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Abstract

Realtime fault detection and identification can increase the reliability of a sys-

tem. Key to this is online monitoring, classification and characterization of such faults.

Deviations in performance of a system under normal conditions without any internal or

external parameter changes can be classified under faults. These deviations start as minor

disturbances or changes, if left unchecked, may alter the operations of a system. These

alterations may cripple the system or lead to its failure.

Diagnosis is the detection and identification of faults in the system. The goal of

this project is to develop a structure for fault diagnosis which can detect and categorize

the condition of an electrical system. to fulfill this requirement, methods are presented for

identification of transient faults and stationary faults using time-frequency analysis. The

fault features are extracted from the transformer current using Short Time Fourier Trans-

form and Wavelet Transform,. The existence of a fault is analyzed using spectrum energy

density analysis and subsequently categorization is performed by the pattern recognition

classifiers; ensemble classifier. The efficiency of each classifier is compared for determination

of an optimal classification technique.

Probable faults in an electrical system, their effects and their manifestation in the

system parameters are included. Also included is an experimental setup whereby which

data for diagnosis is collected.

Keywords: Transformers, Short-circuit Faults, Transient Faults, LDC, QDC,

SVM,Ensemble
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Chapter 1

Introduction

1.1 Electrical Faults

In the age of transformation of traditional electrical networks into smart grids,

demand for online monitoring of grid system components has been identified.Critical oper-

ations of complex system is now possible while being cost-effective, reliable and maintaining

safe operation. To accomplish this goal, early diagnosis of faults has become one of the key

issues of interest for research.

Deviations in performance of a system under normal conditions without any in-

ternal or external parameter changes can be classified under faults. These deviations start

as minor disturbances or changes, if left unchecked, may alter the operations of a system.

These alterations may cripple the system or lead to its failure.Diagnosis is the early detec-

tion of such faults in the system in real time and the identification and assessment of its

type and severity. In this thesis, fault diagnosis and its assessment are referred to as fault

analysis.

1.2 Social Impacts for Transformer Faults In Pakistan

Demand for electricity usually outweighs its supply in Pakistan. While most of

this is due to "circular debt" wherein the government is unable to manage its power tariff

recoveries against the cost of generation and transmission. Inefficiencies in the transmission

and distribution network with power losses up-to 40 % also play a major factor in the smooth

1



Chapter 1: Introduction

supply of electricity. Coupled with the enormous increase in energy demand emanating

from population growth and industrial development, a power crisis has emerged. Increase

in power generation capacity may take years into making, network downtime can certainly

be reduced, providing a much needed relief to the struggling power sector.

Network breakdowns are largely due to outdated transmission and distribution

infrastructure. To better manage an ailing network infrastructure, maintenance activity

is required. However even with carrying out such routine activity, detection of faults in

realtime is not widely available, resulting in power supply interruptions.

1.3 Problem Statement

A critical component of the power distribution infrastructure is the electrical trans-

former. Power and distribution transformers work with different dynamics and cater to

different roles. Distribution transformers form the lower chain of electrical power distribu-

tion and are heavily impacted with frequently changing dynamics. These dynamics result

from transients produced during different transformer loading.

During the life cycle of a transformer, it is subjected to varying loading. Changes

between loading levels produces transients in the network and impact the transformer.

Reactance of a transformers dampens these transients and ensure safe operation. Over the

period of operations, internal aging including degradation of oil and insulation, reduce the

ability to sustain these transients.

A fault may occur unwarned and may cause temporary downtime or in some

cases result in irreversible damage. Such faults cannot always be prevented during regular

maintenance cycles. To ensure timely detection of faults, the need for online monitoring

is now ever needed. Such faults can be detected non intrusively using electrical current.

Despite with advancement and expansion in the technology of conditional monitoring of

transformers, detection and classification of faults is still a grey region that requires to be

explored for further enhancement.

Modern research has examined the possibility of detecting transformer faults.

Investigation of transformer current signals signatures has provided that changes occur in

a when subjected to faults. Therefore pattern recognition and machine learning approach

can be applied for training and fault detection of a system in realtime.

2



Chapter 1: Introduction

1.4 Goal Of Thesis

Present study goal is to develop a system that can detect in realtime the changes

occurring in a transformers current signature. This system is built to be non intrusive and if

required, will easily be deployed in the field without the need of modifications to an existing

transformer. This will also help in reducing maintenance costs and preventing unscheduled

downtime which inadvertently result in losses of production and financial incomes, and

are the priorities of any electrical power distribution utility. The use of current signature

analysis for transformer signature profiling has been adapted from work done in the field

of Motor Current Signature Analysis (MCSA) [1]. For the scope of this thesis, transformer

current signature can be classified into three states as follows:

• Healthy Data sampling: TCS during normal operation

• Fault 1: Transformer subjected to fault 1

• Fault 2: Transformer subjected to fault 2

Typically each transformer carries its own unique current signature and this is

inherent to its design and the materials used for its construction. Deviations are expected

between transformers current signatures under identical conditions and identical opera-

tional parameters. This is true even the said transformers are part of the same production

model with similar design and construction type.

The use of AI applied via Machine learning will aid in real time identification of

a detected fault. The identification of the fault will be determine the transformer state to

be either healthy or of the two faulty states stated above.

1.5 Thesis Outline

Thesis comprises of eight major chapters.

• Chapter 1 contains the overview , problem statement, goal and proposed approach.

• Chapter 2 contains literature review about trend in transformer maintenance, tech-

niques and previous implemented methods of transformer health state monitoring

.
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• Chapter 3 briefly explains the transformer faults, the severity of such faults and effects

of transients.

• Chapter 4 contains theoretical description of feature extraction and classification.

• Chapter 5 describes the hardware test setup and software platform.

• Chapter 6 encloses methodology of the proposed framework.

• Chapter 7 explains the results in detail.

• Chapter 8 draws conclusion regarding the proposed framework.
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Chapter 2

Literature Review

2.1 Scope and Objective of the Chapter

This chapter provides highlights on studies which have been conducted or proposed

during previous years. It explains the different methods for identification of transformer

faults and the methods and their classification accuracy achieved for correct classification

of transformer failure events.

2.2 Transformer Failure Pattern

Literature review is composed of two sections. First section briefs about different

transformer faults. The second section focuses on short circuit faults.

The transformer failure pattern has been found to follow the bath tub curve. The

bath tub curve is divided in three stages. The first stage is where the transformer is most

likely to fail early on in its operational life, this stage has a decreasing failure ratio. The

second stage witch covers the most part on the curve exhibits a constant failure ratio. In

the final stage, an increasing failure ratio exhibiting a period of wear out. An increasing

failure ratio in the first stage of the curve, indicate manufacturing defects including material

and workmanship inadequacies.
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Growth in the industrial sector, paved the way for expansion of the power utilities.

The increase in consumption of electrical energy from 1 trillion to 11 trillion kWh was due

to utilization of a substantial number of transformers [2]. The number of transformers

installed in the USA in three decades are shown, in the figure. In the UK’s Grid system, the

majority of transformers were installed between the years 1995 & 1975 [2]. A transformer

reliability report for Australia and New Zealand, showed the average age of transformers in

1995 to be 28.6 years [2]. A large number of these transformers have had a functional life

far greater than their natural life and most of them are ONAN based transformers. These

transformers are now in the third stage of the bath tub curve and are will be prone to an

increasing failure ratio in the near future [2].

2.3 Failure by Aging

In the 3rd stage of the bath tub curve, the transformers failure ratio depicts an

increasing trend over time. In the final quarter of the transformers life, failure ratio is

expected to increase up to 5 times compared to a normal transformer failure ratio. The

failure probability against age distribution is shown in figures [2].
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2.4 Transformer Insulation System

The transformer insulation is mostly comprised of :

• Insulation between the High Voltage (Primary for step down) winding and the active

part containment tank

• Insulation between the High Voltage and the Low Voltage (Secondary for step down)

windings

• Insulation between individual turns of a winding.

These insulation components are the mist susceptible to failure due to the marginal

clearances in dielectric strength. Monitoring of such insulation whether solid or liquid is

crucial for maintaining insulation integrity.

Defects reported frequently in transformer insulation are [2]:
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• Buildup of moisture in cellulose based insulation

• Contamination of oil with water, particles and insulation aging products

• Insulation surface contamination, which occurs mainly due to adsorption of polar

aging products on a cellulose surface or due to deposition of conducting particles and

insoluble aging products and

• Partial Discharges in weaker sections of cellulose based paper insulation. Moisture

and impurities changes dielectric parameters of run down components, viz. their con-

ductivity, permittivity and dissipation factor, particularly with temperature, which in

turn result in related changes in the dielectric characteristics of the whole transformer.

Defects in minor insulation, e.g. inter turn or coil insulation, such as moisture

in cellulose insulation, overheating leading to accelerated aging and insulation surface con-

tamination, have only a small impact on overall dielectric characteristics of the whole

transformer, due to relatively high capacitance of turn insulation. Thus detection of a

defective condition of minor insulation of a winding is very difficult until a critical PD or

noticeable gas generation occurs [2].

The above discussion indicates that there are several ways of diagnosing defects

in transformer insulation system:

• Detection of Partial Discharges

• Detection of distortion of winding geometry

• Detection of aging products by chemical methods

• Detection of changes in dielectric characteristics, which can be performed in time

domain and also in frequency domain

2.5 Monitoring and Diagnostics

Monitoring is the collection of data from a set of sensors, combined with local

control features and early warning detection of failure symptoms. It acts as the first re-

sponders when the behaviour of a transformer is not as it should be. This is through
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measuring against a reference value periodically or continuously. The type and sophistica-

tion of system employed determines the fault scanning frequency.

Diagnostics is the application of complex analysis that outputs a reliable assess-

ment report for the test subject, indicating whether if any action is required. On a basic

level, a diagnostic system uses data transformation techniques and applies onto raw data

from the sensors for credible and realizable information. Modern diagnostics systems are

automated and perform data collection on site. Current innovations in diagnostic systems

field are focused towards development of a system which uses data collected from sensory

devices and coupled with the operational performance parameters of the equipment turn

data into providing a diagnostic engine. The use of intelligent analytical tools has garnered

a lot of attention from power utilizes which are seeking greater reliance on automated fault

detection. A diagram showing use of information in monitoring and diagnostics.
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Chapter 3

Transformer Condition Monitoring

3.1 Scope and Objective of the Chapter

The flaws that can be recognized by visual investigation of transformers after the

fault events have been documented in the IEC 60599. Five characteristics faults are detailed

and are [2]:

• Partial discharges which create small punctures due to carbonization, in paper,

• Discharges of Low intensity that cause larger punctures in paper,

• Discharges of High intensity discharges with power follow through, the evidence of

which are extensive carbonization, metal fusion and possible tripping of transformer,

• Faults due to thermal activity occurring below 300 C which cause the paper insulation

to turn brown,

• Faults due to thermal activity occurring above 300 C observed through carbonization

of paper and

• Faults due to thermal activity occurring above 700 C indicate oil carbonization, metal-

lic joints fusion.

3.2 Transformer End-of-Life

Factors influencing the life and future opeartional status of transformers are

known, nor are generally legitimately comprehended. Be that as it may, all in all, the
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accompanying are noteworthy [2]:

• The underlying thermal, electrical and mechanical properties of protecting materials

utilized. It is to be noted here that distinctive materials lose their properties at

different rates and in the midst of the aging procedure a comparative material may

lose assorted properties at different rates,

• Thermal, electrical and mechanical burdens. Thermal stresses emerge because of

over-load current, localized overheating, flux leakages and additionally break down

of cooling system. Electrical stresses are caused by system and in addition transient

over-voltages, winding resonances and etc. Mechanical stresses between leads, con-

ductors and windings are created by short circuits and inrush-currents. Their relative

significance is dictated by the requirement to keep the physical stresses to a minimum

while getting efficient utilization of the material utilized,

• Normal load cycle along with the environmental factors like ambient temperature and

• Allowable level of deterioration. Disintegration to complete failure of transformers

isn’t satisfactory practically. The level of deterioration that can be allowed is resolved

to a great extent by degree of safety and service continuity conditions and furthermore

by the likelihood of event of irregular working conditions.

There is no very much specific moment that a transformer will need to be replaced,

but there an increasingly likelihood that the transformer will eventually fail. Mechanical

and dielectric withstand strength of the transformer is diminished by slow aging and dete-

rioration of its insulation system.

Amid the operational life of a transformer, it is subjected to various faults which

cause radial and compressive powers. With systematic development the operational stresses

on transformer increase with the increase in loading.For an aged transformer, ordinarily

the conductor insulation is weakened enough to not being able to support any further

mechanical stresses of a fault. As such, the insulation is withered to the point that any

fault or dense vibrations may cause significant harm. When the dielectric failure occurs

in the inter turn insulation, or the windings are loosened, the ability of the transformer to

withstand short circuit failures are loosened, at that point the transformer’s capacity to

withstand failure is exhausted.
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3.3 Aspects of Transformer Condition Monitoring

3.3.1 Thermal Modelling

The typical task life of a transformer is in part associated with the decay of its

protection through thermal ageing, which is resolved mostly by its day by day loading

cycles. Transformer loading guides provide direction for choosing proper transformer eval-

uations for given loading and cooling conditions and especially for conditions with loading

proportions over the nameplate rating of a transformer. For oil-inundated power trans-

formers, the International Electrotechnical Commission (IEC) loading guide 60354 can be

utilized, while IEC60905 considers dry type transformers. In the Institute of Electrical

and Electronics Engineers (IEEE) loading guide , an indistinguishable computation tech-

niques from announced in IEC60354 are embraced, which are additionally like the loading

guides detailed by the American National Standards Institute (ANSI)and National Elec-

trical Manufacturers Association (NEMA) [3] .

The improvement of a precise thermal model is constantly viewed as a standout

amongst the most fundamental issues of transformer condition monitoring. For the most

part accepted techniques, reported by IEC [4] and IEEE [5], can be utilized to anticipate

the zones of hot-spot temperature in a transformer as the sum of the ambient temperature.

The two consistent state temperature rises of top-oil and bottom-oil above ambient can

be evaluated independently. There are additionally a couple of enhanced thermal models

established on the conventional thermal arrangements. A precise and important thermal

model is exceedingly required practically speaking to manage transformer thermal ratings.

3.3.2 Dissolved Gas Analysis

Oil-immersed power transformers are filled with a fluid that serves various pur-

poses. The fluid acts as a dielectric media, an insulator and a heat transfer agent. The

most common type of fluid used in transformers is of a mineral oil origin. During normal

operations, there is usually a slow degradation of the mineral oil to yield certain gases

that are dissolved in the oil. However, when there is an electrical fault within a trans-

former, gases are generated at a much more rapid rate. DGA is probably the most widely

employed preventative maintenance technique in use today to monitor on-line transformer

operations, and a number of DGA interpretation guidelines have been developed by differ-
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ent organisations, e.g. IEC60559 [6], IEEE C57.104-1991 [7], CIGRE TF 15.01.01 [8] and

GB7252- 87 [9]. By applying a DGA interpretation technique on an oil sample, dissolved

gases can be determined quantitatively. The concentration and the relation of individual

gases allow a prediction of whether a fault has occurred and what type it is likely to be.

For nearly forty years, DGA and its interpretation have been a useful and reliable tool

for monitoring conditions of oil-filled transformers and other oil-filled electrical equipment.

However, based upon the conventional DGA interpretation methods, it is an arduous task

to determine malfunction types and oil sampling intervals, due to various fault conditions

and other interfering factors. Moreover, determining the relationships between gas levels

and decline conditions is a perplexing task, because of complex gas combination patterns.

Many attempts have been made to tackle DGA interpretation problems with a few re-

cent developed computational intelligence (CI) techniques, among which artificial neural

networks (ANNs) are the most widely used fault classifiers for DGA.

3.3.3 Frequency Response Analysis

These days, the breadth FRA (SFRA) strategy has gotten overall consideration

for transformer winding condition evaluation slowly supplanting the low voltage impulse

(LVI) system. FRA [? ] is an exceptionally sensitive strategy for identifying winding

movement faults caused by loss of bracing weight or by short circuit forces. Varieties in

frequency responses may uncover a physical change inside a transformer, e.g. winding de-

velopment caused by loosened clamping structures and twisting winding deformation due

to shorted turns. In modern practice, FRA is a standout amongst the most appropriate

winding diagnostic tools that can give a sign of displacement and deformation faults. It

can be connected as a non-intrusive procedure to maintain a strategic distance from inter-

ruptive and costly tasks of opening a transformer tank and leading oil de-gasification and

dehydration, which can limit the effect on system operations and loss of supply to clients

and subsequently spare a large number of revenue in timely maintenance. There are a few

global guidelines and proposals for testing power transformers utilizing SFRA, e.g. DL/T

911-2004 [10], CIGRE WGA2.26-2006 [11] and IEEE PC57.149 (draft) [12].
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3.3.4 Partial Discharge Analysis

Electrical protection assumes a critical part in any high voltage control device,

particularly power transformers. Partial discharge (PD) happens when a nearby electric

field surpasses an threshold value, bringing about a partial breakdown of the surrounding

medium as detailed by IEC60270 [33]. Its aggregate impact prompts the debasement of

insulation. PDs are started by the nearness of deformities amid its manufacture, or the

decision of higher stress directed by design contemplations. Estimations can be gathered to

identify these PDs and screen the soundness of protection amid the service life of a power

transformer. PDs show as sharp current pulses at transformer terminals, whose nature relies

upon the sorts of protection, deformities and estimating circuits and identifiers utilized. The

ordinary electrical estimation of PDs is to identify PD current pulses with a testing circuit.

In any case, given that the test information dependably comprise of PD signals, sinusoidal

waveforms and background noise, the extraction of valuable data from PD signals is an

exceptionally troublesome issue. The location of PDs can be performed by an assortment of

procedures, most usually electrical, acoustical [13], optical [14] and compound methods [15].

There are three kinds of PD investigation techniques, i.e. the time-settled fractional release

examination [16], the intensity spectra based PD investigation [17] and the phase resolved

partial discharge investigation [16]. In light of the unique attributes of PDs, conventional

computerized flag handling strategies are not reasonable for dissecting PD signals. Other

helpful time-frequency tools, e.g. Fourier change (FT) and Wavelet change (WT), can

be utilized to investigate PDs for de-noising, characteristic extraction and information

characterizations.

3.4 Disadvantages of traditional Techniques

3.4.1 Inaccuray of Thermal Modelling

The for the most part acknowledged temperature estimation methods,reported in

the IEC and IEEE guides [4], [5], can be utilized to foresee problem area temperatures

(HSTs), topoil temperatures (TOTs) and bottom-oil temperatures (BOTs). The aides

give mathematical models for deciding the result of various loading ratios utilizing an

arrangement of conditions with empirical thermal parameters. In any case, the regular

calculation of inward transformer temperatures with exponential conditions isn’t just a
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confounded assignment yet additionally prompts a conservative estimate, acquired based

on a few assumptions of operational conditions [1, 4]. In addition, these observational

conditions are chiefly settled on thermal profiles of a particular transformer, and this point

by point data isn’t likely accessible or dependably shifts with time. Its capacity to predict

transformer temperatures under realistic loading conditions is to some degree constrained

(e.g. the conventional model can’t represent the varieties of encompassing temperatures

and warm progression when a transformer’s cooler is on or off). In this manner, the

improvement of a more significant and precise warm model for transformers is constantly

viewed as an imperative issue.

3.4.2 Uncertainity of Dissolved Gas

As known, not every one of the blends of gas proportions presented in a fault can

be mapped to a fault type as depicted in a diagnostic criterion. Distinctive transformer

DGA finding procedures may give differed examination results, and it is troublesome for

engineers to settle on a ultimate conclusion when looked with so much various data. It is

likewise realized that some DGA techniques, for example, the Rogers ratio strategy, neglect

to clearly recognize faults in transformers in marginal cases, while other DGA strategies

can distinguish these cases. In this manner, the integration of the accessible transformer

DGA conclusions to give an adjusted general condition appraisal is extremely necessary.

Moreover, transformer determination elucidations are done by human specialists applying

their experience and standard strategies, and numerous endeavors have been settled on to

refine choice procedures used to guide DGA analysts for assessing transformer conditions.

Such endeavors incorporate EPSs [18] and the analysis of data utilizing ANNs [19] or

fuzzy logic [20], [21], which are constrained in their portrayal of DGA interpretation as

a characterization or pattern recognition problem. In addition, diverse transformer test

strategies, i.e. TM, DGA, FRA and PDA, have diverse points of interest and impediments

making it hard to dispose of one and select another. Consequently a more instinctive

thought is to consolidate every one of the outcomes got from real test techniques and

incorporate these data to frame a general assessment. As test outcomes are now and again

loose and even inadequate, a reasonable data mix strategy is required to process DGA

information for managing such vulnerabilities.
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3.4.3 Intricate issues in winding deformation analysis

Among different procedures connected to control transformer condition observing,

FRA is the most reasonable one for solid evaluation for identifying winding dislodging and

misshaping. It is set up upon the way that frequency responses of a transformer winding in

high frequencies rely upon changes of its inside separations and profiles, which are worried

about its deviation or geometrical deformation. In this manner, the estimation of in-

ward parameters plays a vital part in exact reenactments of transformer winding frequency

practices. Demonstrating of a genuine winding with a specific end goal to get frequency

responses, being near experimental ones, is a to a great degree multifaceted task since a

detailed transformer show must consider each turn or segment of a winding independently.

In any case, in industry practice it isn’t generally conceivable to lead extra tests for exact

estimations of transformer geometry or insulation parameter estimation.

3.5 Maintenance Strategy

Prevention of failure and keeping the transformers in great operational condition

is a critical issue for power utilities. Customarily time-based maintenance (TBM) was

completed in which transformers were kept up at standard time interims regardless of the

need of the upkeep. Today, be that as it may, power utilities are performing condition-based

upkeep (CBM) instead of TBM.

The foundations of this advancement can be found in the rebuilding and deregula-

tion of electric power industry. In the changed situation, the free power makers, transmis-

sion organizations, framework administrators and distribution organizations are compelled

to cut expenses in support and activity without imperiling steady supply of electrical power.

In the event that the genuine state of the hardware is dependably known, at that point ex-

penses can be decreased in CBM via completing support just when the state of transformer

requires it. Therefore, solid symptomatic instruments are essential prerequisites of CBM

and there is an expanding requirement for noninvasive checking and indicative apparatuses

for evaluation of interior state of transformers.
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Feature Extraction & Classification

4.1 Scope and Objective of the Chapter

This chapter describes data analysis techniques. A brief overview of the use of

different techniques to process the data and the classification of such data to generate

relevant information.

4.2 Time Frequency Domain Analysis

4.2.1 Discrete Wavelet Transform (DWT)

Current Signals with under fault conditions contain transients which are non lin-

ear in nature and have high frequency components. For a signal, when analysed under

short duration lengths, appear to be stationary. Signals when examined for long periods

appear as non-stationary as in there original form. For a precise information interpretation

of transformer current signals, wavelet transform is applied.Wavelet transform tracks the

standard of superposition, alike Fourier transforms.Wavelets makes it perceptibly simpler

to assess uneven signs with noisy and jerky spikes when contrasted with Fourier change.As

sine and cosine waves are infinite, it is difficult to evaluate a spike.Wavelets have limited

provision, so an impulse in signal can be easily assessed by differing the magnitude of basic

functions.For instance, discrete wavelets will breakdown time domain signal into smaller

stationary function, called fundamental functions, which are formed scaling and decipher-

ing a singular function of a particular structure, known as the mother wavelet. The wavelet
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basis is on a very basic level the same as the Fourier basis, with the exclusion of the wavelet

being limited in time. For a wavelet transform the fundamental function can be described

over a particular time windows and is zero for everywhere else.

4.3 Dimensional Reduction

4.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an analytical system that converts a

groups of correlated or possibly correlated variables in a group of variables with no corre-

lation using orthogonal transformation. These variables are called principal components.

For p variables related to n observations, the unique principal components are given by

This transformation is characterized such that the primary component segment

has the biggest conceivable difference (that is, represents however much of the changeability

in the information as could reasonably be expected), and each succeeding part thus has

the most elevated variance conceivable under the requirement that it is orthogonal to the

preceding components.

4.4 Pattern Recognition Classifiers

4.4.1 Linear Discriminant Classifier

Linear discriminant classifiers (LDC) [22] is trained on input feature vectors of

an arrangement of known classes. In current study it has two classes transformer faults

and normal transformer operation . The element space was separated in C sub-regions,

where C is the number of classes, each class corresponds to transformer faults and normal

transformer operation respectively. Weighting coefficients was recorded for each class that

maximize linear discriminant function for input vectors. LDC draws a decision region be-

tween given classes while maintaining the location of data. In current study LDC holds two

distinguishable classes for classification. Therefore Discriminant function for our specified

two class category can be written as:

D(x) =
∞∑

i=1
(spw1) +

∞∑
i=1

(npw2) (4.4.1)
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Where s, n are seizure and normal samples and âĂŸwâĂŹ is the weighted co-efficient. Two

category lda implements decision as follows:

for w1 decide if D(x) > w0 (4.4.2)

for w2 decide if D(x) < w0 (4.4.3)

The equation D(x)=0 declares the decision boundary which separates the point of two

classes. On the basis of given conditions LDC classifies whole data sets into the predefined

class. Figure 4.1 illustrates hyper-plane separation for two classes.

Figure 4.1: LDC class separation by a hyper-plane

4.4.2 Quadratic Discriminant Classifier

Quadratic discriminant investigation (QDC) [23] is firmly identified with linear

discriminant analysis (LDA), where it is expected that the estimations from each class

are normally distributed. Not at all like in case of LDA, in QDA there is no supposition

that the covariance of each classes is equal. To evaluate the factors essential in quadratic

discrimination more calculation and information is required unlike in case of linear discrim-

ination. Quadratic Discrimination is the general type of Bayesian separation. Figure 4.2

illustrates hyper-plane separation for two classes.
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Figure 4.2: QDC class separation by a hyper-plane

4.4.3 Support Vector Machine

Support Vector Machine (SVM) presently the utmost prevalent approach in su-

pervised machine-learning. SVM was presented by Vapnik and his associates [24] as a

precise method for generic pattern classification hitches.

SVM depends on basic hazard minimization guideline, and build a Optimal Sepa-

rating Hyperplane(OSH) in the feature space. The OSH can characterize both the training

sets and the concealed samples within the test set with the least misclassification possibility.

Classes are disjointed by optimal separating hyperplane (OSH), SVM fits OSH in between

class samples that resides at the edge of class boundary. SVM generalize more precisely on

unnoticed cases with respect to classifiers that aim to limit the training error, for example,

neural networks. In this way, with SVM grouping just a portion of the training data that

lie at the edge of the class boundary in feature space are required in formation of decision

plane. [24].

They are extensively applied on diversified real-world applications involving de-

tection and classification jobs. SVM applications shelter applications like automatic bio-

medical signal processing, image analysis, text classification, hand-written alphabets recog-

nition, speech recognition, bio-informatics etc. Figure 4.3 illustrates hyper-plane separation

for two classes.
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Figure 4.3: SVM class separation by a hyper-plane

4.4.4 Bayes optimal classifier

The Bayes Optimal Classifier is a classification technique. It is an ensemble of all

the hypotheses in the hypothesis space. On average, no other ensemble can outperform

it.[25] Naive Bayes Optimal Classifier is a version of this that assumes that the data is

conditionally independent on the class and makes the computation more feasible. Each

hypothesis is given a vote proportional to the likelihood that the training dataset would be

sampled from a system if that hypothesis were true. To facilitate training data of finite size,

the vote of each hypothesis is also multiplied by the prior probability of that hypothesis.

The Bayes Optimal Classifier can be expressed with the following equation:

y(x) = argmax
∑

P (cj |hi)P (T |hi)P (hi) (4.4.4)

where Y is the predicted class, C is the set of all possible classes, H is the hypothesis

space, P refers to a probability, and T is the training data. As an ensemble, the Bayes

Optimal Classifier represents a hypothesis that is not necessarily in H. The hypothesis

represented by the Bayes Optimal Classifier, however, is the optimal hypothesis in ensemble

space (the space of all possible ensembles consisting only of hypotheses in H).
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4.4.5 Boosting (machine learning)

Boosting is a machine learning ensemble meta-algorithm for primarily reducing

bias, and also variance [26] in supervised learning, and a family of machine learning al-

gorithms that convert weak learners to strong ones.[27] Boosting is based on the question

posed by Kearns and Valiant (1988, 1989)

22



Chapter 5

Experimental Setup

5.1 Scope and Objective of the Chapter

This chapter delves upon the experimental setup created for transformer fault

detection. Transformers current signals are sampled under normal conditions and while

ensuring the exact same sampling parameters, into the same transformers, faults are in-

jected. The hardware setup required to perform this task is details in this chapter.

5.2 Transformer Setup

Transformers selected for the experimental setup have the following specifications;

• Rated Capacity: 10kVA, 3Ø

• Primary Voltage (Phase to Phase): 420V,

• Secondary Voltage (Phase to Phase): 400V,

• Frequency: 50Hz,

• Delta - Wyve with a floating neutral,

• Aluminium Winding with laminated steel core design
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5.3 Protection Setup

Safety being paramount to all operations and studies, was ensured throughout the

design and development of transformer faults. Dual protection miniature circuit breakers

in accordance with transformer loading capacity and sufficient instantaneous current cutoff

were selected and installed on the primary phases of the transformers. Each phase of the

transformer was added to a phase selector, for each switching On/Off of a transformer

phase. Since the transformer was to be subjected to short circuit faults, which do not

perform well when circuit breakers are installed, hence were bypassed ont the secondary

terminal of the transformer.

5.4 Load Setup

A suitable resistive load was setup for three phase transformer loading. Each phase

was loaded with a resistive load of 1.5kW. This load was kept unchanged during both the

sampling of transformer under normal conditions and under fault conditions. Balanced

transformer loading on all phases of testing was ensured, to avoid any parameter changes.

5.5 Data Acquisition Setup

The primary and secondary current signals were acquired from the individual

phases of the transformers. This was done via use of current transformers with a step

down ratio of 30:5 A. Identical current transformers were used to minimize ingress of noise

or random signals due to the design deviations. Each current transformer was sampled and

sorted out to ensure random noise signals impact was at a minimum or displayed constant

variance in tests.

Current Signals from the secondary terminal of the current transformer were fed to

a National Instruments data acquisition hardware interface. The signals were continuously

sampled with a sampling speed of 20KS/s for each phase of the transformer. The duration

of each sampling session was kept at 10 seconds. A shunt resistor of 1 ohms was used as a

short between terminals of each current transformer.
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5.6 Fault Setup

The transformers were subjected to two different fault conditions.

5.6.1 Internal Short Circuit Fault

For Fault 1, secondary phases, Yellow Phase and Blue phase along with the float-

ing neutral from the RYBn based configuration of the transformer were shorted. This was

to simulate an internal fault in the transformer. The current transformers on the secondary

phases were placed after the short was placed in the transformer. This was done to mimic

an internal fault of the transformer. This fault was repeated till completed failure or the

transformer was achieved. Each sampling session recorded the transformer current signal

before the internal short circuit current exceeded the safe working value of the installed

primary protection or before the sampling session period was completed. While the trans-

former was subjected to faults, all operational parameters of the transformer were kept

similar to sampling under normal conditions. All operational changes observed were due

to fault activity in the transformer.

5.6.2 External Short Circuit Fault

For Fault 2, all secondary phases of the transformer were shortened and the float-

ing neutral was disconnected. This fault was used to represent an external fault. The

secondary terminals to the load were shortened after passing through the current trans-

formers. Each transformer phase was loaded in balanced sequence. Similar to the fault 1 of

the transformer, all operational parameters of the transformer were kept similar to as when

sampled under normal loading conditions. Any changes observed were directly related to

the fault induction in the transformer.
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Chapter 6

Fault Detection & classification

Methodology

6.1 Scope and Objective of the Chapter

The principle focus of the chapter is to define the issues tended to in the thesis.It

portrays the data acquired, genuine impediments and limitations for fault recognition and

detection systems. The second objective of the segment is to conjecture the best approach

to manage addressed problem. In light of the selected approach, a layout of the distinctive

stages for the development of detection and classification algorithm is presented.

6.2 Methodology Overview

In order to develop detection and classification algorithm, proposed framework

has two parts. First part addresses creation of faults of the transformer . Second sections

focus on testing of algorithm for detection, recognition and classification.

6.2.1 Faults Creation

Transformers current signals are sampled under two different conditions, Normal

operation and operation under influence of fault. Source voltage , transformer loading,

source frequency and other operational parameters are kept identical. Any deviation which

may occur are a result of the two different conditions under which the current signals are
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sampled.

The current signals are sampled at 20KS/s for ten seconds of length. Sampling

of healthy condition was performed ten times. Sampling of fault condition was performed

for the same length at the same sampling speed. Fault 1 - External short circuit was

sampled for ten times. Fault 2 - Internal short circuit was sampled multiple times till the

transformer attained complete failure.

Figure 6.1: Algorithm Flow - Normal Sampling
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Figure 6.2: Algorithm Flow - Fault Sampling

6.2.2 Classification

On the acquired current signals, Wavelet decomposition was applied on each of

the six phases of the signal. The decomposition was performed using Daubechies-4 with

6 level decomposition. Feature extraction was performed using principal component anal-

ysis (PCA), for dimensional reduction of decomposed data matrix. Feature classification

was performed using Ensemble Classifier,Linear Discriminant Analysis (LDC), Quadratic

Discriminant Analysis (QDC) and Support Vector Machine (SVM).

Based on the classification accuracy the classifiers are evaluated. Classifier with

high accuracies are tested against multiple scenarios involving single or multiple faults.

These test results help in selecting the optimal classifier.
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Figure 6.3: Algorithm Flow - Classification

6.3 Current Signal Processing

6.3.1 Current Signal Data Import

Data set were created upon end of each sampling session by Lab View. These data

sets are in excel format and can be directly imported into matlab. No data manipulation

is performed at any step during data import.
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6.3.2 Current Signal Segmentation

Current signal obtained under Fault induced operation and under normal opera-

tion were extracted from the data set. For each of the fault data and the normal operation

data, classes were defined.
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Chapter 7

Methodology Results

7.1 Scope and Objective of the Chapter

This chapter delves upon the results obtained upon implementation of the pro-

posed methodology in the previous chapter. This chapter details the performance of all

classifiers that were put to test. For all the results, confusion matrix, ROC plots and scatter

plots of the current signal data are featured in the later part of this chapter.

7.2 Classifiers - Parameters and Performance

The selection of a classifier is based on a set of parameters and is not limited to the

accuracy of classification results obtained by the classifiers in question. These parameters

are

• Accuracy,

• Prediction speed

• Training time.

For a classifier to be deemed feasible, the major factor is its accuracy in classifying

the results, not only in a distinctive variations between data classes, but also in events where

these classes are closely related. For the work detailed in this thesis, performance of various

classifiers are evaluated at and for wavelet decompostion of primary phase current signal

under level ’6’. The performance is determined where the true classes and the predicted
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classes for a set of observations converge to a high confidence level and where repeatability

is ensured for each iteration in the observation classes.

The True Positive Rates (TPR) and True Negative Rates (TNR) are data samples

which have been accurately identified as positive samples and negative samples respectively.

The False Positive Rates (FPR) and false negative Rates (FNR) are observation samples

that have been inaccurately characterized as under False positive and false negative cate-

gories respectively.

Parameters for classification accuracy are as follows;

7.2.1 TRUE IDENTIFICATION RATE(TIR)

Total number of samples classified correctly from all three classes i.e. Transformer

Current under normal operation, under internal short circuit and under influence of external

short circuit are defined as:

TIR = TPR + TNR (7.2.1)

7.2.2 FALSE IDENTIFICATION RATE (FIR)

Total number of samples classified incorrectly from all three classes i.e. Trans-

former Current under normal operation, under internal short circuit and under influence

of external short circuit are defined as:

FIR = FPR + FNR (7.2.2)

7.2.3 CLASSIFICATION ACCURACY (ACRY)

This the measure of precisely classified sample observations out of the total group

of sample observation. It is described as:

ACRY = TPR + TNR

TPR + TNR + FPR + FNR
∗ 100 (7.2.3)

7.2.4 SENSITIVITY(SENS)

Sensitivity is is an estimation which evaluates positive samples distinguished ac-
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curately by a classifier and is defined as:

SENS = TPR

TPR + FNR
∗ 100 (7.2.4)

7.2.5 SPECIFICITY (SPFY)

Specificity is a measure of classifier ability to accurately perceive degree of negative

examples viably from pool of negative examples and can be characterized as:

SPFY = TNR

TNR + FPR
∗ 100 (7.2.5)

7.2.6 POSITIVE PREDICTED RATIO (PPR)

It is the ratio of positive values and total number of positive examples perceived

by a classifier and can be characterized as:

PPR = TPR

TPR + FPR
∗ 100 (7.2.6)

7.2.7 NEGATIVE PREDICTED RATIO (NPR)

It is the ratio of negative values and total number of negative examples perceived

by a classifier and can be characterized as:

NPR = TNR

TNR + FNR
∗ 100 (7.2.7)

7.3 Classification Results

Classification results for each classifier LDC, QDC SVM and Ensemble are ex-

plained further.

7.3.1 Linear Discriminant Classifier

7.3.1.1 LDC Confusion Matrix For Internal Fault

LDC correctly classified 149 Internal fault events out of a total of 150 Internal

fault events. Correct classification of healthy events was 0 events out of a total of 30 events.

This classification of events was performed on wavelet decomposition of faulty and healthy
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current signal data at wavelet band-6. Accuracy of classification was 82.8%. Confusion

Matrix is shown in figure 7.1. True Positive & False Negative Rates are shown in figure

7.2.Positive Predictive Values & False Discovery Rates are shown in figure 7.3

Figure 7.1: Internal Fault - Confusion Matrix of LDC at Wavelet Band-6

7.3.1.2 LDC TP/FN Rates For Internal Fault

Figure 7.2: Internal Fault - True Positive & False Negative Rates of LDC at Wavelet Band-6
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7.3.1.3 LDC PPV/FDR For Internal Fault

Figure 7.3: Internal Fault - Positive Predictive Values & False Discovery Rates of LDC at

Wavelet Band-6

7.3.1.4 LDC Confusion Matrix For External Fault

LDC correctly classified 14 fault events out of a total of 27 faulty events. Correct

classification of healthy events was 18 events out of a total of 30 events. This classification of

events was performed on wavelet decomposition of faulty and healthy current signal data

at wavelet band-6. Accuracy of classification was 59.3%. Confusion Matrix is shown in

figure 7.4. True Positive & False Negative Rates are shown in figure 7.5.Positive Predictive

Values & False Discovery Rates are shown in figure 7.6
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Figure 7.4: External Fault - Confusion Matrix of LDC at Wavelet Band-6

7.3.1.5 LDC TP/FN Rates For External Fault

Figure 7.5: External Fault - True Positive & False Negative Rates of LDC at Wavelet Band-6
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7.3.1.6 LDC PPV/FDR For External Fault

Figure 7.6: External Fault - Positive Predictive Values & False Discovery Rates of LDC at

Wavelet Band-6

7.3.1.7 LDC Confusion Matrix For Multiple Faults

Of a pool of 210 events, LDC correctly classified 149 internal fault events out of a

total of 150 internal faulty events. Correct classification of external fault events was 0 events

out of a total of 30 events and classification of healthy events was 0 events out of a total

of 30 events in a pool of 210 events. This classification of events was performed on wavelet

decomposition of faulty and healthy current signal data at wavelet band-6. Accuracy of

classification was 71.0%. Confusion Matrix is shown in figure 7.7. True Positive & False

Negative Rates are shown in figure 7.8.Positive Predictive Values & False Discovery Rates

are shown in figure 7.18
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Figure 7.7: Multiple Fault - Confusion Matrix of LDC at Wavelet Band-6

7.3.1.8 LDC TP/FN Rates For Multiple Faults

Figure 7.8: Multiple Fault - True Positive & False Negative Rates of LDC at Wavelet Band-6
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7.3.1.9 LDC PPV/FDR For Multiple Faults

Figure 7.9: Multiple Fault - Positive Predictive Values & False Discovery Rates of LDC at

Wavelet Band-6

7.3.2 Quadratic Discriminant Classifier

7.3.2.1 QDC Confusion Matrix For Internal Fault

QDC correctly classified 131 fault events out of a total of 150 faulty events. Correct

classification of healthy events was 0 events out of a total of 30 events. This classification of

events was performed on wavelet decomposition of faulty and healthy current signal data at

wavelet band-6. Accuracy of classification was 72.8%. Confusion Matrix is shown in figure

7.10. True Positive & False Negative Rates are shown in figure 7.11.Positive Predictive

Values & False Discovery Rates are shown in figure 7.12
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Figure 7.10: Internal Fault - Confusion Matrix of QDC at Wavelet Band-6

7.3.2.2 QDC TP/FN Rates For Internal Fault

Figure 7.11: Internal Fault - True Positive & False Negative Rates of QDC at Wavelet Band-6
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7.3.2.3 QDC PPV/FDR For Internal Fault

Figure 7.12: Internal Fault - Positive Predictive Values & False Discovery Rates of QDC at

Wavelet Band-6

7.3.2.4 QDC Confusion Matrix For External Fault

QDC correctly classified 131 fault events out of a total of 150 faulty events. Correct

classification of healthy events was 0 events out of a total of 30 events. This classification of

events was performed on wavelet decomposition of faulty and healthy current signal data at

wavelet band-6. Accuracy of classification was 72.8%. Confusion Matrix is shown in figure

7.10. True Positive & False Negative Rates are shown in figure 7.11.Positive Predictive

Values & False Discovery Rates are shown in figure 7.12
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Figure 7.13: External Fault - Confusion Matrix of QDC at Wavelet Band-6

7.3.2.5 QDC TP/FN Rates For External Fault

Figure 7.14: External Fault - True Positive & False Negative Rates of QDC at Wavelet Band-6
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7.3.2.6 QDC PPV/FDR For External Fault

Figure 7.15: Internal Fault - Positive Predictive Values & False Discovery Rates of QDC at

Wavelet Band-6

7.3.2.7 QDC Confusion Matrix For Multiple Faults

Of a pool of 210 events, QDC correctly classified 120 internal fault events out of a

total of 150 internal faulty events. Correct classification of external fault events was 0 events

out of a total of 30 events and classification of healthy events was 0 events out of a total

of 30 events in a pool of 210 events. This classification of events was performed on wavelet

decomposition of faulty and healthy current signal data at wavelet band-6. Accuracy of

classification was 57.1%. Confusion Matrix is shown in figure 7.16. True Positive & False

Negative Rates are shown in figure 7.17.Positive Predictive Values & False Discovery Rates

are shown in figure 7.18
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Figure 7.16: Multiple Fault - Confusion Matrix of QDC at Wavelet Band-6

7.3.2.8 QDC TP/FN Rates For Multiple Faults

Figure 7.17: Multiple Fault - True Positive & False Negative Rates of QDC at Wavelet Band-6
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7.3.2.9 QDC PPV/FDR For Multiple Faults

Figure 7.18: Multiple Fault - Positive Predictive Values & False Discovery Rates of QDC at

Wavelet Band-6

7.3.3 Support Vector Machine

7.3.3.1 SVM Confusion Matrix For Internal Fault

SVM correctly classified 121 fault events out of a total of 150 faulty events. Correct

classification of healthy events was 9 events out of a total of 30 events. This classification of

events was performed on wavelet decomposition of faulty and healthy current signal data at

wavelet band-6. Accuracy of classification was 72.7%. Confusion Matrix is shown in figure

7.19. True Positive & False Negative Rates are shown in figure 7.20.Positive Predictive

Values & False Discovery Rates are shown in figure 7.21
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Figure 7.19: Internal Fault - Confusion Matrix of SVM at Wavelet Band-6

7.3.3.2 SVM TP/FN Rates For Internal Fault

Figure 7.20: Internal Fault - True Positive & False Negative Rates of SVM at Wavelet Band-6
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7.3.3.3 SVM PPV/FDR For Internal Fault

Figure 7.21: Internal Fault - Positive Predictive Values & False Discovery Rates of SVM at

Wavelet Band-6

7.3.3.4 SVM Confusion Matrix For External Fault

SVM correctly classified 121 fault events out of a total of 150 faulty events. Correct

classification of healthy events was 9 events out of a total of 30 events. This classification of

events was performed on wavelet decomposition of faulty and healthy current signal data at

wavelet band-6. Accuracy of classification was 72.7%. Confusion Matrix is shown in figure

7.22. True Positive & False Negative Rates are shown in figure 7.23.Positive Predictive

Values & False Discovery Rates are shown in figure ??
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Figure 7.22: External Fault - Confusion Matrix of SVM at Wavelet Band-6

7.3.3.5 SVM TP/FN Rates For External Fault

Figure 7.23: External Fault - True Positive & False Negative Rates of SVM at Wavelet Band-6
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7.3.3.6 SVM PPV/FDR For External Fault

Figure 7.24: External Fault - Positive Predictive Values & False Discovery Rates of SVM at

Wavelet Band-6

7.3.3.7 SVM Confusion Matrix For Multiple Faults

Of a pool of 210 events, SVM correctly classified 113 internal fault events out of a

total of 150 internal faulty events. Correct classification of external fault events was 8 events

out of a total of 30 events and classification of healthy events was 6 events out of a total

of 30 events in a pool of 210 events. This classification of events was performed on wavelet

decomposition of faulty and healthy current signal data at wavelet band-6. Accuracy of

classification was 60.5%. Confusion Matrix is shown in figure 7.25. True Positive & False

Negative Rates are shown in figure 7.26.Positive Predictive Values & False Discovery Rates

are shown in figure 7.27
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Figure 7.25: Multiple Fault - Confusion Matrix of SVM at Wavelet Band-6

7.3.3.8 SVM TP/FN Rates For Multiple Faults

Figure 7.26: Multiple Fault - True Positive & False Negative Rates of SVM at Wavelet Band-6
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7.3.3.9 SVM PPV/FDR For Multiple Faults

Figure 7.27: Multiple Fault - Positive Predictive Values & False Discovery Rates of SVM at

Wavelet Band-6

7.3.4 Ensemble Method

7.3.4.1 Ensemble Method Confusion Matrix For Internal Fault

Ensemble Method correctly classified 133 fault events out of a total of 150 faulty

events. Correct classification of healthy events was 24 events out of a total of 30 events.

This classification of events was performed on wavelet decomposition of faulty and healthy

current signal data at wavelet band-6. Accuracy of classification was 87.2%. Confusion

Matrix is shown in figure 7.28. True Positive & False Negative Rates are shown in figure

??.Positive Predictive Values & False Discovery Rates are shown in figure ??
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Figure 7.28: Internal Fault - Confusion Matrix of EM at Wavelet Band-6

7.3.4.2 Ensemble Method TP/FN Rates For Internal Fault

Figure 7.29: Internal Fault - True Positive & False Negative Rates of EM at Wavelet Band-6
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7.3.4.3 Ensemble Method PPV/FDR For Internal Fault

Figure 7.30: Internal Fault - Positive Predictive Values & False Discovery Rates of EM at

Wavelet Band-6

7.3.4.4 Ensemble Method Confusion Matrix For External Fault

Ensemble Method correctly classified 133 fault events out of a total of 150 faulty

events. Correct classification of healthy events was 24 events out of a total of 30 events.

This classification of events was performed on wavelet decomposition of faulty and healthy

current signal data at wavelet band-6. Accuracy of classification was 87.2%. Confusion

Matrix is shown in figure 7.31. True Positive & False Negative Rates are shown in figure

7.32.Positive Predictive Values & False Discovery Rates are shown in figure 7.33
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Figure 7.31: Internal Fault - Confusion Matrix of EM at Wavelet Band-6

7.3.4.5 Ensemble Method TP/FN Rates For External Fault

Figure 7.32: External Fault - True Positive & False Negative Rates of EM at Wavelet Band-6
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7.3.4.6 Ensemble Method PPV/FDR For External Fault

Figure 7.33: External Fault - Positive Predictive Values & False Discovery Rates of EM at

Wavelet Band-6

7.3.4.7 Ensemble Method Confusion Matrix For Multiple Faults

Of a pool of 210 events, Ensemble Method correctly classified 114 internal fault

events out of a total of 150 internal faulty events. Correct classification of external fault

events was 25 events out of a total of 30 events and classification of healthy events was 26

events out of a total of 30 events in a pool of 210 events. This classification of events was

performed on wavelet decomposition of faulty and healthy current signal data at wavelet

band-6. Accuracy of classification was 78.6%. Confusion Matrix is shown in figure 7.34.

True Positive & False Negative Rates are shown in figure 7.35.Positive Predictive Values

& False Discovery Rates are shown in figure 7.36
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Figure 7.34: Multiple Faults - Confusion Matrix of EM at Wavelet Band-6

7.3.4.8 Ensemble Method TP/FN Rates For Multiple Faults

Figure 7.35: Multiple Faults - True Positive & False Negative Rates of EM at Wavelet Band-6

56



Chapter 7: Methodology Results

7.3.4.9 Ensemble Method PPV/FDR For Multiple Faults

Figure 7.36: Multiple Faults - Positive Predictive Values & False Discovery Rates of EM at

Wavelet Band-6

7.4 Classifier Results For Current Study Data-set

Faults classification results are compared based on performance presented by true

positive rate TPR,true negative rate TNR,false positive rate FPR and false negative rate

FNR.

Figure 7.37: Classifier performance for Multiple Faults at Wavelet Band 6
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Figure 7.38: Classifier performance for Internal Faults at Wavelet Band 6

Figure 7.39: Classifier performance for External Faults at Wavelet Band 6
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7.4.1 Linear Discriminant Classifier Performance

LDC had an overall accuracy of 55%, average on the lowest of all four classifiers .

Performance took a hit during classification of multiple faults. The highest accuracy mea-

sured was for Internal faults at 83%. Table 7.1 details each fault classification performance.

Table 7.1: Linear Discriminant Classifier Performance

Type Wavelet Level TIR FIR ACC SENS SPFY PPR FDR

Multiple Faults 6 151 479 24% 24% 2% 33% 0%

Internal Faults 6 298 62 83% 42% 42% 50% 50%

External Faults 6 64 44 59% 59% 59% 59% 59%

7.4.2 Quadratic Discriminant Classifier Performance

QDC had an overall accuracy of 72%, at position no. 2 out of the four classifiers .

Performance saw a dip during classification of external faults. The highest accuracy mea-

sured was for Internal faults at 73%.Table ?? details each fault classification performance.

Table 7.2: Quadratic Discriminant Classifier Performance

Type Wavelet Level TIR FIR ACC SENS SPFY PPR FDR

Multiple Faults 6 450 180 71% 22% 57% 27% 61%

Internal Faults 6 262 98 73% 41% 41% 44% 44%

External Faults 6 42 66 39% 39% 39% 39% 39%

7.4.3 Support Vector Machine Performance

SVM had an overall accuracy of 71%, with sensitivity, specificity, positive pre-

dictive and negative predictive rates faring better than that of LDC and QDC. Accuracy

was constant in all three segments of fault types .Table ?? details each fault classification

performance.
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Table 7.3: Support Vector Machine Discriminant Classifier Performance

Type Wavelet Level TIR FIR ACC SENS SPFY PPR FDR

Multiple Faults 6 464 166 74% 41% 69% 41% 69%

Internal Faults 6 260 100 72% 54% 54% 55% 55%

External Faults 6 74 34 69% 69% 69% 69% 69%

7.4.4 Ensemble Method Classifier Performance

Ensemble Method were the most efficient classifier when compared to LDC. QDC

and SVM with sensitivity, specificity, positive predictive and negative predictive rates faring

better than the rest of the competition.Accuracy was a respectable 77%, with a high of

83% in multiple faults and a low of 57% in external faults classification. Table ?? details

each fault classification performance.

Table 7.4: Support Vector Machine Discriminant Classifier Performance

Type Wavelet Level TIR FIR ACC SENS SPFY PPR FDR

Multiple Faults 6 540 90 86% 70% 85% 82% 89%

Internal Faults 6 314 46 87% 77% 77% 84% 84%

External Faults 6 62 46 57% 59% 59% 57% 57%

The results present a clear distinction in classifier performance with, ensemble

method classification technique outperforming the four classifier performance compari-

sion.SVM ,QDC, and LDC performed average.
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Chapter 8

Conclusion and Future Suggestion

8.1 Conclusion

The current thesis focus was on detection of internal and external faults. Studies

on these faults in distribution transformers have not been undertaken as compared to

similar studies in power transformers. A new approach to fault detection in the thesis has

been presented. The nature of fault is such that, its mere occurrence does not define failure

probability and is rather dependent on the intensity of the fault occurrence. However

the first step in transformer health monitoring that is the detection and recognition of

transformer faults, has been completed as a requirement of the thesis.

In order to detect and recognize transformer faults, a method to achieve this task

was proposed. Application of noninvasive technique of transformer current signature anal-

ysis, to detect faults was aided via wavelet transformation to achieve relevant signal data

extraction. Linear discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC)

and Support Vector Machine (SVM) were utilized for current signal classification. Classifi-

cation results provided a clear distinction between classification capabilities of transformer

faults under various fault conditions. Ensemble method for classification of transformer

faults achieved superior performance in all aspects of faults classification. LDC, SVM and

QDC achieved less than desired accuracy.
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8.2 Future Work Suggestion

Intensity detection and use of intrusive methods for fault detection are next steps

in the evolution of transformer condition and health monitoring. Classification of trans-

former operational parameters to further detail the classification boundaries will aid in

producing accuracy and forecasting potential fault occurrences.

An online system can be build for transformer fault detection and prediction. For imple-

mentation of this application, use of Field Programmable Gate Array (FPGA) coupled

with high accuracy and high resolution OR appropriate Digital Signal Processing (DSP)

boards can be considered.
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