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ABSTRACT 

 

OPTIMAL CONDITIONAL SERVO-MECHANISM DESIGN FOR A 

CLASS OF NONLINEAR SYSTEMS 

By 

Muhammad Haseeb 

 

In this thesis we present an optimal output feedback based control design to address output 

regulation problem for a class of minimum phase nonlinear systems. Output regulation problem 

deals with system’s output to track reference signals and reject disturbance signals both generated 

by an exo-system. Using the proposed scheme, regulation is achieved by including a conditional 

servo compensator to cater for degraded transient performance that is expected to be encountered 

in case of addition of a conventional servo compensator. Using closed loop analysis it is shown that 

under the proposed scheme the systems achieves regulation with steady state regulation error 

converging to zero with desirable transient performance due to inclusion of the conditional servo 

compensator. The scheme is applied to various examples to demonstrate the features of the 

nonlinear optimal control methods introduced by Kokotovic et.al. It is shown that the proposed 

design not only achieves the optimality but also attains some disc and sector margins which 

characterize robustness.  Realizing the physical scenario where it is not possible to have all the 

states available for feedback, the design has been modified to output feedback with the help of a 

High Gain Observer (HGO). The observed states provided by the robust observer are used in the 

control law which provides similar performance as we get with the state feedback based control 

design. The simulation results show the efficacy of the proposed control scheme when applied to 

magnetic suspension system. In addition, analytical stability analysis is provided to show that the 

proposed controller achieves the design objectives. 
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Chapter 1 
 

INTRODUCTION 
The output regulation is one of the most important problem of the control set theory. 

The output regulation is actually the designing of a system’s controller so that the output 

of the system asymptotically tracks the reference signal and may reject the disturbance 

signal. But both signals are generated by a known autonomous system called the exo 

system which is made by modelling differential equations. An extensive research has 

been carried out on the output regulation problem for linear, time invariant system like 

the work of Davison et. al. [1] and Francis et. al. [2]. By analyzing these papers it is 

shown that the output regulation problem requires some solvability conditions. i.e. 

Solution of system of Linear Matrix Equations called regulator equations which is 

equivalent to the characterization of Hautus et. al. [3] about the transmission polynomial 

of the composite system (formed by the actual control system and the exo system) to 

exhibit certain property and necessary conditions for the existence of any controller that 

will solve the regulation problem or the tracking problem. An important outcome of these 

paper is that it reveals that the controller that works for the output regulation problem will 

consists of two components one is stabilizing and the other is servo compensator. The 

interconnection of both components is called Internal Model Principle. According to 

which the servo mechanism is a control for a system to track the reference trajectories 

while reject the disturbance signals. The reference trajectories and the disturbance signals 

both are generated by a known system called the exo system. 

There are well established method for output regulation problem but fewer have 

proposed the optimal based solution due to complex nature of problem. This thesis is 

focused on the design of optimal output feedback controller which is used as a stabilizing 

compensator that lead to the solution of output regulation problem with the target of 

increasing the robustness and introducing optimality for a non-linear system which is 

minimum phase. For that purpose an optimal stabilizing compensator is used which 

brings the tracking error to a small ring around the origin and from there rendering the 

error to zero is achieved by incorporating servo compensator with the stabilizing 

compensator. It’s the extension of earlier work of Attaullah Memon [7], where the 

Lyapunov Redesign method is used to design a stabilizing compensator and in [22] where 

this idea was exploited.  

The output regulation problem that is focused in this thesis utilizes the idea of 

conditional servo compensator an idea that was introduced by Khalil and co researchers 

[4], [5], [6]. Conditional servo-compensator acts as a classical servo compensator only 

inside the boundary layer near to zero error manifold. One outstanding feature which is 

provided by conditional servo is that without affecting the transient performance of the 

system it also achieves zero steady state tracking error. This idea was first introduced by 

Shishagiri et. Al [4] and [5] where in [4] it considers the design for constant exogeneous 

signal while [5] incorporates the design with time varying signals. The idea of conditional 

servo compensator was further dealt by Attaullah Y Memon [7] where a Lyapunov 
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Redesign approach is used for designing the feedback controllers. One distinctive feature 

of Lyapunov Re design is that it permits to incorporate any given stabilizing controller 

within the framework and then adding a servo compensator to solve the output regulation 

problem. Exploiting this flexibility provided by research of Attaullah Y Memon [7] and 

the idea provided in [22] instead of finding the feedback control law that stabilize the 

system why not seek for the controllers that will likely to provide some additional 

advantage like providing some optimality with some Robustness, these all could be done 

in the presence of some parametric uncertainty for example (un modeled fast dynamics, 

some uncertain parameters that are unknown, static non linearity). In this thesis we will 

focus on the optimal control methods that were developed by Kokotovic and some other 

researchers  [8], [9], [10] that worked for designing the feedback controllers for the 

stabilization of system to origin. The well-known methods developed by Kokotovic and 

some other researchers reveals that in addition to stabilizing the system and reducing the 

cost, the optimal control methods guarantees stability margins like sector margins and 

disc margins which describe the robustness properties. There is one major problem that is 

to be faced in designing an optimal feedback controller is that it requires to solve a 

famous equation namely Hamilton Jacobean Bellman Equation (HJB) a partial 

differential equation which is a very complex task to solve if the system is of higher 

order. Kokotovic and other researchers also developed an Inverse approach [10] which is 

called an inverse optimal control which is used to solve optimal control problem which 

exempt the requirement for solving the HJB equation. 

However instead of only focusing on the optimality and robustness this thesis will 

also consider the system whose model have a cascading structure which means that the 

system which are not in the normal form were considered like the system with internal 

and external dynamics. Most of the real-world system have cascaded structure because of 

having some internal and external dynamics present within in the system. So, in that case 

this thesis will extend the work of Attaullah Memon [7], [22] but with some 

modifications. Firstly, the optimal based control will be used in designing the stabilization 

compensator for the output regulation problem and its robustness properties will be 

exploited by changing its parameters. Secondly, it will consider the system with control 

dynamics that can be expressed as cascaded structure of internal and external part making 

it challenging to tackle that problem because of fewer number of available system 

variables that can be used in designing the control component. Finally, realizing the need 

to implement in the real world scenerio this thesis will consider the practical scenario 

where only the output is available for feedback instead of all states. In this regard a high 

gain observer which is called Extended High Gain Observer (EHGO) which is based on 

the idea provided by Broker et. al. [11] is used to estimates system states in order to 

render the system from state feedback to output feedback system. 
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(2.3) 

(2.2) 

(2.1) 

Chapter 2 
 

PRELIMINARIES 
This topic of thesis involves understanding of five different and important concepts 

like Optimal Control, output regulation, Conditional Servo compensator and extended 

high gain observer. The understanding of these important concept is important to get idea 

of about what all this thesis is about. We start our discussion with optimal control theory 

in section 2.1 and how it can be applied to a nonlinear system. In section 2.2 we discussed 

about the idea of stability margins. Section 2.3 introduces the output regulation problem 

for a nonlinear system. Section 2.4 states the introduction of conditional servo 

compensator and how it overcome the problem of degraded transient performance 

provided by traditional servo compensator. Finally, section 2.5 includes the extended high 

gain observer.  

2.1 Optimal Control  

To stabilize a system feedback is necessary. Optimal control is one of the most 

important control objective that the designer needs to incorporate while designing any 

control law for the system. The optimal control is defined as the least amount of input or 

control input required to accomplish a task or to maintain equilibrium with enhanced 

transient performance. There are several methods like Ackerman’s Pole placement that 

are used to place the poles at desired eigen values to achieve stabilization. But these 

methods don’t take into account the amount of input available to achieve the task it just 

specifies the desired poles to seek the gain. Due to these limitations, it is our desire to use 

optimal control theory of in order to design an effective controller. Optimal controllers 

are designed as finding a control law such that optimality criteria are achieved by using 

least control effort and decaying the result to zero in minimum time. For a linear system 

the LQR method solves the problem of stabilization with optimality.  

 

2.1.1   Linear Quadratic Regulator  
 

The LQR (Linear Quadratic Regulator) is method to choose feedback gains with 

minimum cost function which results in an optimal control for the system. 

Given a system 

 ̇        
 

If it is given that the system is controllable. The state feedback control law is given as 

      
To design an optimal state feedback control the performance index which is a cost 

function is defined as 

  
 

 
∫              
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(2.7) 

(2.5) 

(2.6) 

(2.4) 

The main objective is to find a K which minimizes the cost function. This can be done by 

selecting Q and R as semi definite and semi positive definite respectively. 

 

The feedback gain K can be calculated by using the formula 

         
Where P is calculated by solving Algebraic Ricatti Equation 

                    
 

 

2.1.2    Non-Linear Optimal Control Design 

For a nonlinear system the LQR method holds but did not provide global stabilization 

instead of it provides local region of stabilization. This is due to the fact that the 

linearization of nonlinear system around the equilibrium point transforms the nonlinear 

equation into locally Lipchitz function. For nonlinear system, the optimal design tools 

developed by Kokotovic and some other researchers [10] guarantees robustness and 

stability margins. The optimality notions described here in this subsection follows from 

the discussions of constructive nonlinear control by Rudolph Sepulcher et. al. [10]. The 

approach developed by these researchers involves finding a optimal stabilizing feedback 

control law    ̃  for a given nonlinear system.  

 ̇     ̃     ̃   

To find a control law    ̃  which achieves the asymptotic stability around the 

equilibrium point at     and to find a control    ̃  that minimizes the objective 

function which is the cost function given by 

  ∫     ̃       ̃     
 

 
 

Here in this case the term involved in the cost function are    ̃   and    ̃  which is defined 

as 

   ̃  ≥ 0,    ̃  > 0     ̃. 

The target of optimality is to make the cost function   to its minimum value so when   which is 

cost function is set to its minimum value it will be termed as optimal value function. The value of 

  is always finite and is always a function of     ̃  . In this thesis, our objective is to reduce the 

cost function using the optimal control we will use the optimal value function    ̃  which is the 

cost function as a Lyapunov function candidate and is denoted by    ̃ . Thus, when the control 

law which is    ̃  being optimal it will be termed as     ̃  .The relationship between the 

optimal control given by     ̃  and Lyapunov function which reflects the cost function 
   ̃  is given by the subsequent optimality condition. 

 

Theorem 2.1 

The feedback control law 

    ̃        ̃   
 

 
     ̃ (     ̃ )
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(2.8) 

(2.10) 

(2.11) 

(2.12) 

(2.9a) 

Achieves the asymptotically stability around the equilibrium point at x = 0 if there exists a semi 

positive definite function      that satisfies the Hamilton Jacobean Bellman Equation. 

   ̃       ̃  
 

 
(     ̃ )     ̃ (     ̃ )

 
                 

The control law     ̃  here in the given scenario is called as an optimal stabilizing 

control law and the term    ̃  is termed as an optimal value function. The above control 

law  is used ti minimize cost function given by by (2.2) and guarantees that as time 

approaches to infinity the state response will be zero        ̃       . 

The proof of this can be found in Constructive nonlinear control by Rudolph Sepulcher et. 

al. [10]. 

2.1.3    Inverse Optimal Control Design 

In designing an optimal stabilization controller, the problem associated in designing an 

optimal stabilizing control law with the direct approach is to solve Hamilton Jacobian 

Bellman Equation (HJB) which is a partial differential equation and it becomes difficult 

to solve if the system consists of more than two or three states or is of higher order. While 

on the other hand, the proof of theorem 2.1 shows that the robustness is not dependent on 

the particular choice of the optimal cost functions parameters  ( ̃) , ( ̃) and both are    

. Due to that reason Kokotovic and Freeman [10] then look for the inverse design method 

in order to provide the system’s optimal stabilization solution. The Inverse approach deals 

with designing of stabilizing feedback control first and it is then proved optimal for a 

particular cost function which is provided as 

  ∫     ̃       ̃      
 

 
     (2.9) 

Here now this problem now transforms from direct approach to inverse approach since 

optimal value functions    ̃  and  ( ̃)  are not chosen before designing the controller in 

fact the controller is designed first then it is shown to be optimal for particular cost 

function. So, for a system the optimal stabilizing control law    ̃  given in (2.9a) that 

solves the problem of inverse optimal control if it is expressed in the form provided in 

(2.10). 
 ̇     ̃     ̃   

The control law   is given by 

        ̃   
 

 
     ̃ (     ̃ )

 
 

Where,      ̃     

A positive semi definite function V ( ̃) is known as CLF and with control law   = 

 
 

 
   ̃ , we can achieve  the negative semi definiteness of  ̇, such that  ̇ is given by 

 ̇       ̃  
 

 
     ̃     ̃    

 

Rearranging the equation (2.8) gives us    ̃  as 

   ̃        ̃  
 

 
     ̃    ̃      

 

The term V ( ̃) can be found out by solving Hamilton Jacobian Bellmen equation 

   ̃       ̃  
 

 
(     ̃ )     ̃ (     ̃ )

 

   



[6] 
 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

From the above statements it can be concluded that control law which is of the form given 

by   ( ̃) is known as inverse optimal control law in order to stabilizes system globally if 

it has the following two characteristics. 

 

i. The global asymptotically stability of the system is achieved when  ̃ = 0. 

ii. The control law defined earlier is of he for given below 

   
 

 
     ̃      ̃  

The term V( ̃) which is a control Lyapunov function should be radially unbounded and 

must be a positive semi definite function that must satisfies the following equation 

 

 ̇       ̃  
 

 
     ̃     ̃    

The construction of semi positive definite functions and with appropriate feedback 

control law through which we can assure the negative semi definiteness of a lyapunov 

function is the main task of  above said design methods. In this thesis, the concept of a 

“control Lyapunov function” (CLF) provided by Artstein [13] and Sontag [14] will be 

used for designing a control Lyapunov function. In inverse approach, a CLF (Control 

Lyapunov function) is required to design first. According to the definition provided in 

[10] the control Lyapunov function is defined as 

 

Definition 2.1 

 If there is radially unbounded function V ( ̃) which is Positive definite, then the  given 

radially unbounded function which is V ( ̃) is known as system’s Control Lyapunov 

function or (CLF).  

 ̇     ̃     ̃   

If for all      

     ̃    

     ̃     
 

In short, if there is a Lyapunov function for a system such that negative definiteness is 

achieved then such function is termed as CLF.  

 

The proof of this can be found in Constructive nonlinear control by Rodolphe Sepulchre et. 

al. [10]. 

The main advantage of using the Control Lyapunov Function concept in designing an 

inverse optimal controller is that, once a Control Lyapunov Function is known, with the 

choice of some explicit expressions we can easily designed an inverse optimal stabilizing 

control law. An important formula derived by Sontag's is used to design an optimal 

stabilizing controller by using a CLF is given as  

    ̃       
   ̃  √    ̃       ̃    ̃   

     ̃    ̃  
  

If   ( ̃) ≠ 0 

 

    ̃                             ̃    
 

Where    ̃ ,   ( ̃) is defined as      ̃     ̃  &       ̃       ̃  

It is shown in [10] the control law of the form (2.16) achieves negative definiteness of 

 ̇for the closed loop system if    ̃  is Control Lyapunov Function and satisfies the small 
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(2.18) 

control property for the class of nonlinear system and the control law itself (2.16) is an 

optimal stabilizing control for a cost functional given by [10] 

  ∫  
 

 
   ̃     ̃    ̃  

 

    ̃ 
     ̃     

 

 
   (2.17) 

 

Where 

   ̃  

{
 
 

 
 

   
   ̃  √    ̃  (    ̃    ̃ )

 

(    ̃    ̃ )
             ̃   

                                                                              ̃   }
 
 

 
 

 

 

Apart from achieving optimality one especial feature of control law (2.13) it can provide 

us sector margin  
 

 
    and under some conditions it achieves the disc margins D 

 

 
 . The 

definition of the stability margins is provided in the next section these stability margins 

guaranteed robustness in the presence of some uncertain parameters called uncertainties 

which are for example static uncertainties and unmodeled fast dynamics. The definition 

of all these topics will be covered in next section. 

 

2.2 Stability Margins and Uncertainties 
For a system to be stable feedback is necessary. However, how much robust is that 

nonlinear feedback system is it depends upon the robustness properties of any nonlinear 

feedback system and is always characterize by the stability margins like sector margins 

and disc margin. The region around which system is stable is defined by stability margin 

because they guaranteed that the feedback loop as long as the static nonlinearity  
 
(·) 

remains in the sector (α, β) or disc( ) that is as long as                            It will 

remain stable, as shown in figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Disc Margin D (α, β) for a system [10] 

 

To illustrate this concept let us examine a nonlinear system as shown in fig 2.2. Here 

H is the nominal nonlinear model of the system whereas   is the input uncertainty while u 

and y are of same dimension. For a nominal system in which no input uncertainty is 

present the value of   is identity I and the overall system is now consists of nominal 

nonlinear plant H in a feedback loop and the input          . In this thesis, the 
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nominal system is denoted by (H, k), where H is the nominal system and k is the control 

while the perturbed system is denoted by (H, k,  ). Here, the added thing is the 

perturbation term   which is an input uncertainty. One important thing to be note is that 

here the uncertainty appears to be at input side this lead to an important assumption that 

the disk margin will guarantees stability only if the uncertainty does not change the 

relative degree of the system. Hence this restrict the uncertain term   to be of zero 

relative degree. The uncertainties are characterized by two terminologies static and 

dynamic which do not change the relative degree of the system. The static uncertainty 

arises from the unknown parameters that are not incorporated while designing the control 

while the dynamic uncertainties are due to un modeled fast dynamics that characterize 

robustness properties. The definition for gain margin, sector margin and disc margin are 

given in [10] described below 

 

Definition 1. (Gain Margin) “The nonlinear system (H, k) is said to have a gain margin 

(α, β) if the perturbed closed-loop system (H, k, ∆) is globally asymptotically stable for 

any ∆ which is of the form diag {  , · ·,   } with constants      (α, β), i = 1, · · ·, m”. 

 

Definition 2. (Sector Margin) “The nonlinear system (H, k) is said to have a sector 

margin  

(α, β) if the perturbed closed loop system (H, k, ∆) is globally asymptotically stable for 

any ∆ which is of the form diag {  (·), · · ·,  (·)} where   (·)’s are locally Lipschitz 

static nonlinearities which belong to the sector (α, β).”. 

 

Definition 3. (Disc Margin) “The nonlinear system (H, k) is said to have a disc margin 

D(α) if the perturbed closed-loop system (H, k, ∆) is globally asymptotically stable for 

any ∆ which is globally asymptotically stable and input feedforward passive with a 

radially unbounded storage function”. 

 
Fig. 2.2: NonLinear Feedback Loop with control u and output y in the presence of  

 input uncertainty   

 

2.3 Nonlinear Output Regulation Problem 
 

The problem of output regulation is among the fundamental problems of the control 

theory alternatively known as servomechanism problem. It can be outlined as imposing to 

track system’s output by applying prescribed set of reference signal which is a certain 

class of constant and/or time varying functions while rejecting certain class of constant 

and/or time varying disturbances. The objective is that within the family of functions, the 
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(2.19) 

(2.20) 

(2.21) 

(2.22) 

controller should provide fixed steady state response. It can be interpreted in another way 

that error term which is the difference between the reference signal   and system’s actual 

output   should decay to zero with the time approaching infinity over the prescribed set 

of disturbances. Consider a time-invariant, nonlinear, finite dimensional system described 

as compact form of (2.1) by the equations, 
 

 ̇                        

                          
} 

 

with      represent the state of the system,      denotes the control input,      is 

a vector of regulated outputs that includes errors and other such variables that are required 

to be regulated to zero. The system is subjected to the set of exogeneous signals      

that include the reference signal which is required to be tracked and to reject the unknown 

disturbance signal. 

 

  The exogenous signal   is supposed to be produced by a neutrally stable system 

known as exo-system which is designed based on the designer’s prescribed knowledge 

about the reference signals to be tracked and the disturbance signals to be rejected. To 

solve the output regulation problem perfectly, it is required to have a complete knowledge 

of this signal or the model of the system should be available in real time that is an 

extremely optimistic scenario and cannot be rendered as practical situation. On the other 

hand, allowing the case of no knowledge of this signal of system model leads to the error 

that is ultimately bounded but not zero. Therefore, the generation of these exogeneous 

signals provides an intermediate solution where   is allowed to belong to fixed family of 

time dependent signals enabling the designer to cover major cases of practical 

significance. A general exo-system which is used in the output regulation problems 

exhibit the dynamic model described by the following differential equation (2.20) where 

the initial conditions i.e.      are allowed to vary on the prescribed set.  
 

 ̇       
 

Since the exo-system is neutrally stable system, we can get the model matrix   through 

linearization at the equilibrium. i.e.  

  *
  

  
+
  

 

 

which have all the eigenvalues lying on imaginary axis. 

 
Suppose that with the available information from the system, there exist a feedback 

controller having output   as function of   &   which is given by, 

         
 

Thus, the closed loop system formed of (2.19) - (2.22) characterized by the equations 

(2.23) is supposed to exhibit output regulation if it is possible to design control law (2.22) 

such that for every exogeneous signal   (in a prescribed set) and for every initial 

condition which lies near the vicinity of origin, so as the time tends to infinity the output 

error asymptotically decays to zero.  
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(2.23) 

(2.24) 

(2.25) 

 ̇                             
 ̇   [          ]            

} 

  

Usually, the amount of information available for the system to provide feedback 

describes the structure of the feedback controller. In case of all the system states   and the 

states of the exogeneous model   are available for feedback, a memoryless function 

similar to the (2.22) can work as desired controller. However, in a more realistic scenario, 

only the output of the system is available rather than all the state variables. In such case, 

the error term   which is only measurable quantity imposes to think of dynamic controller 

of the form,  
 

 ̇            

              
} 

 

with   being the internal state of the controller and       ,        such that the next 

requirements described below are met. 
 

 In the absence of exo-system, the origin of the open loop system must have an 

asymptotically stable equilibrium point. i.e. if       , it means that       . 

 The error term      converges to zero considering any initial conditions applied to 

the system      and the exo-system     . 
 

Thus, we can say that the output regulated system possesses two responses. i.e. the one is 

the transient response and the second one implies the steady state response. During the 

transient response, system converges to the steady state response from given initial 

condition and it exhibits the steady state response for    . The necessary conditions 

required for the output regulation problem to be solvable are as: 
 

 The system (2.19) must have smooth functions          and       . 

 The pair       is stabilizeable and       is detectable, where the matrices  ,   and 

  are defined as, 

 

  [
  

  
]
  

           [
  

  
]
  

           [
  

  
]
  

 

The control action that solve the output regulation problem can be divided into two 

components. One component is the one that force the system’s output to slide on the 

steady state value / manifold while second component acts to stabilize the system’s output 

on steady state value / manifold. It was shown by Isidori [15], that the output regulation 

problem is solvable if there exists certain continuously differentiable mapping that solve 

the nonlinear regulator equations. Let      be the steady state of   and      be the 

steady state of   on the zero-error manifold, then the system must satisfy the following set 

of regulator equations.  

 

     

  
      [           ]        

   [      ]
} 

 

and with the controller satisfying the equations,  
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(2.26) 

(2.27) 

 
     

  
      [      ]        

      [    ]
} 

where      is the steady state value of control   and it is the polynomial in the 

component of   only. Note that the model      of exo-system is used in the regulator 

equations (2.25) and (2.26). This suggests that without incorporation of such model, 

generally the output regulation problem cannot be solved. This fact is known as internal 

model principle and is usually designed as,  
     

  
                 

          
} 

 

with     ,   and   represent mappings given by, 

     

[
 
 
 
 

    
      

  
     

 

  
   

    ]
 
 
 
 

,       [     ]     ,           

[
 
 
 
 
     
     
     
     
           ]

 
 
 
 

 

 

The coefficients             are the real numbers that are obtained by the following 

equation, 
 

  
                          

               
        

 

Such that the characteristics polynomial         
              has distinct 

roots on the imaginary axis with pair ([
  
   

]  *
 
 
+) being stabilizable where   

*
  

  
+
  

 and ([  ] [
   
  

]) being detectable. 

Now, transforming the system (2.19) by changing the variables  

 ̃        , 

 ̇̃       ̃         

 

Where,        , and component   is designed such that the whole system is 

stabilized. This component can be designed through robust and optimal control 

techniques like sliding mode control, Inverse Optimal Control or Lyapunov redesign etc. 

such that     with        and        on the zero-error manifold. In practice, the 

whole controller that solves this regulation problem is the parallel interconnection of the 

internal model and the stabilizer where, 
 

 The internal model provides      the component of   such that        and 

        
 

 The stabilizer provides the steady state component          such that it locally 

stabilizes the closed loop system and induces the local error convergence towards 

zero-error manifold. This is as shown in Fig. 2.6. 
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(2.28) 

(2.29) 

 

 

 

 

 

 

 

 

Fig. 2.2: Geometric interpretation of output regulation 

In context of this thesis work, we will follow a similar idea for the regulation of the 

system that must be minimum phase nonlinear. 

2.4 Conditional Servo-Mechanism Designs 
 

The output regulation that is discussed so far in the previous section provides two 

main challenges. First, the design is not robust and only provides the local stability. 

Secondly, the task of designing the stabilizing controller and the internal model separately 

can be tricky. Generally, the task of output regulation is accomplished using the idea of 

servo-mechanism in which a servo-compensator is designed that achieves the output 

regulation robustly. There are well established methods of designing the servo-

compensator in the literature, however, here in this thesis work, the work of Hassan K. 

Khalil [16] and Attaullah Y. Memon et. al. [7], [17] is summarized that will lead to our 

research work in the next chapter. Starting from the conventional servo-compensator 

design, we will discuss the its drawbacks that leads to the necessity of making the servo-

compensator as conditional one and how to achieve do that. The whole discussion follows 

sequentially from references [16], [7], [17]. 

Consider the nonlinear system (2.19) in the form,  
 

 ̇                               

                                              
} 

 

where the exogeneous signal   belongs to prescribed set     . The functions  ,   

and   are smooth in the domain      and continuous in   over the set  . The error 

term   represents the vector [         ], where           with      

represents the trajectory to be achieved. The solution to the output regulation problem 

requires the following assumptions. 
 

Assumption 2.3.1: The signal   and      are assumed to be generated by a known 

neutrally stable exo-system. i.e.  
 

 ̇      
 

where    have distinct eigen-values lies on imaginary (jw) axis where the term      is 

from the given compact set  . 
 

Assumption 2.3.2: There exists continuous mapping such that x is defined as        

with the term        &        on the zero-error manifold which solves the 

regulator equations given as,  
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(2.30a) 

(2.30b) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

     

 
                              

                             
} 

for all    . 
 

Assumption 2.3.3: There exist set of real constants             , such that the   

     satisfies the identity given as,  
 

  
                          

               
               

 

for all     and the characteristic polynomial         
              has 

roots on the imaginary axis. Selecting, 

 

  

[
 
 
 
 
     
     
     
     
           ]

 
 
 
 

     

           

[
 
 
 
 

    

      

  
     

 
  

       ]
 
 
 
 

     

     

 [     ]      
 

It has been shown in [15] that      can be generated by the internal model,  

 
  

  
        

           
          } 

The conventional servo-compensator followed by the above-mentioned assumptions 

can now be augmented with the system (2.28). i.e.  
 

 ̇         
 

Where,   can be selected as   [     ]. We can take the feedback control 

law for the output regulation problem (2.33) with   is the constant gain and is referred to 

the maximum permissible control magnitude,     
     is called the high frequency gain. 

     as well as     are the standard signum and saturation functions defined as (2.34) 

and (2.35). 
 

 

         (    
    )    (

 

 
) 

 

        {
              

                       
                         

 

 

 

                {
                            | |   
                      | |   

 

 

The sliding surface   is given below, 
 

        [         ]     
 

However,   ,    matrices can be designed such that, 
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(2.37) 

(2.38) 

(2.40) 

(2.39) 

 

  [
    

            
] 

 

is  Hurwitz. The matrices       and    are the canonical form representations of the 

system (2.28) when transformed to normal form. 

 

Conventional servo-compensator addresses the challenges posed in the starting of the 

section. i.e. It achieves the non-local robust output regulation but with a drawback that the 

steady state performance usually achieved  with the major cost of transient performance 

degradation. It happens so because the inclusion of servo-compensator increases the 

overall system’s order. This issue has been formally addressed under the topic of 

conditional servo-compensator by Seshagiri et. al. [5] as well as Attaullah Y. Memon et. 

al. [7], [17]. The topic of conditional servo-compensator has been discussed in the context 

of Sliding Mode Framework in [5] and in the context of Lyapunov Redesign Framework 

in [7], [17]. Conceptually both discussions are similar but the later provide the flexibility 

of choosing with any given stabilizing state feedback controller for the closed loop 

system and then to include servo-compensator to perform the desired task. This flexibility 

will lead to our work if we apply optimal control to the system. So, owing to the 

implicational significance, the Lyapunov Redesign Framework based servo-compensator 

design will be discussed here. 

To start in the Lyapunov Redesign framework, transforming the system (2.28) by 

changing the variables as   ̃     , into the form as given by,  
 

 ̇̃   ̃( ̃  )   ̃( ̃  )[      ] 
 

Where,   ̃( ̃  )   ( ̃     )         [ ( ̃     )        ]     and 

 ̃( ̃  )   ( ̃     ). The system (2.37) possess the form where treating      as the 

matched uncertainty, the problem of state feedback regulation can be termed as state 

feedback stabilization. Assume that there exists a stabilizing state feedback control for the 

system (2.38) and also there is Lyapunov function candidate for the corresponding closed 

loop system.  
 

 ̇̃   ̃( ̃  )   ̃( ̃  )  
 

 

Assumption 2.3.4: There exists a locally Lipschitz function  ( ̃  ), with          

and a continuously differentiable Lyapunov function  ( ̃  ) such that   (‖ ̃‖)  

 ( ̃  )    (‖ ̃‖) and,  
 

  

  
    

  

  ̃
[ ̃( ̃  )   ̃( ̃  ) ( ̃  )]      ̃  

 

where  ̃    ,    ,       are class   functions and    ̃  is positive definite 

continuous function.  

 

Now, writing the system (2.37) as, 
 

 ̇̃   ̃( ̃  )   ̃( ̃  ) ( ̃  )   ̃( ̃  )   ̃( ̃  )[      ( ̃  )]                
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System (2.40) is in the form where it is required that a saturated high-gain feedback 

controller is required to deal with the term     . Assuming that     ( ̃  )     is a 

compact set,     and   be some function such that, 
 

‖      ( ̃  )‖   ( ̃)               ̃    
 

 
 

Assumption 2.3.5: From (2.39), assume that (
  

  ̃
)  ̃( ̃  ) can be stated as, 

 

(
  

  ̃
)  ̃( ̃  )      ̃  ( ̃  ) 

 

where    ̃  is defined as locally Lipchitz known function with given initial condition 

      , where  ( ̃  ) is termed as an unknown function. i.e.   ( ̃  )  

 ( ̃  )      , ‖ ( ̃  ) ‖   ,       and    is the identity matrix.  
 

The version of servo-compensator (2.32) called conditional servo-compensator is then 

provided by the equation (2.41) and the feedback controller that solves the output 

regulation problem without degrading the transient performance can be selected as (2.42).  

 ̇                (
 

 
)    (2.41) 

 

      ̃    (
 

 
)     (2.42) 

 ( ̃)  
 

 
                        (2.43) 

 

where    ( ̃)     ,   is the boundary layer inside which the servo-action will be 

performed and matrix    is designed such that         is Hurwitz. 
 

For the work of this thesis, we will use conditional servo-compensator to perform the 

task of output regulation for saturated class of minimum phase nonlinear systems due to 

the superiority of this design discussed in this section that compared to conventional 

servo-compensator, it provides the robust output regulation without effecting system’s 

transient response.  

  
 

2.5 Extended High Gain Observer (EHGO) 
 

The control designing process for certain system usually assume that all of its states 

are available and can be used in the process wherever required. This situation in general 

not true and in most of the realistic scenarios, we need to use a sensor for each state 

measurement which is not only costly but also unreliable approach. Secondly, sometimes 

it is also not possible to measure some of the state even through sensor. That means there 

is a necessity of some alternate phenomena that may be helpful in such a scenario. To 

overcome this hindrance, a control engineer uses a technique called the state estimator or 

state observer in which all the required states of the system are observed / estimated by 

using only the available information from the system. Weiwen Wang et. al. [18] compares 

some of the widely-used state observers. Observers form the basis of output feedback 

control design. 
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(2.44) 

(2.45) 

(2.46) 

If all relevant state variables that are used in the system are observed by the observer, 

despite the fact that some of state variables can be measured directly or not, it is then 

known as full-order state observer. When the fewer states out of   state variables are 

measured using the observer, where   is defined as state vector dimension, the observer is 

now transformed from to reduced-order state observer or simply we can say that a  

reduced-order observer. 
 

A state observer is a system that estimates the state variables based on the 

measurement of the output and control variables. The most commonly used linear 

observer known as Luenberger Observer can be found frequently in the literature. 

Consider a linear system as modelled by the equations,  

 

 ̇              
                         

} 

where       are the state space model parameters. The observer is a subsystem that 

rebuilds the system’s state vector it exhibits the mathematical substantially same as that 

of the original system with a difference that it includes an extra term which is related to 

the tracking error in order to compensate the inaccuracies in the system matrices   and   

due to the reason that their initial values are not known. So, the mathematical model of 

the observer for the system (2.44) can be defined as,  
 

 ̂̇    ̂           ̂  
 

It follows from (2.45) that the input to the observer are the output   and the control input 

  while the matrix   is the weighing matrix that involves the difference between the 

measured output   and the estimated output   ̂ is called the observer gain. The observer 

gain associated term in its model is responsible for improving its performance by 

continuously correcting the model output. In designing observer, the gain matrix   is 

selected such that        is Hurwitz. i.e. All the eigenvalues lie in left half plane 

which guarantees the convergence of estimation error to zero. Such a gain matrix can be 

designed using simple ideas, for example, pole placement. 

 

The main challenge in the Luenberger Observer is that the performance of the 

observer is highly dependent on the system model accuracy. e.g. the matrices  ,   and   

for this case. To enhance observer capabilities to deal with the real world issues like 

uncertainty, noise, disturbance etc., a robust nonlinear observer called High Gain 

Observer (HGO) was introduced. Representing the nonlinear version of system (2.44) in 

the normal form as,  

 

 ̇                                       

 ̇                     
                                      

} 

 

where   is the relative degree and   is a vector of unknown disturbances. The High Gain 

Observer for the system (2.46) can be designed as,  
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(2.47) 

(2.48) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.49) 

 ̂̇     ̂    
  

  
    ̂                               

 ̂̇     ̂     ̂   
  

  
    ̂                             

} 

 

where   is the design parameter and normally is chosen as small as possible. The 

constants           are selected such that the polynomial       
      

          is Hurwitz.    ̂  and    ̂  are the nominal models of        and        

respectively. In the cases where the nominal models are not known, they can be ignored 

and a High Gain Observer can still be designed. However, their inclusion in the observer 

design yields with high convergence rate which is highly desirable. 

In case of nonlinear systems, when the model exhibits the normal form where the 

internal and external dynamics of the system exists explicitly, a simple High Gain 

Observer may not work to observe all the states of both the dynamics. In such case, the 

observer which is normally used is called Extended High Gain Observer (EHGO). This 

observer estimates the derivatives of the output in addition to an extra signal that is used 

as virtual output for the auxiliary system. For example, consider the single-input, single-

output nonlinear system with well-defined relative degree   but consisting of both the 

state dynamics. i.e.  

 ̇                                       

 ̇                       

 ̇                             

                                           }
 
 

 
 

 

 

or in compact form as,  

 ̇                                           

 ̇      [             ]

                                               

} 

 

where            . Extracting the auxiliary system from (2.49) as,  
 

 ̇                              
 

Any suitable observer called the internal observer can be used to estimate the states of the 

auxiliary system (2.50) formed of the internal dynamics. For example, Boker et. al. [19] 

used Extended Kalman Filter (EKF) as internal observer. EKF exhibits a similar in 

structure but differ from technical design as that of Luenberger Observer. For, the 

auxiliary system (2.50), the EKF takes the form as,  
 

 ̂̇     ̂        [     ̂   ]  
 

where the observer gain      can be designed as, 
 

                     
 

and      with        is the solution of the Riccati Differential Equation,  
 

 ̇                    
                

                     
The time varying matrices       and       are given by,  
 

      
  

  
  ̂                     

  

  
  ̂    
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and      and      are symmetric positive definite matrices that which satisfy,  

                  (2.55) 

                        (2.56) 
 

Now, the observer that will work for the external dynamics called the external observer 

will be employed through EHGO. This observer, in addition to the states of the external 

dynamics, will observe an extra state that has been utilized as the output of the auxiliary 

system (2.50). Its structure is as follows:  

 ̇̂    ̂   [ ̂   ( ̂  )]      (    ̂)   (2.57) 

 

 ̂̇   ̇( ̂  ̂  )  
    

    
(    ̂)    (2.58) 

Where,  

 ̇( ̂  ̂  )  (
 [      ]

  
⁄ )|

  ̂   

, and    (2.59) 

 [      ]

  
 

  

  
        

  

  
     [             ]   (2.60) 

The observer gain matrix      *
  

 

  

   
  

  
+
 

 and           are selected such 

that         
              is Hurwitz. Moreover,     is the small design 

parameter. 

So, combining the internal and external observers (2.51), (2.57) and (2.58), the full 

order observer for (2.49) is characterized by,  

 ̇̂    ̂   [ ̂   ( ̂  )]      (    ̂)        

 ̂̇   ̇( ̂  ̂  )  
    

    (    ̂)                             

 ̂̇     ̂        [     ̂   ]                             }
 

 
   (2.61) 

The time varying matrices are now given by, 
 

      
  

  
( ̂  ̂)                  

  

  
( ̂  ̂) 

For our thesis research work, we will design the output feedback version of the 

conditional servo-mechanism developed for a class of saturated nonlinear minimum phase 

systems, utilizing the idea of Extended High Gain Observer (EHGO) discussed in this 

section. 
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Chapter 3 
 

OPTIMAL OUTPUT REGULATION 

PROBLEM FOR NONLINEAR 

SYSTEM 
This chapter will discuss the idea of optimal output regulation problem for a class of 

nonlinear system using conditional servo mechanism. In the first section 3.1 the problem 

formulation of output regulation is discussed. The second section 3.2 discusses 

conventional and conditional servo mechanism designs for these classes of systems (i.e. 

Class of systems possessing linear dynamics subjected to the control constraints as well 

as the class of systems exhibiting nonlinear dynamics). The ideas of Optimal based 

control have been exposed for such designs. In section 3.3, the state feedback 

developments of previous section have been extended to the output feedback by 

presenting the appropriate observer designs. Section 3.4 provides the stability analysis of 

the closed loop system followed by the simulation results presented in the section 3.5 that 

depicts the efficacy of the developed control designs. Finally, this chapter closes with the 

section 3.6 that includes the technical discussion of the presented results and the 

concluding remarks. 

In section 3.3, the state feedback developments of previous section have been 

extended to the output feedback by presenting the appropriate observer designs. Section 

3.4 provides the stability analysis of the closed loop system followed by the simulation 

results presented in the section 3.5 that depicts the efficacy of the developed control 

designs. Finally, this chapter closes with the section 3.6 that includes the technical 

discussion of the presented results and the concluding remarks. 

3.1 Control Design and Problem Formulation 
In this thesis we considered single input single output, nonlinear and minimum phase 

system. The purpose of this work is to design an optimal based stabilization controler 

which not only regulates the output of minimum phase system to follow a desired 

reference signal and reject the disturbance signal both are generated by a known exo 

system but also provide stability margins that also depicts robustness. Consider a SISO, 

minimum phase nonlinear system given by  

                 
 ̇                                 

                                                                   
}   (3.1) 

Where     the state, e is the regulation error and u is the control input. The overall 

system is supplied with the reference signal to be tracked and disturbance signal to be 

rejected both are generated by set of exogeneous input variables   which belongs to 
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compact set    . The input uncertainty that is a nonlinear function belongs to a 

certain range or a sector defined by [   ], such that it satisfies the inequality given by  

                                (3.2) 

The definition for nonlinearities are already defined in chapter 2 in Definition 1,2,&3 

Now, with the change of variable          , equation 3.1 can be rewritten as 

 ̇   ̇   ̇      (3.3) 

 ̇                          ̇   (3.4) 

According to assumption 2.3.4 

There exists a continuous mapping        with        and        on the zero-

error manifold which solves the regulator equations given as,  

 
     

 
                              

                             
}   (3.5) 

for all    . 

For the given output regulation problem, the above assumption is mandatory and 

sufficient enough to solve the regulation problem. It means that there exists zero-error 

manifold        for (3.1) and        for (3.3), with the steady state control as 

     on zero-error manifold. This control      slides the system output on zero-error 

manifold in the presence of disturbance signals (usually provided from exo-system as a 

component of exogenous signals besides reference).  

 

Assumption 3.4: There exist real constants              such that the steady state 

control component      satisfy the following identity 
 

  
 
                    

   
    (3.5a) 

 

where the polynomial         
             have all the distinct roots that are 

located along imaginary axis such that     (
  

  
⁄ )   . 

 
The above assumptions are necessary due to the motivational fact of internal model 

principle for nonlinear which states that the controller not only generate the prescribed 

trajectories but can also generate some higher order dynamics. Defining the following 

matrices, 

 



[21] 
 

(3.5b.1) 

  

[
 
 
 
 
     
     
     
     
           ]

 
 
 
 

   

           

[
 
 
 
 

    

      

  
     

 
  

       ]
 
 
 
 

     

      

[     ]      
 

 

It has been shown in [15], that      can be generated by the internal model,  
  

  
        

           
          }     (3.5b) 

 

The internal model (3.10) is only valid when      have some finite number of 

harmonics so when      is the polynomial function of  . This means that the constants 

             for (3.9) must be known even when      is uncertain.  
 

 Using the equation 3.5. Hence equation 3.4 can be written as 

 ̇                                           

 ̇                                                       

              

It can be rewritten as 

 ̇    ̃       ̃     [         ]    (3.6) 

Where, 

 ̃                       [               ]      (3.7) 

 ̃                   (3.8) 

Here in this case the term      is the matched uncertainty. Thus this output regulation 

problem now transformed into stabilization problem this is because the transformation of 

system into error form lead us to make a stabilization problem. Now, the target is to make 

regulation error zero and once the regulation error is zero the output asymptotically tracks 

the reference signal govern by given exo system. The control action that solve the output 

regulation problem can be divided into two components. One component is the one that 

force the system’s output to slide on the steady state value / manifold while second 

component acts to stabilize the system’s output on steady state value / manifold. To 

further proceed towards the designing of the control law lets assume the following 

assumptions hold 

Assumption 3.2 

There exists a locally Lipschitz function       , with          and a continuously 

differentiable Lyapunov function        such that 

   ‖ ‖            ‖ ‖  and, 
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[ ̃      (    )]       ̃ 

  

  
 ̃           ̃ 

          ̃ }
 
 

 
 

  (3.9) 

 

where     ,    ,       are class   functions and      is positive definite 

continuous function.  

 

Now, writing the system (3.6) as, 

 

 ̇   ̃       ̃              ̃           ̃     [      (    )] (3.10) 

 

In order to handle uncertainty, in this thesis we use the idea provided by A. Y. Memon and 

Khalil [7] that uses a Lyapunov redesign approach to design the feedback controller to 

incorporate the uncertainity term 

[            ]      (3.11) 

As given in [7],  

                            (3.12) 

for some    >  0, we defined  δ( ) which is continuous function and remained in the 

certain bound defined in 3.22, its also worth to mention that it does not depends on the 

non-linearity  (·) which is sector-bounded, So as given in [7] 

                                         (3.13) 

 To make the problem simple take H = 1, such that (∂V/∂  )g( ,w) as already discussed in 

chapter 2 can now be written as 

(
  

  
)                               (3.14) 

Conditional servo-compensator is then provided by the equation (3.24) and the feedback 

controller that solves the output regulation problem without degrading the transient 

performance can be selected as (3.25).  

 ̇                (
 

 
)     (3.15) 

      ̃    (
 

 
)     (3.16) 

   ̃                              (3.17) 
 

 

where           , where υ( ) is defined as a function which is Locally Lipchitz, 

with υ(0) = 0,   is defined as the boundary layer inside which the servo-action will be 

performed and matrix    is designed such that         is Hurwitz. 
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3.2 Optimal Nonlinear Feedback Stabilization Controller Design 
 

In this work we took an optimal stabilization feedback controller that acts to stabilize the 

system robustly and it is assumed that the optimal stabilizing feedback control is available 

for the system of the form given by 

 ̇    ̃       ̃          (3.18) 

Such that when the optimal stabilizing feedback control is applied with some bounded or 

sector non linearity  

 ̇    ̃       ̃              (3.19) 

then the origin of the close loop system will remain stable. The significance of optimal 

stabilizing control is that it is shown in [10] if the stabilizing controller is optimal with the 

cost function given by 

  ∫                 
 

 
     (3.20) 

Where in this case the term involved in the cost function      ≥ 0 and      > 0 for all values 

of  ̃. Then according to [10] the optimal stabilization control given by  

           
 

 
      (      )

 
   (3.21) 

Will achieve the sector margin  
 

 
    and under some conditions it achieves the disk margins 

D 
 

 
 . 

Where V( ) is a positive semi definite function called a control Lyapunov function, such that the 

negative semi definiteness of  ̇ is achieved with the control u =  
 

 
      that is 

 ̇         
 

 
                         (3.22) 

When the function l( ) when set to be the right-hand side of equation (2.8) 

             
 

 
                     (3.23) 

Then V ( ) is a solution of the HJB (Hamilton Jacobian Bellmen) equation 

            
 

 
(      )      (      )

 
     (3.24) 

But in this thesis, we apply an inverse approach for designing an optimal stabilizing that 

is an optimal control is designed first then shown to be optimal for particular cost 

function which is chosen after the control design rather than chosen before the design of 

controller. As defined in chapter2 this is because the designing of nonlinear optimal 

controller involves the solution of Hamilton Jacobian Bellman (HJB) equation which is a 

partial differential equation becomes difficult and infeasible to solve if the system is of 

higher order. Hence an inverse approach is applied to design a stabilizing controller 

which is optimal. As discussed in [10] a distinctive feature of this optimal stabilizing 

control is that it not only stabilizes the system but also provide disc and sector margins 

which characterize robustness. So, if a Control Lyapunov Function (CLF) V(x) is known, 

an inverse optimal stabilizing control law can be selected from a choice of explicit 

expressions. The description of inverse optimal control provided by Sepulchure [10] 

revels that an inverse optimal control stabilization control for the system (3.19) given by 
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(3.25) 

(3.26) 

Sontag’s formula (2.16) not only stabilizes the system but also provides sector margin 

 
 

 
    and, if R( )=I it also achieves the disk margin D 

 

 
 . 

Assumption 3.1 

There exists a smooth, positive definite, and radially unbounded function V (x) called a control 

Lyapunov function (CLF) for the system 

 ̇             

If for all      

         

         

 

By definition, Any Lyapunov function whose time derivative can be rendered negative 

definite is a CLF. The proof of this can be found in Constructive nonlinear control by 

Rodolphe Sepulchre et. al. [10]. The importance of CLF based approach is that once a 

CLF is known an optimal stabilizing control can be designed using Sontag’s formula 

given by (2.16) and in this case the Control Lyapunov Function now becomes an optimal 

value function. It implies that, once a CLF V is known then the optimal feedback control 

can stabilize the system (3.9) robustly i.e. the system response goes to zero as time 

approaches to infinity t→∞ in the presence of sector bound nonlinearity   that is applied 

only in the sector [A, B]. The goal of this thesis is to show that we can solve the problem 

of output regulation with this optimal control and in the presence of sector non-linearity 

or we can say that the uncertainties that may arise due unmodeled dynamics of the 

system. This work differs from the work previously done by A. Y. Memon and H. K. 

Khalil [7] in a sense that in previous work on the system (3.6) the control was totally 

depend on the control input. But in this work rather than the control linearly depend on 

input it depends upon the sector bound non linear function  . 
 

 

3.3 Observer Designs for Output Feedback Version of Servo-

Mechanism Designs 
 

This section focuses on the output feedback version of the servo-compensator designs 

discussed in the previous section. Since, most of the control schemes assume the 

availability of all the state variables to achieve the desired control objectives. Contrary to 

this, realizing the physical scenario we cannot measure all the state variables due to the 

technical or economic reasons which necessitates the mechanism of estimating these 

variables through a system called state observer or simply observer. It utilizes only the 

output of the system as input and provides with the estimates of the state variables as 

output which are used to replace the state variables in the state feedback design making 

the whole scheme as output feedback. Following from the discussion about the state 

observers in chapter 2, a nonlinear observer called High Gain Observer (HGO) that 

recovers the performance of state feedback controller in a robust way, is worked out here 

to implement the output feedback version of the previously designed control law  . For 

system (3.1), we will implement the HGO for its transformed model (3.18), based on 

which the servo-compensator was presented previously whereas for system (3.3), we will 

implement its extended version (EHGO) for its transformed model (3.18). The need of 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.32) 

(3.33) 

EGHO is due to the normal form representation of the system (i.e. internal and external 

dynamics are shown explicitly). For system (3.23), the HGO can be implemented as,  
 

 ̂̇    ̂   [           ]         ̂  
 

where the observer gain   is need to be designed. So, the sliding surface   required in 

control law   and servo-compensator will be as  ̂     ̂      where the stabilizing 

compensator    ̂  will be as,  
 

   ̂          ̂            

 

The HGO observer gain matrix   can be designed as,  

 

  [
  

 

  

  

  

  
 

  

  ] 

 

where   is the small design parameter and the constants   ,   ,  ,    are selected such 

that the polynomial       
       

         is Hurwitz. i.e. all the roots lie in 

the left half plane.  

For our second class of systems, consider the transformed model without matched 

uncertainty as, 
 

 ̇                                     

 ̇             [   ]                     
 

 

The above system can also be written in the compact form as,  
 

 ̇                                                              

 ̇      [             ]                
                                                                  

} 

 

The system (3.30) is in the form where we can present the Extended High Gain Observer 

(EHGO) design. Extracting the auxiliary system as,  
 

 ̇        ,                              
 

Any suitable observer called the internal observer can be used to estimate the states of the 

auxiliary system (3.31) formed of the internal dynamics. For example, Boker et. al. [9] 

used Extended Kalman Filter (EKF) as internal observer. For, the auxiliary system (3.31), 

the EKF design takes the form as,  
 

 ̂̇     ̂        [     ̂   ]  
 

where the observer gain      can be designed as, 
 

              
        

 

and      with        is the solution of the Riccati Differential Equation,  
 

 ̇                    
                

                            
The time varying matrices       and       are given by,  
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(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.42) 

(3.43) 

      
  

  
  ̂                     

  

  
  ̂    

 

and      and      are symmetric positive definite matrices that which satisfy,  
 

             
 

                     
 

Now, the observer that will work for the external dynamics called the external observer 

will be employed through EHGO. This observer, in addition to the states of the external 

dynamics, will observe an extra state that has been utilized as the output of the auxiliary 

system (3.31).  
 

Its structure is as follows:  
 

 ̇̂    ̂   [ ̂   ( ̂  )]      (    ̂) 

 ̂̇   ̇( ̂  ̂  )  
    

    
(    ̂) 

where,  

 ̇( ̂  ̂  )  (
 [      ]

  
⁄ )|

( ̂  ̂)

, and  

 [      ]

  
 

  

  
        

  

  
     [             ]  

The observer gain matrix      *
  

 

  

   
  

  
+
 

 and           are selected such 

that         
              is Hurwitz. Moreover,     is the small design 

parameter. 

 

So, combining the internal and external observers (3.32), (3.37) and (3.38), the full 

order observer for (3.30) is characterized by,  

 

 ̇̂    ̂   [ ̂   ( ̂  )]      (    ̂)        

 ̂̇    ̇( ̂  ̂  )  
    

    
(    ̂)                                

 ̂̇     ̂        [     ̂   ]                                 }
 

 
  (3.41) 

 

The time varying matrices are now given by,  
 

      
  

  
( ̂  ̂)                  

  

  
( ̂  ̂) 

 

So, the sliding surface   required in control law   and servo-compensator will be as 

 ̂   ( ̂  ̂)      where the stabilizing compensator  ( ̂  ̂) will be as,  
 

   ̂  ̂   (
  

  
   ̂   )
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(3.63) 

(3.64) 

(3.27a) 

The component   will also be designed using the previously discussed techniques but 

utilizing the state estimates provided by the EHGO.  

 

Now, the output feedback version of servo-compensator   (3.27) and the control law 

  (3.28) will be as (3.44) and (3.45) respectively. The simulation results depicting the 

performance of these output feedback versions will be presented later in the section 3.5 

which will prove the efficiency of these output feedback schemes. 
 

 ̇                (
 ̂

 
) 

      ̂    (
 ̂

 
) 

 

3.4 CLOSE LOOP ANALYSIS 
 

This section consists of close loop analysis of entire system. In this section we will show 

how addition of optimal control will achieve the stability margin in the conditional servo 

mechanism problem. This section will provide the mathematical analysis of the system to 

show the robustness provided by the optimal feedback control for designing the 

stabilizing compensator in order to achieve optimal output regulation. Consider the 

system defined in [7] 

 ̇                                                                                                                                                           

 ̇   
 
                                                                                                                          

 ̇̃                               (   [       (
 

 
)])        [              ] 

 ̇                (
 

 
)                                                                                                               

}
 
 

 
 

 

(3.27) 

Suppose for our convenience          and    (
 

 
) is defined as,  

 

 

   (
 

 
)  {

 

‖ ‖
          ‖ ‖    

 

 
             ‖ ‖   

 

 

Also, suppose that there exist a continuously differentiable Lyapunov function        

and               be the compact subset of   that constitutes the state vector  , 

with      and assumption (3.2) holds. Now, defining a set                    

where    is the positive constant and              is the compact set such that the 

initial conditions of the conditional servo-compensator i.e.      belongs to this set [7] 

and             where    is the solution of ARE as        
       (Identity 

Matrix). The conclusion of the important result that the set   is positively invariant and 

each trajectory is   reaches the positively invariant set                
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             in finite time, where      is the class   function is already shown in [7]. 

To simplify the analysis, assuming that the internal dynamics or driven subsystem is 

stable. i.e. system is minimum phase and the servo-compensator developed only for the 

external dynamics or driving subsystem will do the required job of output regulation. So, 

the internal dynamics can be ignored in analyzing the servo-compensator while they will 

be included in the analysis of stabilizing compensator. 

 

The following analysis will follow the analysis done in [7] but with some technical 

differences due to nature of problem under consideration. Here in case as defined earlier 

we will show that combining both controllers will result in the stability margins provided 

by the optimal stabilizing control. In order to show that the Lyapunov function V 

candidate already defined in (3.9) is used. The derivative of Lyapunov function will give 

 ̇   
  

  
    

  

  
[ ̃       ̃            ]  

  

  
 ̃       (        (

 

 
))  

 
  

  
 ̃     [            ]        (3.28) 

According to assumption 3.2 

  

  
    

  

  ̃
[ ̃            ]       ̃  

We can write equation (3.28) as 

 ̇          
  

  
[ ̃     ]  

  

  
 ̃       (        (

 

 
))   

  

  
 ̃     [     

       ]                  

(3.29) 

The Lie derivative defined in Khalil [20] given by 

  

  
 ̃        ̃    

  

  
 ̃        ̃    

}    (3.30) 

Hence equation (3.29) becomes 

 ̇            ̃       ̃     (        (
 

 
))  

  

  
 ̃     [            ]          

(3.31) 

Assumption 3.3 

It is assumed that the trajectories are outside the boundary layer. Outside the boundary layer 

only stabilizing compensator acts and bring the error to zero, which follows that 

       Hence      (
 

 
)   

 

‖ ‖
 

Since,  
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Ignoring     because outside the boundary layer the stabilizing compensator is dominant. 

With         which is the stabilizing control and since the control is         not 

    . Equation (3.31) becomes 

 ̇            ̃           ̃    ( (    )      )  
  

  
 ̃     [     

       ] (3.32) 

According to equations (3.21), (3.24),(3.13),& (3.14)   

           
 

 
      (      )

 
=      

            
 

 
(      )      (      )

 
   

(
  

  
)                            

Combining above equations along with (3.32) will yield and for simplicity taking 

       

 ̇               
 

 
(      )      (      )

 

   ̃     (    )

   ̃     
 

 
      (      )

 

           

 ̇               
 

 
(      )      (      )

 

   ̃     (    )            

 ̇                 ̃    ( (    )  
 

 
(      )      )            

 ̇                 ̃    ( (    )  
 

 
(
 

 
            ))            

 ̇                 ̃    ( (    )  
 

 
    )                       

(3.33) 
The uncertainty in the input which is   appears in the form R which is diagonal as 

defined in definition 2.1,2.2 i.e. 

R = diag {     , ·  ·  ·  ·  ·  ·  ·,      } 

Using (3.21)  

      
 

 
      (      )

 
,   l( )    (3.34) 

It followed from 3.34 

         (    )
 
          (3.35) 

Hence equation (3.33) becomes 
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 ̇                (    )
 
    ( (    )  

 

 
    )              (3.36) 

Since R( ̃) which is a direct nonlinearity is diagonal or in a Matrix form. So we need to 

apply summation to sum the equation. Applying summation in equation (3.36) gives 

 ̇                ∑ [          ] 
   (  (     )  

 

 
     )             (3.37) 

Assumption 3.4 

There exists a diagonal matrix R(x)  

R = diag {     , ·  ·  ·  ·  ·  ·  ·,      } 

Which provides a sector margin   
 

 
    

Remark 3.4 

In this whole analysis the assumption R( ) is diagonal is crucial for the negativity of the 

term 

 

 (    )
 
    ( (    )  

 

 
    )    (3.38) 

with R non diagonal the negativity of above equation may be violated even with a 

constant positive definite matrix R and wit the linear gains  

                 (3.39) 

 

With this closed loop analysis, it is shown that with the addition of optimal feedback 

stabilization the system not only provide the optimal control but will also cater the 

robustness properties of the system by providing the gain and sector margins. It is shown 

that the optimal based control provides the sector margin of  
 

 
   . 

 

3.5 Simulation Examples 
 

This section of thesis will demonstrate the above discussed control mechanism when 

applied to a nonlinear system with the help of simulation. The results of simulation will 

provide the efficiency of our control design and will show how it can be used to 

overcome the problem of robustness in a real-world problem. The example will be 

discussed in detail in the later part of the section. The first simulation in the example will 

show why there is a need of servo action this is because with the use of servo allow us to 

design a controller which asymptotically follows the desired reference signal and discard 

the disturbance signal both are generated by known exo system and reducing tracking 

error to zero. The first example will depict this result by showing the error asymptotically 

going to zero which means that the output is tracking a reference signal generated by 

known exo system. The problem associated with conventional servo is the degraded 

transient performance it is because the addition of new states will tend to degrade the 

system’s transient response and it is addressed with the help of conditional servo 

mechanism. In the second part of this example it is shown that how conditional servo will 

compensate the problem of degraded transient performance. In the next part of the 

example we applied the inverse optimal stabilizing control to the given system and 

through various results it is shown that with the addition to stabilize the system the 

inverse optimal stabilizing controller will provide gain and sector margins which 

characterize robustness of the system. Thus, it will not only achieve the output regulation 
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(3.40) 

(3.42) 

but with some robustness. Finally, we will present the results of output feedback version 

by providing the state estimates through extended high gain observer (EHGO). The 

results of this example will provide the five-important conclusion that is the key to this 

thesis. First, in case of no servo action it will show that although the transient 

performance is good, but the steady state error will not decay to zero. Secondly, the 

results of servo action depict that by including the conventional servo-compensator the 

steady state error will be decayed to zero but with degraded transient performance. Third, 

we will make the servo-compensator as conditional one and for this scenario, the transient 

performance will get improved along with the zero steady-state error. Next, with the 

addition of optimal stabilizing controller it will achieve certain sector margin which will 

provide robustness to the system. Finally, the inclusion of EHGO converts the system 

from state feedback to output feedback without disturbing the robustness provided by the 

optimal stabilizing controller. 

 

Example 3.5.1: Consider the system which is given in the form of (3.1) given the 

following data. 

 

 ̇                        

 ̇                                    

 ̇     
                

                                   

 

 

Where   ,    are the external states while   is the internal state. It is required for the 

system’s output to track the reference signal           . So, the system matrix of exo-

system will be as,  

   *
  

   
+     (3.41) 

 

Before proceeding to servo design, we establish the stability of the internal dynamics (i.e. 

  equations). Selecting      
 

 
   be the Lyapunov function for zero dynamics. i.e. 

 ̇    . It follows that  ̇       . i.e. the system is shown to be minimum phase. First, 

we will consider the case that when there is no servo compensator and only stabilizing 

compensator is available to do the job. Consider the system given in example 3.5.1. 

Transforming the system into equation of the form (3.6) with the change of variables 

variable         , we get 

 

 ̇                                               

  ̇                                                                    

  ̇          
                    

              } 

 

with     and      [  ] .  

In the first part we will only apply the stabilization control without any servo 

compensator to show that the error is not going to zero. The stabilization controller that 

we are applying in simply by using state feedback stabilization method. Since the system 
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(3.43) 

is in normal for so the output feedback method guarantees stabilization of the system 

subject to without any parametric perturbations. The control law that is applied is  

 

          

 

Two cases are considered by changing the initial conditions. Figure 3.1 (a) will show the 

condition when the initial condition that are taken as       ,         and        , 

whereas the figure 3.1 (b) will show the response when the initial condition changed to 

      ,         and        . It is clear from both the figures although the 

stabilizing controller tries to achieve zero regulation error but due to time varying 

reference signal and the disturbance signal both generated by a known exo system the 

error did not go to zero. Hence it concludes that there is a need of servo compensator 

which will work along with the stabilizing compensator. 

 

 

Fig. 3.1(a): Tracking Error in case of No Servo Action [       ]. 
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Fig. 3.1(b): Tracking Error in case of No Servo Action [       ]. 

 

 

 

Fig. 3.1c: Reference Signal Generated by known Exo system. 

 

By looking at above figures it can be concluded that there is a need of servo compensator 

to achieve output regulation. The conventional servo compensator work well in this 

condition but with a problem of degraded transient performance i.e with the use of 

conventional servo compensator the regulation error tends to go to zero, but the transient 

performance is not addressed. A typical conventional servo compensator designed by 

solving regulator equation provided by (3.5) such that identity (3.5a) holds is given by 
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(3.44) 

(3.45) 

(3.46) 

(3.47) 

 

  
                     

      

 

The S matrix as defined in (3.5b.1) is given by 

  

[
 
 
 
 
     
     
     
     
           ]

 
 
 
 

   

  

where         and         .  

 

Hence the   matrix become 

  [

    
    
    

           

] 

with     the   matrix becomes  

  [

    
    
    
       

] 

and  

 

  [    ]   (3.48) 

 

To fulfil the requirement of Huwritzness the K matrix is designed by placing the eigen 

values in the left half plane. By placing the eigen values of         at     ,   ,      

and    the     matrix becomes 

   [              ]   (3.49) 

The conventional servo compensator is designed by using (3.5c) and (3.5d) and the 

control input   is taken as discussed in conventional compensator as 

 

   (
 

 
)  (3.50) 

Where, 

 
           (3.51) 

Where      is the stabilizing compensator that brings the trajectory to a manifold. The 

stabilizing compensator used in this case is the designed by simple state feedback 

stabilization technique. Here in this simulation we take the same stabilizing control as 

taken in the previous example so the   becomes 

                   (3.52) 

 

The initial condition remains the same as used in the previous example. Initial condition 

that are taken as       ,         and        .  
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Fig. 3.2: Tracking Error Performance Comparison of Conventional 

Servo and with No Servo Action. 

Fig. 3.3a: Conventional Servo. Plot of Reference Signal  “  ” vs System 

Output  “  ”. 
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Fig. 3.3b: Conventional Servo. Plot of Reference Signal  “  ” vs System 

Output  “  ”. 

 

Here in this case the figure 3.2  shows the tracking error performance comparison 

between the two-design when no servo action is applied to the system and when 

conventional servo is applied to it. It is visible that with the addition of servo compensator 

will help to achieve zero steady state error but with the expense of degraded transient 

performance. Although the tracking error goes to zero, but the transient performance is 

degraded in this case. That’s the problem that is faced in case of convention servo 

compensator. In the next part we will addressed this degraded transient performance with 

the help of conditional servo compensator. 

Fig 3.3a, Fig 3.3b shows the output signal comparison between the reference signal 

generated by the known exo system and the system output that is generated with applying 

conventional servo to the system. 

 

To address the problem of transient response a conventional servo is designed as a 

conditional one provided by (3.25) and (3.26) where a conventional servo is made as a 

conditional one i.e. that its servo-action is limited to certain region specified by the 

boundary layer  . In this way, instead of servo action remain active all the time, is 

activated only inside that boundary layer while it acts a bounded-input bounded-output 

system outside this boundary layer. Fig 3.4 shows the comparison between conditional 

and conventional servo design. It is can be verified that the conditional servo solved the 

problem of degraded transient performance. In case of conditional servo, the error goes to 

zero. Similarly, Fig 3.5 shows the output signal and the reference signal. Since the error is 

going to zero hence the output is tracking the refence signal. 
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Fig. 3.4: Tracking Error Comparison between Conditional Servo and 

Conventional Servo 

 
Fig. 3.5: Conditional Servo. Plot of Reference Signal  “  ” vs 

System Output  “  ”. 

 

The above figures prove the superiority provided by the conditional servo design. So far 

in this example the stabilizing control that was used is simple feedback stabilization 

which stabilizes the system but does not offer robustness and optimality i.e. more control 

effort is required to achieve regulation without robustness. The goal of this thesis is to 

introduce robustness and optimality in the output regulation problem and this can be 

achieved by the use of non-linear optimal controller. To address this problem the 
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(3.53) 

(3.54) 

(3.55) 

following section considers the same system but this time an optimal based stabilizing 

control is designed to show the robustness and optimal control provided by nonlinear 

optimal control. The optimal control methods developed by Kokotovic and some other 

researchers [10] that not only provide the optimal control but also guarantees sector 

margins  
 

 
    which characterize robustness of the system. A major handicap in 

designing such stabilizing control law is the solution of Hamiltan Jacobian Bellman 

(HJB) equation which is a partial differential equation and is difficult to solve. In order to 

solve that problem in this thesis we use an inverse problem i.e. an optimal stabilizing 

control is designed first and then prove to be optimal for the particular cost function, In 

this way the problem of solving HJB equation can be tackled. An optimal control 

designed by Sonntag’s [14] provides the sector margin  
 

 
    and under some condition 

it also provide the disc margins. The margins indicate the range of non-linearity that can 

be applied to system with which the system response would not be alter and here in this 

case the error asymptotically approaches to zero. It will be shown in the subsequent 

section how inverse optimal control achieve robustness and optimality in terms of applied 

control. For this we will consider another example to apply optimal stabilizing control. 

 

Example 3.5.2: Consider a system of the form (3.1) with the following data. 

 ̇                        

 ̇                                    

 ̇     
                       

                                   

 

Where   ,    are the external states while   is the internal state and b>0.      is the 

control input. In this case a sector bound nonlinearity is added in the control input to 

investigate the robustness in terms of sector margins provided by the nonlinear optimal 

based stabilization feedback controller. It is shown earlier in the previous example that 

the internal state is stable and is response goes to zero as time approaches to infinity. It is 

required for the system’s output to track the reference signal          and reject the 

disturbance signal both are generated by known exo system.  

Keeping in view of the performance of the conditional servo an additional extra 

disturbance signal is applied which is a constant signal from the exo system, the system 

matrix of exo-system will be as 

   [
   
   
    

] 

Consider the system given in example 3.5.2. Transforming the system into equation of the 

form (3.6) with the change of variables variable         , we get 

 

 ̇                                               

  ̇                                                                    

  ̇          
                  

              } 

with     and      [  ] . It is already shown in previous example about the 

stability of internal states by choosing an appropriate Lyapunov function. 
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The next task is to design an optimal stabilizing controller to stabilize the system. The 

optimal control methods designed by kokotovic and some other researcher [8] are used 

for designing optimal stabilization controller but an inverse approach is used just because 

solving Hamilitian Jacobian Bellman (HJB) equation is a difficult task. The method for 

finding this control law is discussed in chapter 2. 

For designing a control law using an inverse method first a (CLF) which is control 

Lyapunov function is required. For the given system we define a  Lyapunov function 

candidate which is given by, 

     
 

 
  
  

 

 
         (3.56) 

 

Where P matrix m x n is defined as  

⌈
      

      
⌉       (3.57) 

The Lyapunov function derivative is given by 

 

 ̇           
         

                                         (3.58) 

Taking                              (3.58) becomes 

 

 ̇     
         

     (3.59) 

Which is negative definite. According to definition regarding control Lyapunov function 

[10] any continuously differentiable positive definite function V ( ), if it has the property 

defined in (3.60),(3.61) it is said to be control Lyapunov function  

  

  
           (3.60) 

For which,  

  

  
           (3.61) 

In short if we know any stabilizing control law having a equivalent Lyapunov function V 

( ) then V ( ) is a control Lyapunov function or (CLF). The negative definiteness in 

(3.59) satisfying the property of control Lyapunov function. With the use of CLF an 

optimal stabilizing controller can be find out by using Sontag’s formula (2.18) for k>1. 

  

      
   

         
  √(   

         
 )

 
         

       
        (3.62) 

The cost function given by (2.17)  

 

  ∫  
 

 
              

 

     
          

 

 
   (3.63) 
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Where           ,             

       
   

         
  √(   

         
 
)
 
 (     )

 

(     )
 

The servo-compensator for this case will also little bit changed due to the addition of 

extra disturbance signal. The regulator equations will yield the matrix   as,  

 

  

[
 
 
 
 
     
     
     
     
            ]

 
 
 
 

  and    

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

             (3.64) 

 

The same procedure is followed as discussed previously to design a servo compensator 

but this time an optimal based stabilizing control is used to stabilize the system and to 

achieve the output regulation. The initial conditions are the same as used in the previous 

example and the disturbance signal is of magnitude 1. 

To fulfil the requirement of Hauritzness the K matrix is designed by placing the eigen 

values in the left half plane. By placing the eigen values of         at     ,   ,     , 

   and -2.5 the     matrix becomes 

 

   [                                              ]  (3.65) 

The        now becomes  

 

       

[
 
 
 
 

     
     
     
     

                             ]
 
 
 
 

  (3.66) 

 

So, applying optimal based conditional servo using the optimal based control law 

described in the previous example 3.5.2  

      (
 

 
)      (3.67) 

Where,                            

(3.68) 

 ̇                (
 

 
) 
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Fig. 3.6: Tracking error Comparison “  ” with Cond. Servo based on 

Optimal vs Simple Feedback Based Stabilization Controller     . 

 

     is the optimal based stabilizing compensator that is used to stabilize the system or to 

bring the trajectories to the zero-error manifold. Fig 3.6 shows the tracking error response 

comparison of the system when the feedback stabilizing control is based on inverse 

optimal control technique and simple feedback based stabilization control law is applied. 

The tracking error is approaching to zero contributing zero steady state error. Here in this 

case no parametric uncertainty is applied so far.  

 
 

Fig. 3.7: Stabilization Control Input Comparison Between Optimal 

vs Simple Feedback Controller     . 

 

Fig 3.7 shows the comparison between optimal and simple feedback stabilization control 

input when applied to the system. It can be seen that optimal based control uses lesser 

span of control input while that of other uses greater span of input that’s one of the 

advantage that we get with using optimal control law. With the same optimal based 

stabilization control is applied a parametric uncertainty is added in the control input to 

check the robustness of the system. Since the optimal based controller provides 

robustness to the uncertainty that belongs to sector  
 

 
    therefore a care is taken in 
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applying that uncertainty i.e. the uncertain term belongs to 1
st
 quadrant . Fig 3.8 shows 

the graph between the control input   and the perturbed control input     .  

 

 
Fig. 3.8: Parametric Uncertainty between control input   and the 

perturbed control input      

 

 
 Fig. 3.9 Tracking error “  ” with Cond. Servo based on Optimal 

Stabilization Controller      with the perturbed control input 
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 Fig. 3.10: Optimal Conditional Servo. Plot of Reference Signal 

“  ” vs System Output “  ” & disturbance Signal 

 

The above figure 3.9 shows the tracking error “  ” of Cond. Servo based on Optimal 

Stabilization Controller      with the perturbed control input        and in the presence 

of disturbance signal.  It is clear with the constant disturbance signal  provided, the 

sinusoidal reference signal is applied and the parametric uncertainty is applied the optimal 

based conditional servo achieve the zero-tracking error with the parametric uncertainty 

applied in the sector  
 

 
   , which shows the robustness provided by the optimal based 

stabilization controller. The optimal based stabilization controller also reduces the span of 

control input since it is designed to provide least control effort to achieve a stabilization 

task. It can be seen in Fig 3.7 that an optimal based controller uses lesser input signal than 

other conventional feedback controller. Fig 3.10 shows the reference signal and the output 

of the system which shows that as the tracking error asymptotically approaches to zero 

the output follows the reference trajectories produced by exo system and rejecting the 

disturbance signal of constant magnitude 0.5  produced by the exo system. Fig 3.11 

shows the system’s response when the same non-linearity is applied to the system whose 

stabilization controller is other than an optimal based controller. The figure shows that the 

tracking error is not approaching to zero which depict the non-robustness of the simple 

feedback stabilization controller and the robustness provided by the optimal based 

controller. Since the optimal based stabilization controller guarantees sector margins 

 
 

 
    and when the same non-linearity is applied to an optimal based controller it 

handled the uncertainty and achieve the zero-steady state error. This figure also verified 
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(3.69) 

(3.70) 

the idea provided by Kokotovic and some other researchers [10] which proves that to 

achieve asymptotic stability an optimal based controller also guarantees sector margins 

which characterize robustness of the system. 

 

 

 
 Fig. 3.11 Tracking error “  ” with Cond. Servo based on 

Feedback Stabilization Controller      with the perturbed control 

input         

 

The previous all designs were based on state feedback based conditional servo where all 

stated were available for the feedback. The following example will considers a practical 

case in which a single state which is the output is available for feedback so, the problem 

now transforms from state feedback-based control to the output feedback-based control. 

An EHGO is designed to transform the system from state feedback-based control to 

output feedback-based control. Since an HGO is not useful in this design because of the 

additional internal state which is to be estimate for that an EHGO is designed. The 

Extended Kalman Filter based Extended High Gain Observer is designed as discussed 

previously in section 3.3 for the system given by 3.55. For designing an EHGO first it is 

required to have an auxiliary system, the auxiliary system in this case is given by 

 

 ̇                                    

                                              ̇     

The complete EHGO which is based on Extended Kalman Filter EKF is designed by 

using the steps given in section 3.3 is given by 

 ̂̇    ̂   ̂      ̂   ̂      

 ̇̂   ̂  
  

 
    ̂   

 ̇̂   ( ̂    )
 
  ̂      ̂       

  

      ̂   

 ̂̇   ̇  
  

  
(   ̂ )   
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(3.71) 

(3.72) 

To implement Ricatti Differential equation for a non linear system the matrices       

and       is given by  

              

          
The gain matrix    is designed with the solution of Ricatti Differential Equation 3.33. The 

value of R and Q is chosen to be  

                   

The constants       and    are chosen such that the characteristic equation  

      
         

is Hurwitz. The constants are observer design constants that increase the observer 

performance. In this example the constants that are used are     ,      and      

and the performance constant         is chosen. With all these design parameters the 

output feedback based optimal stabilizing controller is given by 

 

 ( ̂)    
  ̂ 

 
        ̂ 

 
 √(  ̂ 

 
       ̂ 

 
)
 
 ( ̂   ̂ )

 

( ̂   ̂ )
 

 

 

 

 
Fig. 3.12: Tracking error “  ” with Cond. Servo based on State 

Feedback Optimal Stabilization Controller & Output Feedback 

Optimal Stabilization Controller 
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Fig. 3.13 Actual State “  ” and Observed State “ ̂ ”  

 

 

 

 

Fig. 3.14 Actual State “  ” and Observed State “ ̂ ”  
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Fig. 3.15 Output Plot between Reference Signal & System Output  

[               ]. 

 

 

Above figures shows the system’s response when an optimal based stabilizing control is 

based on output feedback design instead of state feedback design using EHGO observer 

i.e. now the states that are used to design the controller is estimated by Extended High 

Gain Observer. Fig 3.12 shows tracking error “  ” with Cond. Servo based on state 

feedback Optimal Stabilization Controller & Output Feedback Optimal Stabilization 

Controller. Similarly, Fig 3.13, 3.14 shows the comparison between actual States and 

observed state. From the above figures it is evident that by using EHGO the output 

feedback-based controller recovers the performance provided by state feedback design. 

Our next task is to investigate the robustness provided by optimal based controller with 

EHGO. 

 

Fig 3.15a: Parametric Uncertainty between control input   and the perturbed control 

input      
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Fig 3.16: Tracking Error with Cond. Servo optimal output feedback-based 

stabilization controller with perturbed control input      

 

The above figures show system’s response with the system is transformed from state 

feedback to output feedback and the resultant optimal control is subjected to parametric 

uncertainty with in sector  
 

 
   . It is evident from the figures that the robustness 

provided by optimal stabilization controller holds with EHGO. So, when the control is 

provided the states observed with EHGO the sector margins holds and the tracking error 

approaches to zero even with parametric uncertainty. 

 

3.6 Discussion and Conclusions 
 

This thesis is a twofold extension of previous work done by Attaullah Y. Memon et. 

al. [7] ,[22] in a sense that an optimal based output regulation is achieved which has two 

advantages. First it provides an optimal based stabilization control. A second advantage is 

that it not only provides optimal control but also provides sector margins which 

characterize robustness. The idea was first introduced in [22] but not applied to some 

examples. In previous work a Lyapunov redesign based stabilization controller is 

designed to achieve output regulation but for instance if the system is nonlinear and the 

requirement is to achieve output regulation when the system subjected to some parametric 

uncertainty in that case we have designed an optimal controller for output regulation 

problem which not only solve the problem of robustness when the system is subjected to 

some parametric uncertainty but also provides an optimal control to achieve output 

regulation. This work also proves the idea provided by Freeman R.A Kokotovic [8],[9] 

for the designing of non linear optimal controller that guarantees robustness in a known 

region. Apart from that it has also been verified on the other hand that conditional servo-

compensator is superior to the conventional servo-compensator which in a way provides 

the acknowledgement to the earlier work on the design conditional servo-compensator 

[5], [7]. The output feedback version is also implemented through simple High Gain 

Observer that recovers the performance of state feedback design very robust which proves 

the efficacy of the designs. 
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In the second phase the same design tool is applied to the system which itself posses 

internal dynamics. The system that is considered in such case is in Normal form and 

minimum phase. Representing the systems in normal form realizes that we can think of as 

cascade connecting subsystems. The same optimal based control is applied to the cascade 

structure for designing the stabilizing compensator and along with the conditional servo-

compensator, the combination works to solve the servo-mechanism problem very 

robustly. The same problem is extended to output feedback-based system where Extended 

High Gain Observer is used. The results of previous section prove the productivity of the 

design. Hence, it has been shown that to cater the problem of uncertainties which may 

arise in the system, the optimal based stabilization controller solves the problem robustly. 
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(4.1) 

Chapter 4 
 

OPTIMAL COND. SERVO – 

MECHANISM PROBLEM FOR 

MAGNETIC SUSPENSION SYSTEM 
In this chapter we consider the example of magnetic suspension system [20] to check the 

performance of an optimal output feedback based conditional servo compensator and to 

verify the robustness provided by nonlinear optimal controller. The rest of the chapter is 

described as follows. In Section 4.1 we discuss the mathematical model of magnetic 

suspension system along with its transformation into normal form and with change of 

variables the variable transformation is performed. In Section 4.2 an optimal feedback 

control is designed which solves the servo mechanism problem for magnetic suspension 

system and is followed by the output feedback version of the design using HGO in 

section 4.3. Section 4.4 consists of simulation results that validates our whole design and 

finally this chapter completed with the concluding remarks provided in section 4.5. 

 

4.1 Magnetic Suspension System Description  
 

A magnetic suspension system [20] shown in fig 4.1 consists of a ball of a 

magnetic material which is suspended by an electromagnet. The current of electromagnet 

is controlled by a feedback signal which is obtained from optically sensor that measures 

ball position. The equation of motion of ball is  

 

  ̈     ̇     
   

 

  (  
 

 ⁄ )
     

 

Where   is the mass of the ball,   is the viscous friction,   is the positive constant,   is 

the acceleration due to gravity,    is the inductance of electromagnet,    is an external 

disturbance force and     is the downward vertical position of the measured from the 

reference point    . To define equilibrium points let    is the nominal equilibrium 

point,  ̂ is the nominal mass of the ball at equilibrium condition and the corresponding 

value of current is    that is needed to maintain equilibrium condition. The following 

equation holds in the equilibrium state. 

 ̂   
    

 

        
      (4.2) 
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(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1: Magnetic Suspension System [20] 

 

To simplify model, the following variables are defined in [21]. Let 

   
    

  
 

   
 ̇

    
 

  
      

   
 

      

 

  ̇     

  ̇                          

 

The functions                   are defined as 

 

        
 ̂

 
*

       

             
+ 

 

               

  
 

   
 

     
  

     
 

 

It is required to balance a ball at a constant reference signal and to reject the known 

sinusoidal disturbance signal both are generated by known exo system. The constant 

reference signal to be tracked is denoted by    and the disturbance signal which is to be 

rejected is  

                

 

In order to generate these signals, the exo system designed is given by 
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(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

 ̇  [
   

    
   

] 

     [
  

 
  

] 

The constant reference signal to be tracked       and the disturbance to be rejected 

     . The transformation of the system with the change of variables is given by  

      -    

      

  ̇     

  ̇                               

 =   

The system 4.13 is transformed into a form where the system is converted into state 

stabilization problem. 

 

4.2 Optimal Conditional Servo Design 
 

In this section of thesis an optimal based conditional servo is designed and the designed 

control is then applied to a magnetic levitation system discussed above. Th simulation 

result are shown in the next section which validates our control design for a real-world 

problem. The results of simulation will provide the efficiency of our control design and 

will show how it can be used to overcome the problem of robustness in a real-world 

problem. In order to design an optimal based controller a conditional servo is designed 

first. A typical conditional servo compensator designed by solving regulator equation 

provided by (3.5) such that identity (3.5a) holds is given by 

 

  
                

 

The S matrix as defined in (3.5b.1) is given by 

  

[
 
 
 
 
     
     
     
     
           ]

 
 
 
 

   

  

where         

 

Hence the   matrix become 

  [
   
   
      

] 

 

with     the   matrix becomes  

  [
   
   
     

] 

and  
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(4.18) 

(4.19) 

(4.22) 

(4.20) 

(4.21) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

 

  [   ]  

 

To fulfil the requirement of Huwritzness the K matrix is designed by placing the eigen 

values in the left half plane. By placing the eigen values of         at     ,    and 

     the     matrix becomes 

   [          ] 
The conditional servo compensator is designed by using (3.5c) and (3.5d) and the control 

input   is taken as discussesd in conventional compensator as 

 ̇                (
 

 
) 

 

      ̃    (
 

 
) 

 

 Where, 

           

Where      is the stabilizing compensator that brings the trajectory to a manifold. The 

next task is to designed       as an optimal one. The next task is to design an optimal 

stabilizing controller to stabilize the system. The optimal control methods that are 

designed by kokotovic and some other researchers [8] are used for designing optimal 

stabilization controller but an inverse approach is used just because it is difficult to solve 

Hamilitian Jacobian Bellman (HJB) equation. The method for finding this control law is 

discussed in chapter 2. 

For designing a control law using an inverse method first a control Lyapunov function is 

needed in order to achieve sector margin [8]. For this system a Lyapunov function 

candidate is given by, 

 

  *
  
  

+ 

 

  *
 
 
+ 

 

  *
  
  

+ 

The Recatti inequality which is given by 

 

               

This equation hold only if          The control Lyapunov function for the nominal non 

linear system is given by 

       

For this levitation system the control Lyapunov Function becomes 

       

The Lyapunov function becomes 
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(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

 

             

where  =       &   =      . 

The negative definiteness condition (2.15) is satisfied with this condition. With the use of 

CLF an optimal stabilizing controller can be find out by using Sontag’s formula (2.18) 

     

{
 
 

 
 

   
     √      (         )

 

(         )
               

                                                                                }
 
 

 
 

 

 

Where             and                . The optimal stabilizing control       is 

given as  
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 (              )
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  ∫  
 

 
              

 

     
          

 

 

 

 

Where,                &  
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[
    

    (       (     ))  

√
    

           (     ) 
 
       (     ) 

 
] 

 

The specialty of this control law is that with this control law a sector margin of (1/2,∞) 

can be achieved. The simulation results provided in the section 4.4 will show how an 

inverse optimal control provides robustness this also proves the idea provided by 

kokotovic and some other researchers. 

 

 

4.3 High Gain Observer Design 
 

The previous all designs were based on state feedback based conditional servo where all 

states were available for the feedback. In this design a practical case is considered in 

which only output is available for feedback hence the problem now transforms from state 

feedback to the output feedback. Here in this case the information of only    is provided 
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(4.33) 

(4.34) 

(4.37) 

(4.35) 

(4.36) 

while the state    is missing. For this case  ̂  which is the observed state is found by using 

non linear high gain observer HGO an idea provided by Khalil.[20]. The observer 

designed is given by 

 ̂   ̂  
       ̂  

 
 

 ̂  
       ̂  

  
 

 

The values of    and    is chosen such that the roots of the polynomial equation  

          

lies in the left half of the plane, such that the polynomial equation is Hurwitz. The control 

law is now transformed from state feedback to output feedback. Hence the output 

feedback version of the optimal stabilizing controller is given by  

 

      
 

        
[
   ̂ 
   

 (   ̂           )

 √
   ̂ 
   

     ̂                            ] 

 

 

So the overall control is given as 

 

 ̇                (
 

 
) 

 

      ̃    (
 

 
) 

 

 Where, 

           

 

Now the term      which is the stabilizing compensator that bring the trajectories into 

zero error manifold is provided in (4.34). Once the trajectories enter into zero error 

manifold then the regulation takes the control and tracks the reference signal and rejects 

the difference signal. This is the practical scenario since the state    is not directly 

available for measurement. 

 

 

4.4 Simulations & Results 
 

This section of thesis will demonstrate the above discussed control mechanism when 

applied to a nonlinear magnetic suspension system with the help of simulation. The 

results of simulation will provide the efficiency of our control design and will show how 

it can be used to overcome the problem of robustness for a magnetic levitation system.  

The system described in (4.13) is given by 
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  ̇     

  ̇                               

 =   

 

           
 ̂
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Our goal is to track a constant reference signal and to reject the disturbance signal 

optimally and robustly. The output to be tracked is the position of the ball which is to be 

attained at a constant position. The following values are used in simulation  ̂  

  0.2kg,   0.001 ,   2 rad/sec,        ,         9.81 m/s,        

      Fig 4.2 shows the system’s response when subjected to optimal stabilizing control 

but the system is not subjected to any disturbance or reference signal. It can be seen that 

the stabilizing control stabilizes the system and (fig 4.3) shows the comparison between 

the two controllers one with simple feedback based stabilization controller and other with 

optimal control that minimizes the cost function. 

 

 

 
Fig. 4.2: Stabilization Controller Response without the action of exo-system. 
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Fig. 4.3: Stabilizing  Control Output      Comparison between Optimal and simple 

Feedback Based Controller which stabilizes the system  

 

Our task is to track the constant reference signal while rejecting the sinusoidal 

disturbance signal. Fig 4.4 shows the system’s response when a constant reference signal 

and disturbance signal is applied to the system. Clearly, the output is not tracking the 

reference signal and system’s response goes unstable. This clearly indicates that there is a 

need of servo compensator which brings the error back to zero achieving zero steady state 

error while rejecting the disturbance signal. On the other hand fig 4.5 shows the tracking 

error when the optimal based conditional servo is applied to the system and simple 

feedback based stabilizing controller is applied. It can be seen that the error 

asymptotically approaches to zero while in fig (4.6) the output which is the position of the 

ball tracks the constant reference signal in the presence of sinusoidal disturbance signal.  

 
Fig. 4.4: Tracking error without Cond. Servo Compensator  

 

On the other hand fig 4.5 shows the comparison between the tracking error when the 

optimal based conditional servo is applied to the system and simple feedback based 

stabilization control is applied . It can be seen that the error asymptotically approaches to 

zero with enhanced performance in comparison with simple feedback based stabilization 
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controller while in fig (4.6) the output which is the position of the ball tracks the constant 

reference signal in the presence of sinusoidal disturbance signal. Both are generated by a 

known exo system. In fig (4.7) the overall control input is plotted. Since the stabilizing 

compensator is optimal hence the control input can be seen here is optimal control which 

minimizes the cost function. 

 

 
 

Fig. 4.5: Tracking error Comparison  “  ” with Cond. Servo based on Optimal vs Ssimple 

Feedback Based Stabilization Controller     . 

 

 
Fig. 4.6: Conditional Servo. Plot of  System Output  “  ”. 
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Fig. 4.7:  Optimal Output regulation Control Input u. 

 

The optimal control methods that are developed by Kokotovic and some other researchers 

guarantees stability margins under certain conditions. Hence our next task is to check the 

robustness of the system. The robustness is checked by applying parametric uncertainty 

which lies in the sector (1/2,∞). Fig 4.8 shows the uncertainty that is applied to the 

magnetic suspension system to check the robustness provided by inverse optimal 

controller. Fig 4.9 shows that with the perturbed control input that lies in the sector 

(1/2,∞) the optimal stabilization controller sustains the uncertainty and the magnetic 

levitation system achieves zero steady state error and the output shown in figure 4.10 

asymptotically tracks the reference signal. The results of  it satisfies that the proposed 

control law achieves optimality and robustness in the presence of parametric uncertainty. 

 

Fig 4.8: Parametric Uncertainty between control input   and the perturbed control 

input      
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Fig 4.9: Tracking Error with Cond. Servo optimal output feedback-based 

stabilization controller with perturbed control input      

 

 

 
Fig. 4.10: Output Plot between Reference Signal & System Output 

 

 

The previous all designs were based on state feedback based conditional servo where all 

stated were available for the feedback. In the next part we will consider a practical case in 

which only output is available for feedback hence the problem now transforms from state 

feedback to the output feedback. Here in this case the information of only    is provided 

while the state    is missing. For this case  ̂  which is the observed state is found by using 
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non linear high gain observer HGO an idea provided by Khalil.[20]. The observer 

designed is given in section 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Actual State “  ” and Observed State “ ̂ ” 

 

 
Fig. 4.12: Output Plot between Reference Signal & System Output  
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Fig. 4.13: Tracking Error “  ” based on output feedback based optimal Output 

regulation 

 

Above figures shows system’s response when the optimal based stabilizing control is 

based on output feedback design instead of state feedback design using HGO observer i.e. 

now the states that are used to design the controller is estimated by High Gain Observer. 

Fig 4.13 shows tracking error “  ” with Cond. Servo based on state feedback Optimal 

Stabilization Controller & Output Feedback Optimal Stabilization Controller. Similarly, 

Fig 4.11 shows the comparison between actual State    ”  and observed state  ̂ . The 

output of the system asymptotically tracks the reference signal as shown in fig 4.12. From 

the above figures it is clear that with the use of HGO the performance provided by state 

feedback design is same as we get with output feedback-based controller by using HGO. 

By the choice of design parameters it recovers the performance as we get with output 

feedback based controller. 

 

The conditional servo control based on inverse optimal stabilization controller which is 

discussed in the previous chapter is applied to magnetic suspension system. Through 

suitable variable transformation the magnetic suspension system is converted to a form 

where conditional servo can be applied. The optimal based stabilization control an idea 

provided by Freeman R.A Kokotovic [8], [9] for the designing of nonlinear optimal 

controller that guarantees robustness in a known region is used for stabilizing 

compensator. The whole control law i.e. stabilizing + servo compensator is applied to a 

magnetic levitation system in order to achieve regulation. The simulation results verify 

that the optimal based conditional servo control law for magnetic levitation system not 

only achieve regulation but also provides optimality with respect to cost function and the 

robustness in terms of sector margin. 

 
4.5 Discussion & Conclusions 
 

In thesis we focus on the solution of the servo-mechanism problem for a certain class of 

nonlinear system with the principle objective to show optimality and robustness. In our 

approach we utilized the idea of conditional servo-compensator provided by Attaullah 

Memon [7], where the Lyapunov Redesign method is used to design a stabilizing 

compensator. The optimal based stabilizing compensator is designed using an approach 
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developed by kokotovic and other researchers [8], [9] and [10] and is then integrated with 

conditional servo based design.. Finally realizing a real world scenario where all states 

are not available for feedback the output feedback based design is implemented with the 

use of HGO and EHGO [11]. This work is the extension of earlier work of Attaullah 

Memon [22]. 

 

We start our discussion with the introduction in chapter 1 followed by some preliminaries 

in chapter 2 that are necessary to illustrate the concept involved in the understanding of 

whole work. The problem of optimal conditional servo was formulated in chapter 3 in 

which we considered a nonlinear system when it is desired to have regulation optimally 

and robustly. We have provided an extension to the reference work [7], [22] in a sense 

that the stabilizing compensator of the conditional servo-compensator design is designed 

using the technique of Inverse Optimal Control and applied to a nonlinear system. With 

this we are able to achieve optimal output regulation but also some sector margins that are 

used to characterize system’s robustness. . The output feedback version of such design is 

implemented by the simple Extended High Gain Observer (EHGO). The simulation 

results provided at the end of that chapter proves the efficacy of the design. 

 

In chapter 4, we have applied our approach developed in the chapter 3 to the practical 

nonlinear system known as magnetic levitation system. Through suitable variable 

transformation the magnetic suspension system is converted to a form where conditional 

servo can be applied. 

Once, the system is transformed into the normal form, we have shown that our approach 

of optimal based conditional servo-compensator can be applied which yields robust 

results. Both the state feedback designs as well as the output feedback designs using 

EHGO are implemented and the results are shown at the end of Chapter 4. 

Our observation during the whole design process is that the optimal based control design 

technique requires to solve a famous equation namely Hamilton Jacobean Bellman 

Equation (HJB) a partial differential equation which is a very complex task to solve if the 

system is of higher order. An Inverse approach developed by Kokotovic and other 

researcher is applied which is called an inverse optimal control which is used to solve 

optimal control problem which exempt the requirement for solving the HJB equation. In 

inverse approach an optimal stabilizing control is designed first and that control is then 

shown to be optimal for particular cost function. The desire of particular cost function is 

achieved by designing the control law first and checking the cost so by changing a control 

lyapunov function we were able to achieve the cost function. 

This research can further be extended by incorporating some new control design 

techniques like sub optimal control through which the cost can further be minimized. 

Furthermore, a promising direction would be to extend this approach towards the non-

minimum phase systems subjected to the control constraints, defining their operation 

region and increasing their region of attraction to making the design work globally. 
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