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ABSTRACT 
 

The major purpose of this thesis is to design a nonlinear model predictive control 

(NMPC) scheme which retains the advantages of easily handling the constraints and 

multi-variables, for which the nonlinear model predictive controller is popular, in real-

time setting as well. In the case of fast sampled systems, an additional real-time 

constraint is imposed on the controller because of an implicit requirement of the optimal 

control problem to be solved online within a sampling period. Naturally, there will be 

systems which are complex enough to exhaust any advance hardware in the world or in 

other cases even if hardware is available the cost of implementation might exceed the 

designer‟s budget. The suboptimal solution is the only choice then. Researchers have 

produced various useful algorithms and real-time schemes to counter the real-time 

problem but to achieve success, the new modifications made to the problem formulation 

invalidate the theoretical guarantees provided by the standard NMPC formulations. This 

is where the work presented in this thesis contributes to the topic. It without adding any 

additional computation cost recovers the guarantees on stability of the system when it 

was not constrained in real-time. In practical applications, external disturbances and 

measurement noises can never be left out hence a computationally fast tube-based 

approach is used for the guarantee of robust recursive feasibility of the problem. After 

giving some brief background on the NMPC in chapter 1, the report presents the basic 

nonlinear model predictive controller design in chapter 2. Chapter 3 surveys the available 

robust NMPC methods whereas chapter 4 details the adopted robust solution, the tube 

based approach. Chapter 5 presents the real-time robust NMPC controller scheme. At the 

end of the chapter, the proposed control scheme is shown to stabilize the system for any 

arbitrarily small sampling period. For the illustration of the ideas, the mass spring system 

containing three oscillating masses with nonlinear spring coefficients is stabilized.  

 

Keywords: NMPC, Robust NMPC, Tube-based NMPC, invariant tubes, feasible warm-

start, lyapunov decrease constraint, imposed upper bound 
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Chapter 1  

INTRODUCTION 

 

 

1.1 Motivation 

Model predictive controller (MPC) is a control method which at each sampling instant 

solves a finite horizon open-loop optimal control problem and computes a control 

sequence, the first part of which is applied to the system to be controlled. This on-line 

computation of the optimal solution is the main difference of MPC in comparison to the 

controllers computed offline. This is why a model predictive controller is preferred where 

the computation of offline solution is nearly impossible to obtain or not effective enough 

online. 

The ability to handle multivariable systems easily is also one of the reasons that model 

predictive control has seen its application grow in the industry in past decades. Almost 

every application in the industry imposes hard constraints such as actuators with the 

maximum force they can apply or constraints pertaining to the safety limits on pressure, 

temperature and velocity etc. Efficiency concerns also encourage the designers to operate 

the system at boundary conditions. Traditionally all these hard constraints on the control 

action and system states along with shortage of controllers to handle them have seen the 

designers to resort to ad-hoc methods which in turn makes the system analysis extremely 

difficult. The ability of MPC to handle these constraints implicitly is a key reason why 

MPC is considered as one of the few (if not only) suited controllers.  

It is normally near to impossible to obtain an accurate mathematical model of a real-

world plant, hence a close approximation of the model then is considered for the control 

problem. Furthermore, the ever present measurement noise and other disturbances in the 

control loop all add up to make the system parameters uncertain. Controllers which deal 

with these uncertainties with prior information about the uncertainties (such as bounds 

and stochastic distributions etc.) are normally referred to as the robust controllers. A 

number of approaches pertaining to robustness exist in the MPC framework. One such 

approach is a tube-based model predictive controller which is the adopted solution in the 

work presented in this thesis. 

The natural drawback of the MPC comes with computational concern since an optimal 

control problem needs to be solved at each sampling instant. This had seen the 
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application of MPC restricted to slower systems only till 1970s. However the 

advancement in the computation algorithms and processors is enabling the control 

engineers to use model predictive controller for faster systems as well. Fast sampled 

systems however still impose a real-time constraint in that an optimal solution needs to be 

computed at every sampling instant because the proof of theoretical stability and 

feasibility guarantees depends on the optimality of the solution. For the implementation 

purposes, almost all the NMPC (Nonlinear Model Predictive controller - model predictive 

controller considering nonlinear systems) algorithms are resorted to early termination of 

the optimal control problem, which may cause the systems to be unstable or unfeasible at 

some point. A number of approaches exist which ensure the stability of the closed-loop 

system in real-time environment which is the main motivation of this thesis. 

The aim of this thesis is to develop a model predictive controller for a class of non-linear 

systems (class described in the chapters to follow) which ensures stabilization of the 

origin (i.e. all system states become zero in steady-state condition) in the presence of 

bounded additive disturbances without having to worry about the time available for the 

computation of optimal solution. The controller uses a non-linear tube based approach 

which ensures feasibility of all the input and state constraints under the uncertainties and 

ensures stabilization through a Lyapunov stability constraint, the feasibility of which is 

ensured through a warm-start procedure.  

The following sections give a basic idea about the non-linear model predictive control 

and its evolution. Chapter 2 presents the development of the model predictive controller 

for the system without uncertainties (the nominal system). Chapter 3 presents the various 

approaches used in the literature for countering the problem of uncertainties in the NMPC 

design. Chapter 4 presents the basic ideas of the tube-based robust model predictive 

controller for system with uncertainties. Chapter 5 presents the real-time constraint 

problem and the solution proposed by this thesis work to ensure the stability and 

feasibility of all the state and control constraints for any arbitrarily small sampling time.  

1.2 Non-Linear Model Predictive Control 

Non-Linear Model Predictive controller is a form of control in which the prediction of the 

system states is made over a finite number of sampling instants (the horizon) and then a 

sequence of control actions is calculated as to minimize a cost function which penalizes 

the deviation of system states from the desired trajectory. The control action at every 

sampling instant is computed by solving the open-loop optimal control problem for a 

finite horizon using a non-linear mathematical model of the plant with the currently 

measured state taken as the initial point for the problem which makes it a feedback 

control policy. The first part of the computed control action is applied to the system to be 

controlled and at the next sampling instant, measurements are taken again and the whole 

prediction and optimization procedure is repeated. This is also known as receding horizon 
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control (RHC) which emphasizes the fact that the prediction horizon moves a sampling 

instant at every step. 

The figure 1.1, inspired by (Allgöwer et al. (1999)), shows the basic principle of non-

linear model predictive control. At each sampling time t, current state is measured. 

Taking the current measurement as the initial state, future behavior of the system is 

predicted over a time period Tp and an optimal control input sequence is computed over a 

time period Tc≤Tp such that a predetermined cost function, penalizing the deviation of 

states from reference trajectory and control input from steady-state control, is minimized. 

If there are no uncertainties in the system and an optimal solution can be computed for 

the infinite horizon, Tp can be taken as ∞ and the optimal control problem doesn‟t need to 

be solved again at any other sampling instant. This is exactly what an LQR (Linear 

quadratic regulator - a standard optimal technique for linear systems) does. For linear 

systems with no constraints, obtaining such an optimal solution is possible and that‟s why 

an offline computed control policy stabilizes the system. However, it is near to 

impossible to obtain such a solution for a constrained nonlinear system. Also, in practical 

applications, the disturbances and uncertainties are ever present entities. Therefore the 

control input is only applied until the next measurement is available at time t+δ which 

makes it a feedback dependent policy whose merits are known in the literature. At new 

sampling instant, the open-loop optimal control problem is solved again with current 

measurement as the initial state and again the control is only applied till the next 

sampling instant. 

 

 

Figure 1.1: Principle of Model Predictive Control 
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1.3 NMPC- Brief History and Current Developments 

Non-linear model predictive control basically stems from the theory of optimal control 

which aims for a minimal control effort for a certain closed-loop performance. The core 

of NMPC controllers is the link between two revolutionary contributions to the area of 

control engineering. One is the Hamilton-Jacobi-Bellman Theory (Dynammic 

programming) which gives the sufficient conditions for the optimality and on the basis of 

that a way to obtain an optimal stabilizing feedback control       . Second is the 

maximum principle which provides the necessary conditions for optimality and forms the 

basis for obtaining the algorithms for computing the open loop optimal control         

for a given initial state. The link between the two major schemes is              and 

was pointed out first in the book by Lee and Markus (1967, p. 423) as “One technique for 

obtaining a feedback controller synthesis from knowledge of open-loop controllers is to 

measure the current control process state and then compute very rapidly for the open-loop 

control function. The first portion of this function is then used during a short time 

interval, after which a new measurement of the process state is made and a new open-

loop control function is computed for this new measurement. The procedure is then 

repeated”. But due to lack of advancement required for computing the solutions online 

“very rapidly”, the proposal was not given much attention to. However, in 1970s, the 

advent of processors technology and progress in the faster computer algorithms made the 

model predictive control implementable but still only for slower systems. (Richalet, 

Rault, Testud and Papon (1976)) were the first to propose its application to the process 

control industry and it became extremely popular employing Linear models, including 

impulse and step response models, owing to its implicit ability to handle the constraints 

and multivariable setting easily. However, in the absence of formal stability guarantees, 

prediction horizons and cost functions were used as the tuning parameters and for that 

reason the method was mainly categorized as an ad-hoc solution. Hence they system 

specific and design guidelines were hard to generalize. 

In an article, ((Chen and Shaw (1982)) showed the stability of the closed-loop system 

with MPC using equality terminal constraints and proved it using Lyapunov function 

techniques, however, whole of the optimal solution over prediction horizon was applied 

instead of first part only. In the MPC paradigm as used today, (Keerthi and Gilbert 

(1988)) show stability of the NMPC using terminal constraints sets for discrete time 

linear systems and (Mayne and Michalska(1990)) for the continuous time linear systems. 

The fact that the numerical difficulties make the satisfaction of the equality terminal 

constraint in non-linear systems nearly impossible, regional terminal constraints along 

with suitable terminal costs were then proposed and used as alternatives and gained much 

of the attention from the researchers in 1990s to obtaining NMPC schemes with 

guaranteed stability. The latter half of the 1990s saw rapid development in the topic 

owing to the major contributions such as (De Nicolao, Magni and Scattolini (1996)), 
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(Magni and Sepulchre (1997)), (Chen and Allgöwer (1998)). (Mayne, Rawlings, Rao and 

Scokaert (2000)) in a survey summarize these results which is considered a consensus in 

the control community over a standard nominal non-linear model predictive control. 

An important extension of the nominal NMPC addresses the issues relating to robustness. 

It is well known that in practical application, it is impossible to avoid the uncertainties in 

the control loop owing to various factors such as plant-model mismatch, disturbance at 

the actuation, noise in the measurement and numerical errors etc. Since NMPC is a 

feedback control law, it exhibits some degree of inherent robustness (Magni and 

Sepulchre (1997)), (Chen and Shaw (1982)), (Mayne et al. (2000)), (Scokaert et al. 

(1997)), (Michalska and Mayne (1993)) and (Findeisen et al. (2003c)). But as pointed out 

by Teel (2004); Grimm et al. (2004), apart from linear systems with convex constraints, it 

may be very difficult to quantify and its domain indeed includes only very small region 

of the state-space. This motivates the research in the field of robust NMPC which has 

seen significant results being published proposing different approaches such as Robust 

NMPC solving an open-loop min-max problem (Lall and Glover (1994)), (Chen et 

al.,(1997)), (Blauwkamp and Basar(1999)), H∞ based NMPC (Magni et al. (2001b), 

(2001c)), (Chen et al. (1997)), Robust NMPC design using multi objective optimization 

(Darlington et al.(2000), Rustem(1994)), Robust NMPC via optimizing a feedback 

controller used in between the sampling times (Kothare et al.(1996)), (Magni et 

al.(2001b)), tube-based robust NMPC (Mayne and Kerrigan (2007)). 

A big limitation which caused delay in the popularity of MPC as compared to the time it 

was proposed was the implicit requirement that an online optimization problem must be 

solved online within a given amount of time. Therefore sufficiently fast sampled systems 

impose a hard real-time constraint on the controllers, the addressing of which is done in 

topic of fast MPC in the literature. Most fast MPC schemes generally are categorized in 

two schemes. One is Explicit MPC (A. Bemporad et al. (2002)), (Bemporad et al. 

(2002)), (Borelli (2003)) in which the controller pre-computes the solutions and then uses 

them regionally from a look up table on-line. This method however is limited to plants 

with less complexity (number of dimensions etc.) because of the fact that required storage 

space (in turn controller cost) increases with exponentially with increase in dimensions. 

Second approach is to fasten the online optimization (Hansson (2000)), (Kouvaritakis et 

al. (2002)), (Andersen et al. (2003)), (Ferreau et al. (2008)), (Cannon et al.(2008)), and 

(Patrinos et al. (2010)). These fast algorithms mainly exploit the special structure of the 

MPC schemes or sparsity of the different optimization methods. The algorithms while 

enabling the NMPC to be used for sufficiently fast sampled systems as well, however 

compromise the theoretical stability and feasibility guarantees associated with the 

standard MPC problem formulations. 

(Zeilinger et al.) propose a real-time MPC formulation for linear systems which 

guarantees stability and feasibility for an arbitrarily small sampling time claiming no 
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additional computation cost. The work presented in this thesis extends its ideas to the 

non-linear setting employing tube-based NMPC proposed by (Mayne and Kerrigan 

(2007)). The central ideas of the proofs are same as in (Zeilinger et al.) while making 

necessary modifications for the non-linear case. Owing to the vast amount of 

development in the field, it is impossible to overview all methods or formulations. Hence 

this thesis will focus on the robust non-linear model predictive controller for only a class 

of constrained non-linear systems (defined in the following chapter) with guarantees of 

stability and feasibility in the real-time environment.  
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Chapter 2 

NONLINEAR MODEL 

PREDICTIVE CONTROLLER 

 

 

This chapter presents an overview of the basic ideas and implementation algorithm of the 

model predictive control for non-linear systems, also known as Non-linear Model 

Predictive Control (NMPC). The literature on nominal NMPC is well-established and due 

to vastness of the topic, it is not possible to present the evolution of the NMPC 

formulations over the time in this chapter and thus it only presents the well-known 

NMPC(with stabilizing terminal constraint and cost) problem formulation for constrained 

non-linear systems with certain assumptions. For a detailed overview of the topic, the 

reader is referred to (Allgöwer et al. (2004)), an excellent survey paper by (Mayne et al. 

(2000)) and the books (Mayne and Rawlingss (2009)), (Grüne and Pannek (2011)) on 

which most of the notation and content on nominal NMPC (problem formulations and 

proofs) of this thesis are based. 

The NMPC controller developed in this chapter will be referred to as the nominal 

controller in the rest of this thesis that is it will only account for the system to be 

controlled without any uncertainty. Nominal NMPC is a standard term in the robust 

NMPC literature and is a well-established topic. For a detailed overview of the evolution 

of Stabilizing NMPC schemes and their stability results, interested reader may refer to the 

survey paper (Mayne et al. (2000)). In this thesis, a model predictive controller similar to 

(Chen and Allgöwer (1998)), referred by the authors as Quasi-Infinite Horizon Nonlinear 

Model Predictive Control, is presented. This NMPC scheme uses stabilizing terminal 

constraints and a suitable cost to ensure stability. NMPC schemes without terminal 

stabilizing constraints, however, also exist but not yet popular. Interested reader may 

refer chapter 6 of the book (Grüne and Pannek (2011)) for further information. 

In this thesis, only regulation problem is discussed which can be extended to the 

regulation of constant reference trajectories by a simple change of co-ordinates. Since for 

time-varying references, obtaining a stabilizing terminal constraint set and cost is not 

straightforward and possesses considerable complexity, the tracking problem of arbitrary 

references are not discussed in this work. Hence for the sequel, tracking is assumed to 

mean tracking of constant piece-wise references. Readers interested in the tracking 
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problem of arbitrary references under NMPC framework may refer to the work of 

(Bemporad, Casavola and Mosca (1997)), (Bemporad (1998b)) and (Bemporad and 

Mosca (1998)). 

2.1 Non-Linear Model Predictive Controller 

NMPC, in its most basic form, is a model based optimizer. That is it uses the 

mathematical model of a system to predict the future behavior of the system and then 

finds an optimal control to optimize the future trajectories. Receding horizon control 

strategy then implies that at each sampling instant new predictions will be made on the 

basis of new measurements and new optimizing control will be computed. This brings us 

to the most important ingredient of an NMPC scheme and that is the mathematical model 

of the system. 

In this thesis, as is common in the literature, discrete-time systems of the form 

         (         )                          (2.1)  

are considered where               are the system vector and input vector 

respectively subject to state and input constraints  

                 (2.2)  

Following assumptions are made for the system (2.1). 

Assumption 2.1 

1.        is twice continuously differentiable and          which implies that origin is 

an equilibrium point of the system with u=0. 

2.       is convex and closed and       is convex and compact. Both are 

assumed to contain origin in their interior. 

3. We assume the uniqueness and existence of the solutions for system (2.1) for any 

initial condition in     and    . 

Assumption 2.2 

All states are measurable. 

NMPC schemes in which assumption 2.2 cannot be satisfied employ an observer and are 

referred as output-feedback NMPC schemes. NMPC with observers is considered as an 

extension of the standard nominal NMPC controller and is altogether a separate topic 

because all the stability proofs have to be modified to be valid and hence are not 

considered in this thesis.  Interested reader is referred to the book (Mayne and Rawlings 

(2009)) for more details on the topic.  
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Remark 2.3 

Satisfaction of Assumption 2.1(1) can always be ensured for the tracking of constant 

references with a mere change of co-ordinates. Unfamiliar reader may refer to the book 

(Grüne and Pannek (2011)). 

Remark 2.4 

The differentiability condition in the assumption 2.1(1) implies at least the existence of a 

region where the solutions of system (2.1) are unique (Local Lipschitz Condition). 

However the region is not guaranteed to be larger than or equal to  . An easier case 

occurs if 
  

  
 is bounded in   . In that case, the system is globally Lipschitz and 

assumption 2.1(3) is satisfied easily. For more details on the topic, reader may refer to 

section 3.1 of the book (Khalil (2002)). 

Now that a mathematical model of the system is available, it can be used to iterate the 

predictions. Since these predictions are done in an embedded controller in a fictitious 

time, these internal variables must be distinguished from the actual values of the plant. 

Hence the iterated prediction trajectory is defined by, 

                           (          )                (2.3)  

where the terms with subscripts represent the predicted values. 

The stage cost function l (x(k),u(k)) which penalizes the deviation of states and inputs 

from their reference values is defined by 

                       
           

  (2.4)  

where     represents the Euclidean norm and             are symmetric positive 

definite weighting matrices and can be used as tuning parameters for improving the 

performance of the closed-loop system. 

Furthermore, for a current state „x’, let the set of admissible control sequences be given 

by 

 

   
      {

           

                      {       } 
             

} 

 

(2.5)  

where ‘N’ is the prediction horizon and       is the terminal constraint set. That is, at 

each sampling instant, the predicted trajectories are forced to terminate in a neighborhood 

of the origin which is the key for the stability of the system. Feasibility of the open-loop 

control problem at time t=0 therefore implies the closed-loop asymptotic stability if the 
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terminal region is an invariant set. One method to obtain such a set will be outlined in the 

section 2.2. 

A set of feasible states, can therefore be defined as 

    {        
       } (2.6)  

The set of feasible states is usually referred as the region of attraction for the non-linear 

model predictive controller. The nominal NMPC problem can now be formulated as an 

algorithm as, 

Algorithm 2.5 

At each sampling instant tn, n=0, 1, 2…: 

(1) Measure the state        of the system. 

(2) Set         , solve the optimal control problem 

 

                    (       )   ∑                 

   

   

             

(2.7)  

                                                   
                                                (2.8)  

                                                        (             ) 

 

And denote the obtained optimal control sequence by        
       

(3) Define the NMPC-feedback value 

                   (2.9)  

 and use this control value in the next sampling period. 

The corresponding optimal value function is given by  

            
        

     
  (       ) (2.10)  

 

The closed-loop system resulting from algorithm 2.5 with feedback law   (    ) is then 

given as, 

         (       (    ))                             (2.11)  

Before presenting a method to choose a stabilizing terminal cost and terminal constraint 

set, few results are stated which will be helpful in outlining the algorithm for choosing 

appropriate terminal set and cost. Consider the linearized version of the non-linear system 

obtained by the Jacobian linearization at origin, 
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                    (2.12)  

where,   
  

  
            

  

  
      are the Jacobian matrices. 

It is well known that if the pair (A, B) is stabilizable, a state-feedback law      can 

always be obtained such that the resulting closed-loop system 

               is asymptotically stable. Important results pertaining to this 

linear state-feedback controlled non-linear closed-loop system are summarized in the 

following lemma.  

LEMMA 2.6 (Chen and Allgöwer (1998)) 

Suppose the linearized system (2.12) is stabilizable at the origin, then   

a) The following slightly modified lyapunov equation 

                           (2.13)  

 yields a solution „P‟ which is unique, positive definite and symmetric where 

       ,           and         satisfies 

             (2.14)  

 Where   denotes the eigen value. 

b) There exists a neighborhood of the origin which is invariant for this linear state-

feedback controller and it stabilizes the system without being constrained inside 

the region. The neighborhood Ωα can be specified using an arbitrary constant „α‟ 

as,  

    {             } (2.15)  

such that 

i.        i.e. the neighborhood lies in the interior of the constraint set.  

ii.               , i.e., the linear state-feedback controller stabilizes the 

non-linear system (2.1) inside the region respecting the control constraints. 

iii. The state-feedback controller      renders    invariant for the non-

linear system (2.1) 

iv. For any state lying inside the region, an upper bound for the infinite 

horizon cost of the non-linear system (2.1) being controlled by      is 

given by, 

                       (2.16)  

The proof of this lemma is not stated in this thesis, interested reader may refer to (Chen 

and Allgöwer (1998)). 
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2.2 Choosing the Terminal Set and Terminal Cost 

The infinite horizon cost obtained for the non-linear system (2.1) controlled by the state-

feedback controller      is given by Eq (2.16). A suitable terminal cost, to be used in 

algorithm 2.5 is thus chosen to be, 

                     
         

           
(2.17)  

where the matrix „P’ is obtained by the solution of the lyapunov equation (2.13). Choice 

of the state feedback gain matrix is only dictated by the requirement that it should 

stabilize the Jacobian linearization (2.12) of the non-linear system (2.1). However, due to 

optimality of MPC, a popular choice of the stabilizing gain „K’ is the solution of standard 

LQR problem. 

For choosing a suitable terminal set, the results from the lemma 2.6 can be used to outline 

a constructive algorithm to obtain the terminal region. Following algorithm outlines the 

procedure for choosing such a terminal set. 

Algorithm 2.7 (Chen and Allgöwer (1998)) 

1. Find a state-feedback gain matrix „K’ such that      stabilizes the system (2.12) 

2. Find a constant „k’ such that inequality (2.14) is satisfied. 

3. Find the unique positive definite symmetric matrix „P’ by solving the lyapunov 

equation (2.13). 

4. Find the largest possible constant „α1‟ such that                    where the 

definition of    follows from (2.15). 

5. Find the largest possible constant          such that the following inequality 

satisfies in   , 

 
   

         

    
 

(2.18)  

where  

 
      {

      

    
               } 

(2.19)  

and 

       (          )         (2.20)  

Remark 2.8 

In this algorithm, the existence of a stabilizing linear feed-back gain is assumed. In the 

case a linear state-feedback gain is not available, the terminal region is a single point, i.e. 

„origin‟ and the terminal region constraint turns into terminal equality constraint which is 

shown to stabilize the non-linear system(2.1) in (Mayne and Michalska, (1990) and 

(Rawlings and Muske, (1993)). However, due to numerical difficulties, considerable 
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longer prediction horizon is required for some systems to ensure feasibility at time t=0. 

Furthermore, for some systems, it is not possible for all the system states to 

asymptotically converge to origin. Instead the trajectories stay in a neighborhood around 

the origin. In those cases, a terminal region is necessary to have. For detailed overview, 

interested reader may refer to (Chen and Allgöwer (1997a)). 

Remark 2.9 

The terminal region obtained by algorithm 2.7 is not unique and therefore a largest 

possible set is searched for. This however depends on many factors including the gain 

matrix „K‟, the corresponding constant „k‟ and the strength of the non-linearity of the 

system       In general, stronger the non-linearity, smaller the terminal region implying 

lesser feasible states leading to small region of attraction. For linear or less complex non-

linear systems, the terminal region might only be affected by the constraints on states and 

control. 

Remark 2.10 

For some non-linear systems, algorithm 2.7 may yield a very small region of attraction. 

In that case, a modification in the algorithm may yield a larger region. In this approach, 

algorithm is implemented until step 4 and then to find „α‟ the following optimization 

problem is solved instead  

    
 

{                           } (2.21)  

Once a suitable „α‟ is obtained, it may then be used to construct the terminal set from the 

definition of    in (2.15). A discussion of obtaining „α1‟ and „α‟ can be found in 

(Michalska and Mayne (1993)). 

Remark 2.11 

In the case of linear systems,                    imply that     satisfies (2.18) 

and the standard lyapunov equation for linear systems is recovered from (2.13). Also the 

inequality (2.16) is satisfied with an equality i.e. infinite horizon cost obtained by (2.16) 

is the same as LQR cost if the stabilizing control is obtained by solving LQR problem. 

2.3 Stability of the Non-Linear Model Predictive Controller 

It is well known from the history of NMPC that a model predictive scheme with an 

infinite horizon cost is able to stabilize the system with the closed-loop asymptotic 

stability guaranteed by the feasibility of constraints then. But the problem is it is 

impossible to find a solution to the open loop problem of constrained systems with 

infinite prediction horizon. While practical implementation rules out the scheme with 
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infinite horizon cost, all the theoretical proofs are based on approximating the finite 

horizon cost with the infinite horizon cost. 

In the case of finite horizon, stability is ensured through some explicit additions such as 

terminal cost and a terminal constraint. In this thesis, non-linear model predictive control 

similar to (Chen and Allgöwer (1998)) is implemented and therefore only the outline of 

important relevant results have been presented and for the proofs the reader is referred to 

the cited work. 

The central idea of this NMPC scheme is that at each sampling instant, current 

measurement of the states of the system is taken on the basis of which open-loop 

predictions of the nominal system are made. An open loop control problem is then solved 

to find an optimal control sequence to optimize these open-loop predictions respecting 

both state and input constraints. To ensure stability, an additional terminal constraint that 

the system states at the end of prediction horizon terminate in an invariant terminal region 

is added. In addition to it, infinite horizon cost of the non-linear system if it was being 

controlled by a linear local state feedback law, is used as terminal cost which gives an 

upper bound on the optimal value function.  

2.3.1 Feasibility and Recursive Feasibility 

Since the open-loop optimization problem is solved at each sampling instant, it should 

also be feasible at all sampling instants. Feasibility at a sampling instant means that there 

exists at least one (not necessarily optimal) solution to the problem (2.7) subjected to 

constraints (2.8) under which the objective function (2.4) is bounded. In the following 

lemma, an important result pertaining to recursive feasibility is stated. 

Lemma 2.12 

The open loop control problem (2.7) for the system (2.1) subjected to constraints (2.8), 

with no uncertainties present and all state measurements available at every sampling 

instant, is feasible at all future sampling instants if it is feasible at t=0.  

The proof of this lemma is not stated here, however, the interested reader may refer to 

(Chen and Allgöwer (1998)).  

Remark 2.13 

Lemma 2.12 states that once a problem is feasible it stays feasible at all future sampling 

times if no disturbances are present. This leads to the question how to ensure the 

feasibility at the start then? The simple answer to the question is to use the prediction 

horizon as the tuning parameter i.e. increasing the length of the prediction horizon until 

the problem becomes feasible(Chen and Allgöwer (1998)). This will work because in 

theory, infinite horizon optimal control problem is proved to stabilize the system as 
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mentioned earlier. Due to computational burden, however, „N’ is chosen as small as 

possible. 

2.3.2 Asymptotic Stability  

On the basis of initial and recursive feasibility, asymptotic stability of the nominal non-

linear model predictive controller can be stated. 

Theorem 2.14 

Suppose that: 

1. Assumptions 2.1 are satisfied 

2. The Jacobian linearization (2.12) of the non-linear system (2.1) is stabilizable 

3. The open-loop optimal control problem is feasible at t=0 

Then the closed-loop system (2.11) is stable under the feedback control law (2.9) if no 

external disturbances are acting on the system. Let       be the set of initial states for 

which assumption (3) is satisfied then    denotes the region of attraction of the closed-

loop system (2.11). 

Remark 2.15   

The condition (2) in theorem 2.14 is only sufficient not necessary. The fact that the pair 

(A, B) of the system (2.12) is not stabilizable does not imply that there does not exist a 

linear feedback controller able to stabilize the non-linear system (2.1). (Chen and 

Allgöwer (1998)). 

Remark 2.16   

If the open-loop control problem is feasible at start, it stays feasible for all future 

sampling instants because of the terminal region constraint. That is true even if the 

controller is unable to find a global optimal solution in the required specified time and 

returns a suboptimal solution (Chen and Allgöwer (1998)). That is if the external 

disturbances and uncertainties are not present, the nominal closed-loop system if once 

feasible will always converge to the origin. This fact will be useful for the stability of 

real-time robust NMPC this thesis aims to develop. 

Remark 2.17   

(Chen and Allgöwer (1997b)) show that if the non-linear system (2.1) is already open-

loop asymptotically stable, removal of terminal constraint and terminal cost from the 

problem formulation does not invalidate the stability of the closed-loop system. 
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2.4 Example – System of Three Masses 

Figure 2.1 (Wang & Boyd (2010)) shows a system of three oscillating masses 

interconnected by dampers and springs with walls on either side. The control input is the 

tension exerted by the actuators between the neighboring oscillating masses. The 

mathematical model of the system is given as, 

     ̈      ̇               (2.22)  

 

 

 

 

 

where,  

      [
    
   
    

] represents the masses,     [

         
   

         

] represents 

the damping coefficients,     [
         

   
         

] represents the spring constants 

and     [
         

   
         

] represents the stiffness coefficient of the springs. 

The corresponding linearization of the model at origin is given by, 

     ̈        ̇                 (2.23)  

 

The oscillating masses are taken to be       , the damping constants are   

          and the spring constants are taken as          . The stiffness coefficient 

of the spring is taken as      . The position displacements of the masses are 

constrained in     whereas the velocities of the masses are not constrained at all. The 

actuation signals are constrained to lie with in    . The controller is simulated in a 

matlab code file. The matlab‟s built-in function fmincon is used for the constrained 

optimization. For the offline computation of terminal sets, the toolbox YALMIP is used.  

Figure 2.1: System of Three Oscillating Masses 



Page 17 
 

Figure2.2 shows that the control actions obtained from the solution of nominal optimal 

control problem asymptotically stabilizes the nominal system to origin. 
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Figure 2.2: Stabilization of the Nominal system to Origin 
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Chapter 3  

ROBUST NONLINEAR MODEL 

PREDICTIVE CONTROLLER 

 

 

Nominal Model predictive controller presented in the previous chapter is shown to 

stabilize the system when there are no uncertainties in the system. It is well known that it 

is impossible to avoid the uncertainties in a practical application. There are various 

sources of errors in the system such as model-plant mismatch, measurement noise, 

numerical errors and external disturbances etc. An important question thus, referred to as 

the robustness, is what will be the behavior of the closed-loop system under these 

uncertainties. The researchers have put considerable effort into investigating it but still 

the robustness analysis of NMPC schemes remains to be the harder task as compared to 

synthesizing a robust controller because of the constraints and discontinuous nature of the 

solution of the optimization problem (Bemporad and Morari (1999)). An important tool 

used for the analysis of the robustness of the robust nonlinear model predictive 

controllers is input-to-state stability which will be briefly presented in section 3.1. 

Section 3.1 first presents the description of uncertainty and problem setup used in the 

formulation then introduces some important definitions which are needed for the analysis 

of robust NMPC schemes. Section 3.2 presents the results on inherent robustness of the 

nominal model predictive controller whereas section 3.3 deals with the design of robust 

nonlinear model predictive controllers. Open-loop robust NMPC with restricted 

constraints and the min-max robust NMPC (both open and closed loop formulations) are 

briefly presented. Tube-based model predictive controller, which is the adopted solution 

for the real-time robust controller, is presented in chapter 4 separately. 

3.1 Robustness Problem and Uncertainty Description 

 let the uncertain system be described by the model of the form 

         ̃                                          (3.1)  

where  

  ̃                  (         )                    (3.2)  
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In equation (3.2),        is the nominal model of the system.    MW is the disturbance 

which is contained in the compact set W     and          represents the uncertain 

term and can be modified to model different types of uncertainties, disturbances, 

measurement noises, modeling errors, aging, actuator nonlinearities etc. Usually in the 

robust NMPC framework, following assumptions are taken for the uncertain term „g‟ 

Assumption 3.1 

1.          is lipschitz in all its arguments with the lipschitz constant      

2.  (      ) is bounded from above and the upper bound on its absolute value 

| (      )| is known a priori. 

The concept of input-to-state stability (ISS) has proved to be a useful tool for the 

robustness analysis of the robust NMPC schemes which is defined next. 

Definition 3.2 (Input-to-state stability, Magni and Scattolini (2007))  

The system 

                                                      MW  (3.3)  

is said to be ISS in   if there exists a KL function  , and a K function   such that 

                   ‖ ‖                    

 

Definition 3.3 (ISS-Lyapunov function, Magni and Scattolini (2007))  

A function      is called an ISS-lyapunov function for the system (3.3) if there exists a 

set   , K functions                such that 

                    
                    

         (      )                                MW 

(3.4)  

 

3.2 Inherent Robustness of the Nominal Nonlinear Model 

Predictive Controller 

Since the model predictive control is a feedback controller by nature, one might expect 

the existence of a region where the nominal controller will maintain its stability and 

feasibility properties in the presence of uncertainties, as associated with other feedback 

controllers. Hence the most obvious strategy would be to ignore the uncertainties and 

expect the nominal controller to stabilize the perturbed system in an arbitrarily small 

region of attraction. This approach in the literature is addressed in the name of inherent 
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robustness of the nonlinear model predictive controller. The presence of state constraints 

and terminal state constraint in the problem formulation of NMPC make it extremely 

difficult to quantify the robustness of the nominal closed-loop system, hence accounting 

for the less number of significant results on the topic. There are mainly two approaches 

which have been used in the literature for the analysis of the robustness of nominal model 

predicted controllers. One uses the inverse optimality (De Nicolao et al. (1996)) and 

(Magni and Sepulchre (1997)) and the other uses input-to-state stability property. 

3.2.1 Inherent Robustness using Inverse Optimality 

It has been proven that for an unconstrained system, the control law obtained from the 

solution of the infinite horizon problem guarantees robustness under uncertainties for 

both continuous and discrete-time systems, see for example (Chellaboina et al.(1998)), 

(Geromel and Cruz (1987)), (S.T.GLAD (1987)) and (Sepulchre et al.(1996)). For 

continuous time systems, (Magni and Sepulchre (1997)) show that similar robustness 

properties can also be derived for unconstrained model predictive control using inverse 

optimality of the control law. For discrete time systems, similar results are shown in 

(Magni and Scattolini (2007)). Using some strong continuity assumptions on the value 

function, NMPC is shown to possess robustness properties under and gain perturbations 

due to external additive disturbances and actuation system nonlinearities in (De Nicolao 

et al. (1996)). 

3.2.2 Inherent Robustness using ISS property 

Taking some strong assumptions on continuity of the system and value function, (Jiang 

and Wang (2001)) present a useful result on the inherent robustness of the nominal 

nonlinear model predictive controllers using input-to-state stability property. The result 

can be summarized as, 

Theorem 3.4 (Jiang and Wang (2001)) 

Under the assumptions (2.1) and (3.1), if       is lipschitz with lipschitz constant   , 

the closed-loop system (3.3) under the control law (2.9) is ISS in    for any perturbation 

         such that            
 

  
                    is an arbitrary real 

number. 

3.3 Robust Nonlinear Model Predictive Controllers 

The results presented in the previous section for inherent robustness assume that the 

recursive feasibility (required for the guarantee of stability of Nominal NMPC) is never 

lost under any perturbation which can only be ensured if the system is unconstrained (i.e., 

only terminal region and control constraints are applied, no state constraints are present). 

One of the biggest advantages of NMPC has been its ability to handle constraints easily 
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and hence the use of NMPC in such condition itself is then questionable. (Grimm et al. 

(2004)) show that nominal predictive controllers for certain constrained nonlinear 

systems may exhibit no robustness at all under perturbations.  

The system of oscillating masses was shown to be stabilized by the nominal NMPC 

controller when no disturbances were present. Figure 3.1 shows that under uncertainties, 

the nominal NMPC controller from chapter 2 is no longer able to stabilize the system. 
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Figure 3.1: Destabilization of states under perturbations 
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Moreover, even for the stabilizing terminal constraint, the strong continuity assumptions 

are difficult to prove or satisfy in general leading to the need of robust techniques which 

consider explicitly countering the effects of disturbances and uncertainties in the system. 

Several approaches addressing the synthesis of robustly stabilizing model predictive 

controller have been proposed in the literature, see (Mayne et al. (2000)) and (Magni and 

Scattolini (2007)) for a survey. The techniques generally fall in following categories. 

1. Robust NMPC with tightened constraints employing the tighter control and state 

constraints. (Limon et al. (2002a)) and (Grimm et al. (2003))  

 

2. Min-Max open-loop and closed-loop robust NMPC formulations employing a 

modified cost functional. (Chen et al. (1998)), (Magni et al. (2001b)), 

(Gyurkovics (2002)), (Magni et al. (2003)), (Magni and Scattolini (2005)) and  

(Limon et al. (2006a)) 

 

3. Robust model predictive controller employing tubes of trajectories. (Langson et 

al. (2004)), (Mayne et al. (2005)) and (Mayne and Kerrigan (2007)).  

3.3.1  Robust NMPC with Tightened Constraints 

The robust approach presented in this section is the most intuitive way of addressing the 

robustness problem one could take under the problem formulation i.e., using the 

constraint handling ability of NMPC to counter the disturbance. The basic idea is to use 

tighter constraints on both input and states such that states don‟t leave the feasible set 

which will ensure stability and feasibility of the problem under perturbations.  

Before presenting the problem formulation, an important assumption will have to be 

made. 

Assumption 3.5 (Magni and Scattolini (2007)) 

The uncertain term in equation (3.1) is bounded by   , that is | (      )|     for any 

        satisfying (2.2) and    MW. 

For tighter state and control constraints, an important definition needs to be introduced. 

 Definition 3.6 (Pontryagin Difference, Magni and Scattolini (2007)) 

Let       , be two sets, then the Pontryagin difference set is defined as  

    {                 } 

Consider now the following sets  ̃      
 
         

 
 is defined as, 
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 {          

  
 
  

    
 } 

The set of admissible control sequences for tighter constraints can be given as, 

 

 ̃ ̃ 

      {

           

                ̃      {       } 

          ̃   

} 

 

(3.5)  

Where  ̃      ̃  are modified according to definition 3.6. 

The Nominal Robust Optimal Finite Horizon Control Problem can now be formulated as 

an algorithm as, 

Algorithm 3.7 

 At each sampling instant tn, n=0, 1, 2…: 

(1) Measure the state        of the system. 

(2) Set         , solve the optimal control problem 

 

                    (       )   ∑                 

   

   

             

(3.6)  

                                                 ̃ ̃ 

                                                (3.7)  

                                                        (             ) 

 

And denote the obtained optimal control sequence by      ̃ ̃ 

       

(3) Define the NMPC-feedback value 

                   (3.8)  

 and use this control value in the next sampling period. 

For the stability and feasibility guarantees of the problem defined above, following 

assumption are be made. 

Assumption 3.8 (Magni and Scattolini (2007)) 

Let                   be such that 

1. Valid region of attraction i.e.,    {           }                    

                            

2. Control constraints satisfied in the region of attraction i.e.,        ,       

3. Invariance of the set under NMPC law i.e.,  (       )           
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4. Terminal cost is a lyapunov function i.e., 

   (       )         (       )       

5.                                     K            

6.                                                       

7.     {            }                     (       )     

                           

With the above assumptions made, the stability result of the presented scheme can be 

stated as, 

Theorem 3.9 (Limon et al. (2002)) 

Let    be a set of states in which the optimal problem in algorithm 3.7 is initially 

feasible, then the closed loop system in equation (3.3) with the feedback control law as in 

(3.8) is ISS in    if assumptions 3.8 are satisfied with 

  
    

     
    

Although the result stated in theorem 3.9 is useful for some systems but is quite 

conservative in general. The region of attraction using this approach may be very small 

for some systems and for some it may not even exist. Moreover, continuity of the value 

function is an important property in order to prove inherent robustness, as shown in 

(Grimm et al. (2004)), but is firstly very difficult to prove and secondly very conservative 

to assume. Optimal value function since comprises of a control law obtained from an 

optimization problem and hence cannot be generally expected to be continuous 

(Meadows et al. (1995)). Moreover, for system models which inherit discontinuity such 

as hybrid systems, value function will always be discontinuous. Hence reliance on the 

inherent robustness results can lead to conservative results under uncertainties. Hence 

less stringent approaches as described next present the solution to this problem. 

3.3.2  Robust NMPC with Min-Max Approaches 

The oldest method addressing robust stability problem in the model predictive control 

frame work (G.Tadmor (1992)) placed it in the    for linear unconstrained systems. This 

led to the many other related results for both constrained and unconstrained linear 

systems, see for example (Scokaert and Mayne (1998)). For the nonlinear systems, (Chen 

et al. (1997)),(Magni et al. (2001)), (Fontes and Magni (2003)) employ     based MPC 

algorithms for the continuous time systems and (Magni et al. (2003)), (Gyurkovics 

(2002)), (Gyurkovics and Takacs (2003)), (Magni and Scattolini (2005)) and (Mayne 

(2001))  study discrete-time systems. The basic idea in (Magni et al. (2003)) is to modify 

the problem such that an    type cost function is maximized with respect to the 

disturbance and then the cost function is minimized with respect to the control inputs. 
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The two main formulations exist namely open-loop min-max NMPC and closed-loop 

min-max NMPC.  

1. Open-loop Min-Max NMPC  
 

As the name suggests, this approach uses the open-loop predictions of the nominal 

system and maximizes the worst-case disturbance case. For the presentation, following 

assumption on the disturbance „w‟ is made. 

Assumption 3.10 (Magni and Scattolini (2007)) 

The disturbance „w‟ is contained in a compact set W and there exists a K function 

     such that               . 

The disturbance sequence „w‟ can be defined as, 

                       

The open-loop min-max problem can now be given as an algorithm as, 

Algorithm 3.11 

 At each sampling instant tn, n=0, 1, 2…: 

(1) Measure the state        of the system. 

(2) Set         , solve the optimal control problem 

                                                      

      (       )   ∑{                        }

   

   

             

(3.9)  

                                                 ̃ ̃ 

                                                (3.10)  

                                                    ̃                 

 

Where lw is the H∞ type cost function. Denote the obtained optimal control sequence 

by      ̃ ̃ 

       

(3) Define the NMPC-feedback value 

                   (3.11)  

 and use this control value in the next sampling period. 

The open-loop min-max approach does offer a way to achieve a robust invariant set but it 

may very conservative in nature due to the intrinsic nature of the receding horizon 

schemes. Hence a less stringent approach is then to use closed-loop predictions for the 

problem instead of open-loop predictions. 
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 3.3.2.2 Closed-loop Min-Max NMPC 

The drawbacks of open-loop min-max approaches can be overcome by using Closed-loop 

predictions for the min-max problem. (Scokaert and Mayne (1998)) presented this 

approach for continuous time and (Magni et al. (2003)) on discrete-time systems. This 

approach is similar to the open-loop min-max approach i.e., applies similar modifications 

to the cost function and maximizes the    type cost function with respect to the 

disturbance sequence but then minimizes the worst-case cost function with respect to the 

feedback policies instead of sequence of control actions.  

The closed-loop min-max approach can be given as an algorithm as, 

Algorithm 3.12 

 At each sampling instant tn, n=0, 1, 2…: 

(1) Measure the state        of the system. 

(2) Set         , solve the optimal control problem 

                                                      

      (       )   ∑{                        }

   

   

             

(3.12)  

                                                 ̃ ̃ 

                                                (3.13)  

                                                    ̃                 

 

Where lw is the H∞ type cost function. Denote the obtained optimal control sequence 

by      ̃ ̃ 

       

(3) Define the NMPC-feedback value 

                   (3.14)  

 and use this control value in the next sampling period. 

For the stability and feasibility guarantee, following assumption about the disturbance 

sequence is made. 

Assumption 3.13 (Magni and Scattolini (2007)) 

   is such that                    where           are K functions. 

Following theorem states an important result on the stability of the closed-loop min-max 

NMPC scheme. 
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Theorem 3.14 (Magni and Scattolini (2007)) 

Let    be a set of states in which the optimal problem in algorithm 3.12 is initially 

feasible and    represents a vector of lipschitz continuous control policies. Then under 

assumptions 3.8 and 3.13, the closed loop system in equation (3.1) with the feedback 

control law as in (3.14) is ISS in     In addition, if there exists a      such that  

    (|    (    )|)                

where   is a K function, the closed-loop system (3.1) and (3.14) is robustly 

asymptotically stable. 

The closed-loop min-max approach although gives advantage on the open-loop 

approaches but still there are some drawback attached with the scheme. First one is the 

need for the optimization to be carried out in an infinite dimensional space which can be 

quite complex for higher dimensional systems. One way to overcome this problem is 

resorting to finite dimensional parameterization of the control policies in the optimization 

as proposed in the literature (Mayne (2000)), ((Magni et al. (2003)) and (Fontes and 

Magni (2003)). Another method to avoid infinite dimensional optimization problem is 

proposed in (Magni et al. (2003)) by using different prediction (Np) and control (Nc) 

horizons. The optimization problem is then solved for only Nc number of policies and for 

the rest, the auxiliary control law obtained for terminal region can be applied. The 

method to obtain auxiliary control law presented in chapter 2 is not the only one to obtain 

such a law, (Magni et al. (2003)) shows how to obtain a non-linear auxiliary control law 

with similar properties using H∞ control for the linearized system. 

3.3.3  Robust NMPC Employing Tubes 

Although with the advent of computer technology, the min-max approaches are becoming 

more and more feasible, they still demand high computational costs. Also for the higher 

dimensional and multivariable systems, the complexity of the task is exponentially 

increased. A promising method, as proposed in (Langson et al. (2004) and (Mayne et al. 

(2005)) for linear and (Mayne and Kerrigan (2007)) for nonlinear systems, to reduce the 

computational burden in the robust NMPC problem is the tube-based NMPC controllers. 

The tube based NMPC scheme is presented in chapter 4 of this thesis. 

3.4   Conclusion 

This chapter presented a brief overview of the robust NMPC schemes proposed in the 

literature. The inherent robustness of the nominal NMPC cannot be relied upon as for 

some systems, the nominal NMPC may exhibit zero robustness and even for other 

systems, it may lead to very small regions of attraction. Moreover, the strong continuity 

condition on value function and control law is often difficult to satisfy for many systems. 
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The most intuitive solution of the robust problem in NMPC framework then is to use the 

same nominal scheme with just tightened constraints to compensate for the effects of 

bounded disturbances but this methodology can be guilty of leading to very conservative 

regions of attraction for many systems. Open-loop min-max approaches overcome the 

disadvantages of NMPC with restricted constraints but the absence of feedback in the 

open-loop approaches make the trajectories scattered hence resulting in small regions of 

attractions. This advantage can be overcome by incorporating feedback in the min-max 

approaches i.e., use of closed-loop min-max approaches but it can be computationally 

costly for higher dimensional and faster sampled systems. This disadvantage of 

computational complexity is overcome by tube-based NMPC scheme which is described 

in the chapter 4 of this thesis.  
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Chapter 4 

TUBE-BASED ROBUST 

NONLINEAR MODEL 

PREDICTIVE CONTROLLER 

 

 

As mentioned in the previous chapter, open-loop min-max approaches do give sufficient 

robustness properties under certain assumptions but may give very conservative results 

for complex systems. Closed-loop min-max approaches overcome the drawbacks of 

open-loop min-max approaches but the computational complexity attached with them 

restrict their use to lower dimensional systems because the optimization problem in the 

case may get impossibly complex for systems of large dimensions. Hence for more 

complex systems, implementation aspects of the robust problem demand a new solution. 

One such method is the tube-based nonlinear model predictive controller which provides 

the robustness guarantees under certain assumptions with very low additional 

computation required as compared to the nominal case.  

Initially proposed for the linear systems (Langson et al. (2004)) and (Mayne et al. 

(2005)), (Mayne and Kerrigan (2007)) extend this tube-based scheme to nonlinear 

systems. The basic idea of the approach in both the linear and nonlinear cases stems from 

the fact that under uncertainties satisfactory control performance is achieved when using 

feedback as mentioned in chapter 3. The ideal scenario would be to optimize the closed-

loop control policies rather open loop control actions. But the optimization problem in 

this case becomes prohibitively difficult. In the case of linear systems, (Mayne et al. 

(2005)) proposed to replace the difficult to obtain control policies 

  {                     } in closed-loop min max approaches by simpler control 

policies           (      ) where    is found by conventional MPC and   is any 

stabilizing state feedback gain determined offline.   is the uncertain system state whereas 

     is the prediction obtained from the nominal model. As obvious, the method reduces 

the computational burden on the robust controller under the model predictive control 

frame work. The choice of feedback gain  , referred to as the local control law, makes all 

the possible uncertain trajectories lie in a tube {           } whose center is the 

nominal trajectory predicted by the conventional MPC. Since the central path is 
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determined by the MPC, the constraint satisfaction is ensured at all times for the nominal 

case, and the feedback gain then aims to restrict the spread of trajectories of the uncertain 

system to the tube whose cross section is a constant set    Tightened constraints in the 

nominal MPC allow for the constraints satisfaction for the uncertain system. Every 

possible state of the uncertain system, under the effect of feedback gain, then lies in the 

set {    }    . The authors prove, under the continuity assumption of value function, the 

exponential asymptotic stability under bounded additive disturbances. 

One would like to do the same with the nonlinear systems as well. But the problem is the 

local control law found offline (the feedback gain  ) in the linear case is difficult to find 

in the nonlinear case. By conventional NMPC, the central path to be followed by 

uncertain states can be generated but the local control law that will make the uncertain 

states converge to the nominal trajectory presents a tough challenge. Furthermore, for the 

nonlinear systems, a set around nominal trajectories, in which trajectories of the uncertain 

system have to lie, is difficult to find too.  

To overcome these difficulties (Mayne and Kerrigan (2007)) propose using two model 

predictive controllers. One with the tightened constraints for the generation of a central 

path, referred to as the nominal controller, and the other to drive the uncertain trajectories 

towards nominal trajectories, referred to as the ancillary controller. The next section 

presents the notations and preliminaries. Section 4.2 presents the nominal NMPC 

whereas section 4.3 presents the ancillary NMPC. The implementation algorithm is 

presented in section 4.4 and section 4.5 presents the robustness analysis and some 

important results. A method of choosing suitable tightened constraints is outlined in 

section 4.6 and the implementation results of the example system are presented in section 

4.7. Section 4.8 concludes the chapter.  

4.1 Preliminaries 

The aim of this controller is that of steering the state of a constrained discrete-time 

nonlinear system to origin under the presence of bounded additive disturbances in the 

control loop. The problem is commonly known as the robust regulation of the states to 

the origin. The dynamics of the system to be controlled is given by a differential equation 

as, 

                     (4.1)  

Or equivalently 

      ̃                (4.2)  

where it is assumed that the additive disturbance term w lies in a compact set   and the 

origin is contained in its interior. Moreover, the states and control of the system (4.1) are 

required to satisfy following constraints at all time, 
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                 (4.3)  

In the sequel, the solution of the system in equation (4.1) is denoted by            at 

time   when the initial condition is  , the control is generated by the policy   and the 

disturbance sequence is given as   {           }. Similarly, if the control is 

generated by a time invariant control law     , then the solution of system in equation 

(4.1) at initial condition   is denoted by           . 

The nominal system is obtained by leaving the disturbance w out of the system in 

equation (4.1) hence is given by a differential equation as, 

                   (4.4)  

For the nominal system, a bar is placed on the notations to indicate the nominal 

parameters. Hence the solution of the nominal system in equation (4.4) is denoted by 

 ̅        where   {                  } is the nominal control sequence obtained 

by solving the conventional NMPC problem using the nominal model. The deviation 

between the states of the two system (Nominal (4.4) and Uncertain (4.1)) is given as, 

                    (4.5)  

 

4.2 Nominal Controller – The Central Path 

The trajectory of the predicted solutions of the nominal model is used as the central path 

towards which the ancillary controller will try to steer the states. This nominal trajectory 

is kept at some distance from the constraints boundary, by using tightened constraints, so 

that ancillary controller is able to satisfy constraints under the disturbances. The central 

path is generated using conventional NMPC for the nominal model as described in 

chapter 2. Following the same ideas, the NMPC scheme is presented again with new 

notation as suited for the robust setting. The cost function used for the generation of 

central trajectories is given as, 

 

  ̅        ∑                 

   

   

             
(4.6)  

in which        ̅        , the solution of the nominal system (4.4) with    as initial 

state. The nominal stage cost function      is defined as,  

 
               

 

 
(       

           
 ) 

(4.7)  

where     represents the Euclidean norm and             are symmetric positive 

definite weighting matrices and can be used as tuning parameters for improving the 

performance of the nominal closed-loop system. The nominal optimal control problem 

has to satisfy the following tightened constraints, 
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                         (4.8)  

Equation (4.8) indicates constraint tightening. The choice of the tightened constraints in 

the case of linear systems is quite deterministic as there exists a set around nominal 

trajectory in which the uncertain states are to be contained. In the nonlinear case it is not 

easy to bound the deviation      . It is assumed that both these tightened constraints 

sets are compact. The method of tightening the constraints is not particularly important in 

this NMPC scheme and they can be tightened by any method available in the literature. 

Section 4.6 briefly overviews the choice of        . The terminal cost      and the 

terminal constraint set      can be chosen from the method as described in the section 

2.2 and can be tightened as described in section 4.6.  

The set of admissible sequences for a given current nominal state „z‟ is compact, bounded 

because of assumptions on   and closed because  ̅        is continuous. It can be 

defined as, 

 

   
      {

           

                    {       } 
             

} 

(4.9)  

The nominal optimal control problem can now be given as, 

Algorithm 4.1 

 At each sampling instant tn, n=0, 1, 2…: 

(1) Measure the state        of the system. 

(2) Set         , solve the optimal control problem 

 

                    ̅(       )   ∑                 

   

   

             

(4.10)  

                                               
    

                                                
(4.11)  

                                                        (             ) 

 

And denote the obtained optimal control sequence by        
       

(3) Define the NMPC-feedback value 

  ̅                 (4.12)  

 and use this control value in the next sampling period. 

The corresponding optimal value function is given by  

  ̅          
        

     
  (       ) (4.13)  
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The solution of the optimal problem in (4.10) exists (which is assumed to be unique) if 

the initial state „z‟ is feasible because the value function  ̅     is continuous and the set 

of admissible sequences    
      is compact. Hence, the set of feasible states, the region 

of attraction for the closed-loop system, can be defined as,   

    {        
       } (4.14)  

The optimal control sequence obtained from the nominal optimal control problem is 

given as, 

       {                           } (4.15)  

And the resulting optimal state trajectory is given as, 

       {                           } (4.16)  

The nominal closed-loop system resulting from algorithm 4.1 with feedback 

law  ̅                 is then given as, 

         ̅                 (4.17)  

The nominal closed-loop trajectories, the central path, which are to be used in the 

ancillary control problem can now be given by, 

       {                           } (4.18)  

And the associated nominal control sequence is given by, 

       {                           } (4.19)  

where the sequence (4.18) is generated by the iteration of the closed-loop system given 

by equation (4.17) such that, 

          ̅      ̅              
        ̅ ( 

      )   

        

(4.20)  

Moreover, If the region  of attraction    is bounded, and the terminal constraint set and 

the terminal cost are obtained to satisfy the usual stability axioms as described in section 

2.2 then we can state the existence of a lyapunov function. That is, there exits positive 

constants            ̅     such that the optimal value function satisfies the following 

inequalities, 

  ̅ 
          

  (4.21)  

  ̅ 
       ̅   

  (4.22)  

   ̅ 
           

  (4.23)  

for all     , where   ̅ 
     is defined as, 

   ̅ 
      ̅ 

 (     ̅     )   ̅ 
     (4.24)  

For the closed-loop system in equation (4.17), inequalities (4.20)-(4.22) imply that the 

closed-loop system is exponentially fast stable with the region of attraction given by   .  
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4.3 The Ancillary Controller  

The basic aim of the ancillary controller is to bound the deviation of the states of the 

uncertain system            and the nominal closed-loop system         ̅      in 

the presence of uncertainties. In the case of linear systems, a stabilizing state feedback 

gain is used for this purpose in addition to the conventional MPC i.e.            

where MPC controller achieves the control objectives using tightened constraints and the 

feedback gain does the disturbance rejection by bounding the deviation between 

uncertain states and the nominal states in a pre-computed robust invariant set. Reader is 

referred to section 3.4.3 of the book (Mayne and Rawlings (2009)) for details on the tube-

based MPC for the constrained linear systems. In the case of nonlinear systems, the 

ancillary controller replaces this control law by a nonlinear model predictive controller 

whose control problem is to minimize a cost function penalizing the deviation between 

the states of the deterministic system           and the nominal closed-loop system 

        ̅     . That is, we leave out the disturbance term   from the uncertain 

system and count on the resulting stabilizing controller to restrict the deviation between 

the states of             and         ̅     .   

Hence the following composite system is considered for the design of ancillary 

controller,  

           (4.25)  

         ̅      (4.26)  

The cost function that is used for penalizing the deviation between the trajectories of the 

two systems is defined as, 

 

          ∑                             

   

   

 

(4.27)  

where,      is the solution of system (4.24),      is minimizing control and 

                    are obtained from equations (4.17) and (4.18).  

The deterministic nature of the model predictive controller allows one to skip 

optimization of the nominal system over the whole prediction horizon at each sample 

time. Hence once the sequences in (4.18) and (4.19) are initialized for the prediction 

horizon, at every step one nominal MPC optimization is sufficient and can be added to 

the sequences (4.18) and (4.19) to be used in (4.27). Moreover, for the simplicity, this 

thesis uses the same definition of the stage cost function      for both nominal (4.7) and 

ancillary (4.27) cost functions. However, it is not necessary to use the same cost function 

for both the problems. In fact, the cost function in ancillary controller can be more 

aggressive than the nominal one if the disturbance rejection is more prior than the control 

objectives.  
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Furthermore, for the ancillary control problem, state and control constraints need not be 

imposed as they are implicitly imposed from the nominal NMPC. Hence the ancillary 

optimal control problem is to minimize the cost function           in equation (4.27) 

with respect to   subject to control constraints and only one state constraint and that is the 

terminal equality constraint                  which ensures the stability of the 

control problem. The set of admissible sequences for the ancillary control problem can 

now be defined as, 

    
      {               } (4.28)  

where the terminal constraint set    is a single state constraint set, i.e.,    {       }. 

 The Ancillary optimal control problem can now be defined as, 

                               (        ) (4.29)  

                                        
       (4.30)  

                                                                        

The domain of the optimal value function, i.e., the region of attraction of the closed-loop 

system is dependent on current nominal state „z‟ and is given as, 

       {        
       } (4.31)  

For each nominal state „z‟, the set of feasible uncertain states is bounded. The region of 

attraction of the composite system is bounded and is defined as, 

    {                     } (4.32)  

That is, the feasibility of the composite system implies that the nominal system can 

satisfy all the system constraints and the ancillary control can drive the states of the 

deterministic system to the nominal trajectory. As in the nominal case, if the initial state 

is feasible, the model predictive scheme ensures feasibility of all the subsequent states.  

For any         , the minimizing control sequence obtained by the ancillary control 

problem is denoted by, 

         {                                 } (4.33)  

And the resulting optimal state trajectory is given as, 

       {                                 } (4.34)  

The optimal control input that is applied to the uncertain system then is given by, 

                   (4.35)  

The resulting closed-loop composite system is then given by, 

     (         )    (4.36)  

         ̅      (4.37)  

When     then it can be verified that   
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Hence the trajectories of the two systems will essentially be same, i.e.,          ̅    . 

This shows that initially when the trajectories of the two systems will be far apart, the 

ancillary controller will steer the uncertain states towards the nominal trajectories and as 

the uncertain trajectories tend to come closer to the nominal trajectories, the ancillary 

controller tends to produce the same control action as the nominal one. Hence once the 

trajectories are identical, the controller outputs will be identical too. 

4.4 The Implementation Algorithm 

For now, assume that these sets have been determined. The implementation algorithm for 

the robust tube-based NMPC can now be states. 

Initialization: 

1.                

2. Obtain the sequences                  by solving the nominal optimal control 

problem as in algorithm 4.1 over the prediction horizon i.e., for „N‟ steps. 

3.    ̅             

Step 1: Computation of the Control Action 

Solve the ancillary control problem described in (4.29) subject to constraints (4.30) to 

obtain           as defined in (4.35). 

Step 2: Apply the Control Action 

Apply the control action obtained in step 1 to the uncertain system (4.1). 

Step 3: Obtain Measurement 

Measure the current state of the uncertain system             . And set     . 

Step 4: Update predicted variables 

1. Obtain      ̅   
      and                by solving the nominal optimal 

control problem once as described in algorithm 4.1. 

2.          

3.       {                } 

4.       {                  } 

Step 5: Update Time  
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Step 6: Repeat the procedure 

Goto Step 1. 

4.5 A Tube for the Nonlinear Closed-Loop System 

Under some controllability assumptions, the value function for the composite system 

  
       possesses the similar properties to that of the nominal case   

     except that the 

bounds are K∞ functions of the deviation     instead of the uncertain states  . That is, 

  ̅ 
                (4.38)  

  ̅ 
         ̅       (4.39)  

   ̅ 
                 (4.40)  

for all         , where   ̅ 
       is defined as, 

   ̅ 
        ̅ 

 ( (         )      ̅     )   ̅ 
       (4.41)  

 

Note that in (4.41), the successor states from the deterministic system are used rather than 

the uncertain system. From (4.38),(4.39) and (4.40), one can easily obtain, 

  ̅ 
 ( (         )      ̅     )    ̅ 

       (4.42)  

where     
  

  
      . Hence the origin of the composite deterministic system is 

exponentially stable with region of attraction given by   . The property of the 

composite lyapunov function stated above is sufficient to imply that the deviation     

is bounded. This also paves a way to determine the tightened constraint sets which is the 

topic of section 4.6. 

The value function  ̅ 
       stemming from the ancillary control problem for the 

composite system (4.25), (4.26) has some continuity and differentiable properties on 

which the main robust stability result of the tube-based NMPC is based. The properties 

are summarized as follows. 

Proposition 4.2 (Mayne and Kerrigan (2007)) 

There exists              such that, 

i. The optimal value function of the composite system      
       is continuously 

differentiable hence implies that it is lipschitz continuous in the vicinity of the 

nominal state   i.e., { }                 is a unit ball in   . 

ii. The function   
     is continuous at               . 

In the case of linear systems, the trajectories of the uncertain system under the robust 

MPC control law lie in a pre-computed constant set around the nominal trajectory 



Page 38 
 

i.e.,      {    }     . In the case of non-linear systems, however, no such constant 

pre-computed set is available. Instead, the uncertain trajectories lie, for some    , in 

the set   (    ) where the set-valued       is defined       as, 

       {     ̅ 
        } (4.43)  

The set       is the sublevel set of the optimal value function      
       and is a 

neighborhood of   since       { }. The set      , which depends on the value of  , 

replaces the set {    }     from the case of linear tube based MPC and hence constitutes 

the tube in which the uncertain trajectories have to lie. Under certain continuity and 

differentiability assumptions on the optimal value function   
      , following 

proposition states the result on existence of such a tube. 

Proposition 4.3 (Mayne and Kerrigan (2007)) 

There exists a     such that if the states of the composite system (4.24),(4.25) lie in the 

composite region of attraction   , i.e., if          and         then the successor 

state of the uncertain system to be controlled satisfies        
   i.e. 

     (         )      ( 
   (   ̅    )) (4.44)  

 
                  

      

    
   

(4.45)  

where      is the local lipschitz constant of the optimal value function      
      . 

If the disturbance term      implies     
      

 
 where   is the upper bound on 

     then every solution of the uncertain system (4.36) lies in a tube of sets given as, 

   {        ( 
      )  }                     (4.46)  

 

 

 

 

 

 

 

Figure 4.1: Tube for Nonlinear Model Predictive Control 
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The property of the closed-loop controller stated in proposition 4.3 implies that if initially 

the problem is feasible, it stays feasible for the rest of time because of the robust 

invariance of the sets constituting the tube. Figure 4.1 illustrates the result of the 

proposition and the fact that the sets constituting the tube depend on the value of the 

nominal closed-loop system states predicted from the system (4.26). 

4.6 Choosing the Tightened Constraint sets   and   

The main objective of the robust controller is to steer the state trajectories of the 

uncertain system close to the origin and keep them there while satisfying all the state and 

control constraints. In the cases where constraints satisfaction is not a priority, the use of 

NMPC may not be advantageous at all and other options might give useful results. 

Therefore tightening the constraints sets for the nominal controller is of paramount 

importance as this allows the margin for ancillary controller for the constraints violation.  

Although tightening the constraints is important for the tube-based NMPC scheme 

presented in the previous sections, the method with which it is achieved is not important 

at all. The constraints can tightened offline (Grimm et al. 2003) or online (Ma and Braatz 

(2001)), (Nagy and Braatz (2003)) and (Diehl et al. (2006)).  

One simple way to choose the tightened constraints sets is proposed in (Mayne and 

Kerrigan (2007)) when the constraint sets are polyhedral which often is the case even for 

the most nonlinear systems. One might choose the tightened constraint sets as   

                            by merely scaling the inequalities. That is, if 

  {        } then   {         }. They can be used as tuning parameters and 

suitable values of         may be chosen by hit and trial method in a Monte Carlo 

simulation. If in the simulation, the constraints are being violated, the values of     may 

be reduced. Similarly the values of     may be increased if the constraints are being too 

conservative. That is, one might have to choose a trade-off between constraint violation 

and the degree of robustness associated with each value of    . 

If the constraint sets are not polyhedral, even then the tightened constraints sets, at least 

theoretically, can be computed as shown in section 3.6.5 of the book (Mayne and 

Rawlingss (2009)).    

4.7 Example – System of Three Masses 

The system of oscillating masses (figure 2.1) was shown to be unstable under Nominal 

NMPC in chapter 3. Figure 4.2 shows that the control actions obtained from the solution 

of tube-based robust optimal control problem asymptotically stabilizes the uncertain 

system in presence of additive disturbances to origin. The oscillating masses are taken to 

be       , the damping constants are             and the spring constants are 

taken as          . The stiffness coefficient of the spring is taken as      . The 
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position displacements of the masses are constrained in     whereas the velocities of 

the masses are not constrained at all. The actuation signals are constrained to lie with 

in    . The disturbance term is bounded as          The controller is simulated in a 

matlab code file. The matlab‟s built-in function fmincon is used for the constrained 

optimization. For the offline computation of terminal sets, the toolbox YALMIP is used.  
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Figure 4.2: Stabilization of the uncertain system to Origin 
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4.8 Conclusion 

This chapter presented a method of robust model predictive control for the nonlinear 

system with bounded additive disturbances as proposed by (Mayne and Kerrigan (2007). 

It uses two model predictive controllers at each sampling instant. One, called the nominal 

controller, uses the nominal model and solves the conventional NMPC problem with 

tightened constraints on states and inputs. This conventional NMPC generates a central 

path, say the ideal optimal trajectory. The other, called the ancillary controller, then aims 

to steer the states of the uncertain system towards that ideal optimal nominal trajectory 

keeping, in process, the uncertain trajectories in a tube centered on the nominal 

trajectories. The ancillary controller also uses the same mathematical model(i.e. it doesn‟t 

incorporate the uncertain term  except that it takes its initial condition from the live 

measurement of the states of the uncertain system to be controlled and its reference 

trajectory is generated by a nominal NMPC rather than being origin.   
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Chapter 5 

REAL-TIME ROBUST 

NONLINEAR MODEL 

PREDICTIVE CONTROLLER 

 

 

In practical applications, the biggest limitation of an NMPC scheme has been the ability 

to solve the optimal control problem within a sampling period which in fast sampled 

systems is difficult to achieve for many systems. Advancement in the field of processors 

and algorithms has surely helped control engineers to use NMPC in faster system as well. 

But even if sufficient hardware to solve the problem to optimality is available, it still 

proves to be costly to be used in certain situations.  

This chapter presents the main work of this thesis which is to develop a real-time NMPC 

scheme which ensures all the constraints satisfaction in a real-time environment with 

theoretical stability and feasibility guarantees. The organization of the chapter is as 

follows: Section 5.1 introduces the problem of real-time constraint to be addressed. 

Section 5.2 presents the real-time robust nonlinear model predictive control scheme and 

section 5.3 states the stability and feasibility proofs of the closed-loop system. Section 5.4 

presents the implementation results for the mass-spring example system. 

5.1 Problem Statement 

Faster sampled systems impose a hard real-time constraint on the NMPC problem in that 

the computation time available for the solution of the optimal control problem is limited. 

Due to this constraint, the computation of optimal solution at each sampling instant is 

often not feasible. This can result in both loss of stability and feasibility of the closed-

loop system. The fast NMPC schemes proposed in the literature push the sampling times 

used in the NMPC to the ranges of microseconds but the special structure and sparsity of 

the problem these methods exploit sacrifice the stability and feasibility proofs associated 

with the standard NMPC schemes. Hence a suboptimal solution which can still guarantee 

stability and feasibility in the presence of disturbance is the only natural solution. Hence 

a suboptimal solution which can guarantee stability and feasibility. 
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A common method which fastens the optimization procedure greatly is the use of warm-

start procedure in which the solution of previous step is used as initial point for the 

optimization in the current step. Algorithm 5.1 describes the real-time NMPC scheme 

based on a warm-start procedure commonly applied in practice where the initial feasible 

solution at current states      is taken from the solution computed for the previous 

measured state        as, 

    (    )  {  (      )       (      )    ̅               

     } 

(5.1)  

where    is given by the local control law obtained for terminal region set. 

Algorithm 5.1 

Input:  

1. Feasible control sequence  (      )  

2. Current state measurement      

3. Local control law      

 Output:  

 The      control sequence          

Algorithm 

1. Warm-start 

   (    )  {  (      )       (      )  ( ̅                   )} 

2.  ̃            

3.           

Solve optimal control problem to update  ̃  

4. end while 

5.   (    )   ̃ 

At every sampling instant, then this warm-start solution is used as the initial point of the 

optimization and is updated iteratively for a fixed sampling period. At the end of that 

fixed time, the available solution is used. It is well known, that if the uncertainties were 

not present in the system, then the scheme presented in algorithm 5.1 stabilizes the 

closed-loop system even if it is not able to execute any step in the sampling period at any 

sampling instant. This is because of the terminal region constraint which guarantees 

recursive feasibility at any sampling instant provided that the problem is feasible at time 

t=0. Since the warm-start solution (5.1) is renders the problem feasible initially, the 

nominal cost function can be approximated as the infinite horizon cost which is well 

known to stabilize the system. See the book (Mayne and Rawlingss (2009)). 
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Since the open-loop solution of the optimization problem stabilizes the nominal system to 

origin one would expect the same property of the warm-start when the optimization 

problem is solved for some fixed time without reaching the optimal solution. That is, at 

each iteration, one expects the warm-start based optimization procedure to maintain the 

recursive feasibility of the closed-loop system and ensure that the cost function, which is 

used as lyapunov function for the closed-loop system, decreases. This, in fact, is not the 

case with interior point algorithms. Hence the solution provided by the algorithm 5.1 

using interior point method for the optimization does not provide the stability or 

feasibility guarantees. This is due to the fact that the barrier interior point method uses a 

barrier penalty function as the replacement of the inequality constraints in the cost 

function. At each iteration then, the augmented cost is minimized rather than actual 

NMPC cost. Hence if the complete optimal solution is not obtained, there may be 

possibility that the augmented cost got decreased but the actual MPC cost increased. In 

that case, the cost function cannot be used as the lyapunov function of the closed-loop 

system hence the proof associated with the NMPC scheme presented in chapter 2 fails. 

Furthermore, if the barrier parameter is taken to zero, the solution of the optimization 

problem with the augmented cost with barrier term only approaches the solution of the 

original problem in the limit. Hence if the optimization algorithm is then terminated 

early, it will result in a steady-state offset as it will converge to a steady-state minimizing 

the augmented cost rather than the actual NMPC cost. Interior point algorithms are, 

however, required to efficiently solve the optimization problem because of their ability to 

solve the quadratically constrained Quadratic Programs efficiently as compared to active 

set methods. 

Moreover, as described in chapter 2, the terminal stabilizing constraint ensures that once 

problem is feasible it will always stay feasible because at the end of the prediction 

horizon, states have reached an invariant set. If, due to the early termination of the 

algorithm, a solution satisfying terminal constraint is not found, the initial state at next 

sampling instant may be infeasible and again the proof associated with the scheme in 

chapter 2 fails. The uncertain system with additive disturbances was shown to be 

stabilized to the origin by tube-based NMPC controller in chapter 4. For the solution 

obtained for figure 4.2, maximum number of iterations in fmincon was set to be 100. To 

illustrate the problem, the maximum number of iterations was reduced to 6 (a random 

number just to illustrate the point) which corresponds to reducing the time available for 

the computation of the optimal solution. Figure 5.1 shows that with less number of 

iterations allowed, the same tube-based nonlinear model predictive controller from 

chapter 4 no longer stabilizes the uncertain states to the origin. 
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In addition, it is well known that maintenance of feasibility is of paramount importance in 

the proof of standard NMPC scheme. In presence of uncertainties, the solution provided 

by the warm-start procedure in (5.1) doesn‟t guarantee recursive feasibility at each 

sampling instant as the warm-start solution is computed from the open-loop trajectories 

which under disturbances may well differ from the actual one. Hence this motivates the 

use of robust NMPC scheme in the real-time as described in chapter 4. 

In this thesis, a real-time nonlinear model predictive control scheme, satisfying this hard 

real-time along with system constraints robustly at all times with little additional 

computation cost, is developed. The stability and recursive feasibility guarantee for any 

arbitrarily small sampling time then allows one to make a tradeoff between closed-loop 

performance and real-time constraint. For the feasibility, the warm-start procedure in 

Figure 5.1: Destabilization of the uncertain states under real-time 

constraint 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)

M
a
s
s
 p

o
s
it
io

n
 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)

M
a
s
s
 p

o
s
it
io

n
 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)

M
a
s
s
 p

o
s
it
io

n
 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)

V
e
lo

c
it
y
 p

o
s
it
io

n
 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)
V

e
lo

c
it
y
 p

o
s
it
io

n
 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

0

5

Time (sec)

V
e
lo

c
it
y
 p

o
s
it
io

n
 3



Page 46 
 

(5.1) is used while the recursive feasibility under uncertainties is guaranteed by the tube-

based NMPC approach. Input-to-state stability of the closed-loop system is proved using 

an additional lyapunov constraint in the NMPC scheme and an algorithm bounding the 

value function. 

5.2 The Real-Time Robust Nonlinear Model Predictive Controller 

The basic idea of the proposed scheme is to add an additional lyapunov constraint so that 

the actual NMPC cost is always decreasing in every iteration of the interior point 

algorithm. Another problem with the NMPC scheme described in chapter 2 is pertaining 

to the loss of feasibility under uncertainties in real-time environment. Since the recursive 

feasibility of the NMPC is guaranteed using the terminal constraint. The warm-start 

procedure presented in algorithm 4.1 then gives a reasonable solution to asymptotically 

stabilize the nominal system. Under uncertainties however, the warm-start solution (5.1) 

does not provide any guarantee on the feasibility. Hence Tube-based Robust NMPC 

scheme, as described in chapter 4, along with the warm start procedure (5.1) is used for 

the real-time Robust Nonlinear Model Predictive Control. Since it is difficult to prove the 

asymptotic stability due to uncertainties, the approach using input-to-state stability is 

used as often is the case in robust NMPC schemes.  

Consider the uncertain discrete-time system as given in equation (4.1) subject to 

constraints (4.3) with associated nominal system given by (4.4). Let the uncertain 

term   be bounded in a compact set   and contain origin in its interior. Let the notations 

presented in chapter 4 be valid in the form as they are described in the chapter. As 

described in the previous chapter, the tube-based robust NMPC scheme has two parts. 

One is the nominal NMPC generating the central path and the other is the ancillary 

NMPC problem steering the uncertain system states towards the central path.  

5.2.1  The Real-Time Nominal Controller 

It is assumed that the assumptions required for theorem (2.14) are satisfied. The nominal 

controller is obtained as described in the section 4.2 of the previous chapter. In the 

initialization procedure of the real-time robust controller, the Nominal NMPC problem is 

solved first for „N‟ number of steps and then solved only once at subsequent sampling 

instants. The output needed from the nominal control problem to be used in the ancillary 

control problem are the two sequences, the control action sequence obtained by solving 

the nominal optimal control problem (4.19) and the corresponding closed-loop predicted 

state trajectory sequence (4.18).  

Since the nominal problem which generates the central path to be followed by the 

uncertain states doesn‟t consider any uncertainties in the system and neither any of its 

variables depends on the actual uncertain plant parameters, it will always stabilize the 
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nominal states to the origin provided that the nominal problem is feasible initially which 

will be true if initially the system states lie in the region of attraction of the origin as 

defined in (4.14). The sequences obtained from (4.18) and (4.19) are then used in the cost 

function of ancillary problem as described in section (4.3) of the previous chapter. 

5.2.2  The Real-Time Ancillary Controller 

Consider the uncertain system given in (4.1) subject to the state and control constraints 

given in (4.3). Let the uncertain term   be bounded in a compact set  . Assume that a 

nominal controller is designed as described in section 4.2 for the tightened constraints 

tightened as described in section 4.6. The central path to be followed by uncertain 

trajectories is given by (4.18) and (4.19).  

Let the composite system for the ancillary controller be given by (4.25) and (4.26). The 

cost function penalizing the deviation of the trajectories of the two system is then given 

by  

 

          ∑                             

   

   

 

(5.2)  

The set of admissible sequences for the real-time ancillary controller is then given by, 

    
      {                     (5.3)  

            (              )        } (5.4)  

where the terms                are defined in definition 5.3. 

The Ancillary optimal control problem   
  can now be defined as, 

                               (        )          (5.5)  

                                  
                         (5.6)  

                                                                        

The domain of the optimal value function, i.e., the region of attraction of the closed-loop 

system is dependent on current nominal state „z‟ and is given as, 

       {        
       } (5.7)  

For each nominal state „z‟, the set of feasible uncertain states is bounded. The region of 

attraction of the composite system is bounded and is defined as, 

    {                     } (5.8)  

For any         , the real-time optimal (not necessarily minimizing) control sequence 

obtained by the real-time ancillary control problem is denoted by, 

         {                                 } (5.9)  

And the resulting optimal state trajectory is given as, 
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         {                          
                 } 

(5.10)  

The optimal control input that is applied to the uncertain system then is given by, 

   
                 (5.11)  

The resulting closed-loop composite system is then given by, 

     (    
      )    (5.12)  

               (5.13)  

Definition 5.2 

The   RT cost under the suboptimal solution, obtained by solving the optimization 

problem only for a fixed interval τ seconds, is defined as, 

          
                

      

Definition 5.3 

For each     ,      is taken as the state that would have been obtained by ignoring the 

disturbance, i.e., 

           
        

And the lyapunov constraint cost as, 

        (             )  
 

 
 ‖             ‖  

The key to the real-time scheme presented in this chapter is to not solve the problem until 

an optimal solution is found. Instead, the step of optimal control problem is solved 

iteratively for only a fixed amount of time   and at the end of the interval, the sub-optimal 

solution is taken as the solution of the problem. The algorithm 5.2 presents the algorithm 

to obtain the solution of Real-time Robust ancillary NMPC problem (5.5).  

Algorithm 5.2 

Input:  

1. Feasible control sequence                    

2. The tube center   
                 

3. Corresponding state sequence                   
4. Updated central path  

      {                           } 

      {                           } 
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5. Current state measurement      

6. Local control law      

7. Parameter      

Output:  

 The      control sequence               and the tube center   
             

Algorithm 

1. Warm-start 

a.   
                

                 

b.                {  
                       

             

        
                 } 

2.  ̃            

3.           

4. Solve optimal control problem iteratively using interior point algorithm to 

update  ̃  ̃    

5.           

6.    ‖         ‖                           ̃          

            

7.  ̃             ̃  { (  
                )       

          

           } 

8.        

9.                 ̃      
              ̃  

 

Remark 5.3 

Note that the real-time ancillary control problem (5.4) and the real-time state and control 

sequences                     not only depend on the current state measurement     , 

as is the case in the nominal NMPC presented in chapter 2 or tube-based NMPC 

presented in chapter 4, but also on the real-time state and control sequences obtained at 

the previous sampling time   (             )       (             )  and the 

available computation time  . Since showing the dependence on all mentioned above will 

make the notation extremely complex, for the simplicity the real-time variables are 

denoted with the superscript  . 

The real-time Robust NMPC problem (5.5) differs from the nominal NMPC from chapter 

2 in two ways, 

 Robust NMPC: The real-time Robust NMPC proposed in this chapter uses the 

tube-based robust approach instead of the standard NMPC described in chapter 2. 
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The approach consists of two nonlinear model predictive controllers. One is the 

nominal controller, designed following the ideas presented in chapter 2, which 

generates a central path, say the ideal trajectories, if no disturbances or 

uncertainties were present. The other one is the ancillary controller whose aim is to 

maintain the states of the uncertain system in the closed vicinity of the central path. 

The design of nominal controller for tighter constraints allows the ancillary 

controller some margin to make the uncertain system satisfy the system and 

control constraints under uncertainties. The tube-based nonlinear model predictive 

controller is briefly described in chapter 4 of this thesis. For detailed information 

on the topic, the interested reader is referred to the book (Mayne and Rawlingss 

(2009)). 

 

There is a slight difference in the cost function used in the real-time robust NMPC 

and the tube-based NMPC described in chapter 4. That difference is of augmenting 

the cost function by         which trades the amount of control effort used for 

rejecting the disturbances for the amount of control effort used for steering the 

states of the uncertain system to nominal trajectories. An advantage which the 

augmented cost brings is that it can be used as an ISS lyapunov function (See 

theorem 5.1) whereas the cost function proposed in chapter 4 cannot. 

 

 Lyapunov Decrease Constraint: The constraint (5.4) ensures that at each iteration 

of the interior point algorithm, the sub-optimal cost, obtained after optimizing for a 

fixed interval of   seconds, satisfies condition (4.38-4.40) which is key if the cost 

function has to provide the ISS lyapunov function for the closed-loop system. That 

is it explicitly imposes the same guarantee on stability which is lost if the tube-

based NMPC based on the approach presented in chapter 4 is applied in real-time. 

Hence the feasibility of this lyapunov constraint, provided by the warm-start as 

proved in the lemma 5.1, recovers the stability properties of the tube-based NMPC 

in real-time. The constraint represents a convex quadratic constraint hence no 

significant computational cost is added in finding the feasible solution. 

Note that the real-time robust NMPC algorithm 5.2 is slightly different than a standard 

real-time algorithm 5.1. The difference is the proposed algorithm explicitly bounds the 

lyapunov function from the above. 

 Upper Bound on Lyapunov Function: In the real-time robust NMPC algorithm 

5.2, steps 6-8 ensure that in a set containing origin in its interior, the cost function, 

which has to be employed as ISS lyapunov function of the closed-loop system, is 

bounded from above by a class    function of the states. This bound in the 

algorithm along with constraint (5.4) ensures that the cost function is an ISS-

lyapunov function of the closed-loop system (See theorem 5.1). Although the 

motivation for including steps 6-8 in the algorithm stems from the theoretical 

requirement pertaining to the upper bound of the ISS-lyapunov function, one can  
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see an added advantage associated with it in the set of using the optimal cost    

{    ‖   ‖    } obtained from the linearized model for terminal cost. That is, in the 

real-time environment, when the uncertain states are close to the nominal if the local 

control law     , same as the one used in (2.9), provides more optimal solution than the 

NMPC control law   
       from (5.11), the algorithm applies the optimal control action 

rather than the suboptimal solution provided that all the constraints are satisfied robustly.  

5.3 The Stability of the Real-Time Robust Nonlinear Model 

Predictive Controller 

The Nominal NMPC, as described in chapter 2, is shown to stabilize the nominal system 

(that is if the uncertainties are not present) to origin with the use of a terminal cost and 

terminal region constraint (Chen and Allgöwer (2000)). Under uncertainties, a 

combination of an additional NMPC, the ancillary controller, along with this nominal 

controller, as described in chapter, is shown to stabilize the uncertain system to origin by 

(Mayne and Kerrigan (2007)). In the real-time environment, however, if the sampling 

time is not sufficiently long enough, as shown in section 5.1, the suboptimal solution may 

not stabilize the system. Hence the real-time Robust NMPC scheme, as described in 

section 5.2, is proposed. In order to investigate the stability of the closed-loop under the 

proposed scheme, one may note that the two major changes in the scheme in comparison 

to the nominal scheme as described in chapter 2 recover the stability properties of the 

nominal scheme. That is, the tube-based scheme under the uncertainties and the lyapunov 

constraint in the real-time environment render the proposed real-time scheme stabilizing 

for the closed-loop system (5.12).  

In this section, it will be shown that if the lyapunov constraint is recursively feasible for 

the problem under the proposed real-time control law, the proposed cost function (5.5) is 

an ISS-lyapunov function for the closed-loop system. Before stating the result, however, 

the recursive feasibility of the lyapunov constraint needs to be established. Lemma 5.5 

shows that the warm-start solution (5.1) guarantees the ancillary controller satisfies the 

lyapunov constraint at every sampling instant hence establishing the recursive feasibility 

of the closed-loop system. Before stating the lemma, an important assumption needs to be 

made. 

Assumption 5.4 

Initially prior to starting the real-time control of the closed-loop system, i.e., at time k=0, 

enough computation time and hardware is available to find a feasible solution of the 

ancillary optimal control problem without using the lyapunov constraint (5.4) to complete 

the requirement of initial feasible solution for the optimization problem at the start. 

Lemma 5.5 
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Assume that the sub-optimal control sequence                   and the tube-

center   
 (         ) computed at previous time represent a feasible solution of the 

ancillary optimal control problem   
          defined in (5.5). Then the warm-start 

presented in algorithm 5.2 is a feasible solution for the problem   
        where 

      (         )     i.e.   
                 

      
    

   .   

Proof 

The real-time optimal control problem   
  presented in (5.5) is same as the robust optimal 

control problem presented in (4.28) except that it needs an additional lyapunov constraint 

to be satisfied. The recursive feasibility without the lyapunov constraint is therefore 

proved by (Mayne and Kerrigan (2007)). Hence the proof of recursive feasibility only 

requires that the warm-start solution used in algorithm 5.2 satisfies the lyapunov 

constraint (5.4). 

Since the uncertain term w is not known instantaneously and only an upper bound on it is 

known, it cannot be taken into account in the optimal controller. Hence the cost obtained 

from the suboptimal solution of algorithm 5.2 uses the term      and is given as, 

              (        )          

For the simplicity of the presentation, following slight modification to the notations is 

made, 

      (    
      )          

It can be be easily shown that the term      can also be expressed as, 

       
              

                  
       

      

Now assume the controller was not able to find the optimal solution and it resorts to the 

warm-start solution, then the current sample cost which has to satisfy the lyapunov 

decrease constraint is given as, 

      
          ( 

             )        
    

The cost at previous time obtained from the   RT solution obtained at previous time is 

given as, 

             
 (        

        )         
       

Due to invariance of set      , defined in (4.42),  

          ‖   
        

  ‖  ‖           
        

  ‖  
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          ‖   
        

  ‖  ‖        ‖
  

Inside the invariant set             , 

      
             

       

      
                       

       ‖   
        

  ‖  ‖        ‖
  

Which implies that, 

      
                

  (  
             )             

    
     ‖   

        
  ‖ 

 ‖        ‖
  

Hence, 

      
                  ‖   

        
  ‖        

    
            

    
    

Because of the invariance of the set             , ‖ ‖ 
  ‖ ‖ 

  ‖  ‖ 
 , therefore, 

      
                  ‖   

        
  ‖ 

  ‖     
    

  ‖ 
  

By using the identity of norms, 
 

 
‖   ‖ 

  ‖ ‖ 
  ‖ ‖ 

 , we get, 

      
                  ‖   

        
              

        
  ‖ 

  

      
                  

 

 
‖       ‖ 

  

Which proves the result. 

Hence, given that initially the optimization problem starts from a feasible solution 

(Assumption 5.4), recursive feasibility is maintained by using this warm-start solution 

(5.1) in real-time environment and by the tube-based robust approach under uncertainties 

and disturbances. Due to the lyapunov constraint (5.4), this feasibility implies stability of 

the closed-loop system. Using Assumption 5.4 and Lemma 5.5, input-to-state stability of 

the closed-loop system under    RT control law (5.11) obtained from the problem 

  
  (5.5) can be proved. 

Theorem 5.6 

Assume that a nominal NMPC, satisfying all assumptions for theorem 2.14, with terminal 

cost and terminal constraints set determined as in algorithm 2.7 generates a central 

trajectory as given in (4.18) and (4.19) satisfying (4.21)-(4.23). The uncertain closed-loop 

system (5.12) under the    RT control law obtained from algorithm 5.2 is input-to-state 
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stable under the disturbance        with       from (5.7) representing the region of 

attraction for the closed-loop system for any    . 

Proof 

To prove that the real-time cost function associated with the solution obtained from real-

time algorithm 5.2 is ISS lyapunov function of the uncertain closed-loop system, 

inequalities given in (3.4) need to be proved.  

(i) Lyapunov function lower bound :                  

Inside the invariant set             , ‖ ‖ 
  ‖ ‖ 

  because ‖ ‖ 
  ‖ ‖ 

  ‖  ‖ 
 , 

therefore,  

        ‖   
        ‖ 

  ‖         
        ‖ 

  

        
 

 
‖   ‖ 

          

 

(ii) Lyapunov function upper bound :                  

According to steps 6-8 of the algorithm 5.2, there are two different cases, 

case 1: ‖   ‖     and steps 6-8 are not applicable, then 

               

        ‖   ‖          

(iii) Lyapunov decrease condition :   (            )          

               

The current real-time cost obtained from the real-time suboptimal solution 

  (         )       
             obtained from algorithm 5.2 is given as, 

          
        ̃        ̃   

Proof of lemma 5.5 implies that due to the warm-start solution being feasible at all times, 

the lyapunov decrease constraint is always satisfied, hence 

                  
 

 
 ‖     ‖ 

  | (        ̃     )          ̃  | 
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 ‖     ‖ 

            ̃             

    ̃      

                   
 

 
 ‖     ‖ 

                 

                 

  
 

 
 ‖     ‖ 

   (      
       )   (      

     ) 

                 

  
 

 
 ‖     ‖ 

   (      
     )   (      

     )       

                   
 

 
 ‖     ‖ 

        
 

 
 ‖     ‖ 

   ‖ ‖ 

Which proves the result. 

Hence the real-time control action obtained from the combination of the two nonlinear 

model predictive controllers, one designed for the nominal closed-loop system and the 

other for making the trajectories of uncertain system to follow the nominal ones, along 

with the lyapunov constraint for the ancillary robust control problem and the upper bound 

on value function imposed by the implementation algorithm which executes the 

optimization only for a fixed available time interval τ is proved to stabilize the uncertain 

control system for any arbitrarily small sampling time with guaranteed stability.  

Remark 5.7 

Since the proof of the input-to-state stability is independent of the length of the time 

interval τ, the result in theorem 5.6 implies the usefulness of the proposed scheme for a 

broad range of fastly sampled multi-tasking computational platforms.  

Remark 5.8 

A stabilizing strategy can also be constructed by resorting to the warm-start solution 

ignoring the lyapunov constraint (5.4) once a feasible warm-start satisfying the constraint 

(5.4) is available. However, for faster sampled system, it is very likely that the 

suboptimal solution will not be able to find a solution with in given time which satisfies 

the lyapunov constraint which will effectively mean that the ancillary optimal control 

problem runs in open-loop via the warm-start solution. Hence the lyapunov constraint 

adds no computational cost to the optimization problem and only adds advantage of 

stability. 
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Remark 5.9 

Due to the guarantee of recursive feasibility provided by the tube-based robust approach, 

once a problem is feasible and the uncertain states reach in the set      , lyapunov 

constraint (5.4) can be left out as the set       is robustly invariant (Mayne and 

Kerrigan(2007)).  

Remark 5.10 

The use of  ̃           and    ̃  { (  
                )       

          

           } in the set    makes the strategy resemble to a dual mode strategy. 

However the control strategy wont switch once inside this set because the    is not 

guaranteed to be robustly invariant for the closed-loop system. 

Remark 5.11 

The upper bound on the value function of the closed-loop system in the neighborhood of 

the origin is usually assumed in real-time methods in the literature. The proposed scheme 

however ensures the existence of such a class    function of the states through steps 6-8 

of the algorithm 5.2 once the nominal states have reached the neighborhood of the origin. 

Recall that the nominal trajectories are guaranteed (through theorem 2.14) to be reaching 

the origin within N steps. 

Remark 5.12 

Only when the robust invariant set       is known, the optimization of the first tube-

center   
  is possible which adds an additional feedback to the disturbance. However, if 

the first tube center is fixed, as is the case presented in chapter 4, the optimization can be 

carried out for the control actions only without invalidating the stability proof. 

Remark 5.13 

The primary purpose of using a robust approach in this scheme to is to ensure recursive 

feasibility under the bounded disturbances. The use of tube-based approach however is 

not necessary but advantageous as it is computationally cheaper than other methods. 

However any other robust nonlinear model predictive method, such as ones mentioned in 

chapter 3, providing the property of recursive feasibility could be applied. 

5.4 Example – System of Three Masses 

The system of oscillating masses (figure 2.1) was shown to be unstable when subjected to 

the real-time constraint in figure 5.1. Figure 5.2 shows that with the application of the 

real-time NMPC proposed in section 5.2, the guarantee of stability and recursive 

feasibility of the closed-loop system under uncertainties is recovered as provided by the 
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tube-based controller from chapter 4. The oscillating masses are taken to be       , 

the damping constants are             and the spring constants are taken as   

       . The stiffness coefficient of the spring is taken as      . The position 

displacements of the masses are constrained in     whereas the velocities of the masses 

are not constrained at all. The actuation signals are constrained to lie with in    . The 

disturbance term is bounded as         . The controller is simulated in a matlab code 

file. The matlab‟s built-in function fmincon is used for the constrained optimization. The 

maximum number of iterations in the fmincon is taken to be 6 corresponding to 

insufficient computation time as described in section 5.1. For the offline computation of 

terminal sets for the nominal controller, the toolbox YALMIP is used. 
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Figure 5.2: Stabilization of the uncertain system to Origin for any 

arbitrarily small sampling time 
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5.5 Conclusion 

This chapter presented a nonlinear model predictive controller scheme which retains the 

stability properties of the robust NMPC controllers in real-time environment. The 

nominal controller stabilizes the system through terminal constraint and cost whereas the 

ancillary controller maintains the stability and ensures recursive feasibility under 

bounded additive disturbances. The stability in the presence of real-time constraint is 

imposed explicitly by adding a lyapunov decrease constraint in the ancillary control 

problem. A warm-start solution is used for both the control problems. In the case of 

nominal controller, it reduces the computation time for obtaining the optimal solution 

whereas in the ancillary controller, its major purpose is to ensure that the lyapunov 

decrease constraint can be satisfied at all sampling times. Lemma 5.5 shows that if the 

real-time control system starts initially from a feasible point, it stays feasible for the 

subsequent sampling instants. Theorem 5.6 proves that algorithm 5.2 asymptotically 

stabilizes the uncertain system for any arbitrarily small sampling time. The 

implementation results are shown for a system of three oscillating masses to illustrate the 

point.  
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Chapter 6 

FUTURE WORK DIRECTIONS 

 

The work presented in this thesis can be extended in various directions such as, 

1. Real-time NMPC for tracking problem 

The real-time NMPC scheme is proposed for regulation problem. That is, it stabilizes the 

system to the origin or to any other constant equilibrium point with a change of 

coordinates. A difficult but interesting prospect is to design a scheme which guarantees 

real-time stability for the problem of tracking piecewise constant or time-varying 

reference trajectories. Following difficulties arise in the tracking problem 

a. The terminal cost obtained for the nominal controller plays an important role 

in the proof of theorem 5.6 as it provides the upper bound for ISS lyapunov 

function. However in the time varying case, the method described in section 

2.2 fails to provide a stabilizing terminal cost. This is due to the fact that in 

the time-varying case, the linearization and the subsequent LQR problem do 

not lead to an easily solvable riccati equation such as (2.13). 

  

b. The feasibility of the lyapunov decrease constraint which ensures stability of 

the control problem is guaranteed by a warm-start solution such as (5.1). In 

the tracking case, piecewise constant or time-varying, a warm-start solution is 

not readily available as the reference trajectory is varying all the time hence 

the best solution which guarantees the lyapunov decrease constraint is 

satisfiable at all times is difficult to find. All is not lost however. A method to 

obtain a warm-start for tracking is presented in the book (Grüne and Pannek 

(2011)). A useful result can be obtained using this warm-start for the tracking 

problem however the proof might be rigorous and involving.  

 

2. Output Feedback NMPC 

In all the chapters of thesis, it is assumed that all states are measured. In many 

applications it is not feasible to be able to measure all system states or is not economical 

even if it is feasible. In the absence of state measurement, observers are used. NMPC 

with observers is usually referred to as the Output feedback NMPCs and various output 

feedback NMPCs are proposed in the literature. An interesting result could be obtained if 
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the stability provided by an output feedback NMPC can be guaranteed with real-time 

constraint. 

3. Real-Time NMPC for Unstable Systems Using Soft Constraints 

In the real-time scheme presented in chapter 5, it is assumed that initially all the time in 

the world is available for the initialization of a feasible solution. This might not be the 

case in a hybrid system or any other situation for that matter. In that case, a good strategy 

could be to relax some of the state constraints which only represent the designer‟s 

requirements not critical to stability. Such constraints in the literature are referred to as 

the soft constraints. Critical bound state constraints and constraints on control input are 

always taken as hard constraints. Soft constraints have been used in the literature and a 

useful result can be obtained if the real-time scheme presented in this chapter can be 

combined with soft constraints strategy to obtain robust stabilization of the unstable 

systems in real-time with guaranteed stability.   
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