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Abstract

In this thesis, the problem of output feedback stabilization and regulation for a class of under-

actuated benchmark nonlinear systems is considered. The proposed method utilizes an ex-

tended high gain observer (EHGO)-based sliding mode control (SMC) technique to control a

class of nonlinear systems which may have unstable zero dynamics. Starting with Lagrangian

model of the system and using a suitable coordinate transformation, a generalized normal form

representation is derived which decouples the system into its internal and external dynamics.

The internal dynamics is utilized to derive an auxiliary system and the full-order EHGO

thus obtained is used for estimation of derivative(s) of the system output that are further used

in design of an output feedback control law. It is shown that the proposed output feedback con-

troller stabilizes the system and convergence of estimated states is demonstrated with suitable

selection of observer parameters. The proposed stabilizing control scheme is applied to two of

the benchmark nonlinear systems, namely Inertia Wheel Pendulum (IWP), and Translational

Oscillator with Rotational Actuator (TORA), in order to demonstrate the effectiveness of the

technique by simulation.

The technique is extended to further solve for the servomechanism (output regulation)

problem for the class of under actuated non-minimum phase nonlinear systems under con-

sideration. Towards this end, the control design is modified to include a ‘conditional servo

compensator’ in order to track reference signals as well as reject disturbances while achieving

stabilization and steady-state accuracy with a desired transient performance. The conditional

servo compensator is utilized to regulate the controllable states by using SMC while neglect-
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ing the internal states initially. The uncontrollable states of the system are estimated using

an EHGO and the error signal is then used to synthesize a control input to stabilize the inter-

nal states by incorporating it in the sliding surface of the SMC design. The proposed control

scheme is then applied to the Translational Oscillator with Rotational Actuator (TORA) sys-

tem to validate the efficacy of the technique.
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Chapter 1

Introduction

A vast majority of real life control systems, representing a particular subclass of nonlinear

systems, are electromechanical systems that cannot be commanded to follow arbitrary trajec-

tories in the entire configuration space. In other words, the control input cannot accelerate the

state of these systems in any arbitrary direction. These systems are termed as under-actuated

systems and are characterized with fewer number of controls than the number of configuration

variables.

Control of under-actuated nonlinear systems is an active research area of modern age due

to its direct relevance to real-life physical systems used in military equipments, heavy indus-

tries and other commercial equipments. Real-life under-actuated systems, being inherently

highly nonlinear, attracted engineers and mathematicians to perform modelling, simulation

and rigourous experimental analysis for control of these systems. Advanced control tech-

niques developed for nonlinear systems like optimal control, adaptive control and robust con-

trol were utilized and extended for stabilization and control of such under-actuated systems.

This led to development of some advanced theories and concepts linked with these type of

systems. Examples of under-actuated systems are found in robotics, automobiles, aircrafts,

satellites, underwater vehicles, missiles etc, and as benchmark control systems such as Cart

Pole system, Translational Oscillator with Rotating Actuator(TORA), Acrobot, Inertia Wheel

Pendulum (IWP), Rotary Pendulum (ROTPEN) etc.
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In subsequent sections of this chapter, some of the motivating factors that influenced to

initiate the research work presented here towards development of control strategies for under-

actuated electromechanical systems are presented. Starting with a review of literature and

work done by renowned researchers in this area, problem definition and scope of work is pre-

cisely described. Later on exact problem targeted in this research work and its proposed solu-

tion is identified. Relevant test-bench under-actuated nonlinear systems used for verification

and validation of the proposed control scheme are pointed out. Overall objectives achieved in

this thesis and major contribution of work towards the subject research area are highlighted.

Finally a brief overview of thesis flow is presented.

1.1 Motivation

Control of nonlinear systems is a challenging task as compared to linear systems due mainly to

unavailability of systematic procedures and proper design tools. Different design techniques

are applied in case of nonlinear systems depending on complexity of the system and its per-

formance requirements. Of particular interest, in this work are the under-actuated nonlinear

systems which so commonly arise in the fields of robotics, aerospace systems etc. These sys-

tems require some special treatment and a thorough study of their mechanics, kinematics, and

dynamics is needed.

For under-actuated systems, a part of the system dynamics is unstable making the sys-

tem exhibit non-minimum phase properties. Due to lesser number of control or actuators

than the configuration space, a subset of the configuration space is unactuated and can only

be controlled by indirect coupling movement of actuated variables. Control of these sys-

tems becomes complex problem that cannot be solved by classical control techniques since

properties like feedback linearizability and passivity are no longer valid. Moreover, many of

these systems may possess undetermined relative degree and present structural obstruction for

derivation of a straight-forward control law.
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Study of under-actuated nonlinear systems and need for developing control algorithms for

these systems becomes critical in many practical situations where actuators and motors / drives

are heavy or expensive and it is of great advantage to reduce number of these actuators and

motors / drives to as minimum level as possible. Some of the reasons of under-actuation in

control systems are given as [Fantoni and Lozano, 2002]

• Robotic manipulators where individual links are assumed as rigid becomes under-actuat-

ed when non-rigid dynamics is considered.

• Aircrafts, unmanned and space vehicles, satellites etc., having reduced number of mo-

tors are built-in under-actuated as weightlessness is of prime importance in these sys-

tems.

• Free floating mobile robots having robotic manipulators become under-actuated as a

new degree of freedom is added when primary propelling devices are switched off to

complete the desired task.

• High order nonlinear systems are forced to artificially become low order under-actuated

systems for study and analysis purpose. Examples of such systems are Cart Pole System,

Inertia Wheel Pendulum (IWP), TORA system, Ball and Beam system etc.

Dynamical models of under-actuated systems may exhibit complex properties like non-minim-

um phase zero dynamics, non-holonomic constraints, feed-forward nonlinearities and inca-

pability of feedback linearization. An important and inspiring aspect of research on under-

actuated systems is that it is an extension of the research on non-holonomic systems. For the

non-holonomic systems, only velocity constraints and kinematic equations of the motion are

studied whereas under-actuated system exhibits acceleration constraints and both kinematics

and dynamics are required to be considered in the control design process. Thus, the complex

structural properties eventually place the study of these systems as an open and challenging
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problem. Due to these reasons, it is very difficult to present a unified control theory applica-

ble to entire class of under-actuated systems and therefore, most researchers have presented

particular design techniques for stabilization and tracking of systems belonging to individual

classes of these systems. Some of the researchers have targeted different benchmark under-

actuated systems to come up with suitable control laws. Towards that end, a typical class

of under-actuated systems is considered in the research work presented in this thesis and dy-

namical models of test-bench under-actuated systems belonging to it are utilized to develop

suitable control algorithms. These benchmark systems include Inertia Wheel Pendulum (IWP)

and Translational Oscillator with Rotational Actuator (TORA).

Stability analysis for under-actuated systems is also of major concern, and hence a source

of motivation, requiring application of a more severe design constraints for global, semiglobal

or local stability of these systems as compared to linear systems. Design techniques like Lya-

punov redesign, backstepping, sliding mode control etc are extensively used for control of

nonlinear systems. Out of these techniques, sliding mode control has got special attention of

researchers due to its robustness to parametric uncertainties and/or external disturbances and

also due to its design simplicity. One of the motive of the research presented in this thesis

is application of sliding mode algorithm for control of a class of under-actuated systems to

account for the high degree of uncertainties and complex internal dynamics. Another impor-

tant objective targeted in this research is to attain output feedback control of these type of

systems as the control problem becomes more challenging when some of the system states

are unavailable. This may happen when it is difficult to measure or in some cases it is un-

economical to measure all system states. This necessitates employment of observer based or

output feedback based techniques to estimate the unknown states. In brief, the complex non-

linear system structure, severe design constraint requirements for system stability, application

of sliding mode framework and incorporation of observer based output feedback control law

are major sources of motivation for the research work presented in this thesis.
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1.2 Background and Literature Review

In this section, a brief review for output feedback stabilization of target class of systems is pre-

sented whereas review of research work previously reported on output feedback regulation for

these type of systems is discussed in Chapter 6. Here, an overview of research done for gener-

alised classification, mathematical model formulation, and output/state feedback stabilization

of under-actuated nonlinear systems by renowned researchers is presented.

The unwanted characteristics as mentioned in previous section makes determination of

controllability of under-actuated systems typically more difficult than nonlinear systems and

previous work done in this area mostly focuses on state feedback. Important work reported

under state feedback control is included in Block et al. [2007]; Lopez-Martinez et al. [2010];

Olfati-Saber [2000]; Ortega et al. [2002]; Qaiser [2009]; Spong et al. [2001]. The problem

becomes more complex when some of the system states are not available and a control law

is deduced from available system states and the output, either under partial state feedback or

output feedback control. The requirement of output feedback becomes significant, if actual

system or plant is lacking in some of state sensors e.g., velocity sensors. The reason behind

this may be economic so as to reduce cost of overall control system or it may be due to

the requirement that system should exhibit the ability of eliminating measurement noise in

velocity signals. This makes the output stabilization problem of under-actuated systems an

open research problem [Xu and Hu, 2013]. In this domain, significant work is reported in

Boker and Khalil [2013]; Bou Serhal and Khalil [2012]; Nazrulla and Khalil [2011b]; Xu and

Hu [2013].

The above mentioned factors make the control of under-actuated nonlinear systems a chal-

lenging problem and therefore, it is under consideration for the past many decades making

it an active field of research. A detailed and comprehensive study covering major aspects of

the under-actuated systems is done by Reza Olfati-Saber in his thesis [Olfati-Saber, 2000].

An important aspect of this work is that classification of systems is done on the basis of ki-
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netic symmetry properties. Based on these properties, it is demonstrated that complexity of

original system dynamics can be reduced and a cascade linear/nonlinaear mathematical form

can be obtained after suitable change of control and coordinates. The reduced mathematical

form is termed as normal form representation which is characterized by a number of first or-

der ordinary differential equations and can be easily used to analyze the controllability and

observability properties of the systems. An important feature of the normal form presented

here is that it transforms system dynamics into internal dynamics and external dynamics. De-

pending on various type of normal form representation and mathematical analysis presented

here, it is shown that under-actuated systems can be placed in eight different categories. Ac-

cording to this classification, a number of benchmark under-actuated systems including the

Inertia Wheel Pendulum (IWP), Translational Oscillator with Rotating Actuator (TORA) and

Acrobot falls together in a similar class, due to identical normal form representation called as

strict feedback form. This class of systems is under consideration for detailed mathematical

analysis and control law derivation in this thesis.

Towards this end, a passivity-based nonlinear control method to stabilize Inertia Wheel

Pendulum is proposed in Spong et al. [2001]. The mathematical formulation presented in

Spong et al. [2001], for the development of control law structure that does not require velocity

measurement and is non-switching in nature, is further extended in [Ortega et al., 2002]. Here,

the stabilization problem of IWP is solved by utilizing a new formulation of passivity based

control termed as interconnection and damping assignment for swing up and balance of pendu-

lum. Lately, an important development for a class of under-actuated systems and extension in

work of Olfati-Saber [2000] is reported in Qaiser [2009]. In this work, stabilizing algorithms

for a class of under-actuated systems in strict feedback normal form are presented and it is

shown that some of the shortcomings relevant with previously reported algorithms like energy

shaping and damping injection and back-stepping can be avoided by use of Multiple Sliding

Surfaces (MSS) Control and Dynamic Surface Control (DSC) techniques. It is further shown
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that these techniques when applied on typical examples of benchmark systems belonging to

this class like IWP, TORA and Acrobot gave improved results for semiglobal asymptotic and

local exponential stabilization.

The above mentioned work effectively addresses issues using dynamic feedback control

law utilizing entire system states. Some researchers presented solution to stabilization problem

of nonlinear under-actuated systems under output feedback using state observer for estimation

of system states. High gain observer (HGO) is a type of observer that has been successfully

used as a design tool for state estimation and disturbance rejection [Khalil, 2002; Khalil and

Praly, 2014]. For the case of minimum phase nonlinear systems, where internal dynamics

exhibit stable behaviour, high gain observers have been effectively used to improve system ro-

bustness as well as to achieve simplicity in controller design. The technique has been used for

a wide class of nonlinear systems and global results have been achieved under global growth

condition. In [Esfandiari and Khalil, 1992], it is shown that under lack of global growth con-

ditions observer gain becomes sufficiently high that could destabilize the entire closed loop

system. This phenomenon is termed as peaking effect. Due to much faster observer dynamics

than closed loop system dynamics, the peaking period is very short and remain very close to

the initial values of system variables. This phenomenon gave a simple solution to the prob-

lem of peaking effect as proposed in [Esfandiari and Khalil, 1992] where it is suggested that

a modified control law based on globally bounded function of state estimates could be de-

vised so that it saturates within period of peaking. After this effective solution of peaking

phenomenon, the use of HGO got wide-spread attention. [Teel and Praly, 1995] presented

mechanism for semiglobal stabilization of nonlinear systems referred as first nonlinear sepa-

ration principle. This concept is extended in [Atassi and Khalil, 1999; Khalil and Praly, 2014]

by combining fast observer with control saturation so that output feedback control law can

recover the trajectories of state feedback controller under sufficiently high value of observer

gain.
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The HGO based controller design is, however, mostly done for minimum phase systems

[Memon and Khalil, 2009] having stable zero dynamics. For estate estimation and disturbance

rejection of non-minimum phase systems, an extended version of HGO having one dimension

higher than system relative degree have been introduced and effectively utilized. The stabi-

lizing controller for a class of non-minimum phase systems utilizing EHGO is presented by

Khalil and coworkers in which concept of an auxiliary system is used that includes unstable

internal dynamics. An EHGO based sliding mode controller is proposed in [Nazrulla and

Khalil, 2011b] to evolve stabilizing control law for such type of systems. Similarly in Boker

and Khalil [2013], a full order observer is designed based on EHGO and Extended Kalman

Filter (EKF) to estimate system output as well as internal system states. Both Boker and Khalil

[2013]; Nazrulla and Khalil [2011b] demonstrated their results on a test bench under-actuated

system namely Translating Oscillator with a Rotating Actuator (TORA). In Bou Serhal and

Khalil [2012], application of EHGO for disturbance rejection is demonstrated on a bench mark

inverted pendulum system.

In this thesis, work done on state feedback based stabilization control extends the earlier

contributions of Olfati-Saber [2000]; Qaiser [2009] while for output feedback based control,

it utilizes the work done by Boker and Khalil [2013]; Nazrulla and Khalil [2011b], and a

sliding mode control scheme based controller design is proposed. It is demonstrated that

closed loop system states and trajectories under output feedback converge to those of state

feedback control with suitable choices of observer gains and design parameters. In output

feedback, the initial overshoot in states i.e., peaking effect is controlled by applying some

constraints on system input. These constraints do not deteriorate the overall closed loop system

performance while the system transient behaviour is considerably improved and is comparable

with those of state feedback performance. The simulation results on two examples of target

class of under-actuated system exhibits the effectiveness of the proposed stabilizing control

scheme.
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1.3 Contribution

In this thesis, output feedback stabilization/regulation for a class of under-actuated benchmark

non-minimum phase system is presented. For the case of output stabilization, the design ap-

proach is based on sliding mode framework and an extended high gain observer. The scheme

broadly utilizes the earlier contributions of Olfati-Saber [2000] for development of system

mathematical model under SFB design and Boker and Khalil [2013]; Nazrulla and Khalil

[2011b] for the development of an EHGO to estimate virtual output to an auxiliary system.

The contribution of this work, lies in utilization of an important design tool called collocated

partial feedback linearization [Olfati-Saber, 2000] and a global coordinate transformation to

generate suitable normal form that bifurcates entire system into an internal and external dy-

namics which can be conveniently utilized for EHGO based controller design [Boker and

Khalil, 2013]. Another contribution of this work, is the methodology for derivation of control

law. In Olfati-Saber [2000]; Qaiser et al. [2007] design is based on assumption that system

states are available to derive a suitable control law whereas in this work an equivalent sliding

mode control is used based on the assumption that some of the system states are not avail-

able. The whole scheme is based on step by step approach utilizing error dynamics of external

system and generating appropriate output to stabilize internal system. The methodology is

applied on two examples of target class of systems namely Inertia Wheel Pendulum (IWP)

and Translational Oscillator Rotational Actuator (TORA) in Chapter 5.

For stabilization of TORA system, the proposed methodology is applied and an EHGO is

implemented along with Extended Kalman Filter (EKF). The controller design approach is an

extension to earlier work [Khalid and Memon, 2014]. It broadly utilizes the design approach

of Olfati-Saber [2000] to derive system mathematical formulation under state feedback (SFB)

design and Boker and Khalil [2013]; Nazrulla and Khalil [2011b] for the development of an

EHGO to estimate virtual output to an auxiliary system. The difference in the work presented

in this thesis, lies in application of collocated partial feedback linearization [Olfati-Saber,
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2000] and a global change of coordinates to derive suitable normal form similar to one used

in Boker and Khalil [2013]. Such normal form transforms the whole system dynamics into

internal and external systems which can be conveniently used for controller design utilizing

system observed states based on EHGO and EKF [Boker and Khalil, 2013]. Another differ-

ence in the case of TORA system lies in development of suitable control law. In this work,

an observer based sliding mode controller is proposed while in [Olfati-Saber, 2000; Qaiser

et al., 2007] only state feedback based design scheme is implemented. Again, the controller

design is implemented using a systematic, step by step approach incorporating error output of

external system for stabilization of internal system states. The scheme can be implemented

on other systems of similar class with appropriate modifications. Thus the proposed scheme

allows implementation of control law in a simple and unified way and the overall transient

and steady state response is compared with those in [Boker and Khalil, 2013; Nazrulla and

Khalil, 2011b]. This thesis contains a detailed account of design and analysis of control tech-

niques proposed for stabilization and output regulation of a class of under-actuated nonlinear

systems. Some of the preliminary results presented here have been presented and published.

A brief account of the research papers published is given below:

• Khalid, N. and Memon, A. Y. (2016). Output feedback control of a class of under-

actuated nonlinear systems using extended high gain observer. Arabian Journal for Sci-

ence and Engineering, 41(9):3531–3542.

• Khalid, N. and Memon, A. Y. (2014). Output feedback stabilization of an inertia wheel

pendulum using sliding mode control. In Control (CONTROL), 2014 UKACC Interna-

tional Conference on, pages 157–162. IEEE.

• Khalid, N. and Memon, A. Y. Output Feedback Control of TORA - A Benchmark

Under-actuated Nonlinear System. First International Conference on Latest trends in

Electrical Engineering and Computing Technologies (INTELLECT), 2017



1.4 Thesis Organization 11

1.4 Thesis Organization

The rest of the thesis is organized in six chapters. Chapter 2 presents a brief overview of terms,

definitions and basic concepts of under-actuated nonlinear systems. Mathematical formulation

and classification of nonlinear system in general and under-actuated systems in particular is

discussed in Chapter 3. The model transformation for a class of under-actuated nonlinear

systems and its utilization for output feedback stabilization to derive an SMC based control

law is given in Chapter 4. Subsequently, in Chapter 5, examples of target class of under-

actuated benchmark systems are dealt with proposed control techniques. The output feedback

regulation of of under-actuated systems is dealt in Chapter 6. In Section 6.5 of this chapter,

TORA system model is taken and a control law is synthesised for analysis and verification of

proposed output regulation scheme. Finally, in Chapter 7, a conclusion is drawn and future

aspects of the proposed research are highlighted.



Chapter 2

Preliminaries

The objective of this thesis is to solve control problem for a class of under-actuated nonlinear

systems that exhibit non-minimum phase behaviour. Before proceeding to main concepts and

methodology adopted in this thesis to solve the problem, it is necessary to preview some

background theories and preliminary concepts that would be referenced later on in this thesis.

In this chapter, some basic concepts including non-minimum phase systems, state observer

and extended high gain observers based output feedback control and stability of nonlinear

systems are explored. The chapter contains the preliminary material required for the controller

development in later chapters.

2.1 Linear Time Invariant Systems

The theory of linear system has been developed much earlier than nonlinear control theory. A

lot of research has been done on linear control systems. A linear system essentially follows

superposition and homogeneity principles. The superposition principle can be depicted as

if g(ua) = ya

and g(ub) = yb

then g(ua +ub) = ya + yb


(2.1)
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and homogeneity requirement can be defined as

if g(u) = y

then g(Au) = Ay

 (2.2)

where A is any scalar or a constant number. The variables u,ua,ub are set of inputs and y,ya,yb

are corresponding outputs. A linear system that does not change over time is termed as linear

time invariant or an LTI system. An LTI system can be represented with state equations as

ẋ = Ax+Bu (2.3)

where x is state vector, A is system matrix, B is input matrix and u is external control input.

Depending on configuration of matrix A, an LTI system is characterized by unique and stable

equilibrium point independent of initial conditions. The system transient response is com-

posed of natural modes and analytical method could by used to find system general response.

2.2 Linear Non-minimum Phase Systems

An important phenomenon of linear systems is exhibition of minimum / non-minimum phase

behaviour. Linear systems can be classified on the basis of location of poles and zeros on

complex s plane. An LTI system is termed as minimum phase if the system dynamics and

its inverse are stable and causal, While if a system and its inverse show causal but unstable

behaviour then such an LTI system is termed as non-minimum phase system. The transfer

function Q(s) for a linear system can be represented as

Q(s) =
Z(s)
P(s)

(2.4)

Here Z(s), P(s) are polynomial in complex variable s. If roots of polynomial Z(s) known as

zeros and/or roots of polynomial P(s) known as poles lie on the left hand side of complex
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s plane then system (2.4) is called as minimum phase system. On the other hand, if roots

of polynomial Z(s) and/or roots of polynomial P(s) lie on the right hand side of complex s

plane then system (2.4) is termed as non-minimum phase system. Although the amplitude

response for both minimum phase as well as non-minimum phase systems are identical but

the phase response for the non-minimum phase systems is always larger then for systems

exhibiting minimum phase behaviour. As an example consider two systems represented by

transfer functions Q1(s), Q2(s) as

Q1(s) =
1+ sT
1+ sT1

(2.5)

Q2(s) =
1− sT
1+ sT1

(2.6)

The distribution of poles and zeros for Q1(s) and Q2(s) on the s-plane as shown in Fig. 2.1,

clearly shows that the system having transfer function Q1(s) is minimum phase and the system

with transfer function Q2(s) is non-minimum phase [Schmid, 2005]. The corresponding

✲ ✲

✻ ✻jω jω

σ σ
×

− 1
T

◦
− 1

T1

×
− 1

T1

◦
− 1

T

s-plane s-plane

(a) (b)

Fig. 2.1 Pole-Zero configuration in s-plane(a) = Q1(s), (b) = Q2(s)[Schmid, 2005]
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Fig. 2.2 Phase plot for a typical linear minimum phase system

amplitude response for both transfer functions is equal and is given by

A(w) = |Q1( jw)|

= |Q2( jw)|

=

√
1+(wT 2)

1+(wT 2
1 )


(2.7)

The difference between two systems Q1(s),Q1(s) becomes apparent from corresponding phase

response of both systems. As Q1(s) is minimum phase and Q2(s) is non-minimum phase, so

the difference occurs in their phase response given as follows and shown in Fig. 2.2 and Fig.

2.3 respectively.

φ1(w) =−arctan
w(T1 −T )
1+w2T T1

φ2(w) =−arctan
w(T1 +T )
1−w2T T1

 (2.8)

Non-minimum phase Linear Time Invariant systems exhibit a number of constraints in their

general behaviour such as time delayed response, reduction in bandwidth and instability of
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Fig. 2.3 Phase plot of a typical LTI non-minimum phase system

some of internal system states. A critical characteristics of non-minimum phase systems that

needs to be addressed is its behaviour under step input. For step input, system initially shows

an undesired response with overshoot/undershoot output before it finally converges to desired

output. For a typical non-minimum phase LTI system, step response is shown in Fig. 2.4. For

these systems number of roots of Z(s) are not equal to number of roots of P(s). This difference

of roots is termed as relative degree represented as ρ of system. A general normal form of a

system with n number of states and relative degree ρ is given as

η̇ = f (η ,ξ )

ξ̇ = Aξ +B(b(η ,ξ )+a(η ,ξ )u)

y =Cξ


(2.9)
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Fig. 2.4 Plot of Step Response of a typical LTI non-minimum phase system

where ξ are the controllable states, η are the internal dynamics (with number of states equal

to n−ρ) and y is the output. The matrices A,B and C are given as

A =



0 1 · · · · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 · · · · · · 0 1

0 0 · · · · · · 0


B =

[
0 0 · · · 0 1

]ᵀ
C =

[
1 0 · · · 0 0

]

with the order of ρ ×ρ , ρ ×1 and 1×ρ respectively.

It is to be noted that controllability / observability of internal dynamics η are important

as these properties plays vital role in stabilization or regulation based control designs of these

type of systems. For a minimum phase system, if controller makes output convergent to de-

sired trajectories and internal states η are bounded then control problem can be solved and
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closed loop stability is achieved. However, this is not true for the case of non-minimum phase

system as instability of the system is not reflected in the output which is unacceptable. For

these systems even if the feedback control law achieves output stabilization or regulation,

making system output zero or tracking of reference signal is done perfectly but stability of

internal states also needs to be catered for in the overall control law.

2.3 Nonlinear systems

Physical systems, in real world, exhibit nonlinear dynamics and are termed as nonlinear sys-

tems. These type of systems can only be approximated to linear systems within a small region

of operation. These real life nonlinear systems show different properties than linear systems

described in previous section. For nonlinear systems, principle of superposition (2.1) and

homogeneity (2.2) does not hold. These systems behave quite irregularly to external control

input as compared to linear systems. A number of common nonlinear properties are associated

with these systems like finite escape time, limit cycles, bifurcations and chaotic phenomenon

etc. Due to these properties, nonlinear systems exhibit much more complex behaviour than

linear system. A nonlinear system non-affine in input termed as highly nonlinear system can

be represented in generalized form as

ẋ(t) = f (x(t),u(t)), x(0) = x0 (2.10)

y = h(x(t)) (2.11)

Where manifold x ∈ ℜn and u(t) ∈ ℜm and functions f : ℜn ×ℜm → ℜn and h : ℜn → ℜ are

continuous smooth vector fields. x0 is initial condition of x at t = 0. A more standard form of
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nonlinear systems termed as affine in input similar to the form (2.3) is given as

ẋ(t) = f (x(t))+g(x(t))u(t), x(0) = x0 (2.12)

y = h(x(t)) (2.13)

For the nonlinear system (2.10)-(2.13) control theory exists regarding controllability, ob-

servability, stabilization, tracking, noise or disturbance decoupling etc., [Olfati-Saber, 2000].

However, these methods are successful in local analysis and under global analysis these meth-

ods fail to work. Under global/semiglobal control design and analysis, the dynamics of non-

linear system affine in control (2.12)-(2.13), after change of coordinates, is transformed into

a system or subsystem non-affine in control similar to the form in (2.10)-(2.11). A similar

situation is faced for the case of under-actuated nonlinear systems and are required to be dealt

with special design tools for solution of stabilization and regulation problem.

2.4 Zero Dynamics of Nonlinear Systems

Zero dynamics of a control system is termed as internal system dynamics when system output

is limited to zero by the input. For linear systems, poles of zero dynamics are exactly the zeros

of the original system. As discussed in Section 2.2, non-minimum phase behaviour of linear

system depends on system zeroes and zero dynamics plays vital role in stability of system. For

nonlinear systems, where concept of poles and zeroes of system is not directly present, zero

dynamics becomes intrinsic property to study system behaviour as relative degree and internal

stability of system are largely dependent on it. For the systems having relative degree equal

to system order exact feedback linearization is possible. For the case of relative degree less

than system order, exact linearization is not possible. However, such systems can be partially

linearized under input output feedback linearization. The System 2.12, after partial feedback
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linearization, takes the form as

η̇ = f (η ,ξ ) (2.14)

ξ̇ = g(ξ ,u) (2.15)

The above formulation is obtained after nonlinear global coordinate transformation. The dy-

namics of η does not depend on input u and is termed as internal dynamics as it has no effect

on system output. The System (2.14)-(2.15) is composed of an external linear subsystem of

dimension equal to system relative degree ρ and an internal subsystem of dimension (n−ρ)

respectively. In this way, system stability study becomes equivalent to study of its zero dy-

namics. For the system in (2.14), it can be represented as

η̇ = q(η ,0) (2.16)

The system dynamics defined by (2.16) is termed as zero dynamics for nonlinear System

(2.12)

2.5 Nonlinear Non-minimum Phase Systems

The non-minimum phase property of nonlinear system is dependent on its zero dynamics. It

is an input output property and system output y is said to be non-minimum phase if zero dy-

namics of (2.14)-(2.15) is unstable. Such a system is termed as non-minimum phase nonlinear

system. Control of such system is a challenging task as feedback linearization is not applicable

and unstable zero dynamics prevent the use of input output feedback linearization. The most

common examples of non-minimum phase system includes inverted pendulum, boiler tem-

perature control, sideways motion control of ships and aircrafts, heave control of submarines

and vertical take-off of aircraft etc. The class of test bench under-actuated system dealt in

this thesis also fall in this category due to unstable zero dynamics. Examples include Inertia
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Wheel Pendulum (IWP), Translational Oscillator Rotational Actuator (TORA) and Acrobot.

2.6 State Observer

In a state feedback control design, it is assumed that all system states are available which is

practically often not possible. Measurement of some or all system states is quite difficult,

unreliable or some times uneconomical and thus control algorithm often has to utilize system

input or output only.

In order to overcome this bottleneck to measure system states different approaches can

be utilized. First is to look new procedures that required fever measurements and the other

is to adopt more complex dynamical feedback processing algorithms. This second approach

is relatively simpler in which an approximation of full state vector on the basis of available

measurements is constructed. The simplicity of this approach lies in utilization of earlier

devised control algorithms by simply replacing the observed state vectors in place of the actual

states. A device used for computing approximation of system states is known as observer. The

observer is itself a dynamical system and is an important design tool used in feedback control

design for estimation of systems states. It is a dynamical system used for estimations of some

or all of system states. Its input values are the values measured from the original system and

its state vector generate missing information about the states of the original system. State

observer can be termed as a dynamic device that when connected to available system outputs

generate the entire states. [Luenberger, 1966]

Observers or state estimators are important building blocks for controller design under

output feedback control scheme. If an observer is used for estimation of all system states,

regardless of whether some state variables are available for direct measurement or not, it is

termed as a full state observer while observer that is used for estimation of some of system

states than it is called a reduced-order state observer or, simply, a reduced-order observer.
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2.6.1 Linear Observer

For a Linear Time Invariant (LTI) system, state observer measures its control variables depend-

ing on its output and control input. A wide range of observers are introduced in literature and

are utilized for development of control algorithms. Some of these are explained in [Wang and

Gao, 2003], where authors compare some of the widely used state observers. An important

type of linear observer is known as Luenberger Observer [Luenberger, 1966].

Consider a linear system, with matrices A,B and C as parameters of its state space model,

given as a manifold that solves the regulator equations.

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)

 (2.17)

which is a general fully observable, linear, time invariant system where x(t) is n-dimensional

state vector, u(t) is input, and y(t) is output of length p. The observer will be another dynam-

ical system that provides the system state vector. The mathematical formulation of observer

will substantially be same as that of original system except that of a term depending on the

difference between the observed and expected output values. This term is defined as estima-

tion error and it compensate the inaccuracies in the matrices A and B and the lack of initial

value knowledge. The mathematical model of the observer is defined as

˙̂x(t) = Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) (2.18)

From the observer mathematical model (2.18), it is evident that y(t) and u(t) act as input for

observer model and term L called observer gain matrix will effect the dynamical behaviour

of the state estimate and state error. By substituting for the output vector, the differential
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equations for the observer error are given as

˙̂e(t) = ˙̂x(t)− ẋ(t)

= [A−LC]
(
x̂(t)− x(t)

)
= [A−LC]e(t)


(2.19)

Equations (2.19) shows that observer dynamical behaviour can be adjusted by manipulating

the observer gain matrix L. Matrix L act as a weighting matrix for correction of terms in-

volving the difference between the measured output y and the estimated output Cx̂. This term

continuously corrects the model output and is responsible for improving the performance of

the observer. The estimation error e(t) exhibits asymptotic convergence, if (A−LC) has all

its eigenvalues in the left half s-plane. The selection of gain matrix L using some suitable

method, for example, pole placement method is an important part of observer design. It is to

be noted that initial values for observer dynamics needs not be identical with initial values of

system states as long as the chosen eigenvalues for (A−LC) are in the left half plane. The

values of observer gain L can be used to choose location of all eigenvalues of matrix (A−LC)

and hence the rate at which observer error goes to zero can be adjusted. A critical part of the

design is that it is very much dependent on the accuracy of state space matrices A, B and C.

2.6.2 High Gain Observer

High Gain Observer (HGO) was first introduced, as a continuation of work on state observers,

for robust output feedback control of linear systems. Doyle and Stein [Doyle and Stein, 1979]

introduced HGO as a design tool to recover system performance achieved under state feedback

control. The use of HGO to achieve robustness in design was presented for linear system by

a number of scholars in 1980s as in [Petersen and Hollot, 1988]. Saberi and Khalil [Khalil

and Saberi, 1987], for the first time, introduced HGO for adaptive stabilization of nonlinear

systems. This work opened more avenues towards enhancement of capabilities of HGO in
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dealing with real world nonlinear system issues which include disturbances, noise and system

uncertainties. In this section a brief introduction of HGO for nonlinear system is presented.

The mathematical representation of normal form of nonlinear system is given as

ẋi = xi+1 1 ≤ i ≤ ρ −1

ẋρ = b(x,θ)+a(x,θ)u

y = x1


(2.20)

Here θ is unknown disturbance input to the system and ρ is system relative degree. An HGO

for the system in (2.20) can be represented as shown below

˙̂xi = x̂i+1 +
ai

ε i (y− x̂1) 1 ≤ i ≤ ρ −1

˙̂xρ = b(x̂)+a(x̂)u+
aρ

ερ
(y− x̂1)

 (2.21)

Here the design parameter ε is chosen to as small value as possible while a1,a2, . . . ,aρ are

constant parameters selected such that the polynomial λ ρ + a1λ ρ−1 + . . .+ aρ−1λ + aρ is

Hurwitz. Parameters b(x) and a(x) are the nominal model of b(x,θ) and a(x,θ) respectively.

The nominal model parameters if available are included in high gain observer design. This

makes high gain observer model convergent at a faster rate which is very much desirable for

an efficient state observer. However, if nominal model information is not available, high gain

observer can still be designed by ignoring nominal model information. The design parameter

ε chosen to a very small value could introduce peaking effect in transient phase of high gain

observer making the initial condition of scaled estimation error x1(0)−x̂1(0)
ε

of the order of

O(1/ε) when x1(0) ̸= x̂1(0). This may add a term of the form (1
ε
)e−

αt
ε for some α > 0. The

exponential term decays rapidly as time increases under steady state. However, this may lead

to unacceptable transient behaviour as well as destabilization of closed loop nonlinear system

during transient phase due impulsive behaviour of (1
ε
)e−

αt
ε under HGO as ε tends to zero.

This unacceptable behaviour of HGO can be avoided by rejecting unrealistic high outputs
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of state estimates during transient phase by making the control law and nominal functions

as globally bounded. The behaviour can be avoided by making control law and/or system

states as globally bounded so that system states/control input saturates outside compact sets

of interest. This simpler but effective solution to undesired peaking effect of HGO initiated

widespread usage of HGO for output feedback regulation of nonlinear systems.

The HGO based observer of states is beneficial for design of nonlinear control systems

and concept of separation principle is utilized effectively. Towards that end, observer and

controller design can be divided in two phases. In the first phase, control law u is designed

under any suitable state feedback control technique. In the next phase, system states are

estimated utilizing high gain observer. Finally, the actual states are replaced by estimated

states in state feedback design to get an output feedback control law. Such a design is relatively

simpler as compared to an alternate attempt of developing an output feedback control law

using system output only.

2.6.3 Extended High Gain Observer

The high gain observer provides estimates of systems states utilizing its output only. It is very

much effective for fully actuated system or for minimum phase under-actuated system where

either there is no zero dynamics or zero dynamics is stable and does not effect stability of

overall system dynamics. This is however not true for the case of non-minimum phase under-

actuated system where zero dynamics needs to be effectively addressed as it is not stable.

An Extended High Gain Observer (EHGO) is used not only to estimate the output and its

derivative up to ρ th order where ρ is system relative degree but also provides an estimate of

a part of internal dynamics. The estimate of the part of internal dynamics is utilized to make

internal dynamics observable when viewed as virtual output of the system. Considering (2.20)

as normal form representation of a nonlinear system, than information regarding uncertain

term b(x,θ) and a(x,θ) can be estimated through the use of EHGO. It is assumed that the
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sign of high frequency gain a(x,θ) is known but the uncertain terms b(x,θ) and a(x,θ) are

unknown. Terms b(x) and a(x) are nominal model of b(x,θ) and a(x,θ) respectively. To

design an EHGO a virtual output term σ can be defined as

σ = b(x,θ)−b(x)+
(
a(x,θ)−a(x)

)
u (2.22)

The system can be represented as an augmented set of equations (2.20) and (2.22) shown as

ẋi = xi+1 1 ≤ i ≤ ρ −1

ẋρ = b(x)+a(x)u+σ

σ̇ = φ(x,w,u, u̇)

y = x1


(2.23)

The extended high gain observer is obtained by considering set of equations (2.23) as an

augmented system and an HGO is designed in a similar way as explained in section (2.6.2) for

the augmented system. The EHGO for system can be derived as

˙̂xi = x̂i+1 +
ai

ε i (y− x̂1) 1 ≤ i ≤ ρ −1

˙̂xρ = b(x̂)+a(x̂)u+ σ̂ +
aρ

ερ
(y− x̂1)

˙̂σ =
aρ+1

ερ+1 (y− x̂1)


(2.24)

where ε is design parameter and it is chosen as small as possible. The value for the constant

parameters a1,a2, . . . ,aρ+1 are selected such that the polynomial λ ρ+1 +a1λ ρ + . . .+aρλ +

aρ+1 is Hurwitz. Keeping in view the above mentioned application of an EHGO, it can be

used as

• Disturbance estimator

• Sensor of internal dynamics for

1. Stabilization of non-minimum phase systems
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2. Observer for internal dynamics

Consider a class of nonlinear systems having internal dynamics η and external dynamics ξ

shown as

η̇ = φ(η ,ξ ,θ)

ξ̇i = ξi+1 1 ≤ i ≤ ρ −1

ξ̇ρ = b(η ,ξ ,θ)+a(ξ ,θ)u

y = ξ1


(2.25)

The internal dynamics may be stable or unstable rendering the system to exhibit as minimum

phase or non-minimum phase behaviour. For the normal form of system (2.25), having known

system structure and parameter θ , it can be assumed that structural information φ(η ,ξ ,θ),

b(η ,ξ ,θ) and a(ξ ,θ) are available. The zero dynamics being unobservable but one of its

component ηp ∈ η where ηp denotes the information of η in b(η ,ξ ,θ) can be effectively

utilized to reconstruct it from the partial information of its component. In this way ηp can

be utilized to reconstruct zero dynamics. Keeping this in mind, an auxiliary output σ can be

assumed as

σ = b(η ,ξ ,θ) (2.26)

Term b(η ,ξ ,θ) can be transformed into ηp as

ηp = b(η ,ξ ,θ)v(ξ ,θ) (2.27)
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Where v(ξ ,θ) is assumed as some known function. Now an extended high gain observer for

system represented in set of equations (2.25) is taken as

˙̂
ξi = ξ̂i+1 +

ai

ε i (y− ξ̂1) 1 ≤ i ≤ ρ −1

˙̂
ξρ = a(ξ̂ ,θ)u+ σ̂ +

aρ

ερ
(y− ξ̂1)

˙̂σ =
aρ+1

ερ+1 (y− ξ̂1)


(2.28)

Here ε and a1,a2, . . . ,aρ+1 are selected as depicted earlier. The term η̂p can obtained as per

equation (2.27) as

η̂p = σ̂v(ξ̂ ,θ) (2.29)

To obtain the observer for internal state η̂p is used as an input and an observer is obtained for

zero dynamics as

˙̂η = φ(η̂ , ξ̂ ,θ , η̂p) (2.30)

One such observer for internal dynamics will be designed in Chapter 5 belonging to a class

of under-actuated non-minimum phase systems namely, Translational Oscillator with Rotat-

ing Actuator (TORA) and Inertia Wheel Pendulum (IWP).
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2.7 Summary

The preliminary concepts regarding linear and nonlinear systems are given in this chapter.

Starting with the general theory of linear time invariant and nonlinear systems, the non-

minimum phase property and effects of zero dynamics on system dynamics is discussed. For

output feedback control, important design tool for estate estimation termed as high gain ob-

server is explored. Finally, the application of extended high gain observer for estimation of

linear as well as nonlinear system states is detailed.



Chapter 3

Under-actuated Nonlinear Systems

This chapter deals with theoretical description and mathematical formulation of under-actuated

nonlinear systems. Starting with general description of nonlinear systems, the mathematical

formulation for a typical nonlinear mechanical system is presented. Types of nonlinear sys-

tems based on nature of actuation leading to under-actuated and fully-actuated systems are

presented. A comparison of under-actuated systems with those of fully actuated counterparts

is provided to show the complexity of under-actuated systems. Classification of these systems,

depending on mathematical formulation is described and finally a class of under-actuated sys-

tems having strict feedback normal form termed as Class-1 systems, particularly focused in

this thesis, are described. The mathematical formulation and generalized model of Class-1

systems are also presented.

3.1 Mathematical Formulation of Nonlinear Systems

In this section, a generalized dynamical form of a typical under-actuated nonlinear system is

formulated. Classical equations of motion for a nonlinear system are employed and distin-

guishing characteristics of an under-actuated system with that of a fully-actuated system are

highlighted. Euler-Lagrangian equations of motion for this class of systems are utilized firstly,

to obtain the generalized state space representation of system, and then, using suitable change

of control/coordinates a typical normal form representation is derived.
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3.1.1 Lagrangian Form

A nonlinear system affine in control u ∈ ℜm, state vector x ∈ ℜn and output y ∈ ℜn can be

represented as

ẋ = f (x)+g(x)u, x(0) = x0 (3.1)

y = h(x) (3.2)

where f : ℜn×ℜm →ℜn, g : ℜn×ℜm →ℜn and h : ℜn →ℜ are nonlinear continuous smooth

functions. x0 denotes initial states vector at t = 0 and ẋ is defined as derivative of states x w.r.t.

time (t). The differential equations (3.1-3.2) represent a class of nonlinear physical systems

having n degrees of freedom and requires n-dimensional position (configuration) vector θ ,

[θ1,θ2, ...,θn] ∈ Q for local representation.

The classical equation of motion for this type of systems, is given as

d
dt

[
∂k
∂ θ̇i

]
−
[

∂k
∂θi

]
= Ti, i = 1,2, ...,n (3.3)

where θ̇ , [θ̇1, θ̇2, ..., θ̇n] are the generalized velocities and k is total kinetic energy of the

system. The term Ti is sum of forces acting on the system denoted by matrix T ext
i and forces

obtained from potential energy function V of the system. This can be written as

Ti =−∂V
∂θi

(θ)+T ext
i , i = 1,2, ...,n (3.4)

Lagrangian (L0) of this system can be represented as the difference of energies of the system

as follows

L0 = Kinetic Energy - Potential Energy (3.5)

or

L0 = k(θ̇ ,θ)−V (θ) (3.6)
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Using (3.3),(3.4) and (3.6), the Euler Lagrange equations of motion for this system can be

derived as

d
dt

[
∂L0

∂ θ̇i

]
−
[

∂L0

∂θi

]
= T ext

i , i = 1,2, ...,n (3.7)

and the total kinetic energy is given as

k(θ̇ ,θ) =
1
2

θ̇
T M(θ)θ̇ (3.8)

where M is inertia matrix of the system. Using (3.7), and considering T ext
i as control input

u, a simplified equation in matrix form for a mechanical system can be derived as follows

[Choukchou-Braham et al., 2013]

∑
j

mk j(θ)θ̈ j +∑
i, j

Γ
k
i j(θ)θ̇iθ̇ j +gk(θ) = eT

k F(θ)u, k = 1,2, ...,n (3.9)

where ek is the kth standard basis in ℜn, gk(θ) = ∂θkV (θ) and Γk
i j(θ) the christoffel symbol

is defined as follows:

Γ
k
i j(θ) =

1
2

(
∂mk j(θ)

∂θi
+

∂mki(θ)

∂θ j
−

∂mi j(θ)

∂θk

)
(3.10)

equation (3.9) can be written in matrix notation as

M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = F(θ)u (3.11)

where ci j = ∑
n
k=1 Γi

k j(θ)θ̇k is an element of C(θ , θ̇). The term C(θ , θ̇)θ̇ having θ̇i, θ̇ j is a

matrix containing centrifugal term for i = j and coriolis-effect terms for i ̸= j, F(θ) is m×n

input or control matrix and G(θ) is the gravity matrix whose elements are given as

gi(θ) =
∂V
∂θi

(θ), i ∈ n
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The matrix defined by S0 = Ṁ(θ)− 2C(θ , θ̇) is antisymmetric, such that Ṁ(θ) = C(θ , θ̇)+

CT (θ , θ̇). Furthermore, M(θ) being positive symmetric definite allows to introduce Legendre

Transform given as

ϑ =
∂ (L )

∂θ
= M(θ)θ̇

and equation (3.11) can be further simplified into 2n dimensional standard state space repre-

sentation as

d
dt

θ

ϑ

=

 M−1(θ)ϑ

−G(θ)+C(θ ,M−1ϑ)M−1(θ)ϑ

+

 0

F(θ)

u (3.12)

Equation (3.12), also called Legendre normal form for a general nonlinear mechanical system,

can be represented in state space representation with variables x1 = θ , x2 = ϑ as

d
dt

x1

x2

=

 M−1(x1)x2

−G(x1)+ xT
2 Q(x1)x2

+

 0

F(x1)

u (3.13)

Equation (3.13) resembles the compact mathematical form affine in control input as given in

(3.1).

3.2 Nonlinear System Types based on Actuation Property

The mathematical formulation of nonlinear systems derived in section 3.1 can be used to define

two major system types based on actuation properties of generalized configuration vector of

entire system space. The number of controls are either equal to or less than dimension of

configuration space which leads to define fully actuated or under-actuated nonlinear systems

as explained in next sections.
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3.2.1 Fully-actuated Systems

A physical system defined by Euler-Lagrange’s equations (3.3) is defined as fully actuated if

m = n i.e., F(θ) is invertible. The number of inputs for such systems is equal to the dimension

of their configuration space. As a result, these systems are fully feedback linearizable and

does not contain any zero dynamics. For these cases a double integrator system is obtained

and the control problem is reduced to linear system problem as shown below:

ẋ1 = x2

ẋ2 = v

 (3.14)

u = F−1(θ)
[
M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ)

]
(3.15)

3.2.2 Under-actuated Systems

A mechanical system with configuration space θ ∈ Q and Lagrangian L0(θ̇ ,θ) represented

by Euler-Lagrange equation (3.7) is said to possess under-actuated dynamics, if rank(m) of

F(θ) < n = dim(Q). Unlike fully-actuated systems, under-actuated systems do not allow

exact feedback linearization, due to lesser number of actuators than dimensions of the config-

uration manifold. As a result of this constraint the generalized system inputs cannot control

instantaneous acceleration in every direction. Due to these type of constraints such systems are

also termed as non-holonomic mechanical systems [Bloch et al., 1992; Ne_mark and Fufaev,

2004; Reyhanoglu et al., 1999; Wichlund et al., 1995].

A mechanical system is termed as having first order non-holonomic constraints whose

Lagrangian system have m (m < n) velocity constraints W T (θ)θ̇ = 0 are non-integrable as

detailed in [Choukchou-Braham et al., 2013; Olfati-Saber, 2000]. In other words, no function
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ϕ(t) exists such that ϕ̇ =W T (θ)θ̇ . The dynamics of such systems can be written as

M(θ)θ̈ +N(θ , θ̇) =W (θ)λ +F(θ)v

W T (θ)θ̇ = 0

 (3.16)

Here W is an m×n matrix, λ ∈ ℜm is the vector of Lagrange multiplier and the term W (θ)λ is

termed as requisite force to maintain constraints. The mechanical systems described in 3.1.1

have been discussed widely by researchers as in [Bloch et al., 1992; Ne_mark and Fufaev,

2004; Olfati-Saber, 2000] and the references therein.

Unlike the systems described in (3.16), having non-holonomic velocity constraints, the

lack of actuators in under-actuated systems is often termed as constraints on the acceleration or

a second order non-holonomic constraints. The under-actuated test-bench nonlinear systems

discussed in this thesis are regarded as non-holonomic systems with second-order acceleration

constraints i.e., a constraint that involves second-order time derivatives of the configuration

variables. Further details regarding non-holonomic systems with second-order acceleration

constraints can be seen in [Fantoni and Lozano, 2002; Reyhanoglu et al., 1999; Wichlund

et al., 1995]. Here a brief mathematical description, system classification and some examples

of a class of these systems are presented in next sections.

3.2.3 Mathematical Representation for an Under-actuated System

Under-actuated systems with fewer number of controls than the number of configuration vari-

ables [Olfati-Saber, 2000] exhibit non-holonomic acceleration constraints and external inputs

cannot provide instantaneous accelerations in all possible directions of the configuration space.

In this case, some of the system equations are unactuated and system can be divided into two

major parts, i.e., an actuated and an unactuated subsystem. In this case exact feedback lin-

earization is not possible because actuation matrix is non-invertible and only partial feedback

linearization is possible. For this purpose, the configuration space θ ∈ Q can be bifurcated
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into two sub-systems sometimes called as outer system and an inner system. The equations of

motion for an under-actuated nonlinear system with control input v can be expressed as

M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = F(θ)v (3.17)

where v∈ℜm is the control, F(θ)∈ℜn×m is an external non-square control matrix with m< n

and having full column rank taking the form as F(θ) = [0, Im]
T . The n-dimensional configu-

ration vector space can now be divided up as θ = (θx,θs)∈ ℜn−m×ℜm where θx,θs represent

unforced and forced components of configuration vector space, respectively. This presence

and absence of actuation in some part of configuration manifold determines the shape of the

system such that the inertia matrix of these systems is independent of a subset of configuration

variables. This subset of variables is termed as external variables and complement of these are

called as shape variables. In other words, shape variables are those variables that appear in

inertia matrix M(θ) of a simple under-actuated system. This further implies that for external

variables where ∂M(θ)/∂ (θx) = 0, the following identity holds

∂k(θ , θ̇)
∂ (θx)

= 0 (3.18)

which shows kinetic symmetry w.r.t external variables. Thus Lagrangian (3.6) for such sys-

tems can now be represented as

L0 =
1
2

θ̇
T M(θs)θ̇ −V (θ) (3.19)

and corresponding equation of motion can be decomposed as:

d
dt

[
∂L0

∂ θ̇x

]
−
[

∂L0

∂θ

]
= Fx(θ)v, v ∈ ℜ

m

d
dt

[
∂L0

∂ θ̇s

]
−
[

∂L0

∂θ

]
= Fs(θ)v, v ∈ ℜ

m

 (3.20)
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The Input matrix F in under-actuated systems (3.20) is represented by F =(Fx,Fs) and the rank

of F is always less than n. To analyse these type of systems, a number of cases can be defined

depending on whether the shape configuration variables are fully actuated, partially actuated

or unactuated, and the presence or absence of input coupling due to the input matrix F .

3.3 Classification of Systems

Under-actuated mechanical systems can be classified in a variety of ways depending on system

properties, reasons of under-actuation, type of control applied etc. An important aspect on

which these types of systems are classified is nature of configuration characteristics [Liu and

Yu, 2013]. These characteristics are given as

1. Actuated shape variables

2. Non-interacting inputs

3. Integrable normalized momentums and

4. Some extra conditions requirement

Depending on these characteristics, a number of system classes is inferred based on whether

shape configuration vector θs is fully actuated, partially actuated or unactuated. Similarly,

presence or absence of any input coupling due to the input (force) matrix Fθ and non-integrabil-

ity of normalized momentums provide a way of classification. For these systems, a generalized

methodology can be evolved to reduce it into a cascade normal form. Reza in [Olfati-Saber,

2000] presented eight different classes of under-actuated systems along with three types of

normalized forms into which each class can be transformed. These three normal forms for

cascade nonlinear systems are given as

1. Strict feedback form
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Table 3.1 Classification of Under-actuated Systems

Class Cascade Normal Form Examples

I Strict Feedback
Inertia Wheel Pendulum (IWP), Translational
Oscillator with Rotational Actuator (TORA),
Acrobot (2 Dimensional, 1 Control)

IIa Nontriangular Quadratic
Rotating Pendlum,
Pendubot,
Beam n Ball

IIb Nontriangular Linear ≈ Flexibie-link Robots
III Feedforward Cart-Pole (2 Dimensional, 1 Control)

IVa Nontriangular Quadratic
Controlled VTOL aircraft
(3 Dimensional, 1 Control)

IVb Nontriangular Quadratic
Controlled VTOL aircraft
(3 Dimensional, 1 Control)

V Strict Feedback
VTOL aircraft (3 Dimensional, 2 Control),
≈Aircraft (6 Dimensional, 4 Control),
≈ Helicopter (6 Dimensional, 4 Control)

VIa Nontriangular Linear Three-link Pendulum (3 Dimensional, 2 Control)
VIb Perturbed Strict Feedback Three-link Pendulum (3 Dimensional, 2 Control)
VIIa Nontriangular Linear-quadratic Three-link Pendulum (3 Dimensional, 2 Control)
VIIb Perturbed Nontriangular Quadratic Three-link Pendulum (3 Dimensional, 2 Control)
VIII Strict Feedforward 3D Cart-Pole System (4 Dimensional, 2 Control)

2. Strict feedforward form

3. Non-triangular linear-quadratic form

Depending on above mentioned properties, different classes of under-actuated systems and

their corresponding normal forms are given in Table 3.1. The eight classes of systems shown in

Table 3.1 are obtained on the basis of different structural properties of under-actuated systems.

The Euler Lagrange equations are given bymxx(θs) mxs(θs)

msx(θs) mss(θs)


θ̈x

θ̈s

+

hx(θ , θ̇)

hs(θ , θ̇)

=

Fx(θ)v

Fs(θ)v

 (3.21)

where mi j’s are block matrices obtained after partitioning of inertia matrix M(θ) and hx,hs are

position/ velocity components of unforced and forced system dynamics. The parameters like
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input matrix F(θ) = (Fx(θ),Fs(θ)),hx(θ , θ̇),hs(θ , θ̇) corresponds to the nature of actuation

or unactuation of shape or external variables, coupling or non-coupling of the inputs, the

integrability or non-integrability of the generalized momentum and supplementary condition

that are discussed in detail in [Choukchou-Braham et al., 2013; Olfati-Saber, 2000].

3.4 Underactated Systems with Actuated Shape Variables,

Integrable Momentums and Non-interacting Inputs

The Class-I systems are identified as systems having actuated shape variables, integrable nor-

malized momentums and decoupled or non-interacting inputs. The input or force matrix F(θ)

can be bifurcated as Fx(θ) = 0,Fs(θ) = Im. The mathematical representation of such systems

is obtained after system decomposition and partitioning of the inertia matrix M(θ). It can be

represented in generalized form given asmxx(θs) mxs(θs)

msx(θs) mss(θs)


θ̈x

θ̈s

+

hx(θ , θ̇)

hs(θ , θ̇)

=

0

v

 (3.22)

These systems show kinetic symmetry with respect to external variables. In other words

M(θ) = M(θs) i.e., the inertia matrix only depend on shape variables and are independent

of external variables. Due to above mentioned properties, the general model of this class of

systems is of the following form

mxx(θs)θ̈x +mxs(θs)θ̈s +
d

dθs
mxx(θs)θ̇xθ̇s +

d
dθs

mxs(θs)θ̇
2
s −

∂V (θ)

∂θx
= 0

msx(θs)θ̈x +mss(θs)θ̈s −
1
2

d
dθs

mxx(θs)θ̇
2
x +

1
2

d
dθs

mss(θs)θ̇
2
x −

∂V (θ)

∂θs
= v

 (3.23)

A particular feature of this class of systems is that it shows lack of control in its first part and

hence exact feedback linearization is not possible using any suitable change of control. How-

ever, as shown in [Qaiser, 2009] and the references therein, it is possible to partially linearize
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the system, so that dynamics of the actuated part is transformed into a linear system using a

method called Partial Feedback Linearization. As mentioned earlier, every under-actuated sys-

tem of this class can be transformed into cascaded strict feedback normal form using a global

change of coordinates obtained from Lagrangian of the system. The resulting form contains a

cascade of two types of dynamics also called internal and external dynamics. The core inter-

nal dynamics is nonlinear while the external system is in linear form. The internal nonlinear

system may contain unstable zero dynamics which leads to a non-minimum phase behaviour

of the overall system. The stabilization and output feedback control of Class-1 under-actuated

test-bench non-minimum phase systems potentially having unstable zero dynamics is the con-

trol problem discussed in this thesis.

3.5 Summary

In this chapter, a general overview of under-actuated nonlinear systems is discussed. Starting

with Lagrangian form of typical nonlinear systems, mathematical formulation of nonlinear

mechanical system possessing kinetic symmetry is presented. Types of nonlinear system based

on actuation properties which leads to define and classify under-actuation systems based on

systems structural properties is presented and finally typical mathematical representation of a

particular class of systems is identified.



Chapter 4

Output Feedback Stabilization of a Class
of Under-actuated Systems

In this chapter, a generalized control design procedure for a class of under-actuated nonlin-

ear non-minimum phase systems in strict feedback normal form as identified in Chapter 3 is

presented. A step by step procedure for mathematical model transformation of target class

of under-actuated systems using collocated partial feedback linearizaion and global change of

coordinates to generate normal form representation is discussed. A generalized procedure of

observer based controller design is proposed under sliding mode framework. The design is

done on the basis of Output Feedback (OFB) control approach while State Feedback (SFB)

design is utilized for comparison and analysis of OFB control results. The stability analysis

of closed loop system is investigated both under state feedback control and output feedback

control scheme. The complete design procedure for the class of system consists of following

steps

1. Reduction of nonlinear dynamics into cascade strict feedback form.

2. Control of nonlinear part using Control Lyapunov Function (CLF) approach.

3. Overall controller design under State Feedback Control (SFB) and Output Feedback

Control (OFB) utilizing controller obtained in previous step.
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4.1 Mathematical Form of a Class of Under-actuated Sys-

tems

As mentioned in Section 3.4 core subsystem in cascade strict feedback form of under-actuated

systems (3.23) is highly nonlinear and exhibit unstable zero dynamics. Thus exact feedback

linearization is not applicable in this case and only Input Output Feedback Linearization is

possible.

4.1.1 Collocated Partial Feedback Linearization

Every under-actuated nonlinear system of target class of systems can be transformed into strict

feedback normal form using a procedure known as collocated partial feedback linearization.

In this process, system is linearized with respect to active degree of freedom while unactuated

part of system remains nonlinear. The procedure is performed by a global invertible change

of control on the generalized form of system (3.17),(3.22) and is given as

v = [FT (θ)M−1(θ)F(θ)]−1[τ +FT (θ)M−1(θ)(C(θ , θ̇)+G(θ))] (4.1)

The new control input τ becomes θ̈s showing a linear relationship between the dynamics of

τ and θ̈s. This feedback linearization is called collocated partial feedback linearization where

the dynamics of actuated shape variables θs are linearized.

4.1.2 Generalized Mathematical Model

The generalized mathematical representation obtained after collocated partial feedback lin-

earization of target class of systems is termed as strict feedback normal form. The change of

control (4.1) in Section 4.1.1 can be represented in compact notation as

v = α(θx)τ +β (θ , θ̇) (4.2)
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where α(θx) is an m × m positive definite and symmetric matrix. α(θx) and β (θ , θ̇) are

defined as

α(θx) = mss(θx)−msx(θx)m−1
xx (θx)mxs(θx)

β (θ , θ̇) = hs(θ , θ̇)−msx(θ)m−1
xx hx(θ , θ̇)

The change of control (4.2) transform the entire dynamics into the following form

θ̇z1 = θz2

θ̇z2 = f0(θx,θs)+g0(θ)τ

 (4.3)

ξ̇x1 = ξx2

ξ̇x2 = τ

 (4.4)

The dynamics (4.3),(4.4) contains the control input in both internal and external subsystems.

This is a source of complexity when controlling under-actuated nonlinear systems. To de-

couple the two sub-systems, a global change of variables or diffeomorphism is introduced as

[Olfati-Saber, 2000]

η1 = θx + γ(θs)

η2 = mxx(θs)θ̇x +mxs(θs)θ̇s

 (4.5)

The decoupled internal and external sub-systems obtained as a generalized normal form for

the class of systems under consideration is obtained as

η̇1 = m−1
xx (ξ1)η2 + γ(ξ1)

η̇2 = κ(η1,ξ1)

 (4.6)

ξ̇1 = ξ2

ξ̇2 = τ

 (4.7)
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where

γ(ξ1) =
∫

ξ1

0

mxs(ξ1)

mxx
ds,

κ(η1,ξ1) = −∂Vr(η1,ξ1)

∂η1

Vr(η1,ξ1) = V (η1 − γ(ξ1),ξ1)

The system dynamical model represented as a cascaded interconnection of linear and nonlin-

ear subsystems (4.6),(4.7) is shown in Fig. 4.1. The systems (4.6) and (4.7) can be further

Linear System Nonlinear System✲ ✲ ✲

✻

τ ξ1 y

Fig. 4.1 Cascade interconnection of a Class of Under-actuated System

represented in compact notation with original control v as

η̇ = φ0(η ,ξ )

ξ̇ = Aξ +B[β (η ,ξ )+α(ξ ,v)]

y = ξ1


(4.8)

With η = [η1 η2]
T , φ0=[m−1

xx (ξ1)η2 + γ(ξ1) κ(η1,ξ1)]
T , and the m×m matrix A, m×1 input

matrix B represent chain of m integrators. State ξ1 is taken as the system output y.

4.2 Design of Control Law

The generalized systems model (4.8) is utilized to design an output feedback control law

under sliding mode frame work. The states of internal and external sub-systems are estimated

utilizing system output under an appropriate observer as shown in the next section.
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4.2.1 Observer Design

The required system states are estimated using full order EHGO. Towards that end, the ap-

proach of [Boker and Khalil, 2013] is followed and an auxiliary system consisting of internal

system η and a virtual output σ is considered as

η̇ = φ0(η ,ξ ) (4.9)

σ = β (η ,ξ ) (4.10)

With above in view, the full order Extended High Gain Observer can be written as

˙̂
ξ = Aξ̂ +B[σ̂ +α(ξ̂ ,v)]+H1[y− ξ̂1] (4.11)

˙̂σ = β̇ (η̂ , ξ̂ )+H2[y− ξ̂1] (4.12)

˙̂η = φ0(η̂ , ξ̂ )+K[σ̂ −β (η̂ , ξ̂ )] (4.13)

y = ξ1 (4.14)

where H1=[α1/ε α2/ε2 ... αm/εm]T , H2=[αm+1/εm+1] and K are the observer gains chosen

such that the observer dynamics remain faster than those of the overall closed loop system

under SFB. The gain parameters α1,α2, ...,αm,αm+1 are, therefore, chosen so that roots of the

polynomial pm+1 +α1 pm + ...+αm p+αm+1 are in the open left-half plane. The parameter

ε is small positive constant and the gain K can be obtained from any suitable online state

observer.

4.2.2 Controller Design

For the control law synthesis, the internal sub-system (4.6) is considered first which is un-

forced and unperturbed complex nonlinear system. It is stabilized using control Lyapunov

function (CLF) method [Olfati-Saber, 2000]. Treating ξ1 ≡ ω as virtual control input to the
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system, there exist a state feedback law as

ω(η̂1, η̂2) = αr(η̂1)−aρ(c1η̂1 + c2η̂2) (4.15)

It can be seen that (4.15) can be effectively utilized for stabilization of the internal system (4.9).

Here αr(η1) is a smooth function such that κ(η̂1,αr(η̂1)) = 0, αr(0) = 0 and ρ(c1η̂1 + c2η̂2)

in (4.15) is any scalar sigmoidal function. The external subsystem control law is designed in

such a way that its output, acting as virtual input for internal subsystem, generates the desired

stabilization function. An equivalent sliding mode control scheme is utilized for generation

of requisite stabilization function. The generalized system (4.8) and internal system feed-

back control law (4.15), satisfies the necessary assumptions needed to design sliding mode

controller for external system.

Starting with error dynamics of external configuration vector as

ê1 = ξ̂1 − ξ̂1d (4.16)

ê2 = ξ̂2 − ξ̂2d (4.17)

where ê1 is the error in the generation of stabilization function ξ̂1d = ω(η̂1, η̂2) by ξ̂1 and ê2 is

the error in the generation of ξ̂2d and ξ̂2. The time-derivatives of the error dynamics equations

are

˙̂e1 , ˙̂
ξ1 −

˙̂
ξ1d = f1(η̂ , ξ̂ , ξ̂1d,

˙̂
ξ1d) (4.18)

˙̂e2 , ˙̂
ξ2 −

˙̂
ξ2d = f2(ξ̂2d,

˙̂
ξ2d,τeq) (4.19)

where τeq is equivalent control law obtained from sliding surface ŝ and is used to obtain final

control law. The derivatives ˙̂
ξ1d,

˙̂
ξ2d can be easily calculated using numerical differentiation

with sufficient accuracy. This will, however, require controller to be implemented in discrete

form. To avoid this complexity a low pass filter with small positive time constant can be used.



4.3 Stability Analysis 47

Function f1 is calculated such that the error dynamics approach to zero and a time varying

sliding surface ŝ is given as

ŝ = λ ê1 + ê2 (4.20)

The time derivative of sliding surface is used to calculate an equivalent control law τeq. A

sliding mode control law is then evaluated in terms of system states and error dynamics such

that the time derivative of sliding surface tends to zero that renders the system asymptotically

stable; and is given by

˙̂s = f3(η̂ , ξ̂ ,
˙̂
ξ1,

˙̂
ξ2,τeq) (4.21)

τ = τeq − k(sign(ŝ)) (4.22)

where k > 0 is a constant. The control law τ obtained in such way shows high frequency

oscillations known as chattering in the sliding phase which are very much undesirable. The

chattering effect can be minimized by replacing sign function with a suitable saturation func-

tion in (4.22) and the resulting control law with original control v for actual system described

in (4.8) takes the form

τ = τeq − ksat
(

ŝ
µ

)
v = ατ +β

 (4.23)

where µ is a small positive constant defining boundary layer for sliding surface.

4.3 Stability Analysis

Stability analysis is performed in two steps. First, under state feedback and then under output

feedback that uses a full order EHGO. In the case of OFB design, observer dynamics become
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significant and need to be analyzed to ensure closed loop system stability. In first step, inter-

nal nonlinear system and cascaded system stability is analyzed, using suitable analytical tools

under the stated assumptions. Lyapunov function method is used to analyze the subsystem

represented by (4.13) with virtual control law (4.15) and the steps as in [Olfati-Saber, 2000]

are followed. For the state feedback stability analysis, the system (4.11)-(4.14) is considered

assuming (η̂ , ξ̂ ) = (η ,ξ ). As ξ̂ act as virtual control input for (4.9), a positive definite func-

tion V◦(η̂) = 1
2 η̂2 is chosen as Lyapunov function candidate and V̇◦(η̂) = (η̂)[φ0(η̂ , ξ̂ )] is

examined for stability analysis of the subsystem. Assuming ξ̂ = ω , the virtual control input;

using a sigmoidal function as ρ(η̂1, η̂2) and a smooth function α(η̂1) in (4.15), it can be easily

verified that

V◦(0) = 0;V◦(η̂)> 0;V̇◦(0) = 0; and V̇◦(η̂)≤ 0

Using the above conditions and with the help of LaSalle’s invariance principle, it can be shown

that the origin of the nonlinear subsystem is globally asymptotically stable. The composite

system (4.6),(4.7) under control law (4.23) can be represented in terms of internal states and

sliding surface as

˙̂η1 = m−1
xx (ω(η̂1, η̂2)+ ŝ)η̂2 + γ(ω(η̂1, η̂2)+ ŝ)

˙̂η2 = κ(η̂1,ω(η̂1, η̂2)+ ŝ)

 (4.24)

ŝ = λ ê1 + ê2

˙̂s = f3(η̂ , ξ̂ ,
˙̂
ξ1,

˙̂
ξ2,τeq)

 (4.25)

The internal states and sliding surface formulate complex cascaded system and it will be not

be vert easy to find a single Lyapunov function candidate to prove stability of closed loop

system. The stability of individual components (4.24) and (4.25) of the overall composite
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system can however be considered to conclude stability of overall closed loop system. To

proceed in this manner, review of necessary assumptions regarding the dynamics of the target

class of under-actuated systems is necessary.

The inner, nonlinear subsystem (4.24) with zero input from outer system (4.25) is globally

Lipschitz. This assumption may appear as stringent but it holds for all the benchmark systems

belonging to the class of under-actuated systems (see for ref. [Qaiser, 2009]) and further

meets the assumption for global Lipschitz property as system partial derivatives up to second

order are bounded [Qaiser et al., 2007]. A suitable sigmoid function, when chosen as input to

internal system, will not alter said property of system (4.24). A zero input from outer system,

further renders the inner system as globally asymptotically stable [Olfati-Saber, 2000].

The stability of external, driving system (4.25) can be inferred by considering a quadratic

Lyapunov function candidate in terms of ŝ as follows

V =
1
2

ŝ2

Taking time derivative of V and substituting the values of u and ueq, V̇ is obtained as

V̇ = ŝ ˙̂s =−ŝksat
(

ŝ
µ

)

Outside the boundary layer, i.e., When ∥ŝ∥ ≥ µ

V̇ =−kŝ
(

ŝ
∥ŝ∥

)
=−k∥ŝ∥< 0

Inside the boundary layer, i.e., when ∥ŝ∥ ≤ µ

V̇ =−ŝk
(

ŝ
µ

)
=−

(
k
µ

)
∥ŝ∥2 < 0

which shows that by choosing k > 0, the trajectories of the closed loop system starting with

arbitrary initial conditions will reach the boundary layer ŝ = µ in finite time and remain inside
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it thereafter.

The system under output feedback also needs to be addressed as dynamics of EHGO plays

significant role in trajectories convergence and system stability. Towards this end, the proce-

dure in [Memon and Khalil, 2009],[Khalil, 2002, Theorem 14.6] is closely followed to show

trajectories convergence and boundedness of system states. For the observer based OFB sys-

tem, scaled estimation error dynamics is formulated and trajectory convergence /boundedness

of states is analyzed by appropriate choice of Lyapunov functions.

The scaled estimation error χ̃(χ̃η , χ̃ξ ,σ ) for states (η̂ ,ξ̂ ,σ̂ ) are given as

χ̃η = η − η̂ (4.26)

χ̃ξi = (ξi − ξ̂i)/ε
m+1−i, 1 ≤ i ≤ m (4.27)

χ̃σ = β (η ,ξ )− σ̂ (4.28)

Let D(ε) = diag[εm,εm−1, ...,ε], χ̃ξ ,σ = [χ̃T
ξ

χ̃σ ] and D1(ε) = diag[D,1], then (4.26)-(4.28)

can be written as

D(ε)χ̃ξ = ξ − ξ̂ (4.29)

D1(ε)χ̃ξ ,σ = [(ξ − ξ̂ )T
β (η ,ξ )− σ̂ ]T (4.30)

Consider the EHGO based OFB system (4.11)-(4.14), The estimation error dynamics for this

system can now be written as

˙̃χη = φ0(χ̃η + η̂ ,Dχ̃ξ + ξ̂ )−φ0(η̂ , ξ̂ )

−H[(β (χ̃η + η̂ ,Dχ̃ξ + ξ̂ )− χ̃σ )−β (η̂ , ξ̂ )] (4.31)

, gr(η̂ , ξ̂ , χ̃η ,D1χ̃ξ ,σ , t) (4.32)

ε ˙̃χξ ,σ = Λχ̃ξ ,σ + ε[B̄1∆β̇ + B̄2∆̄α] (4.33)

where ∆β̇ = β̇ (χη + η̂ , ξ̂ +Dχ̃ξ ,v)− β̇ (η̂ , ξ̂ ,v),
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∆̄α = ∆α/ε,∆α = α(ξ̂ +Dχ̃ξ ,v)−α(ξ̂ ,v) and

Λ =



−h1 1 0 · · · 0

−h2 0 1 · · · 0
...

...
... . . . 0

−hm 0 0 · · · 1

−hm+1 0 0 · · · 0


, B̄1 =

 0

B

, B̄2 =

 B

0



It is evident from equations (4.31)-(4.33) that system exhibit two-time scale properties.

Using the results [Boker and Khalil, 2013], [Nazrulla and Khalil, 2011b] and [Memon and

Khalil, 2009], boundedness and convergence of the trajectories of the closed loop system

can be established. Towards that end, compact sets Ω,Σ such that η̂0 ∈ Ω, (ξ̂0, σ̂0) ∈ Σ are

defined and it is shown that trajectories starting in Ω×Σ enter an appropriately defined pos-

itively invariant set S in finite time. Lyapunov function candidate for χ̃η can be defined as

V1(t, χ̃η) = (χ̃η)
T P−1χ̃η satisfying the identity 0 < a1In−m ≤ P−1 ≤ a2In−m where P−1 is a

positive definite matrix and a1,a2 are arbitrary constants. Then it can be shown that V1 satisfies

a1∥χ̃η∥2 ≤ V1(t, χ̃η)≤ a2∥χ̃η∥2 (4.34)

∂V1

∂ χ̃η

gr(.) ≤ −a3∥χ̃η∥2, ∀∥χ̃η∥ ≤ c1, ∀t ≥ t0 (4.35)

where a3,c1 are positive constants independent of ε . The inequalities (4.34),(4.35) will ensure

that the compact set satisfies Ω ⊂ ℜn−m. The boundary layer system is obtained from τb = t/ε

and setting ε = 0 for scaled error as
dχ̃ξ ,σ

dτb
= Λχ̃ξ ,σ and the Lyapunov function candidate

W (χ̃ξ ,σ ) for this subsystem is given as W (χ̃ξ ,σ ) = χ̃T
ξ ,σ P0χ̃ξ ,σ where P0 is positive definite

solution of Lyapunov equation P0Λ+ΛT P0 =−I. It can be seen that W satisfies

λmin(P0)∥χ̃ξ ,σ∥2 ≤ W (χ̃ξ ,σ )≤ λmax(P0)∥χ̃ξ ,σ∥2 (4.36)

∂W
∂ χ̃ξ ,σ

Λχ̃ξ ,σ ≤ −∥χ̃ξ ,σ∥2 (4.37)
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and the time derivative of V1,W satisfy

V̇1 ≤ −a1∥χ̃η∥2 + k2∥χ̃ξ ,σ∥ (4.38)

Ẇ ≤ −1
ε
∥χ̃ξ ,σ∥2 + k3∥χ̃ξ ,σ∥∥P0∥ (4.39)

Here k1,k2 are positive constants independent of ε . Equations (4.38),(4.39) show that trajecto-

ries of estimation error dynamics are bounded.

Furthermore, considering the closed loop system comprising of (4.8), (4.21), (4.31), (4.33)

and compactly representing it as

χ̇ = fr(χ, χ̃ξ ,σ , χ̃η), where χ = [ηT ,ξ T ,v]T and χ0 = [ηT
0 ,ξ

T
0 ,v0]

It can be shown as in [Memon and Khalil, 2009] and the reference therein that the trajec-

tories starting in Ω×Σ remain bounded and converge asymptotically.

The foregoing conclusions can be summarized as the following theorem.

Theorem 4.1 Under the stated assumptions and suitable values of controller parameters

a,k,C = c1,c2, ... ∈ ℜm−n, observer gains H1,H2,K, the closed loop system comprising of

composite system (4.8), the full order EHGO based observer (4.11)-(4.13) and the output

feedback control law (4.23), there exists µ∗ > 0 and ε∗ > 0 such that for every 0 < µ < µ∗

and 0 < ε < ε∗, the trajectories of closed loop system are bounded and approach the origin

as t −→ ∞.

4.4 Summary

The controller design for stabilization of target class of under-actuated non-minimum phase

nonlinear systen is discussed in this chapter. Utilizing the Lagrangian based generalized non-

linear system model, collocated partial feedback linearization is used for mathematical model

transformation. To decouple the two cascaded sub-systems, a suitable global change of co-

ordinates is applied and a generalized mathematical representation in strict feedback normal
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form is evolved. An EHGO based state estimator is utilized and a generalized output feedback

controller for target class of systems is presented. Finally stability of closed loop system is

discussed to show boundedness of states and convergence of trajectories.



Chapter 5

Illustrating Examples on Output
Feedback Stabilization

In this chapter, two test bench systems of target class of under-actuated systems namely In-

ertia Wheel Pendulum (IWP) and Translational Oscillator Rotational Actuator (TORA) are

selected and design technique presented in Chapter 4 is applied for nonlinear output feedback

controller design of these systems. The mathematical formulation for IWP system is taken in

Lagrangian form and further transformed into state space and normal form representation. The

unknown system states are observed using an extended high gain observer and further utilized

in derivation of SMC based control law. The results are analyzed in simulation section where

a comparison of results under output feedback with that of state feedback is performed.

The second example of target class of system namely TORA system is chosen in a similar

way as that of IWP system to verify the results of proposed output feedback design technique.

The design procedure is followed in a similar pattern for TORA system as given in Chapter 4

for generalized systems and results are verified using simulation based analysis. In the simu-

lation section, it is demonstrated that the trajectories of the closed-loop TORA system under

the proposed output feedback control technique, approach those of the state feedback control

with the choice of proper EHGO parameters. To reduce the peaking effect (initial overshoot in

the estimated states), some constraints are applied on the system input. The simulation results

included demonstrate the effectiveness of the proposed controller.
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5.1 Example 1: Output Feedback Stabilization of IWP

Inertia wheel pendulum, shown in Fig. 5.1, is constructionally simple test-bench nonlinear

mechanical system. The system consists of a simple pendulum with a wheel attached to its

independent and floating end, whereas the other pendulum end is connected to an unactuated

rotating joint. The wheel is driven by a high torque to weight ratio DC motor, that can spin

the wheel in both clockwise and anticlockwise directions. When the wheel is rotated at a

fairly high speed, angular acceleration is produced and resultant torque is used as an input for

controlling the pendulum angle. IWP thus, falls into the category of under-actuated systems,

since one end of the pendulum remains unactuated, and IWP is controlled by a single actuator.

It is used as a test bed for testing new controller schemes and model identification experiments.

Fig. 5.1 Inertia Wheel Pendulum (IWP)
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5.1.1 Mathematical Model of an IWP

To obtain a mathematical model of the IWP, Lagrangian of the system is taken with θ = [θ1,θ2]

as the configuration variables.

L(θ , θ̇) = Kinetic Energy−Potential Energy

L(θ , θ̇) =
1
2

θ̇
T Mθ̇ −V (θ1) (5.1)

m11 m12

m21 m22


θ̈1

θ̈2

+

−m0 sin(θ1)

0

=

0

v

 (5.2)

where

V (θ1) = m0 cos(θ1)

m0 = mg

m = m1lc1 +m2l1

m11 = m1l2
c1 +m2l2

1 + I1 + I2

m12 = m21 = m22 = I2
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m1 = Pendulum mass (kg)

m2 = Wheel mass (kg)

θ1 = Pendulum Angle (rad)

θ2 = Wheel Angle (rad)

v = Control Input or Torque (Nm)

lc1 = Distance to the centre of the mass (m)

l1 = Pendulum length (m)

I1 = Pendulum moment of inertia (kgm2)

I2 = Wheel moment of inertia (kgm2)

g = Acceleration due to gravity (m/sec2),and

M =

m11 m12

m21 m22


5.1.2 Control Design

In this section, an output feedback stabilizing controller using extended high gain observer is

implemented. Towards that end, it is assumed that the pendulum angle θ1 can be measured

and is available for feedback and a full order observer is implemented using system dynamics

in equation (5.2). Starting with system dynamical model, a normal form representation of

system model is derived using differential geometrical properties of system and correspond-

ing lie derivatives of system output. The resulting form renders system configuration as an

interconnection of internal and external system dynamics. An auxiliary system that utilizes

internal dynamics of system is derived and a full order extended high gain observer is then im-

plemented . The estimated state variables are provided to an SMC based nonlinear controller.
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5.1.3 Normal Form Representation

IWP system model (5.2) is transformed in terms of θ̈1 and θ̈2 into a set of equations given as

θ̈1 =− m12

m11m22 −m12m21
v+

m22m0

m11m22 −m12m21
sin(θ1)

θ̈2 =
m11

m11m22 −m12m21
v− m21m0

m11m22 −m12m21
sin(θ1)

y = θ1


(5.3)

Where pendulum angle θ1 is taken as system output y. State space representation of plant

model is derived assuming system states as follows

x1 = θ1, ẋ1 = θ̇1 = x2

x3 = θ2, ẋ3 = θ̇2 = x4

The state space representation of IWP System model and its output can be represented as

following set of equations

ẋ1 = x2

ẋ2 =− m12

m11m22 −m12m21
v+

m0m22

m11m22 −m12m21
sin(x1)

ẋ3 = x4

ẋ4 =− m11

m12m21 −m22m11
v+

m0m21

m12m21 −m11m22
sin(x1)

y = x1


(5.4)

For the output y, it can be easily seen that it is an under-actuated system and its relative degree

ρ is given as

ρ = 2 < n (5.5)
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The degree of under-actuation depicts that overall system can be further bifurcated into internal

and external dynamics (η ,ξ ) given as

η = (η1,η2)

ξ = (ξ1,ξ2)

The dynamics of (η ,ξ ) is determined following the procedure in [Khalil, 2002] and a change

of coordinates is applied as follows

η1 =−m11x1 −m12x3

η2 =−m11x2 −m12x4

ξ1 = x1

ξ2 = x2


(5.6)

The change of coordinates mentioned in (5.6) gives normal form representation of IWP model.

The internal dynamics is obtained as

η̇1 = η2

η̇2 =−m0 sin(ξ1)

 (5.7)

Corresponding external dynamics and output are given as

ξ̇1 = ξ2

ξ̇2 =
m0m22

m11m22 −m12m21
sin(ξ1)−

m12

m11m22 −m12m21
v

 (5.8)

y = ξ1 (5.9)
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5.1.4 EHGO based Full Order Observer

Normal form of an IWP as in equations (5.7),(5.8) and (5.9) can be represented into compact

matrix notation similar to generalized form (4.8) as follows

η̇ = A1η +φ0(ξ1)

ξ̇ = Aξ +B[β (η ,ξ )+α(ξ ,v)]

y = ξ1


(5.10)

Here for IWP system

A1 =

0 1

0 0


φ0 =

 0

−m0sin(ξ1)


A =

0 1

0 0


B =

0

1


β =

m0m22

m11m22 −m12m21
sin(ξ1)

α(ξ ,v) = − m12

m11m22 −m12m21
v

Auxiliary system having virtual output σ is given as below

η̇ = A1η +φ0(ξ ) (5.11)

σ = β (η ,ξ ) (5.12)
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Using virtual output σ and internal and external dynamics of IWP, the full order EHGO is

derived as

˙̂
ξ = Aξ̂ +B[σ̂ +α(ξ̂ ,v)]+h1[y− ξ̂1] (5.13)

˙̂σ = β̇ (η̂ , ξ̂ )+h2[σ̂ − ξ̂1]

˙̂η = A1η̂ +φ0(ξ̂ )+h3[σ̂ −β ] (5.14)

y = ξ1

5.1.5 OFB Controller Design

The estimated system states obtained from EHGO block in Section 5.1.4 are utilized in pro-

posed SMC based controller design and an output feedback control law is derived to achieve

stabilization of the IWP system. Towards that end, the system (5.2) is transformed into normal

form by using collocated partial feedback linearization and global coordinate transformation

for change of control and input decoupling [Olfati-Saber, 2000]. In particular, using equation

(5.2), the applied torque can be represented as

v = αu+β (5.15)

where

α = m22 −
(

m12m21

m11

)
β =

m21

m11
{m0 sin(θ1)}

u = θ̈2


(5.16)
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To further decouple the system input, following global change of variables [Qaiser, 2009] is

introduced

z1 = m11θ̇1 +m12θ̇2

z2 = θ1

z3 = θ̇2


(5.17)

Using observed states from EHGO block (5.13),(5.14) and coordinate transformation in (5.6),

the estimated system states (η̂ , ξ̂ ) in terms of (ẑ1, ẑ2, ẑ3) are given as

ẑ1 =−η̂2

ẑ2 = ξ̂1

ẑ3 =− 1
m22

η̂2 −
m11

m12
ξ̂2


(5.18)

The advantage of the above change of coordinates is that it yields the system equations in the

following strict-feedback form

˙̂z1 = m0 sin(ẑ2) (5.19)

˙̂z2 =
(ẑ1 −m12ẑ3)

m11
(5.20)

˙̂z3 = u (5.21)

The resulting system (5.19)-(5.21) can now be represented as a cascade connection of two

subsystems; namely: a linear subsystem (5.19)-(5.20) and a nonlinear subsystem (5.21), as

shown in Fig. 5.2.

5.1.6 Internal System Control Law

To devise a control law for internal system, Control Lyapunov Function method is adopted to

make the subsystem represented by (5.19) globally asymptotically stable. By choosing z2 as
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˙̂z2 =
(ẑ1−m12ẑ3)

m11
˙̂z3 = u

Linear Block

˙̂z1 = m0 sin(ẑ2)

Nonlinear Block

✲ ✲ ✲

✻

ẑ2u y

Fig. 5.2 Cascade Interconnection of Inertia Wheel Pendulum (IWP)

an input for the internal system and any positive definite function V◦(z1) as Lyapunov function

candidate, the time derivative of V◦(z1) is taken to find an appropriate control law as shown

below [Olfati-Saber, 2000]

V◦(ẑ1) =
1
2

ẑ2
1 (5.22)

V̇◦(ẑ1) = m0ẑ1 sin(ẑ2)

V̇◦(ẑ1) = ẑ1m0 sin(α(ẑ1)) (5.23)

where

α(ẑ1) = ẑ2

From (5.22) and (5.23), it can be seen that a sigmoidal function α(ẑ1) will make V̇◦(ẑ1) as

negative definite and hence choosing

α(ẑ1) = −aarctan(c1ẑ1) (5.24)

with 0 < a ≤ π/2 and c1 > 0 will render origin of the nonlinear system (5.19) as globally

asymptotically stable.
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5.1.7 Composite System Control Law

By using sliding mode control for subsystem (5.20)-(5.21) the control law for entire system is

derived. Taking error surfaces for z2 and z3 as

ê1 = ẑ2 − ẑ2d (5.25)

ê2 = ẑ3 − ẑ3d (5.26)

where ê1 is the estimated error in the generation of stabilization function ẑ2d = α(ẑ1) by ẑ2

and ê2 is the estimated error in the generation of ẑ3d by ẑ3.

The time-derivatives of the equations (5.25)-(5.26) are

˙̂e1 = ˙̂z2 − ˙̂z2d (5.27)

˙̂e2 = ˙̂z3 − ˙̂z3d (5.28)

Substituting ˙̂z2 and ˙̂z3 from (5.20) and (5.21) in (5.27),(5.28) gives

˙̂e1 =
1

m11
ẑ1 −

m12

m11
ẑ3 − ˙̂z2d (5.29)

˙̂e2 = u− ˙̂z3d (5.30)

In order to make ê1 zero, using (5.29), z3 is defined as

z3 =
m11

m12

(
k1ê1 +

1
m11

ẑ1 − ˙̂z2d

)

where k1 > 0. The derivatives ˙̂z2d and ˙̂z3d can be calculated using numerical differentiation

with sufficient accuracy. However, this will require the controller to be implemented as a

discrete-time system. To avoid this complexity, a low pass filter with small positive time

constant v3d can be used [Qaiser, 2009]. The outputs ẑ3d and ˙̂z3d obtained from the low pass
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filter can be used to generate the desired control signal as

v3d ˙̂z3d + ẑ3d = z3

with initial conditions

ẑ3d(0) = z3(0) = 0

Next, a time varying surface s(t) in space ℜ2 by a scalar equation s(e; t) = 0 is defined as

ŝ = λ ê1 + ê2

˙̂s = λ

(
1

m11
ẑ1 −

m12

m11
ẑ3 − ˙̂z2d

)
+ ûeq − ˙̂z3d

ûeq = ˙̂z3d −λ

(
1

m11
ẑ1 −

m12

m11
ẑ3 − ˙̂z2d

)
u = ûeq − ksign(ŝ) (5.31)

where k is a strictly positive constant. The control law u obtained shows high frequency oscil-

lations known as chattering in sliding phase which can be removed using saturation function

as in [Memon and Khalil, 2010]. The resulting control law u under output feedback is given

as follows

u = ûeq − ksat
(

ŝ
µ

)
(5.32)

and finally input to IWP system v is given as

v = αu+β (5.33)

as the desired control law.
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5.1.8 SFB Controller Design

The OFB controller shown in section (5.1.5) utilize estimated system states under EHGO in

section (5.1.4). In order to compare performance of controller under OFB with corresponding

SFB based design, a state feedback controller design utilizing original system states is con-

sidered as in previous work of Khalid and Memon [2014]. Starting with reduced order strict

feedback form for IWP system (5.3) as shown below

ż1 = m0 sin(z2)

ż2 =
(z1 −m12z3)

m11

ż3 = u


(5.34)

The corresponding error dynamics and SFB control law is given below.

ė1 = ż2 − ż2d

ė2 = ż3 − ż3d

s = λe1 + e2

ueq = ż3d −λ

(
1

m11
z1 −

m12

m11
z3 − ż2d

)
u = ueq − ksat

(
s
µ

)
(5.35)

v = αu+β (5.36)

The control law obtained in (5.35),(5.36) is used to compare system response under SFB

control.

5.1.9 Simulation Results

In this section, simulation results for the proposed control scheme to stabilize the IWP system

are provided. To provide for an appropriate way of performance comparison with the results
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Table 5.1 IWP System Parameters

Parameter Value Unit

l1 0.124 m
lc1 0.063 m
m1 0.020 kg
m2 0.300 kg
I1 47e−6 kgm2

I2 32e−6 kgm2

m11 4.83e−3 kgm2

m12,m21,m22 32e−6 kgm2

g 9.81 m/sec2

provided in Olfati-Saber [2000], Spong et al. [2001] and Qaiser [2009], same plant / model

specifications are used. At first simulation results for the state feedback controller (5.35),(5.36)

as in Khalid and Memon [2014] are shown and then results for the output feedback controller

(5.32),(5.33) are elaborated. The IWP system parameters chosen for this purpose are given in

Table 5.1 and the controller parameters used in the SFB/OFB design are shown in Table 5.2.
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(a) Pendulum Position under SFB
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(b) Pendulum Position under OFB
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(c) Error in Position

Fig. 5.3 Pendulum Angle(θ1) (a) Under SFB (b) Under OFB (c) Convergence Error

Figures 5.3 - 5.6 show the simulation results for various states/control input of the IWP sys-

tem under state feedback control, output feedback control and the corresponding convergence

errors respectively. These results show convergence to the equilibrium of the pendulum angle,

pendulum velocity and wheel velocity. These states converge to equilibrium point in fairly

small interval of time. As wheel angle θ2 does not play important role in IWP dynamics, it is
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(a) Pendulum Velocity under SFB
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(b) Pendulum Velocity under OFB
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(c) Error in Pendulum Velocity

Fig. 5.4 Pendulum Velocity(θ̇1) (a) Under SFB (b) Under OFB (c) Convergence Error
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(a) Wheel Velocity under SFB
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(b) Estimated Wheel Velocity under OFB
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(c) Error in Wheel Velocity

Fig. 5.5 Wheel Velocity(θ̇2) (a) Under SFB (b) Under OFB (c) Convergence Error

not shown as state variable here. Figures 5.3a - 5.6a show simulation results for the state feed-

back controller (5.35),(5.36). Figures 5.3b - 5.6b show simulation results for output feedback

controller which uses an extended high gain observer (5.32),(5.33). Figures 5.3c - 5.6c show

the corresponding convergence error between actual and estimated values of different system

states/control input. Figure 5.7 shows phase portrait plot under SFB and OFB control. The

convergence of system estimated states using EHGO based control law and under state feed-

back (SFB) based controller is investigated. The results show that estimated states converge

to actual states arbitrarily fast. However small delay is seen in the initial phase. As mentioned

earlier, in output feedback design only pendulum angle is used for estimation of all the system

states. Initial values of these system states are not precisely known. Furthermore, in order to

avoid peaking phenomenon, appropriate saturation function is used in design of control law.
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(a) Control input under SFB
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(b) Control Input under OFB
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(c) Error in Control Input

Fig. 5.6 Control Input(v) (a) Under SFB (b) Under OFB (c) Convergence Error

Table 5.2 Controller Parameters for IWP System

Parameter Value

a π/2
c1 9
k1 4
λ 10
µ 0.01
k 100
v3d 10

All these factors result in a slight degradation in the system transient response. Therefore

resulting behavior of states under EHGO based output feedback controller is expected to be

slightly delayed as compared with actual states.

5.2 Example 2: Output Feedback Stabilization of TORA

Translational Oscillator with Rotational Actuator (TORA) also known as Oscillating Eccen-

tric Rotor (OER) is a widely studied benchmark nonlinear system. It belongs to a class of

nonlinear under-actuated systems and is considered as a simplified version of dual-spin air-

craft. The interaction between rotation and translation in the TORA system is similar to the

interaction between spin and nutation in a dual-spin spacecraft. The system consists of an un-

actuated translational oscillation cart and an actuated eccentric rotor attached to the cart. The
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(a) Phase Portrait Plot
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Fig. 5.7 Phase Potrait Plot(SFB vs OFB)

stabilization problem of TORA system includes application of control input torque acting on

the rotor to stabilize both the translational position of the unactuated oscillating cart and the

rotational position of the actuated eccentric rotor.

5.2.1 Background

The complexity of TORA system dynamics and its non-minmum phase nature due to unstable

zero dynamics, makes stabilization of TORA system a challenging problem. Prominent work

reported for stabilization of TORA system under state feedback control (SFB) includes [Lee

and Chang, 2012; Olfati-Saber, 2000; Qaiser et al., 2007], while for output feedback control

(OFB) the notable work done is reported in [Boker and Khalil, 2013; Nazrulla and Khalil,

2011b; She et al., 2012]. Reza Olfati-Saber has addressed and solved stabilization problem of

TORA system using state feedback with a physically meaningful Lyapunov function [Olfati-
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Saber, 2000]. Furthermore, the author shows classification of under-actuated systems into

eight different types depending on kinetic symmetric properties of these systems. Accord-

ingly, TORA system is classified as Class-I under-actuated system due to strict feedback nor-

mal form representation of the system obtained after suitable coordinate transformation and

collocated partial feedback linearization. In [Qaiser et al., 2007], stabilization of TORA sys-

tem is achieved via Multiple Sliding Surface (MSS) and Dynamic Surface Control (DSC)

with simpler control law and better response time. In [Lee and Chang, 2012], Lee and Chang,

experimentally implemented an adaptive backstepping control scheme for TORA system.

The dynamic state feedback control of TORA system mentioned above efficiently solves

stabilization problem of the system. To extend this result to the output feedback, a suitable

observer is required. A High Gain Observer (HGO), as introduced by Khalil [Khalil, 2002],

is an effective nonlinear tool that is commonly used for observer based control design of non-

linear systems. The effectiveness of output feedback control of TORA system increases when

system is lacking velocity sensor(s) or when measurement noise in velocity sensor needs to be

eliminated. HGO based output feedback controller offers a very good solution for nonlinear

systems in terms of robustness and design simplicity. This technique has received wide-spread

attention, especially after establishment of concept of separation principle [Atassi and Khalil,

1999; Khalil and Praly, 2014], and presentation of a simpler but effective solution to peaking

phenomenon [Esfandiari and Khalil, 1992]. The HGO based controller design is, however,

mostly done for minimum phase nonlinear systems [Memon and Khalil, 2009] having stable

zero dynamics while for under-actuated systems like TORA having unstable zero dynamics,

the extended high gain observers(EHGO) have been successfully implemented. Nazrulla and

Khalil [Nazrulla and Khalil, 2011b] utilize Sliding Mode Control (SMC) and EHGO for sta-

bilization of TORA system while Boker and Khalil [Boker and Khalil, 2013] establish a full

order observer comprising of an EHGO and an Extended Kalman Filter (EKF) for the estima-

tion of output and internal system states respectively. Similarly in [She et al., 2012], global
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stabilization of under-actuated mechanical systems including TORA is presented. The key

feature of [She et al., 2012] is that the system dynamics are decoupled into internal and ex-

ternal dynamics, and an observer based control law is synthesized requiring only the state

variables of position (and not velocity).

5.2.2 Mathematical Formulation

The Translational Oscillator Rotational Actuator (TORA) system is shown in Fig. 5.8. It

comprises of a translational oscillating platform that is controlled by a rotational eccentric

mass or rotor. The platform is connected via an ideal spring and may be subjected to some

disturbance force. An angular displacement in rotor causes a linear displacement in horizontal

platform. Platform position and rotor angle of rotation are taken as configuration variables.

The angular movement of rotor is used to control linear displacement of horizontal platform.

The Lagrangian model (difference of kinetic energy and potential energy) of TORA system is

Fig. 5.8 Translational Oscillator with Rotational Actuator (TORA)

given as

L(q, q̇) = Kinetic Energy−Potential Energy

L(q, q̇) =
1
2

q̇T Mq̇−V (q1,q2)
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or

L(q, q̇) =
1
2

q̇1

q̇2


 m1 +m2 m2r cos(q2)

m2r cos(q2) m2r2 + I


q̇1

q̇2

 −V (q1,q2) (5.37)

where

m1 = Translational oscillating platform or cart mass(kg)

m2 = Rotational eccentric mass or rotor mass(kg)

r = Rotor radius(m)

q1 = Platform linear displacement(m)

q2 = Rotor position or angle(rad)

τ = Control input or torque (Nm)

I = Rotor moment of inertia (kgm2)

g = Acceleration due to gravity (m/sec2),and

k = Spring constant(N/m)

M = Inertia matrix of system

The Platform linear displacement q2 appears in inertia matrix M of system, it is called shape

variable while q1 is called external variable. Furthermore, q2 is actuated and hence TORA falls

within Class-1 of under-actuated system [Olfati-Saber, 2000]. The Euler Lagrange equations

of motion for TORA are given as

(m1 +m2)q̈1 +m2r cos(q2)q̈2 −m2r sin(q2)q̇2
2 + kq1 = 0

m2r cos(q2)q̈1 +(m2r2 + I)q̈2 +m2gr sin(q2) = τ
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The unactuated part of TORA system dynamics disallows exact feedback linearization and

only partial feedback linearization is possible. Collocated partial feedback linearization [Olfati-

Saber, 2000], an important design tool in this regard, is used with invertible change of control

as follows

τ = α(q2)u+β (5.38)

where

α(q2) =
[
(m2r2 + I)− (m2r cos(q2))

2

m1 +m2

]
β =

[m2
2r2 sin(q2)cos(q2)

m1 +m2
q̇2

2 −
m2rkq2

1 cos(q2)

m1 +m2
+m2gr sin(q2)

]
u = q̈2

(5.39)

In order to decouple the control input, a global change of coordinates is used

η1 = q1 +
m2r sin(q2)

m1 +m2

η2 = (m1 +m2)q̇1 +m2r cos(q2)

ξ1 = q2

ξ2 = q̇2


(5.40)

Strict feedback normal form representation is obtained which can be represented as a cascade

of two subsystems with original control input τ . The first subsystem is

η̇1 = η2

η̇2 =
k

m1 +m2

(
m2r sin(ξ1)

m1 +m2
−η1

)
 (5.41)
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and the second subsystem

ξ̇1 = ξ2

ξ̇2 =
1

δ (ξ1)

[
(m1 +m2)τ −m2r cos(ξ1)

{
m2rξ

2
2 sin(ξ1)− k(

η1 −
m2r sin(ξ1)

m1 +m2

)}]


(5.42)

where

δ (ξ1) = (I +m2r2)(m1 +m2)−m2
2r2 cos2 (ξ1)

≥ (I +m2r)2m1 +m2I

> 0

The normal form of system (5.41)-(5.42) bifurcates the entire system into an internal system

η = (η1,η2) and an external system ξ = (ξ1,ξ2) as shown in Fig. 5.9, such that, output ξ1

of external system acts as an input for internal system. For the internal dynamics (5.41) and

External System Internal System✲ ✲ ✲

✻

ξ1τ y

Fig. 5.9 Cascade Interconnection of TORA

taking ξ1 as output y, the zero dynamics is obtained by setting y = ξ1 = 0 then ξ̇1 = 0 ⇒ ξ2 =

0 ⇒ ξ̇2 = 0 and zero dynamics of TORA system is given as

η̇1 = η2

η̇2 =− k
m1 +m2

η1

 (5.43)

Eigen values, for zero dynamics (5.43), can be calculated as
(
± j

√
k

m1+m2

)
, which shows

that TORA is a non-minimum phase system.
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5.2.3 Control Design

As for the case of IWP system control design for the TORA system is carried out in two

steps. First, a SFB control is defined using SMC which is then extended to an OFB design by

employing an EHGO/EKF [Boker and Khalil, 2013; Nazrulla and Khalil, 2011b] in the closed

loop, as given in the following subsections.

State feedback Control Law

In this section, a sliding mode controller is implemented utilizing full states of external system

for stabilization of entire system. The internal system being unforced nonlinear system, is

stabilized using Control Lyapunov Function (CLF) [Olfati-Saber, 2000]. Utilizing ξ1 as virtual

control input for the internal system, at first, it is assumed that

α(η2) = ξ1d =−a tan−1(c2η2) (5.44)

where a,c2 are any positive constants. The error dynamics are

e1 = ξ1 −ξ1d (5.45)

e2 = ξ2 −ξ2d (5.46)

e1 = ξ1 +a tan−1(c2η2)

e2 = ξ2 −ξ2d

where e1 is the error in the generation of stabilization function α(η2) = ξ1d by ξ1 and e2 is

the error in the generation of ξ2d by ξ2. The time derivative of error surfaces (5.45)-(5.46) are

ė1 = ξ̇1 − ξ̇1d (5.47)

ė2 = ξ̇2 − ξ̇2d (5.48)
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Substituting ξ̇1 and ξ̇2 from (5.42) in (5.47),(5.48) gives

ė1 = ξ2 − ξ̇1d (5.49)

ė2 =
1

δ (ξ1)

[
(m1 +m2)τ −m2r cos(ξ1)

{
m2rξ

2
2 sin(ξ1)−

k
(

η1 −
m2r sin(ξ1)

m1 +m1

)}]
− ξ̇2d (5.50)

In order to make e1 zero, using (5.49), ξ 2 is defined as

ξ 2 =−k1e1 + ξ̇1d (5.51)

where k1 > 0. The derivatives ξ̇1d and ξ̇2d can be evaluated numerically using any fast pro-

cessor. However, this will require the controller to be implemented in discrete-time domain.

To avoid this complexity, a low pass filter with small positive time constant v3d can be used in

a similar way as for the case of IWP [Qaiser et al., 2007]. The outputs ξ2d and ξ̇2d obtained

from the low pass filter can be used to generate the desired control signal as

v3d ξ̇2d +ξ2d = ξ 2

with initial conditions

ξ2d(0) = ξ 2(0) = 0

Sliding surface s(t) in space ℜ2 for error dynamics is defined as

s = λe1 + e2
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Time derivative of sliding surface is

ṡ = λ ė1 + ė2

ṡ = λ (ξ2 − ξ̇1d)+
1

δ (ξ1)

[
(m1 +m2)τ −m2r cos(ξ1)

{
m2rξ

2
2 sin(ξ1)−

k
(

η1 −
m2r sin(ξ1)

m1 +m1

)}]
− ξ̇2d (5.52)

for ṡ = 0, τeq is given as

0 = λ (ξ2 − ξ̇1d)+
1

δ (ξ1)

[
(m1 +m2)τeq −m2r cos(ξ1)

{
m2rξ

2
2 sin(ξ1)−

k
(

η1 −
m2r sin(ξ1)

m1 +m1

)}]
− ξ̇2d (5.53)

τeq =
m2r cos(ξ1)

m1 +m2

{
m2rξ

2
2 sin(ξ1)− k

(
η1 −

m2r sin(ξ1)

m1 +m2

)}
+

δ (ξ1)

m1 +m2
ξ̇2d

− λδ (ξ1)

m1 +m2
(ξ2 − ξ̇1d) (5.54)

and corresponding control input under sliding mode framework for the system is

τ = τeq − k2sign(s) (5.55)

where k2 is a strictly positive constant. The control law τ obtained shows high frequency oscil-

lations known as chattering in sliding phase which can be removed using saturation function.

The desired control law is

τ = τeq − k2
(
sat

( s
µ

))
(5.56)

Output Feedback Control Law

In output feedback control, only system output is utilized in feedback design and other un-

known states are estimated using a suitable state observer. After estimation of system states,

a control law based on sliding mode technique is derived utilizing observed states instead of
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actual system states. As mentioned earlier and also in [Khalid and Memon, 2014], high gain

observer exhibit somewhat sluggish response to state estimation for nonlinear systems like

TORA. An EHGO/EKF is utilized for estimation of unknown states under the assumption that

only output of system is available as feedback. The scheme closely follows the approach of

[Boker and Khalil, 2013; Nazrulla and Khalil, 2011b]. For output feedback control, normal

form representation assuming ξ1 as output is given asξ̇1

ξ̇2

 =

0 1

0 0


ξ1

ξ2

+

0

1

{[
km2r cos(ξ1)

δ (ξ1)
0

]η̇1

η̇2

+a(ξ ,u)
}

(5.57)

η̇1

η̇2

 =

 0 1

− k
m1+m2

0


η1

η2

+

 0
km2r sin(ξ1)
(m1+m2)2

 (5.58)

y = ξ1 (5.59)

where

a(ξ ,u) =
[
(m1 +m2)u

δ (ξ1)
−

m2
2r2ξ 2

2 sin(ξ1)cos(ξ1)

δ (ξ1)
−

km2
2r2 sin(ξ1)cos(ξ1)

δ (ξ1)(m1 +m2)

]

Now an auxiliary system σ(ξ ,η) is considered from external dynamics (ξ1,ξ2) containing

internal dynamics η as well, to design an EHGO for external system.

σ(ξ ,η) =

[
km2r cos(ξ1)

δ (y) 0

]η1

η2

 (5.60)

The resulting full order observer for external system is given as ˙̂
ξ1

˙̂
ξ2

 =

0 1

0 0


ξ̂1

ξ̂2

+

0

1

[
σ̂ +a(ξ̂ ,u)

]
+

α1
ε

α2
ε2

[
y− ξ̂1

]
(5.61)



5.2 Example 2: Output Feedback Stabilization of TORA 80

and from auxiliary problem, estimate of virtual output σ is given as

˙̂σ = σ̂ +
α3

ε3

[
y− ξ̂1

]
(5.62)

and an Extended Kalman Filter (EKF) based observer [Boker and Khalil, 2013] for internal

system is ˙̂η1

˙̂η2

 =

 0 1

− k
m1+m2

0


η̂1

η̂2

+

 0
km2r cos(y)
(m1+m2)2

+

L1

L2

[
σ̂ − km2r sin(y)

δ (y)
η̂1

]
(5.63)

The gain matrix L(t) is obtained as L(t) = P(t)CT
1 (t)R

−1(t) while P(t) is obtained through the

solution of Algebraic Ricatti Equation.

To complete the output feedback controller design, the SFB controller is extended by us-

ing estimated states obtained from internal observer (5.63) and from external system observer

(5.61). Towards that end, it is assumed that only rotor angular position q2 = ξ1 can be mea-

sured and is available for feedback. The state feedback controller (5.56) is then implemented

as output feedback controller with τ̂ as control input to the TORA system

τ̂ = τ̂eq − k2
(
sat

( ŝ
µ

))
(5.64)

τ̂ = τ̂eq − k2sign(ŝ) (5.65)

τ̂eq =

[
m2r cos(y)
m1 +m2

{
m2rξ̂

2
2 sin(y)− k

(
η̂1 −

m2r sin(y)
m1 +m2

)}
+

δ (y)
m1 +m2

˙̂
ξ2d

− λδ (y)
m1 +m2

(ξ̂2 −
˙̂
ξ1d)

]
(5.66)

ŝ = λ ê1 + ê2 (5.67)

The design parameter ε and arbitrary constants α1,α2,α3 in observer (5.61),(5.62) are care-

fully set to ensure asymptotic convergence of the estimation errors to zero arbitrarily fast.

Peaking effect is minimized by saturating the estimated states during initial period. Separa-

tion principle of paper [Atassi and Khalil, 1999] is utilized and it is shown that output feedback
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Table 5.3 TORA System Parameters

Parameter Value Unit
k 186.3 N/m
m1 1.3608 kg
m2 0.096 kg
r 0.0592 m
I 0.0002175 kgm2

g 9.81 m/sec2

Table 5.4 Controller Parameters for TORA System

Parameter Value
a π/2
c2 20
k1 10
k2 0.17
λ 10
µ 0.05
ε 0.01
α1 3
α2 3
α3 1
v3d 10

controller can recover the performance of state feedback controller. These results are verified

in next section.

5.2.4 Simulation Results

In this section, verification of control design for TORA system using results obtained by nu-

merical simulations is done. For fair performance comparison, same physical parameters

are chosen for the TORA system as in [Nazrulla and Khalil, 2011b] and are shown in Ta-

ble 5.3.The selected controller parameters are given in Table 5.4.

Figures 5.10 - 5.15 show the simulation results for various states of the TORA system

under state feedback control, output feedback control and the corresponding convergence er-
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Fig. 5.10 Rotor Angle(ξ1) (a) State Feedback vs Output Feedback (b) Convergence Error in
Rotor Position

rors. These results show convergence to the equilibrium of rotor angle/velocity and cart an-

gle/velocity. These states converge to equilibrium point in fairly small interval of time.

Figures 5.10a - 5.15a show comparison of simulation results for state feedback controller

(5.55),(5.56) and for output feedback controller (5.64),(5.65), which uses an extended high

gain observer (5.61),(5.63). Figures 5.10b - 5.15b show the corresponding convergence error

between actual and estimated values of different internal and external system states. The be-

haviour of system observed states using EHGO with that of state feedback based control law is

examined. It is evident that observed states converge to actual states arbitrarily fast. However

small delay is seen in the transient phase. As stated earlier, in output feedback design only

rotor angle of TORA system is used for estimation of system states. Initial values of these

system states are not accurately known. Furthermore, to prevent states from peaking, satura-

tion functions are implemented in the design. All these factors result in a slight deterioration

in the system transient response.
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Fig. 5.11 Rotor Velocity(ξ2) (a) State Feedback vs Output Feedback (b) Convergence Error in
Rotor Velocity

5.3 Summary

Two important examples of target class of under-actuated nonlinear system are chosen in this

chapter. Inertia wheel pendulum is taken as first example and proposed design technique is

applied on it. Starting with Lagrangian model of the system, a normal form representation of

the system is derived under suitable coordinate transformation and collocated partial feedback

linearization. A sliding mode controller is synthesized, first under state feedback and then,

under output feedback control design. In output feedback design, extended high gain observer

is used to estimate derivatives of system output as well as to estimate the virtual output of

an auxiliary system. To complete the output feedback controller design, the estimated system

states so obtained are fed to stabilizing controller in a similar way as in state feedback design.

The outcome of design indicate that the system response under OFB controller converges to

that of the SFB based design. It is also evident that both observed and actual states converge

arbitrarily fast with proper selection of the design parameters.

In second example, a stabilizing controller for Translational Oscillator with Rotational
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Fig. 5.12 Cart Position(xc) (a) State Feedback vs Output Feedback (b) Convergence Error in
Cart Position

Actuator (TORA), a benchmark non-minimum phase system is presented. The external and

internal states observed under EHGO and EKF respectively are utilized in control law based

on sliding mode control technique, in a similar way as for IWP system . The comparison of

results under output feedback with that of state feedback design validate the effectiveness of

technique and it is shown that system states and output converge to steady state value without

any significant degradation of transient performance. The analysis indicates that the proposed

output feedback control technique may be extended to other under-actuated systems of similar

class.
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Fig. 5.13 Cart Velocity(ẋc) (a) State Feedback vs Output Feedback (b) Convergence Error in
Cart velocity
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Fig. 5.14 Internal State(η1) (a) State Feedback vs Output Feedback (b) Convergence Error in
internal State(η1)
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Fig. 5.15 Internal State(η2) (a) State Feedback vs Output Feedback (b) Convergence Error in
internal State(η2)



Chapter 6

Output Regulation of a Class of
Under-actuated Systems

Output feedback stabilization of target class of under-actuated nonlinear systems considered

so far in this thesis is further extended, in this chapter, towards a more important problem of

output regulation. The chapter starts with a general introduction and description of work done

in past by renowned researchers for output regulation problem of linear as well as nonlinear

systems. Application of servo-compensation based output feedback regulation on generalized

model of target class of non-minimum phase under-actuated systems is presented. A gener-

alized methodology is then given to design a suitable control law based on conditional servo

compensator scheme.

In the next part of this chapter, the generalized output feedback servo compensator al-

gorithm as described in first part, is applied on a benchmark under-actuated nonlinear system

called Translational Oscillator with a Rotating Actuator (TORA). The system model used here

is same as considered for stabilization problem in Chapter 5. In section 5.2 detailed system de-

scription, mathematical model and its importance as test bench system is discussed. For output

regulation of TORA, the strict feedback normal form obtained in Chapter 5 for stabilization

purpose is reutilized. The design is performed in two stages; first for external dynamics using

conditional servo compensator and second for unstable internal dynamics using extended high

gain observer. The results of two stages are integrated to derive a composite control to regulate
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complete system. Finally the simulation results are presented to demonstrate the effectiveness

of the control scheme. The concepts and results are concluded in the last section.

6.1 Introduction

The output regulation problem, also termed as servomechanism problem, addresses design of a

control law for a system to track a predefined reference input and reject a class of disturbance

signals in an uncertain environment while maintaining closed-loop stability. The reference

signals to be tracked and disturbance signals to be rejected are generated by an autonomous

system called exo-system. The general mathematical formulation of output regulation is ap-

plicable to many real world control problems like cruise control of land and airborne vehicles,

landing and take-off of aircrafts, satellite movement in space, speed control of electric motors

etc.

Although work was started in this direction long time ago, yet, precise problem formu-

lation in modern state space domain was reported not earlier than 1970. Like most of the

research reported in control engineering, the output regulation problem was also studied for a

class of linear systems. The linear output regulation problem was solved collectively by many

researchers, including [Desoer and Wang, 1980; Francis and Wonham, 1976; Huang, 1995;

Johnson, 1971; Lin et al., 1996; Saberi et al., 2003], to name just a few. The research on out-

put regulation of linear systems resulted in an important concept of internal model principle of

control theory and it was observed that this problem is related with solution of a set of two lin-

ear matrix equations termed as Regulator Equations. The study in this direction for nonlinear

system was started almost at same time when work on output regulation problem for linear sys-

tems was on the peak. Initially Francis and Wonham considered nonlinear regulation problem

for a special case of constant exogenous signals. For next many years, a number of researchers

started studying the nonlinear output regulation problem. The key work reported during this

period was by Isidori and Byrnes [1990]. In this paper, it was shown that neutral stability
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assumption on the exo-system, and in the presence of some other stabilizability/detectability

conditions, it is possible to solve nonlinear output regulation problem provided certain alge-

braic equations and partial differential equations, termed as nonlinear regulator equations, are

solvable. In Huang and Rugh [1992a] another important solution to local output regulation

problem was presented. Afterwards, a large number of publications followed taking into ac-

count various aspects of the problem and its solutions. In [Byrnes et al., 1997; Huang and

Lin, 1994; Huang and Rugh, 1992b; Wang et al., 2000] approximate results were suggested

when exact solution of regulator equations was difficult to generate. Similarly results for struc-

turally stable systems where uncertainty in system parameters could be ignored are presented

in [Byrnes et al., 1997; Isidori, 1995]. Output regulation for systems having uncertainty in

parameters within a predefined compact set was studied by a number of authors including

[Byrnes et al., 1997; Isidori and Tarn, 1995; Khalil, 1994, 2000]. An adaptive internal model

allowing uncertain exo-system was considered in [Serrani et al., 2001] that solved semiglobal

output regulation problem. The output regulation problem is extensively discussed in Byrnes

and Isidori [2000]; Byrnes et al. [1997]; Huang [2004]; Isidori et al. [2003] where a detailed

list of references is available.

The results presented until year 2000 focused on solution of local or semiglobal stability

problem where initial conditions stay only in a small predefined compact set. For a more

wider domain, focusing on global perspective along-with a degree of robustness, such work

was extended to global version of output regulation. The number of results presented in this

area are however few and were presented not before year 2000. Papers including [Byrnes and

Isidori, 2003; Chen and Huang, 2003, 2004; Ding, 2001; Marconi and Serrani, 2002; Serrani

and Isidori, 2000] targeted in this domain. Furthermore, work reported on output regulation,

either in local or global domain, targeted minimum phase nonlinear systems having stable or

no zero dynamics. In [Khalil, 2000; Mahmoud and Khalil, 1997] servomechanism problem

is addressed for minimum phase nonlinear system. In [Mahmoud and Khalil, 1997] a robust



6.1 Introduction 90

controller is designed under state feedback to ensure boundedness of all states as well as

convergence of tracking error and showed that system performance can be recovered under

output feedback using high gain observer. In [Khalil, 2000], it is shown that robustness in

design can be achieved under output regulation for a minimum phase system by utilizing some

knowledge of the nonlinearities of the system while the plant parameters and uncertainties are

not used in the design calculations. Later on Khalil and group of co-researchers [Seshagiri and

Khalil, 2005a,b; Singh and Khalil, 2005] introduced concept of conditional servo compensator

for output regulation of minimum phase systems that improved steady state regulation error

without degrading transient behaviour of the system.

While a lot of work was done on stabilization and regulation of minimum phase nonlinear

systems, little work is reported in this direction for the case of non-minimum phase systems.

The complexity of non-minimum phase nonlinear systems having unstable zero dynamics can-

not be removed by straight forward application of feedback linearization and hence like, out-

put feedback stabilization problem, the output regulation problem also becomes a challenging

task. This area is, therefore, an active research area in the field of nonlinear control systems.

For the case of stabilization problem, some work is reported in literature that is already de-

scribed in Chapter 4. For the case of output regulation of non-minimum phase nonlinear

systems, again, not too many publications are reported in literature and some researchers pre-

sented the solution to this problem in this area are [Celani, 2011; Chiang and Isidori, 2015;

Huang and Guoqiang, 2004; Nazrulla and Khalil, 2011a; Su, 2016]. In [Huang and Guoqiang,

2004] and [Celani, 2011], a benchmark nonlinear system TORA is investigated to robustly

reject disturbances based on output regulation method that uses only measurements of the

output. In paper [Su, 2016], practical implementation for solution of local output regulation

problem for TORA benchmark system is demonstrated.

The work on output regulation presented in this thesis is an extension to the previous work

of output feedback stabilization for a class of under-actuated nonlinear benchmark system
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[Khalid and Memon, 2014] and utilizes earlier work on output regulation / servo mechanism

for minimum phase system presented in Seshagiri and Khalil [2005b]. The generalized proce-

dure developed for evolution of normal form representation after collocated partial feedback

linearization and global change of coordinates applied earlier for stabilizing control as de-

tailed in subsection 4.1.2 is equally applicable for output regulation. Towards this end, the

technique for output regulation presented in this work broadly utilizes the work presented in

Isidori [2000]; Nazrulla and Khalil [2011a,b]; Wazir [2015] to solve the regulation problem

of target class of under-actuated benchmark nonlinear systems and the problem is addressed

by formulating reduced auxiliary system so that the controllable states act as control input for

zero dynamics to make it stabilizable and an extended high gain observer is implemented to

estimate virtual output as well as system controllable states and actual output. In previously

reported work the internal states are stabilized to steady state value by regulator equation that

requires solution of partial differential equations and complex mathematical calculations that

is quite tedious. Another difference in work for output regulation presented here is in servo

compensator design and a conditional servo compensator is used due to its advantages to con-

ventional one as mentioned in Seshagiri and Khalil [2005b] and the steady state values of

internal dynamics are driven arbitrarily fast to corresponding equilibrium points.

6.2 Nonlinear Output Feedback Regulation

Output feedback regulation is termed as deriving the output of a system to asymptotically track

any prescribed reference trajectories in a certain class of functions of time while rejecting any

disturbances in a certain class of disturbances. One of the possible approach to solve this

problem is via internal models [Isidori et al., 2003]. If the trajectory which is required to

be tracked or the disturbance which is required to be rejected belongs to a set of all possible

trajectories generated by some fixed linear exo-system and such an internal model of a system

is incorporated in a controller, then the controller can make asymptotic decay of the tracking
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error to zero for every possible trajectories present in the system and does it robustly with

respect to parameter uncertainties. Regulation via such internal model based control is very

effective for highly nonlinear systems as this reshapes the nonlinear dynamics of the closed

loop system to induce an invariant manifold in the presence of uncertainties. The procedure

depicted here to solve nonlinear servomechanism problem closely follows the procedure as in

[Serrani, 2005].

A time-invariant, nonlinear, finite dimensional system having state vector x ∈ ℜn, control

input u ∈ ℜm, external disturbance inputs w ∈ ℜr, measured output y ∈ ℜp and regulated

output or tracking error e ∈ ℜq for solution to output regulation problem can be described as

ẋ = f (x,u,w), x(0) = x0 (6.1)

e = h(x,w) (6.2)

y = k(x,w) (6.3)

where f (x,u,w), h(x,w) and k(x,w) are nonlinear continuous smooth functions of their argu-

ments and that f (0,0,0) = 0, h(0,0) = 0, k(0,0) = 0. The disturbance input w consists of a

set of exogenous input variables which includes references to be tracked and unknown distur-

bances to be rejected. x0 denotes initial states vector at t = 0 and ẋ is defined as derivative of

states x w.r.t. time t. The regulated output e includes tracking errors and any other variables

that needs to be regulated.

The neutrally stable system known as exo-system generates an exogenous signal denoted

as w. It is an autonomous system that models the class of disturbance and reference signals

taken into consideration by the designer. Ideally a complete knowledge or model of reference

signals to be tracked and disturbance signals to be rejected by the closed loop control system

should be available in real time. This, however, would not be a practical and realizable so-

lution. On the other hand, with no prior knowledge of exo-system may lead to a design of

closed loop control system exhibiting an ultimate bounded error e that will not necessarily
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be zero. To implement an intermediate solution that is both practicable and realistic, an exo-

system is chosen that contains a set of reference signals to be tracked and disturbance signals

to be rejected. In this way, w is only allowed to belong to a fixed family of functions of time

enabling the designer to cover major cases of practical cases. A general exo-system used in

output regulation problem is generated by nonlinear autonomous system

ẇ = s(w) (6.4)

The function s is assumed as smooth function with s(0) = 0. For simplicity and in almost all

known design methods. the case of autonomous linear time-invariant exo-system is considered

given as

ẇ = Sw (6.5)

where the corresponding initial conditions w(0) is allowed to vary on a prescribed set. The

exo-system being neutrally stable have all eigenvalues on imaginary axis. The matrix S can

be expressed as skew-symmetric matrix so that all the trajectories of exo-system (6.5) are

bounded in forward time and does not decay to zero as t → ∞. A dynamic feedback controller

can be defined as

ξ̇ = φ(ξ ,y)

u = θ(ξ ,y)

 (6.6)

where φ(0,0) = 0, θ(0,0) = 0 such that for all initial conditions in the neighbourhood of

origin, all the state variables of the closed-loop system are bounded and lim
t→∞

e(t) = 0. For the
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system (6.1-6.3) and controller (6.6), a set of partial derivatives are defined as

A =

[
∂ f
∂x

]
0

B =

[
∂ f
∂u

]
0
C =

[
∂h
∂x

]
0

F =

[
∂φ

∂ξ

]
0

G =

[
∂φ

∂u

]
0

H =

[
∂θ

∂φ

]
0

To solve output regulation problem, the origin of system needs to be asymptotically stable

equilibrium when exo-system is not present. Furthermore the pair(A,B) and the pair(C.A)

should be detectable. The closed loop system can be given as

ẇ = Sw

ẋ = f (x,θ(ξ ,k(x,w)),w)

ξ̇ = φ(ξ ,k(x,w))

e = h(x,w)


(6.7)

and if π(w) is steady state of x and σ(w) is steady state value of ξ on a zero error manifold,

as shown in Fig. 6.1, such that the manifold

M0 = {(x,ξ ,w) : x = π(w),ξ = σ(w)}

is to be invariant than control action can be divided as the one that drives the system to steady

state and the other that stabilizes it at steady state. For error dynamics e = 0, such that 0 =

h(π(w),w), then the system must satisfy a set of equations termed as regulator equations and

are given as

∂π(w)
∂w

s(w) = f (π(w),w,c(w))

0 = h(π(w),w)

 (6.8)
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Fig. 6.1 Pictorial Representation of Zero Error Manifold [Serrani, 2005]

and the set of controller equations are

∂σ(w)
∂w

s(w) = φ(σ(w),0)

c(w) = θ(σ(w))

 (6.9)

Here polynomial c(w) is the steady state value of control input u having only w. It is to be

noted that problem of output regulation is solved using model of exo-system s(w). This is

generally known as internal model principle and is usually designed as

∂σ(w)
∂w

sw = Φ(σ(w),0)

c(w) = Γ(σ(w))

 (6.10)

where σ(w) represent the mapping

σ(w) =
[

c(w) Lsc(w) L(s)2c(w) · · · Lq−1
s c(w)

]ᵀ
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where

Lsc(w) =
∂c(w)

∂w
s(w) =

∂c(w)
∂w

Sw

Γ =

[
1 0 0 · · · 0

]
1∗q

Φ =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · · .

0 0 0 · · · 1

−a0 −a1 −a2 · · · −aq−1


The last row in matrix Φ contains coefficients that are obtained from

Lq
s c(w) = a0c(w)+a1Lsc(w)+a2L(s)

2c(w)+ · · ·+aq−1Lq−1
s c(w)

where the characteristic polynomial λ q − aq−1λ q−1 − ...− a1λ − a0 has distinct roots on the

imaginary axis and the pair

 A 0

GC Φ

,

B

0

 is stabilizable and the pair
[
C 0

]
,

A BΓ

0 Φ

 is

detectable. By using a change of variables

x̃ = x−π(w))

ξ̃
′
= ξ

′
−σ

′
(w)

 (6.11)

the stabilizer takes the form

ξ̇
′′
= l(ξ

′′
,e)

u
′′
= Γ(ξ

′′
,e)

 (6.12)

In this way, output regulator, as shown in Fig. 6.2 may be called as a parallel interconnection

of an internal model based servo compensator (6.10) and a stabilizing compensator shown in

(6.12). For stabilizing compensator, local stabilization can be achieved by linearization and
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there exists set of matrices L,M and N for which a linear stabilizer compensator can be derived.

In this case the overall controller can be chosen of the form

ξ̇
′
= Φξ

′
+θ1e

ξ̇
′′
= Lξ

′′
+My

u = Γξ
′
+Nξ

′′


(6.13)

The regulation of system is thus achieved locally as the internal model provides c(w) compo-

nent of u such that x= π(w) and ξ =σ(w), while the stabilizer provides stabilizing component

of u that induces local exponential convergence towards the zero error manifold M0.

ξ̇
′′
= Lξ

′′
+My

u
′′
= Nξ

′′

Servo Compensator

ξ̇
′
= Φξ

′
+θ1e

u
′
= Γξ

′

Stabilizing Compensator

✲e ✲

✻

✲

✧✦
★✥

✲u′

u′′

u

Fig. 6.2 Structure of Regulator

6.3 Nonlinear Servomechanism

The output regulation method used to regulate tracking error as discussed in section 6.2 is

associated with two main disadvantages. Firstly it does not cater for robustness issue as only

local stability is addressed and secondly separate controllers are required to be designed for

stabilization and internal model based compensators. Another technique termed as servo com-

pensator is reported in literature for output regulation based control of nonlinear systems. The
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servo compensator based output feedback regulation is an extension of regulator based method

as discussed in section 6.2 and is a well defined technique reported in literature for regulation

of minimum phase nonlinear systems as for example in Mahmoud and Khalil [1997]; Sesha-

giri and Khalil [2005b]. In these reported works, system normal form representation is utilized

to control external dynamics using conventional/conditional servo compensators along-with

suitable observer for output feedback regulation of complete system. In this regard, the work

reported in Seshagiri and Khalil [2005b] is extended in this thesis for output feedback regula-

tion of target class of under-actuated benchmark nonlinear systems. It utilizes mathematical

representation in strict feedback normal form derived earlier to solve stabilization problem

while an extended high gain observer is used for state estimation of zero dynamics. Finally,

the conditional servo compensator is implemented for regulation of external dynamics so that

trajectory tracking and boundedness of systems states is achieved and system exhibits a degree

of robustness under unknown disturbances.

6.3.1 Conventional Servo Compensator

The Euler’s Lagrange equation described in Chapter 3, equation (3.21) transformed into strict

feedback normal form (4.8) with error dynamics e can be represented as

η̇ = φ0(η ,ξ ,θ) (6.14)

ξ̇i = ξi+1, 1 ≤ i ≤ ρ −1 (6.15)

ξ̇ρ = b(η ,ξ ,θ)+a(η ,ξ ,θ)u (6.16)

e1 = ξ1 −q(w,θ) (6.17)

e = h(ξ ,w,θ) (6.18)

Here the high frequency component a(.) ̸= 0, b(0,0,θ) = 0, η ∈ Dη ⊂ ℜη−ρ , ξ ∈ Dξ ⊂

ℜρ and θ ∈ Θ ⊂ ℜρ is a vector of unknown constant parameters. The error dynamics e =
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[e1 e2 e3 · · · eρ ] shows error output and q(w,θ) is the reference trajectory to be tracked. Control

u is considered here as a single input and zero dynamics or internal states are assumed having

roots with negative real eigenvalues making it a minimum phase system. For sake of simplicity

the minimum phase system is considered here. Later on non-minimum phase systems of target

class of under-actuated systems with unstable zero dynamics will be considered for application

of servo compensator algorithm and will be applied on an example of target class of systems.

To solve the output regulation problem a concept of exo-system and regulator equations

are assumed as discussed in section 6.2. The disturbance in θ and q(w,θ) are assumed to be

generated by a neutrally stable exo-system

ẇ = S0w (6.19)

A continuous mapping ξ = π(w) and u = χ(w) exists on zero error manifold that solves the

regulator equations

∂πi(w)
∂w

S0w = πi+1(w), 1 ≤ i ≤ ρ −1

∂πρ(w)
∂w

S0w = b(0,π(w),w)+a(0,π(w),w)χ(w)

0 = h(π(w),w)


(6.20)

for all w ∈W . The mapping u = χ(w) satisfies the identity

Lm
s χ = c0χ + c1Lsχ + c2L2

s χ + . . .+ cm−1Lm−1
s χ

for all w ∈ W and c0,c1, · · · ,cm−1 are set of real constants having values so as characteristic

polynomial λ m − cm−1λ m−1 −·· ·− c1λ 1 − c0 has distinct zeros on the imaginary axis. Now
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an internal model can be utilized to find χ(w) as

∂τ(w)
∂w

S0w = Sτ(w)

χ(w) = Γ(τ(w))

 (6.21)

where

Γ =

[
1 0 0 ... 0

]
1∗q

S =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

−c0 −c1 −c2 · · · −cq−1



τ(w) =
[

χ(w) Lsc(w) L2
s c(w) · · · Lm−1

s c(w)

]ᵀ
Under the above mentioned assumptions, the conventional servo compensator based control

law can be designed as

u =−ksign
(

LgLρ−1
f h

)
sat(s/µ) (6.22)

Here k is a positive constant gain, µ is a design parameter and sign and sat are functions

defined as

sign(x) =


+1 x > 0

0 x = 0

−1 x < 0
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sat(x) =

 x |x| ≤ 1

sign(x) |x|> 1

LgLρ−1
f h is high frequency gain and s is sliding surface given as

s = K1φ +K2
[
e1 e2 · · · eρ−1

]ᵀ
+ eρ (6.23)

and the conventional servo compensator is augmented with

φ̇ = Sφ + Je1 (6.24)

where K2 =
[
k1 k2 kρ−1

]
. The matrices K1 and K2 are chosen such that closed loop system

remain Hurwitz.

6.3.2 Conditional Servo Compensator

The conventional servo compensator discussed in previous section show better performance

as stability achieved is non-local and closed loop system is robust to disturbances. The im-

proved steady state performance often happens at the cost of degraded transient response as

the overall system order is increased due to addition of servo compensator and its interaction

with control saturation. The problem is addressed by number of researchers and conditional

servo compensator is introduced to solve it [Seshagiri and Khalil, 2005b].

The core design of conditional servo compensator is similar to the conventional counterpart

as the control input ’u’ and the sliding surface ’s’ remains the same as in (6.22) and (6.23)

respectively. It differs in implementation of augmented servo compensator ’φ ’ and how the

value of matrices K1 and K2 are selected. In conditional servo compensator equation (6.24) is

modified as

φ̇ = (S− JK1)φ +µJsat
(

s
µ

)
(6.25)
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Here µ > 0 is the width of the boundary layer and K1 is chosen to make S− JK1 as Hurwitz.

While K2 =
[
k1 k2 · · ·kρ−1

]
is selected such that the polynomial λ ρ−1+kρ−1λ ρ−2+ · · ·+

k2λ + k1 is hurwitz.

6.4 Control Law under Output Feedback Regulation

The design of control law under output feedback regulation is based on conditional servo

compensator based regulating controller and an internal dynamics stabilizing control law.

The servo compensator based regulation mechanism utilizes design procedure as detailed in

(6.3.2). The observe part of design consist of an EHGO for state estimation of external dy-

namics as discussed in section (2.6.3) in a similar way for stabilization of TORA as presented

in section (5.2.3). For stabilization of internal dynamics, the design technique utilizes simi-

lar approach as for the case of stabilization problem. Towards that end, an auxiliary system

is formulated for stabilization of internal dynamics utilizing a suitable control law as auxil-

iary control input to be generated by external dynamics. The scheme is implemented in the

dynamics of sliding surface variable ”s” by augmentation of this auxiliary control input so

that overall regulation purpose is achieved. The overall design algorithm is applied on output

feedback regulation of TORA system presented in next section.

6.5 Illustrating Example: Output Feedback Regulation of

TORA System

In this section, the mathematical formulation for output feedback regulation of TORA system

is presented. The design broadly utilizes the methodology suggested in Nazrulla and Khalil

[2011a] and Wazir [2015].
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6.5.1 Mathematical Formulation

The simplified diagrammatical representation of TORA is shown in Fig. 5.8, its nonlinear

mathematical form is shown in section 5.2.2. The normal form representation of TORA de-

rived after change of variables is, for convenience, again shown here in the form of two sub-

systems and an error output. The first subsystem is

η̇1 = η2

η̇2 =
k

m1 +m2

(
m2r sin(ξ1)

m1 +m2
−η1

)
 (6.26)

the second subsystem and the output is given as

ξ̇1 = ξ2

ξ̇2 =
1

δ (ξ1)

[
(m1 +m2)τ −m2r cos(ξ1)

{
m2rξ

2
2 sin(ξ1)− k(

η1 −
m2r sin(ξ1)

m1 +m2

)}]
y = ξ 1


(6.27)

where δ (ξ1) = (I +m2r2)(m1 +m2)−m2
2r2 cos2 (ξ1)

≥ (I +m2r)2m1 +m2I

> 0

and y denotes the available output. The system has relative degree ρ = 2 while internal dy-

namics is unstable. For output feedback regulation, a controller is designed so that the output

y = ξ1 follows the trajectory defined by a linear exo-system (6.28) while the internal dynamics

remain stable and stabilized to zero. The linear exo-system is taken as

ẇ = S0w (6.28)
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where w = [w1 w2]
ᵀ, S0 =

 0 ω

−ω 0

 and ω is a constant parameter.

6.5.2 Conditional Servo Compensator Design

The servo compensator is designed by replacing output y in (6.27) with error dynamics e1

given as

e1 = ξ1 −w1 (6.29)

The external dynamics, taken as reduced system, where (6.29) is taken as output is defined as

ξ̇1 = ξ2

ξ̇2 =
m1 +m2

δ (ξ1)
u

y = ξ1 −w1


(6.30)

Taking Γ =


1

0

0

, S =


0 1 0

0 0 1

0 −1 0

, the control input u takes the form as

u =−Ksat
(

s
µ

)
(6.31)

Sliding surface s for external dynamics under conditional servo compensator design contains

error dynamics and its derivative obtained using high gain observer. Additionally it contains a

control input for internal dynamics that will be discussed in next section.

s = K1φ + k2e1 + e2 + additional control f or η (6.32)
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and the constant K is

K = β
δ (ξ1)

m1 +m2
(6.33)

where k2 is any positive constant and µ and k1 are design parameters. K1 is selected such that

S− JK1 is Hurwitz. While φ is generated by

φ̇ = (S− JK1)φ +µJsat
(

s
µ

)
(6.34)

6.5.3 Stabilization Controller for Internal Dynamics

In the second phase of controller design, the stabilization controller for zero dynamics is for-

mulated by considering an auxiliary system given as

η̇1 = η2

η̇2 =
k

m1 +m2

[
m2r sin(ξ1)

m1 +m2
−η1

]
ė1 = ua

σ =
m2r cos(ξ1)

δ (ξ1)

[
k×

(
η1 −

m2r sin(ξ1)

m1 +m2

)
−m2rξ

2
2 sin(ξ1)

]


(6.35)

where the auxiliary output σ is estimated from an extended high gain observer as

˙̂
ξ1 = ξ̂2 +

a1

ε
(ξ1 − ξ̂1)

˙̂
ξ2 = σ̂ + â(ξ )u+

a2

ε2 (ξ1 − ξ̂1)

σ̂ =
a3

ε3 (ξ1 − ξ̂1)


(6.36)

where ε is a design parameter and the constant parameters a1,a2 and a3 are selected such that

the polynomial λ 3 + a1λ 2 + a2λ + a3 have negative real roots. The design for stabilization

of internal dynamics closely follows to the one given in previous section and in Nazrulla and

Khalil [2011a]. An auxiliary output ŷa is defined by replacing ξ2 with ua for auxiliary system
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(6.35) given as

ŷa =
δ (ξ1)σ

m2r cos(ξ1)
+

m2r(ua)
2sin(ξ1)

k
+

m2r sin(ξ1)

m1 +m2
(6.37)

such that

ŷa ∼= η1 (6.38)

Assuming ua = 1
εa
(va − e1) where va is the control input to be designed and εa is a positive

constant. Now the auxiliary system can be expressed as

η̇1 = η2

η̇2 =
k

m1 +m2

[
m2r

m1 +m2
sin(e1)−η1

]
εaė1 = va − e1

ŷa = η1


(6.39)

For small value of εa the above system act like a singularly perturbed system as it exhibits two

time scale properties. For the case of εa = 0 ⇒ va = e1 results in sin(e1) = sin(va) , wa and

(6.39) can be written as a linear system given as

η̇1 = η2

η̇2 =
k

m1 +m2

[
m2r

m1 +m2
wa −η1

]
ŷa = η1


(6.40)

The auxiliary system (6.40) is observable and control problem reduces to design of control

law wa. A state feedback control law wa = κ1η1 +κ2η2 can be derived. A full order observer
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based design can be done as

˙̂η1 = η̂2 + ã1(ŷa − η̂1)

˙̂η2 = ã1(ŷa − η̂1)−
kη̂1

m1 +m2
+

km2r
(m1 +m2)2 ŵa

 (6.41)

Here ŵa is a control input with estimated states η̂1, η̂2 and ã1, ã2 are selected so that the

polynomial λ 2 + ã1λ + ã2 is Hurwitz. The control input is taken as

ua = N(η̂ ,e1)

N(η̂ ,e1) =
1
εa

[
sin−1 {sat(κ1η̂1 +κ2η̂2)− e1}

]
 (6.42)

6.5.4 Composite Control Law

The control law for entire cascaded system is derived using the control law derived for internal

system in section 6.5.3. The sliding surface (6.32) having estimated error dynamics in control

law (6.31) can be modified as

ŝ = K1φ + k2ê1 + ê2 −ua (6.43)

where error states ê1, ê2 are estimated from high gain observer

˙̂e1 = ê2 +
g1

ε0
(e1 − ê1)

˙̂e2 =
g2

ε2
0
(e1 − ê1)

 (6.44)

states φ are estimated from

φ̇ = (S− JK1)φ +µJsat
(

ŝ
µ

)
(6.45)
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and ŷa is obtained as

ŷa =
δ (ξ̂1)σ̂

m2r cos(ξ̂1)
+

m2r(ua)
2sin(ξ̂1)

k
+

m2r sin(ξ̂1)

m1 +m2
(6.46)

Finally the control signal u is taken as

u =−Ksat
(

ŝ
µ

)
(6.47)

6.5.5 Simulation based Analysis

Table 6.1 TORA System Parameters and Initial Conditions

Parameter Value Unit
k 186.3 N/m
m1 1.3608 kg
m2 0.096 kg
r 0.0592 m
I 0.0002175 kgm2

g 9.81 m/sec2

Table 6.2 Controller Parameters

Parameter Value
β 500
µ 0.01
k2 5
κ1 −1
κ2 −8
ε 0.01
ε0 0.001
εa 0.1

In this section, performance of TORA system is analyzed for verification and validation.

For simulation purpose, the system parameters/gains and controller parameters are set with

corresponding initial conditions. The same system parameters are chosen here for TORA
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Fig. 6.3 Reference signal w1, Internal state η1, Output y = ξ 1

system as in Chapter 5 and, for convenience, are shown in Table 6.1. The controller parameters

are given in Table 6.2. The parameter for exo-system is chosen as Ω = 0.5 with initial value

w(0) = [0.5 0.5]ᵀ. The poles for extended high gain observer are set at s =−11,−12,−13.

The poles for linear high gain observer are set at s=−5,−6. The poles for observer of internal

states are set at s =−2,−3. For conditional servo compensator, the matrices are given as

J = [0 0 1]ᵀ, S =


0 1 0

0 0 1

0 −1 0

 and K1 = [125 80 20].

The overall system performance and convergence of system states is shown in Fig. (6.3). The

plot shows that after some transient phase zero dynamics state η1 is stabilized to equilibrium

point and remains bounded thereafter. Similarly the external state ξ1 converge to equilibrium,

remains bounded and track reference input signal. In this way, the regulated output y = ξ1

moves along-with desired reference trajectory after some initial transient phase.
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6.6 Summary

In this chapter, the regulation problem for nonlinear systems is discussed. Starting with gen-

eral description and background work presented by renowned researchers in this domain, the

classical method of nonlinear output regulation is described. The detailed algorithm of con-

ventional servo compensator for output feedback regulation and its advantages with respect

to other control scheme is provided. Finally conditional servo compensator based technique

is elaborated and its effectiveness to improve system steady state and transient response is

presented.

In second part of this chapter, the output feedback regulation of a test bench nonlinear

system TORA is discussed and the generalized procedure elaborated in first part for servo

compensator based output regulation is applied on the TORA system. Utilizing the strict

feedback normal form of TORA system, the system is classified as an auxiliary system having

unstable internal dynamics and an external linear system. A conditional servo compensator

is developed for reduced system while an EHGO is used for auxiliary system. A composite

control law is finally evolved and is utilized for simulation based analysis of TORA system.



Chapter 7

Conclusions

Non-minimum phase nonlinear systems exhibit complex dynamics requiring more control

efforts than linear systems. Under-actuated systems are generally non-minimum phase non-

linear systems where some part of system dynamics is unactuated. Real life mechanical and

electromechanical systems are mostly under-actuated or are prone to be under-actuated upon

occurrence of fault. Control of these type of systems is, therefore, an active and important

research area.

This thesis focuses on the problem of output feedback stabilization and regulation for a

class of under-actuated non-minimum phase nonlinear systems with emphasis on presenting

a simple and step by step controller design methodology applicable on target class of sys-

tems. The controller design is unique, in non-hybrid form and easy to implement as compared

to some of previously reported designs. The state feedback design is incorporated in Slid-

ing Mode Control (SMC) framework and an Extended High Gain Observer (EHGO) based

output feedback scheme is utilized for state estimation. The SMC and EHGO based control

law inherently incorporate robustness in design and provide faster convergence of states. An

important feature of methodology is derivation of suitable normal form representation for tar-

get class of under-actuated systems that is effectively utilized for solution of output feedback

control problem. The normal form bifurcates generalized system into internal and external

dynamics. The internal dynamics being highly nonlinear is stabilized using control Lyapunov
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Function method and the stabilization is achieved using error dynamics from external linear

system under SMC framework.

For output regulation, the concept of servomechanism is incorporated for reference track-

ing and disturbance rejection in the presence of time varying exogenous signals that are gen-

erated by a known exo-system. A conditional servo compensator being used for output reg-

ulation improves transient performance without any significant degradation of steady state

response. Stability of closed loop system is ensured and system performance is verified by

numerical simulations. Analytical results are provided for an arbitrarily large set of initial

conditions showing effectiveness of proposed methodology.

The rest of the chapter summarizes the thesis, provides its sequential flow and outlines

directions of future work. Future aspects relevant to proposed work that may be taken by

researchers are highlighted and new dimensions of research in this domain are identified.

7.1 Summary of Thesis

The thesis is divided into seven chapters.

First chapter sheds light on inspiring factors that acted as driving force for the preparation

of this thesis and highlight a brief about the state of the art. The work done by renowned

researchers in the field of under-actuated systems is summarized. Finally the contribution of

work towards stabilizing controller design is presented.

Second chapter provides basic definitions and concepts of linear as well as nonlinear sys-

tems. The concept of zero dynamics and non-minimum phase property of systems is described

in detail. Usage of state observer for output feedback control is provided in last section where

high gain observer and extended high gain observer are elaborated in detail.

The third chapter is about under-actuated nonlinear systems. It provides Lagrangian based

mathematical formulation of nonlinear systems. Types of nonlinear systems based on actua-

tion property and mathematical representations of under-actuated systems is described in this
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chapter. A broader classification of nonlinear under-actuated systems is provided and a typical

class of systems targeted in this thesis for stabilization and regulation purpose is identified.

In chapter four, the design methodology for stabilization of target class of systems is pro-

posed. A generalized methodology is formulated and application of an important design tool

in this case is elaborated. Subsequently in this chapter, observer based generalised controller

design is formulated and stability of both controller and observer part of design is explored.

In chapter five, two examples of target class of under-actuated systems are selected and

proposed design methodology is applied on these systems. Starting with system mathematical

formulation, design algorithm is applied for development of observer based output feedback

control law. Finally, simulation based results are utilized for verification of design paradigm.

In chapter six, the proposed design technique is extended for output regulation of target

class of under-actuated nonlinear system. Starting with general introduction of servo mecha-

nism problem, work done by renowned scholars in this area is highlighted. The servo com-

pensator based design approach for target class of systems is presented and step by step design

procedure is shown. Further in this chapter, example of TORA system is taken and the design

methodology is applied for output feedback regulation of TORA system.

7.2 Future Work

In this thesis, we have considered the problem of stabilization and output regulation for a

class of non-minimum phase nonlinear systems. The proposed control methodology offers a

systematic design procedure and presents a flexibility in selection of various design param-

eters as per the requirements of the system under consideration. An interesting direction of

future work would be to extend the class of systems for which the proposed scheme is applica-

ble. Towards this end, it would be interesting to understand whether the proposed framework

allows the flexibility of extending the class of systems considered in this thesis, or relax the as-

sumptions we have made. Of particular interest, in this regard, are the under-actuated systems
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mentioned in Table 3.1

An interesting, yet challenging, direction of future research would be investigating the

output regulation problem for the under-actuated nonlinear systems with control constraints

or saturation. The presence of saturation in the input channel imposes strong limitations to the

achievable control objectives such as transient performance etc. It will be interesting to see if

the proposed control scheme can be modified to achieve the desired level of robustness and

performance for these systems.

Last but not the least, further research work needs be done in understanding how to tune

the controller as well as observer parameters in order to achieve specific control objectives, as

well as to identify possible limitations on the achievable performance.
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