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Abstract

The thesis explores the area of Reinforcement Learning (RL) that is emerging as an ele-
gant tool in solving the control problems that require optimality and robustness simulta-
neously. The task of stabilization of an inverted pendulum system with known/unknown
internal dynamics is discussed to reveal the advantages of RL approach over conventional
approach and is demonstrated using simulations. Also discussed are the algorithmic chal-
lenges faced by the designer in using the RL approach for online robust optimal control

of unknown systems.

Keywords: Reinforcement Learning, Optimal Control, Inverted Pendulum System,

Real Time Control
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CHAPTER 1

Introduction

1.1 Background

Control Systems are designed on the basis of mathematical model of some real physical
system whereas they are implemented on the physical system itself to achieve the desired

and up to the mark system behavior.

However, it is then obvious that any errors in the mathematical model will result in
degraded performance of the designed controller when applied for the control of the

actual physical system.

Despite the high level of efforts that is put up into system modeling, some degree of

error is always present due to the following reasons.

e The physical system may have complicated and/or hidden dynamics that are dif-

ficult to be incorporated into the mathematical model.

e Even if in the mathematical model, all the system dynamics of the physical system
have been accounted for, yet some or all of those dynamics may not remain the
same due to their time varying nature or due to their degradation/deration over

long lengths of time.

e Real systems, unlike mathematical models, are subjected to external unknown
disturbances that may change the dynamics of the system in an unpredictable
manner and thus the mathematical model may not be a good representation of

the system working in a real environment.



CHAPTER 1: INTRODUCTION

Considering the above, it is absolute that one has to put enough flexibility into the
controller itself that can tackle the above hidden or varying system dynamics, yet achieve
the desired overall control performance. This is where the field of Robust Control plays
its role in the development of such controllers. Robust control aims to develop control
systems that can perform the desired control tasks with bounded uncertainties in system

models and/or bounded disturbances offered by the system environments.

However, a Robust Control’s main task is to make sure that the plant remains stable
despite the constraint that the plant dynamics are not known and that the controller
is authorized to use as much control resources as is necessary to handle the unknown
system. This is where the designers who are much more concerned about the utilization
of control resources don’t find the domain of Robust Control an all appealing solution.
Instead, they are interested in solutions that give the optimal system performance with

utilization of minimal control resources.

This is where the field of Optimal Control comes into play in which such controls are
sought that minimize user defined cost functions while achieving desired optimal system

performance.

However, the dilemma is that Optimal Control design requires the use of absolute plant
dynamics i.e. one must have an exact mathematical model of the real system to design
the best (optimal) control w.r.t the user defined cost function that can achieve the

desired control objective.

It is therefore pretty clear that one must sacrifice the Robustness property in the design
if optimal solutions are sought. On the contrary, the designer must be willing to pay all

the control costs if a fully robust design is needed.
This is where Reinforcement Learning solves the dilemma.

These are control methodologies developed from the work of Computational Intelli-
gence in which the control systems are intelligent enough to adapt to changing environ-

ment /systems and learn to optimize the control design with more and more training.

Control Design using Reinforcement Learning concepts is not new in the Control Systems
community. However, as we surveyed the various literature in our research, we felt that
the idea requires more explanations as to how useful is the concept in a more practical

manner. Further, the algorithms that have already been developed utilizing this concept
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require demonstrations with concrete examples.

1.2 Literature Review

The optimal control problem in the domain of control theory has been studied for
decades. However, it has been an offline design with full knowledge of system dynamics

and there did not exist concept of online and real time design of optimal control.

In this thesis, we are primarily focusing the work of F. Lewis & D. Vrabie in their
work [1], [2] where the concept of Reinforcement Learning has been used to allow online
optimal control design with the added advantage that system dynamics are not needed
and all requisite information can be derived from system real time data in an online

fashion.

The algorithms to find the solutions of The Optimal Control Problem have already been
developed such as Policy Iteration [3],[4],[5], Value Iteration [6], Generalized Policy
Iteration [4].

However, the optimal control design in the control systems community was an offline
procedure until the work of [2] wherein the above mentioned algorithms were extended
to allow an online real time design of optimal controllers. Various researches have been
conducted to implement these algorithms for the online optimal control of systems such

as AUVs [7], Hypersonic Vehicle Tracking Control [8] and others.

However, to the best of our knowledge, non have approached the problem from a cost
effective point of view. Majority have harnessed the data driven adaptable nature of
Reinforcement Learning Control to improve the controller performance in terms of com-
putational efficiency, zero steady state error and high quality transient performance

compared to the conventional and traditional methods.

They claim and show that the solutions they have found using the RL approach are
optimal and are indeed optimal when compared with the identical results of conven-
tional methods. However, as we show in this thesis that offline planning is not the
same as online learning. That an optimal control found using a poor algorithm may be
more non-optimal than the regular non-optimal control itself. That is, the high perfor-
mance achieved using the RL concepts is just one aspect and equally important is the

consideration of the cost of the algorithm that is used to find the optimal control.
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1.3 Publication resulted from this work

The work was submitted in and accepted by ANZCC 2018, was published in the Con-

ference Proceedings and made available on IEEE Xplore Digital Library

A. Sami, Attaullah Y. Memon, "Robust Optimal Control of Continuous Time Linear

System Using Reinforcemeng Learning", Australian €& New Zealand Control Conference

(ANZCC) Swinburne University of Technology Melbourne, Australia, Dec 7-8, 2018

1.4 Thesis Objectives

The objectives of this thesis are,

e We have demonstrated and discussed in detail the Policy Iteration method of solv-

1.5

ing the optimal control problem for a benchmark system namely, the stabilization

of the Inverted Pendulum system.

The problem has been approached in both the offline and online manners, the
former requiring the knowledge of system’s internal dynamics whereas the latter
does not. A comparison is given between the offline and online designs highlighting

the pros and cons of both and the importance of the costing of online algorithms.

Challenges that a designers needs to face while designing online RL algorithms are

discussed and form a major contribution of this work.

Thesis Outline

Chapter 2 gives a basic introduction on Reinforcement Learning defining various
terminologies, concepts and algorithms from the developed literature necessary to

get a sound understanding of the work that follows in the subsequent chapters.

Chapter 3 starts with the definition of The Optimal Control Problem followed by
conventional and offline/online Reinforcement Learning methods for the solution

of this problem.

Chapter 4 gives our simulations of the conventional and Reinforcement Learning

methods applied for the stabilization of the Inverted Pendulum System.
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e Chapter 5 gives a discussion on the main extracts of this research followed by a

conclusion of our work.



CHAPTER 2

Concept Building

2.1 Defining Reinforcement Learning...

Living organisms tend to interact with their environment and use those interactions
to improve their own actions in order to survive and increase. This "Modification of
Actions" is an indicator that the organisms have learned something and are now inclined
for such interactions that result in more favorable outcomes. The more the interactions,
the more the organisms get to know their environment and it becomes very likely that
the organism learn the best actions that result in outcomes in their best interest in that
particular environment. However, as soon as the environment changes for the organisms,

the entire learning cycle starts all over again.

This behavior and method of living organisms to survive is the source of inspiration to
develop intelligent man made systems that learn and modify their behavior the same way
living organisms do in order to achieve the desired objectives in most favorable manner
in the worst environmental conditions. The Modification of Actions by the organisms
(Agent) based upon receiving some stimulus (reward or punishment collectively known
as reinforcement) from the environment is defined as Reinforcement Learning. Fig. 2.1

summarizes this definition of RL.
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OUR AGENT LEARNED SOMETHING!

Some modified acti
e n
Agent et

Stimulys

Environment
(rewarg

Figure 2.1: Reinforcement Learning Defined
2.2 More Defining Terms

2.2.1 Sequential Decision Problem

Suppose we have an agent that has been placed in a 4 x 3 environment, has 11 number

of accessible states with two of them being the terminal states as shown in Fig. 2.2

The agent may start from any state; say (1,1) and the task of this agent is to reach the
goal state of +1. The agent can select any of the four available actions namely; UP,
LEFT, DOWN, RIGHT. This defines a Sequential Decision Problem (SDP) in which
an action is to be selected at each time step by the agent in order to reach the goal state

from the starting position.

3
2 =]
1 | staRT

1 2 3 4

Figure 2.2: 4 x 3 Environment
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Figure 2.3: Transition Model

2.2.2 Policy

For a deterministic environment, easy solutions are readily available for the SDP, one of
which in our example can be (Up, Up, Right, Right, Right). However, the environment
won’t usually be that friendly to such solutions. That is, the actions are unreliable and
an action may result in a different outcome other than the intended outcome. There
might be some model of stochastic motion such as the one in Fig. 2.3. This particular
model of stochastic motion reveals that any action taken to move the agent in a particular
direction has a 0.8 probability that the agent will move in the desired direction and a 0.1
respective probability that the agent will move sideways. The agent might reach states
that were not part of the proposed solution in which it started from a specific state and
was meant to reach the goal by following a pre-defined number and sequence of states.
For any state other than the intended states, the agent will have no clue on what action
to take to reach the goal. That is, assuming the worst case scenario, an action for every
possible state must be defined. A solution of this kind is known as a Policy. Stated

formally,

"A policy is a functional map that assigns an action to every state.”

u = h(s) (2.2.1)
where u is the applied action, h represents the policy and s is the state of the agent
Fig. 2.4 is an example of a policy.

2.2.3 Reward

As mentioned in the definition of section 2.1, the modification of the agent’s actions

is to result in favorable outcomes. However, the agent has no knowledge about what
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Figure 2.4: Policy

its actions do. A reinforcement learning agent will select at random from a set of
available controls until it has accidentally selected the control that results in a favorable
outcome upon which the agent receives some good stimulus from the environment telling
the agent that the particular action has produced a favorable outcome and is likely
to be selected again in the future for that specific state of the agent. Likewise, all
other actions that resulted in unfavorable outcomes result in reception of bad stimulus
by the agent from the environment and are less likely to be used again for the same
states. That is, given appropriate stimulus, one can force the agent/controller to select
the actions/controls that produce the most favorable outcomes. Such stimulus that is
given to the agent to characterize its action as good or bad is known as Reward or
Reinforcement. It is up to the designer whether the rewards are to be given at each
step and direct the agents behavior throughout the course or a single reward to be
given in the end and leave the agent on its own to decide its course for reaching the
goal. This is however, different than supervised learning in which an agent is told the
correct action/control for every encountered state. Rewards may be positive or negative
respectively representing a favorable or unfavorable outcome. Negative rewards may

also be considered as punishments.

One may also consider using a Reward Function that assigns a reward for every state.
That is,
Reward = RewardFunction(State)

The reward function will be entirely responsible for shaping the behavior of the agent

in the specific environment and any required control performance from the agent should
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be directly or indirectly incorporated in the reward function.

As an example, let us again consider the Fig. 2.2 in which rewards of +1 and -1
respectively are given to the agent on the terminal states. Let us further consider that
the agent receives a negative reward of -0.04 for every other non-terminal state. We can
program the agent to look for positive rewards and try to avoid negative rewards. This
will motivate an agent in the START state of (1,1) to go into other states to avoid the
negative rewards until it accidentally reaches the state of +1 representing success or -1

representing failure.

2.2.4 Utility

As mentioned in section 2.2.3, the negative reward of the non-terminal states forces the
agent to go into other states since it has been programmed to avoid negative rewards.
However, it is very obvious that there is no guarantee if the agent will ever end up in the
terminal state or how many states will it go into before ending up in the terminal state.
Even if the agent ends up in the terminal state after exploring a large number of random
states, such reaching of the goal state is not an achievement at all since much control
resources/actions have been expended in doing so and every action taken to go to next
state counts as a control resource expenditure. Rather, a designer would be interested
if the agent can reach the terminal state as soon as possible or at least if it reached
the goal state after going through a large number of states the first time, it should be
intelligent enough to learn from any previous false attempts and avoid repeating them

and reach the goal state in a comparatively lesser number of states the second time.

Such a programming of the agent can be possible if one introduces the concept of Utility,

which is stated as,

"Utility is the total reward accumulated by an agent that is using a specific

policy from a given start state to the end state."

Then, success or failure of the agent is based upon the total reward accumulated for all
the states it went through including the start and the terminal state and the agent is

said to have learned if it accumulates a greater utility the second time.

In our example of section 2.2.3, the longer the agent stays in the non-terminal states, the

more negative reward it accumulates resulting in an overall less value of total reward.

10
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The agent will be programmed to remember any actions in a specific state that resulted
in more accumulation of negative reward and will avoid repeating the same actions in
the same states again the second time. This way the agent’s behavior will keep on
improving with every same situation it encounters, that is, it will start to learn the
optimal action for every state that results in an overall increased total reward. That is,
with more and more training, the agent will be able to maximize this value of utility by

learning an Optimal Policy such as the one in Fig. 2.4 for our example.

There are two ways in which accumulation of rewards takes place, that is, Additive

Rewards & Discounted Rewards.

In Additive Rewards, one simply takes the sum of all the rewards for all the states

the agent went through to calculate the utility. That is,

Utility(Statey) = Reward(Statey) + Reward(State) + Reward(Statez) + ... (2.2.2)

In Discounted Rewards, one introduces a Geometric Series of a discounting factor,
say v, where (0 < v < 1), such that the terms of the additive reward series are weighted
by the corresponding terms of the geometric series to form a compound convergent

series. That is,

Utility(Stateg) = Reward(Stateg) + . Reward(Statey) + v*. Reward(States) + ...
(2.2.3)

It is important here to highlight that the utility for a given state sequence depends
upon the specific policy followed, since this policy is directly responsible for generating
this state sequence. In other words, the utility is a representation of the Quality of
a Policy and can be used to evaluate a policy. However, if one assumes a model of
stochastic motion such as the one in Fig. 2.3, then the same policy can yield different
state sequences and different values of utility in different attempts by the agent to reach
the goal, in which case, one can use the Fxpected Value of utility to characterize the
policy. The utility of a policy can be calculated for every state of the environment that
the agent has access into considering it to be the start state and from then onwards till

the end state. Fig. 2.5 gives an example.

11
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3 0.812 0.868 0.918

0660 | [=1 |

2 0.762

1 0.705 0.655 0.611 0.388

1 2 3 4

Figure 2.5: Utility

The utility of a policy may be finite or infinite depending upon the type of utility

(additive or discounted) and the type of horizon (finite or infinite) considered.

For a finite horizon case, the agent has a limited time in which it has to reach the goal
state and the expiration of this time results in an immediate failure of the agent. With
such time limits, the optimal action from a given state to reach the goal may change

with the remaining available time.

That is, the agent will be willing to take all the risks to reach the goal quickly if very
short time is remaining and modify its actions to take the shortest path and vice versa.

That is, the optimal policy is dependent upon time in the finite horizon case.

On the contrary, for an infinite horizon, the agent may reach the goal in an indefinite
amount of time. That is, the agents’s preferences to choose among the actions and
resulting next states are time independent and so is the optimal policy. However, as
mentioned previously in the beginning of this section, there is no guarantee as to how
many number of states the agent will go through before reaching the goal state and the
utility values may diverge towards infinity for infinite state sequences in case of additive
rewards. This is where the concept of discounted rewards becomes more useful and one
can get finite values of utility even for infinite state sequences since the constraint on

the discounting factor (0 < v < 1) forces the series to be a convergent series.

In this work, we consider the infinite horizon case with discounted reward method of
calculation of utilities. Further, we also assumes that actions do result in intended

outcomes and no such model of stochastic motion is considered such as that in Fig. 2.3.

12
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2.2.5 Dynamic Programming

Originally coined by Richard Bellman in the 1950s, the word Dynamic Programming
was first used to describe a multistage decision process. Unrealted to computer pro-
gramming, dynamic programming instead was used to represent planning and the word

dynamic indicated a time varying process since it occurred in multiple stages.

Dynamic Programming ia powerful algorithmic problem solving technique suitable for

problems that exhibit two characteristics,

1. Overlapping Sub-problems

2. Optimality

A problem is said to exhibit overlapping sub-problem characteristic if it can be broken
down into simpler sub-problems, which are not independent from each other, however
which may be solved and the solutions combined to obtain the solution of the overall
problem. The idea here is that smaller solutions of the sub-problems may be obtained
once and then stored for a later reference for the solution of the overall initial problem.
This is what is meant by dynamic programming that the solutions of the sub-problems
may be used as many times as needed in the solution of the overall problem, however,
no re-calculation of the solution of any sub-problem takes place. Clearly, this will allow

a much efficient and fast solution of the overall problem.

Similarly, if a recurrence relation can express the solution of an overall problem, then
the problem is said to exhibit the characteristic of optimality. The following sections

describe more on these recursions.

2.3 The Bellman Equation

As mentioned in the previous section, when the agent is using a specific policy, one
can calculate the value of utility for every state the agent has access into, however, this
calculation will require multiple attempts/training by the agent in which it has to start
from a specific state and reach the goal state by using the specific policy. And this
needs to be done for all the 11 states as shown in Fig 2.5 considering each state as the

start state in the specific training episode. It is then pretty obvious that the problem of

13
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calculating the utility of a policy is multiplied with the increase in the possible number of
states of the environment and the number of training attempts to calculate the utilities

for all the states will be as many as the number states of the environment.

This problem can be simplified if one keenly observes a close connection between utilities

of states. That is,

The utility of a state is the sum of the reward for that state plus the
discounted utility of the subsequent state when the agent is using a fixed

policy.

If this is kept under consideration, then one can calculate the utilities of the current
states by knowing the reward for that state and the utilities of the next states. That is,

we can rewrite Eq. 2.2.3 as,

Utility(Stateg) = Reward(Statey) + ~v.Utility(State;) (2.3.1)

or more generally, if we denote the present state by s, the next state by s’, V represents

the utility or value function and r denotes the reward function, then, it becomes,

V(s)=r(s)+~.V(s) (2.3.2)

This is known as the Bellman Fquation. Calculating the values of utilities using Bellman
Equation is much more easier since one only need to know one equation for each state and
a simultaneous solution of all the equations gives the utilities of all the states together

at once.

As mentioned before, the purpose of introducing the concepts of rewards and utilities is
to modify agent’s actions so as to result in favorable outcomes. The purpose to evaluate
a policy by the utility function is to know if there exist any better policy than the one
currently known. That is, we are looking for the policy that can give the greatest utility

(maximum desired performance). Mathematically, this means that we are looking for,

V*(s) = 11h1(8'b) (r(s) +~.V(s")) (2.3.3)

At this point, we make another bold assumption for our work that rewards are perceived

in terms of costs. This means that the agent is receiving negative values of rewards that

14
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depend upon an action (u) taken in a particular state (s) and our task is to actually
maximize the overall negative utility (which means that we are trying to reduce the

costs). With this assumption, Eq. 2.3.3 becomes,

V*(s) = I}Ll(a',)X(T(S, u) +7.V(s)) (2.3.4)

where; r(s,u) is known as the one step cost of control and the utility or value is known

as the cost to go or total cost.

This maximization problem is generally difficult to solve for general non-linear systems.
See [1]. A further simplification can be made if we recall the famous Bellman Optimality

Principle which states,

An optimal policy has the property that no matter what the previous
decisions (i.e. controls) have been, the remaining decisions must constitute
an optimal policy with regard to the state resulting from those previous

decisions.

A direct consequence of this principle is that Eq. 2.3.4 becomes,

V*(s) = n}fll(a.h) (r(s,u) +7.V*(s")) (2.3.5)

known as the Bellman Optimality Equation and gives us the Optimal Value of states.

That is, the utilities of states of an optimal policy are connected. The corresponding

Optimal Policy is,

u(s) = arg rﬁlg)x(r(&’, u) +7.V*(s')) (2.3.6)

It is much easier to determine optimal controllers using Eq. 2.3.5 and 2.3.6 compared to
Eq. 2.3.4. However, one thing to now observe is that Eq.2.3.2 had a linear structure that
allowed a simultaneous solution of the Bellman Equations to obtain a linear solution.
However, Eq. 2.3.5 has a non-linear structure since the maz operator is a non-linear op-
erator and the simultaneous solution of the Bellman Equations is not possible. Instead,
well known iterative algorithms do exits for the solutions of the Bellman Optimality

Equations known as the Value Iteration and Policy Iteration which we discuss next.

15
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2.4 The Value Iteration Algorithm

The value iteration algorithm belongs to a family of iterative algorithms that allow the
solution of non-linear equations such as the Bellman Optimality Equations. As stated in
the previous section, Eq. 2.3.5 is used to find the optimal value. In the value iteration
algorithm, one can start with arbitrary initial values of the utilities of states in Eq.
2.3.5, plug them on the R.H.S of the equations and obtain updated values of utilities
on the L.H.S. Then the updated values obtained on the L.H.S are again plugged in on
the R.H.S to obtain new estimates of utility values. This procedure is repeated until
the utility values on the L.H.S reach an equilibrium at which point, the optimal values
of the utility of states has been found. Each step of the utility update is known as the
Bellman Update.

The above iterative procedure is guaranteed to converge to optimal values of utilities of
states. This is because the Bellman Equation and the Bellman Optimality equation are
fized point equations and form a contraction that is guaranteed to reach a fixed point
whenever the constraint on the discounting factor (0 < v < 1) is taken care of. The

following sub-section gives a proof of this claim.

2.4.1 Convergence of the Bellman Equation

To support our proof of the claim that Bellman Equation and Bellman Optimality
Equation are fixed point equations, Let us consider two arbitrary functions f & ¢ and
let max f(a) & maxg(a) represent the maximum values of these functions at some
arbitrary input arguments a. Also let us assume that the maximum value of f is greater

than that of g, then,

| max f(a) — max g(a)| = max f(a) — max g(a)

Suppose the maximum value of f occurs at some input argument, say; a*, then,

max f(a) = f(a”)

Then, we can write,
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| max f(a) — maxg(a)| = f(a”) — max g(a)

If we put the same a* in the input argument of g as well, then the R.H.S of above will

be less than or equal to it. That is,

g(a*) < maxg(a)

- |max f(a) — maxg(a)| < f(a) — g(a”)
And,

(@)~ g(a*) < max |f(@) = g(a)

- |max f(a) — max g(a)| < max|f(a) — g(a)|
In English, this means that,

The difference between the maxima of two functions is less than or equal to

the maximum difference between the functions.

Secondly, Let us view the Bellman Equation 2.3.5 as an operator B which when applied

to a utility estimate V; gives an updated estimate V;41. That is,

Vig1 < BY;

Let V; and V/ be any two utility estimates and BV, and BV respectively be their

updated estimates, then, from the notion of a contraction,

|BV; — BV/|| < ~v.|[Vi = V||

where; ||.|| represents the maznorm.

That is, the utility estimates must converge to a fixed point with repeated applications

of the Bellman Operator.

Proof:
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|BVi(s) — BV{(s)| = [max(r(s, u) +7.Vi(s')) — max(r(s,u) + 7.V/(s))|

|BVi(s) — B/ (s)] < max |r(s,u) +7.Vi(s) = (r(s,u) + 7.V/'(s"))]

[BVi(s) = BV () < Ir(s,u") +7.Vi(s') = (r(s,u") + 7.V{(s))]
[BVi(s) = BV{(s)| < Ir(s,u”) + 7.Vi(s') = r(s,u”) = 7.V (s))]
|BVi(s) = BV/(s)| < [7.Vi(s) = 7.Vi(s))]
|BVi(s) = BV/(s)| < 7.[Vi(s') = V{(¢)]

From the definition of maxnorm we have,

1BY: = BVi|| = max|BVi(s) — BV/(s)|

|BV; — BV/|| < v-max|Vi(s') — V/(s)]

)

|BV; = BVJ|| < ~.[|[Vi = V/]]
That is,

"The Bellman Operator is a contraction by a factor of yv. Whenever this
operator is applied on two vectors spaced by some distance, then the spacing
between their Bellman Updated versions is reduced by a factor of at least 7.
This implies that repeated applications of the Bellman operator cause the
vectors to converge at a common point. Likewise, if one of the vectors is held
fixed, known as the fized point, then with the repeated applications of the

Bellman Operator, the other vector will converge to the same fixed point."

In our case, the optimal value utility vector is the desired fixed point and with the
repeated application of the Bellman Equations on the initial utility estimates in an
iterative manner as described in the beginning of this section, we can cause the utility

estimates to approach the optimal values.

This concludes the proof.
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2.5 The Policy Iteration Algorithm

The Value Iteration algorithm of the previous section is focused on finding the Optimal
Value Function of Eq. 2.3.5 and then the corresponding optimal policy using the one

step lookahead of Eq. 2.3.6.

However, we must also keep in mind that as to how accurate estimates of the optimal
utilities we are looking for. That is, how many iterations of the Bellman operator are
necessary to be applied on the initial utility estimates to get a reasonable estimate of the
actual optimal utilities and how important is it actually to obtain an accurate estimate
of the actual optimal values. If the estimates lack accuracy and one does use these
estimates in the one step lookahead of Eq. 2.3.6 and execute the policy, then, will the

resulting behavior be as optimal.

To answer the above questions, let us define the notion of Policy Loss as the difference
between the true optimal utility and the utility acquired by executing the above said
policy, then, as is established in the literature, see [9], one does find that the Policy Loss
becomes zero long before our utility estimates reach the exact optimal utilities. That
is, whilst looking for an optimal policy, it is not important that we have an accurate
estimate of the true optimal utilities, rather, what is important is that the Policy Loss
becomes zero or decreases below a user defined threshold. This suggests an alternative

of the Value Iteration Algorithm, namely; The Policy Iteration Algorithm.

Before stating the Policy Iteration Algorithm, let us also define an Admissible Policy as
one that is stabilizing and yields a finite cost. Let us also borrow the concept of sec.
2.2.4 that the utility of a policy can be used to evaluate the policy and this evaluation
of the policy can be done using the Bellman Equation of sec. 2.3 which we re-write here

as,

V(s) =r(s,u) +~.V(s) (2.5.1)

Notice that we have retained the same assumptions of our work as those in sec. 2.3 that
rewards are dependent upon an action (u) taken in a particular state (s). Having these

constructs with us, we are ready to state the Policy Iteration Algorithm as follows.

In the Policy Iteration algorithm, one starts with an arbitrary initializing admissible

policy that is evaluated using the Bellman Equation 2.5.1. This value of the current
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policy can be used to find a better policy using the one step look-ahead of Eq. 2.3.6.
This new policy found is again evaluated by 2.5.1 and re-updated by 2.3.6. The entire
process is repeated until the policy update step of 2.3.6 yields no more better policies

at which point, we have reached the optimal policy.

One may ponder as to how this one step lookahead can give us a better policy, however,
if one closely observes the equation, then, it is obvious that the equation is similar to
the one step Bellman Update that brings the utility and ultimately the new policy one
step closer to the optimal policy. If the policy evaluation and updating is repeated in
an iterative manner, then, one can reach the optimal policy much faster than in value
iteration algorithm. Why this happens? The value iteration algorithm is focused on
finding the optimal utilities and iterates through a sequence of utilities in order to reach
the optimal utility. However, we must realize that if the Policy Loss has become zero
or has decreased below a user defined threshold, then, it is of no use to find the optimal
utility because it will give us no better policy than the one already found. In other
words, if one action is clearly better than others, then, the utility estimates need not
be accurate. The Policy Iteration algorithm takes advantage of this fact and is focused
on finding the optimal policy instead and thus switches between values and policies in
an iterative manner as described above, and, getting closer to the optimal policy with

every iteration.

It is this Policy Iteration Algorithm that we have used to gather the results of our work.
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CHAPTER 3

The Optimal Control Problem

In this chapter, we formally lay the mathematical foundations of the control problem we
intend to pursue using the concepts and methods of Reinforcement Learning that were
described in detail in the previous chapter. As mentioned in the introductory section
of this work, the concept of Reinforcement Learning originally belongs to the world
of Computational Intelligence that has found its applications in the Control Systems
community as well. The previous chapter was more inclined on defining the terms and
concepts as is described in the computational intelligence community. However, from
this chapter and onwards, we will be using the terminologies and naming conventions

that are familiar to the control systems engineers.

3.1 Defining The Optimal Control Problem

Let us consider the following state space model of a continuous time linear system,

i = Az + Bu (3.1.1)

with & € R"™ represents the space of states, A € R"*" represents the inherent (internal)
dynamics of our system and B € R™*™ represents the input coupling function of the
control input with our system. The above linear system may also be the result of
linearization of a non-linear system with the assurance that the non-linear system should
operate closely to a specified point of equilibrium. The u € R™ acts as the controller

for our system.
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Let us also define the following functional as a measure of cost,

V(z) = /too r(z,u)dt (3.1.2)

where V(z) : R" — R represents the total acquired cost gathered over time for an
infinity horizon and r(x,u) : R x R™ — R represents the cost incurred at every instant

along the horizon.

Notice that we have considered a cost functional instead of a reward functional since
utilization of a controller’s resources are considered as costs incurred. Also, note that
we have assumed additive costs instead of discounted costs and that the summation has

been replaced by integration since we are dealing with continuous state space.

Having said that, let us find the state dependent feedback control for solving The Op-

timal Control Problem as,
u(z) = arg min V(x) (3.1.3)
u—2

Surely this control has to satisfy the dynamics (3.1.1) in order to be a valid control for

our system and making our closed loop system globally asymptotically stable.

Notice the use of the min operator instead of mazx since the control objective is to find

the minimum cost control.

In the sections to come, we will be describing both the conventional and RL methods
for the solution of this Optimal Control Problem so we may have a better insight of the

advantages of using the RL approach over the conventional approach.

3.2 The Conventional Approach

One conventional way to solve this optimal control problem is to actually solve the

continuous time Algebraic Riccati Equation (ARE),

ATP+PA—-PBR'BTPQ =0 (3.2.1)

where P, a positive definite matrix, is our solution required. Having this positive definite

matrix, the optimal control is available to us as,
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K=R'BTP (3.2.2)
Solving (3.2.1) is a routine task and one can refer to these references to find a solution,
[10], [11] and [12].

However, when solving for a class of non-linear systems, things get complicated and
computation becomes difficult unlike the policy iteration algorithm discussed in the

following sections.

3.3 The Policy Iteration Algorithm (Offline Version)

One of the main reinforcement learning methods, namely; The Policy Iteration (PI)

algorithm can be used to solve our optimal control problem. The idea is that a control,

u = h(z) (3.3.1)

has a cost (3.1.2) that must be paid if the control is to be used. We can be find this

cost if we solve the following equation,

t+T
V() = /t r(2(7), h(z(7))dr + V(2(t + T)) (3.3.2)

where T, a positive number, internal for each reinforcement and (3.3.2) is the called as

the interval reinforcement version of Bellman Equation. See [1],[13]

We might want to consider that (3.3.2) is a fixed point equation with the fixed point at
V(x), therefore, we can use the control policy (3.3.1) and obtain V(z) in an iterative

manner.

Once this initial control policy (3.3.1) is classed as admissible, that is, it has a finite
cost (3.1.2) and is stabilizing the system (3.1.1), then we may also want to find a better
policy by,

!

u = arg muin(r(x, u) + (VVT(Az + Bu)) (3.3.3)

The claim that the policy v’ is better in terms of cost (that is, it has lesser or at most

equal cost but not more) can be referred in [14],[15]
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And because of this, one gets further motivated to evaluate this new control by (3.3.2)

and again find an even better control policy by (3.3.3).

If this procedure is repeated in an iterative manner, then, upon convergence, the con-
verged values of V' (z) and u will represent the optimal values and the optimal control
respectively. This algorithm to find the optimal control is known as the Policy Iteration
Algorithm. We begin with an admissible control and then iterate between (3.3.2) and

(3.3.3) until the cost and control variables converge to optimal values.

To have a better grasp of the above concepts, let us explain the things with an example.

Considering a state feedback control as,

u=—Kzx (3.3.4)

This policy makes our closed loop system (3.1.1) stable for all values of initial conditions

of the system.

Also, let us consider the following cost function that is given in quadratic form,

r(z,u) = 27 Qx + u' Ru (3.3.5)
Then, (3.1.2) becomes,
V(z(t)) = /too T (7)Qx(7) + u” (1)Ru(r)d(r) = 2 Px (3.3.6)
where,
p— P11 P12
P12 P22

This P is the real symmetric and positive definite solution of the following Lyapunov

Equation,

(A— BK)'P(A— BK) = —(KTRK + Q) (3.3.7)

Once we are able to find P, our current control policy has been evaluated and a new

control policy can be found by,
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K=R'BTP (3.3.8)

Now, as said before, we begin with an initial control K that is able to make our system
stable and then we iterate between (3.3.7) and (3.3.8) until convergence is achieved.

This iterative procedure will then be an offline PI algorithm for the system (3.1.1).

We also consider it important to tell that compared to the conventional method, it is
much easier as well as computationally cheap to evaluate a control policy using the
Lyapunov Equation (3.3.7) that can be solved with a mere recursion method rather
than solving the conventional Riccati Equation using non-linear methods. See [1].The
PI algorithm is fact an algorithm containing iterations within iterations. The inner
iterations of (3.3.7) is for evaluating the current control and the outer iterations between

(3.3.7) and (3.3.8) is to find the optimal control.

3.4 The Policy Iteration Algorithm (Online Version)

Despite the simple nature of PI RL algorithms, their real power is in their overall
framework allowing these algorithms to be applied in an online manner .i.e. with a
non-optimal control policy with us, an optimal control can also be found in an online

manner by traversing through the system locus.

Having said that, one can retrieve the information of a system’s behavior through its
states, unlike the A or f(z) matrix used by the offline PI to obtain the same. That is,
we can make algorithms with the capability to acquire system dynamics in an online

fashion by traversing through the system locus.
This is known as Online Reinforcement Learning in the literature.

With the concepts such as TD Learning, (3.3.6) can serve to form the basis for an online

RL version.

One can re-write the term 2z Pz in (3.3.6) as,

o' Pr=p'z (3.4.1)

where T representing the Kroknecker Product and giving a columnized vector that has

repeated terms removed and p representing the columnized P that has repeated terms
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omitted.

Assuming (3.3.4) and (3.3.5), and with the above formulation, we can re-write (3.3.2)

as,

t+T
(&) — 3t +T)) = /t T (r)(Q + KTRK )z (7)d(r) (3.4.2)

where (Z(t) — z(t + T')) represents a regression and the Right Hand Side is the interval

reinforcement as,

r(w, K) = /t (@ + KTRE)u(r)d(r) (3.4.3)

After an initial control policy is chosen to be applied on the system (3.1.1), (3.4.2) will
be used to find the value function parameters. This is going to require us to measure
the previous state z(t), the current state z(¢ +T'), the interval reinforcement r(x(t), K)

after each time interval T'.

Once sufficient time intervals have passed, we will have enough data to set up a LS

problem and find the value function parameters so that it satisfies (3.4.2).

And with p available to us, we would have actually evaluated the current control K like

as we did in (3.3.7).

Then , as before, we can update this control using (3.3.8) and our algorithm can switch

to the newer control while travesing through the real time state locii.

And if we iterate on this repeatedly, that is, we evaluate each newer control available to
us using (3.4.2) and find even better control from this evaluation using (3.3.8), then we

can obtain the same optimal control as found before.

However, we must explicitly mention the tings necessary to be kept under consideration

when trying to achieve our objective to find the optimal control using online algorithms.

The first one is, our system needs to have sufficient initial excitation. This is because
any information about the dynamics of a system are contained in the system states and
the more excitation the system possesses, the more easily and truly the information
(parameters) regarding the system dynamics can be extracted from the states. Second,
our algorithm should be designed so that it switches to the newer controls online as fast

as possible. This is because, the longer the non-optimal controls are kept applied, the
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more the system would have reached the stabilization point through the non-opitmal
path and therefore if an opitmal control is found after the system is almost stable is of
no beneficial purpose. Also, when the system is closer to the equilibrium point, that is,
it is almost stable, then, we can not evaluate the inverse in (4.4.2) which is needed for

sure for online RL.
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Simulation Examples

We can now begin our simulation example with all the design tools of control developed
and discussed in chapter 3. We begin by considering a swing up task of a pendulum

having 1 — DegreeO f Freedom. The following state space model defines our system,

:Ifl = X9
(4.0.1)
Zo = 120.42sinx; — 1.597x2 + 29.53u

Since our system is an inverted pendulum system, it has only two number of points
of equilibrium which are (0,0) (7,0) one of them being an unstable equilibrium point
and the other being stable respectively. And we actually have to make our inverted

pendulum system stable on the (0,0) point.

We will be using all the tools to do this as discussed in chapter 3. But in addition,
we will also be computing a non-optimal conventional control first to be able to give a
meaningful comparison and plus points of using RL technique. Besides, the non-optimal
control that we find first will also be useful as an initial value necessary to begin the PI

algorithm.

The state space model (4.0.1) is a non-linear model and its linearized version about the

unstable equilibrium point (0, 0) is,

0 1
A=
120.42 —-1.597
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Figure 4.1: Non-Optimal Control Response of Pendulum System
0
B =
29.53
Also let,
5
Q =
0
and R = 0.01

4.1 The Non-Optimal Control

We have an unstable eigen value in the A matrix. However, we can make the closed

loop system (3.1.1) stable by making (A — BK) Hurwitz assuming the control (3.3.4).

Using the Ackerman Formula, we can find an arbitrary stabilizing controller K for small

initial perturbations from the unstable equilibrium point, the response of which can be

seen in Fig. 4.1.

We can see that this control accumulates a total cost of V' = 0.051 for stabilizing the

system.

4.2 The Optimal Control by ARE

As discussed in the previous chapter, we can solve the CT Algebraic Riccati Equation

as a conventional approach for solving the Optimal Control Problem.
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Figure 4.2: Value Function Parameters Converged using Offline Policy Iteration
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Figure 4.3: Offline Policy Iteration Control System Response at 1st Iteration

For the linearized version of our pendulum system, we find the optimal value as,

2.2957 0.0091
0.0091 0.0034

and we find the optimal control using (3.2.2) as,

K =126.8074 10.0364

4.3 The Optimal Control by Offline PI

Using as a seed value, the arbitrary initial stabilizing controller of section 4.1, a sequence
of policy evaluations using (3.3.7) and updates using (3.3.8) allow us to find the solution
of the Optimal Control Problem by reaching the optimal value and optimal control upon

convergence.

As can be seen in Fig.4.2, it took only 12 number of iterations for the Value Function
Parameters to converge at the optimal values. Fig.4.3 shows the total cost of 0.037 of

the system response accumulated along the system trajectories at first iteration (3.3.8)
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Figure 4.4: Offline Policy Iteration Optimal Control System Response

of the Offline PI algorithm. If we compare this cost incurred with that of Fig.(4.1), we
can clearly see that this updated control is better than the initial one. Fig. 4.4 shows
the system response. The optimal control policy is obtained at the 12th iteration of
the offline PI Algorithm. Also note that minimal control cost for stabilizing our system
is V' = 0.023, that is, the optimal control cost or value. We must also take notice
that the optimal control that we found for our system using the Offline Policy Iteration
Algorithm is exactly the same as that found by solving the Algebraic Riccati Equation in
the conventional approach. However, the former has a less computational cost whereas

the latter does not.

And with this, we are done with our simulation of the offline version of the Policy

Iteration Algorithm.

4.4 The Optimal Control by Online PI

Let us redo the same simulation example of the previous section to show the applica-
bility of online reinforcement learning algorithms and also to allow an offline vs online
comparison, however, this time, we will not be using the info of the plant matrix A but
that about the systems will be obtained from the real time state trajectories in an online

fashion.

For us to use (3.4.2) and setting up the LS problem, let us first make an evaluation of

the Right Hand Side of (3.4.1),
T—

TP =p"x
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with
_ 2 -
_ LyrET
rT=rxR®r=
T1T2
| 27 |
and
b1
p=Vec(P) = bz
D12
| P22 |
Also for the sake of simplicity,let,
x(t) =z,
z(t+T) =z
r(zo, K) =b
pP=s
Then a simplification of (3.4.2) can be,
As=1b (4.4.1)
The Least Squares solution to (4.4.1) is,
s=(ATA)tATh (4.4.2)

With this, we can now begin our simulation example of the Online Policy Iteration
Algorithm using the same values of the system, that is, B, @, R, K;y;, however; A will

not be included in our calculations.

Further let us arbitrarily select,
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Figure 4.6: Online Policy Iteration Optimal Control System Response

T = 0.0001, 2(0) = [0.1 0}

In the online version, (4.4.2) will be used to make an evaluation of the control. That
is, for the online PI algorithm, we iterate between (4.4.2) and (3.3.8) till convergence is

achieved.

As is told in the previous chapter, one must have enough data to acquire a solution of
the Least Squares problem (4.4.1). The inverse in (4.4.2) in our simulation example can
only exist, if the matrix A possesses a rank of 3 atleast. This means that we need to let

at least 3 number of time intervals T' to pass in order to acquire an initial solution s.

But we must also take notice of the fact that acquiring an initial solution s is necessary
but not sufficient. What is more important is that we do have a converged LS solution
using the data received after the passage of every single T' time interval. Once the LS
solution seems to have converged or more specifically has fallen below a user defined
error threshold, then, we can imply that the control K has been evaluated and we can

now update this control to obtain and apply the newer updated control.
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Figure 4.7: Online Control Applied on the System (First four milliseconds)

The simulations graphs of our Inverted Pendulum System can be seen in Fig 4.6. The
system learns the optimal control in an online manner without using any info about the

system dynamics.

Indeed the same optimal values of the Value Function Parameters and the same optimal
gains of the state feedback control are achieved from the Online PI Algorithm, however,
one should not take for granted the Offline Policy Iteration Algorithm just because the
same results are achieved for the Online PI Algorithm in the end and with the added
advantage that system dynamics are not needed. This is because the offline and online
versions of the PI Algorithm are principally different, that is, with an accurate info
about the system dynamics available to us, the offline PI will always outperform its

online counterpart. Why?

The Online version of the PI Algorithm gathers information about the system’s behavior
by traversing trough the system trajectories in real time. And having said that, learning
is not possible in a stationary system. Even for a non-stationary system, it is important
that the system possesses sufficient excitation, only then the sates will carry true and
accurate information about the behavior of a system. Now, let us suppose that a control
is applied at the initial condition and is simultaneously being evaluated as well, however,
we must keep in mind that the longer we keep applying this control for its evaluation,
the more the system dynamics die out with time because the system will get closer
and closer to the stabilization point. If an optimal control is not found and the system
dynamics die out, then, no further learning/evaluations can take place and we will not
be able to find the optimal control. This problem can be dealt with if we restart the
entire process of stabilization again from the initial condition as is done in conventional

Reinforcement Learning Algorithms.
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We are going to take an approach that is different from the conventional one. We
are not going to start the whole stabilization process again, instead, why can we not
revive the dynamics of our system in the same process through the application of a
carefully measured non-stabilizing control or by turning off the control momentarily. In
our simulations, it is clearly obvious that for reviving the system dynamics, the applied

control was totally turned off at three points in time as can be seen in Fig. 4.7

Also, when dealing with offline algorithms, the control cost that needs to be paid is
what is called as exploitation), that is the cost for exploiting or applying a control on
the system whereas in online algorithms, besides the exploitation cost of using a control,
another control cost that must be paid is what is known as exploration), that is the cost

for finding a control.

Having said that, it is pretty clear that for online algorithms, the system will accumulate
more and more cost as it is progressing through the system in search of better controls
and ultimately the optimal control. That is, compared with its offline counterpart that
has its optimal control (minimum cost control) available to it from the very beginning
of state trajectories, the online algorithm will first bear the costs of applying the initial
non-optimal (expensive) controls by traversing through the expensive states to be able
to find the minimum cost optimal control and then using it to stabilize the system. In
short, the total cost of offline RL algorithms is always less than the total cost of online

RL algorithms.

Having said that, in order to keep the learning costs as low as possible for online al-
gorithms, we stress on reviving the system dynamics during the same state trajectories

rather than initializing the entire stabilization process from the very beginning.

The cost of offline control as can be seen in Fig. 4.4 is V = 0.022 whereas that for
the online algorithm can be seen in Fig. 4.6 which is V' = 0.037. The difference of
0.015 highlights the cost of the exploration part in our algorithm. It is pretty clear that
the online control we found is better than the non-optimal control obtained through a

conventional method as can be seen in Fig. 4.1 which has a cost of 0.050.

However, if we intend to harness the potential of online algorithms, then care must
be given to maintain a balance between exploration part and the exploitation part to
avoid the costs from exceeding that of the non-optimal controls in which case the entire

purpose of finding an optimal control through RL techniques becomes useless.
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Discussions, Future Work and

Conclusion

5.1 Discussion

Our main findings of this work are that despite the stability and convergence properties
of PI algorithms that are established in the literature, one must give an equally important
consideration to the following points if optimal controls are to be found using online RL

algorithms.

A system must possess sufficient excitation if a control is to be evaluated online

on that system.
e Online RL requires the data to be gathered really fast and quickly.

e One should not apply a non-optimal control on a system for longer durations as

this will cause the system excitation to die out and the learning costs will increase.

e One should have enough samples gathered to have an accurate and converged

estimate of the Value Function Parameters that represent the value of a control.

e The Least Squares solution method should be once selected and kept the same
throughout since different solution methods can lead to different value function

parameters for the same applied control.

A system should not be subjected to very high excitation neither initially nor
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during the phase of reviving the system dynamics as this can lead to huge costs

making the control non-optimal.

e Unnecessary excitation of a system should be avoided since every re-excitation

adds to the total cost.

e It is possible that a system or a particular state or set of states cannot be re-
excited repeatedly to allow learning and thus a tradeoff must be made to settle

for an almost opitmal control rather than an optimal control.

5.2 Future Work

The future directions of our work are as follows

e An online RL algorithm design, that can despite learn the system dynamics in real
time, will require a designer’s experience about the particular system’s behavior
in deciding its control strategy. Like in our work, the designer will only program
the system to perform re-excitations only if it is possible for that particular sys-
tem/state. The algorithm has no knowledge about this in advance and will rely
on the designer’s programming to take a decision on this. Similarly, how many
number of re-excitations will suffice to find the optimal control while not becoming
the major reason of increased costs. It will be the programmer’s skill on how he
incorporates this knowledge into the algorithm design. If such smart algorithms
can be designed for various systems, then we can expect to be able to develop
some real intelligent algorithms possessing the knowledge for a class of systems

smart enough to decide from a set of control strategies in real time.

e Every online algorithm design when implemented on a system will reveal its cost
and the fact if it is actually better than a non-optimal conventional control. We
think that there exists a need of a systematic procedure that can perform this
costing of an algorithm allowing the designer to tweak his design at the time of

designing and suggesting ways to develop the most optimal online algorithm.

e We also feel the need of a systematic procedure on selecting the specific cost

function (like in our work, the values of Q and R) that while achieving the user
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desired control task will also make sure the user desired control performance is

achieved.

5.3 Conclusion

This thesis discusses on the potential of Reinforcement Learning Control in solving
the online optimal control problems. We approached the task of the stabilization of
an inverted pendulum system on its unstable equilibrium point and demonstrated it
with the help of many simulation examples of the conventional and RL methods. An
extensive comparison between the online and offline Reinforcement Learning Algorithms
has been given. Also highlighted were the main challenges that a designer needs to face
for designing online algorithms. We concluded this work with highlighting our findings

in this work followed by specifying the future directions of our work.
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