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Abstract

The focus of this thesis is on the implementation of machine learning algorithm on

hardware using FPGA. The machine learning algorithm that is used here is Naive Bayes’

classifier for classifying linearly independent classes. NBC is one of the most successful

supervised learning tool, by knowing the prior knowledge and likelihood of an event one

can estimate the probability of given class, but assumes that features vectors are linearly

independent of each other, not only this but also it is proved quite effective where the

amount of data set is large. In this thesis the applications having continuous and discrete

attributes are used, so an appropriate probability distribution function may be used for

this purpose, if the attributes are continuous then Gaussian distribution function is

used for finding the probabilities. Initially a continuous signal is pre-processed in order

to convert it into a feature vector of pre-defined length then NBC is applied on it to

classify the class based on their prior probabilities using FPGA hardware. We have

implemented different examples based on their probability distribution function and

results show that NBC is a reliable and fast learning method.The design is carried out

in Simulink environment where as it’s implementation is performed on qkintex-7 FPGA

hardware using HDL coder and fixed point tool.

‘ Keywords: FPGA, NBC, HDL Coder, FPT, CVA, RMS, EEG, VLSI Technology,

Conditional Probability
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Chapter 1

Introduction

1.1 Motivation

As the data is growing exponentially everywhere, every 1.67 years the amount of data

that is stored become doubles so there is need to handle and analyse such big data, that’s

why Machine learning becomes the most valuable tool to provide unlimited solutions

for any kind of problems in many fields like data mining, computer science and other

fields. Machine learning is a modern way to train the system from the data and discovers

patterns to explain the world interactions with us. It then encapsulates data to create

models for forecasting the unseen situations. Machine leaning algorithms learn how to

perform a task by generalisation from the samples [1].There are many Machine learning

algorithms such as Supervised learning, Unsupervised learning, Semi-supervised learn-

ing, Reinforcement learning, Multitasking learning, Neural Network and Instance based

learning. Supervised learning refers to algorithm which needs external assistance like

we have input variable and output variable and the objective to use mapping function

so well that input data predicts the output, in unsupervised learning we have only in-

put data and no corresponding output, it learns few features from data but whenever

new data comes it uses previously learned features to recognize class of data. Semi-

supervised learning technique is the intermediate state between supervised learning and

unsupervised learning and it is used where the un-labeled data is available but difficult

to achieve labeled data like generative model, self-training and etc [2]. A reinforcement

learning is of controlling the data unlike supervised learning the labelled data is given

but reinforcement is about taking the most appropriate action to amplify reward in a
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Chapter 1: Introduction

specific situation so it learns from the experience rather than training data [3], the other

type of machine learning is multitasking learning as the name suggests it performs the

multi learning tasks simultaneously and its basic aim is to generalize the performance by

grasping information that a signal contains in training of related tasks parallelly using

a shared representation [4] and one of the application of multitasking learning is given

in "Task clustering and Gating for Bayesian Multitask learning" [5] in which general

multi analysis is implemented results in fixed effects and random effects, fixed effects

are same for all tasks where as random effects may change between tasks so the Bayesian

approach is used, Whereas few model parameters are shared and rest are loosely inter-

linked through joint prior distribution which can be grasped from data, so two parts can

be combined, one statistical multilevel approach and other is neural network in order to

achieve the best performance.

In this thesis a well-known supervised learning algorithm "Naive Bayes’ Classifier" is

used. Naive Bayes’ Classifier is a binary classifier based on Bayes’ theorem used to

predict the probability of given class based prior knowledge but assumed that all the

events are independent of each other despite of such assumption it is proved to be quite

efficient in various problems, particularly in a case where the data set is quite large and

fast learning is required. Although the independence of events is practically indigent

assumption yet it behaves practically smarter [6] and achieve the goals with above 90

percent of probability. The Naive Bayes’ classifier is said to be optimal if its events

are independent of each other but empirically it performs well even violating the basic

condition of independence to a great margin and some problems are proved in [7] for

some feature dependencies and it is proved in [7] that the degree of accuracy of classifier

is not directly dependent on degree of feature dependence so the Naive Bayes’ classifier

works best in two cases that is first when completely independent features as expected

and second when functionally dependent features which is not expected, as these are two

extremes where classifier performs the best and the worst, now here the basic question

is that which feature dependencies can be considered and which can be neglected? The

answer is the dependencies that do not providing information about class or that do

not help distinguishing between different classes [7]. There are two models of classifier

that are discriminative learning and generative learning, discriminative learning model

learns map directly from input ’x’ to output label ’y’ or learns directly a posterior

p(y/x), where as generative learning model learn a model of joint probability, p(x,y)

2



Chapter 1: Introduction

and then make a decision by adopting Bayesian rules to evaluate p(y/x), then taking

the decision which is most likely so a comparative analysis showed that a discriminative

and generative have its own pros and cons. Discriminative is more preferably used rather

than that of generative because one should solve a classification problem directly rather

than going in general classification problem which may cause in handling missing data

hence the discriminative has lower asymptotic error that of generative [8]. In this thesis

we focus on generalize implementation of Naive Bayes’ classifier on FPGA using HDL

coder and fixed-point tool and any kind of classification can be done using Naive Bayes’

classifier whether it is forecasting of event or classification any disease, initially we have

implemented different classification examples in Matlab Simulink environment so that

we can move to any kind of hardware that is reliable and according to given requirement,

we shall show in this thesis though using fixed point tool box which converts the floating

point numbers in fixed word length and fixed fractional length achieving the ninety six

percent of efficiency.

1.2 Thesis Organization

The organization of thesis is arranged as follows

In chapter 2 Concept building A brief background is given and concept of Naive

Bayes’ Classifier and its types based on probability distribution function is built.

A brief overview on Bayesian theorem, Conditional Probability, Fixed-Point data

type and HDL coder is discussed.

In chapter 3 Design It discusses the algorithm design, methodology and analysis us-

ing Matlab and Simulink. Different application examples are classified using NBC

on Matlab and Simulink. Results with the highest accuracy are elaborated.

In chapter 4 Implementation It is the core of this thesis.It discusses the algorithm

flow chart and Naive Bayes’ classifier is implemented on q-kintex 7 defence vesion

FPGA using HDL coder and fixed-point tool.

In chapter 5 Discussion Future works & Conclusion It defines a nut shell sum-

mary of this research and future work.

3



Chapter 2

Concept Building

2.1 Conditional Probability

Conditional probability can be elaborated as the probability of an event but conditionally

another event had already taken place, in other words it is the likely hood of an event

considering that another event had already occurred. Conditional probability is given

by,

P (A|B) = P (A ∩B)
P (B) (2.1.1)

Example 2.1.1. A packet contains 4 red balls and 6 white balls. we randomly pick

two balls from the packet. What is the probability that second ball is red assuming that

first ball is white?

There are six white and four red balls and randomly two balls are taken given that first

ball is white and the probability of red ball given that first ball is red defined in the

below Fig.2.1

Figure 2.1: probability that second ball is red assuming that first ball is white

4



Chapter 2: Concept Building

2.1.1 Conditional Independence

The notion of conditional autonomy is of great importance and it is the foundation

of many statistical models. In probability theory, two events are independent If the

knowledge of one occurrence does not alter the likelihood of the other. We can say

mathematically two A and B are independent if and only if,

P (A|B) = P (A) (2.1.2)

P (B|A) = P (B). (2.1.3)

Example 2.1.2. When the coin is tossed , the probability that coin shows "head" is 0.5

and what if was Sunday? would this alter the probability of getting "head?" naturally

not. If it is a Sunday then probability of obtaining head, is still 0.5. A day was Sunday

and consequence of a tossed coin are independent events because an event its a Sunday

did not alter the other event that is a probability of getting "head".

Example 2.1.3. A survey had been carried out by researchers that latest degree holders

from two distinct universities in their annual revenue. The below table data shows data

for 300 graduates who responded.

Annual Revenue Institute A Institute B Total

Less than $20,000 36 24 60

$20,000 to 39,999 109 56 165

$40,000 and over 35 40 75

Total 180 120 300

Table 2.1: Survey Data.

• Let’s select from this data a random graduate.

• Are these two events "Income is $40,000 and over" and "Attended university B"

not dependent?

• Let’s check on the conditional probability whether these events are independent

or not.

• From the table 2.1 there are 75 out of 300 graduates who say their income is

$40,000 or above

5



Chapter 2: Concept Building

P ($40, 000andover) = 75
300 = 0.25 (2.1.4)

Now let us check What is the likelihood of a randomly chosen graduate earning $40,000

and over provided that they come from University B?

From the table 2.1 there are total 40 graduates who attended university B and having

income of $40,000 and over.

P ($40, 000andover|Uni.B) = 40
300 = 0.1333 (2.1.5)

We can conclude from the result that events are not independent because an event affect

the probability of other event.

2.1.2 Probabilistic Concepts & Bayes’ Theorem

Probability is one of the main core of data science algorithm, in fact the solution of

many problems of data science are probabilistic in nature, thus concentrating on learn-

ing statistics and probability before going to algorithms. Before explaining the Bayes’

theorem, it is necessary to understand basic probabilistic terminologies.

Probability of independent events

Let there are two occurrences ’A’ and ’B’, then probability of independent events can

be calculated as

P (A ∩B) = P (A).P (B) (2.1.6)

Example 2.1.4. A box containing four red marbles and three black marbles, if we take

a red marble and a coin is flipped we get a head. What is the probability of wining?

Solution: There are two events, let A be the event of getting red marble and B be the

event of getting head when coin is flipped.

P (A) = 4
7 (2.1.7)

P (B) = 1
2 (2.1.8)

We know that both events are independent so probability of wining is

P (A ∩B) = P (A).P (B) (2.1.9)

= 4
7 ×

1
2 (2.1.10)

= 2
7 (2.1.11)

6
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Probability of dependent events

What if the events are dependent? For the example 2.1.1, suppose ’A’ be the event of

getting red marble from the box. Let ’B’ be the another event, that takes place only

after event ’A’, of getting another red marble. Would the probability of events ’B’ and

’A’ be the same? No. For event ’A’ the chances were 4
7 where as for event ’B’ the

chances are 3
6 . This is because after event ’A’, there are only 6 marbles left in the box

out of which three are red and three are black

Marginal Probability

Marginal Probability is the probability of single event ’A’ that does not depend upon

any other event ’B’

P (A) = P (A|B)× P (B) + P (A| ∼ B) (2.1.12)

Another way of writing equation 2.1.11 is,

P (A) = P (A ∩B) + P (A∩ ∼ B) (2.1.13)

Where ∼ B indicates that event ’B’ does not take place.

Figure 2.2: Venn Diagram Illustration of Marginal Probability

Bayes’ Theorem

Modern science is about data and predictions. Observing, collecting knowledge and

predicting is the scientific phenomena. Now question is how accurate is prediction? This

relies on the quality of the information presented and the precision of the observations.

7



Chapter 2: Concept Building

For example: weather forecasting, the more we understand how the weather changes, the

better one can predict whether it will be sunny or rainy tomorrow, current observations

and seasonal records and the weather model can be refined by any discrepancy between

prediction and observation.Bayesian statistics encapsulate this process of applying prior

theoretical and empirical knowledge to formulate hypotheses [9]. In other words Bayes’

theorem transforms the outcomes of your test into the actual probability of the event.

The mathemetically definition of Bayes theorem is,

P (X|Y ) = P (X|Y )× P (X)
P (Y ) (2.1.14)

Where ’X’ and ’Y’ represent separate events and P (Y ) 6= 0.

• P(X|Y) is the probability of event ’X’ given event ’Y’ that is, its a conditional

probability.

• P(Y|X) is the conditional probability of event ’Y’ given event ’X’.

• P(X) and P(Y) are the marginal probabilities of independent events ’X’ and ’Y’

respectively.

Proof:

Bayes’ theorem relates different conditional probabilities. Conditional probability ex-

presses how likely it is that an event is going to take place with the condition that

another event has already taken place.

Conditonal probability can be found as,

P (X|Y ) = P (X ∩ Y )
P (Y ) (2.1.15)

Since the probability P (X ∩Y ) is probability of event ’X’ occurring times probability of

event ’Y’ given ’X’. This is equivalent to saying that P (X∩Y ) is probability of event ’Y’

occurring times probability of event ’X’ given ’Y’. This equivalency of the two expression

leads to Bayes’ theorem.

P (X|Y ) = P (X ∩ Y )
P (Y ) , ifP (Y ) 6= 0 (2.1.16)

P (Y |X) = P (Y ∩X)
P (X) , ifP (X) 6= 0 (2.1.17)

⇒ P (X ∩ Y ) = P (X|Y )× P (Y ) (2.1.18)

= P (Y |X)× P (X) (2.1.19)

⇒ P (X|Y = P (Y |X)× P (X)
P (Y ) , ifP (Y ) 6= 0 (2.1.20)

8



Chapter 2: Concept Building

In simple words Bayes’ theorem can defined as predicting a sample’s category (such as

news items or client reviews). The probability of a specified sample may be calculated

for different categories and the final categorization of the sample will be done on the

basis of highest probability. By utilizing an previous knowledge about the features of a

sample, Bayes’ theorem may be used to obtain the probabilities mentioned previously.

Example 2.1.5. Suppose there is a 40% probability that it rains on Sunday. Then, if

it rains on Sunday, known as event ’A’, there is a further 10% chance that it rains on

Monday as well, known as event ’B’. However, if it does not rain on Sunday, there is

then a 80% probability that it is going to rain on Monday. There are two events ’A’

and ’B’ that are ’raining on Sunday’ and ’raining on Monday’ respectively.What are the

chances of occurrence of raining on Sunday, if it rained on Monday? Below given data

represents the data of event ’A’ and event ’B’ as follows,

Solution:

• P (A) = 0.4→ probability that it is going to rain on Sunday.

• P (A′) = 0.6→ probability that it doesn’t rain on Sunday

• P (B|A) = 0.1→ probability that it is going to rain on Monday, but not on Sunday.

• P (B′|A) = 0.9 →probability that it does not rain on Monday, but it is going to

rain on Sunday.

• P (B|A′) = 0.8→probability it is going to rain on Monday, but not on Sunday.

• P (B′|A′) = 0.2→ probability that it doesn’t rain on Monday and Sunday.

We would first like to calculate the probability if it is going to rain on Monday, which

will be,

P (B|A) + P (B|A′) (2.1.21)

9



Chapter 2: Concept Building

P (B) = 0.4× 0.1 + 0.6× 0.8 (2.1.22)

P (B) = 0.52→ probabilityofrainingonMonday (2.1.23)

In this problem we are only interested in the following Probabilities,

• P (A) = 0.4

• P (B) = 0.56

• P (B|A) = 0.1

Now we can find the probability that it is going to rain on Sunday provided that it

rained on Monday as,

P (A|B) = P (B|A)× P (A)
P (B) (2.1.24)

orP (A|B) = 0.1× 0.4
0.52 (2.1.25)

P (A|B) = 0.0769 (2.1.26)

It means there are 7.69% chances of raining on Sunday given that it would have rained

on Monday

2.2 Naive Bayes’ Classifier

The Bayes’ theorem is the foundation of Naive Bayes’ classifier, NBC predict the oc-

currence of an event based on the previous knowledge of an event. It is so called Naive

Bayes because of assumption that it assumes all events are independent of each other [8].

Despite of such strong assumption that events should not depend on each other, it was

proved to be quite effective in many problems particularly where there is big amount of

data is needed and where fast learning is first priority [10] and [11]. The algorithm falls

under the category of supervised learning and therefore requires a training input-output

data set.

10
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2.2.1 Probabilistic Model

This section shows the proposed probabilistic mathematical model of Naive Bayes Clas-

sifier.Let X be a set of training, where each instance is represented by the n-dimensional

vector (Y1, Y2, ......., Yn).

The pre-defined set of classes is C = c1, c2, c3, ......, ck

Using Bayes’ Theorem, the conditional probability is

Posterior = Prior × Likelihood
evidence

(2.2.1)

Or p(Ck|y) = p(Ck)p(y|Ck)
p(y) (2.2.2)

Since we are only interested in numerator of 2.2.2 cause the denominator that is p(y)

which is not class C dependent and feature values is provided that is (yi) , thus p(y) is

consistent effectively. The numerator would be same as joint probability,

p(Ck, y1, y2, ...., yn) (2.2.3)

Use the chain rule for repeated conditional probability definition

p(Ck, y1, y2, ...., yn) = p(y1, y2, ...., yn, Ck)

= p(y1|y2, ...., yn, Ck)p(y2, ...., yn, Ck)

= p(y1|y2, ...., yn, Ck)p(y2|y3, ...., yn, Ck)p(y3, ...., yn, Ck)

= ....

= p(y1|y2, ...., yn, Ck)p(y2|y3, ...., yn, Ck)...

p(yn−1|yn,Ck)p(yn|Ck)p(Ck)

Now the Naive assumption comes into play which assumes that all features in Y are

mutually independent, depending on category Ck. This results in the approximation

p(yi|xi+, ..., yn, Ck) ≈ p(yi|Ck) (2.2.4)

The joint probability model can be written as,

p(Ck|y1, ..., yn)αp(yi|Ck)

≈ p(Ck)p(y1|Ck)p(y2|Ck)p(y3|Ck)...

= p(Ck)
n∏
i=1

p(yi|Ck)

11
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Under the Naive assumption, the conditional distribution over class C is

p(Ck|y1, ..., yn) = 1
Z
p(Ck)

n∏
i=1

p(yi|Ck) (2.2.5)

In above equation ’Z’ is evidence, can be written as (Z = p(y) =
∑
k p(Ck)p(y|Ck)). Its

scaling factor and only depends upon (y1, ...., yn).

Buidling Classfier

From the above derivation that assumes feature independence, the Naive Bayes classifier

combines this model with a decision rule (a function that formulate the observation into

an appropriate action) and the standard rule is to select most likely hypothesis know as

the maximum posteriori. The Bayes’ classifier can be written as.

ŷ = argmax
kε1,...,K

n∏
i=1

p(yi|Ck) (2.2.6)

Parameter Estimation

For Naive Bayes’ a class’s prior parameter may be determined as

(prior for a given class) = number of samples in the class

total number of samples

Now let’s estimate the parameters for feature’s distribution and one must consider a

distribution models for the features from the training set [12].

Gaussian NBC

Gaussian distribution is also known as normal distribution, it came in play if the data

attributes are continuous.

if a training set having the continuous ’y’ attributes then one can find the parameters

such as mean and variance of ’y’ attributes in each class. Suppose mean is µk of y

attributes with respect to class Ck , σ2 is the variance of y attributes with respect to

class Ck and we have assumed observed values v. The pdf of ’v’ given a class Ck is,

P (y = v|Ck) = 1
σk
√

2π
e−(v−µk)2/2σ2

k (2.2.7)

Multinomial Naive Bayes’ Model

Using the model of a multinomial event, the feature vectors or samples represent the

frequencies of certain events generated through a multinomial (p1, p2, ...., pn) with pi
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representing the probability of occurrence of the event i.

Having said that, a feature vector; say ’x’ (wherex = (x1, x2, ....., xn)) is then, a his-

togram with each element xi representing the number of times the event i has taken

place. The multinomial distribution is a generalized form of the binomial distribution,

which provides the likelihood of any specific combination of success numbers for the

different classifications.

Such a model may be used for document classification. For this particular example, the

events may occurrence of a specific word in the document. Probability of observing a

histogram x is,

P (x|Ck) = ((Σi × xi)!
Πi × xi!

)×
∏
i

×Pkixi (2.2.8)

Probability estimates calculate to zero for features that actually never occur in a class.

This is troublesome because the other non-zero probabilities will also become zero upon

multiplication.

Therefore, a pseudocount is usually incorporated in the probabilities so that the prob-

abilities are never zero. Regularizing the Naives Bayes in this way is known as Laplace

Smoothing for a pseudocount of ’1’ and known as Lidstone Smoothing otherwise.

Bernoulli Naive Bayes’ Model

Using the model of a multivariate Bernoulli event, the inputs are actually independent

boolean variables having binary values. The model is popular for the tasks of document

classification just as was the case in the multinomial event model. However, the differ-

ence is in the features that are considered as occurrence of a binary term rather than

term frequencies.

This means that if xi represents a boolean, then it is the occurrence or absence of the

ith term of the vocabulary. We can write the likelihood of a document of a given class

Ck as,

P (y|Ck) =
n∏
i=1
×pyi

ki × (1− pki)1−yi (2.2.9)

with pki denoting the Ck class probability of generating a xi term. These features of

the Bernoulli model make it specially suitable for classification of short texts. One can

explicitly model the absence or occurrence of terms. The frequency counts in a Naives

Bayes’ Bernoulli event model, unlike the multinomial model, are truncated to one.

13
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2.3 Fixed-Point Data Type

While dealing with digital systems, numbers are represented and stored in binary scheme.

In order to represent binary numbers, can either be fixed-point or floating-point data

types used. A fixed-point data type consists of three basic parts that are word length

in bits, the position of the binary point, and it is signed or unsigned digit. A binary

fixed-point number can be rewritten in general format as,

Figure 2.3: Binary representation of a generalized fixed-point number

Where

• bi is called ith binary digit.

• Word length in bits is represented as wl.

• The place of (MSB) is bwl−1 .

• The place of (LSB) is b0 .

• As mentioned in above figure, the place of binary point is 4 places left of ’LSB’.

FPDT must be either signed or unsigned digit. Signed binary FP numbers may be

represented in the following ways:

• Sign/magnitude

• one’s Complement

• two’s Complement

2’s complement is one of the famous and commonly used representation of signed FP

numbers and is the only representation that is being carried by Fixed-Point Designer

documentation.

14
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2.3.1 Scaling

Suppose ’s’ denotes slope, ’i’ denotes and ’b’ denotes bias, then fixed-point numbers are

encoded as,

Real −WorldV alue = (s× i) + b (2.3.1)

The slope can represented as,

s = slopeadjustmentfactor × 2fixed−exponent (2.3.2)

The scaling of fixed-point number can be expressed by the ’s’ and ’b’. The scaling with

a zero bias can be affected only by slope. A binary point position scales the fixed point

number which is equivalent to [s b] with a null bias and slope adjustment factor should

be unity. This is called a scaling by only a binary point.

Actual − V alue− in− globe = (2fixed−exp)× interger (2.3.3)

The FPT not only hold binary point scaling but also hold [Slope Bias] method scaling.

How to evaluate ’s’ and ’b’

Lets initiate with the terminal points that are required, signedness and ’wl’. Suppose

upper-bound is represented by ’u-b’ and lower-bound is represented by ’l-b’.

• l − b = 999

• u− b = 1000

• signed = true

• wl = 16

Let us specify an object ’fi’ with a pre-defined ’wl’ & singed-ness by using the range

function,

[Qmin,Qmax] = range(fi([], issigned, wordlength, 0)).

In order to calculate ’s’ and ’b’, system of equations needs to be solved,

l − b = s×Qmin+ b (2.3.4)

u− b = s×Qmax+ b (2.3.5)
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Above equations can be written in matrix form as, lower − bound

upper − bound

 =

 Qmin1

Qmax1

×
 slope

bias

 (2.3.6)

2.3.2 Precision and Range

Range

The range can defined as the limit of numbers with which a FPDT and scaling can

be represented. The below figure expresses the range of representable numbers with a

specified ’wl’ as word length, ’s’ as scaling and bias ’B’ for a two’s complement scheme.

Figure 2.4: Fixed-point numbers for signed and unsigned data type, the distinct bit patterns

is 2wl.

Overflow Handling

Finite ranges are defined with fixed point data types. Range changes when the output

of operation changes. Positive and negative overflows are given by saturation. Modulo

arithmetic is a technique used in wrapping to put the overflow back into data type that

can be represented.

Precision

There is a difference between continuous values in a fixed point number’s precision

that can be represented by data type and scaling that has same value as that of least

significant bit. Fractional bit determines the least significant value.

2.3.3 Rounding Methods

When there is difference between the specified data type and scaling, rounding method is

used to cast value to a representable number. Rounding operation always loses precision,
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it also determines the value of bias and operation cost. Fixed-Point tool currently

supports the following rounding methods,

• Ceiling rounds in the direction of positive infinity to the nearest representable

number.

• Convergent rounds to the nearest number representable and rounds to the nearest

even number in the case of a tie.

• Fix rounds to the closest representable number in the direction of zero.

• Floor rounds to the closest representable number in the direction of negative in-

finity.

• Nearest rounds to the nearest number expressible. In the case of tie, the Nearest

move towards the side of positive infinity .

• Round approximates to the most nearest representable number.
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2.4 HDL Coder

MATLAB design, Simulink models and State flow charts can produce a hardware de-

scription level language such as Verilog and VHDL code with the use of HDL coder.

The auto generated HDL code can be used to program, prototype and design FPGA or

ASIC. Workflow advisor is available in HDL coder to automate Xilinx, Microsemi and

Intel FPGAs programming. It can control and implement HDL architecture, highlight

critical paths, and generate estimates of the use of hardware resources. HDL Coder pro-

vides standardization between Simulink model and Verilog and VHDL code generated,

enabling high-integrity code verification.

Design, modeling, simulation, code generation and implementation are provided by

MATLAB and Simulink for model-based design. On MATLAB, Simulink, and State

flow models can be designed and simulated and then HDL Coder generates Verilog and

VHDL code for FPGAs and ASICs. Alternatively, Xilinx library of bit- and cycle-true

blocks can be used to build a model in Simulink targeted for Xilinx FPGAs. Xilinx

System Generator can then be used to automatically generate synthesizable hardware

description language (HDL) code mapped to pre-optimized Xilinx algorithms [13].

To synthesize the HDL code and generate a bit stream for the FPGA, a three-step

process is followed. First step refers to the model designing with MATLAB functions

and Simulink blocks. HDL codes are generated at the end of this step, which can then be

synthesized using third-party tools and generate the bit stream. The 3rd step uploads

a bit stream to the FPGA. With the Synthesis tool option, HDL Coder can integrate

third-party tools into Workflow Advisor to create a uniform and integrated environment

(Simulink Environment) for all processes, from model design to bit stream generation.
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Design

3.1 Naive Bayes’s Classifier

Naive Bayes’ Classifier was introduced almost 50 years ago and mostly suited when the

amount of data set is large. We have already discussed about Naive Bayes’ Classifier

(NBC) in chapter 2, in this chapter we shall design the algorithm on Matlab and Simulink

environment for different examples and applications, especially for medical applications

NBC proved to be quit efficient for classification. The mathematical model of NBC can

written as,

• Let there is ’r’ dimensional vector with Y : (y1, y2, .....yn)

• There are ’q’ classes : C1, C2, ...Cq.

NBC forecasts Y attribute be a member of a class Ci if.

P (Ci/Y ) > P (Cj/Y )forl ≤ j ≤ q, j <> iMaximumPosterioriHypothesis(3.1.1)

P (Ci/Y ) = P (Y/Ci)× P (Ci)
P (Y ) MaximizeP (Y/Ci)× P (Ci)asP (Y )isconstant(3.1.2)

With high number of attributes, it is computationally costly to assess P (Y/Ci)

P (Y/Ci) =
r∏

k=1
×P (yk/Ci) (3.1.3)

P (Y/Ci) = P (y1/Ci)× P (y2/Ci × ....× P (yn/Ci) (3.1.4)
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Example 3.1.1. The given data table describes that there are students and non stu-

dents with a status of age, income and credit ratings with a given condition that who

can buy a computer based on their status as follows

Figure 3.1: Will a person buy a computer? if a person has following attributes

Figure 3.2: Attributes of a Person

Now let us represent above data table into meaningful numbers as follows
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Figure 3.3: This bar chart represents a group of people of three age groups, five of them aged

less than 30 years, four of them aged between 31 to 40 years and five of them aged

above 40 years.

Figure 3.4: This bar chart represents number of people with different income status

Figure 3.5: Bar chart represents the number of students and non-students
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Figure 3.6: Number of people having fair and excellent credit rating.

Figure 3.7: Frequency bar chart of X tuple

Solution:

Let us calculate the respective probabilities,

P (buys− computer = yes)→ P (C1) = 9
14 = 0.643

P (buys− computer = no)→ P (C1) = 5
14 = 0.357
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P (youth \ buyscomputer = yes) = 2
9 = 0.222

P (youth \ buyscomputer = no) = 3
5 = 0.6

P (mediumincome \ buyscomputer = yes) = 4
9 = 0.444

P (mediumincome \ buyscomputer = no) = 2
5 = 0.4

P (student \ buyscomputer = yes) = 6
9 = 0.667

P (student \ buyscomputer = no) = 1
5 = 0.2

From the above probabilities, calculate the probability of ’X’ tuple given that he buys

a computer as,

P (X\C1) = P (youth\C1)×P (mediumincome\C1)×P (student\medium)×P (faircreditrating\C1) = 0.222×0.444×0.667×0.667 = 0.044.

From the above probabilities, also calculate the probability of ’X’ tuple given that he

does not buy a computer

P (X \Buysacomputer = No) = 0.600× 0.400× 0.200× 0.400 = 0.019
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Now find class Ci that maximize P (X \ Ci)× P (Ci)

⇒ P (X \ C1)× P (C1) = 0.028

⇒ P (X \ C2)× P (C2) = 0.007

Prediction:

As P (X\C1) > P (X\C2) so he will buy a computer, further more lets check normalizing

the probability that he will buy a computer.

P = 0.028
0.035 = 0.8

It means there are 80% chances that he will buy a computer and 20% chances that he

will not buy a computer.

Classification of Iris Data Using Gaussian NBC

Iris data set is a multivariate data set, provided by Britisher biologist to analyze changes

in morphology of flowers of three related class of species. Data set comprises of 50

samples from each of 3 species that are Iris setosa, Iris virginica and Iris versicolor and

4 features were extracted from each of sample that is sepals length, sepals width, petals

length and petals width in centimeters respectively.

Based on these feature, he introduced a model called linear discriminator to differentiate

between species. Few features of data set are shown here but complete data set is given

in appendix 1.
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Figure 3.8: Iris Data set

Algorithm Steps

Figure 3.9: Calculation of Parameter from data set
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Figure 3.10: Determining Normal Probability distribution function

1 Initially the data set of Fisher’s Iris is loaded in Matlab with a command of load

fisheriris.

2 Find the probability of each class that is C1, C2andC3 or Setosa, versicolor and ver-

sicolor respectively with each of feature that are sepal length & width and petal

length & width. Probability of each class is P (C1) = P (C2) = P (C3) = 0.333.

3 Find the respective standard deviation and mean of Iris data with each feature.

4 Choose the observed value from data feature for each class.

5 Find the probabilities of respective classes and respective feature using Normal dis-

tribution function.

6 Find the probabilities that maximise the class.

7 Finally compare the probabilities, the greater probability has more chances of occur-

rence.
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Parameters Sepal Length Class

Mean 5.006 Setosa

Standard Deviation 0.3525 Setosa

Normal PDF 0.0895 Setosa

Observed Value 5.8 Setosa

Mean 5.936 Versicolor

Standard Deviation 0.5162 Versicolor

Normal PDF 0.0924 Versicolor

Observed Value 7 Versicolor

Mean 6.588 Virginica

Standard Deviation 0.6359 Virginica

Normal PDF 0.0747 Virginica

Observed Value 7.9 Virginica

Table 3.1: Calculations of Parameters of Sepal length with respect to Class

Parameters Sepal width Class

Mean 3.428 Setosa

Standard Deviation 0.3791 Setosa

Normal PDF 0.0393 Setosa

Observed Value 4.4 Setosa

Mean 2.77 Versicolor

Standard Deviation 0.3138 Versicolor

Normal PDF 0.1694 Versicolor

Observed Value 3.4 Versicolor

Mean 2.974 Virginica

Standard Deviation 0.3225 Virginica

Normal PDF 0.0645 Virginica

Observed Value 3.8 Virginica

Table 3.2: Calculations of Parameters of Sepal width with respect to Class
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Parameters Petal Length Class

Mean 1.462 Setosa

Standard Deviation 0.1737 Setosa

Normal PDF 0.0955 Setosa

Observed Value 1.9 Setosa

Mean 4.26 Versicolor

Standard Deviation 0.4699 Versicolor

Normal PDF 0.1718 Versicolor

Observed Value 5.1 Versicolor

Mean 5.552 Virginica

Standard Deviation 0.5519 Virginica

Normal PDF 0.0366 Virginica

Observed Value 6.9 Virginica

Table 3.3: Calculations of Parameters of Petal length with respect to Class

Parameters Petal Width Class

Mean 0.246 Setosa

Standard Deviation 0.1054 Setosa

Normal PDF 0.0134 Setosa

Observed Value 0.6 Setosa

Mean 1.326 Versicolor

Standard Deviation 0.1978 Versicolor

Normal PDF 0.1141 Versicolor

Observed Value 1.8 Versicolor

Mean 2.026 Virginica

Standard Deviation 0.2747 Virginica

Normal PDF 0.3276 Virginica

Observed Value 2.5 Virginica

Table 3.4: Calculations of Parameters of Sepal Width with respect to Class
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Find the probabilities that maximise the class

1. P1 = P (C1)× P (sl1)× P (sw1)× P (pl1)× P (pw1) = 1.50357e− 06

2. P2 = P (C2)× P (sl2)× P (sw2)× P (pl2)× P (pw2) = 1.0222e− 04

3. P3 = P (C3)× P (sl3)× P (sw3)× P (pl3)× P (pw3) = 1.3894e− 05

4. P = P1 + P2 + P3 = 1.1762e− 04

Normalised Probabilities are

P1 = 0.0128 (3.1.5)

P2 = 0.8691 (3.1.6)

P3 = 0.1181 (3.1.7)

Conclusion

From the calculated probabilities of respective classes that are P1 refers to Setosa class,

P2 refers to Versicolor class and P3 refers to Virginica. It is observed that the chances

of occurrence of Versicolor are higher that is 86.9% , while the chances of occurrence of

Virginica are lesser that is 11.81% and the chances of occurrence of Setosa are the least

that is 1.28%, therefore Versicolor is the type of species according to given data set.

3.2 Detection of Epileptic events using Gaussain Naive

Bayes’ Classifier using Matlab Simulink

Epilepsy is one of the serious neurological disorder which may be found at any stage of life

to a male or female, adults or children but the occurrence in children is higher than adults

[14]. According to WHO report around, 50 million people across the world have been

capitulated with epilepsy which makes people mentally retarded and uncommunicable

due to which their family suffers from discrimination and it was also studied in WHO

report that about three quarters of people living in low and middle class countries with

epilepsy like Pakistan and are not diagnosed properly [15]. Epilepsy can be forecasted
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earlier with the help of EEG (Electroencephalogram) signals to identify the stage of

seizure or non-seizure or whether it is focal (partial) EEG or non-focal EEG so that

Physician can go through the proper treatment [16]. EEG is the electrical measure of

brain activity which provides the statistics of brain psychological state. In this modern

medical technological era, diagnostic and testing tools are present however, the area

requires automated solutions capable to perform computations and producing results in

milliseconds. In this thesis we have discussed the implementation of the Naive Bayes’

classifier for the classification of epileptic events into seizure or non-seizure class based

on prior knowledge of events.

The data sets used in the present study are provided by M.Liaquat Raza. From the Inst.

of Neurophysiology Charite, Universitatmedizin, Berlin, Germany. This study focused

on sK-channel agonists for testing them in acute rat slices. When 4-aminopyridine

(4-AP) induced this generated seizure-like events (SLEs).

Young adult rats of 400 uM thickness were used to prepare slices and transferred into

interphase chamber. Moreover, epileptic activities in slices were induced by 4-AP, 100

uM. Local field potentials were logged via microelectrode from medial entorhinal cortex.

Reference papers for the datasets in the present study are [[17], [18], [19]]. The above

testing and training data are 100 times scaled of original one. Below table represents

10 samples of data feature of seizure and non-seizure for training and testing, but a

complete data set is given in appendix 2.
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Table 3.5: Training Data

Non-Seizure Data

C V A Entropy Mean R M S

5.7 249.7 25.3 1.4

13.0 100.2 5.8 0.8

14.0 106.7 5.6 0.8

10.9 111.7 7.4 0.8

13.7 104.2 5.6 0.8

6.3 153.0 15.9 1.0

13.7 118.4 6.0 0.8

11.5 99.6 6.5 0.8

8.9 163.8 11.4 1.01

11.03 116.2 0.8 0.83

Seizure Data

C V A Entropy Mean R M S

1.4 127.49 28.6 3.36

1.1 493.88 77.7 8.17

0.4 132.94 63.4 4.16

1.6 142.91 29.1 3.66

1.1 588.88 93.0 9.58

1.0 428.93 83.0 8.12

100 282.04 57.6 8.87

1.7 872.13 87.5 11.44

1.13 4366.9 72.6 7.71

1.1 2595.8 51.0 5.32
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Table 3.7: Testing Data

Non-Seizure Data

C V A Entropy Mean R M S

14.9 117 5.4 0.81

10.7 112.3 7.5 0.8

13.8 135.5 6.5 0.9

10.7 116 7.7 0.83

13.8 143.4 6.7 0.92

11.5 137.8 7.9 0.91

9.6 158.9 10.4 1.0

11.6 117.1 7.1 0.82

10.4 112.5 7.8 0.81

6.5 242.8 19.9 1.3

Seizure Data

C V A Entropy Mean R M S

0.8 19.6 3.6 0.32

0.2 12.8 5.2 0.3

1.1 1517.2 36.7 3.8

1.7 1382.6 26.3 3.5

0.7 1397.5 45.5 3.8

0.4 1123.3 56.5 3.7

1.1 7.0 1.6 0.2

1.8 6.3 1.2 0.2

0.7 879 35.8 3.0

1.0 1330.8 34.5 3.6

3.2.1 Matlab Simulink Design Model

The NBC algorithm is designed in Matlab Simulink environment, built in functions like

mean, standard deviation, normal probability distribution function are not used but

these functions are designed manually. Basically NBC algorithm is designed for any

kind of application for a pre-defined data feature length, in this thesis the standard
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pre-defined data feature length is 50 data features for each class.The Simulink design

comprises of three parts as given,

1 The switch circuit.

2 Normal Probability distribution function (pdf).

3 Demux Circuit.

The switching circuit

For the above application, the prediction of Epileptic events in to seizure or non-seizure

class, has two classes. There are four variables, the length of each variable is 50. It means

at a time a single data feature variable is to be selected so that parameters say mean

and standard deviation can be evaluated for NBC, likewise one by one these feature are

selected. The below figure represents the switching circuit.

Figure 3.11: Switching Circuit

Figure 3.12: Mean Circuit
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Figure 3.13: Standard Deviation Circuit

Normal Probability Distribution Function

After calculation of these parameters that is mean, standard deviation and any observed

value from data feature. These values are given to normal probability distribution

function to evaluate it.

Figure 3.14: Normal PDF Circuit

Demux Demux circuit keep every calculated normal pdf in to memory places so that

each probability can be used for further calculations.

Figure 3.15: Basic Demux Circuit
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Figure 3.16: Complete Demux Circuit

Results

Matlab is versatile design tool box in which we have designed the algorithm in Simulink

environment and getting almost 100 percent of accuracy, it can be shown in below

confusion matrix figures that the Naive Bayes’ classifier classifies all data features into

its correct class, for instance a false data features are also given to classifier to check its

viability.

Figure 3.17: Confusion Matrix of 100% correct.

Figures [3.15, 3.16, 3.17, 3.18] of confusion matrix (CM), the green marked portion shows

the correct classification while the red marked portion shows the false classification with
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a defined rate of percentage for both classes.Figures [3.15, 3.16, 3.17, 3.18] represents

for an input data of 49 samples.

Figure 3.18: Confusion Matrix of 50% correct.

Figure 3.19: Confusion Matrix of 25% correct.
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Figure 3.20: Confusion Matrix of 0% correct.

The prognosis of seizure mainly depends on its features. The data features that will be

extracted from a pre-processed EEG signals are as follows

1. Continuous Varying of Amplitude (CVA)

2. Entropy

3. Mean

4. Root Mean Square

Each of the feature reveals unique information to collectively allows the detection of

seizure. For example, the entropy proves useful in revealing important information for

classification of EEG data [[20], [16]]. Now let us observe and analyze these parameters

that affect the accuracy of classifier by varying one parameter at a time and keeping

other parameters constant. In other words by varying the values of one parameter

and keeping others same, we can find out the acceptable range of error in the particular

parameter. For example, by varying the values of co-efficient of varying amplitude (CVA)

and keeping others constant, we can find out its sensitivity and check its overall effect on

the accuracy of classification. As we can see in Fig.3.19 CVA has the nonlinear behaviour

which moves towards non-seizure event from value of 0.01 to 0.02 and remains steady
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after the value of 0.02, therefore, we can say that the classifier is not much sensitive to

this parameter and a big error margin in this parameter can be accepted.

Figure 3.21: Co-efficient of Varying amplitude.

In Figure 3.20 the values of entropy are varied for a particular range to check it’s

sensitivity while keeping others constant and it is observed that entropy is much sensitive

to move towards seizure or non-seizure events in very sharp range and then becomes

constant like for non-seizure event when the value of entropy is changed from 7 to 8

the probability of non-seizure tends to zero and the seizure event tends to unity, means

there will be more chances of seizure if the value of entropy approaches to 8.

Figure 3.22: Entropy

Similarly in Fig. 3.21 the root mean square has the most sharp range of 0.037 to 0.0385

& is more sensitive as compared to entropy while Fig. 3.22 the mean has the sharper

range of 0.87 to 0.88 & is sensitive in between entropy and RMS. Figures 5,6,7 and 8,

a blue annotation refers to non-seizure event while a red one refers to seizure event as

mentioned in figures as a label.
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Figure 3.23: Root Mean Square

Figure 3.24: Mean
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Implementation

4.1 Introduction

In this thesis we have introduced the implementation of Naive Bayes’ algorithm (a

statistical algorithm) on embedded systems using HDL coder. The algorithm deter-

mines the various probability distribution function using Bayes’ Theorem [21]. NBC is

implemented on FPGA with the help of HDL coder and fixed-point tool in Simulink

environment. HDL coder is the Matlab tool which converts the Simulink designs into

HDL(hardware description language) that is verilog or VHDL. The main advantage of

using HDL coder is that the designer can more concentrate on tuning the algorithms

and designs rather than coding on HDL. Previous work [[22], [23], [22], [24]] focuses on

different algorithms and analysis but there is still a space in hardware implementation

of algorithms on FPGA using HDL coder. Our main focus was on the implementation

and analysis of seizure detection by varying the data feature’s parameters as discussed

in chapter 3.

4.1.1 Algorithm Flow Chart

Fig. 4.1 gives a sequential diagrammatic summary of the methodology followed.Initially

an EEG data of patient is pre-processed to achieve it’s data features then data features

are converted in a pre-defined significant digits. In order to make design compatible for

HDL coder, a design is converted into fixed point with pre-defined bits with the help

fixed point tool, in the next step algorithm’s parameters are estimated that are mean

and standard deviation, are given to algorithm. The last step uses HDL coder to convert
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design into Verilog code.

Figure 4.1: Algorithm Hierarchy

4.2 FIXED POINT MODEL GENERATION

High level operators and functions replaced with accurate hardware models

A floating point MATLAB algorithm cannot accurately determine the final hardware

response if the high level operators and functions in it are not replaced with accurate

hardware macroarchitectures as shown in Fig.4.2

Figure 4.2: Replacing Built-in Operators and Functions
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This can be seen in Fig. 4.2 that compares the responses of the MATLAB fixed point

divide operator against a CORDIC algorithm (a hardware implementation) for division

for random inputs of 8-bits signed vectors. Depending upon the input data, there may be

a considerable difference in the calculated outputs. CORDIC is a co-ordinate rotational

digital computer which uses algorithm to evaluate different functions like trigonometric

functions, division and etc and converging with one digit per iteration thus also known

as digit-by-digit algorithm.

Figure 4.3: Fixed point response of Matlab "/" Vs Cordic

During the process of fixed point generation, the high level MATLAB operators and

functions are automatically replaced by accurate hardware representation as shown in

Fig. 3. The step however, does not require any modifications of the MATLAB code

since it is transparent to the user. A synthesis directive may be used to re-define the

initial micro and macro architecture.
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Figure 4.4: Automatic Hardware Accurate IP Insertion

Quantization can then begin after the operators and functions have been replaced with

hardware architectures.

Auto-Quantization through Graphical Assistance

A Field Programmable Gate Array (FPGA) can allow for a variable word length of fixed

points words unlike the DSP processor. By not restricting the variable lengths to fixed

16 or 24 bits, calculations requiring additional bits may be done without introducing

the numerical errors. Clearly, its a tremendous for applications like guidance systems,

navigation and radar, however, at the cost of the increased hardware.

For most of the cases, bit growth rules are pretty simple. For example in Fig.4 an

addition operation casues results in a one bit increase in the answer and that in a

multiplication operation is increased to the sum of input words lengths. However, for

variables in an actual design, these determinations can be made in an iterative process.

One cannot allow an unchecked or unnecessary bit growth on a hardware level since this

is going to be hardware expensive. Various techniques may be employed to minimize

the word lengths while maintaining the same level of numerical accuracy.

Figure 4.5: Fixed-Point Bit Growth

Automation tools may be employed for determining the quantization values for the

variables and there afterwards refinements as well. The Accel DSP Synthesis Tool can
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act as an automation tool in this regard. This tool allows a floating-point MATLAB

model during the simulations and determines the dynamic range of input data. These

ranges serve as initial values to start an auto-quantization process to determine the

optimal word lengths with the help of a database containing over 6000 designs.

Summary: MATLAB is a natural choice for a DSP algorithm and that is to be unen-

cumbered by hardware constraints. However, transforming the algorithm into a fixed

point model is an involved process for a FPGA implementation. This process may be

supported by the automation, acceleration and visualization tools offered by the Accel

DSP Synthesis Tool.

4.3 FPGA Implementation

In this research we had supplied a 32-bit length feature data (seizure or non-seizure) to

the q-kintex 7 FPGA device (Target Device: xq7k325t) that is using the Naive Bayes

classiïňĄer algorithm for processing in real time. qkintex7 is a high end FPGA mostly

suitable for high end applications like 3G and 4G wireless. Following are some key

features of q-kintex 7 as,

DSP Slices The device contains 840 DSP slices each containing four number of Look

Up Tables (LUT) and eight number of flip flops. Also, each DSP slice contains a

pre-adder, a 25 x 18 multiplier, an adder and an accumulator.

Block RAM There may be 445 number of Block RAMS each with a size of 36Kb or

890 number of lock RAMs each with a size of 18Kb both configurations allowing

a total of 16020 Kb memory size.

Clock Management Tiles There are 10 number of Clock Management Tiles (CMT)

each containing 1 number of Mixed Mode CLock Manager (MMCM) and 1 number

of Phase Lock Loop (PLL).

PCIe interface There is only 1 number of interface for PCI Express support upto x8

Gen 2.
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4.3.1 FPGA Results

The data we had processed using the above said algorithm contains 49 samples each

of which containing 4 variables. These variables are ’co-efficient of varying amplitude’

(CVA), ’entropy’, ’mean’ and ’root mean square’ (rms) deïňĄned in chapter 3. This

real time processing results in an achieved accuracy of 97% correct classification of the

given data as compared to their actual classes. The remaining 3% results are that are

incorrectly classified are so since the input data to the processor has been rounded up to 4

decimal places.The algorithm has the following computational and timing specifications,

• clock period is 558.467ns (frequency : 1.791MHz)

• Maximum combinational path delay is: 827.013ns

• Data samples processes per second ≥ 360885

Also, the target device that is xq7k325t has the following utilization and distribution

details.

• Number of Slice Registers: 1268

• Number of Slice LUTs: 95940 (95748 as Logic,192 as SRL memory)

• LUT Flip Flop pairs: 96375

• Total memory usage: 2869128KB

Besides the above, the number of DSP48E1 slices used in the target devices numbers to

804. Also, the device has 12932 used number of IOs.
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Discussion, Future Work &

Conclusion

5.1 Discussion

In this thesis we have discussed the implementation of algorithm NBC on FPGA using

HDL coder. A design is bridged to verilog with minimal development time with use

of HDL coder. The main purpose of using HDL coder is to enhance system reliability

and save development time by 33% as compared to coding on HDL [25]. HDL also

reduces the cost from 1/5 to 1/2 as compared to conventional method [26]. The Matlab

Simulink design also verifies the HDL code by co-simulation with Simulink and creates

the FPGA based prototypes [27]. In this application the data samples are of float type

so need to be converted in fixed bit length, for that fixed point tool is to be used for

converting the data of any type into defined fixed length.Design’s parameters are being

tuned according to availability of hardware resources and desired outcomes, at each step

the design’s parameters and signals need to be converted in fixed point data type and

one of the best part of using fixed-point tool is that one can specify the maximum and

minimum output range to get the best precision scaling. A design uses operators like

division, multiplication, addiction,and exponential function so for division a reciprocal

block is used with multiplication block to perform division and for the exponential

function, a 1-D look-up table is used. Though the limited bit size is used in algorithm

we have proved the robustness of algorithm but also provided the best results under

trade off in rounding the data set to three significant digits. We have also observed
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that the algorithm works well even when the data size is higher in Simulink but due to

limited hardware resources we have limited the size the of data set approximately 400

data samples are computed each variable is of around 50 data samples.

5.2 Future Work

As discussed in chapter 4, the resources utilized on q-kintex 7 FPGA hardware which

consumes some how greater resources than a conventional method of coding on FPGA,

so there is need to further optimize the algorithm and parameters, in order to achieve

this we need to use S-function for every single function in Simulink Matlab. In our design

there are some net delays and these can be reduced to optimal value if the frequency is

further reduced than current one. Moreover every custom function used in our design

should further be optimized like division, we have used reciprocal function and multiplier

to perform division, but this uses two operators instead of one so there is need to design

division operator which can support any fractional length while converting from floating

to fixed-point. This can be accomplished using Cordic algorithms which provides the

best performance.

5.3 Conclusion

The main focus of this research was on the implementation of complex algorithm on

FPGA using HDL coder. A design is generalized for any kind of application with defined

data feature length for classification, the system reliability is enhanced and development

time is saved by 33% as compared to coding on VHDL or Verilog. We have observed

and analyzed from the above results that dependency and sensitivity of seizure detection

by varying parameters and found that the most sensitive parameter that is root mean

square and the less sensitive parameter is co-efficient of varying amplitude.
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