However, H(Y ) is maximized when Y is a
uniformly distributed random variable, if such a distribution can be achieved by an appropriate
input distribution. Using the symmetry of the channel, we observe that a uniform input distribution
produces a uniform output. Thus, the maximum of I(X;Y ) is achieved when p(X = a) = p(X =
b) = p(X = c) = 1

3 and the channel capacity is

C = log2 3 −H(Y |X) = 0.0995 bits/transmission

Problem 9.2
The capacity of the channel is defined as

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)]

If the probability distribution p(x) that achieves capacity is

p(X) =

{
p X = 0

1 − p X = 1

then,

H(Y |X) = pH(Y |X = 0) + (1 − p)H(Y |X = 1)
= ph(ε) + (1 − p)h(ε) = h(ε)

where h(ε) is the binary entropy function. As it is seen H(Y |X) is independent on p and therefore
I(X;Y ) is maximized when H(Y ) is maximized. To find the distribution p(x) that maximizes the
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entropy H(Y ) we reduce first the number of possible outputs as follows. Let V be a function of
the output defined as

V =

{
1 Y = E
0 otherwise

Clearly H(V |Y ) = 0 since V is a deterministic function of Y . Therefore,

H(Y, V ) = H(Y ) +H(V |Y ) = H(Y )
= H(V ) +H(Y |V )

To find H(V ) note that P (V = 1) = P (Y = E) = pε+(1−p)ε = ε. Thus, H(V ) = h(ε), the binary
entropy function at ε. To find H(Y |V ) we write

H(Y |V ) = p(V = 0)H(Y |V = 0) + p(V = 1)H(Y |V = 1)

But H(Y |V = 1) = 0 since there is no ambiguity on the output when V = 1, and

H(Y |V = 0) = −
∑

k=0,1

p(Y = k|V = 0) log2 p(Y = k|V = 0)

Using Bayes rule, we write the conditional probability P (Y = 0|V = 0) as

P (Y = 0|V = 0) =
P (Y = 0, V = 0)

p(V = 0)
=
p(1 − ε)
(1 − ε)

= p

Thus, H(Y |V = 0) is h(p) and H(Y |V ) = (1 − ε)h(p). The capacity is now written as

C = max
p(x)

[H(V ) +H(Y |V ) − h(ε)]

= max
p(x)

H(Y |V ) = max
p(x)

(1 − ε)h(p) = (1 − ε)

and it is achieved for p = 1
2 . The next figure shows the capacity of the channel as a function of ε.

�
�
�
�
�
�

1
C(ε)

ε10

Problem 9.3
The overall channel is a binary symmetric channel with crossover probability p. To find p note that
an error occurs if an odd number of channels produce an error. Thus,

p =
∑

k=odd

(
n
k

)
εk(1 − ε)n−k

Using the results of Problem 7.55, we find that

p =
1
2

[
1 − (1 − 2ε)2

]
and therefore,

C = 1 − h(p)

If n → ∞, then (1 − 2ε)n → 0 and p → 1
2 . In this case

C = lim
n→∞C(n) = 1 − h(

1
2
) = 0
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Problem 9.4
Denoting ε̄ = 1−ε, we have n! ≈

√
2πnnne−n, (nε)! ≈

√
2πnε(nε)nεe−nε, and (nε̄)! ≈

√
2πnε̄(nε̄)nε̄e−nε̄(

n

nε

)
=

n!
(nε)!(nε̄)!

≈
√

2πnnne−n

√
2πnε(nε)nεe−nε

√
2πnε̄(nε̄)nε̄e−nε̄

=
1√

2πnεε̄εnεε̄nε̄

From above

1
n

log2

(
n

nε

)
≈ − 1

2n
log2(2πnεε̄) − ε log2 ε− ε̄ log2 ε̄

→ −ε log2 ε− ε̄ log2 ε̄ as n → ∞
= Hb(ε)

This shows that as n → ∞,
( n
nε

)
≈ 2nHb(ε).

Problem 9.5
Due to the symmetry in channel, the capacity is achieved for uniform input distribution, i.e., for
p(X = A) = p(X = −A) = 1

2 . For this input distribution, the output distribution is given by

p(y) =
1

2
√

2πσ2
e−(y+A)2/2σ2

+
1

2
√

2πσ2
e−(y−A)2/2σ2

and the mutual information between the input and the output is

I(X;Y ) =
1
2

∫ ∞

−∞
p(y | X = A) log2

p(y | X = A)
p(y)

dy

+
1
2

∫ ∞

−∞
p(y | X = −A) log2

p(y | X = −A)
p(y)

dy

=
1
2
I1 +

1
2
I2

where

I1 =
∫ ∞

−∞
p(y | X = A) log2

p(y | X = A)
p(y)

dy

I2 =
∫ ∞

−∞
p(y | X = −A) log2

p(y | X = −A)
p(y)

dy

Now consider the first term in the above expression. Substituting for p(y | X = A) and p(y), we
obtain,

I1 =
∫ ∞

−∞
1√

2πσ2
e−

(y−A)2

2σ2 log2

1√
2πσ2 e

− (y−A)2

2σ2

1√
2πσ2 e

− (y−A)2

2σ2 1√
2πσ2 e

− (y+A)2

2σ2

dy

=
∫ ∞

−∞
1√

2πσ2
e−

(y/σ−A/σ)2

2 log2
2

1 + e−2yA/σ2 dy

using the change of variable u = y/σ and denoting A/σ by a we obtain

I1 =
∫ ∞

−∞
1√
2π
e−

(u−a)2

2 log2
2

1 + e−2ua
du
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A similar approach can be applied to I2, the second term in the expression for I(X;Y ), resulting
in

I(X;Y ) =
1
2
f

(
A

σ

)
+

1
2
f

(
−A
σ

)
(4)

where
f(a) =

∫ ∞

−∞
1√
2π
e−(u−a)2/2 log2

2
1 + e−2au

du (5)

Problem 9.6
The capacity of the channel is defined as

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)]

However,
H(Y |X) =

∑
x

p(x)H(Y |X = x) =
∑
x

p(x)H(R) = H(R)

where H(R) is the entropy of a source with symbols having probabilities the elements of a row of
the probability transition matrix. The last equality in the previous equation follows from the fact
that H(R) is the same for each row since the channel is symmetric. Thus

C = max
p(x)

H(Y ) −H(R)

H(Y ) is maximized when Y is a uniform random variable. With a symmetric channel we can
always find an input distribution that makes Y uniformly distributed, and thus maximize H(Y ).
To see this, let

p(Y = y) =
∑
x

p(x)P (Y = y|X = x)

If p(x) = 1
|X | , where |X | is the cardinality of X , then

p(Y = y) =
1

|X |
∑
x

P (Y = y|X = x)

But
∑

x P (Y = y|X = x) is the same for each y since the columns of a symmetric channel are
permutations of each other. Thus,

C = log |Y| −H(R)

where |Y| is the cardinality of the output alphabet.

Problem 9.7
a) The capacity of the channel is

C1 = max
p(x)

[H(Y ) −H(Y |X)]

But, H(Y |X) = 0 and therefore, C1 = maxp(x)H(Y ) = 1 which is achieved for p(0) = p(1) = 1
2 .

b) Let q be the probability of the input symbol 0, and thus (1 − q) the probability of the input
symbol 1. Then,

H(Y |X) =
∑
x

p(x)H(Y |X = x)

= qH(Y |X = 0) + (1 − q)H(Y |X = 1)
= (1 − q)H(Y |X = 1) = (1 − q)h(0.5) = (1 − q)
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The probability mass function of the output symbols is

P (Y = c) = qp(Y = c|X = 0) + (1 − q)p(Y = c|X = 1)
= q + (1 − q)0.5 = 0.5 + 0.5q

p(Y = d) = (1 − q)0.5 = 0.5 − 0.5q

Hence,
C2 = max

q
[h(0.5 + 0.5q) − (1 − q)]

To find the probability q that achieves the maximum, we set the derivative of C2 with respect to q
equal to 0. Thus,

ϑC2

ϑq
= 0 = 1 − [0.5 log2(0.5 + 0.5q) + (0.5 + 0.5q)

0.5
0.5 + 0.5q

1
ln 2

]

−[−0.5 log2(0.5 − 0.5q) + (0.5 − 0.5q)
−0.5

0.5 − 0.5q
1

ln 2
]

= 1 + 0.5 log2(0.5 − 0.5q) − 0.5 log2(0.5 + 0.5q)

Therefore,

log2
0.5 − 0.5q
0.5 + 0.5q

= −2 =⇒ q =
3
5

and the channel capacity is

C2 = h(
1
5
) − 2

5
= 0.3219

3) The transition probability matrix of the third channel can be written as

Q =
1
2
Q1 +

1
2
Q2

where Q1, Q2 are the transition probability matrices of channel 1 and channel 2 respectively. We
have assumed that the output space of both channels has been augmented by adding two new
symbols so that the size of the matrices Q, Q1 and Q2 is the same. The transition probabilities to
these newly added output symbols is equal to zero. However, using the results of Problem 6.34 we
obtain

C = max
p

I(X;Y ) = max
p

I(p;Q)

= max
p

I(p;
1
2
Q1 +

1
2
Q2)

≤ 1
2

max
p

I(p;Q1) +
1
2

max
p

I(p;Q2)

=
1
2
C1 +

1
2
C2

Since Q1 and Q2 are different, the inequality is strict. Hence,

C <
1
2
C1 +

1
2
C2

Problem 9.8
The capacity of a channel is

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)] = max
p(x)

[H(X) −H(X|Y )]
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Since in general H(X|Y ) ≥ 0 and H(Y |X) ≥ 0, we obtain

C ≤ min{max[H(Y )],max[H(X)]}

However, the maximum of H(X) is attained when X is uniformly distributed, in which case
max[H(X)] = log |X |. Similarly max[H(Y )] = log |Y| and by substituting in the previous in-
equality, we obtain

C ≤ min{max[H(Y )],max[H(X)]} = min{log |Y|, log |X |}
= min{logM, logN}

Problem 9.9
1) Let q be the probability of the input symbol 0, and therefore (1− q) the probability of the input
symbol 1. Then,

H(Y |X) =
∑
x

p(x)H(Y |X = x)

= qH(Y |X = 0) + (1 − q)H(Y |X = 1)
= (1 − q)H(Y |X = 1) = (1 − q)h(ε)

The probability mass function of the output symbols is

p(Y = 0) = qp(Y = 0|X = 0) + (1 − q)p(Y = 0|X = 1)
= q + (1 − q)(1 − ε) = 1 − ε+ qε

p(Y = 1) = (1 − q)ε = ε− qε

Hence,
C = max

q
[h(ε− qε) − (1 − q)h(ε)]

To find the probability q that achieves the maximum, we set the derivative of C with respect to q
equal to 0. Thus,

ϑC

ϑq
= 0 = h(ε) + ε log2(ε− qε) − ε log2(1 − ε+ qε)

Therefore,

log2
ε− qε

1 − ε+ qε
= −h(ε)

ε
=⇒ q =

ε+ 2− h(ε)
ε (ε− 1)

ε(1 + 2− h(ε)
ε )

and the channel capacity is

C = h

 2− h(ε)
ε

1 + 2− h(ε)
ε

− h(ε)2− h(ε)
ε

ε(1 + 2− h(ε)
ε )

2) If ε → 0, then using L’Hospital’s rule we find that

lim
ε→0

h(ε)
ε

= ∞, lim
ε→0

h(ε)
ε

2− h(ε)
ε = 0

and therefore
lim
ε→0

C(ε) = h(0) = 0

If ε = 0.5, then h(ε) = 1 and C = h(1
5) − 2

5 = 0.3219. In this case the probability of the input
symbol 0 is

q =
ε+ 2− h(ε)

ε (ε− 1)

ε(1 + 2− h(ε)
ε )

=
0.5 + 0.25 × (0.5 − 1)

0.5 × (1 + 0.25)
=

3
5
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If ε = 1, then C = h(0.5) = 1. The input distribution that achieves capacity is p(0) = p(1) = 0.5.

3) The following figure shows the topology of the cascade channels. If we start at the input
labelled 0, then the output will be 0. If however we transmit a 1, then the output will be zero with
probability

p(Y = 0|X = 1) = (1 − ε) + ε(1 − ε) + ε2(1 − ε) + · · ·
= (1 − ε)(1 + ε+ ε2 + · · ·)

= 1 − ε
1 − εn

1 − ε
= 1 − εn

Thus, the resulting system is equivalent to a Z channel with ε1 = εn.

%
%
%
%%

%
%
%
%%

%
%
%
%% 1 − ε1 − ε1 − ε

εεε

111

1

0

...
1

0

4) As n → ∞, εn → 0 and the capacity of the channel goes to 0.

Problem 9.10
The capacity of Channel A satisfies (see Problem 9.8)

CA ≤ min{log2M, log2N}

where M , N is the size of the output and input alphabet respectively. Since M = 2 < 3 = N , we
conclude that CA ≤ log2 2 = 1. With input distribution p(A) = p(B) = 0.5 and p(C) = 0, we have
a noiseless channel, therefore CA = 1. Similarly, we find that CB = 1, which is achieved when

p(a′) = p(b′) = 0.5,

achieved when interpreting B′ and C ′ as a single output. Therefore, the capacity of the cascade
channel is CAB = 1.

Problem 9.11
The SNR is

SNR =
2P

N02W
=

P

2W
=

10
10−9 × 106 = 104

Thus the capacity of the channel is

C = W log2(1 +
P

N0W
) = 106 log2(1 + 10000) ≈ 13.2879 × 106 bits/sec

Problem 9.12
The capacity of the additive white Gaussian channel is

C =
1
2

log
(

1 +
P

N0W

)
For the nonwhite Gaussian noise channel, although the noise power is equal to the noise power in
the white Gaussian noise channel, the capacity is higher, The reason is that since noise samples
are correlated, knowledge of the previous noise samples provides partial information on the future
noise samples and therefore reduces their effective variance.
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Problem 9.13
1) The capacity of the binary symmetric channel with crossover probability ε is

C = 1 − h(ε)

where h(ε) is the binary entropy function. The rate distortion function of a zero mean Gaussian
source with variance σ2 per sample is

R(D) =

{
1
2 log2

σ2

D D ≤ σ2

0 D > σ2

Since C > 0, we obtain
1
2

log2
σ2

D
≤ 1 − h(ε) =⇒ σ2

22(1−h(ε)) ≤ D

and therefore, the minimum value of the distortion attainable at the output of the channel is

Dmin =
σ2

22(1−h(ε))

2) The capacity of the additive Gaussian channel is

C =
1
2

log2

(
1 +

P

σ2
n

)
Hence,

1
2

log2
σ2

D
≤ C =⇒ σ2

22C
≤ D =⇒ σ2

1 + P
σ2

n

≤ D

The minimum attainable distortion is

Dmin =
σ2

1 + P
σ2

n

3) Here the source samples are dependent and therefore one sample provides information about the
other samples. This means that we can achieve better results compared to the memoryless case at
a given rate. In other words the distortion at a given rate for a source with memory is less than the
distortion for a comparable source with memory. Differential coding methods discussed in Chapter
4 are suitable for such sources.

Problem 9.14
The capacity of the channel of the channel is given by

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)]

Let the probability of the inputs C, B and A be p, q and 1−p−q respectively. From the symmetry
of the nodes B, C we expect that the optimum distribution p(x) will satisfy p(B) = p(C) = p. The
entropy H(Y |X) is given by

H(Y |X) =
∑

p(x)H(Y |X = x) = (1 − 2p)H(Y |X = A) + 2pH(Y |X = B)
= 0 + 2ph(0.5) = 2p

The probability mass function of the output is

p(Y = 1) =
∑

p(x)p(Y = 1|X = x) = (1 − 2p) + p = 1 − p

p(Y = 2) =
∑

p(x)p(Y = 2|X = x) = 0.5p+ 0.5p = p
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Therefore,
C = max

p
[H(Y ) −H(Y |X)] = max

p
(h(p) − 2p)

To find the optimum value of p that maximizes I(X;Y ), we set the derivative of C with respect to
p equal to zero. Thus,

ϑC

ϑp
= 0 = − log2(p) − p

1
p ln(2)

+ log2(1 − p) − (1 − p)
−1

(1 − p) ln(2)
− 2

= log2(1 − p) − log2(p) − 2

and therefore
log2

1 − p

p
= 2 =⇒ 1 − p

p
= 4 =⇒ p =

1
5

The capacity of the channel is

C = h(
1
5
) − 2

5
= 0.7219 − 0.4 = 0.3219 bits/transmission

Problem 9.15
The capacity of the “product” channel is given by

C = max
p(x1,x2)

I(X1X2;Y1Y2)

However,

I(X1X2;Y1Y2) = H(Y1Y2) −H(Y1Y2|X1X2)
= H(Y1Y2) −H(Y1|X1) −H(Y2|X2)
≤ H(Y1) +H(Y2) −H(Y1|X1) −H(Y2|X2)
= I(X1;Y1) + I(X2;Y2)

and therefore,

C = max
p(x1,x2)

I(X1X2;Y1Y2) ≤ max
p(x1,x2)

[I(X1;Y1) + I(X2;Y2)]

≤ max
p(x1)

I(X1;Y1) + max
p(x2)

I(X2;Y2)

= C1 + C2

The upper bound is achievable by choosing the input joint probability density p(x1, x2), in such a
way that

p(x1, x2) = p̃(x1)p̃(x2)

where p̃(x1), p̃(x2) are the input distributions that achieve the capacity of the first and second
channel respectively.

Problem 9.16
1) Let X = X1 + X2, Y = Y1 + Y2 and

p(y|x) =

{
p(y1|x1) if x ∈ X1
p(y2|x2) if x ∈ X2

the conditional probability density function of Y and X . We define a new random variable M
taking the values 1, 2 depending on the index i of X . Note that M is a function of X or Y . This
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is because X1 ∩ X2 = ∅ and therefore, knowing X we know the channel used for transmission. The
capacity of the sum channel is

C = max
p(x)

I(X;Y ) = max
p(x)

[H(Y ) −H(Y |X)] = max
p(x)

[H(Y ) −H(Y |X,M)]

= max
p(x)

[H(Y ) − p(M = 1)H(Y |X,M = 1) − p(M = 2)H(Y |X,M = 2)]

= max
p(x)

[H(Y ) − λH(Y1|X1) − (1 − λ)H(Y2|X2)]

where λ = p(M = 1). Also,

H(Y ) = H(Y,M) = H(M) +H(Y |M)
= H(λ) + λH(Y1) + (1 − λ)H(Y2)

Substituting H(Y ) in the previous expression for the channel capacity, we obtain

C = max
p(x)

I(X;Y )

= max
p(x)

[H(λ) + λH(Y1) + (1 − λ)H(Y2) − λH(Y1|X1) − (1 − λ)H(Y2|X2)]

= max
p(x)

[H(λ) + λI(X1;Y1) + (1 − λ)I(X2;Y2)]

Since p(x) is function of λ, p(x1) and p(x2), the maximization over p(x) can be substituted by a
joint maximization over λ, p(x1) and p(x2). Furthermore, since λ and 1 − λ are nonnegative, we
let p(x1) to maximize I(X1;Y1) and p(x2) to maximize I(X2;Y2). Thus,

C = max
λ

[H(λ) + λC1 + (1 − λ)C2]

To find the value of λ that maximizes C, we set the derivative of C with respect to λ equal to zero.
Hence,

dC

dλ
= 0 = − log2(λ) + log2(1 − λ) + C1 − C2 =⇒ λ =

2C1

2C1 + 2C2

Substituting this value of λ in the expression for C, we obtain

C = H

(
2C1

2C1 + 2C2

)
+

2C1

2C1 + 2C2
C1 +

(
1 − 2C1

2C1 + 2C2

)
C2

= − 2C1

2C1 + 2C2
log2

(
2C1

2C1 + 2C2

)
−
(

1 − 2C1

2C1 + 2C2

)
log2

(
2C1

2C1 + 2C2

)

+
2C1

2C1 + 2C2
C1 +

(
1 − 2C1

2C1 + 2C2

)
C2

=
2C1

2C1 + 2C2
log2(2

C1 + 2C2) +
2C2

2C1 + 2C2
log2(2

C1 + 2C2)

= log2(2
C1 + 2C2)

Hence
C = log2(2

C1 + 2C2) =⇒ 2C = 2C1 + 2C2

2)
2C = 20 + 20 = 2 =⇒ C = 1

Thus, the capacity of the sum channel is nonzero although the component channels have zero
capacity. In this case the information is transmitted through the process of selecting a channel.
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3) The channel can be considered as the sum of two channels. The first channel has capacity
C1 = log2 1 = 0 and the second channel is BSC with capacity C2 = 1 − h(0.5) = 0. Thus

C = log2(2
C1 + 2C2) = log2(2) = 1

Problem 9.17
1) The entropy of the source is

H(X) = h(0.3) = 0.8813

and the capacity of the channel

C = 1 − h(0.1) = 1 − 0.469 = 0.531

If the source is directly connected to the channel, then the probability of error at the destination is

P (error) = p(X = 0)p(Y = 1|X = 0) + p(X = 1)p(Y = 0|X = 1)
= 0.3 × 0.1 + 0.7 × 0.1 = 0.1

2) Since H(X) > C, some distortion at the output of the channel is inevitable. To find the
minimum distortion we set R(D) = C. For a Bernoulli type of source

R(D) =

{
h(p) − h(D) 0 ≤ D ≤ min(p, 1 − p)

0 otherwise

and therefore, R(D) = h(p) − h(D) = h(0.3) − h(D). If we let R(D) = C = 0.531, we obtain

h(D) = 0.3503 =⇒ D = min(0.07, 0.93) = 0.07

The probability of error is
P (error) ≤ D = 0.07

3) For reliable transmission we must have H(X) = C = 1 − h(ε). Hence, with H(X) = 0.8813 we
obtain

0.8813 = 1 − h(ε) =⇒ ε < 0.016 or ε > 0.984

Problem 9.18
1) The rate-distortion function of the Gaussian source for D ≤ σ2 is

R(D) =
1
2

log2
σ2

D

Hence, with σ2 = 4 and D = 1, we obtain

R(D) =
1
2

log2 4 = 1 bits/sample = 8000 bits/sec

The capacity of the channel is

C = W log2

(
1 +

P

N0W

)
In order to accommodate the rate R = 8000 bps, the channel capacity should satisfy

R(D) ≤ C =⇒ R(D) ≤ 4000 log2(1 + SNR)

Therefore,
log2(1 + SNR) ≥ 2 =⇒ SNRmin = 3
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2) The error probability for each bit is

pb = Q

[√
2Eb

N0

]

and therefore, the capacity of the BSC channel is

C = 1 − h(pb) = 1 − h

(
Q

[√
2Eb

N0

])
bits/transmission

= 2 × 4000 ×
[
1 − h

(
Q

[√
2Eb

N0

])]
bits/sec

In this case, the condition R(D) ≤ C results in

1 ≤ 1 − h(pb) =⇒ Q

[√
2Eb

N0

]
= 0 or SNR =

Eb

N0
→ ∞

Problem 9.19
1) The maximum distortion in the compression of the source is

Dmax = σ2 =
∫ ∞

−∞
Sx(f)df = 2

∫ 10

−10
df = 40

2) The rate-distortion function of the source is

R(D) =

{
1
2 log2

σ2

D 0 ≤ D ≤ σ2

0 otherwise
=

{
1
2 log2

40
D 0 ≤ D ≤ 40

0 otherwise

3) With D = 10, we obtain

R =
1
2

log2
40
10

=
1
2

log2 4 = 1

Thus, the required rate is R = 1 bit per sample or, since the source can be sampled at a rate of 20
samples per second, the rate is R = 20 bits per second.

4) The capacity-cost function is

C(P ) =
1
2

log2

(
1 +

P

N

)
where,

N =
∫ ∞

−∞
Sn(f)df =

∫ 4

−4
df = 8

Hence,

C(P ) =
1
2

log2(1 +
P

8
) bits/transmission = 4 log2(1 +

P

8
) bits/sec

The required power such that the source can be transmitted via the channel with a distortion not
exceeding 10, is determined by R(10) ≤ C(P ). Hence,

20 ≤ 4 log2(1 +
P

8
) =⇒ P = 8 × 31 = 248
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Problem 9.20
The differential entropy of the Laplacian noise is (see Problem 6.36)

h(Z) = 1 + lnλ

where λ is the mean of the Laplacian distribution, that is

E[Z] =
∫ ∞

0
zp(z)dz =

∫ ∞

0
z
1
λ
e−

z
λdz = λ

The variance of the noise is

N = E[(Z − λ)2] = E[Z2] − λ2 =
∫ ∞

0
z2 1
λ
e−

z
λdz − λ2 = 2λ2 − λ2 = λ2

In the next figure we plot the lower and upper bound of the capacity of the channel as a function of
λ2 and for P = 1. As it is observed the bounds are tight for high SNR, small N , but they become
loose as the power of the noise increases.
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Problem 9.21
Both channels can be viewed as binary symmetric channels with crossover probability the proba-
bility of decoding a bit erroneously. Since,

pb =

 Q
[√

2Eb
N0

]
antipodal signaling

Q
[√ Eb

N0

]
orthogonal signaling

the capacity of the channel is

C =

 1 − h
(
Q
[√

2Eb
N0

])
antipodal signaling

1 − h
(
Q
[√ Eb

N0

])
orthogonal signaling

In the next figure we plot the capacity of the channel as a function of Eb
N0

for the two signaling
schemes.
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Problem 9.22
The codewords of the linear code of Example 9.5.1 are

c1 = [ 0 0 0 0 0 ]
c2 = [ 1 0 1 0 0 ]
c3 = [ 0 1 1 1 1 ]
c4 = [ 1 1 0 1 1 ]

Since the code is linear the minimum distance of the code is equal to the minimum weight of the
codewords. Thus,

dmin = wmin = 2

There is only one codeword with weight equal to 2 and this is c2.

Problem 9.23
The parity check matrix of the code in Example 9.5.3 is

H =

 1 1 1 0 0
0 1 0 1 0
0 1 0 0 1


The codewords of the code are

c1 = [ 0 0 0 0 0 ]
c2 = [ 1 0 1 0 0 ]
c3 = [ 0 1 1 1 1 ]
c4 = [ 1 1 0 1 1 ]

Any of the previous codewords when postmultiplied by Ht produces an all-zero vector of length 3.
For example

c2Ht = [ 1 ⊕ 1 0 0 ] = [ 0 0 0 ]
c4Ht = [ 1 ⊕ 1 1 ⊕ 1 1 ⊕ 1 ] = [ 0 0 0 ]
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Problem 9.24
The following table lists all the codewords of the (7,4) Hamming code along with their weight.
Since the Hamming codes are linear dmin = wmin. As it is observed from the table the minimum
weight is 3 and therefore dmin = 3.

No. Codewords Weight
1 0000000 0
2 1000110 3
3 0100011 3
4 0010101 3
5 0001111 4
6 1100101 4
7 1010011 4
8 1001001 3
9 0110110 4
10 0101100 3
11 0011010 3
12 1110000 3
13 1101010 4
14 1011100 4
15 0111001 4
16 1111111 7

Problem 9.25
The parity check matrix H of the (15,11) Hamming code consists of all binary sequences of length
4, except the all zero sequence. The systematic form of the matrix H is

H = [ Pt | I4 ] =


1 1 1 0 0 0 1 1 1 0 1
1 0 0 1 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 1

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The corresponding generator matrix is

G = [ I11 | P ] =



1
1

1 0
1

1
1

1
1

0 1
1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1


Problem 9.26
Let C be an (n, k) linear block code with parity check matrix H. We can express the parity check
matrix in the form

H = [ h1 h2 · · · hn ]

where hi is an n − k dimensional column vector. Let c = [c1 · · · cn] be a codeword of the code C
with l nonzero elements which we denote as ci1 , ci2 , . . ., cil . Clearly ci1 = ci2 = . . . = cil = 1 and
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since c is a codeword

cHt = 0 = c1h1 + c2h2 + · · · + cnhn

= ci1hi1 + ci2hi2 + · · · + cilhil

= hi1 + hi2 + · · · + hil = 0

This proves that l column vectors of the matrix H are linear dependent. Since for a linear code the
minimum value of l is wmin and wmin = dmin, we conclude that there exist dmin linear dependent
column vectors of the matrix H.

Now we assume that the minimum number of column vectors of the matrix H that are linear
dependent is dmin and we will prove that the minimum weight of the code is dmin. Let hi1 , hi2 , . . .,
hdmin be a set of linear dependent column vectors. If we form a vector c with non-zero components
at positions i1, i2, . . ., idmin , then

cHt = ci1hi1 + · · · + cidmin
= 0

which implies that c is a codeword with weight dmin. Therefore, the minimum distance of a code
is equal to the minimum number of columns of its parity check matrix that are linear dependent.

For a Hamming code the columns of the matrix H are non-zero and distinct. Thus, no two
columns hi, hj add to zero and since H consists of all the n − k tuples as its columns, the sum
hi + hj = hm should also be a column of H. Then,

hi + hj + hm = 0

and therefore the minimum distance of the Hamming code is 3.

Problem 9.27
The generator matrix of the (n, 1) repetition code is a 1 × n matrix, consisted of the non-zero
codeword. Thus,

G =
[

1 | 1 · · · 1
]

This generator matrix is already in systematic form, so that the parity check matrix is given by

H =


1
1
...
1

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1


Problem 9.28
1) The parity check matrix He of the extended code is an (n + 1 − k) × (n + 1) matrix. The
codewords of the extended code have the form

ce,i = [ ci | x ]

where x is 0 if the weight of ci is even and 1 if the weight of ci is odd. Since ce,iHt
e = [ci|x]Ht

e = 0
and ciHt = 0, the first n−k columns of Ht

e can be selected as the columns of Ht with a zero added
in the last row. In this way the choice of x is immaterial. The last column of Ht

e is selected in such
a way that the even-parity condition is satisfied for every codeword ce,i. Note that if ce,i has even
weight, then

ce,i1 + ce,i2 + · · · + ce,in+1 = 0 =⇒ ce,i[ 1 1 · · · 1 ]t = 0
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for every i. Therefore the last column of Ht
e is the all-one vector and the parity check matrix of

the extended code has the form

He =
(
Ht

e

)t
=



1 1 0 1
1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1

0 0 0 1



t

=


1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 1 1 1 1



2) The original code has minimum distance equal to 3. But for those codewords with weight equal
to the minimum distance, a 1 is appended at the end of the codewords to produce even parity.
Thus, the minimum weight of the extended code is 4 and since the extended code is linear, the
minimum distance is de,min = we,min = 4.

3) The coding gain of the extended code is

Gcoding = de,minRc = 4 × 3
7

= 1.7143

Problem 9.29
If no coding is employed, we have

pb = Q

[√
2Eb

N0

]
= Q

[√
P

RN0

]

where
P

RN0
=

10−6

104 × 2 × 10−11 = 5

Thus,
pb = Q[

√
5] = 1.2682 × 10−2

and therefore, the error probability for 11 bits is

Perror in 11 bits = 1 − (1 − pb)11 ≈ 0.1310

If coding is employed, then since the minimum distance of the (15, 11) Hamming code is 3,

pe ≤ (M − 1)Q

[√
dminEs

N0

]
= 10Q

[√
3Es

N0

]

where
Es

N0
= Rc

Eb

N0
= Rc

P

RN0
=

11
15

× 5 = 3.6667

Thus
pe ≤ 10Q

[√
3 × 3.6667

]
≈ 4.560 × 10−3

As it is observed the probability of error decreases by a factor of 28. If hard decision is employed,
then

pe ≤ (M − 1)
dmin∑

i= dmin+1
2

(
dmin
i

)
pi

b(1 − pb)dmin−i
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where M = 10, dmin = 3 and pb = Q
[√

Rc
P

RN0

]
= 2.777 × 10−2. Hence,

pe = 10 × (3 × p2
b(1 − pb) + p3

b) = 0.0227

In this case coding has decreased the error probability by a factor of 6.

Problem 9.30
The following table shows the standard array for the (7,4) Hamming code.

e1 e2 e3 e4 e5 e6 e7
1000000 0100000 0010000 0001000 0000100 0000010 0000001

c1 0000000 1000000 0100000 0010000 0001000 0000100 0000010 0000001
c2 1000110 0000110 1100110 1010110 1001110 1000010 1000100 1000111
c3 0100011 1100011 0000011 0110011 0101011 0100111 0100001 0100010
c4 0010101 1010101 0110101 0000101 0011101 0010001 0010111 0010100
c5 0001111 1001111 0101111 0011111 0000111 0001011 0001101 0001110
c6 1100101 0100101 1000101 1110101 1101101 1100001 1100111 1100100
c7 1010011 0010011 1110011 1000011 1011011 1010111 1010001 1010010
c8 1001001 0001001 1101001 1011001 1000001 1001101 1001011 1001000
c9 0110110 1110110 0010110 0100110 0111110 0110010 0110100 0110111
c10 0101100 1101100 0001100 0111100 0100100 0101000 0101110 0101101
c11 0011010 1011010 0111010 0001010 0010010 0011110 0011000 0011011
c12 1110000 0110000 1010000 1100000 1111000 1110100 1110010 1110001
c13 1101010 0101010 1001010 1111010 1100010 1101110 1101000 1101011
c14 1011100 0011100 1111100 1001100 1010100 1011000 1011110 1011101
c15 0111001 1111001 0011001 0101001 0110001 0111101 0111011 0111000
c16 1111111 0111111 1011111 1101111 1110111 1111011 1111101 1111110

As it is observed the received vector y = [1110100] is in the 7th column of the table under the error
vector e5. Thus, the received vector will be decoded as

c = y + e5 = [ 1 1 1 0 0 0 0 ] = c12

Problem 9.31
The generator polynomial of degree m = n − k should divide the polynomial p6 + 1. Since the
polynomial p6 + 1 assumes the factorization

p6 + 1 = (p+ 1)3(p+ 1)3 = (p+ 1)(p+ 1)(p2 + p+ 1)(p2 + p+ 1)

we observe that m = n − k can take any value from 1 to 5. Thus, k = n −m can be any number
in [1, 5]. The following table lists the possible values of k and the corresponding generator
polynomial(s).

k g(p)
1 p5 + p4 + p3 + p2 + p+ 1
2 p4 + p2 + 1 or p4 + p3 + p+ 1
3 p3 + 1
4 p2 + 1 or p2 + p+ 1
5 p+ 1

Problem 9.32
To generate a (7,3) cyclic code we need a generator polynomial of degree 7 − 3 = 4. Since (see
Example 9.6.2))

p7 + 1 = (p+ 1)(p3 + p2 + 1)(p3 + p+ 1)
= (p4 + p2 + p+ 1)(p3 + p+ 1)
= (p3 + p2 + 1)(p4 + p3 + p2 + 1)
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either one of the polynomials p4 +p2 +p+1, p4 +p3 +p2 +1 can be used as a generator polynomial.
With g(p) = p4 + p2 + p+ 1 all the codeword polynomials c(p) can be written as

c(p) = X(p)g(p) = X(p)(p4 + p2 + p+ 1)

where X(p) is the message polynomial. The following table shows the input binary sequences used
to represent X(p) and the corresponding codewords.

Input X(p) c(p) = X(p)g(p) Codeword
000 0 0 0000000
001 1 p4 + p2 + p+ 1 0010111
010 p p5 + p3 + p2 + p 0101110
100 p2 p6 + p4 + p3 + p2 1011100
011 p+ 1 p5 + p4 + p3 + 1 0111001
101 p2 + 1 p6 + p3 + p+ 1 1001011
110 p2 + p p6 + p5 + p4 + p 1110010
111 p2 + p+ 1 p6 + p5 + p2 + 1 1100101

Since the cyclic code is linear and the minimum weight is wmin = 4, we conclude that the minimum
distance of the (7,3) code is 4.

Problem 9.33
Using Table 9.1 we find that the coefficients of the generator polynomial of the (15,11) code are
given in octal form as 23. Since, the binary expansion of 23 is 010011, we conclude that the
generator polynomial is

g(p) = p4 + p+ 1

The encoder for the (15,11) cyclic code is depicted in the next figure.
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Problem 9.34
The ith row of the matrix G has the form

gi = [ 0 · · · 0 1 0 · · · 0 pi,1 pi,2 · · · pi,n−k ], 1 ≤ i ≤ k

where pi,1, pi,2, . . . , pi,n−k are found by solving the equation

pn−i + pi,1p
n−k−1 + pi,2p

n−k−2 + · · · + pi,n−k = pn−i mod g(p)

Thus, with g(p) = p4 + p+ 1 we obtain

p14 mod p4 + p+ 1 = (p4)3p2 mod p4 + p+ 1 = (p+ 1)3p2 mod p4 + p+ 1
= (p3 + p2 + p+ 1)p2 mod p4 + p+ 1
= p5 + p4 + p3 + p2 mod p4 + p+ 1
= (p+ 1)p+ p+ 1 + p3 + p2 mod p4 + p+ 1
= p3 + 1

p13 mod p4 + p+ 1 = (p3 + p2 + p+ 1)p mod p4 + p+ 1
= p4 + p3 + p2 + p mod p4 + p+ 1
= p3 + p2 + 1

268



p12 mod p4 + p+ 1 = p3 + p2 + p+ 1
p11 mod p4 + p+ 1 = (p4)2p3 mod p4 + p+ 1 = (p+ 1)2p3 mod p4 + p+ 1

= (p2 + 1)p3 mod p4 + p+ 1 = p5 + p3 mod p4 + p+ 1
= (p+ 1)p+ p3 mod p4 + p+ 1
= p3 + p2 + p

p10 mod p4 + p+ 1 = (p2 + 1)p2 mod p4 + p+ 1 = p4 + p2 mod p4 + p+ 1
= p2 + p1

p9 mod p4 + p+ 1 = (p2 + 1)p mod p4 + p+ 1 = p3 + p

p8 mod p4 + p+ 1 = p2 + 1 mod p4 + p+ 1 = p2 + 1
p7 mod p4 + p+ 1 = (p+ 1)p3 mod p4 + p+ 1 = p3 + p+ 1
p6 mod p4 + p+ 1 = (p+ 1)p2 mod p4 + p+ 1 = p3 + p2

p5 mod p4 + p+ 1 = (p+ 1)p mod p4 + p+ 1 = p2 + p

p4 mod p4 + p+ 1 = p+ 1 mod p4 + p+ 1 = p+ 1

The generator and the parity check matrix of the code are given by

G =



1
1

1 0
1

1
1

1
1

0 1
1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1



H =


1 1 1 1 0 1 0 1 1 0 0
0 1 1 1 1 0 1 0 1 1 0
0 0 1 1 1 1 0 1 0 1 1
1 1 1 0 1 0 1 1 0 0 1

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Problem 9.35
1) Let g(p) = p8 + p6 + p4 + p2 + 1 be the generator polynomial of an (n, k) cyclic code. Then,
n− k = 8 and the rate of the code is

R =
k

n
= 1 − 8

n

The rate R is minimum when 8
n is maximum subject to the constraint that R is positive. Thus,

the first choice of n is n = 9. However, the generator polynomial g(p) does not divide p9 + 1 and
therefore, it can not generate a (9, 1) cyclic code. The next candidate value of n is 10. In this case

p10 + 1 = g(p)(p2 + 1)

and therefore, n = 10 is a valid choice. The rate of the code is R = k
n = 2

10 = 1
5 .

2) In the next table we list the four codewords of the (10, 2) cyclic code generated by g(p).

Input X(p) Codeword
00 0 0000000000
01 1 0101010101
10 p 1010101010
11 p+ 1 1111111111
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As it is observed from the table, the minimum weight of the code is 5 and since the code is
linear dmin = wmin = 5.

3) The coding gain of the (10, 2) cyclic code in part 1) is

Gcoding = dminR = 5 × 2
10

= 1

Problem 9.36
1) For every n

pn + 1 = (p+ 1)(pn−1 + pn−2 + · · · + p+ 1)

where additions are modulo 2. Since p+1 divides pn +1 it can generate a (n, k) cyclic code, where
k = n− 1.

2) The ith row of the generator matrix has the form

gi = [ 0 · · · 0 1 0 · · · 0 pi,1 ]

where pi,1, i = 1, . . . , n− 1, can be found by solving the equations

pn−i + pi,1 = pn−i mod p+ 1, 1 ≤ i ≤ n− 1

Since pn−i mod p+ 1 = 1 for every i, the generator and the parity check matrix are given by

G =


1 · · · 0 | 1
...

. . .
...

∣∣∣∣ ...

0 · · · 1 | 1

 , H = [ 1 1 · · · 1 | 1 ]

3) A vector c = [c1, c2, . . . , cn] is a codeword of the (n, n− 1) cyclic code if it satisfies the condition
cHt = 0. But,

cHt = 0 = c


1
1
...
1

 = c1 + c2 + · · · cn

Thus, the vector c belongs to the code if it has an even weight. Therefore, the cyclic code generated
by the polynomial p+ 1 is a simple parity check code.

Problem 9.37
1) Using the results of Problem 9.31, we find that the shortest possible generator polynomial of
degree 4 is

g(p) = p4 + p2 + 1

The ith row of the generator matrix G has the form

gi =
[

0 · · · 0 1 0 · · · 0 pi,1 · · · pi,4

]
where pi,1, . . . , pi,4 are obtained from the relation

p6−i + pi,1p
3 + pi,2p

2pi,3p+ pi,4 = p6−i( mod p4 + p2 + 1)

Hence,

p5 mod p4 + p2 + 1 = (p2 + 1)p mod p4 + p2 + 1 = p3 + p

p4 mod p4 + p2 + 1 = p2 + 1 mod p4 + p2 + 1 = p2 + 1
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and therefore,

G =

(
1 0
0 1

∣∣∣∣∣ 1 0 1 0
0 1 0 1

)
The codewords of the code are

c1 = [ 0 0 0 0 0 0 ]
c2 = [ 1 0 1 0 1 0 ]
c3 = [ 0 1 0 1 0 1 ]
c4 = [ 1 1 1 1 1 1 ]

2) The minimum distance of the linear (6, 2) cyclic code is dmin = wmin = 3. Therefore, the code
can correct

ec =
dmin − 1

2
= 1 error

3) An upper bound of the block error probability is given by

pe = (M − 1)Q

[√
dminEs

N0

]

With M = 2, dmin = 3 and

Es

N0
= Rc

Eb

N0
= Rc

P

RN0
=

2
6

× 1
2 × 6 × 104 × 2 × 10−6 = 1.3889

we obtain
pe = Q

[√
3 × 1.3889

]
= 2.063 × 10−2

Problem 9.38
The block generated by the interleaving is a 5 × 23 block containing 115 binary symbols. Since the
Golay code can correct

ec =
dmin − 1

2
=

7 − 1
2

= 3

bits per codeword, the resulting block can correct a single burst of errors of duration less or equal
to 5 × 3 = 15 bits.

Problem 9.39
1-Cmax is not in general cyclic, because there is no guarantee that it is linear. For example
let n = 3 and let C1 = {000, 111} and C2 = {000, 011, 101, 110}, then Cmax = C1 ∪ C2 =
{000, 111, 011, 101, 110}, which is obviously nonlinear (for example 111 ⊕ 110 = 001 �∈ Cmax) and
therefore can not be cyclic.
2-Cmin is cyclic, the reason is that C1 and C2 are both linear therefore any two elements of Cmin
are both in C1 and C2 and therefore their linear combination is also in C1 and C2 and therefore in
Cmin. The intersection satisfies the cyclic property because if c belongs to Cmin it belongs to C1
and C2 and therefore all cyclic shifts of it belong to C1 and C2 and therefore to Cmin. All codeword
polynomials corresponding to the elements of Cmin are multiples of g1(p) and g2(p) and therefore
multiple of LCM{g1(p), g2(p)}, which in turn divides pn + 1. For any c ∈ Cmin, we have w(c) ≥ d1
and w(c) ≥ d2, therefore the minimum distance of Cmin is greater than or equal to max{d1, d2}.
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Problem 9.40
1) Since for each time slot [mT, (m+ 1)T ] we have φ1(t) = ±φ2(t), the signals are dependent and
thus only one dimension is needed to represent them in the interval [mT, (m + 1)T ]. In this case
the dimensionality of the signal space is upper bounded by the number of the different time slots
used to transmit the message signals.

2) If φ1(t) �= αφ2(t), then the dimensionality of the signal space over each time slot is at most 2.
Since there are n slots over which we transmit the message signals, the dimensionality of the signal
space is upper bounded by 2n.

3) Let the decoding rule be that the first codeword is decoded when r is received if

p(r|x1) > p(r|x2)

The set of r that decode into x1 is

R1 = {r : p(r|x1) > p(r|x2)}

The characteristic function of this set χ1(r) is by definition equal to 0 if r �∈ R1 and equal to 1 if
r ∈ R1. The characteristic function can be bounded as

1 − χ1(r) ≤
(
p(r|x2)
p(r|x1)

) 1
2

This inequality is true if χ(r) = 1 because the right side is nonnegative. It is also true if χ(r) = 0
because in this case p(r|x2) > p(r|x1) and therefore,

1 ≤ p(r|x2)
p(r|x1)

=⇒ 1 ≤
(
p(r|x2)
p(r|x1)

) 1
2

Given that the first codeword is sent, then the probability of error is

P (error|x1) =
∫

· · ·
∫

RN−R1

p(r|x1)dr

=
∫

· · ·
∫

RN
p(r|x1)[1 − χ1(r)]dr

≤
∫

· · ·
∫

RN
p(r|x1)

(
p(r|x2)
p(r|x1)

) 1
2

dr

=
∫

· · ·
∫

RN

√
p(r|x1)p(r|x2)dr

4) The result follows immediately if we use the union bound on the probability of error. Thus,
assuming that xm was transmitted, then taking the signals xm′ , m′ �= m, one at a time and ignoring
the presence of the rest, we can write

P (error|xm) ≤
∑

1 ≤ m′ ≤ M
m′ �= m

∫
· · ·

∫
RN

√
p(r|xm)p(r|xm′)dr

5) Let r = xm + n with n an N -dimensional zero-mean Gaussian random variable with variance
per dimension equal to σ2 = N0

2 . Then,

p(r|xm) = p(n) and p(r|xm′) = p(n + xm − xm′)
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and therefore, ∫
· · ·

∫
RN

√
p(r|xm)p(r|xm′)dr

=
∫

· · ·
∫

RN

1

(πN0)
N
4

e
− |n|2

2N0
1

(πN0)
N
4

e
− |n+xm−xm′ |2

2N0 dn

= e
− |xm−xm′ |2

4N0

∫
· · ·

∫
RN

1

(πN0)
N
2

e
− 2|n|2+|xm−xm′ |2/2+2n·(xm−xm′ )

2N0 dn

= e
− |xm−xm′ |2

4N0

∫
· · ·

∫
RN

1

(πN0)
N
2

e
− |n+

xm−xm′
2 |2

N0 dn

= e
− |xm−xm′ |2

4N0

Using the union bound in part 4, we obtain

P (error|xm(t) sent) ≤
∑

1 ≤ m′ ≤ M
m′ �= m

e
− |xm−xm′ |2

4N0

Problem 9.41
1) The encoder for the (3, 1) convolutional code is depicted in the next figure.
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2) The state transition diagram for this code is depicted in the next figure.
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3) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.
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4) The diagram used to find the transfer function is shown in the next figure.
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Xc Xb Xa′′Xa′

Using the flow graph results, we obtain the system

Xc = D3NJXa′ +DNJXb

Xb = DJXc +DJXd

Xd = D2NJXc +D2NJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D6NJ3

1 −D2NJ −D2NJ2

To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D6

1 − 2D2 = D6 + 2D8 + 4D10 + · · ·

Hence, dfree = 6

5) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.

Problem 9.42
The number of branches leaving each state correspond to the number possible different inputs to
the encoder. Since the encoder at each state takes k binary symbols at its input, the number of
branches leaving each state of the trellis is 2k. The number of branches entering each state is the
number of possible kL contents of the encoder shift register that have their first k(L − 1) bits
corresponding to that particular state (note that the destination state for a branch is determined
by the contents of the first k(L − 1) bits of the shift register). This means that the number of
branches is equal to the number of possible different contents of the last k bits of the encoder, i.e.,
2k.

Problem 9.43
1) The state diagram of the code is depicted in the next figure
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2) The diagram used to find the transfer function of the code is depicted in the next figure
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Using the flow graph relations we write

Xc = D3NJXa′ +DNJXb

Xb = D2JXc +D2JXd

Xd = DNJXc +DNJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd, we obtain

T (D,N, J) =
Xa′′

Xa′
=

D7NJ3

1 −DNJ −D3NJ2

Thus,

T1(D) = T (D,N, J)|N=J=1 =
D7

1 −D −D3 = D7 +D8 +D9 + · · ·

3) The minimum free distance of the code is dfree = 7

4) The following figure shows 7 frames of the trellis diagram used by the Viterbi decoder. It is
assumed that the input sequence is padded by to zeros, so that the actual length of the information
sequence is 5. The numbers on the nodes indicate the Hamming distance of the survivor paths.
The deleted branches have been marked with an X. In the case of a tie we deleted the lower branch.
The survivor path at the end of the decoding is denoted by a thick line.
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The information sequence is 11000 and the corresponding codeword 111010110011000...
5) An upper to the bit error probability of the code is given by

p̄b ≤ 1
k

ϑT2(D,N)
ϑN

∣∣∣∣
N=1,D=

√
4p(1−p)

But
ϑT2(D,N)

ϑN
=

ϑ

ϑN

[
D7N

1 − (D +D3)N

]
=

D7

(1 −DN −D3N)2

and since k = 1, p = 10−5, we obtain

p̄b ≤ D7

(1 −D −D3)2

∣∣∣∣
D=

√
4p(1−p)

≈ 4.0993 × 10−16
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Problem 9.44
1) The state diagram of the code is depicted in the next figure
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2) The diagram used to find the transfer function of the code is depicted in the next figure
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Using the flow graph relations we write

Xc = D2NJXa′ +D2NJXb

Xb = DJXd +D3JXc

Xd = DNJXd +DNJXc

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd, we obtain

T (D,N, J) =
Xa′′

Xa′
=

D6N2J4 +D7NJ3 −D8N2J4

1 −DNJ −D4N2J3 −D5NJ2 +D6N2J3

Thus,

T1(D) = T (D,N, J)|N=J=1 =
D6 +D7 −D8

1 −D −D4 −D5 +D6 = D6 + 2D7 +D8 + · · ·

3) The minimum free distance of the code is dfree = 6. The path, which is at a distance dfree from
the all zero path, is depicted with a double line in the next figure.
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4) The following figure shows 6 frames of the trellis diagram used by the Viterbi algorithm to
decode the sequence {111, 111, 111, 111, 111, 111}. The numbers on the nodes indicate the Hamming
distance of the survivor paths from the received sequence. The branches that are dropped by the
Viterbi algorithm have been marked with an X. In the case of a tie of two merging paths, we delete
the lower path. The decoded sequence is {101, 111, 011, 101, 111, 011} which corresponds to the
information sequence {x1, x2, x3, x4} = {1, 0, 0, 1} followed by two zeros.
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Problem 9.45
The code of Problem 9.41 is a (3, 1) convolutional code with L = 3. The length of the received
sequence y is 15. This means that 5 symbols have been transmitted, and since we assume that the
information sequence has been padded by two 0’s, the actual length of the information sequence is
3. The following figure depicts 5 frames of the trellis used by the Viterbi decoder. The numbers on
the nodes denote the metric (Hamming distance) of the survivor paths. In the case of a tie of two
merging paths at a node, we have purged the lower path.
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The decoded sequence is {111, 001, 011, 000, 000} and corresponds to the information sequence
{1, 0, 0} followed by two zeros.

Problem 9.46
1) The encoder for the (3, 1) convolutional code is depicted in the next figure.
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2) The state transition diagram for this code is shown below
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3) In the next figure we draw two frames of the trellis associated with the code. Solid lines indicate
an input equal to 0, whereas dotted lines correspond to an input equal to 1.
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4) The diagram used to find the transfer function is shown in the next figure.
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Using the flow graph results, we obtain the system

Xc = D3NJXa′ +DNJXb

Xb = D2JXc +D2JXd

Xd = DNJXc +DNJXd

Xa′′ = D2JXb

Eliminating Xb, Xc and Xd results in

T (D,N, J) =
Xa′′

Xa′
=

D7NJ3

1 −DNJ −D3NJ2

To find the free distance of the code we set N = J = 1 in the transfer function, so that

T1(D) = T (D,N, J)|N=J=1 =
D7

1 −D −D3 = D7 +D8 +D9 + · · ·

Hence, dfree = 7

5) Since there is no self loop corresponding to an input equal to 1 such that the output is the all
zero sequence, the code is not catastrophic.
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Problem 9.47
Using the diagram of Figure 9.28, we see that there are only two ways to go from state Xa′ to
state Xa′′ with a total number of ones (sum of the exponents of D) equal to 6. The corresponding
transitions are:

Path 1: Xa′
D2
→ Xc

D→ Xd
D→ Xb

D2
→ Xa′′

Path 2: Xa′
D2
→ Xc

D→ Xb → Xc
D→ Xb

D2
→ Xa′′

These two paths correspond to the codewords

c1 = 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, . . .
c2 = 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, . . .

Problem 9.48
1) The state transition diagram and the flow diagram used to find the transfer function for this
code are depicted in the next figure.
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Thus,

Xc = DNJXa′ +D2NJXb

Xb = DJXc +D2JXd

Xd = NJXc +DNJXd

Xa′′ = DJXb

and by eliminating Xb, Xc and Xd, we obtain

T (D,N, J) =
Xa′′

Xa′
=

D3NJ3

1 −DNJ −D3NJ2

To find the transfer function of the code in the form T (D,N), we set J = 1 in T (D,N, J). Hence,

T (D,N) =
D3N

1 −DN −D3N

2) To find the free distance of the code we set N = 1 in the transfer function T (D,N), so that

T1(D) = T (D,N)|N=1 =
D3

1 −D −D3 = D3 +D4 +D5 + 2D6 + · · ·

Hence, dfree = 3
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3) An upper bound on the bit error probability, when hard decision decoding is used, is given by

P̄b ≤ 1
k

ϑT (D,N)
ϑN

∣∣∣∣
N=1,D=

√
4p(1−p)

Since
ϑT (D,N)

ϑN

∣∣∣∣
N=1

=
ϑ

ϑN

D3N

1 − (D +D3)N

∣∣∣∣
N=1

=
D3

(1 − (D +D3))2

with k = 1, p = 10−6 we obtain

P̄b ≤ D3

(1 − (D +D3))2

∣∣∣∣
D=

√
4p(1−p)

= 8.0321 × 10−9

Problem 9.49
1) Let the decoding rule be that the first codeword is decoded when yi is received if

p(yi|x1) > p(yi|x2)

The set of yi that decode into x1 is

Y1 = {yi : p(yi|x1) > p(yi|x2)}

The characteristic function of this set χ1(yi) is by definition equal to 0 if yi �∈ Y1 and equal to 1 if
yi ∈ Y1. The characteristic function can be bounded as (see Problem 9.40)

1 − χ1(yi) ≤
(
p(yi|x2)
p(yi|x1)

) 1
2

Given that the first codeword is sent, then the probability of error is

P (error|x1) =
∑

yi∈Y −Y1

p(yi|x1) =
∑
yi∈Y

p(yi|x1)[1 − χ1(yi)]

≤
∑
yi∈Y

p(yi|x1)
(
p(yi|x2)
p(yi|x1)

) 1
2

=
∑
yi∈Y

√
p(yi|x1)p(yi|x2)

=
2n∑
i=1

√
p(yi|x1)p(yi|x2)

where Y denotes the set of all possible sequences yi. Since, each element of the vector yi can take
two values, the cardinality of the set Y is 2n.

2) Using the results of the previous part we have

P (error) ≤
2n∑
i=1

√
p(yi|x1)p(yi|x2) =

2n∑
i=1

p(yi)

√
p(yi|x1)
p(yi)

√
p(yi|x2)
p(yi)

=
2n∑
i=1

p(yi)

√
p(x1|yi)
p(x1)

√
p(x2|yi)
p(x2)

=
2n∑
i=1

2p(yi)
√
p(x1|yi)p(x2|yi)

However, given the vector yi, the probability of error depends only on those values that x1 and x2
are different. In other words, if x1,k = x2,k, then no matter what value is the kth element of yi, it
will not produce an error. Thus, if by d we denote the Hamming distance between x1 and x2, then

p(x1|yi)p(x2|yi) = pd(1 − p)d
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and since p(yi) = 1
2n , we obtain

P (error) = P (d) = 2p
d
2 (1 − p)

d
2 = [4p(1 − p)]

d
2

Problem 9.50
1)

Q(x) =
1√
2π

∫ ∞

x
e−

v2
2 dv

v=
√

2t=
1√
π

∫ ∞
x√
2

e−t2dt

=
1
2

2
π

∫ ∞
x√
2

e−t2dt

=
1
2
erfc

(
x√
2

)

2) The average bit error probability can be bounded as (see (9.7.16))

P̄b ≤ 1
k

∞∑
d=dfree

adf(d)Q

[√
2Rcd

Eb

N0

]
=

1
k

∞∑
d=dfree

adf(d)Q
[√

2Rcdγb

]

=
1
2k

∞∑
d=dfree

adf(d)erfc(
√
Rcdγb)

=
1
2k

∞∑
d=1

ad+dfreef(d+ dfree)erfc(
√
Rc(d+ dfree)γb)

≤ 1
2k

erfc(
√
Rcdfreeγb)

∞∑
d=1

ad+dfreef(d+ dfree)e−Rcdγb

But,

T (D,N) =
∞∑

d=dfree

adD
dNf(d) =

∞∑
d=1

ad+dfreeD
d+dfreeNf(d+dfree)

and therefore,

ϑT (D,N)
ϑN

∣∣∣∣
N=1

=
∞∑

d=1

ad+dfreeD
d+dfreef(d+ dfree)

= Ddfree

∞∑
d=1

ad+dfreeD
df(d+ dfree)

Setting D = e−Rcγb in the previous and substituting in the expression for the average bit error
probability, we obtain

P̄b ≤ 1
2k

erfc(
√
Rcdfreeγb)eRcdfreeγb

ϑT (D,N)
ϑN

∣∣∣∣
N=1,D=e−Rcγb

Problem 9.51
The partition of the 8-PAM constellation in four subsets is depicted in the figure below.
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2) The next figure shows one frame of the trellis used to decode the received sequence. Each branch
consists of two transitions which correspond to elements in the same coset in the final partition
level.
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The operation of the Viterbi algorithm for the decoding of the sequence {−.2, 1.1, 6, 4,−3,−4.8, 3.3}
is shown schematically in the next figure. It has been assumed that we start at the all zero state and
that a sequence of zeros terminates the input bit stream in order to clear the encoder. The numbers
at the nodes indicate the minimum Euclidean distance, and the branches have been marked with
the decoded transmitted symbol. The paths that have been purged are marked with an X.
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Transmitted sequence:

X

X

X

X

X

X

X
X

X

X

X

X

X

3

14.38

-3
14.29

-5

11.09

-3
7.05

-1
11.05

-5
11.05

-5

15.45

5
7.05

5 11.45

1
15.05

3

7.05

7

6.05

5

6.05

3 10.45

1
26.45

-1
14.65

5
25.45

3
5.05

1
1.45

1.1

3 10.24

1.44
1

3.3-4.8-346-.2
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Chapter 10

Problem 10.1
1) The wavelength λ is

λ =
3 × 108

109 m =
3
10

m

Hence, the Doppler frequency shift is

fD = ±u
λ

= ±100 Km/hr
3
10 m

= ±100 × 103 × 10
3 × 3600

Hz = ±92.5926 Hz

The plus sign holds when the vehicle travels towards the transmitter whereas the minus sign holds
when the vehicle moves away from the transmitter.

2) The maximum difference in the Doppler frequency shift, when the vehicle travels at speed 100
km/hr and f = 1 GHz, is

∆fDmax = 2fD = 185.1852 Hz

This should be the bandwidth of the Doppler frequency tracking loop.

3) The maximum Doppler frequency shift is obtain when f = 1 GHz + 1 MHz and the vehicle
moves towards the transmitter. In this case

λmin =
3 × 108

109 + 106 m = 0.2997 m

and therefore

fDmax =
100 × 103

0.2997 × 3600
= 92.6853 Hz

Thus, the Doppler frequency spread is Bd = 2fDmax = 185.3706 Hz.

Problem 10.2
1) Since Tm = 1 second, the coherence bandwidth

Bcb =
1

2Tm
= 0.5 Hz

and with Bd = 0.01 Hz, the coherence time is

Tct =
1

2Bd
= 100/2 = 50 seconds

(2) Since the channel bandwidth W � bcb, the channel is frequency selective.

(3) Since the signal duration T 
 Tct, the channel is slowly fading.

283



(4) The ratioW/Bcb = 10. Hence, in principle up to tenth order diversity is available by subdividing
the channel bandwidth into 10 subchannels, each of width 0.5 Hz. If we employ binary PSK
with symbol duration T = 10 seconds, then the channel bandwidth can be subdivided into 25
subchannels, each of bandwidth 2

T = 0.2 Hz. We may choose to have 5th order frequency diversity
and for each transmission, thus, have 5 parallel transmissions. Thus, we would have a data rate
of 5 bits per signal interval, i.e., a bit rate of 1/2 bps. By reducing the order of diversity, we may
increase the data rate, for example, with no diversity, the data rate becomes 2.5 bps.

(5) To answer the question we may use the approximate relation for the error probability given by
(10.1.37), or we may use the results in the graph shown in Figure 10.1.10. For example, for binary
PSK with D = 4, the SNR per bit required to achieve an error probability of 10−6 is 18 dB. This
the total SNR per bit for the four channels (with maximal ration combining). Hence, the SNR per
bit per channel is reduced to 12 dB (a factor of four smaller).

Problem 10.3
The Rayleigh distribution is

p(α) =

{
α
σ2

α
e−α2/2σ2

α , α > 0
0, otherwise

Hence, the probability of error for the binary FSK and DPSK with noncoherent detection averaged
over all possible values of α is

P2 =
∫ ∞

0

1
2
e
−c

α2Eb
N0

α

σ2
α

e−α2/2σ2
αdα

=
1

2σ2
α

∫ ∞

0
αe

−α2
[

cEb
N0

+ 1
2σ2

α

]
dα

But, ∫ ∞

0
x2n+1e−ax2

dx =
n!

2an+1 , (a > 0)

so that with n = 0 we obtain

P2 =
1

2σ2
α

∫ ∞

0
αe

−α2
[

cEb
N0

+ 1
2σ2

α

]
dα =

1
2σ2

α

1

2
[

cEb
N0

+ 1
2σ2

α

]
=

1

2
[
cEb2σ2

α
N0

+ 1
] =

1
2 [cρ̄b + 1]

where ρ̄b = Eb2σ2
α

N0
. With c = 1 (DPSK) and c = 1

2 (FSK) we have

P2 =

{ 1
2(1+ρ̄b)

, DPSK
1

2+ρ̄b
, FSK
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Problem 10.4

(a)

�Matched Filter 2 �� ( )2

�Matched Filter 2 �� ( )2�×�

�×�

�

�

�+
�

�

cos 2πf2t

sin 2πf2t

�Matched Filter 1 �� ( )2

�Matched Filter 1 �� ( )2�×�

�×�

�

�

�+
�

�

cos 2πf1t

sin 2πf1t

�Matched Filter 2 �� ( )2

�Matched Filter 2 �� ( )2�×�

�×�

�

�

�+
�

�

cos 2πf2t

sin 2πf2t

�Matched Filter 1 �� ( )2

�Matched Filter 1 �� ( )2�×�

�×�

�

�

�+
�

�

cos 2πf1t

sin 2πf1t

�

�r1(t)

r2(t)

sample at t = kT

�

�

�+
�

�

�+
�

�

�

�

Detector
select

the larger
�output

(b) The probability of error for binary FSK with square-law combining for D = 2 is given in Figure
10.1.10. The probability of error for D = 1 is also given in Figure 10.1.10. Note that an increase in
SNR by a factor of 10 reduces the error probability by a factor of 10 when D = 1 and by a factor
of 100 when D = 2.

Problem 10.5
(a) r is a Gaussian random variable. If

√
Eb is the transmitted signal point, then

E(r) = E(r1) + E(r2) = (1 + k)
√

Eb ≡ mr

and the variance is
σ2

r = σ2
1 + k2σ2

2
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The probability density function of r is

f(r) =
1√

2πσr

e
− (r−mr)2

2σ2
r

and the probability of error is

P2 =
∫ 0

−∞
f(r) dr

=
1√
2π

∫ − mr
σr

−∞
e−

x2
2 dx

= Q

(√
m2

r

σ2
r

)

where
m2

r

σ2
r

=
(1 + k)2Eb

σ2
1 + k2σ2

2

The value of k that maximizes this ratio is obtained by differentiating this expression and solving
for the value of k that forces the derivative to zero. Thus, we obtain

k =
σ2

1

σ2
2

Note that if σ1 > σ2, then k > 1 and r2 is given greater weight than r1. On the other hand, if
σ2 > σ1, then k < 1 and r1 is given greater weight than r2. When σ1 = σ2, k = 1. In this case

m2
r

σ2
r

=
2Eb

σ2
1

(b) When σ2
2 = 3σ2

1, k = 1
3 , and

m2
r

σ2
r

=
(1 + 1

3)2Eb

σ2
1 + 1

9(3σ2
1)

=
4
3

( Eb

σ2
1

)
On the other hand, if k is set to unity we have

m2
r

σ2
r

=
4Eb

σ2
1 + 3σ2

1
=

Eb

σ2
1

Therefore, the optimum weighting provides a gain of

10 log
4
3

= 1.25 dB

Problem 10.6
1) The probability of error for a fixed value of a is

Pe(a) = Q

√2a2E
N0


since the given a takes two possible values, namely a = 0 and a = 2 with probabilities 0.1 and 0.9,
respectively, the average probability of error is

Pe =
0.1
2

+Q

(√
8E
N0

)
= 0.05 +Q

(√
8E
N0

)
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(2) As E
N0

→ ∞, Pe → 0.05
(3) The probability of error for fixed values of a1 and a2 is

Pe(a1, a2) = Q

√2(a2
1 + a2

2)E
N0


In this case we have four possible values for the pair (a1, a2), namely, (0, 0), (0, 2), (2, 0), and (2, 2),
with corresponding probabilities ).01, 0.09, 0.09 and 0.81. Hence, the average probability of error
is

Pe =
0.01
2

+ 0.18Q

(√
8E
N0

)
+ 0.81Q

(√
16E
N0

)

(4) As E
N0

→ ∞, Pe → 0.005, which is a factor of 10 smaller than in (2).

Problem 10.7
We assume that the input bits 0, 1 are mapped to the symbols -1 and 1 respectively. The terminal
phase of an MSK signal at time instant n is given by

θ(n;a) =
π

2

k∑
k=0

ak + θ0

where θ0 is the initial phase and ak is ±1 depending on the input bit at the time instant k. The
following table shows θ(n;a) for two different values of θ0 (0, π), and the four input pairs of data:
{00, 01, 10, 11}.

θ0 b0 b1 a0 a1 θ(n;a)
0 0 0 -1 -1 −π
0 0 1 -1 1 0
0 1 0 1 -1 0
0 1 1 1 1 π

π 0 0 -1 -1 0
π 0 1 -1 1 π
π 1 0 1 -1 π
π 1 1 1 1 2π

Problem 10.8
1) The envelope of the signal is

|s(t)| =
√

|sc(t)|2 + |ss(t)|2

=

√
2Eb

Tb
cos2

(
πt

2Tb

)
+

2Eb

Tb
sin2

(
πt

2Tb

)

=

√
2Eb

Tb

Thus, the signal has constant amplitude.
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2) The signal s(t) has the form of the four-phase PSK signal with

gT (t) = cos
(
πt

2Tb

)
, 0 ≤ t ≤ 2Tb

Hence, it is an MSK signal. A block diagram of the modulator for synthesizing the signal is given
in the next figure.
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�

�

��

��

� s(t)
+cos(2πfct)cos( πt

2Tb
)

×

×

˜˜
−π

2

×

−π
2

×

a2n+1

a2n

Demux
Parallel
Serial /

data an

Serial

3) A sketch of the demodulator is shown in the next figure.
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�

�

�

t = 2Tb

t = 2Tb

−π
2

˜
×

×

cos( πt
2Tb

)cos(2πfct))

×

−π
2

×

˜r(t)

∫ 2Tb
0 (·)dt

∫ 2Tb
0 (·)dt

Threshold

Threshold

Parallel to
Serial

Problem 10.9
Since p = 2, m is odd (m = 1) and M = 2, there are

Ns = 2pM = 8

phase states, which we denote as Sn = (θn, an−1). The 2p = 4 phase states corresponding to θn are

Θs =
{

0,
π

2
, π,

3π
2

}
and therefore, the 8 states Sn are{

(0, 1), (0,−1),
(
π

2
, 1
)
,

(
π

2
,−1

)
, (π, 1), (π,−1),

(
3π
2
, 1
)
,

(
3π
2
,−1

)}
Having at our disposal the state (θn, an−1) and the transmitted symbol an, we can find the new
phase state as

(θn, an−1)
an−→ (θn +

π

2
an−1, an) = (θn+1, an)

The following figure shows one frame of the phase-trellis of the partial response CPM signal.
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(0, 1)

(0,−1)

(π
2 , 1)

(π
2 ,−1)

(π, 1)

(π,−1)

(3π
2 , 1)

(3π
2 ,−1)(3π

2 ,−1)

(3π
2 , 1)

(π,−1)

(π, 1)

(π
2 ,−1)

(π
2 , 1)

(0,−1)

(0, 1)

(θn+1, an)(θn, an−1)

The following is a sketch of the state diagram of the partial response CPM signal.
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2 ,1)

(0,−1)(0,1)

Problem 10.10
1) For a full response CPFSK signal, L is equal to 1. If h = 2

3 , then since m is even, there are p
terminal phase states. If h = 3

4 , the number of states is Ns = 2p.

2) With L = 3 and h = 2
3 , the number of states is Ns = p22 = 12. When L = 3 and h = 3

4 , the
number of states is Ns = 2p22 = 32.

Problem 10.11

(a) The coding gain is

Rcd
H
min =

1
2

× 10 = 5 (7dB)

(b) The processing gain is W/R, where W = 107Hz and R = 2000bps. Hence,

W

R
=

107

2 × 103 = 5 × 103 (37dB)
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(c) The jamming margin given by (10.3.43) is

(
PJ
Ps

)
dB

=
(

W
R

)
dB

+ (CG)dB −
( Eb

J0

)
dB

= 37 + 7 − 10 = 34dB

Problem 10.12
The probability of error for DS spread spectrum with binary PSK may be expressed as

P2 = Q

(√
2W/Rb

PJ/PS

)

where W/R is the processing gain and PJ/PS is the jamming margin. If the jammer is a broadband,
WGN jammer, then

PJ = WJ0
PS = Eb/Tb = EbRb

Therefore,

P2 = Q

(√
2Eb

J0

)
which is identical to the performance obtained with a non-spread signal.

Problem 10.13
We assume that the interference is characterized as a zero-mean AWGN process with power spectral
density J0. To achieve an error probability of 10−5, the required Eb/J0 = 10 . Then, by using the
relation in (10.3.40) and (10.3.44), we have

W/R
PN/PS

= W/R
Nu−1 = Eb

J0

W/R =
( Eb

J0

)
(Nu − 1)

W = R
( Eb

J0

)
(Nu − 1)

where R = 104bps, Nu = 30 and Eb/J0 = 10. Therefore,

W = 2.9 × 106 Hz

The minimum chip rate is 1/Tc = W = 2.9 × 106 chips/sec.

Problem 10.14
To achieve an error probability of 10−6, we require(Eb

J0

)
dB

= 10.5dB

Then, the number of users of the CDMA system is

Nu = W/Rb

Eb/J0
+ 1

= 1000
11.3 + 1 = 89 users

If the processing gain is reduced to W/Rb = 500, then

Nu =
500
11.3

+ 1 = 45users
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Problem 10.15

(a) We are given a system where (PJ/PS)dB = 20 dB,R = 1000 bps and (Eb/J0)dB = 10 dB.
Hence, using the relation in (10.3.40) we obtain

(
W
R

)
dB

=
(

PJ
PS

)
dB

+
( Eb

J0

)
dB

= 30 dB

W
R = 1000

W = 1000R = 106Hz

(b) The duty cycle of a pulse jammer for worst-case jamming is

α∗ =
0.7

Eb/J0
=

0.7
10

= 0.07

The corresponding probability of error for this worst-case jamming is

P2 =
0.082
Eb/J0

=
0.082
10

= 8.2 × 10−3

Problem 10.16
The radio signal propagates at the speed of light, c = 3× 108m/ sec . The difference in propagation
delay for a distance of 300 meters is

Td =
300

3 × 108 = 1µ sec

The minimum bandwidth of a DS spread spectrum signal required to resolve the propagation paths
is W = 1 MHz. Hence, the minimum chip rate is 106 chips per second.

Problem 10.17

(a) We have Nu = 15 users transmitting at a rate of 10, 000 bps each, in a bandwidth of W =
1 MHz. The εb/J0 is

E
J0

= W/R
Nu−1 = 106/104

14 = 100
14

= 7.14 (8.54 dB)

(b) The processing gain is 100.

(c) With Nu = 30 and Eb/J0 = 7.14, the processing gain should be increased to

W/R = (7.14) (29) = 207

Hence, the bandwidth must be increased to W = 2.07MHz.
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Problem 10.18

(a) The length of the shift-register sequence is

L = 2m − 1 = 215 − 1
= 32767 bits

For binary FSK modulation, the minimum frequency separation is 2/T, where 1/T is the
symbol (bit) rate. The hop rate is 100 hops/ sec . Since the shift register has N = 32767
states and each state utilizes a bandwidth of 2/T = 200 Hz, then the total bandwidth for
the FH signal is 6.5534 MHz.

(b) The processing gain is W/R. We have,

W

R
=

6.5534 × 106

100
= 6.5534 × 104 bps

(c) If the noise is AWG with power spectral density N0, the probability of error expression is

P2 = Q

(√
Eb

N0

)
= Q

(√
W/R

PN/PS

)

Problem 10.19

(a) If the hopping rate is 2 hops/bit and the bit rate is 100 bits/sec, then, the hop rate is 200
hops/sec. The minimum frequency separation for orthogonality 2/T = 400Hz. Since there
are N = 32767 states of the shift register and for each state we select one of two frequencies
separated by 400 Hz, the hopping bandwidth is 13.1068 MHz.

(b) The processing gain is W/R, where W = 13.1068 MHz and R = 100bps. Hence

W

R
= 0.131068MHz

(c) The probability of error in the presence of AWGN is given by (10.3.61) with N = 2 chips per
hop.

Problem 10.20
a) The total SNR for three hops is 20 ∼ 13 dB.Therefore the SNR per hop is 20/3. The probability
of a chip error with noncoherent detection is

p =
1
2
e
− Ec

2N0

where Ec/N0 = 20/3. The probability of a bit error is

Pb = 1 − (1 − p)2

= 1 − (1 − 2p+ p2)
= 2p− p2

= e
− Ec

2N0 − 1
2
e
− Ec

N0

= 0.0013
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b) In the case of one hop per bit, the SNR per bit is 20, Hence,

Pb =
1
2
e
− Ec

2N0

=
1
2
e−10

= 2.27 × 10−5

Therefore there is a loss in performance of a factor 57 AWGN due to splitting the total signal
energy into three chips and, then, using hard decision decoding.

Problem 10.21

(a) We are given a hopping bandwidth of 2 GHz and a bit rate of 10 kbs. Hence,

W

R
=

2 × 109

104 = 2 × 105 (53dB)

(b) The bandwidth of the worst partial-band jammer is α∗W, where

α∗ = 2/ (Eb/J0) = 0.2

Hence
α∗W = 0.4GHz

(c) The probability of error with worst-case partial-band jamming is

P2 = e−1

(Eb/J0) = e−1

10

= 3.68 × 10−2

Problem 10.22
The processing gain is given as

W

Rb
= 500 (27 dB)

The (Eb/J0) required to obtain an error probability of 10−5 for binary PSK is 9.5 dB. Hence,
the jamming margin is (

PJ
PS

)
dB

=
(

W
Rb

)
dB

−
( Eb

J0

)
dB

= 27 − 9.5

= 17.5 dB

Problem 10.23
If the jammer is a pulse jammer with a duty cycle α = 0.01, the probability of error for binary
PSK is given as

P2 = αQ

(√
2W/Rb

PJ/PS

)
For P2 = 10−5, and α = 0.01, we have

Q

(√
2W/Rb

PJ/PS

)
= 10−3
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Then,
W/Rb

PJ/PS
=

500
PJ/PS

= 5

and
PJ

PS
= 100 (20 dB)

Problem 10.24

c (t) =
∞∑

n=−∞
cnp (t− nTc)

The power spectral density of c (t) is given by

Sc (f) =
1
Tc

Sc (f) |P (f)|2

where
|P (f)|2 = (ATc)

2 sin c2 (fTc) , Tc = 1µ sec

and Sc (f) is the power spectral density of the sequence {cn} . Since the autocorrelation of the
sequence {cn} is periodic with period L and is given as

Rc (m) =


L, m = 0,±L,±2L, . . .

−1, otherwise

then, Rc (m) can be represented in a discrete Fourier series as

Rc (m) =
1
L

L−1∑
k=0

rC (k) ej2πmk/L,m = 0, 1, . . . , L− 1

where {rc (k)} are the Fourier series coefficients, which are given as

rc (k) =
L−1∑
m=0

Rc (m) e−j2πkm/L, k = 0, 1, . . . , L− 1

and rc (k + nL) = rc (k) for n = 0,±1,±2, . . . . The latter can be evaluated to yield

rc (k) = L+ 1 −∑L−1
m=0 e

−j2πkm/L

=

{
1, k = 0,±L,±2L, . . .
L+ 1, otherwise

The power spectral density of the sequence {cn} may be expressed in terms of {rc (k)} . These
coefficients represent the power in the spectral components at the frequencies f = k/L. Therefore,
we have

Sc (f) =
1
L

∞∑
k=−∞

rc (k) δ
(
f − k

LTc

)
Finally, we have

Sc (f) =
1
LTc

∞∑
k=−∞

rc (k)
∣∣∣∣P (

k

LTc

)∣∣∣∣2 δ (f − k

LTc

)
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Problem 10.25
Without loss of generality, let us assume that L1 < L2. Then, the period of the sequence obtained
by forming the modulo-2 sum of the two periodic sequences is

L3 = kL2

where k is the smallest integer multiple of L2 such that kL2/L1 is an integer. For example, suppose
that L1 = 15 and L2 = 63. Then, we find the smallest multiple of 63 which is divisible by L1 = 15,
without a remainder. Clearly, if we take k = 5 periods of L2, which yields a sequence of L3 = 315,
and divide L3 by L1, the result is 21. Hence, if we take 21L1 and 5L2, and modulo-2 add the
resulting sequences, we obtain a single period of length L3 = 21L,= 5L2 of the new sequence.

Problem 10.26

(a) The period of the maximum length shift register sequence is

L = 210 − 1 = 1023

Since Tb = LTc, then the processing gain is

L =
Tb

Tc
= 1023 (30dB)

(b) The jamming margin is

(
PJ
PS

)
dB

=
(

W
Rb

)
dB

−
( Eb

J0

)
dB

= 30 − 10

= 20dB

where Jav = J0W ≈ J0/Tc = J0 × 106

Problem 10.27
At the bit rate of 270.8 Kbps, the bit interval is

Tb =
10−6

.2708
= 3.69µsec

a) For the suburban channel model, the delay spread is 7 µsec. Therefore, the number of bits
affected by intersymbol interference is at least 2. The number may be greater than 2 if the signal
pulse extends over more than one bit interval, as in the case of partial response signals, such as
CPM.
b) For the hilly terrain channel model, the delay spread is approximately 20 µ sec. Therefore, the
number of bits affected by ISI is at least 6. The number may be greater than 6 if the signal pulse
extends over more than one bit interval.
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Problem 10.28
In the case of the urban channel model, the number of RAKE receiver taps will be at least 2. If the
signal pulse extends over more than one bit interval, the number of RAKE taps must be further
increased to account for the ISI over the time span of the signal pulse. For the hilly terrain channel
model, the minimum number of RAKE taps is at least 6 but only three will be active, one for the
first arriving signal and 2 for the delayed arrivals.

If the signal pulse extends over more than one bit interval, the number of RAKE taps must be
further increased to account for the ISI over the same span of the signal pulse. For this channel,
in which the multipath delay characteristic is zero in the range of 2 µsec to 15 µsec, as many as
3 RAKE taps between the first signal arrival and the delayed signal arrivals will contain no signal
components.

Problem 10.29
For an automobile travelling at a speed of 100 Km/hr,

fm =
vf0

c
=

105

3600
× 9 × 108

38 = 83.3Hz

For a train travelling at a speed of 200 Km/hr,

fm = 166.6Hz

The corresponding spread factors are

TmBd = Tmfm =

{
5.83 × 10−4, automobile
1.166 × 10−3, train

The plots of the power spectral density for the automobile and the train are shown below
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