
Performance Analysis of Self Organized Load Balancer

Webservers over Virtualization and Dockerization Technologies.

Submitted by:

Muhammad Shakeeb

00000118198

Supervised by:

Dr. Bilal Muhammad Khan

THESIS

Submitted to:

Department of Electronic and Power Engineering

Pakistan Navy Engineering College, Karachi

National University of Sciences and Technology, Islamabad, Pakistan

In partial fulfillment of requirements for the award of the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Specialization in Communication

P a g e | 2

P a g e | 3

P a g e | 2

P a g e | 3

ACKNOWLEDGMENTS

All praise and thanks to the Almighty ALLAH (SWT) whom we seek help and guidance for

sustenance. I would like to express sincere gratitude to my advisor Dr. Bilal Muhammad Khan for

his patience, motivation, and continuous support for my Master’s study and his wise reproach to

complete related research. His timely guidance helped me in writing of this thesis. He helps me

with his insight knowledge and enlightening me the first glance of my research, understanding the

subject and facilitating with in completing this thesis. I could not have imagined having a better

mentor and advisor for my Masters than him hence, highly grateful to him for his kind support in

all phases of research. Besides my advisor, I would like to thank and appreciate my thesis GEC

members: Dr Ali Hanzala Khan and Dr Sajjad Haider Zaidi for their insightful encouragement and

comments, but also for the question which incented me to widen my research approach from

various perspectives and implementation. Last but not the least, I would like to thank my family:

my parents, brother and my sister for supporting me spiritually throughout my research and writing

this thesis.

P a g e | 4

ABSTRACT

Self-organize and load balancing of computing system is one of the emerging research area.

Despite of having robust infrastructure; several organizations still face system downtime due to

hardware failure, high load, memory exhaustion and network choking. The best way to avoid

downtime is to have the ability to predict and analyze the behavior of link and infrastructure. This

paper presents an experimental implementation and evaluation of load balancing using HA-Proxy

as a software-based load balancer and a proactive approach for self-organizing of web systems

using certain algorithms in case of system failure over virtualization. We are using Network

function virtualization using XenServer that provides the ability to take network and traffic

management. Furthermore designing a system using Docker container technology a containerized

software which runs as same regardless of the environment and analysis its response time with

respect to virtual technology. However, making sure that achieving such centralized system is not

a trivial task as it raises various issues relating to network control, system management, data

security, package requirements, routing and data migration.

P a g e | 5

Table of Content

ACKNOWLEDGMENTS .. 3

ABSTRACT .. 4

LIST OF ACRONYMS .. 10

CHAPTER 1: INTRODUCTION ... 13

1.1 Problem Statement .. 13

1.2 Overview ... 13

1.3 General Background .. 14

1.4 Thesis Approach .. 15

1.5 Thesis Challenge: .. 15

1.6 Thesis Organization... 16

CHAPTER 2: LITERATURE REVIEW .. 17

 VIRTUALIZATION ... 17

 DOCKERIZATION... 19

 Virtual Machine Vs Docker Container .. 21

 Load Balancer with HA-Proxy .. 22

 Algorithms used with HA-Proxy Load Balancer .. 24

2.5.1. First alive .. 24

2.5.2. Hash .. 25

2.5.3. Least connections ... 25

P a g e | 6

2.5.4. Weighted least connections .. 25

2.5.5. Round robin .. 25

CHAPTER 3: EXPERIMENTAL ANALYSIS OF LOADBALANCER WEBSERVERS

OVER VIRTUALIZATION ... 26

3.1. System Design ... 27

3.1.1. Xen Server .. 27

3.1.2. Xen Remote Management .. 28

3.1.3. Xen Virtual Network .. 28

3.2. Load Balancing Using HA-Proxy on Virtual Machine. 30

3.3. Experimental Analysis with or without using Load Balancer. 34

3.3.1. Web stress test using single webservers (Host-1) .. 36

3.3.2. Web stress test over Host-2 with a memory to 1024MB 39

3.3.3. Web stress test over load balancer using two 512MB webservers. 42

3.4. Virtual Machine Experimental Comparison: ... 44

3.5. CONCLUSION: .. 44

CHAPTER 4: EXPERIMENTAL ANALYSIS OF LOAD BALANCER WEBSERVERS

OVER DOCKERIZATION .. 45

4.1. System Design ... 47

4.1.1. Docker Registries ... 47

4.1.2. Docker Containers .. 47

P a g e | 7

4.1.3. Docker Image ... 47

4.2. Load Balancing Using HA-Proxy on Containers .. 49

4.3. Self-Organizing of Web Container before Service Degradation. 51

4.4. Experimental Analysis of Load Balancer .. 55

4.4.1. First Scenario.. 57

4.4.2. Second Scenario ... 59

4.4.3. Third experiment .. 61

4.5. Self-Organizing of Web Container before Service Degradation. 63

CHAPTER 5: CONCLUSION ... 64

5.1 Conclusion ... 64

5.2 Future Recommendations .. 64

References ... 65

P a g e | 8

FIGURES

FIGURE 1: LOAD BALANCER AND SERVER FARM .. 23

FIGURE 2: XEN ARCHITECTURE .. 27

FIGURE 3: XEN REMOTE MANAGEMENT INTERFACE .. 28

FIGURE 4: XEN VIRTUAL NETWORK ARCHITECTURE ... 29

FIGURE 5: LOAD BALANCING USING HA-PROXY .. 30

FIGURE 6: SINGLE 512MB VM OVER LOAD BALANCER ... 36

FIGURE 7: RESPONSE TIME WITHOUT LOAD BALANCING SERVER WITH 512MB 38

FIGURE 8: SINGLE 1024MB VM OVER LOAD BALANCER ... 39

FIGURE 9: RESPONSE TIME WITHOUT LOAD BALANCING SERVER WITH 1024MB 41

FIGURE 10: LOAD BALANCER USING ROUND ROBIN ALGORITHM OVER VM ... 42

FIGURE 11: RESPONSE TIME WITH LOAD BALANCING SERVER ... 43

FIGURE 12: VM EXPERIMENT COMPARISON .. 44

FIGURE 13: DOCKER CONTAINER ARCHITECTURE .. 46

FIGURE 14: FLOW CHART OF SELF-ORGANIZED WEB CONTAINER ... 54

FIGURE 15: RESPONSE TIME WITH 512MB SINGLE CONTAINER .. 58

FIGURE 16: RESPONSE TIME WITH SINGLE 1024MB CONTAINER .. 60

FIGURE 17: HA-PROXY ARCHITECTURE FOR CONTAINER ... 61

FIGURE 18: RESPONSE TIME OF LOAD BALANCING CONTAINERS .. 62

FIGURE 19: CONTAINERS EXPERIMENTS RESULT .. 63

file:///E:/Shakeeb/nust/ThesisWorkingFinal/Thesis_MuhammadShakeeb_MSEE_Comm2015-NEW.docx%23_Toc529122659
file:///E:/Shakeeb/nust/ThesisWorkingFinal/Thesis_MuhammadShakeeb_MSEE_Comm2015-NEW.docx%23_Toc529122660
file:///E:/Shakeeb/nust/ThesisWorkingFinal/Thesis_MuhammadShakeeb_MSEE_Comm2015-NEW.docx%23_Toc529122662

P a g e | 9

TABLES

TABLE 1: DIFFERENCE BETWEEN VM AND DOCKERS ... 22

TABLE 2: VIRTUAL MACHINE CONFIGURATION TABLE ... 29

TABLE 3: RESPONSE TIME WITHOUT LOAD BALANCING 512MB SERVER ... 38

TABLE 4: RESPONSE TIME WITHOUT LOAD BALANCING 1024MB SERVER ... 41

TABLE 5: RESPONSE TIME OVER LOAD BALANCER .. 43

TABLE 6: HOST MACHINE CONFIGURATION TABLE .. 49

TABLE 7: DOCKER STATS CONTAINER TABLE .. 49

TABLE 8: RESPONSE TIME SINGLE 512MB CONTAINER .. 58

TABLE 9: RESPONSE TIME SINGLE 1024MB CONTAINER .. 60

TABLE 10: RESPONSE TIME WITH LOAD BALANCING CONTAINERS ... 62

P a g e | 10

LIST OF ACRONYMS

 Abbreviation Meaning

VM Virtual Machine

VMM Virtual Machine Monitor

LVS Linux Virtual System

HA High Availability

RAM Random Access Memory

UML User-mode Line

CaaS Containers as a Service

PHP Hypertext Preprocessor

CMS Content Management System

SaaS Software as a Service

CLI Command Line Interface

SCP Secure Copy

LXC Linux Containers

lmctfy Let Me Contain That For You (virtualization)

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

CPU Central Processing Unit

P a g e | 11

BSD Berkeley Software Distribution

API Application program interface

PaaS Platform as a Service

IT Information Technology

OS Operating System

NIC Network Interface card

ab Apache bench

MB Megabytes

ms Milliseconds

MHz Megahertz

MiB Mebibyte

cgroups Control groups

TCP Transmission Control Protocol

UDP User datagram protocol

IaaS Infrastructure as a Service

P a g e | 12

PUBLICATIONS

Refereed Conference Papers

Muhammad Shakeeb, and Bilal M. Khan, “EVALUATING AND EXPERIMENTAL

ANALYSIS OF LOAD BALANCER AND SELF ORGANIZED WEBSERVERS USING HA-

PROXY”, 3rd International Electrical Engineering Conference (IEEC 2018)

P a g e | 13

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

The main problem: Why I select this topic?

• High Web Traffic causes system high load

• Due to high response time customer get frustrate due to slow browsing

• Due to congestion and choking system failure chances may increase

• If we bought special dedicated hardware than the cost may increase.

• If any disaster arises than it is very difficult to build same exact environment and it causes

high down time

1.2 Overview

World is a ground of daily happening disasters and in past some decades global climate change

increases the severity of both Human, Infrastructure and Economic losses. Disasters either natural,

environmental or manmade can lead to an expensive service disruption. The key obstacle to any

response is communication and collaboration support therefore provisioning of real time data to

base station is always needed. Communication System in any location always effected by incidents

while the occurrence of incident cannot be predicted and its impact can widely be felt due to its

high utilization in such conditions either accessing internet, standard mobile phones, landline

telecommunication and even satellite-based communication devices which is critical to survival,

security and safety of the world.

“When Disaster arise, Communication saves life “

P a g e | 14

Communication System is the key for efficient business operations which provides path and

services between users, applications, processes. Due to high reliability and automation most of the

organizations are adopting different technologies and certified standards to keep their

infrastructure reliable and ensure system continuity to run business smooth. Several organizations

run business 24 / 7 and due to these continued operations enterprise solutions is required to

determine its ability to deal with natural, potential or man-made errors. These solutions helps

through creating an effective disaster recovery plan that can enable minimizing disruptions to the

infrastructure, and quickly restore operations to normalcy. Noting extensive and potential benefits

many of researchers, scientist and Engineers are working to build algorithms and develop scalable

system for on time organizing and healing of network. Despite of having robust infrastructure;

several organizations still face system downtime due to hardware failure, high load, memory

exhaustion and network choking.

1.3 General Background

The development of an intelligent system is not a trivial when life threatening situation may

involve therefore researchers are working to develop Self-organized system to up this world. Load

balancing of a system is a way to effectively handle traffic where there is high volume of users

accessing the system, information delivery and shift traffic to such location where there is service

availability is normal. It also helps to decrease on site recovery, reducing load times and

accessibility problems. By properly and evenly distributing traffic to more than one system

organizations can improve response time and network throughput.

P a g e | 15

1.4 Thesis Approach

To the best of knowledge, there is not much research carried out in the field of communication

especially related to Cloud Computing and Self-Organized web servers in Pakistan and this is one

of reason of working in this domain. It is also important to note that such system which is

responsible to handle high traffic when required is in demand for most of the organizations who

don’t want to invest much on infrastructure and trying to reduce cost. The proposed thesis would

try to overcome these issues and provide a suitable solution that can work efficiently with less

human intervention and gives better output.

Initially, we discuss about Load Balancer and its different algorithms using HA-Proxy. The

purpose behind that study was to know the reason that which algorithm is most suitable whose

response time is low over Virtual machines or Docker as a Container Technology and why. After

System Load Balancer design, a simulations for self-organize Web Servers and Containers.

1.5 Thesis Challenge:

The major challenge of proposed thesis analyze the behavior of Single Host and multiple host over

load balancer and to check the response time after catering all client request. 2nd major challenge

is to develop such environment where main host predicts the behavior of the traffic and generates

alert if there is high system memory / load after that system organize itself automatically without

human intervention by adding extra host to balance the traffic and system utilization.

P a g e | 16

1.6 Thesis Organization

The study comprises of the following sections.

 Chapter 2 consists of an introduction to hypervisor virtualization technology and

Container. It also presents a detailed introduction, of HA-Proxy with Load Balancing

algorithms.

 Chapter 3 deals with the Experiment analysis of Load balancer and Self-Organize system

over virtual machines.

 Chapter 4 discusses about Docker container and evaluate load balancer over it. Similarly

develop an algorithm to organize container if there is high load.

 Chapter 5 finally, concludes experimental results and propose the future work directions.

P a g e | 17

CHAPTER 2: LITERATURE REVIEW

Following chapter provides an insight on the fundamental concepts of Load Balancer. The chapter

also discusses the terminology Hypervisor with Virtualization and Container. The chapter also

explains various algorithm of HA-Proxy as Load Balancer.

 VIRTUALIZATION

Virtualization is the most effective technology to work with in the distributed environment and to

feel exact real environment these virtualization is developed [1]. For the system development it

embeds a preproduction site and offers developer machines a real runtime system development

environment [2], [3]. Thus, this technology allowing dynamic allocation of software and hardware

and made system development lifecycle flexible. To build, test and integrate a complex system

virtualized environment is always needed [4], [5], and [6]. However, to setup such virtualized

environment it requires skilled IT staff having knowledge and good understanding to build,

installation and configuration [7] and keeping in mind about wide range of technologies including

its operating systems, application, infrastructure and network services. Therefore virtualization

makes integration much harder into production environment [1].The biggest issues with the

virtualization despite of managing all is resource utilization and operational overheads, which

makes it less adoptable [8]. Virtual Machine may act as a logical server and can be hosted in

physical machines which have complete isolation from the main server as it runs its own instances.

Each virtual machine act as a real machine having its own tools, software’s, users and network

configuration. Virtualization allows users to create virtual environment of a resource, Such as

P a g e | 18

storage devices, operating System, network firewalls and private cloud servers. Virtualization is

the combination of hardware and software that creates an abstraction layer that enables multiple

operating systems to run on (single computer hardware) same physical platform [24].

Virtualization framework helps system resource to divide it in one or more executable

environments [9]

Architecture of Virtualization has two major components:

 VMM a Virtual Machine Monitor also called Hypervisor

 VM a Virtual Machine where you install the operating system

The virtual machine monitor is a software responsible to run VM also called guest operating

system or a guest computer. It controls and responsible to translate system hardware and virtual

machine within the virtualization technology [10]. These can be classified in two types: A Bare

metal hypervisor which is also knows as Type 1 hypervisor that runs directly on the hardware of

host without the need of OS on a host. Second, hypervisor a Type 2 runs on top of host operating

system and loads higher level VM.

A Virtual Machine is like an independent operating system that behaves as a separate computer

[21] generally, every VM has its own environment, operation system, applications, libraries,

utilities and system binaries. Virtualization usually requires storage, processing capacities and

bandwidth.

P a g e | 19

A large system is required, if multiple host need to be run [11]. The reason of introducing

virtualization in system is the features provided by it which has attracted the attention of both

academic and industrial bodies. Several works have been done on both system virtualization and

virtualized networks [10]. The technologies available such as VMWare, Virtual Box, UML and

Xen. VMMs includes VMware server/ESX server [29], User Mode Line [30] and Citrix Xen

Server [30, 25]. VMware provides virtualization for both Linux and windows based architecture.

VMware is a well-known commercial product used in production environment. Para virtualization

present a modified interface having a new architecture for the interface of guest OS. Xen is a para

virtualized virtual machine monitor that supports Berkeley Software Distribution (BSD) and a

Linux based OS. UML also supports virtualization but have low speed than Xen VMM; therefore,

in this paper XenServer is used which is configured on Physical Machine and to monitor it we will

use Xen virtual machine monitoring app. In the rest of the research, VM and Virtualization

terminology represents Type 2 hypervisor and this category as architecture is comparable to

Dockerization.

 DOCKERIZATION

Linux based operating system offers portable, lightweight and high performance containers as

compare to virtualization. Linux kernel has a feature called Control Group which helps to isolate

the resource usage and name space that allows independent containers to run with in single OS.

The cgroups is used by the Docker as isolation feature helps in avoiding overhead of start and

stopping VMs. UNIX introduced chroot command in the year of 1979. Later in the year of 1988,

jail is introduces by FreeBSD that extends from chroot. After few years Solaris 10 introduces zones

P a g e | 20

which extends the capabilities of chroot and these zones extends further to become Containers in

Sun Solaris 11.

Linux introduces LXC that uses user space interface as containment functionality for Linux Kernel

and can be easily manage through API and CLI tools [35]. Each application packed with of

independent network, memory, files, binaries and system libraries which act as an independent

container. The Container Engine manages these containers as they are extent from OS Kernel and

share same OS in a fraction of size and allowing hundreds of containers within a single OS. The

container can be deployed in two modes either LXC or as a Docker.

 Docker a container technology designed to run a single application per container. LXC offers

containers that are lightweight and work like a virtual machines where user may login and install

its own application. Container is known with OS-level virtualization [19] because virtualization

user space is on top of OS kernel. These containers allow multiple isolated user space system to

run on a single host [19]. Popular containers technologies available such as OpenVZ and systemd-

nspawn, LXC, lmctfy, Warden [19], [20].

An open source engine Docker is developed by Docker Inc formerly known dotCloud. Docker is

an example of container virtualization and its process known as Dockerization. Linux Kernel

feature cgroups and namespace is the base of Docker and its engine helps to automate the

deployment of applications into Containers [19]. Two major classification of these containers are

as below:

 Complete operating system which runs all processes like: sshd, init, cron and syslog is a

categorized as System Container

 Containers which runs on application is categorized under Application Container [20].

P a g e | 21

These containers can be used under different circumtances. Each container is completely isolated

and having own file system, storage, stack, networking, resource utilization and its management

which helps to run multiple containers on a single host [20].

 Virtual Machine Vs Docker Container

Cloud platforms such as Amazon, Digital Ocean, Vultr, and Google Cloud Engine makes virtual

machines runs many platform, software and infrastructure related services which are available for

the customers to use for their desired requirements. PaaS and SaaS providers are built on IaaS

builds on virtual machines and used by cloud services therefore it is very crucial component to

manage the workloads on these virtual machines.

In cloud computing container presents an alternative solution to these virtual machines, these

Docker a container based virtualization is used for faster functionalities [37].As compare to virtual

machines, start and stop the container is much faster.

Virtualization was born out of need to use multiple OSs on a single hardware and main motivation

behind is was to reduce cost of maintaining hardware servers and take economic benefits of

running multiple isolated workloads on a single machine. Whereas Docker was born out to of need

to abstract out an application’s encompassing eco system (OS, Network Stack, CPU, Software

modules etc.) so that an application runs in a predictable way in all the environments (Development

P a g e | 22

/ Staging / Production etc.). Container Technology popularity increases due to a lot of factors. As

any complex application can be containerized so it is very Flexible, similarly you can update

upgrade the deployments so simply called having functionality of Interchangeable. Further Table

No.1 summarizes basic difference between Docker container and these virtual machines.

Table 1: Difference between VM and Dockers

S.No. Virtual Machine Docker Container

1 Host virtual machine runs on a physical
machine and guest operating system is
loaded in its memory.

Guest’s shares same host operating system,
This guest is loaded in host physical
memory.

2 Guests and host can communicate
through network devices, may be
software.

Communication between host and guests is
through sockets, bridges network and pipes.

3 More overhead due to its complexity. it is light weight so a less overhead

4 Security depends on the hypervisor. Lacks security measures

5 Libraries and files are not possible to
share in virtual machines

File sharing is possible in Docker container
either using SCP or Linux utilities

6 Booting of operating system takes
much time

Faster booting.

7 Uses much memory as it needs to store
complete operating system of each
guests.

Less memory usage as it shared host’s
operating system

 Load Balancer with HA-Proxy

Social media popular websites like Facebook, twitter etc. have a huge number of users and need

to be served in real time which causes high load on server due to server limitations response time

increases so instantly some time causes server downtime. Number of factors is responsible for

P a g e | 23

service degradation and sometimes leads to system failures. To maintain the service and up

response, multiple servers must be provided to prevent bottlenecks and allowed to forward the

client requests to the backend servers to handle them which helps to full fill all client request. To

handle this a load balancing system is required. Web Load balancer receives user requests and is

responsible to distributes to multiple defined backend servers. Load Balancing of network, web

can be implemented with either dedicated hardware, software or a combination of hardware and

software both. HA-Proxy is a well-known software based load balancer used with Linux Operating

system. In IT industry high availability refers to a system that is always available and in active

operational mode for continuous delivery. Different layers works together to provide service

availability [22]. User requests are dispatched using load balancing policies defined in load

balancer to end servers. Cluster of Load Balancer consists of the main load balancer server and a

server farm which is behind this load balancer

Figure 1: Load Balancer and Server Farm

P a g e | 24

Load balancer distributes user’s traffic to one of the server which is available in zone defined in

the configuration. Vendors like Cisco makes hardware devices which is dedicatedly designed to

handle the users request as fast and efficiently as possible [23]. In this research HA-Proxy an open

source Linux based load balancer is used.

 Algorithms used with HA-Proxy Load Balancer

Load balancer using HA-Proxy uses a number of algorithms whose aim is to minimize the

imbalance between different servers and distribute the load among in an optimal way. Load

balancer supports several algorithm which includes: first alive, hash, round robin, least

connections, weighted least connection and weighted round robin. These all are different policies

used with respect to the system requirement.

2.5.1. First alive

This algorithm uses primary and secondary as a backup server concept. First server defined in the

member list in HA-Proxy configuration is the Primary server similarly the secondary servers are

next servers in the list. First alive algorithm checks health state of first server if it is up it will

forward all the traffic to primary server and if the health state of the primary server is down, the

data power service forward all connections to the subsequent servers.

P a g e | 25

2.5.2. Hash

HTTP header and the IP address of the user is the basis for server selection in this algorithm. This

feature is only available for web Service proxy and Multi-Protocol Gateway. Hashing algorithms

cannot ensure evenly distributed connections. [9]

2.5.3. Least connections

This algorithm stored a detail of all the online servers and its connections and is responsible to

forward new connection request to the server which has less active connections. [9]

2.5.4. Weighted least connections

This type of algorithm helps to maintain and generate the list of application servers which has

active numbers of user connections. On the basis of the number of active connections new

connections request is forwarded to desired servers. It utilizes much computation time so

increasing response time therefore known as slow algorithm.

2.5.5. Round robin

Round robin algorithm is known with its name as it is depends on the list of servers defined

in HA-Proxy configuration. This algorithm utilizes the concept of forwarding a new client

connection request to the next backend server in configuration list [9].

These algorithms can work along with more feature either using with weighted or non-weighted.

In weighted it checks server with higher weights and sent the request to that server who has a

higher weight. In non-weighted this algorithm assumes the capacity of existing servers defined in

group are equivalent so transfer all request equally to all servers therefore it usually known for

faster than weighted algorithms.

P a g e | 26

CHAPTER 3: EXPERIMENTAL ANALYSIS OF

LOADBALANCER WEBSERVERS OVER VIRTUALIZATION

This chapter discusses in detail the technology used for virtualization hypervisor, to support

service availability a load balancer is needed which requires two or more servers. A load balancer

receives traffic from external sources and distributes these requests to multiple defined load

balancer servers. Our design consists of two virtual webservers and on top of it a load balancer.

The ability to run such infrastructure having elements VMs and a Virtual machine monitor, Several

software appliances around for a long time that supports to view, monitor and manage multiple

virtual machines with a single host. In this research Xen an open source Virtualization Technology

is used to host Linux OS [25]. Network performance, measurement and quality of a service can be

achieved by the hardware probes of the system. However special configuration of network

monitoring system is needed that runs on all gateway services on single physical machine. Usually

hardware probe work around system clock and reports it to monitoring system with these probe

results in real time in order to fully maintain quality of service and system production [26].

In any communication environment availability of the network is highly required. This

performance factor of network availability can be determined by analyzing the connectivity of

end-to-end process flow. To test network connectivity ARP and ICMP packets are sent to test and

diagnose the network connectivity [27]. The aim of the proposed algorithm is to gather information

from multiple sources using network utilities and later on using algorithm including from the point

of incident and make effective decisions including shifting of the network traffic from one VM to

other VM in case of any disaster or system degradation. Moreover, the proposed algorithm

provides a unique solution and work on all such physical machine [28].

P a g e | 27

3.1. System Design

System configuration may vary according to the hosting of virtual machine. In this research three

virtual machines created that is hosted on single physical machine and managed by Citrix Xen

management and monitoring tool.

3.1.1. Xen Server

To implement network virtualization at least two separate physical machines required one having

Xen Server installed, and the other to run the Xen monitoring tool i.e. Xen App. This paper uses a

system with multiple core enabled with 64bit server-class machine to allow virtualization [32]

[25]. Xen machine has xen-enabled kernel with an optimized Linux partition which is responsible

to controls the interaction and its communication between virtual devices and the physical

hardware [33].

Figure 2: XEN Architecture

P a g e | 28

3.1.2. Xen Remote Management

Xen App is installed on any supported operating system. It enables secure, remote access of Xen

Hosted server. Through Citrix Xen app a remote management tool is used to install the virtual

machine in Xen Hosted Server [34].

3.1.3. Xen Virtual Network

Xen enabled kernel creates virtual network, virtual interfaces like network interface cards for VMs

and these Virtual network interfaces are bridge to real interface using Linux system utilities.

Virtual machine has its own identity usually defined by the user which allows access from gateway

machine [34] to access it remotely. We can setup a public IP as well to directly access it remotely.

Figure 3: XEN Remote Management Interface

P a g e | 29

Figure.No. 4 presents the internal architecture of Xen server hosted physical machine with its

network interfaces.

Figure 4: XEN Virtual Network Architecture

System requirements to configured virtual machine shows in Table No.2. These may be varying

as per the hardware size and system traffic requirement. In this paper three VMs are used two of

these VMs has 1 network interface and the main load balancer have 2 network interface cards.

Ubuntu as operating system is used here with all the VMs.

Table 2: Virtual Machine Configuration Table

System Req. Host-1 Host-2 HA-Host

Processor 2700Mhz 2700MHz 2700MHz

RAM 512MB 512MB 1024MB

Disk 6GB 6GB 6GB

NIC 1 1 2

P a g e | 30

3.2. Load Balancing Using HA-Proxy on Virtual Machine.

Load balancing as a service is offered by most of the cloud hosting providers and its demand

increases so rapidly [35] [36] due to high internet usage. In this research several experiments

performed to test the availability and cater client requests. Round robin is the most common among

available load balancing polices, and is supported by major providers [37]. To evaluate VM

performance using Load balancer we have created two apache webservers and install desired

packages and system requirements. Each contains same data and apache configuration file so to

analyze each with same value.

Figure 5: Load balancing using HA-Proxy

P a g e | 31

Assign static IP addresses 172.16.100.5 (host-1) and 172.16.100.6 (host-2) to both VMs. Installed

HA-Proxy using below commands on Linux Main host which is responsible to distribute the traffic

to desired host.

root@MainServer:~# apt-get install haproxy
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
 vim-haproxy
The following NEW packages will be installed:
 haproxy
0 upgraded, 1 newly installed, 0 to remove and 91 not upgraded.
Need to get 0 B/417 kB of archives.
After this operation, 823 kB of additional disk space will be used.
Selecting previously unselected package haproxy.
(Reading database ... 59827 files and directories currently installed.)
Preparing to unpack .../haproxy_1.4.24-2ubuntu0.4_amd64.deb ...
Unpacking haproxy (1.4.24-2ubuntu0.4) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Processing triggers for ureadahead (0.100.0-16) ...
ureadahead will be reprofiled on next reboot
Setting up haproxy (1.4.24-2ubuntu0.4) ...
 * Starting haproxy haproxy

HA-proxy is used as the main server which handles all client request and forward it to these web

servers with name lamp1 and lamp2 in above configuration. Assign static IP to HA-Proxy Server

which is public interface and all the requests is received by this host.

Now need to update HA-Proxy configuration which resides in /etc/haproxy folder. Make sure to

active port 80 as user request generated on it. Balance mode is set to Round robin as shown in

below config.

P a g e | 32

root@MainServer:~# cat /etc/haproxy/haproxy.cfg
global
 log 127.0.0.1 local0 notice
 maxconn 2000
 user haproxy
 group haproxy
defaults
 log global
 mode http
 option httplog
 option dontlognull
 retries 3
 option redispatch
 timeout connect 5000
 timeout client 10000
 timeout server 10000

listen appname 0.0.0.0:80
 mode http
 stats enable
 stats uri /haproxy?stats
 stats realm Strictly\ Private
 stats auth A_Username:YourPassword
 stats auth Another_User:passwd
 balance roundrobin
 option httpclose
 option forwardfor
 server lamp1 172.16.100.5:80 check
 server lamp2 172.16.100.6:80 check

In this research Round robin algorithm is used to test the load balancer as it is most compatible

algorithm with system designed here. To analyze round robin algorithm create a php based code

with file name iptest.php contains parameter to pull exact IP details of user / client and server.

Iptest file contains web Server IP and defined with a php code as .$_SERVER['SERVER_ADDR']

which is responsible to pull detail of backend server (for e.g. Host-1 or Host-2), Load Balancer

Server IP with .$_SERVER['REMOTE_ADDR'] which pull the information of Load Balancer on

which HA proxy is installed and X-Forwarded is the server environment variable helps to pull IP

P a g e | 33

of the customer/user .$_SERVER['HTTP_X_FORWARDED_FOR'] which is client IP from

where request is generated.

<?php
header('Content-Type: text/plain');
echo "Backend Server IP: ".$_SERVER['SERVER_ADDR'];
echo "\nLoad Balancer IP: ".$_SERVER['REMOTE_ADDR'];
echo "\nRequest Generated From: ".$_SERVER['HTTP_X_FORWARDED_FOR'];
?>

To analyze round robin algorithm curl request is generated with iptest code file. Curl is a tool to

transfer data from or to a server. In this paper web content is analyz so runs below command to

test the web page information over command line.

shakeeb@Shakeeb-Laptop:~$curl http://172.16.100.7/iptest.php Backend Server
IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php Backend Server
IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php Backend Server
IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php Backend Server
IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4

Each client request has been verified by seeing that round robin algorithm works without any data

loss and request has been handled by each server consecutively. First request is catered by the

host-1 (Backend Server IP: 172.16.100.5) and second request by host-2 (Backend Server IP:

172.16.100.6) after that 3rd request is surfed by host-1 again and fourth by host-2 and so on. This

P a g e | 34

behavior of alternate Server IP shows round robin algorithm. We are using only two webservers

as a load balancer so only two IPs appears as a server IP.

3.3. Experimental Analysis with or without using Load Balancer.

Below are few experiments presented which measures performance analysis of using load balancer

and using virtual machines having same system configuration with the help of apache bench test.

a) Web stress test without using multiple webservers (Host-1) a 512MB webserver.

b) Web stress test without using multiple webserver, double the memory of (Host-1) 1024MB.

c) Web stress test using multiple webserver, a load balancer using two 512MB webservers.

All experiments have been performed to check the performance on HA-Proxy server by increasing

number of concurrent connection from 1user to 100users and then analyze response time for each

request. These results based on number of connections, response time, connection rate, and

timeouts. In this research a demo webpage is used and can be downloaded easily from

https://www.free-css.com/assets/files/free-css-templates/download/page220/appsea.zip with a size of

1,130,489 bytes so that to analyze same page over all presented scenarios.

Apache bench (ab) is a well know web stress test tool which is used by most of the engineers /

software architects to test their websites.

The parameter defined as below:

-e (Print the result and save it in define file)

-n (Number of Test Perform)

-c (Number of Concurrent Users)

https://www.free-css.com/assets/files/free-css-templates/download/page220/appsea.zip

P a g e | 35

Below is the sample shows result is store in a file called 10users, number of test performed is 100

and 10 concurrent users. Each test shows minimum response time, max response time for this

particular apache bench stress test.

shakeeb@Shakeeb-Laptop:/mnt/c/Users/goto$ ab -e 10users -n 100 -c 10
http://172.16.100.7/appsea
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 172.16.100.7 (be patient).....done
Server Software: Apache/2.4.10
Server Hostname: 172.16.100.7
Server Port: 80

Document Path: /appsea
Document Length: 313 bytes

Concurrency Level: 10
Time taken for tests: 0.252 seconds
Complete requests: 100
Failed requests: 0
Non-2xx responses: 100
Total transferred: 54000 bytes
HTML transferred: 31300 bytes
Requests per second: 397.15 [#/sec] (mean)
Time per request: 25.179 [ms] (mean)
Time per request: 2.518 [ms] (mean, across all concurrent requests)
Transfer rate: 209.43 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 1 0.6 1 4
Processing: 10 23 5.0 23 34
Waiting: 6 20 6.2 21 34
Total: 11 24 5.1 25 35
Percentage of the requests served within a certain time (ms)
 50% 25
 66% 26
 75% 28
 80% 28
 90% 30
 95% 32
 98% 35
 99% 35
 100% 35 (longest request)

P a g e | 36

3.3.1. Web stress test using single webservers (Host-1)

First Scenario has been tested by switching off all the web server except (Host-1) here host-1 has

a memory of 512MB and to analyze its behavior a curl request is generated. Removing all the IPs

from ha-proxy configuration so that only single host is responsible to handle all client request.

Figure 6: Single 512MB VM over Load Balancer

P a g e | 37

Curl request shows test script result where X-Forwarded is responsible to take client request and

forward it to Server. Server IP is static as we have enable single server in the haproxy config.

shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.5
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4

After generating curl request to iptest file round we have analyzed that single host is active and no

request is forwarded to Host-2. Now need to run apache bench test on one of sample web. Sample

website is uploaded in the root path of the web directory. In this research sample web is uploaded

in /var/www/html/ directory and update apache config file accordingly. Table.3 shows web stress

test of 10th, 25th, 50th, 75th and 100th number of request. As per the observation response time

increases so instantly on increasing number of concurrent request. Initial request response time is

for 100 concurrent users is 206.4ms and reaches to 718.572ms after 100th request which is 3.5

times greater than its first request.

http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php

P a g e | 38

Table 3: Response time without Load balancing 512MB server

Percentage served 10users 20users 40users 60users 80users 100users

1 10.179 46.036 124.306 101.732 165.228 206.483

25 31.175 88.936 164.995 269.226 325.706 331.325

50 55.099 108.968 198.782 318.151 436.2 454.58

75 75.283 132.045 245.987 378.179 511.994 616.606

100 158.474 211.071 376.724 486.241 671.081 718.572

Figure.No. 7. Shows graphical representation when single 512MB webserver serves all client

requests and the response time shows in milliseconds. Graphical results clearly represents as much

as the number of concurrent request increases response time also increases while after increasing

number of test, the load on the server also increases causes high load time.

Figure 7: Response time without Load Balancing Server with 512MB

P a g e | 39

3.3.2. Web stress test over Host-2 with a memory to 1024MB

Second scenario has been tested by switching off all the web server except (Host-2) here host-2

has a memory of 1024MB and to analyze its behavior a curl request is generated. Also host-2 IP

is activated on HA-Proxy Server so to deactivate round robin algorithm and all client request is

handled by this only machine.

Figure 8: Single 1024MB VM over Load Balancer

P a g e | 40

 This test is performed to compare it with third scenario that has equal memory. Server IP is static

as we have enabled single server in ha-proxy configuration.

shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4
shakeeb@Shakeeb-Laptop:~$ curl http://172.16.100.7/iptest.php
Backend Server IP: 172.16.100.6
Load Balancer IP: 172.16.100.7
Request Generated From: 172.16.100.4

By analyzing above it only shows single server is activated. After generating apache stress test

over load balancer server with single activated Virtual machine having memory 1024MB. Table.4

shows web stress test of 10th, 25th, 50th, 75th and 100th for specified number of concurrent

requests. As per the observation response time increases so instantly on increasing number of

concurrent request. Initial request response time for 100 concurrent users is 195.4ms and reaches

to 581.217ms after 100th request which is 3 times greater than its first request and after comparing

it with low memory host it response time is much better.

http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php
http://192.168.1.7/iptest.php

P a g e | 41

Table 4: Response time without Load balancing 1024MB server

Percentage served 10users 20users 40users 60users 80users 100users

1 12.787 68.728 107.622 132.802 170.413 195.495

25 42.152 94.263 189.304 270.557 289.051 316.663

50 61.389 117.537 232.709 321.436 405.082 447.792

75 74.126 137.045 261.173 363.685 474.788 581.217

100 110.572 193.713 358.619 462.495 570.491 666.255

Below image shows graphical representation of the response time of 1024MB webserver. We

clearly analyze the response time of 1024MB webserver is less as compare to 512MB webserver.

If we increases system memory response time to cater client requests become low and helps in fast

browsing of data.

Figure 9: Response time without Load Balancing Server with 1024MB

P a g e | 42

3.3.3. Web stress test over load balancer using two 512MB webservers.

Third apache bench test is performed on two 512MB webserver which is used as a load balancer

also presented in Figure. No. 10 .Minimum request time for single user is approximate same as

previous scenarios but as soon as the number of concurrent request increases client requests

handled efficiently and response time comes relatively low as compare to single 512MB and

1024MB web servers.

Figure 10: Load Balancer using round robin algorithm over VM

Below Table.5, shows the result of 10th, 25th, 50th, 75th and 100th request result with defined

number of concurrent users over load balancer. As per experimental analysis if the number of

specific request increases the response time to surf single request also increases but have far better

response time. When a first requests generated response time is little high as first request is handled

P a g e | 43

by HA-Proxy and then it forwards the request to backend defined servers. After 100 concurrent

users first request takes 241.282ms and reaches to 481.57ms which is approx. 2 times of initial

request which clearly shows that it reduces with a value of 185ms after using load balancer.

Table 5: Response time over Load balancer

Percentage served 10users 20users 40users 60users 80users 100users

1 21.007 31.954 97.309 137.762 172.273 214.282

25 35.029 71.374 119.66 181.67 249.96 266.66

50 38.72 90.407 166.45 229.07 262.16 349.49

75 48.636 103.658 191.02 279.3 331.55 399.52

100 78.748 148.37 239.49 359.45 439.24 481.57

For all apache bench test over HA-Proxy server after enabling load balancer presented in Figure

No. 11 From all presented experiments response time using load balancer server is far better as

compare with using single webserver with same system configuration.

Figure 11: Response time with Load Balancing Server

P a g e | 44

3.4. Virtual Machine Experimental Comparison:

Experiments performed on these virtual machines helps to analyze the behavior and investigate

the result after 100 concurrent request shows that load balancer response time is far better as

compare to other two experiments either using 512MB or using high configuration virtual

machine.

Figure 12: VM Experiment Comparison

3.5. CONCLUSION:

Experiments performed on those virtual machines helps to analyze the behavior and

investigate best possible method used between load balancer with HA-proxy and single virtual

machine.. It can also be concluded from the experiments that software switching is more reliable

and efficient as compare to hardware switching in real time. This virtualization scheme improves

the utilization of hardware which reduces the cost and its maintenance.

718.572

666.255

481.57

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

Virtual Machine Experiment Comparison
512MB Single VM 1024MB Single VM LBs

P a g e | 45

CHAPTER 4: EXPERIMENTAL ANALYSIS OF LOAD

BALANCER WEBSERVERS OVER DOCKERIZATION

Container a Docker based virtualization has recently emerged and known for its lightweight

technology and gain enough popularity in the community of software development [12], [13].

These light weight containers are build, test and move with their dependencies to different distros

and location. Starting these container is much fast as compare to virtualization [13], [14].

Dockerization challenges system resource, speed and performance with respect to virtualization

for system development process and has great advantage because of providing efficient workflow

to the developer [14], [15], [16]. Therefore, Docker a container service platform empowers system

admin and developers to build, ship and run these applications anytime anywhere [17] therefore

also known as Containers-as-a-Service (CaaS).

Docker an open source container virtualization platform runs separately from host infrastructure

and helps in running, managing and developing several applications. Its aim is to ship code faster

and deploying it to any of container based technology [36] .Due to the isolation of container from

infra it allows to run many containers on a single host simultaneously without interrupting other

containers. We can limit these containers constrained to use specified amount of available system

resources as they share same kernel and for better efficiency limiting those containers is possible.

P a g e | 46

Figure 13: Docker Container Architecture

Container is relying on Kernel’s functionality therefore it doesn’t requires separate operating

system as compare to VM and These containers uses separate name space to completely isolate

the application’s view of the OS. It gives benefit to container for rapid deployment with

performance in memory, disk, central processing unit and its network. Docker implements high-

level application program interface which is responsible to run containers with their unique process

ID space, network space and structure of its file system. Hardware utilization of these containers

is very high as they run without extra load of a hypervisor.

P a g e | 47

4.1. System Design

System configuration may vary according to the demand and utilization of the application services.

Docker uses server-client architecture, Client containers communicates with docker daemon

presented in the host machine. Both the docker container and docker daemon is placed in a single

machine. Docker daemon is responsible for running, building, distributing the resources between

the containers. Docker daemon can communicate with containers through a bridge called docker0.

Docker consist of three major components: Docker registries, Docker container and Docker

images.

4.1.1. Docker Registries

Docker registry contains built-in images which is private or public store of Docker images. Docker

registries is the place from where user can download and upload designed images.

4.1.2. Docker Containers

Docker container holds everything needed to run an application. It looks like an OS containing OS

image / file system / system packages. These containers can be created from existing Docker

images and can be start, stop, move, run and delete.

4.1.3. Docker Image

Docker image is designed template used to create Docker containers. For example: Image contains

a debian8.0 OS with php5.6 and apache2 and other packages like vim an editor, net tools for

network configuration using command line. These images can be created with desired

requirements and can be re-use to create new containers.

P a g e | 48

To create an image DockerFile is required which is a text document which contains, number of

instructions to build container with our desired packages.To create a docker container image you

need to store the file in any folder and runs below command. Docker file helps to create same

image where ever we need that image. Below is the Dockerfile content which pulls all data from

docker hub.

root@docker:/home/shakeeb/thesiswork# docker build .

root@docker:/home/shakeeb/thesiswork# cat Dockerfile
FROM debian:jessie
FROM php:5-apache
WORKDIR /var/www/html
EXPOSE 80

Here it represents that the image is created with a debian OS and install php and apache. PHP is

required for the development use and required for web design. After that default working directory

/var/www/html is set and expose command helps to tell the Docker that it listens on port 80 which

is the default port to access web pages. By default expose assumes that it is TCP connection. In

this research Linux OS is installed on single physical machine and on top of Docker engine. Two

container images were created using Docker file. Each container image consist of same data set,

system packages and utilities. We have used these images with our different experiments.

P a g e | 49

Table 6: Host Machine Configuration Table

System Conf. Host OS Container-A Container-B

Architecture x86_64 default Default

OS Debian 3.16.513+deb8u1 Debian3.1 Debian3.1

Processor 2712.002 MHz Default Default

RAM 1024MB 512MB 1024MB

NIC 1 Virtual Interface Virtual Interface

Disk 10GB Default Default

4.2. Load Balancing Using HA-Proxy on Containers

Round robin is the most common one supported by major cloud providers is the common most

available algorithm [38]. In this paper two apache webserver based images is created with same

packages. Static IPs assign to these containers with a CLI, Container-A with 172.16.200.15 and

Container-B with 172.16.200.20. Table No.7 shows Container ID which is automatically and

uniquely assigned while creating container from image.

Table 7: Docker Stats Container Table

CONTAINER ID CONTAINER NAME MEM USAGE /

LIMIT

IP

64cf27654ac7 Container-A 1.066MiB / 489MiB 172.16.100.15

eefc06227ab6 Container-B 976KiB / 1000MiB 172.16.100.20

P a g e | 50

HA-proxy is installed on Linux host machine. All client request is handled by this machine and

sent traffic to Docker Network Bridge which is responsible to transfer traffic using round robin

algorithm to defined containers in its pool to test the load balancer iptest.php code is written which

shows load balancer result containing web server IP, Load Balancer IP (HA proxy server) and X-

Forwarded IP (A system which request for this page).

To analyze round robin algorithm curl request is generated contains same code presented in

previous chapter i.e. chapter 3. The code will pull the load balancer server ip, the client from which

request is generated and backend server which handled the client request

shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1

Each client request has been verified by seeing that round robin algorithm works without any data

loss and request has been handled by each container consecutively. First request is catered by the

Container-A and second request by Container-B, 3rd request is surfed by Container-A again and

fourth by Container-B and so on which clearly represents behavior of HA-Proxy defined round

robin algorithm. We are using only two web containers so only two IPs appears as a server IP.

http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php

P a g e | 51

4.3. Self-Organizing of Web Container before Service Degradation.

In this paper two web containers were created to cater client request and if there is any service

degradation than subsequent hosts is required to handle further request. To predict high load we

have developed a script which checks system load and on certain defined threshold another

container is created with predefine image which contains same data set and system packages. Now

a day’s people create scripts to define program for all UNIX environment to break all complex

projects into simple smaller task that is also known as bash scripting (Bourne again Shell) in Linux

environment. In this paper an algorithm is developed using a shell scripting which uses a way to

explore the capabilities in Linux environment [39] using same algorithm we have designed

customized algorithm which checks all the updates from primary server. To examine system

performance, load and memory test we are using a Perl script and on the basis of it if there is high

load a container is automatically created with a static IP which is automatically add in HA-Proxy

conf by our designed algorithm. This script is placed inside main server which is responsible for

to analyze the system load/memory. Using our designed algorithm the container is created with in

a second or two and rest of client request is handled by this newly added container.

The algorithm is written in bash scripting with single defined local IP so that it created on same

host and work as a 3rd node to handle user request. Static IP assign to the third host shown in script

is 172.16.100.25 and the container image name is container-b-512mb-clone. So it clearly

represents that already existed image is used to create third container.

P a g e | 52

#!/bin/bash
a=$(/check_memory -f -c 2 | awk -F " " {'print $1'})

echo $a

############## Checks Condition if Status Critical than Runs below ##########

if [[$a == CRITICAL]];

then

docker run -itd --memory=489M --memory-swap=509M --net ipstatic --ip
172.16.200.25 container-b-512mb-clone

containername=$(docker ps -a | awk -F " " {'print $1'} | head -2 | tail -1)

echo "New Container with ID: $containername created on `date '+%Y-%m-%d
%H:%M:%S'`"

docker ps -a > viewdocker

docker exec -it $containername /etc/init.d/apache2 start

cat viewdocker

################ Now edit HA-PROXY Conf File with New IP #################

echo " server lamp3 172.16.200.25:80 check" >> /etc/haproxy/haproxy.cfg

/etc/init.d/haproxy reload

echo "Container added in HA-Proxy on `date '+%Y-%m-%d %H:%M:%S'` and is active
on Load Balancer"

################# if Status OK than ignore above and runs below ##############

 else
 echo "every thing is fine"

 fi

################################# End ############################

P a g e | 53

The output is shown below once new container created after high load.

OK
571bfc8d29e72d506ffe413c5b88e847e6a3e360014cd8e839e9bdad65e3bc5b
New Container with ID: 571bfc8d29e7 created on 2018-07-23 07:26:37
[....] Starting web server: apache2AH00558: apache2: Could not reliably
determine the server's fully qualified domain name, using 172.16.200.25. Set
the 'ServerName' directive globally to suppress this message
. ok
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
571bfc8d29e7 container-b-512mb-clone "docker-php-entrypoi…" Less
than a second ago Up Less than a second 80/tcp priceless_feynman
eefc06227ab6 apacheweb "docker-php-entrypoi…" 4 months
ago Up 21 minutes 80/tcp Container-B
64cf27654ac7 apacheweb "docker-php-entrypoi…" 4 months
ago Up 15 minutes 80/tcp Container-A
[ok] Reloading haproxy configuration (via systemctl): haproxy.service.
Container added in HA-Proxy on 2018-07-23 07:26:38 and is active on Load
Balancer

571bfc8d29e7 is newly created container and as seems that 80/tcp is also become active just after

this container creation. Below is the response for three consecutive request which clearly shows

that first request handle by Container-A, 2nd by Container-B and the third by newly created

container.

shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.25
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1

http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php

P a g e | 54

Perl based plugin code is presented below which is responsible to pull three stats of memory from

all Linux OS (including FreeBSD / Debian / Ubuntu / CentOS etc.) .

a) OK if current memory is in our predefined limit.

b) CRITICAL if current memory reaches to defined limit in script.

c) Warning is like a predictable value (Not using this in this research)

The plugin generates critical status if 2% memory of the system is left. The script doesn’t contain

the exact path here as we have run it with our prototype machines which gives response with in

few milliseconds and if there is high memory than create a container with in few seconds. Below

is the flow chart represents how the scripts run and when it get triggered to create a container.

Figure 14: Flow Chart of Self-organized web container

P a g e | 55

4.4. Experimental Analysis of Load Balancer

To evaluate the behavior and response time of the container while using same data set in this

research list of below experiments performed that measures response time of containers. Each

response time is pull from same apache bench test result and stored it on excel sheet to analyze the

difference.

These experiments performed

a) Apache bench stress test using single web container (512MB Container).

b) Apache bench stress test without using multiple webservers (Single 1024MB Container).

c) Web stress test over load balancer using two 512MB web containers.

All experiments have been performed to check the performance on HA-Proxy server by increasing

number of concurrent connection from 1user to 100users and then analyze response time for each

request. These results based on number of connections, response time, connection rate, and

timeouts. We are using a same appsea demo webpage with a size of 1,130,489 bytes so that to

analyze same page result. In this research Class-B IP pool is used for containers. HA-Proxy

machine static IP set to 172.16.200.1 which is responsible to forward all client request to back end

containers. Below is the curl command run to evaluate active host status, load balancer IP and

backend container.

Curl http://172.16.200.1/iptest.php

P a g e | 56

After that apache bench test is performed on host using command below.

shakeeb@Shakeeb-Laptop:/mnt/c/Users/goto$ ab -e 10users-2 -n 100 -c 10
http://172.16.200.1/appsea
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 172.16.200.1 (be patient).....done

Server Software: Apache/2.4.10
Server Hostname: 172.16.200.1

Server Port: 80

Document Path: /appsea
Document Length: 313 bytes

Concurrency Level: 10
Time taken for tests: 0.269 seconds
Complete requests: 100
Failed requests: 0
Non-2xx responses: 100
Total transferred: 54000 bytes
HTML transferred: 31300 bytes
Requests per second: 372.27 [#/sec] (mean)
Time per request: 26.863 [ms] (mean)
Time per request: 2.686 [ms] (mean, across all concurrent requests)
Transfer rate: 196.31 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 1 0.5 1 3
Processing: 8 25 5.6 25 41
Waiting: 7 22 5.8 22 41
Total: 9 26 5.6 26 43

Percentage of the requests served within a certain time (ms)
 50% 26
 66% 28
 75% 29
 80% 30
 90% 32
 95% 34
 98% 39
 99% 43
 100% 43 (longest request)

P a g e | 57

4.4.1. First Scenario

It has been tested by switching off all the web containers except (Container-A) has a memory of

512MB shown in tables No.7 and to analyze its behavior a curl request is generated. Curl request

shows test script result where X-Forwarded is responsible to take client request and forward it to

Server. Here Server IP is static as we have enabled single server in HA proxy so it shows IP of

Container-A.

shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.15
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1

Table No.8 shows that when 100 concurrent users generate request the container response time

after 100th requests reaches to 241.577ms with a ratio of 5 with respect to initial request.

http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php

P a g e | 58

Table 8: Response time single 512MB Container

Percentage

served (%)

10users

(ms)

20users

(ms)

40users

(ms)

60users

(ms)

80users

(ms)

100users

(ms)

1 11.411 12.181 25.803 34.362 42.435 47.354

25 24.075 42.61 76.85 98.318 106.653 107.995

0 26.312 48.49 95.581 125.662 147.939 157.279

75 29.284 57.302 106.554 142.2 174.401 200.47

100 35.358 74.791 119.412 176.641 204.228 241.577

Graphical representation is presented in Figure. No. 14 when single 512MB web container serves

all client requests. As soon as the concurrent request increases response time also increases.

Figure 15: Response time with 512MB Single Container

P a g e | 59

4.4.2. Second Scenario

It has been performed over 1024MB memory single container (Container-B) which is equivalent

to the double of total memory of previous container. To analyze the behavior a curl request is

generated over same data set container.

shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1
shakeeb@Shakeeb-Laptop:~$curl http://172.16.200.1/iptest.php
Backend Server IP: 172.16.200.20
Load Balancer IP: 172.16.200.1
Request Generated From: 172.16.100.1

By analyzing above it only shows single container is active. After generating apache stress test

over load balancer server with single activated 1024MB memory container. Table No.9 shows

response time of generated requests with respect to concurrent users. Here Initial request response

time is less as compare to 512MB container which clearly shows that higher memory response is

far better as compare to low memory containers.

http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php
http://172.16.200.1/iptest.php

P a g e | 60

Table 9: Response time single 1024MB container

Percentage

served (%)

10users

(ms)

20users

(ms)

40users

(ms)

60users

(ms)

80users

(ms)

100users

(ms)

1 10.537 16.33 24.915 33.01 41.507 52.025

25 21.111 45.184 68.248 85.985 98.736 95.908

50 24.64 51.816 93.826 112.517 137.563 133.154

75 27.097 57.45 106.349 128.741 154.654 171.068

100 33.392 77.459 126.68 159.641 185.452 206.025

Graphical representation is presented in Figure. No. 15 when single 1024MB web container serve

all client requests and when concurrent request with number of test increases response time also

increases.

Figure 16: Response time with single 1024MB container

P a g e | 61

4.4.3. Third experiment

It has been performed on two 512MB web container hosted on single machine which is used as

load balancer. In Figure No. 16 it clearly presents all client request is received by the main host

and on backend containers were present which handles client request. Container-A and Container-

B here has same memory.

Figure 17: HA-Proxy Architecture for container

After sending client request to main HA-Proxy server minimum request time for 10user after

100requests is approximate same as previous scenarios but as soon as the number of concurrent

request increases its response time becomes far better than 1024MB server.

P a g e | 62

Table 10: Response time with Load Balancing Containers

Percentage

served (%)

10users

(ms)

20users

(ms)

40users

(ms)

60users

(ms)

80users

(ms)

100users

(ms)

1 8.804 19.291 28.155 37.878 32.272 51.488

25 21.273 40.702 71.214 87.939 95.012 96.241

50 23.44 49.148 93.505 113.945 133.14 133.162

75 27.096 54.137 105.709 138.75 153.966 166.305

100 32.243 71.862 128.666 160.008 194.475 201.757

Graphical representation is presented in Figure. No. 17 when two web container serves client

requests in a round robin fashion. Initial request takes some time as it need to decide to which

server the request need to be forward.

Figure 18: Response time of Load Balancing Containers

P a g e | 63

For all apache bench test over HA-Proxy load balancer server presented in Figure. No 17. Shows

that after 100 concurrent request response time is 201ms which is lesser than 241ms (Experiment

1).

4.5. Performed Experimental Analysis of Containers.

These experiments clearly represents that using load balancer over container gives far better response

time as compare to using single container. Below graph clearly shows the final response after 100

requests.

Figure 19: Containers Experiments Result

241.577

206.025

201.757

0

50

100

150

200

250

300

1 2 3 4 5 6

Containers Experiments Comparison
512MB Single Container 1024MB Single Container LBs

P a g e | 64

CHAPTER 5: CONCLUSION

5.1 Conclusion

This research presents an experimental analysis to investigate best possible method to introduce

container technology within the network without incurring additional complexity and better

response time for website with huge traffic and keeping cost low. This research presents round

robin as a load balancer algorithm over HA-proxy webserver on container technology. Our

experimental implementation of centralized physical machine reduces hardware cost, human

intervention, power consumptions and space per site. Experiments clearly shows that these

container technology is much efficient as compare to Virtual Machine as container response time

is much lesser than virtual machines. Docker container scheme improves the utilization of

hardware which reduces the cost and its maintenance.

5.2 Future Recommendations

The work contributed in this research can serve as a guideline for the future researchers who will

be interested in and have an innovative approach towards the field of Cloud Computing with micro

services like Docker container Technology.

Following research recommendations have been presented for further improvements in the

proposed Self Organized Web Container algorithm.

– Test the environment over public network.

– Similarly, you can test the environment with different CMS containing database connections

as well.

– Moreover, other types of web server can be incorporated to achieve better response time like

Nginx.

P a g e | 65

References

[1] J. C. Dueˇnas, F. Cuadrado, B. Garc´ıa, H. A. Parada, and J. L.Ruiz, “System virtualization

tools for software development,” Internet Computing, IEEE, vol. 13, no. 5, pp. 52–59, 2009.

[2] S. Seetharaman and K. Murthy, “Test optimization using software virtualization,” Software,

IEEE, vol. 23, no. 5, pp. 66–69, 2006.

[3] G.-H. Kim, Y.-G. Kim, and K.-Y. Chung, “Towards virtualized and automated software

performance test architecture,” Multimedia Tools and Applications, vol. 74, no. 20, pp. 8745–

8759, 2015.

[4] L. M. Silva, J. Alonso, P. Silva, J. Torres, and A. Andrzejak, “Using virtualization to improve

software rejuvenation,” in Network Computing and Applications, 2007. NCA 2007. Sixth IEEE

International Symposium on. IEEE, 2007, pp. 33–44.

[5] N. Bonfiglio, A. Ryan, Y. Zhang, and D. Mercer, “Systems and methods for on-demand

deployment of software build and test environments,” Apr. 18 2007, US Patent App. 11/788,219.

[6] S. I. Larimore, C. M. Murphey, and K. C. Obata, “Method and system for virtualization of

software applications,” Dec. 8 2015, US Patent 9,207,934.

[7] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The next challenge?” in Rapid

System prototyping (RSP), 2010 21st IEEE International symposium on. IEEE, 2010, pp. 1–7.

[8] M. Janssen and A. Joha, “Challenges for adopting cloud-based software as a service (SAAS)

in the public sector.” in ECIS, 2011.

P a g e | 66

[9] Csfi.com. (2016) Virtualization. [Online]. Available:

http://www.csfi.com/index.php/virtualization/

[10] T. Burger. (2012, March 5) The advantages of using virtualization technology in the

enterprise. [Online]. Available: https://software.intel.com/en-us/articles/the-advantages-of-using-

virtualization-technology-in-the-enterprise

[11] B. Kirsch. (2014) Virtual machine. [Online]. Available:

http://searchservervirtualization.techtarget.com/definition/virtual-machine

[12] N. Naik, “Building a virtual system of systems using Docker Swarm in multiple clouds,” in

IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2016.

[13] D. Merkel, “Docker: lightweight linux containers for consistent development and deployment,

” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[14] G. M. Tihfon, J. Kim, and K. J. Kim, “A new virtualized environment for application

deployment based on docker and aws,” in Information Science and Applications (ICISA) 2016.

Springer, 2016, pp. 1339–1349.

[15] C. Anderson, “Docker [Software Engineering],” IEEE Software, no. 3, pp. 102–c3, 2015.

[16] P. Marinescu, P. Hosek, and C. Cadar, “Covrig: A framework for the analysis of code, test,

and coverage evolution in real software,” in Proceedings of the 2014 International Symposium on

Software Testing and Analysis. ACM, 2014, pp. 93–104.

http://searchservervirtualization.techtarget.com/definition/virtual-machine

P a g e | 67

[17] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M. D’Souza, S. Devoid,

D. Murphy-Olson, N. Desai et al., “Skyport: container-based execution environment management

for multi-cloud scientific workflows,” in Proceedings of the 5th International Workshop on Data-

Intensive Computing in the Clouds. IEEE Press, 2014, pp. 25–32.

[18] Docker.com. (2016) Docker use cases. [Online]. Available: https://www.docker.com/use-

cases

[19] J. Turnbull, The Docker Book: Containerization is the new Virtualization. James Turnbull,

2014.

[20] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of

virtual machines and linux containers,” in Performance Analysis of Systems and Software

(ISPASS), 2015 IEEE International Symposium On. IEEE, 2015, pp. 171–172.

[21] Nitin Naik, “Migrating from Virtualization to Dockerization in the Cloud: Simulation and

Evaluation of Distributed Systems,” in 2016 IEEE 10th International Symposium on the

Maintenance and Evolution of Service-Oriented and Cloud-Based Environments.

[22] M. Resman, “CentOS High Availability,” Packt Publishing, 2015, pp.2.

[23] S. van Vugt, “Pro Linux High Availability Clustering,” Apress, 2014, pp.2.

[24] J. Lee, Tourrilhes, P. Sharma, and S. d S. d S. Banerjee, “No more middlebox: integrate

Banerjee,integrate processing into network,” SIGCOMM Comput. Commun.

https://www.docker.com/use-cases
https://www.docker.com/use-cases

P a g e | 68

[25] CITRIX [URL] 1999-2016 Citrix Systems http://docs.citrix.com/fr-fr/xencenter/6-5/xs-xc-

intro-welcome/xs-xc-system-requirements.html

[26] Xiaoliang Li, Feng Liu, Zhenming Lei and Kun Zhang, self-organizing load balancing for

network measurement server cluster,” work is supported by National Natural Science Foundation

of China. 2011 IEEE

[27] Zongjian He, Guanqing Liang, “Research and Evaluation of Network Virtualization in Cloud

Computing Environment,”

[28] Virtualization [URL] May, 2016 https://en.wikipedia.org/wiki/Virtualization

[29] VMware Virtualization Technology [URL] Nov. 2007 [Online]. Available:

http://www.vmware.com

[30] Unified Modeling Language [URL] Nov. 2007 [Online].

Available:http://www.omg.org/technology/documents/formal/uml.htm

[31] Jiaxin Wang , Lianhe Yang ; Miao Yu ; Wang “Application of Server Virtualization

Technology Based on Citrix XenServer in the Information Center of the Public Security Bureau

and Fire Service Department.’ IEEE July 2011.

[32] Hardwar [URL] Jun, 2012 http://www.hardwaresecrets.com/everything-you-need-to-know-

about-the-intel-virtualization-technology/

[33]LinOxide [URL] 2016, online https://linoxide.com/tools/configure-citrix-xenserver-6-5-

vmware-workstation/

[34] Stephen Childs, Brian Coughlan, David O’Callaghan, Geoff Quigley, John Walsh, “A single-

computer Grid gateway using virtual machines,” 19th International Conference on Advanced

Information Networking and Applications, 2005 IEEE.

http://docs.citrix.com/fr-fr/xencenter/6-5/xs-xc-intro-welcome/xs-xc-system-requirements.html
http://docs.citrix.com/fr-fr/xencenter/6-5/xs-xc-intro-welcome/xs-xc-system-requirements.html

P a g e | 69

[35] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, Wong Ming Tat,

Sharipah Setapa, Jing Yuan Luke, Ong Hong Hoe “Evaluation of Docker as Edge Computing

Platform’ August 2015 IEEE Conference on Open Systems.

[36]Suchitra Venugopal Published on July 11, 2016

https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-

trs/index.html

[37] Claus Pahl, “Containerisation and the PaaS Cloud” June 2015. IEEE Cloud Computing

2(3):24-31

[38] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Heuristic-based request scheduling subject

to a percentile response time sla in a distributed cloud,” in Proc. of IEEE GLOBECOM. 1–6, 2010.

[39] Advanced Bash-Scripting Guide [URL] 2014

onlineAvailable:http://www.tldp.org/LDP/abs/html/why-shell.html

https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html

