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Abstract 

An optimal robust output feedback controller is proposed to stabilize a nonlinear, non-minimum 

phase system of an Autonomous Underwater Vehicle (AUV). Starting with a 6 DOF model of 

AUV, its motion is decoupled into diving and steering planes. The decoupled diving plane model 

of AUV is used to stabilize depth plane of AUV. This thesis aims to investigate performance of 

various control schemes and draws a comparison of their performance in a variety of operational 

scenarios. We begin by designing linear state feedback as well as output feedback controllers 

based on linearization and linear optimal control design methods. We then extend this linear 

control designs to include nonlinear dynamics and use nonlinear control design methods such as 

Sliding Mode Control and Inverse Optimal Control techniques to investigate the performance of 

the AUV system in presence of the parametric uncertainties.  State feedback designs are 

extended to Output feedback designs using full-order and reduced-order High Gain Observers as 

appropriate. A thorough performance comparison of the various control schemes is presented 

with the help of mathematical analysis as well as simulations. 
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INTRODUCTION 

 

 

The optimal and robust control for nonlinear systems is a complex and challenging task in the 

field of control engineering. The optimal controls problem is recognized to be categorized as 

Hamilton-Jacobi-Bellman HJB Equations [1], [2], [3], [4]. Optimal performance value function 

is achieved by solving HJB equation. It determines under smooth conditions an optimal control. 

In most of the situations it is very difficult to have solution of HJB equations analytically 

because of its complexity. In this thesis, a dynamical nonlinear system of AUV is considered. 

Optimal stabilization of the system under consideration with robustness is the main task. 

Different control strategies are applied to get a reduced cost optimal and robust solution for the 

dynamical system stabilization. 

1.1 Motivation 

Optimized, cost efficient, robust and stabilized working of AUV is of great concern due to 

desired less consumption of fuel with uncertainties rejection capabilities, which in return allows 

a long and efficient trip. Reason for the selection of this topic is the importance of AUV‟s 

applications that requires long run time with stability. These applications include rescue 

operations, sea-floor mapping for building subsea infrastructure, oceanographic surveys etc. 

Chapter  
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Furthermore development of AUV‟s is necessary for ocean related civil applications like rescue 

operations. In military applications, it is used for sea border surveys, observing and reporting any 

expected alien intrusion. Therefore development of AUV‟s is an important national need. 

This work shall investigate linear and non-linear optimal and robust stabilization of AUV to 

achieve the following goals: 

• Fully stabilized system 

• Cost and energy efficient control 

• Robust control 

• Uncertainties rejection capabilities in system states measurement 

1.2 Objective of the Thesis 

The primary objective of this research is to stabilize the nonlinear, non-minimum phase control 

system of an AUV using different linear, nonlinear control techniques and their comparison. 

Inverse Optimal Control based on Control Lyapunov Function (CLF). Following objectives are 

intended to be achieved: 

 Understanding AUV‟s non-linear dynamics and their maneuvering. 

 De-coupling equations of motion of the model in diving plane and designing of linear state-

 feedback and optimal controller for the nonlinear diving model of AUV with and without 

 state estimator (observer). 

 Designing of different nonlinear stabilizing controllers for optimal and robust stabilization 

 of AUV with and without nonlinear state estimators (reduced and full order HGO). 
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 Simulating and comparing the results of AUV‟s system model in closed loop applying 

proposed controllers for its stabilization. 

1.3 Literature Review 

The linear and nonlinear coupled and decoupled dynamical models of AUV system were studied. 

The control strategies studied and used in this work includes state-feedback control, optimal 

control, SMC, lyapunov redesign and Inverse optimal control. The CLF based control design 

theory with past work will be presented that provides the stability results in this thesis. Optimal 

state feedback control will then be explained and the work done by researchers in its 

development will be discussed. Robust control technique, the SMC is then discussed. The state 

estimator technique HGO will be discussed. 

1.3.1 Control Lyapunov Function 

Asymptotic stability of equilibrium points of dynamical systems is analyzed using lyapunov 

functions [6], [7] and [8]. One of the most useful and successful Lyapunov methodology is its 

generalization to control systems designing and is known as Control Lyapunov Function (CLF) 

[9], [10] and [11]. For the stabilization of nonlinear dynamical systems with control inputs, CLF 

existence is a sufficient condition [11]. Different control laws can be calculated using CLF‟s, 

those can globally asymptotically stabilize the dynamical systems. For example in an Inverse 

optimal control technique, CLF is used to guarantee the globally asymptotically stabilization of 

the system but the cost functional minimized by the control is not specified before its solution. 

An important example of Inverse optimal control is Sontag‟s formula based on optimization 

problem solution using inverse optimal control [12]. In [13] a method is proposed to  construct 
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CLF‟s for a given system.  A control law is also designed and proposed based on Inverse optimal 

technique which is a generalization of Sontag‟s formula containing design parameter. 

1.3.2 Inverse Optimal Control 

Inverse Optimality provides information regarding a control law optimal with reference to some 

performance index. In [14] it was shown that with respect to some cost index, every control law 

is trivially optimal. The condition of being optimal is associated with some desirable properties if 

the there is any specific structure of cost index is the requirement. These results were generalized 

and extended in [15].For nonlinear system case in [16], and [17] it was shown that Inverse 

optimal control laws results in favorable gain margins. In some cases the large signal 

performance of the controller designed on the basis of CLF creates problem. In order to tackle 

this problem, the author in [18] reintroduced the inverse optimality approach in which firstly the 

controller is calculated and secondly it is proved as an optimal controller in relevance to a given 

significant cost function. Inverse optimal control ensures that the control effort applied on a 

dynamical system for its stabilization is not wasted. 

Sontag‟s formula with respect to a meaningful cost function was shown to be optimal in [19]. A 

CLF based Inverse optimal control was presented in [20] that result in robustness to dynamic 

uncertainties of input. In [21] stabilization of a rigid aircraft using Inverse optimal control was 

explained whereas [22] explained the method of applying Inverse optimal control based on CLF 

calculated after system linearization. 
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1.3.3 Sliding Mode Control 

SMC was developed and proposed in 1960‟s by Russian researchers. This technique becomes 

known internationally after the publication of book by Itkis [A] (1976) in English. After that, 

SMC become a general control method and is being used for different class of systems including 

SISO systems, MIMO systems, time variant systems, nonlinear systems etc. Due to its attractive 

features, SMC is used to control the dynamical systems having model uncertainties. 

 

1.3.4 High Gain Observer (HGO) 

HGO technique in nonlinear control systems started in 1980s by Saberi [23, 24], Tornambe [25], 

and Khalil [26]. In this context, two key papers, published in 1992, represent the beginning of 

two different types of research on HGO. The work presented by Gauthier [27] initiated a scope 

of work that is exemplified by [28–33]. This type of research covered a wide class of nonlinear 

systems and provided the results globally under the cases of global growth. The research work 

presented in [34] by Esfandiari and Khalil brought attention to the peaking phenomenon as an 

important feature of HGO. Although this phenomenon was observed earlier in [35, 36], the paper 

[34] explained that the interaction of peaking with nonlinearities could induce finite escape time. 

It also enlighten the destabilization drawback of HGO for a closed loop system in case of 

absence of global growth. It is due to the observer gain that could be driven sufficiently high. 

The designing of control to saturate in peaking interval is proposed to be global bounded 

function of the observed states of the dynamical system.  



6 

 

Soon afterwards, a number of well-known researchers in the field of nonlinear control systems 

started applying HGO‟s on nonlinear dynamical systems [36-41]. The researchers covered 

variety of problems associated with nonlinear control systems. This includes adaptive control, 

stabilization of the system, tracking desired trajectories of the system and regulation problems. 

They also explored how to use time-varying high-gain observers. For two decades Khalil with 

other researchers examine the applications of HGO‟s in the field of feedback control of nonlinear 

systems and addressing variety of problems [42–46]. 

Atassi & Khalil [47] proved a separation principle that adds up a novel dimension in results of 

Teel & Praly [27]; namely, the combination of control saturation with fast observer provides the 

controller with the output feedback to recover trajectories of the state feedback controller as 

gains of the observer chosen to be high. 

In this work, output feedback controller having observer gains sufficiently high will be used in 

recovery of the trajectories of optimal state feedback controller. 

1.4 Thesis Organization 

The organization of the thesis comprises of five chapters. 

Chapter 1: Gives the motivation behind Optimal and Robust Control of an AUV System, 

objectives of the thesis, literature review and the organization of the thesis. 

Chapter 2: This chapter investigates the general nonlinear model of AUV. AUV‟s modeling 

(Kinematic and Dynamic) is taken into account. Transformation from earth fixed frame of 

reference to body fixed frame of reference is also used for simplification .Then that model is 
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reduced to diving plane model by neglecting the unrelated parameters and forces. A type of AUV 

is also selected for reference calculations. 

Chapter 3: In this chapter linear state-feedback control and optimal control is design and 

implemented on nonlinear model of AUV. Full order Observer is used in both of the control 

techniques to restore system‟s original measured states. Simulations are carried out to validate 

the quality of designed controllers and observers. Finally estimation of the region of attraction is 

calculated of AUV system states. 

Chapter 4: This chapter includes the transformation of nonlinear system of AUV into input-

output linearization normal form. Then nonlinear feedback stabilizing controller choosing 

suitable feedback gains is designed for stabilization of AUV. SMC is then designed to get a 

robust controller. The combined controller based on nonlinear stabilizing control and SMC is 

then designed. Optimal control is then calculated and another combined optimal robust controller 

is proposed having optimal and SMC controllers. Lyapunov redesign control technique is then 

used to reject any possible uncertainties in the input. Then Inverse optimal control is designed 

using a CLF guaranteeing global asymptotic stability to the system. Simulation results of all 

controllers are shown comparatively with their performances. Nonlinear reduced order observer 

HGO and full order HGO are used to estimate the un-measurable state and their validation 

through simulation are also incorporated in this chapter. 

Chapter 5:   This chapter highlights the conclusion of the thesis and recommendations for future 

work. 
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THE AUTONOMOUS UNDERWATER 

VEHICLE SYSTEM 

 

 

2.1 Introduction 

In this chapter a nonlinear plant model of a general AUV system will be discussed and problem 

formulation will be presented. The nonlinear and linearized state space models of plant will be 

presented.  

2.2 Overview of AUV System 

The system under consideration is AUV system that is broadly considered in literature as a 

benchmark system for analyzing different control techniques [48], [49]. Since six DOF (Degree 

Of Freedom) are necessary to determine the orientation and position of AUV, this is a 6DOF 

system. Due to highly nonlinear dynamics, it is difficult for an underwater vehicle to stabilize 

itself under disturbances and gravitational and restoring forces.  This makes it very challenging 

to control the nonlinear dynamics and hydrodynamics efficiently. There are generally three 

control inputs required to control this system. First control input is required in revolutions of 

propeller, which provides thrust to speed up the vehicle. This is the main source of movement of 

the vehicle. Then the control input required for angle of rudder to control the heading directions 

Chapter  
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of the vehicle. Finally the control input required for angle of fins that regulates the diving of the 

vehicle. 

2.3 Mathematical Modeling of AUV 

Modeling of AUV system involves learning the dynamics of AUV and its statics. Statics 

includes the equilibrium of the vehicle in uniform velocity or at stationary position while 

dynamics deals with the accelerated motion of the vehicle. Dynamics is further sub-categorized 

in kinematics and kinetics. Kinematics deals with the vehicle motion‟s geometrical aspects 

whereas kinetics deals with forces that are responsible of motion of the AUV. 

Modeling the submersible vehicles in 6 Degree Of Freedom (DOF) is based on their position and 

orientation frameworks as described in [49]. 

A 6 Degree Of Freedom AUV model is represented in Fig 2.1 with its related coordinates. 

 

Figure2.1:  Model of AUV in Earth and Body fixed frame of reference 
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Two frame of references, namely body fixed frame of reference and earth fixed frame of 

reference are used to explain 6 DOF AUV model. The earth fixed frame of reference describes 

the Euler angles and position of the AUV. Whereas the body fixed frame of reference describes 

linear and angular velocities related to AUV. Some important and useful notations used for 

marine vehicles motions and rotations are described in Table 1. These notations are used to better 

understand the AUV motions and rotations. 

Table 1 Useful notations used for marine vehicles 

DOF  Axis 
Positions and 

Euler angles 

Linear and Angular 

Motions 

Linear and angular 

velocities 

1
st
 

Motions 

in 

x x Surge u 

2
nd

 y y Sway v 

3
rd

 z z Heave w 

4
th

 

Rotations 

about 

x ∅ Roll p 

5
th

 y θ Pitch q 

6
th

 z ψ Yaw r 

In the above table 1, position and translational motion of AUV are described by the first 

coordinates & time derivatives. Whereas the last three coordinates are used to explain the 

orientation and rotational motion of AUV. 

AUV motion is defined in body fixed coordinate system with reference to earth fixed coordinate 

system. Acceleration on point of earth surface is negligible in comparison with the inertial frame. 

Therefore earth fixed frame is considered as inertial frame. In order to have more simplifications 
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„η‟ is transformed from earth fixed frame to body fixed frame by using the following Jacobian 

transformation: 

( )J v            (2.1) 

Above shown equation is the velocity transformation that relates AUV flight path relative to 

inertial frame. 

The kinematic equation of AUV is shown below: 

   
1 2 3 3 1

3 3 2 2 2

( ) 0
( )

0 ( )

x

x

J v
J v

J v


 



   
     

  

         (2.2) 

Where 
6 1x

R  a vector in earth fixed coordinate system containing attitude and position of 

AUV, 

6 1x
R  a vector in body fixed coordinate system containing linear velocities vector and angular 

velocities vector of AUV, 

1
[ ]

T
u    a vector having linear velocities of AUV, 

2
[ ]

T
p q r   a vector having angular velocities of AUV. 

1 2
( )J 

 
defined as transformation matrix and is connected using different Euler angles functions, 

2 2
( )J 

 
defined as transformation matrix that relates the 

2
' ' , the linear velocity vector  with the 

euler rate vector η2. 
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The dynamical model for AUV is derived from Newton and Euler equations of motion defined 

for rigid body inside liquid medium. Nonlinear dynamic equations of AUV can be stated as [49]: 

     ( ) ( ) ( )vM C v v D v v g          (2.3) 

here, 

M: is matrix having inertial terms 

C(v): is matrix having coriolis and centripetal coefficients 

D(v):  Matrix with damping hydrodynamic terms 

G(η):  is buoyancy & gravity forces vector 

v:  is body fixed frame vector having velocity vectors 
1 2

a n d  of AUV 

η: Vector of inertial frame having position and altitude of AUV 

 

       (2.4) 

here the positions of AUV are defined by x, y and z are and φ, θ and ψ are the orientations for 

the surge, sway, heave respectively. 

And 

     
T

v u v w p q r          (2.5)  

 
T

x y z   
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where, „u‟ denotes surge velocity, „v‟ denotes sway velocity, „w‟ denotes heave velocity, „p‟ 

denotes roll velocity, „q‟ denotes pitch velocity and „r‟ denotes yaw velocity. 

τ = Control input vector acting on AUV, 

 

    
( ) ( ) ( )

s

T

f f f n


               (2.6) 

where, 

 

 denotes the angle of diving plane 

 

    denotes the angle of the rudder 

 

 n   denotes the revolution of the propeller 

A nonlinear six DOF model of an AUV can be expressed by equations (2.1) and (2.3), 

( )

( ) ( ) ( )v

J v

M C v v D v v g

 

 

 
 

 

     

        (2.7) 

Now state vector is defined as,  

     x(t) = [η(t) v(t)]
 T

         (2.8) 




s

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2.4 Derivation of Equations in Diving Plane for AUV Motion  

2.4.1 Mass and Inertial Matrix 

The mass and inertial matrix in (2.3) can be represented, 

           
R B A

M M M         (2.9) 

Here 
R B

M  contains inertia related terms of the AUV rigid body and is considered as its actual 

mass. Whereas 
A

M  have added inertia terms also known as virtual mass. This added mass 

inertia is actually moments and forces induced due to pressure produced by the in Diving Plane 

harmonic motion of the AUV and is related to the AUV‟s acceleration [49].  For a rigid 

body AUV, mass-inertia matrix is  

   

0 0 0

0 0 0

0 0 0

0

0

0

G G

G G

G G

R B

G G x x y x x

G G y x y y z

G G x x x y z

m m z m y

m m z m x

m m y m x
M

m z m y I I I

m z m x I I I

m y m x I I I

 

 


 

 
  

  
 

   
 
    

     (2.10) 

The matrix of added mass inertia is  
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A

X X X X X X

u v w p q r

Y Y Y Y Y Y

u v w p q r

Z Z Z Z Z Z

u v w p q r
M

K K K K K K

u v w p q r

M M M M M M

u v w p q r

N N N N N N

u v w p q r

     


     



     


     



     


     


     


     



      


     



      

     

































 


      (2.11) 

As per notation used in SNAME [52], 

. . . .
u r

X N
X a n d N

u r

 
 

 
 

Now MA can be written as  

   

u v w p q r

u v w p q r

u v w p q r

A

u v w p q r

u v w p q r

u v w p q r

X X X X X X

Y Y Y Y Y Y

Z Z Z Z Z Z
M

K K K K K K

M M M M M M

N N N N N N

 

 

 

 

   

 

 

 

  

                  (2.12) 

Now the total mass after adding the two matrices of added mass inertia and mass-inertia matrix 

of the rigid body gives 
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u v w p G p G r

u v w G p q G r

u v w G p G q r

u G v G w x p x y q x x r

G u v G w y x p y q y z r

G u G v w

m X X X X m z X m y X

Y m Y Y m z Y Y m x Y

Z Z m Z m y Z m x Z Z
M

K m z K m y K I K I K I K

m z M M m x M I M I M I M

m y N m x N N

      

      

      


        

        

    
x x p x y q z r

I N I N I N

 

 

 

 

 

 

 

 
     

  (2.13) 

2.4.2 Coriolis and Centripetal Force 

The coriolis and centripetal terms matrix is defined as 

      
A R B

C C C          (2.14) 

Here CA is the matrix of added terms whereas CRB have the coriolis and centripetal terms of 

AUV rigid body and they are given as 

0 0 0 ( ) ( ) ( )

0 0 0 ( ) ( ) ( )

0 0 0 ( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( ) 0

G G G G

G G G G

G G G G

R B

G G G G y x x x z y z x y y

G G G G y x x x z x x

m y q z r m x q w m x r v

m y p w m z r x p m y r

m z p v m z q m x p y q
C

m y q z r m y p w m z p v I q I p I r I r I p I q

m x q w m z r x p m z q I q I p I r I r I







    

    

    


        

       

( ) ( ) ( ) 0

x y x

G G G G y z x y y x x x y x

q I p

m x r v m y r m x p y q I r I p I q I r I q I p

 

 

 

 

 

 

 
 

          

(2.15)  

 

and  
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3 2

3 1

2 1

3 2 6 5

3 1 6 4

2 1 5 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

A
C

 

 

 

   

   

   

 

 


 

 
  

 
 

  
 
   

      (2.16) 

Here, 

1

2

3

4

5

6

u v w p q r

v v w p q r

w w w p q r

p p p p q r

q q q q q r

r r r r r r

X u X v X w X p X q X r

X u Y v Y w Y p Y q Y r

X u Y v Z w Z p Z q Z r

X u Y v Z w K p K q M r

X u Y v Z w K p M q M r

X u Y v Z w K p M q N r













     

     

     

     

     

     

  

Adding these two matrices yields C 

3 2

3 2

2 1

3 2 6 5

3

0 0 0 ( ) ( ) ( )

0 0 0 ( ) ( ) ( )

0 0 0 ( ) ( ) ( )

( ) ( ) ( ) 0

( ) (

G G G G

G G G G

G G G G

G G G G y x x x z y z x y y

G G G

m y q z r m x q w m x r v

m y p w m z r x p m y r

m z p v m z q m x p y q
C

m y q z r m y p w m z p v I q I p I r I r I p I q

m x q w m z r x

 

  

  

   



      

      

      


            

   
1 6 4

2 1 5 4

) ( ) 0

( ) ( ) ( ) 0

G y x x x z x x x y x

G G G G y z x y y x x x y x

p m z q I q I p I r I r I q I p

m x r v m y r m x p y q I r I p I q I r I q I p

   

    

 

 

 

 

 

 

         
 

              

              (2.17) 

2.4.3 Hydrodynamic damping effect 

The effect of hydrodynamic damping is severe in case of the movement of vehicle with high 

speed. Basically hydrodynamic damping consists of two main forces, namely drag and lift. 
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l i f t d r a g

D D D         (2.18) 

At lower speeds, the effect of lift force is negligible and it can be neglected. The remaining drag 

force consists of linear and nonlinear drag force given as, 

      
d r a g l in e a r n o n l in e a r

D D D        (2.19) 

Where 

    

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

u

v

w

lin e a r

p

q

r

X

Y

Z
D

K

M

N

 

 

 

 
  

 

 

 
  

      (2.20) 

  

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

u u

v v

w w

n o n lin e a r

p p

q q

r r

X u

Y v

Z w

D
K p

M q

N r

 

 

 

 

 
   

 

 

 

 
 

    (2.21) 

The hydrodynamic damping matrix can now be represented as, 
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

u u u

v v v

w w w

n o n lin e a r

p p p

q q q

r r r

X X u

Y Y v

Z Z w

D
K K p

M M q

N N r

 

 
 

 
 

   


 

 


 

 
 

      (2.22) 

2.4.4 Restoring Forces and Gravitational Moments 

As per hydrodynamics, the restoring forces based upon buoyant and gravitational forces. 

Considering „m‟ to be the mass of the submerged AUV, „g‟ is the acceleration due to gravity, „ρ‟ 

to be the fluid density and   as the fluid‟s volume that AUV displaces. Expressions for weight 

& buoyancy are defined below respectively, 

W m g

B g



 

  

According to [52] SNAME, the vector of restoring forces and gravitational moments is given as 

   

( ) s in

( ) c o s s in

( ) c o s c o s
( )

( ) c o s c o s ( ) c o s s in

( ) s in ( ) c o s c o s

( ) c o s s in ( ) s in

G B G B

G B G B

G B G B

W B

W B

W B
g

y W y B z W z B

z W z B x W x B

x W x B y W y B



 

 


   

  

  

 

 
 

 

  
  

   
 

   
 

     

    (2.23) 
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If the weight and buoyancy of an AUV are equal then the AUV is said to be neutrally buoyant. 

And if in addition the geometric center lies at the gravitational center of the AUV then the 

gravitational moments and restoring forces can be neglected. 

2.4.5 Derivation of Dynamic and Kinematic Model of AUV 

A generalized mathematical model of AUV is presented by Thor I. Fossen [49] as given below, 

    

1 1 1

( ) ( )

[ ]

0 0

X f x g x u

M C D M G M
X X u

J

  

 

      
    
   

     (2.24) 

The description of J is 

     
1

2

0

0

J
J

J

 
  
 

         (2.25) 

Where 

  
1
( , , )

c c s c c s s s s c c s

J s c c c s s s c s s s c

s c s c c

           

              

    

   

 
   
 

  

      (2.26) 

 And  
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2

1

( , , ) 0

0

s t c t

J c s

s c

c c

   

    

 

 

 

 

 
  

 

 
 

       (2.27) 

here trigonometric function sin is denoted by ‘s’, cos is denoted by ‘c’ and tan is denoted by ‘t’. 

Dynamic Model of AUV 

Putting (2.13), (2.17), (2.22) and (2.23) in (2.24) provides 6 DOF nonlinear equations of motion 

for surge, sway, heave, roll, pitch and yaw as shown below respectively 

     [ ]m u vr w q X           (2.28) 

     [ ]m v u r w p Y           (2.29) 

     [ ]m w u q vp Z           (2.30) 

  
2 2

( ) ( ) ( ) ( )
x z y xy yz xz

I p I I qr I pr q I q r I pq r K              (2.31) 

  
2 2

( ) ( ) ( ) ( )
y z x xy yz xz

I q I I pr I qr p I pq r I p r M              (2.32) 

  
2 2

( ) ( ) ( ) ( )
z y x xy yz xz

I r I I pq I p q I pr q I qr p N              (2.33) 

  

Kinematic Model 

The Kinematic model of AUV is described in (2.1) as 

      ( )J v    
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where J is the matrix of Kinematic transformation as defined in (2.25). Substituting values of 

(2 .4 ), ( 2 .5 ), ( 2 .2 5)v a n d J  in (2.1) yields, 

  

0 0 0

0 0 0

0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

c c s c c s s s s c c s
x u

s c c c s s s c s s s c
y v

s c s c c
z w

s t c t
p

c s
q

s c
r

c c

           

           

    

   


 


 


 

   
   

 
     

 
   

 
   

 
   
 

   
 

   
 

   
 

   
  

   (2.34) 

This results in the following kinematics equations of AUV 

        co s co s (s in co s co s s in s in ) (s in s in co s co s s in )x u v w                    (2.35) 

        s in co s (co s co s s in s in s in ) (co s s in s in s in co s )y u v w                    (2.36)  

    s in co s s in co s co sz u v w              (2.37) 

    s in ta n c o s ta np q r              (2.38) 

     c o s s inq r            (2.39) 

     
s in c o s

c o s c o s
q r

 


 
          (2.40) 

2.5 AUV Model in Diving Plane 

In order to derive the diving model of AUV, the terms related to diving plane of AUV are 

considered and the terms related to steering plane are not taken into consideration. Forward 

speed of the AUV i.e „u‟ is taken to be constant having value of 2 m/s. Thus it can be state that 

for diving plane, 
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     0p r v y              (2.41) 

Simplifying the set of equations defined by the dynamic and kinematics model of AUV in (2.28)-

(2.33) and (2.35)-(2.40) respectively, yields 

    

[ ]

s in c o s

w u w q

y q w q

m w u q Z w X u q Z w Z q Z

I q M q M w M q M

z u w

q





 

 





 



     

   

  



     (2.42) 

In order to extract the nonlinear diving plane model of AUV, the set of equations (2.42) is solved 

for , ,z w a n d q   

             

    

c o s s in

u qw

w w w

qw

y q y q y q

z w u

q

Zm u X u ZZ
w w q

m Z m Z m Z

MMM
q w q

I M I M I M











 







 



 
  

  

  
  

     (2.43) 

  

2.6 Problem Formulation 

The problem under consideration is the depth control and stabilization of nonlinear AUV system. 

The depth motion of AUV can be represented in X-Z plane as shown in figure 2.1. For this 

purpose, the nonlinear coupled dynamical model of AUV presented in (2.7) is decoupled in 
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diving plane. For diving model, the position, linear and angular velocities of AUV and the 

external forces on it are neglected. In diving nonlinear model of AUV, the six DOF dynamical 

model in (2.7) reduced to (2.44) and resembles the diving model derived in (2.43), 

( )

( ) ( ) ( )

d d d d

d d d d d d d d d d d
v

J v

M C v v D v v g

 

 

 
 

 

     

    (2.44)  

Where, 

ηd(t) = [z θ] 
T
 is the inertial frame vector for diving plane having depth and diving angle.

 

vd(t) = [w q] 
T
 vector having velocity in downward direction and rate of change of diving 

angle. 

The decoupled models of AUV with their control inputs and required quantities to be measured 

(linear velocities, position, angular velocities and Euler angles) are described below, 

Table 2 Decoupled Models of AUV 

S. No Decoupled Model Control Input Required Quantities 

1 Diving ( )
s

t  z(t), θ(t), w(t), q(t) 

2 Steering ( )
r

t  v(t), r(t), ψ(t) 

3 Speed n(t) u(t) 

The forward speed „u‟ is selected as constant.  
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                LINEAR CONTROL DESIGNS FOR  

          AUV 

 

 

3.1 Introduction 

This chapter provides detail about developing a linear stabilizing state-feedback controller via 

linearization for nonlinear dynamical system. The nonlinear dynamical equations of motions are 

linearized at a selected point (origin) and the system‟s stability is investigated. A linear optimal 

controller is then designed so that quadratic index of the system can be minimized. Simulations 

of controller are also incorporated in this chapter. 

3.2 Nonlinear Equation of Motions of AUV in Diving Plane 

The nonlinear dynamical system equations reduced to diving plane model by neglecting the yaw 

and roll motion elements. For simplification purposes, it is considered that the AUV is travelling 

smoothly in forward direction deep from the surface and the angle of diving is assumed so small. 

The vehicle experiences hydrostatic forces and moments resulted due to the combined effects of 

the buoyancy and weight of AUV. Rigid body dynamics equations of AUV are simplified for 

pure depth plane motion. The linear and angular velocities in roll and yaw motions are dropped 

Chapter  

3 
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out with the equations for out-of-plane AUV motion. It results the following set of state 

equations of fourth order for the diving model of AUV: 

    

1 3 2 2

2 4

3 3 4

4 3 4

c o s s in

s

s

u uu qw

s

w w w

u uqw

s

y q y q y q

x x x u x

x x

Zm u X u ZZ
x x x

m Z m Z m Z

MMM
x x x

I M I M I M









 



 
  

  

  
  

     (3.1) 

The eq. (3.2) is of the standard nonlinear form ( ) ( )x f x g x u  . The steady state forward 

velocity of AUV is represented as “u”. 

Here,  

1

2

3

4

( )

( )

( / s )

( / )

( )
s

x D e p th o f A U V m

x D iv in g a n g le o f A U V ra d

x L in e a r v e lo c ity d o w n w a rd m

x D iv in g a n g le c h a n g in g ra te ra d s

C o n tro l In p u t F in s a n g le ra d











  

The output of the system is
1

( )x D e p th o f A U V m . The output equation of the system is y C x  . 

The eq.(3.1) can be written as, 

     

1 3 2 2

2 4

3 3 1 3 3 2 4 3 1

4 4 1 3 4 2 4 4 1

c o s s in

s

s

x x x u x

x x

x A x A x B

x A x A x B





 



  

  
    (3.2)  
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The values of coefficients used in the above equation are explained in Appendix-A2. 

3.3 Stabilization 

In control systems, the term stabilization refers to stabilization of a dynamical system. Suppose it 

is to investigate the stabilization of a nonlinear system at origin. If all of the states of the system 

are stable at origin then the system under consideration is said to be stable at that point. The 

stability of a given system can be identified by investigating the eigenvalues of the system matrix 

A at the selected point. If the system matrix A has unstable eigenvalue then the rank of the 

controllability matrix needs to be check whether or not the system is controllable. For nonlinear 

systems, the system is first to be linearized at a specified point of interest. This will lead to 

stabilization via linearization.  

3.4 System Analysis via Linearization 

In control designing of a system, it is necessary to find whether the system is controllable or not. 

After finding the controllability, suitable controller can be designed and applied on the system to 

check the systems stability on application of the control input. For this purpose, the nonlinear 

diving model of AUV in is linearized at origin. The physical and hydrodynamic parameters used 

in calculations and in simulations are defined in Appendix A.1. 

Hypothesis 1 The pairs of matrices (A, B) & (A, C) are point-wise controllable also observable 

State Dependent Coefficients parameterization respectively for all values of x of dynamical 

model of AUV. 
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Remark 1 A necessary test for the controllability condition defined in hypothesis 1 is to 

examine the solution of controllability matrix and finding its rank, that is 

1ˆ ( ( ), ( )) ( ) ( ) ( ) ( ) ( )
n

C A x B x B x A x B x A x B x


 
       (3.4) 

must have its rank equal to the rank of the AUV system matrix. 

Similarly a necessary test for the observability condition defined in hypothesis 1 is checking the 

rank of the observability matrix, that is 

1
( , ) ( ) ( ) ( ) ( ) ( )

T
n

O A C C x C x A x C x A x




 
 

      (3.5) 

( )
n

h a s ra n k O n x



    

It is supposed that the diving angle of AUV is so small i.e. 

2 2

2

s in

co s 1

x x

x




  

Now system matrix A becomes,  

      

3 1 3 2

4 1 4 2

0 1 0

0 0 0 1

0 0

0 0

u

A
A A

A A

 

 

 
 

 
 

            (3.6)  

And the input matrix B becomes, 
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3 1

4 1

0

0
B

B

B

 

 

 
 

 
 

                   (3.7) 

3.4.1 Controllability Test of AUV System 

In order to examine linearized system‟s controllability, rank of the controllability matrix can be 

found using hypothesis 1,  

2 3
Ĉ B A B A B A B 

 
         (3.8) 

By using ctrb(A,B) command on MATLAB, the rank of the controllability matrix found to be 

„4‟ that is the same as of the system matrix A. So the linearized diving system of AUV is 

controllable. 

3.4.2 Observablility Test of AUV System 

In order to investigate linearized system‟s observability, calculation is carried out to find rank of 

observability matrix by hypothesis 1, 

2 3
T

O C C A C A C A



 
 

       (3.9) 

where [1 ]  0 0 0C   

By using obsv(A,C) command on  MATLAB, the rank found is „4‟,  that is same as of the 

system matrix A. So the linearized diving system of AUV is observable.  
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3.5 Stabilization using Linear Control Design 

Since the system under consideration is stable and controllable at origin, a full-state linear 

feedback controller will be designed using pole placement method to stabilize the dynamical 

system. 

Assume that the single input system dynamics are given by 

s
x A x B

y C x

 


     (3.10)  

It is assumed that a full state feedback controller of the form 

( )
s

x r F x        (3.11) 

is used to change the dynamics of the system to desired performance. Reference signal is 

represented by „r‟ and gain matrix is F of the order 
1 4x

  in this case. The problem under 

consideration is to stabilize the system at origin, therefore r=0. Now this controller is called 

“regulator” and becomes, 

( )
s

x F x        (3.12) 

Here F= [F1 F2 F3 F4] 

For the closed loop system dynamics, inserting (3.11) in (3.10), 

( )x A x B r F x            (3.13) 
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Since r=0 in this case, 

           
( )

c l

x A B F x

x A x

 

                  (3.14)

 

The gain matrix F is to be selected such that the closed loop gain matrix Acl has the desired 

properties. One of the poles is at 0 making open loop system to be marginally stable; it is desired 

to shift it to left half plane on root locus plot. Closed loop system‟s poles are chosen to be placed 

at P = [-1 -2 -3 -4] in order to achieve this task. 

Ackermann‟s formula is a useful technique to find the gain matrix F. It provides a formula to 

find gains of the matrix F for 4
th

 order systems as, 

     
1ˆ[0 0 0 1] ( )

d
F C A


       (3.15) 

where,  

2 3
Ĉ B A B A B A B 

             (3.16)  

( )
d

A  is the closed loop poles characteristic equation and evaluated for s=A. 

4 3 2

( ) ( 1)( 2 )( 3)( 4 )

( ) 1 0 3 5 5 0 2 4

d

d

s s s s s

s s s s s

     

     
    (3.17) 

And      4 3 2
( ) 1 0 3 5 5 0 2 4

d
A A A A a I          (3.18) 

Solving (3.15) using (3.16) and (3.18) results gain matrix F, 
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[1 1 .2 3 8 .2 3 .6 1 1 .5 ]F                  (3.19)  

Now the control input from (3.12) becomes, 

1 2 3 4
( ) 1 1 .2 3 8 .2 3 .6 1 1 .5

s
x x x x x         (3.20) 

3.5.1 Simulations on MATLAB/Simulink 

The control input of (3.20) is then applied on the nonlinear dynamical model of the AUV system 

on Simulink. The numerical values for the physical parameters and the hydrodynamics forces 

and moments are described in Appendix-A1. The systems state response on the application of 

linear state feedback control is shown in Figure 3.1 below. 

 

Figure 3.1: System response on application of linear state-feedback control 

All of the systems states are going to stabilize on the application of linear state-feedback control 

after 7 seconds. It is observed that there is 0% error in the steady state of states and an overshoot 
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of 25% in rate of change of angle with respect to the steady state is observed. The main aim of 

the stabilization via state feedback of nonlinear dynamical system is achieved. 

 

Figure 3.2: Linear state-feedback controller response 

The linear state-feedback controller response is shown above in Figure 3.2. It is observed that the 

controller used more effort in first 5 seconds to stabilize the system.  

3.6 Stabilization using Linear Control with Observer 

The availability of all of the state variables all the time is the requirement of state feedback 

control for a system. Sometimes all of the states of the system to be controlled are not available 

for the measurements or they may not be practically measurable. The cost of the sensors to 

measure all of the system states can also be a serious restriction.  
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To eliminate these problems, one can estimate the states, creating additional dynamical system 

titled as observer, attached with AUV model. The main goal of an observer is the production of 

estimate of real system states. 

Working on observer techniques is initiated by Luenberger in 1964. It is stated that a system that 

uses output of system under consideration as its input can work like observer for the considered 

system.  

An observer has the basic structure of the system under consideration having two inputs and one 

output. These inputs include control input of system under consideration and its output. The 

output of an observer is the estimated states of original system. 

Luenberger observer dynamics may better explained using equations below 

     ˆ ˆ ˆ( )x A x B u K y C x           (3.21) 

In the above expression observer gain is represented as „K‟ whereas the the output prediction 

error is represented by ˆ( )y C x . System error dynamics can be analyzed by ˆe x x  . Now 

subtracting the observer dynamics from the plant dynamics  

ˆ( )e A e L C x x     

      ( )e A L C e         (3.22) 

It has been verified in section 3.4.2 that the pair (A, C) is observable. 
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The basic structure of an observer with observer gain matrix „K‟, and state-feedback controller 

gain „F‟ is shown below: 

 

Figure 3.3 Basic Structure of an observer with state-feedback controller 

In fig. (3.3), the observer gain „K‟ is to be chosen such that the observation error is minimized. 

Since the output of the system is depth that is the first state, its estimation error is given by

1 1 1
ˆe x x  . The observer output is represented by the following equations 

     

1 3 2 1 1 1

2 4 2 1 1

3 3 1 3 3 2 4 3 1 3 1 1

4 4 1 3 4 2 4 4 1 4 1 1

ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ( )

s

s

x x u x L x x

x x L x x

x A x A x B L x x

x A x A x B L x x





   

  

    

    

     (3.23)  

The estimation offset in states of system & observer can be represented by ˆ
j j j

e x x   where 

j=1, 2, 3, 4. In the error coordinates, the closed loop system is 
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1 3 2 1 1

2 4 2 1

3 3 1 3 3 2 4 3 1

4 4 1 3 4 2 4 4 1

e e u e L e

e e L e

e A e A e L e

e A e A e L e

  

 

  

  
      (3.24)

 

Now considering a lyapunov function, 

      21
( )

2
j

V e e         (3.25) 

Where j=1, 2, 3, 4. Differentiating V(e) w.r.t time  

     
1 1 2 2 3 3 4 4

( )V e e e e e e e e e           (3.26) 

               
1 3 2 1 1 2 4 2 1 3 3 1 3 3 2 4 3 1 4 4 1 3 4 2 4 4 1

( ) ( ) ( ) ( ) ( )V e e e u e L e e e L e e A e A e L e e A e A e L e             

  

2 2
4 2 2

1 1 2

2 2
3 3 2 2

3 1 3 2 4 1 3 4 2 4 1 4

1
( ) 1

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2 2 2

L L Lu u
V e L e e

L A L
A A A e A A e

   
           

   

   
              
   

  

The above inequality can also be written as, 

    
2 2 2 2

1 1 2 2 3 3 4 4
( )V e e e e e              (3.27) 

In the above equation 
1 2 3 4
, , a n d     are positive numbers that can be calculated by selecting 

suitable gains of observer i.e. 
1 2 3 4
, ,L L L a n d L  such that to achieve ( ) 0V e  .  
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3.6.1 Simulations 

For simulation purposes, the gain matrix K calculation is carried out with poles values 

[ 1 .5 2 .5 3 .5 4 .5 ]P       that yields the gain matrix

 10 .1 24 .3 13 .7 30 .7K     . Simulating the system with the feedback controller and 

observer, fig. (3.4) shows the effective state estimation of all the system states using only the 

output of the system. 

 

Figure 3.4 Comparative plots of system and estimated states under state-feedback control 
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The above plots show that the observer designed for the state-feedback controller is estimating 

the states perfectly. 

 

Figure 3.5 Comparison of state-feedback control input with and without observer 

3.7 Stabilization using Linear Optimal Control Design 

A nonlinear optimal regulation problem is considered for an input affine continuous nonlinear 

AUV system having state space representation as described in (3.2). 

Linear Optimal control design approach is a control technique based on linearization of a 

nonlinear dynamical system. Using the linearized system and control matrices, this technique 

uses the solution of Algebric Ricatti Equation (ARE). The solution of ARE is then used to 

develop a control law that minimizes a given cost functional of the nonlinear dynamical system. 

This control method is extensively used to provide asymptotically stability to nonlinear 

dynamical systems. 
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The system under consideration have performance index that is quadratic in ' '
s

  but non-

quadratic in „x‟ as below: 

0

1
( ( ) ( ) )

2

T T

s s
J x Q x x R x d t 



         (3.28)  

Where 0 :
n n x n

Q    is states weighing matrix for states and  

0 :
n m xm

R    is input weighing matrix.  

Now problem formulated below is minimization problem associated with the performance index 

mentioned in (3.28) 

( )

0

1
m in ( ( ) ( ) )

2

T T

s s
u t

x Q x x R x d t 



       (3.29) 

subjected to ( ) ( )
s

x f x g x    where 
0

x  is the initial condition of the states. Solving current 

problem of optimal control is equivalent to HJE associated solution [54]. 

In linear case, when ( )f x A x  , optimal feedback control can be represented as, 

( ) ( )
s o p t

x F x x        (3.30) 

here  
n

op t
F x   needs to be chosen to minimize cost in (3.29) associated with the nonlinear 

system, stabilizing the system to origin such that lim ( ) 0
x

x t
 

 .  
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The fundamental linear control method is LQR synthesis method. Representing an LQR design 

the state feedback controller is designed as 

1
( ) ( ) ( ) ( )

T

s
x R x B x P x x


 

       (3.31)  

\here, P(x)>0 is algebraic solution of ARE represented as, 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

T T
A x P x P x A x P x B x R x B x P x Q x


     (3.32) 

Now the resulting ARE based optimal controlled trajectory becomes the quasilinear closed loop 

dynamics solution 

1
( ) [ ( ) ( ) ( ) ( ) ( )] ( )

T
x t A x B x R x B x P x x t


              (3.33) 

Provided the gain Fopt(x) in (3.30) minimizing (3.28) is 

1
( ) ( ) ( ) ( )

T

opt
F x R x B x P x


       (3.34)  

From (3.2), we have system and input matrix as, 

3 1 3 2

4 1 4 2

0 1 0

0 0 0 1

0 0

0 0

u

A
A A

A A

 

 

 
 

 
 
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3 1

4 1

0

0
B

B

B

 

 

 
 

 
 

          

To solve for P(x), Q is chosen as I4x4 and R is taken as 1.  

After solving Ricatti equation, 

2 .4 5 .5 0 .8 1 .4

5 .5 0 .8 1 6 .6

0 .8 1 9 4

1 .4 6 .6 4 4 .4

P

  

 
 

 
 

 
 

    (3.35) 

Solving for Fopt, 

[1 4 .8 3 .7 3 .6 ]
o p t

F           (3.36) 

The linear optimal control input for diving nonlinear model of AUV is, 

1 2 3 4
( ) 4 .8 3 .8 3 .6

s
x x x x x           (3.37) 
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3.7.1  Simulations on MATLAB/Simulink of Linear Optimal Control 

The linear optimal control input of (3.37) is then applied on the nonlinear dynamical model of 

the AUV system on Simulink. The systems state response on the application of linear state 

feedback control is shown in Figure 3.6 below. 

 

Figure 3.6 : System response on application of linear optimal control 

All of the systems states are going to stabilize at origin on the application of linear optimal 

control in 10 seconds. It is observed that there is 0% steady state error in all states and 17% 

overshoot in depth during transient response of the system. These results are more promising 

than that of the linear state-feedback controller. The main aim of the stabilization via optimal 

control of nonlinear dynamical system is achieved. 
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Figure 3.7 : Linear optimal controller response 

The linear optimal control input uses very small amount of effort to stabilize the nonlinear 

dynamical system. Although it has taken more time (10 seconds) than that of the linear state-

feedback control input (7 seconds). 

Since our basic aim for the linear optimal controller was reliable and cost efficient control, it has 

achieved its requirements. 

3.8 Stabilization using Linear Optimal Control Design with Observer 

The poles for the observer are placed at the open left half plane. The gain matrix K found to be 

 10 .1 24 .3 13 .7 30 .7K       

Simulating the system with the feedback controller and observer, fig.(3.8) shows the effective 

state estimation of all the system states only using the output of the system. 
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Figure 3.8 Comparative plots of system and estimated states under optimal control 

The above plots show that the observer designed for the optimal state-feedback controller is 

estimating the states. 
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Figure 3.9 Comparison of optimal control input with and without observer 

Fig.(3.9) shows the comparison of controller input with and without observer. It can be seen that 

there is a little estimation error in controller input. 
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3.9 Combined Comparison of both controllers: 

i) Depth stabilization 

 

Figure 3.10 Comparison of depth responses of two controllers 

 

It is observed in fig.(3.10) that Optimal control has an overshoot of 18% in transient response of 

depth state. The optimal control stabilizes the system in 9 seconds whereas the state-feedback 

controller stabilizes the system in 7 seconds. 
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ii) Controller input response 

 

Figure 3.11 Comparison of controller responses of two controllers 

The optimal controller has consumed less control effort (that is 0.5) than that of the state-

feedback controller (that is 3.5). So it is concluded that the optimal controller is cost effective 

than state-feedback controller in stabilizing the depth of AUV. 

3.10 Estimate of Region of Attraction 

In order to estimate the region of attraction of the origin, lyapunov method is taken into account. 

Let 

     ( )
T

V x x P x      (3.38) 

 to be a lyapunov function candidate for given system. 
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It is supposed that about origin, a unit circle is a domain D satisfying, ( ) 0 , 0V x x r     and 

a constant term 0a   such that ( ) ,
a a

V x a D     . 

    Take 
2

m in
m in ( )

T

x r

a x P x P r


      (3.39) 

     { } { }
T

x P x a x r        (3.40)  

All of the trajectories starting in the set { }
T

x P x a approached he origin as t tends to ∞. Hence, 

{ }
T

x P x a is the subset (estimate) of the region of attraction.  

Calculating the eigenvalues of P from (3.35), 

     

1

2

3

4

0 .1 8

0 .8 4

1 1

2 4 .6

















      (3.41) 

The minimum valued eigenvalue of P is
m in

( ) 0 .1 8P  . 

Here x r is taken 1. 

Now, 2

m in
m in ( ) 0 .1 8 * (1)

T

x r

a x P x P r


     

a=0.18  

{ ( ) 0 .1 8}
a

V x    is the region of attraction of the system is a domain D. 
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     NON-LINEAR CONTROL   

     DESIGNS FOR AUV 

 

4.1 Introduction 

This chapter details about developing non-linear control designs for non-linear AUV dynamical 

AUV system. The nonlinear dynamical equations of motion of AUV in diving plane are first 

feedback linearized. The corresponding normal form of the nonlinear dynamical system is then 

derived. Then nominal control is implemented for stabilization of the depth of AUV with state 

feedback controller. SMC is then established and is implemented with the nominal stabilizing 

control. Optimal controller is then designed and implemented with the nominal stabilizing 

control. Then a combination of Optimal controller + SMC is designed and a comparison of 

feedback controller and Optimal controller is carried out. Furthermore to cater the model or input 

uncertainty Lyapunov Redesign controller is used with the nominal controller. A comparison of 

Lyapunov Redesign controller and the Optimal controller + SMC is carried out. At last, the 

Inverse optimal controller for the system is designed. 

Detailed stability analysis of SMC, Lyapunov Redesign and Inverse Optimal Controllers are also 

included in this chapter. 

Chapter  

4 
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4.2 Feedback Linearization 

A nonlinear control system admitting normal form of controller is said to be feedback 

linearizable, if changing of coordinates transforms it to linear system.  

AUV system in diving plane is a SISO system of the form: 

     ( ) ( )
s

x f x g x            (4.1) 

     ( )y h x            (4.2)  

here g(x), h(x) and f(x) are sufficiently smooth in a domain n
D    . 

The state equations of the system under consideration are: 

 

1 3 2 2

2 4

3 3 1 3 3 2 4 3 1

4 4 1 3 4 2 4 4 1

c o s s in

s

s

x x x u x

x x

x A x A x B

x A x A x B





 



  

  
           (4.3) 

And the output is 

                
1

y x           (4.4) 

 



51 

 

The capability that transforms a dynamical nonlinear system equations described in (4.3) to 

controllable linear system using feedback approach and cancelling nonlinear terms needs 

dynamical nonlinear system having structure form of 

     ( )[ ( )]x A x B x u x            (4.5) 

here ,
n x n n x p

A B     with (A,B) as controllable pair.  

The functions : :
n p n p x p

a n d        are defined in a domain 
n

D R  containing 

origin. The matrix ( )x  is non-singular x D  . If the state equation of the form (4.3) takes the 

form of (4.5), then the nonlinear state equations using state-feedback may be linearize in the 

form 

     ( ) ( )u x x v              (4.6) 

here      
1

( ) ( )x x 


           (4.7) 

Now the nonlinear state equation (4.5) becomes, 

     x A x B v             (4.8) 

The new control variable „v‟ can be implemented on the system to stabilize it. 

It is easy to analyze that the nonlinear state equations of the diving model of AUV presented in 

(4.3) is not in the feedback linearization form as in (4.6). 
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The basic aim of feedback linearization is to reduce a nonlinear dynamical, typical system into a 

controllable linear system. The linear controllable form achieved is called normal form of 

nonlinear dynamical system. 

4.2.1 Normal Form Transformation 

First of all the relative degree ' '  of the system is required to be finding out. For this purpose 

the output of the system is differentiated number of times until the control input u shows up. 

Since in this case,  

1
y x   

1 3 2 2
c o s s iny x x x u x     

3 2 2 2 2 3 2
s in c o s c o sy x x x u x x x x      

3 4 2 4 2 3 1 3 2 3 2 4 2 3 1 2
s in c o s c o s c o s c o s sy x x x u x x A x x A x x B x         

Since the control term 
s

  appears in the second derivative of the output, the system has relative 

degree
4

2 in R  . 

 

 

 



53 

 

Theorem 4.1 

Consider the system (4.1)-(4.2), and suppose it has relative degree n   , then for every
0

x D   

, a N neighbourhood of 
0

x  with functions
1
( ) , . . . , ( )

n p
x x 


that are smooth,  exists such that  

      
0

( ) 0 , 1 ,
j

g x fo r j n p x D
x


     


      

(4.8) 

 is fulfilled x N   with following mapping  

     

1

1

( )

( )

( )
( )

( )

n

f

x

x

T x
h x

L h x







 







 

 

 

   
    
   
 

 

  

                  (4.9) 

restricted to N, is a diffeomorphism on N, here 
1 n

to


 


 needs to be selected so T(x) becomes 

diffeomorphism within 
0

D D . 

As per theorem 4.1, the diffeomorphism of the system in (4.3) will become of the form, 

     

1

2

( )

( )
( )

( )

( )
f

x

x
T x

h x

L h x



 



 

 
 

   
 

 
 
  

       (4.10) 

While to choose 
1
( )x  and 

2
( )x  , the condition in (4.8) must be satisfied. 
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3 1 4 1
[0 0 ]

T
g B B   

Choosing 
1 2
( )x x   leads to  1

( )
0 1 0 0

x

x





 satisfies 1

( )
. 0

x
g

x





  

Now choosing 3 4

2

3 1 4 1

( )
x x

x
B B

    leads to 2

3 1 4 1

( ) 1 1
0 0

x

x B B

  
  

  

 satisfies 2
( )

. 0
x

g
x





  

Now (4.10) becomes, 

    

2

3 4

3 1 4 1

1

3 2 2

( )

c o s s in

x

x x

B BT x

x

x x u x

 

 

 
 

 

 

  

        (4.11) 

where,  

     

1 2

3 4

2

3 1 4 1

1 1

2 3 2 2
c o s s in

x

x x

B B

x

x x u x











 



 

       (4.12) 

Writing 
1 2 3 4

, ,x x x a n d x  in terms of
1 2 1 2
, , a n d    , 

     
1 1

x              

(4.13) 
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2 1

x           (4.14) 

For 
3

x  , 

2 3 2 2
c o s s inx x u x    

2

3 2

1 2

s in1

c o s c o s

x
x u

x



    

     
3 2 1 1

s e c ta nx u           (4.15) 

For 
4

x  , from (4.12) 

3 4

2

3 1 4 1

x x

B B
    

Placing 
3

x  produces,  4

2 2 1 1

3 1 4 1 4 1

1 1
s e c s in

x
u

B B B
        

4

2 2 1 1

4 1 3 1 3 1

1 1
s e c ta n

x
u

B B B
         

    4 1 4 1

4 4 1 2 2 1 1

3 1 3 1

s e c ta n
B B

x B u
B B

             (4.16) 

Now substituting the values of 
1 2 3 4

, ,x x x a n d x  in system equations  

(4.3) to get the normal form of the system, 
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1 2 4
x x     

    4 1 4 1

1 2 1 1 4 1 2

3 1 3 1

s e c ta n
B B

u B
B B

             (4.17) 

3 4

2

3 1 4 1

x x

B B
     

3 1 3 2 3 1 4 1 4 2 4 1

2 3 4 3 4

3 1 3 1 3 1 4 1 4 2 4 1

s s

A A B A A B
x x x x

B B B B B B
         

3 1 3 24 1 4 2

2 3 4

3 1 4 1 3 1 4 1

A AA A
x x

B B B B


   
      
   

  

 
3 1 3 24 1 4 2 4 1 4 1

2 2 1 1 4 1 2 2 1 1

3 1 4 1 3 1 4 1 3 1 3 1

sec tan sec tan
A AA A B B

u B u
B B B B B B

       
     

            
     

 

3 1 3 1 3 2 4 14 1 4 1 4 2 4 1

2 2 1 1 2

3 1 4 1 3 1 4 1 3 1 4 1

3 2 4 1 3 2 4 14 2 4 1 4 2 4 1

2 1 12 2

3 1 4 1 3 1 3 1 4 1 3 1

s e c ta n

s e c ta n

A A A BA A A B
u

B B B B B B

A B A BA B A B
u

B B B B B B

    

  

     
          
     

   
      
   

  

3 1 3 2 4 1 3 1 3 2 4 1 3 2 4 14 1 4 2 4 1 4 2

2 2 1 1 4 2 22 2

3 1 4 1 3 1 3 1 3 1 4 1 3 1 3 1 3 1

sec tan
A A B A A B A BA A A A

u A
B B B B B B B B B

    
     

              
     

  

              (4.18) 

      
1 2

                      

(4.19) 
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2 3 2 2 2 3 2 2

s in c o s c o sx x x x x u x x       

2 3 1 1 1 3 1 1
s in c o s c o sx x u          

2 2 1 1 1 1 3 1 3 1 3 2 4 1 3 1 1 1 1
( ta n s in ta n ) c o s c o s c o s c o s

s
u A x A x B u                   

Since, 4 1 4 1

1 2 1 1 4 1 2

3 1 3 1

s e c ta n
B B

u B
B B

        

And 
3 2 1 1

s e c ta nx u     

2 2 24 1 4 1 4 1

2 4 1 2 2 1 4 1 2 1 1 2 1 1 2 1 2 1

3 1 3 1 3 1

2 2 3 2 4 1 3 2 4 14 1

1 1 3 1 2 3 1 1 3 2 4 1 2 1 2 1

3 1 3 1 3 1

4 1 4 1

3 1 1 4 1 2 1 2

3 1

ta n s in ta n ta n se c ta n ta n

s in ta n s in c o s s in

c o s c o s
s

B B B
B B u u u

B B B

A B A BB
u A A u A B u

B B B

B B
B B u u

B

             

       

    

    

     

   
2

1

3 1

s inu
B



 

 
23 2 4 1 3 2 4 1 4 1

2 3 1 2 3 1 1 4 1 3 2 4 1 2 1 4 1 2 1 1

3 1 3 1 3 1

2 2 2 24 1 4 1 4 1

1 1 2 1 4 1 2 2 1 2 1 1 3 1 1

3 1 3 1 3 1

s in c o s s in ta n

s in ta n 2 ta n ta n ta n se c c o s
s

A B A B B
A A u B u A B B u

B B B

B B B
u u B B

B B B

       

           

   
          
   

    

(4.20) 

Now the normal form of the nonlinear dynamical system of (4.3) can be represented by the 

following set of equations: 
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4 1 4 1

1 2 1 1 4 1 2

3 1 3 1

3 1 3 2 4 1 3 1 3 2 4 1 3 2 4 14 1 4 2 4 1 4 2

2 2 1 1 4 2 22 2

3 1 4 1 3 1 3 1 3 1 4 1 3 1 3 1 3 1

1 2

3 2 4 1 3 2 4 1 4 1

2 3 1 2 3 1

3 1 3 1

s e c ta n

s e c ta n

B B
u B

B B

A A B A A B A BA A A A
u A

B B B B B B B B B

A B A B B
A A

B B B

    

    

 

 

  

     
              
     



 
     
 

 
2

1 4 1 3 2 4 1 2 1 4 1 2 1 1

3 1

2 2 2 24 1 4 1 4 1

1 1 2 1 4 1 2 2 1 2 1 1 3 1 1

3 1 3 1 3 1

s in c o s s in ta n

s in ta n 2 ta n ta n ta n s e c c o s
s

u B u A B B u

B B B
u u B B

B B B

     

           

 
   

 

    

   (4.21) 

The above set of equations can be simplified in the form 

  

1 1 2 1 2 1 3 2

2 4 2 1 5 1 6 2

1 2

2

2 7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1 1 5 1

s e c ta n

s e c ta n

s in c o s s in ta n s in ta n

ta n ta n ta n s e c c o s
s

C C C

C C u C

C C C C C

C C C C

    

    

 

         

         

  

  



    

   
   

(4.22) 

And the output becomes, 

      
1

y           (4.23) 

Where 
1 2 1 5
, , ,C C C  are the coefficients replaced from (4.21). 

4.3 Control Design and Analysis 

The normal form of the system divides the system into two parts i.e the first two states of the 

systems 
1 2

a n d   are the internal states of the system and the last two states 
1 2

a n d   are the 

external states of the system. It is clearly seen that in (4.3) the control input ' '
s

  appears in two 
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states where as in the normal form the control input ' '
s

 appears only in one state of the external 

part. This makes the internal states of the system unobservable from the control input. 

Now choosing the control input, 

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n se c )

s
C C C C C

C

C C C v

         


       

     

   

    (4.24) 

will reduces the (4.22) to the form 

   
0

( , )f           (4.25) 

   A B v           (4.26) 

Equation (4.26) can easily be stabilized by a stabilizing controller v F   , where F needs to be 

selected to make (A-BF) Hurwitz. The under consideration closed loop system 

      
0

( , )f           (4.27) 

      ( )A B F          (4.28) 

asymptotic stability at origin follows stability of origin of system internal state‟s 
0

( , 0 )f  as 

shown in lemma 13.1 [55]. It has been verified that internal states of the system have zeron 

dynamics 
0

( , 0 )f   that are BIBO stable in the domain of interest and the normal system 

form under consideration is minimum phase. 

Now the objective of the control design is to design a controller for the external part of the 

system such that the depth of the AUV system stabilizes. 
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Important Note: 

It is important to mention that 
1 2

x d iv in g a n g le o f A U V    is present in the controller of (4.29) 

in the denominator as an argument of cosine function. For diving angle 0

1 2
9 0x    the 

controller of (4.29) will fails to stabilize the AUV. 

 

4.3.1 Stabilizing controller 

 The stabilizing controller for (4.22) is selected as, 

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1 1 1 2 2

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n se c )

s
C C C C C

C

C C C f f

         


         

     

    

    (4.29)   

where the gains f1 and f2 are selected such that (A-BF) in (4.28) becomes Hurwitz. 

 Simulation of Stabilizing Controller 

For simulation, the poles of the external part of the normal form of the AUV system in 

diving plane are selected at LHP. The corresponding gains are
1 2

8 , 6f f  . 
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Figure 4.1 Depth response on application of nonlinear stabilization controller 

On the application of nonlinear stabilization controller of (4.29), the depth of the AUV stabilizes 

at 0 m in 35 seconds with maximum overshoot of 0.63%. 

 

Figure 4.2 Stabilization controller response 

The stabilization controller response in fig.4.2 shows that the controller has used more effort 

during initial transient time to bring the system to stabilization as compared to steady state.  
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4.3.2 Sliding Mode Controller 

SMC is calculated then implemented on the system under consideration. The proposed controller 

is based on the methodology proposed in [56]. The control objective of the SMC is that the 

system states X tracks a desired reference XD. 

The error state vector is then can be represented as, 

     

1 1D

D

n D n

x x

X X X

x x

 

 
  

 

  

       (4.30) 

XD in (4.30) represents vector of desired states. 

For SMC designing, the sliding surface is defined as, 

      T
S X          (4.31) 

This sliding surface can be written in the error coordinates as,  

      T
S X          (4.32) 

     

1 1

1
[ ]

D

n

n D n

x x

s s

x x



 

 


 

  

       (4.33) 

The first step here is to choose the surface coefficients vector S such that 

lim 0 . lim 0
t t

i e 
   

  , that will ensure that lim lim ( ) 0
D

t t

X X X
   

   . 
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Now let suppose quadratic lyapunov function of the form, 

      21
( )

2
V           (4.34) 

To determine the surface coefficients vector S that achieves the above mentioned objective, the 

conditions needs to be determined that would make ( )V   negative definitive. Let‟s suppose, 

      
22

( )V             (4.35) 

Where 0   is a design parameter. 

The condition expressed in (4.35) can be written as, 

      
2

sg n ( )           (4.36) 

This will ensure that under consideration AUV system‟s trajectories converge to sliding surface 

in finite time. Now differentiating sliding surface in (4.33) along the trajectories of the system 

      
T

S X          (4.37) 

here 
s D

X A X B X    . Now the differentiated sliding surface becomes 

    2
( ) s g n ( )

T

s D
S A X B X               (4.38) 

Solving for control input 
s

   
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2
s g n ( )

T T T

s D
S A X S B S X        

2
sg n ( )

T T

D

s T

S A X S X

S B

 


  
   

   1 1 1 2
( ) ( ) ( ) s g n ( )

T T T T T

s D
S B S A X S B S X S B  

  
        (4.39) 

The above controller equation can be divided into two parts, i.e. the stabilizing controller and the 

non-linear control. 

      
s s s

            (4.40) 

Where the stabilizing control is described as  

      
1 1

( ) ( )
T T T T

s D
S B S A X S B S X

 
        (4.41) 

Whereas the switching controller can be described as 

      1 2
( ) s g n ( )

T

s
S B  


      (4.42) 

When XD is constant, the equation (4.41) can be simplified as, 1
( )

T T

s
S B S A X


    

Under stabilizing control 

      
s

F X           (4.43) 
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matrix F is selected to place the eigenvalues of the closed loop system at
1

[ ]
n

   ensuring the 

convergence of the closed loop system‟s trajectories to the sliding surface . lim 0
t

i e 
 

  , .This 

results the closed loop system as described below, 

( )

s
X A X B

X A B F X

 

 

  

Since 0
T

S X     

And therefore, 

0
T

S X    

Therefore, 0
T

S X     

( ) 0
T

S A B F    

 

It can be observed that the vector of coefficients of sliding surface S is the eigenvector of 

( )
T

A B F  associated to the null eigenvalue.  Now using equations (4.40), (4.42) and (4.43) the 

AUV system can be written in the error coordinates (4.33) as  

    1 2
( ) ( ) sg n ( )

T

D
X A B F X B F X S B  


         (4.44) 

( ) 0
T

A B F S 
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It is obvious that the sg n ( )  discontinuous control element causes chattering. Its traditional 

substitute ( )s a t



 is used in which ' '  is a small design parameter. The controller of (4.40) 

becomes, 

    1 2
( ) ( ) ( )

T

s s s D
F X X S B sa t


   




          (4.45) 

This results the closed loop system as defined 

    1 2
( ) ( ) ( )

T

D
X A B F X B F X S B sa t







         (4.46) 

It is concluded that using the SMC of (4.45), trajectories of system in closed loop configuration 

(4.46) will converges to   in a given finite time. These trajectories of closed loop system will 

stay inside the boundary layer defined by    afterwards. 

The nonlinear SMC for stabilization of depth is numerically simulated. The nonlinear SMC is 

thus represented as, 

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2 1 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n s e c ) ( ) ( )

s

T

C C C C C
C

C C C S B s a t

         



        





     

   

    (4.47) 

In (4.47), 
1

( ) 1
T

S B


  and the design parameters
2

1 0 .5a n d   . Now the nonlinear SMC 

becomes, 
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2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n s e c ) ( )
0 .5

s
C C C C C

C

C C C s a t

         



       

     

   

    (4.48)

 

The desired trajectory is set to 0. 

4.3.3 SMC with Feedback controller 

This technique incorporates the sliding mode controller with feedback controller in series with 

the nominal nonlinear controller. 

The corresponding combined controller becomes, 

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1 1 1 2 2

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n s e c ) ( )
0 .5

s s
C C C C C

C

C C C f f s a t

          



         

      

     

    (4.49) 

where 
1 2

0 .5 1 .5      

4.3.4 Optimal Controller 

Optimal controller is designed for the external part of the AUV system normal form defined in 

(4.26). The technique used is the same as used in section 3.6 using Algebric Ricatti Equation 

solution and minimizing the cost of (3.22). The matrix Q is selected as, 

0 .1Q I   
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The gain of the optimal controller is found to be
1

2
0 .3 1 0 .8 5

o p t o p t
F a n d F  . The nonlinear 

optimal controller for the system in (4.22) becomes, 

1 2

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1 1 2

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n s e c )

o p t
s

o p t o p t

C C C C C
C

C C C F F

         


         

     

    

    (4.50) 

4.3.5 Optimal Controller with SMC 

This technique is used to minimize the control effort of the controller with the robust 

stabilization qualities of SMC. 

The optimal controller with SMC used for depth stabilization has the form, 

1 2

2

7 2 8 1 9 2 1 1 0 2 1 1 1 1 1 1

1 5 1

2 2

1 2 2 1 1 3 2 2 1 1 4 2 1 1 1 2

1
( s in c o s s in ta n s in ta n

c o s

ta n ta n ta n s e c ) ( )
0 .5

o p t
s s

o p t o p t

C C C C C
C

C C C F F s a t

          



         

      

     

   (4.51) 

4.4 Simulation 

The combined simulation of the feedback stabilization controller, SMC, feedback with SMC, 

Optimal and Optimal with SMC as described in equations (4.29),  (4.48). (4.49), (4.50) and 

(4.51) respectively is performed. The parameters used for AUV are described in Appendix-A. 
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Figure 4.3 Depth response of AUV with different controllers 

It can be seen clearly that all of the controllers have stabilized the depth of AUV at 0 meters. The 

Feedback and optimal controllers alone are stabilizing the system slowly in 40 seconds with less 

overshoot (1%) in transient time. SMC alone has the highest overshoot of 2.8% at 1.25 seconds. 

The combined feedback and SMC controller has the maximum overshoot of 1.9% while the 

combined optimal and SMC controller has the maximum overshoot of 2.1%. All of the three 

later controllers having SMC are stabilizing faster within 15 seconds. 

The two controllers feedback with SMC and optimal with SMC are so close to each other with 

respect to depth stabilization traits. 
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Figure 4.4 Different Controllers Responses 

It is observed from the fig.4.4 that the optimal controller alone has used the minimum controller 

effort to stabilize the system whereas the feedback stabilization controller is at second position 

after optimal controller. SMC has used an effort input control of 0.3 but is approaching 

stabilization a little late than that of the combined controllers.  

Here the combined controller of feedback and SMC is using more effort than that of the 

optimal with SMC; therefore the best of the five controllers is the combined control of 

optimal control and SMC. 

4.5 Lyapunov Redesign Approach 

Let us consider the system of diving model of AUV as 

     ( , ) ( , )[ ( , , )]x f t x G t x u t x u         (4.52) 
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here p
u R  represents controller input and n

x R  represents the system‟s state vector. The 

functions  , G and F defined for ( , , ) [0 , ) ,
p n

t x u D R h e re D is su b se t o f R     containing 

origin. Functions , G and F are assumed as locally Lipschitz in „u‟ and „x‟ also piecewise 

continuous in time. Functions G and f considered as precisely known and  is supposed to be 

undisclosed function having numerous uncertain terms because of the uncertainty in parameters 

and simplification of model. It is supposed that   fulfills matching condition. 

A nonlinear system‟s nominal model is described below 

     ( , ) ( , )x f t x G t x u                     (4.53) 

Suppose a feedback control ( , )t x  is designed that uniformly asymptotically stabilizes the 

nominal closed loop system at origin 

     ( , ) ( , ) ( , )x f t x G t x t x         (4.54) 

Further supposing that a lyapunov function for (4.54) is known i.e V(t,x) fulfills the following 

inequalities 

     
1 2
( ) ( , ) ( )x V t x x          (4.55) 

            3
[ ( , ) ( , ) ( , )]

V V
f t x G t x t x x

t x
 

 
   

 
      (4.56) 

1 2 3
( , ) [0 , ) , ,t x D w h e re a n d a re c la s s        functions. Now assuming that with control 

input ( , )u t x   ,  fulfills following expression 
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0 0

( , , ( , ) ( , ) , 0 1t x t x v t x v               (4.57) 

here :[0 , ) D R     represents continuous function having positive semi-definite values. It is 

the measure of the size of the uncertainty.  

The main aim of the Lyapunov redesign method is to design a ' 'v implementing the information 

regarding the functions  , V(x) and constant 
0

 such that controller input designed as 

( , )u t x v   stabilizes the system of (4.52) in presence of the uncertainty. 

Now the system (4.52) with perturbation becomes 

    ( , ) ( , ) ( , ) ( , )[ ( , , ( , ) )]x f t x G t x t x G t x v t x t x v            (4.58) 

Calculating time derivative of Lyapunov function along the trajectories of (4.58) 

        3
( ) ( ) ( )

V V V V
V f G G v x G v

t x x x
   

   
        

   
    (4.59) 

Setting ( )
T V

w G
x





 eq. (4.59) becomes 

      3

T T
V x w v w            (4.60) 

The first term of (4.60) represents nominal system in closed loop configuration. Second term 

represents effect of control ‟v‟ on V  and the third term is the effect of the uncertainty onV . 
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Since the matching condition for the uncertainty is considered therefore uncertainty term appears 

at identical positions where control „v‟ presents. Now the uncertainty effect that destabilizes V

can easily be cancelled. 

Supposing control „v‟ such that 0
T T

w v w   and suppose the inequality (4.57) is satisfied with 

2
.   

    
0 02 2

( , , ( , ) ( , ) , 0 1t x t x v t x v             (4.61) 

Since, 

           
02 2 2 2

( , )
T T T

w v w w w v w p t x v       
 

     (4.62) 

Now taking, 

      

2

( , ) .
w

v t x
w

         (4.63) 

Considering a nonnegative function , we obtain 

      
0 02 2 2 2 2

(1 )
T T

w v w w w w w w                    (4.64) 

Now selecting 
0

( , ) ( , ) / (1 ) ( , ) [0 , )t x t x fo r a ll t x D        results 

     
2 2

0
T T

w v w w w            (4.67) 
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Hence using the control input of (4.63), 0V   for system with perturbation described in (4.58). 

The control law of (4.63) is discontinuous function of states of the system. The easy and practical 

continuous control law is proposed below, 

   
2

2

2

2

( , ) . , ( , )

( , )( / ) , ( , )

w
t x if t x w

wv

t x w if t x w

  

   


  


 


  



      (4.68) 

It is proposed in the light of the theorem 14.3 and corollary 14.1 [57] 

When   satisfies (4.71), the feedback control law of (4.68) will work in the region 
2

w  . 

      v kw          (4.69) 

having 
2

0
k




  . Here 0 3 1

2

1 0 2

2 (1 ) 2 ( ) . ( )
m in ,

(1 ). ( )

r r

r

  


  

 
  

 

  

This high gain feedback control will stabilize the origin of the system with uncertainty when 

(4.70)-(4.72) are satisfied. 

         
2

3 2
( )x x          (4.70) 

         
0

( , ) 0t x           (4.71) 

        
1

( , ) ( )t x x           (4.72) 
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Now to satisfy the equations (4.70)-(4.72), 

        
1 2

0

1
(1 )

x



 


        (4.73) 

        2
T T

w x P B         (4.74) 

           

2

0 m in

2

1 0 m a x

2 (1 ) 2 . ( )
m in ,

(1 ). ( )

r P

P

 


  

 
  

 

      (4.75) 

Assumptions of Corollary 14.1 and Theorem 14.3 can be fulfilled by choosing 

2 2 2

1 m in 2 m ax 3 2
( ) ( ) , ( ) ( ) , ( ) , ( ) .r P r r P r r r x x and a r            

For the control of external part of the normal form of the AUV system described in (4.38), 

m in
( ) 0 .7 3P    

m a x
( ) 2 .7 3P   

1 2
2 3 .4 6

T
w      

Let  1r   , 
0 1

0 .5 2a n d     

Solving for    

m in 0 .2 5 ,1 .0 7    
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From (4.73), 
0

1    

Considering 0 .5 1 .07    for k. Then K=2 

Now the control input of (4.69) becomes, 

      
1 2

4 6 .9 2v            (4.76) 

The control input of (4.76) will exponentially stabilize the system with uncertainty of (4.58). 

4.5.1 Simulations 

Depth Response: 

 

Figure 4.5 Depth response on application of Lyapunov Redesign Controller 
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It can be seen in fig. (4.5) that the feedback controller designed with the Lyapunov Redesign 

technique stabilizes the system without uncertainty in almost 9 seconds with an overshoot of 

1.2% in depth. 

Controller Response: 

0 

Figure 4.6 Lyapunov Redesign Controller Response 

The controller input takes an effort of 0.7 to stabilize the system and then keeps the system stable 

in steady state. 

4.5.2 Uncertainty Rejection in Input by the controller:  

To check the uncertainty rejection quality of controllers, a random uncertain signal of varying 

magnitude within 0.1 magnitudes is added in the controller input. 
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Depth Response against uncertainty in input: 

 

Figure 4.7 Uncertainty rejections in Depth response 

It is observed that the effect of uncertainty in input effects the depth response of AUV but the 

lyapunov redesign based controller is suppressing its effect. It can be seen in the above 

simulation that for 10% uncertainty in input, the depth response suppress its effect efficiently 

within 4% and removes them after some time. 
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4.6 Inverse Optimal Control 

Inverse Optimal Control is an indirect approach in solving optimal control problems. In this 

technique, a nonlinear dynamical model of a system under consideration is used to establish 

control law that ensures stabilization to the system. Due to the complex and lengthy calculations 

of the HJB equations to get an optimal solution, this Inverse optimal control is suitable for the 

dynamical systems of higher order. The Inverse optimal control strategy used in this chapter is 

based on existence of a CLF. The CLF is used for testing the capability of the system to be 

feedback stabilizable. It means that on the application of any control input v(x,t) the X states of 

the systems can be brought to the zero state. E.D Sontag and Z. Artstein developed the theory 

and application of CLF in 1980‟s and 1990‟s [58]. 

An ordinary Lyapunov function V(x) is used to test the stability (more specifically the 

asymptotic stability) of a dynamical system without applying any inputs. This test checks the 

dynamical system starting from a state other than origin in a domain D remains in that domain. 

In case of asymptotic stability, the dynamical system will return to origin. 

On the other hand CLF is a Lyapunov function for a dynamical system with control inputs. The 

CLF tests the feedback stabilizability of a system considering existence of a control input ( , )v x t  

such that the system states can be brought to the origin on application of that control input. 

 

Consider a dynamical system of the form 

( , )x f x v         (4.77) 
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Where state vector n
x  and control input vector m

v   . It is desired to feedback stabilize the 

system at origin (x=0).  

Definition 4.1  A CLF is a function V(x) that in domain D, where D   is positive definite 

and continuously differentiable such that we can find a control input ‘v’ for each state ‘x’ that 

will reduce the energy of the system. Mathematically, 

( , ) ( , ) 0 0 ,
V

V x u f x v x v
x


    


     (4.78) 

If there is a stabilizing feedback control input that stabilizes the states of the dynamical system, 

then that dynamical system has a differentiable CLF satisfying (4.77)[59]. 

For the designing and application of an Inverse optimal control, a CLF for the system under 

consideration must be known. For this reason, the following conditions for the existence of a 

CLF must be fulfilled by any positive definite lyapunov function V(x), 

 

Theorem 4.2 A continuously differentiable positive definite function V(x) is a CLF for a system 

if 

( ) 0 , 0 ( ) 0
V

g x fo r x D x V x
x

 
     

 

                   (4.79) 

 

where
n

D R [53]. 
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 Condition for CLF existence 

This condition needs derivative of any positive definite function considered as lyapunov function 

should must be less than zero. So we have to prove ( ) 0V x   that is 

( )
in f ( , ) 0 0

v

V x
f x v x

x

 
  

 
 

 . For this purpose, the Artstein‟s theorem is used, that states 

 

Theorem 4.3 A dynamical system has a differentiable CLF if and only if there exists a regular 

stabilizing feedback controller v(x) 

 

According to theorem 4.3, if there is a stabilizing feedback controller for a dynamical system 

then that system has a differentiable CLF. Moreover V(x) indicates existence of CLF for given 

system is equal to existence of a control v=k(x) that is asymptotically feedback stabilizing 

control. 

To make a stabilizing controller, the following need to be solved, 

    ( ) a rg m in : ( ) ( ) ( )
v

V
k x v f x g x v x

x


  
    

 

      (4.80) 

where ( )x  is positive definite. 

k(x) is to be constructed such that v=k(x) corresponds to an optimal control problem. 

      
2

0

( )J q x v d t



          (4.81) 
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Choosing  

    

2 2

( ) . ( ) .
V V

x f x q g
x x


    

    
    

       (4.82) 

Solving for „v‟ from  ( ) ( ) ( )
V

f x g x v x
x




  


 

     

. ( ) ( )

. 0

.( )

0 . 0

V
f x x

Vx
fo r g

V x
gk x

x

V
fo r g

x





 
 

 
 







 

      (4.83) 

The above described control law is continuous everywhere except x=0. 

Using lie-derivatives notations, 

. ( )
f

V
L V f x

x




  

. ( )
g

V
L V g x

x




 

The HJB equation for the optimal control is described as, 

       

*

21
m in ( ) ( ) ( ) 0

2v

V
q x v f x g x v

x

 
    

 

     (4.84) 

where 
*

( )V x  represents value function. 
*
(0 ) 0V    
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*

( ) 0
V

v g x
x


 


  

      
*

g
v L V          (4.85) 

Solving HJB equation of (4.84) by using „v‟ of (4.85) 

       
2 2

* * * *1 1
( ) 0

2 2
g f g g

q x L V L V L V L V       

Solving the above quadratic equation in terms of 
*

g
L V  

    
   

2 2
* * *

*

*

f f g

g

g

L V L V q L V

L V
L V

 

        (4.86) 

Considering the selected lyapunov function 
*

( ) ( )V x V x  that minimizes the cost function, then 

     
*

( ) ( )
g

k x L V x          (4.87) 

is the optimal controller. 

Considering a positive definite quadratic Lyapunov function 2 2

1 2

1 1
( )

2 2
V       

      1 2

V
 







         (4.88) 

We have from the external part of the normal form of the diving model of AUV system of (4.26) 
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2
( )

0
f x

 
  
 

and
0

1
g

 
  
 

  

Calculating the lie derivatives of f(x) and g 

1 2f
L V     

2g
L V   

Now considering the selected Lyapunov function as a CLF and 2 2

1 2
( )q     , (4.87) becomes, 

     
1 2

( )v k                (4.89) 

4.6.1 Stability Analysis 

To prove the stability of the inverse optimal control, the definition 4.1 and theorem 4.2 are used 

that the time derivative of selected quadratic lyapunov function is negative definite. 

1 1 2 2
( ) . .V         

1 2 2

1 2 2 1 2

2

1 2 1 2 2

( )

( ) ( )

( )

V v

V

V

   

     

     

  

    

   

  

     2

2
( ) , ( ) 0V V              (4.90) 

So it is proved that GAS with the use of selected lyapunov function. 
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4.6.2 Simulations 

Depth response Comparison of Lyapunov Redesign and Inverse Optimal Controllers 

 

 

Figure 4.8 Depth responses of Inverse Optimal and Lyapunov Redesign Controllers 

 

It is observed from fig.(4.8) that both of the controllers stabilizing the depth of AUV in 8 

seconds. Since the overshoot in transient response of the Lyapunov Redesign controller is 1.2%, 

the Inverse Optimal Controller is better with less than 0.6% overshoot. 
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Control Input responses of two controllers: 

 

Figure 4.9 Control Input response of the controllers 

It can be seen clearly in fig.(4.9) that the Inverse Optimal Controller has used very low amount 

of controller input to stabilize the depth of AUV as compared to Lyapunov Redesign Controller. 

4.7 Trajectory tracking using Robust Optimal Control 

A time varying reference is selected as AUV depth tracking signal. The controller used for 

tracking is the combination of SMC and Inverse optimal control to achieve optimal robustness. 

The structure of the proposed controller is as follows, 

    1 2

1 2

0 .5 ( ) 1 .5
( )

d

d
v s a t

  
  



  
      

 

    (4.91)  
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Figure 4.10 Trajectory tracking of AUV with tracking error under robust optimal controller 

It is concluded from the simulations shown in fig. (4.10) that the proposed optimal controller is 

tracking the varying reference trajectory efficiently. The maximum error limit in tracking a 

trajectory is within the bound of + 1%. 

4.8 Output Feedback Controller 

In this section, we design controller using Output Feedback technique and incorporating an HGO 

which is considered an important milestone in the design of nonlinear observers for unmeasured 

system states while designing Output Feedback controllers because of its performance recovery 

feature like state feedback controller and system convergence to that of the actual nonlinear 

system. To design the output feedback controller, the first step is to design a robust observer for 

the states estimation. The uniqueness in this section is the application of the Inverse Optimal 

Controller based Output Regulation control using HGO to emulate system behavior.  
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To investigate the order of the observer to be designed for the system, systems relative degree    

needs to be calculated. For this purpose, output of the system is differentiated for a number of 

times unless an equation is produced showing input. 

Since output of the system is
1

y x  , differentiating it, 

     
1 3 2

c o s ( )y x x x          (4.92) 

No input comes up. So again differentiating (4.92), 

   
1 3 2 3 2 2 2

( co s ( )) s in ( ). co s ( )
d

y x x x x x x x
d x

            (4.93)  

Where 
2

x  contains the control input. Since the differentiating of the output is carried two times, 

so the relative degree 2  . Therefore an observer/estimator is required to implement a real time 

controller. 

In view of the High Gain Observer design method, the Observer for system becomes: 

 

 

              (4.94) 

 

Where the gains are chosen such that, 

     

1

2

2

2 /

1 /

h

h





  
   

   

        (4.95) 
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where„ε‟ is the design parameter. Implementing HGO as output feedback controller is proven to 

recover the controller performance designed on state feedback technique by choosing appropriate 

gains of HGO. This can be accomplished by selecting the value of design parameter ' '  small 

enough that reduces the error of state estimation down to zero as ' '  reaches zero. The selection 

of small value of design parameter ' '  leads to limited time large overshoot in the transient 

response of the observer. This is referred as „peaking phenomenon‟ and can be eliminated by 

saturating the response of the observer during the short transient period that contains peaking.  

Therefore, using HGO for output feedback controller and the estimated states from the observer 

forms the overall feedback inverse optimal controller from (4.24) and (4.89) results in (4.96): 

       
1 2

ˆ ˆ
s s s

v               (4.96) 

4.9 Theorem 3 

Closed loop system of diving model of AUV (4.22) is considered for stabilization and designing 

the controller for output feedback case (4.96). Suppose the state feedback control design in 

(4.96) for the closed loop system has an asymptotically stable origin. The region of attraction of 

origin is R. Let W as any compact subset inside the boundary of R and X as any compact subset 

inside the boundary of 
0

R  . Then, 

 *

1
0   exists s.t for each and every *

1
0    the diving model of AUV's closed loop 

system has solutions starting in W x X and bounded for all 0t   on application of state 

feedback ' ( ) 't   with and without observer ˆ' ( ) 't . 
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 For some 0w  , *

2
0   & 

2
0T   exists having dependency upon ' 'w s.t for each and 

every 
*

2
0   ,the diving model of AUV's closed loop system has solutions starting in 

W x X and bounded for all 
2

t T  on application of state feedback controller with and 

without observer satisfying 

2

ˆ( ) & ( )t w t w t T      

 For some 0w   , *

3
0   exists having dependency upon ' 'w s.t for each and every 

*

3
0   , the closed loop solutions of the diving model AUV system, starting in W x X 

satisfies 

( ) ( ) 0
r

t t w for a ll t     

 here 
r

X is solution of (4.89) starting from the initial conditions X(0). 

 Now considering ( )f   as continuously differentiable in the vicinity of origin of (4.89) 

that is exponential stable, *

4
0 

 
exists s.t for each and every 

*

4
0   , the diving 

model of AUV's closed loop system has exponentially stable origin having W x X as a 

subset of its R (the region of attraction). 

4.10 Proof 

 Considering the objectives of this work and with suitable modifications, this proof tracks 

general outline explained in [60]. It explains that the state feedback controller performance can 

be recovered by an output feedback controller for small values of ' ' . The performance recovery 

is divided into three steps. The first step is the exponential stability performance recovery. The 

second step includes the recovery of a compact set in the interior of the region of attraction. 
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Third step is, with the passage of time as the time tends to „0‟, the output feedback performance 

approaches the state feedback performance. 

4.11 Remarks 

It is well known that with local exponential stability if a controller based on state feedback 

approach attains semi global or global stabilization then for suitable minor value of ' ' , the 

controller designed on output feedback technique attains semi global stabilization. 

4.12 Simulations of Inverse Optimal Controller with Reduced Order High 

Gain Observer 

The simulation with and without HGO using different parametric values of ' '  under Inverse 

Optimal Control are shown in figure below: 

 

Figure 4.11 System states responses with and without HGO using different design parameter values 
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It is concluded from the simulations that the states of the systems are estimated more accurately 

with the HGO having design parameter ' 0 .005 '  . 

4.13 Simulations of SMC with Reduced Order High Gain Observer 

Using the HGO dynamics presented in (4.94) 

1 2 1 1

2 2 1

ˆ ˆ ˆ( )

ˆ ˆ( )

h y

h y v

  

 

 
   

 

 
   

 

And the SMC proposed as in (4.48) 

1 2

ˆ ˆ0 .5 1 .5
v sa t

 



 
   

 
 

  

Simulations with and without HGO using different values of ' '  are shown in Fig 4.12: 

 

Figure 4.12 System states responses with and without HGO using different design parameter values 
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It is concluded from the simulations that the states of the systems are estimated more accurately 

with HGO having the design parameter ' 0 .001 '  . 

4.14 Simulations of SMC with Inverse Optimal Control using Reduced 

Order High Gain Observer 

The simulation with and without HGO using different parametric values of ' '  under robust 

optimal control are shown in figure below: 

 

Figure 4.13 System states responses with and without HGO using different design parameter values  

It is observed from the simulations that the states of the systems are estimated more accurately 

with HGO having the design parameter ' 0 .05 '  . 
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4.15 State Feedback Controller with Full Order High Gain Observer 

In order to estimate all of the states of the system in normal form, a full order HGO is technique 

is taken into account instead of reduced order HGO presented in above sections. 

The structure of the full order HGO for the normal form of the AUV system as presented in 

(4.22) is  

         

1 1 2 1 2 1 3 2 1 1 1

2 4 2 1 5 1 6 2 2 1 1

1 2 3 1 1

2 4 1 1

ˆ ˆ ˆˆ ˆ ˆs e c ta n ( )

ˆ ˆ ˆˆ ˆ ˆs e c ta n ( )

ˆ ˆ ˆ( )

ˆ ˆ( )

C C C

C C u C

v

       

       

    

   

    

    

  

  

     (4.97) 

Where  

1 1

2

2 2

3

3 3

4

4 4

1

a

a

a

a

y

 

 

 

 













   

Here the coefficients are selected such that the polynomial 4 3 2

1 2 3 4
0s s s s         has all 

its roots in the complex left half plane. So coefficients are selected such that,

1 2 3 4
1, 2 , 3, 4a a a a    .  

The controller used in this part is the nominal state feedback controller, 
1 2

ˆ ˆ0 .3 0 .8v       
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Figure 4.14 System states measured responses versus estimated ones using state feedback controller 

The full order HGO designed for the nonlinear system is efficiently estimating the system states 

as shown in figure (4.14). The whole system on application of state feedback control is 

stabilizing in 15 seconds. 

4.16 SMC+Inverse Optimal Controller with Full Order HGO 

The controller used in this part is SMC with Inverse Optimal Controller 

1 2

1 2

ˆ ˆ0 .5 1 .5
ˆ ˆ

0 .5
v sa t

 
 

  
     

 
 
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Figure 4.15 System states measured responses versus estimated ones using SMC with Inverse Optimal controller 

The full order HGO designed for the nonlinear system is efficiently estimating the system states 

as shown in figure (4.15). The whole system on application of SMC with Inverse Optimal 

control is stabilizing in 10 seconds. 
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CONCLUSION AND FUTURE 

RECOMMENDATIONS 

 

5.1 Conclusion 

This thesis addresses optimal and stabilization problem of a nonlinear dynamical model of AUV 

and its solution. Linear control techniques, linear state-feedback and optimal controllers are 

designed and implemented on nonlinear model of AUV. Full state linear observers for both of 

the controllers are designed and implemented. 

Then a nonlinear state feedback stabilizing control law is designed to stabilize nonlinear model 

of AUV. SMC is then designed for robust control. The nonlinear optimal control law is then 

designed using the Inverse Optimal Control design approach based on the existence of a Control 

Lyapunov Function and use of slight variation of Sontag‟s Formula. A quadratic energy function 

is chosen as lyapunov function in order to inspect the asymptotic stability of the system under 

consideration. These nonlinear controllers are then compared with respect to their performances 

and costs in simulations. A varying reference depth tracking is also achieved meeting desired 

performance requirements. A controller based on output feedback is then calculated so as to 

achieve stability of optimal and robust feedback controller under variations of states signals from 

sensors. Reduced and full order HGO‟s are designed to meet the requirements. Analytical proofs, 

Chapter  

5 
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lyapunov stability analysis with extensive graphical results have been incorporated to validate 

the proposed controller‟s performances.  

5.2 Future Recommendations 

Future recommendations include optimal and robust control of steering and diving plane, 

trajectory tracking of steering and diving plane of AUV. 
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Appendix A 

A.1 Nominal Hydrodynamic and Physical parameters of AUV 

 

 

Model and Hydrodynamic Parameters Values 

w
Z  66.6 

w
M

 
30.7 

q
Z

 
-9.67 

q
M  -6.87 

Added mass coefficients  

w
Z

 
Cross flow added mass 

-35.5Kg 

q
M

 
Cross flow added mass 

-4.88Kg.m
2
/rad 

u
X

 
Axial added mass 

-0.93Kg 

Zuw -28.6 Kg/m 

w w
Z  -131 Kg/m

 

q q
Z

 
-0.632 Kg.m/rad

2
 

w
M  -1.93 Kg.m 

General vehicle and environmental parameters  

Iy 

Vehicle moment of inertia around y-axis 

3.45 Kg.m
2 

M 30.48 Kg 

Control surface nonlinear coefficients  

Zuuδ 

Lift coefficient for elevator displacement 

-6.15 Kg/(m
.
rad)

 

Muuδ 

Pitch moment coefficient for elevator displacement 

6.15Kg/rad 

Vehicle Speed  

u 2 m/s 



107 

 

A.2 Variables values used in expressions 
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C1=B41/B31 

C2=C1*u 

C3=B41 

C4= (A31/B31)-(A41/B41) + ((A32*B41)/ (B31)
2
)-(A42/B31) 

C5=C4*u 

C6= ((A32*B41)/B31)-A42 

C7=A31+ ((A32*B41)/B31) 

C8= (A31*u) + ((A32*B41)/B31)-((B41*(u
2
))/B31) 

C9= (B41*u)-(A32*B41) 

C10=B41*u 

C11= (B41*(u
2
))/B31 

C12= (2*B41*u)/B31 

C13=B41 

C14=B41/B31 

C15=B31 

 


