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Abstract

Development of experimental techniques and computational models
accelerated the pace of research and development in the field of mathematics
and text mining. One of the major research area in the field of automation
is solving word problems using Artificial Intelligence (AI) techniques. The
existing research, for solving word problems using AI, is unable to provide
on the spot solutions for a given word problem. The existing approaches,
for solving algebraic and arithmetic word problems, have some limitations
that need to be addressed. They are limited to give high accuracy for
solving arithmetic problems only. They also require too much processing
resources and time for extracting and simplifying features from the text
data. In this research work, we proposed a template-based approach that
has been developed by following a two-step process. The first step is to
predict an equation template from a training dataset. The next step is to
instantiate the predicted template with nouns and numbers. The features
extraction in the proposed approach only relays on POS tags, NER and
dependency relation; no need to extract all words from the given word
problem. To validate the proposed methodology, a prototype system has
been implemented. The system has been compared with the existing systems
using their respective datasets and the proposed dataset. The experimental
results show improvement in accuracy, with an average precision of 80.6% and
average recall of 83.5%. In future, we intend to incorporate the co-reference
resolution technique into our system to further improve its accuracy.
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Chapter 1

INTRODUCTION

This chapter introduces the research work that has been carried out in this
thesis. It includes motivation and problem definition, followed by a discussion
of objectives.

1.1 Motivation

Linear algebra is a core course in all engineering disciplines, almost one
exercise in each chapter is specific for word problems. Similarly, teaching the
algebra words problems starts from the early education, i.e., grade 3 (age:
8-10 year). To help students learn algebra, an automated way is required
to solve these word problems. Previously, several techniques [6] solve these
problems by a computational method, i.e., a solution or answer is provided
to a student rather than providing the actual equation. Moreover, testing
agencies, i.e., Graduate Record Examination (GRE) include a separate
analytical section containing word problems. Existing techniques has low
accuracy due to their large feature set [4] [5]. This motivated us to develop a
model to automatically solve word problems on a training corpus of questions
that are paired with equations and class labels, requires less processing
resources and gives high accuracy. To achieve this, we utilized the standard
template-based algorithm that requires predefined template schemas and
often labeled data. Moreover, the model utilized the rule-based template
instantiator to extract nouns and constants from a problem for the selected
template.

1



CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

Several methods have been proposed in the recent years to solve mathematics
word problems using machine learning algorithms [4][5]. However, these
methods have some limitations that are discussed below:

• Existing methods are unable to evaluate an equation system with high
accuracy [5].

• Generally, evaluating a value against a single variable in an equation
is much easier than multiples. Therefore, the existing methods
offer higher accuracy for arithmetic word problems in comparison of
algebraic [4] [7], as arithmetic word problems revolve around one single
variable. Figure 1.1 shows the solution towards a single and multiple
variables’ equations.

Figure 1.1: Solution towards Single and Multiple variable’s equations

• They are implemented on 3rd and 4th grade’s dataset, so only provide
high accuracy toward 3rd and 4th grade students [4].

• As existing approaches, include lemmas of the problem text beside with
Part Of Speech (POS) tags and Named Entity Recognition (NER),
so it would take time to learn a model [8]. Time consumption has
likewise relied upon the extent of the dataset and average length of a
problem. In addition, existing models require supplementary time after
learning a model from training and prediction, because instantiating
variables and constants required nouns and numbers from a question.
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However, training and predicting a model take much time as compared
to instantiating [5].

• Additionally, existing approaches require high computing resources to
learn a model for automatically solving algebraic word problems [5] [4].

1.3 Research Goal

The overall goal of the work, described in this thesis, is to build a highly
accurate model for extracting equations from a given word problem. The
proposed model will be able to drive and solve equations through Natural
Language Processing (NLP) and classification techniques.

1.4 Proposed System

The present work solves the algebraic word problems using machine learning
technique (i.e., Random Forest) by predicting a correct equation template.
The feature set used in the proposed technique relies on the part-of-speech
(POS) tags, named entity recognition (NER) and dependency type and
relations. The proposed method has three main modules; (i) Natural
Language Processing (NLP), (ii) Equation Prediction (iii) Equation Solving.
In the first module, the documents are preprocessed to convert raw text
into a well-organized sequence of linguistically-meaningful and machine
understandable units. Additionally, NLP techniques are applied to extract
useful features from a dataset. In equation prediction, module an equation
template is predicted through classification. Finally, in the equation
solving module, an equation template is instantiated and solved respectively.
Precisely, the proposed system revolves around two steps that are:

1. A template selected through a classification algorithm that defines a
structure for the equation system.

2. Equation template is instantiated with numbers and nouns extracted
from the math word problem.

The accuracy of the proposed technique is higher than its predecessors due
to the use of Random Forest classifier on the reduced features set. The
proposed system is not only evaluated against the existing methodology but
also has been evaluated against proposed’s dataset (i.e., a dataset from two
different sources), Hosseni et al. [4]’s dataset, and Kushman et al. [5]’s
dataset. Experimental results demonstrate an improvement in accuracy with
an average precision of 80.6%, recall of 83.5% and f-measure of 81.2%.
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1.5 Thesis Outline

The rest of the document is organized as follows: Chapter 2 presents a
background to some of the linear algebra terms used in this thesis and
defines terminology from the domains of natural language processing and
text mining. Chapter 3 discusses various related approaches, along with
their critical analysis. In chapter 4, we give a detailed description of the
proposed system methodology, explaining in detail the process of solving
linear algebraic words problem containing up to two variables. Chapter
5 gives a complete overview of implementation details and describes the
experimental results and a comparison with the existing systems. Concluding
remarks and future work is presented in chapter 6.



Chapter 2

BACKGROUND

This chapter is going to explain some terms that are used throughout
the thesis. Our study uses terminology from different domains such as
mathematics, information extraction, natural language processing and text
mining. So here we will concisely touch upon these domains, specifically the
following fundamental areas:

1. Mathematical background

2. Natural Language Processing (NLP)

3. Data mining

4. Equation solver

Firstly, as the research problem is coming from mathematics, so it is
important to have a mathematical background, with emphasis on basic
concepts like set and matrix, algebraic expressions and their equations, and
word problems. Next, how techniques from natural language processing
can be applied and how these techniques are used to help in equation(s)
extraction.

2.1 Mathematical Background

Mathematics is the mother of all sciences including natural sciences,
engineering, medicine, and even the social sciences. It is the core analytical
tool for quantitative science. Algorithmic (computational methods) are used
to investigate the relationships among the measured quantitative properties
of a system that could be mathematically analyzed. Mathematics and its
laws are encoded in the human mind and brain, and thus are a property of

5
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the physical mechanism of the brain [9].
There are two broad categories of mathematics world that are:

1. Applied mathematics

2. Pure mathematics

Figure 2.1: Applications of pure and applied math [1]

Pure mathematics is based on learning techniques of how to write
proofs directly and try to generalize the pre-existing concepts [10]. While,
applied mathematics have more focused on problem solving, modeling
situations, where a mathematical model is a description of any system
having mathematical concepts and language. Figure 2.1 shows the major
applications of described categories of mathematics. Regarding this research
area, we will focus on pure mathematics.

2.1.1 Basic Concepts

In this sub-section, we will discuss the basic concepts of pure mathematics
as algebraic problems fall in this category. Algebra is a very powerful
scientific device that is utilized to solve-out real-world problems in science,
business,and numerous different fields. In this section, we begin with a review
of fundamental definitions and documentations used to express algebraic
terms such as: set, coefficients, algebraic expressions, and matrix. Also,
we will further discussed the number theory, geometry, and algebra in this
sub-section.
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Matrix Matrices provide a theoretically and practically useful way of
solving a linear system, where a linear system is a set of linear equations.
Usually, there exist two techniques for solving linear system that are:
Cramer’s rule and Gaussian elimination. As there exist many libraries that
are freely accessible for solving equations through Cramer’s rule, we shall
be using Cramer’s rule to solve our equations. Before discussing Cramer’s
rule, it is worthy to define determinant for a matrix as it would be valuable
while analyzing the matrix properties in a system of linear equations. The
determinant for a matrix A can be denoted as det (A) or | A |.
Let A be a 2× 2 matrix:

A =

[
a11 a12
a21 a22

]
Determinant of A is: ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

A linear system (AX = B) only have a unique solution if and just if A is
invertible (determinant for A not equal to zero). Cramer’s formulas for two
variables can be defined as:

x =
| A1 |
| A |

, | A1 |=
∣∣∣∣b1 a12
b2 a22

∣∣∣∣ = b1a22 − b2a12 (2.1)

y =
| A2 |
| A |

, | A2 |=
∣∣∣∣a11 b1
a21 b2

∣∣∣∣ = b2a11 − b1a21 (2.2)

As system of linear equations are precisely and concisely represented by a
matrix, therefore to solve algebraic expressions researcher prefer to transform
their set of linear equations into matrices.

Number Theory Arithmetic or Number theory is a sub-branch of pure
mathematics that is used for the purpose of studying prime numbers as well
as rational numbers. In other words, the number theory is the theory of the
positive integers which states that each positive integer has a unique prime
factorization [11]. Real numbers are divided into two categories: rational
and irrational numbers. Rational numbers are the numbers that could be
expressed in a form of p

q
where p, q ∈ Z ∧ q 6= 0. The numbers

√
36, 3, 9, 4,

etc., are rational numbers. Whereas irrational numbers are the numbers that
could not be expressed in a form of p

q
where,q ∈ Z and q 6= 0. The numbers

√
5,
√
3, 7√

3
,
√
3

16
are irrational numbers.
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Number theory is taught to computer researchers in their discrete
mathematics course. Also numerical, image processing and cryptography
are applications to it continuous theory.

Algebra The word algebra comes from the Arabic word “AL-JABR”
that have a foundation from the al-Khwarizmi book titled Ilm al-jabr wa’l-
mubala. Algebra is a subdivision of mathematics that helps the individual
to evaluate the mathematical symbols through certain rules that are used for
manipulating these symbols. Algebra differs from arithmetic in the context
of using abstractions and generalization as algebraic problems either have
unknown variable or a variable that allowed to take on many values. We will
further discuss this area in the following subsection.

A variable could be represented through a symbol that would be used
to represent an unknown number in an equation or expression. There exist
two types of expressions: numerical expression (arithmetic expression) and
algebraic expression. Numerical expression or arithmetic expression could be
represented through two or more numbers that always gives a single answer.
The expression 7+8 represents a single number that is 15, so it is a numerical
expression. Whereas, the algebraic expression includes one or more variables.
The expression 7 + x represents a value that can be changed over time, i.e.,
if x is 1, then it has a value of 8. If x is 2, then the expression has a value of
9, so 7 + x is an algebraic expression.

2.1.2 Algebraic Equations

An algebraic equation or algebraic expression is a combination of numbers,
variables, and exponents. Typically, three types of equations in algebra:
linear, quadratic, and polynomial equation. These types are further discussed
in the following subsection.

2.1.2.1 Types of Equations

Polynomial Equations A polynomial in x is an expression of the form:
anx

n + a(n−1)x
(n−1) + ... + a1x

1 + a0, an 6= 0. The highest power of x
in a polynomial is called the degree of the polynomial. Remainder and
Factor Theorem helps to solve a polynomial equation. Remainder Theorem
for polynomial function tell us that the remainder obtained by dividing
polynomial by x − a is same as the value of this polynomial function at
x = a. While, factor theorem is used to check if the given linear polynomial
is a factor of the given function or not, i.e., to determine if a given linear
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polynomial x − a is a factor of polynomial function f (x), all we need is to
check whether f (a) = 0.

Quadratic Equations A quadratic equation or second degree polynomial
equation in term of x is any equation that could be represented through a
form ax2 + bx + c = 0 where a, b and c are constants and a 6= 0. There are
three basic techniques for solving these equations:

1. By factorization

2. By completing squares, extracting square roots.

3. By applying the quadric formula x =
−b ±

√
(b2 − 4ac)

2a

Linear Equations A polynomial equation of degree one is called linear
equation. A three-variable linear equation can be represented in the form of:

ax + by + cz = k

These equations might be homogeneous or non-homogeneous. Any equation
that could be written into the form of:

ax + by = k

where, a 6= 0, b 6= 0, k 6= 0, is called a non-homogeneous linear equation for
two variables x and y . If in the above equation, k = 0, that is, ax + by = 0 ,
then it would be a homogeneous linear equation in x and y .
The combination of more than one equations makes a system of linear
equations that can be consistent or inconsistent. A system of linear equations
is said to be inconsistent if the system does not have any solution and vice
versa. The methods for solving linear equations system are described in the
following subsection.

2.1.2.2 Solving Methods for Linear System

There exist three basic techniques for the solution of linear equations system,
these are:

1. By substitution

2. By elimination

3. By using Cramer’s formula
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By Substitution Consider

ax + by = 0 (2.3)

cx + dy = 0 (2.4)

From equation 2.3 x = −by/a
By substitute the value of x into equation 2.4 will give us the exact solution
for x .

By Elimination Consider ax + by = 0; cx + dy = 0. To eliminate one
variable (suppose x), first we will try to make same coefficient for at least
one variable in each equation. So,
1

a
(ax + by = 0), by multiplying both side by

1

a
1

c
(cx + dy = 0), by multiplying both side by

1

c
Difference of the equation would eliminate x and give us the value for y . For
example:

x +
b

a
y = 0 (2.5)

x +
d

c
y = 0 (2.6)

(
b

a
− d

c
)y = 0

y =
1

(b
a
− d

c
)

(2.7)

By Cramer’s Rule System of linear equation can be solved through
Cramer’s formulas that can be defined as:

xn = |An|
|A| , where n define the number of variables and | An |=

∣∣∣∣a1n b1
a2n b2

∣∣∣∣ (in

case of two variables).

2.1.3 Word Problems

In mathematics, the word problem is the representation of any mathematics
problem in the form of text rather than in mathematical notation. Mostly,
arithmetic, combinatory logic, lambda calculus, linear and quadratic algebra
problem can be represented in the form text. To model semantic relationships
for finding a system of equation through the given text requires reasoning
across sentence boundaries. This reasoning may be challenging for a student
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but problem understanding is trivial. Whereas, for artificial intelligent
systems the understanding of a math-ward problem is challenging.

A system needed to be developed that would help the students to develop
a model from the question which has all necessary information to solve it.
Also by relating the subject to real-life situations will promote mathematical
interest and understanding.

Example 1 If Zain has 7 dollars and he uses 3 dollars to buy something.
How much does he have now?

Model: The model for example 1 “Remaining dollar: 7− 3”
The common types of word problems are distance problems, area problem,
work problems, age problems, percentage problems, numbers problems and
mixtures problems.

2.2 Natural Language Processing

The main objective of Natural Language Processing is to develop such a
useful technique that would help systems to derive meaning from natural
language(s). For NLP processing the main challenge is to transform the
human understandable language into a format that is understandable for a
machine. There are three elements associated with any language statement:
syntax, format, and semantics. A syntax of a language is the structural rule
that a statement should follow to make sense. While semantics deals with
the meaning and interpretation of a sentence. NLP application area includes
automatic translation (interpretation) between languages, dialogue system
(that allow an individual to interact and communicate with the system)
and information extraction (that transforms unstructured text into database
representations). Basically, NLP involves to develop a model of natural
language phenomena and to design an algorithm for implementation of these
models.

CoreStanfordNLP is commonly used NLP tool which is available as
open source and is platform independent. Stanford parser is for providing
description toward grammatical relations of a sentence. Where a sentence
must be understood and effectively used by an individual without linguistic
expertise. The following are the major tasks in Stanford parser:

1. Words and tokenization

2. Part of Speech (POS) tagging

3. Named Entity Recognition (NER)
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4. Dependency Parser (Parse tree)

In the remainder of this section, we will describe the major tasks of Natural
Language Processing in order to achieve the goals of NLP. Information
extraction and similarity matrix are also described that is helpful for getting
preprocessed training data.

2.2.1 Words and Tokenization

The concept of a token is different from that of a word (Table 2.1). Tokens
include punctuation characters, while words do not. Tokens are bordered
by white spaces or line break. For instance, example 1 has twenty-one
tokens but nineteen words. Words can be characterized in many ways. The

Table 2.1: Difference between Words, Token and POST

Text Tokenization POST

it’s it+’s it_PP’s_VBS

we’re we+’re we_PP’re_VBP

you’re you+’ll you_PP’ll_MD

wanna wan+na wan_VVG na_TO

field of linguistics defines words as “symbols for concepts”, where symbol is
the string used to denote a concept- a real world object. Just as a word
is the unit of spoken language, the notion of token represents the unit of
written text. Tokenization is the procedure of isolating up a content into
grammatical segments, for instance into token or sentential components.
This segmentation of a sentence into tokens is a pre-processing step for other
annotations such as part-of-speech tagging and lemmatization. POST is the
process of tagging each token according to their part-of-speech tag. Where
lemmatization is a form of annotation that is all about grouping together
word forms that belong to the same inflectional paradigm and then assign
this group to each paradigm that corresponding uninflected form, which is
known as lemma. Lemmatization is related to the process of POST, as the
POS tagging is essential for the process of lemmatization. Lemmatization
is viewed as a very helpful sort of corpus annotation since it gives extra
exploration alternatives.

A number of associations exist between lexical units of a language, which
characterize how the semantics of two words relate to each other. WordNet
is a highly structured lexical database that maintains common relations
between nouns, verbs, and adjectives. The most common lexical relations
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among words are defined as under:

• Synonymy is the relation that exists between two words as by
interchanging one for the other does not alter the meaning of the
context, e.g., the terms “prevent” and “avoid” are related by synonymy.

• Homonymy exists where one word can represent distinct concepts.

• Antonyms Two words with opposite meaning are said to be antonyms
of each other, e.g., a bit vs too much.

2.2.2 Part of Speech Tagging (POST)

POS tagging is a process about marking a part-of-speech tag in corresponding
with a particular word or phrase. Mostly, NLP uses the Brown corpus model
for getting POS tags of a corpus (i.e., a collection of related documents). The
Brown Corpus consist of one million words of standard American English that
were compiled by W.N. Francis and H. Kucera, Brown University in 1961.
Brown customized the combined tags for words such as won’t (MD*) and
I’d (PPSS+HVD). If a tag has an asterisk appended means it has a negator
after their tag.

As POS tagging provides additional information about the grammatical
structure of data (Table 2.2), so it would improve the searchability of a
corpus. The vital concern in Part-of-Speech (POS) tagging, which has been
debated since the 1950s, is whether the POS tagging should be based on
meaning or on syntactic distribution. According to the first view, POST
should be based solely on word meaning so it should always be tagged as
a verb. The second view says that POST should be determined by the
syntactic distribution of the word. For example, when “benefit” is used as
a noun phrase, it should be tagged as a noun in that context; it should be
tagged as a verb if it is the root of a verb phrase. As syntactic distribution
complies with the principles of modern linguistics theories so we have chosen
syntactic distribution as the main criterion for our POS tagging.

2.2.3 Named Entity Recognition (NER)

NER is also a subtask of IE (Information Extraction) that is all about labeling
words of a text into pre-defined categories through NE Recognizer tool.
A Named Entity Recognizer is for classifying a sequences of words which
are their respective entity names, for example, individual and organization
names, or genetic factor and protein names. For categorizing entities NE
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Table 2.2: The tagset, sorted alphabetically according to categories

Category Tag

Adjective JJ

Adjective, comparative JJR

Adjective, superlative JJS

Adverb RB

Adverb, comparative RBR

Adverb, superlative RBS

Cardinal Number CD

Conjunction, coordinating CC

Conjunction, subordinating IN

Determiner DT

Noun, generic N

Noun, plural NNS

Noun, singular or mass NN

Preposition IN

Pronoun, personal PP

Pronoun, possessive PP$

there, existential EX

to, infinitive use TO

Verb, base form VB = verb be

VIH= verb have

Verb, generic V

Verb, gerund or present participle VBG = verb be

WIG = verb have

Verb, modal MD

Past participle VBN = verb be

VHN = verb have

Wh-adverb WRB

Wh-determiner WDT



CHAPTER 2. BACKGROUND 15

Recognizer utilize seven class model (Location, Person, Organization, Money,
Percent, Date, and Time). This model can be prepared on various data set,
such as, MUC 6 and MUC 7. Additionally, this model use distributional
similarity features for providing performance gain at the cost of increasing
the size and runtime of data sets.

General Architecture for Text Engineering (GATE) and Stanford
CoreNLP are Java based IDEs including Conditional Random Field (CRF)
named entity recognition tool. Both IDEs are accompanying by well-
engineered feature extractors designed for Named Entity Recognition.

2.2.4 Dependency Parser

Dependency relations is a connection between pair of words or phrases that
could be characterizing as a relationship between these pairs. A dependency
parser analyzes the linguistic structure of a sentence by means of establishing
connections between root words and words which alter those roots. For
instance, in the sentence Alia tossed football, Alia is the subject who is doing
the tossing, and football is the item being tossed [2].
This connection can be signified as:

subj(toss,Alia)

obj(toss, football)

Table 2.3 shows a step by step process followed by GATE and Stanford
CoreNLP to produce dependency relation of an example 2.

Example 2 Economic news had little effect on financial markets.

Table 2.3: Dependency parsing for example 2

Trans. Stack Buffer Relation

1 root Economic|adj, news|noun, had|verb, little| adj,
effect|noun, on|prep, financial|adj,
markets|noun

[]

2 root,
Economic

news|noun, had|verb, little| adj, effect|noun,
on|prep, financial|adj, markets|noun

amod[news,Economic]

3 root,news had|verb, little|adj, effect|noun, on|prep,
financial|adj, markets|noun

amod[news,Economic]

4 root,had little|adj, effect|noun, on|prep, financial|adj,
markets|noun

amod[news,Economic]
nsubj[had,news]

5 root,had,
little

effect|noun, on|prep, financial|adj, markets
|noun

amod[news,Economic]
nsubj[had,news]
root[root,had]
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6 root,had effect|noun, on|prep, financial|adj,
markets|noun

amod[news,Economic]
nsubj[had,news]
root[root,had]
amod[effect,little]

7 root,had,
effect

on|prep, financial|adj, markets|noun amod[news,Economic]
nsubj[had,news]
root[root,had]
amod[effect,little]
dobj[had,effect]

8 root,had,on financial|adj, markets|noun amod[news,Economic]
nsubj[had,news]
root[root,had]
amod[effect,little]
dobj[had,effect]
prep[effect,on]

9 root,had,on,
financial

markets|noun amod[news,Economic]
nsubj[had,news]
root[root,had]
amod[effect,little]
dobj[had,effect]
prep[effect,on]
amod[market, financial]

10 root,had,on,
market

[] amod[news,Economic]
nsubj[had,news]
root[root,had]
amod[effect,little]
dobj[had,effect]
prep[effect,on]
amod[market, financial]

pmod[on,market]
11 root,had [] amod[news,Economic]

nsubj[had,news]
root[root,had]
amod[effect,little]
dobj[had,effect]
prep[effect,on]
amod[market, financial]

pmod[on,market]

2.2.5 Information Extraction (IE)

IE is a task of extracting organized data from the substance of large
text collections. In IE, the evidence is investigated. IE is different from
Information Retrieval (IR) as IR uses specific keywords or queries to pull
documents from large text collections, such as the Web dataset. After pulling
out specific queries the specific documents are being analyzed.
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Getting the facts can be hard with traditional query engines as traditional
query engines are designed for retrieving whole documents. IR provides
documents with the relevant information somewhere, whereas IE returns
structured information at a much more profound level than traditional IR.
If a database is developed through IE and connected back to the documents,
then it can give an important alternative search tool. Results may not be
constantly exact, but rather they can be valuable if connected back to the
original text. IE technology is deployed for many other applications such as:
Text Mining, Decision Support, Opinion Mining, Question Answering, Rich
information retrieval and exploration, Semantic Annotation [12].

2.2.6 Similarity Matrix

Similarity can be explained by using different measures, like cosine similarity,
correlation, distance measure or comparison of local histograms. TF (Term
Frequency) and TF/IDF (Inverse Document Frequency) are measures to
create a vector (matrix) in text mining. TF can be defined as a frequency
of term i in document j , whereas TF/IDF is a frequency of term i in respect
with the number of documents containing that term i . Following formulas
further distinguish the difference between TF and TF/IDF.

tf ij =
Nij

Nj

tf /idf ij = tf ij ∗ log(
N

dfi
)

Where,
Nij = number of times a word i has occurred in a j document
Nj = is the total number of words in a j document
df i = number of documents containing i
N = total number of documents
The most utilized model of similarity matrix for text and document
representation is Vector Space Model (VSM). VSM was designed and
developed by Xufei Wang et al [3]. This model represents the document
through an arrangement of fragments where each row depicts distinct terms
and each column depicts cohesive segments.

2.3 Data Mining

Data mining (DM) is a procedure that is for mining knowledge from data.
Weka, Orange and R are tools that are commonly used for performing these
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functions of DM. We used Weka (An open source API written in java) as
it is a suite for performing almost all ML and DM tasks. As our work is
related with classification so in this section we have only concentrated on
this function of DM. Also, a brief overview of text mining approaches is
presented at the end of this section.

2.3.1 Classification Algorithms

Classification is for predicting a target class for each instance in data
by simply following two steps: modeling and testing. In modeling, a
classification algorithm finds a relationship between values by estimating
the predictors and target class. Classification models are tested by applying
these relationships to a data set in which the class assignments are unknown.
Particularly used algorithms that are given by Weka are:

• NaiveBayes

• SMO (Sequential Minimal Optimization)

• KStar

• RandomForest

2.3.1.1 NaiveBayes

Nave Bayes is a statistical classifier based on Bayes-theorem which performs
probabilistic prediction.

P(Ci | X ) =
P(X | Ci) ∗ P(Ci)

P(X )

Where, P(X | Ci) =
∏n

k=1 P(xk | Ci)
It is easy to implement and also good accuracy obtained in the case of

a small dataset. However, dependencies are not modeled i.e., dependencies
exist among variables such as patients, symptoms, and diseases.

2.3.1.2 SMO (Sequential Minimal Optimization)

SMO is the name used for Support Vector Machine (SVM) in Weka that is
based on linear and nonlinear regression. SVM examines for the hyperplane
with the largest margin, i.e., maximum marginal hyperplane (Figure 2.2).
Maximize margin by maximizing 2/||w ||, where w is the total weight for
each vector. Training can be slow but accuracy is highly outstanding for
classification and numeric prediction.
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Figure 2.2: Sequential Minimal Optimization

2.3.1.3 KStar

KStar is an Instance-based Learning method known as KNN (K Nearest
Neighbor), where classification is delayed till a new instance arrives. It
classifies new instance based on some similarity functions such as Euclidean
distance.
Consider instance: x = a1(x), a2(x), ... , an(x)

d(xi , xj) =

√√√√ n∑
r=1

(ar (xi)− ar (xj))

KNN calculate distance between new instance xi with each of existing
instance. The predicted class can be obtained either by voting or averaging
of all k nearest neighbor classes. Learning process in KStar is very simple
yet time consuming.

2.3.1.4 RandomForest

Random forest is an ensemble learning method for classification. Ensemble
method used combination of models for getting high accuracy (Figure 2.3).
Random forest used a series of k decision tree models and then chooses a
model either having the most votes (Boosting) or averaging the prediction
results of all models (Bagging). This algorithm gives more accurate result
in the comparison of other algorithms described above but more robust to
errors and outliers.
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Figure 2.3: Working of Ensemble

2.3.2 Text Mining

Figure 2.4: Process for text classification

The process of driving out a high-quality information from text is referred
as Text mining. It is an interdisciplinary field that draws on IR, DM, ML,
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statistics and computational linguistics. Text categorization or classification
is a commonly used function of text mining techniques. Text classification is
used to resolve categorization problem in library science, information science,
and computer science. The main goal of text mining is to choose a correct
class label for a given input, that is provided in the form of text. The
most important examples of text categorization are spam detection, word-
sense disambiguation, and document or web-page classification. The process
followed to classify text is shown in Figure 2.4.

Features extraction can be done by following preprocessing steps,
tokenization, lemmatization, POST, NER, dependency relationship and term
weighting (either TF or TF/IDF).

2.4 Equation Solver

An automatic system that is used to solve linear, quadratic, biquadratic,
absolute and radical equations is known as equation solver. There exist many
online and offline applications or systems that are used to solve arithmetic
and linear equations.

Mostly, equation solver applications convert given equation into matrices
and then solve it either by Cramer rule or Matrix Inevitability theorem.
Symbolab, Mathway, and CyMath are online sources which are used for
solving all mathematics problems.

Symbolab Symbolab is an advanced mathematics education tool that
allows users to learn, practice and discover math topics using mathematical
symbols and scientific notations as well as text. It provides automated step
by step solutions for solving calculus, algebra, geometry and statistics. Could
solve algebraic equation through two methods, i.e., using substitution method
and using elimination method.

Mathway Mathway is a tool that helps the students to understand and
solve their math problems. Mathway can solve a linear algebraic equation
system using various methods that are:

• Solve by Substitution

• Solve by Addition/Elimination

• Solve by Graphing

• Solve Using a Matrix with Cramer’s Rule
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• Determine if Dependent, Independent, or Inconsistent

• Solve Using Matrices by Row Operations

• Solve Using an Inverse Matrix

CyMath Cymath is a privately-held company based in New York that
believe on open education, with a focus on the “what”, but more on the
“how” and the “why”. It can Solves calculus and algebra problems online
with a step by step process. It uses three methods for solving linear algebraic
problems that are using substitution, elimination, and Matrices by Row
Operations. The most widely recognized libraries in java for parsing and
assessing numerical expressions are: Java Expression Parser (JEP), Exp4j,
formula4j. These libraries permit to enter the self-assertive equation as a
string and immediately evaluate it.

• JEP support user defined functions, variables, Unicode characters,
Boolean expressions and matrices. It solves linear equations by
applying Cramer rule on the matrices that are derived from these
equations.

• Exp4j is an expression evaluator taking into account Dijkstra’s
Shunting Yard. It’s openly accessible and redistributable under the
Apache License 2.0 yet provide support for linear expressions.

• Formula4j parses its input using a grammar strictly limited to
mathematical expressions. It does not prove support for string
functions, complex numbers, and matrices.
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LITERATURE REVIEW

Over the past decade, many approaches have been proposed that exploit
text mining techniques to solve mathematics problems. Algebraic word
problems are inherently complex and therefore there exist not a single
system for providing solutions to the word problems without any restriction.
However, some research work related to this area provides guidelines for
solving algebraic word problems. Our work is related to three main areas
of research: semantic interpretation, information extraction, and automatic
word problem solvers [5].
The focus of this chapter is to present an overview of the existing techniques
that have been used for the problems extraction and classification. There are
two broad categories of the existing work:

• Only NLP (Natural Language Processing) based approaches

• NLP and ML (Machine Learning) based approaches

These techniques have been discussed in detail in the following sections.

3.1 Only NLP based approaches

Approaches that are applied to solve a mathematical word problem without
applying any classification technique are categorized as Only NLP based
approaches [6]. In these approaches, the main goal of researchers is to
align a text into underlying entities [8]. This alignment might be done
with or without natural language processing. There exist many types of
research in NLP field that have been focused on understanding semantics
and meaning of natural language. Preferably, the automatic problem solver
utilizes the information that can be extracted from the problem itself to

23
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show-off the mathematical relationships amongst the features or attributes.
Additionally, automatic solver also utilizes some intelligence to come up
with a solution to a given mathematical word problem. Research towards
automatic solution area dates back to early 1960s with the development of
STUDENT program written by Bobrow (1964) [6]. The STUDENT was
the first ever program that capable to read, understand and then solves an
algebraic word problem. These word problems were must be represented
with a confined set of English language. This program only gives the final
answer in the English language for a given word problem. Earlier work,
on solving logic and math-word problems, uses manually aligned meaning
representations or domain knowledge (i.e., on condition that the semantics
of all the words are provided) [13].

WORDPRO proposed by Fletcher (1985) [14] was used for solving and
understanding arithmetic word problems. To symbolize the meaning of a
word problem, WORDPRO used a set of propositions that are supportive
for understanding the meaning of a problem text artificially. Supplementary
a progressive simulation program known as ROBUST was developed by
Bakman (2007) [15] to perceive free-formatted multi-step arithmetic word
problems. ROBUST do fragmentation on a problem text to make sentences
that are further parsed into propositions. Those propositions that are having
complex change-verbs are splitting into fundamental propositions. At that
point, the formula(s) are applied on those fundamental propositions by
means of substituting the constant values with respect to their corresponding
variables.

As Only NLP based approaches, do not use ML techniques on NLP-
processed data, they cater each question as a separate unit and solve it
according to their semantics. So, the systems, that are developed using this
approach, do not include any type of artificial intelligence.

3.2 NLP and ML based approaches

The systems, that used these approaches, implement the ML algorithms on
NLP-processed data to automatically classify text-based questions [6]. The
main goal of the researchers to use this category for building the models of
solving any math’s and logic word problem. Cetintas, Suleyman, et al (2009)
[7] proposed a novel approach for text categorization of mathematical word
problems, named as Multiplicative Compare and Equal Group problems in
their paper. To preprocess the given problems, this method used stop-word
removal and stemming beside part-of-speech tagging. After preprocessing,
either a SVM classifier or probabilistic meta classifier with default setting
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was applied on a dataset. The empirical results demonstrate that the
probabilistic meta classifier further enhances the categorization precision.
As the probabilistic meta classifier uses the combined weighted results of
two SVM classifiers with the different word problem(s). Bussaba and Suma
(2014) [16] designed and constructed a mathematical word problems solver
in a systematic way, it is a stage towards empowering intellectual capacity
in mathematics and showing critical thinking for youngsters in their basic
grades.

The template-based learning model by Kushman et al. (2014) [5] was
development to enhance the factor of intelligence. This model makes reasons
across sentence boundaries to construct and then solve a system of linear
equations. While solving, the model could simultaneously perform recovering
an alignment of the variables and numbers in these equations to the problem
text. Although this model is efficient for solving algebraic word problems but
only relies upon training words and NER of a problem text. Another system
proposed by Hosseini et al. (2014) [4] is ARIS which maps the problem text
into a state representation that involves a set of entities, their containers,
quantities, attributes, and relations to solve simple arithmetic word problems.
ARIS first splits the problem text into fragments where every single fragment
corresponds to an observation or a redesign of the quantity of an entity that
may be contained in one or two containers. The verb in every sentence is
connected with a couple of containers, and ARIS needs to arrange every verb
in a sentence into one of seven categories that portray the effect of the verb
on the containers. Although ARIS gives 76+% accuracy but only efficient for
arithmetic word problems. This approach does not provide solution toward
solving all arithmetic’s (i.e., perform +,−, ∗, / operations on an equation)
and algebraic (i.e., perform all type operations on more than one equation)
word problems. Also running the parser was relatively time-consuming.
In contrast, the algorithm proposed by Subhro Roy et al. (2015) [2] does
not require any additional annotations and could deal with a more general
category of problems. The algorithm uses an arithmetic expression tree that
would map the problem text into arithmetic expression.

Lipu Zhou et al. (2015) [17] presents another algorithm to consequently
tackle algebraic word problems. The problems solved by means of
analyzing the hypothesis space containing all possible equation systems.
The possible equations were generated through assigning the constants
in a given word problem into a set of equation system templates. The
equation system was efficiently evaluated as a quadratic programming (QP)
problem. Experimental results demonstrate that Lipu Zhou et al. algorithm
accomplishes 79.7% accuracy that is about 10% higher than the Kushman
et al algorithm.
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3.3 Critical Analysis

In the previous sections, we discussed two different approaches to solve
math-word problems. The section will critically analyze both techniques
by discussing their strengths and limitations.

• Only NLP based approaches do not use classification yet just use NLP
while solving text problems. For instance, these non-ML approaches
parse each question to extract equations directly from the problem
text, so they require much time and storage. Even though they drive
equations directly from the given text yet unable to give high accuracy
and precision. However, the non-ML approaches do not require storage,
training and compiling time.

• NLP and ML based approaches used different classification techniques
to inherit artificial intelligence besides NLP. These approaches require
enough storage and compiling time while performing both parsing and
modeling. The strength of these approaches is their accuracy as they
do not require to extract equations from the problem text instead a
prediction has been occurred based on the classifier.

In a nutshell, we can conclude that there has been researches on
automatically solving various types of mathematical word problems. Almost
all existing research carried on that topic only have to focus on word count,
POS or NER tagging of a problem. As dependency and co-reference parsing
gives the co-reference and dependency relationship amongst attributes, so
evaluation can give more accurate result if dependency and co-reference
parser used beside with POS and NER tagging. Also, the existing techniques
require a large number of resources in a form of storage and memory.

Summary
In this chapter, an overview of existing approaches for solving words problems
of mathematics have been presented. The two approaches that have
been discussed are Only NLP based approaches, and NLP and ML based
approaches. An overview of these approaches with respect to their working
methodology has been discussed. Also, a critical analysis of both approaches
is presented.



Chapter 4

PROPOSED SYSTEM
DESIGN

This chapter provides detail about the architecture and modules used for
the realization of our proposed system. The system consists of three main
modules.

• Natural Language Processing (NLP)

• Equation Prediction

• Equation Solving

Each module will be discussed in detail in sections. The system was developed
by using Stanford NLP, Jazzy, Weka and JEP (Java Expression Parser) that
are Java based libraries. We used Eclipse IDE for developing web-based
application named as math-word. Figure 4.1 shows the architecture of the
proposed system. A corpus of algebraic and arithmetic questions is given as
an input to the system. Each question has been pre-processed before applying
NLP tools. A classification algorithm is a step toward predicting the equation
template which is applied after recognizing dependency relationship amongst
entities. At the end, extracted equations would be solved through an API
named as JEP.

27
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Figure 4.1: System Architecture

4.1 Natural Language Processing (NLP)

Module

The first module of the proposed methodology is to process the dataset
using NLP tools. NLP is for understanding the structure and application
of language. Useful tools for getting NLP preprocessed text data are
Lemmatization, Stemming, Stop-word Removal, Spell-checking Algorithm,
Part of Speech (POS), Named Entity Recognization (NER) and Dependency
Parsing (Figure 4.2).
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Figure 4.2: Pre-processing Module

Lemmatization is a process of grouping varied forms of a word that can be
analyzed and processed as a single item. Whereas stop-words are those words
that can be filtered out before actual processing of text data. Lemmatization
and Stop-words has mostly done by using rules-based approaches. The basic
purpose of stemming is to eliminate several suffixes, to shrink the size of a
sentence and to save memory space. Universally used algorithm for stemming
is M.F. Porters Algorithm [18]. The main difference between lemmatization
and stemming is that a stemmer operates on a single word without know-how
of its context. Spell-check utility is an efficient process that was constructed
using an efficient string pattern checking algorithm named as Boyer Moore’s
Algorithm [19]. By using Boyer’s model spell-check can skip grammatically
incorrect word from pre-processing and entity recognition modules. In
the proposed system, each question is checked grammatically through spell
checker API named Jazzy that would also give all possible suggestion toward
incorrect words. As spell check and stop-word remover are performed before
applying other NLP tools, so extracted features do not involve any wrong
named entities. Features extraction is possible through three critical NLP
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tools that are: POS, NER and Dependency Parser. Following steps would
be followed in sequence to extract features from a dataset:

• Tokens are tagged through Part of Speech (POS) tagger.

• Each POS tag is recognized by Named Entity (NE) recognizer.

• Dependency relations are found between word pairs by using
dependency parsing.

Each sub-modules of NLP module would be discussed further in the following
sub-sections. We used Stanford CoreNLP which is a java based NLP tool
that provides a practical approach for language processing. It is an integrated
framework that is used for applying a bunch of linguistic analysis tools to a
piece of text. CoreNLP integrates many of Stanford’s NLP tools, including
the POS tagger, the NE recognizer, the parser and the co-reference resolution
system.

4.1.1 Spell Check

Before applying any other preprocessing or NLP technique, a given question
is checked against it grammatical structure. It is a tool that finds common
spelling errors and grammatical mistakes in any language. There exist
numerous valuable tools for looking at the grammatical structure of a
document alongside with giving all possible suggestions. Some of java based
APIs for checking and correcting spells mistakes are:

• JSpell is a checker SDK for the Java J2EE Platform, it have 6-month
trial.

• Google’s Spell Checker API v2 easy to use, yet not available as offline.

• LanguageTool is an open source API that provides an offline solution.

• Jazzy is also a java based API, provides all possible suggestions
alongside with identifying the incorrect grammatical structure of a
sentence.

Jazzy has been used as a spell checker in our application. The process of
checking spell is:

• Scan the text and extract the words contained in it.

• Compare each word with a given dictionary that is a list of correctly
spelled words.
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• Put misspellings word with all possible suggestions into a list.

Applying Spell check as a preprocessing step would improve the accuracy
of text mining techniques. As it avoids wrong matches that will save time,
i.e.,the matching of misspelled words.

4.1.2 Stemming

Stemming is a procedure of NLP in which a word is stemmed to its root. For
instance, giving, given, and got has a stem word give. The motivation behind
this strategy is to remove various suffixes that would reduce the number of
words, save memory space and time. Stemming is performed after word
tokenization of a sentence. Tokenization is about to break a sentence into
tokens, e.g., words, phrases, symbols or meaningful elements. These tokens
are further processed by other NLP tools like NE recognition, POS tagging,
and dependency parsing.

Stemming improves accuracy as it reduces the number of attributes
used for a classification algorithm. In the proposed algorithm, we used a
morphological analyzer that is used for identifying stems of a word. It takes
tokens and their part-of-speech tags as input and generates affix against each
word. A morphological analyzer simplifies the task of relation recognition as
its groups all the morphologically related forms of a word down to a single
root value. Table 4.1 shows the root values generated from tokens of the
following example sentence by a morphological analyzer.

Example 3 A bank teller has 54 5-dollar and 20-dollar bills in Bank. The
value of the bills is 780 dollars. How many 5 dollars’ bills are there?

Table 4.1: Root identification from tokens

Token Root

has be
bills bill
dollars dollar
The the
is is
How how
are is

For our algorithm, we require affix for numeric (num), prepositional (prep),
possession (poss), adjectival (amod) and adverbial (advmod) modifiers that
are dependency relations.
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4.1.3 Stop-word Remover

Stop words are those words that have been used more frequently in a
language. They are language-specific functional words which carry no
information. Such as pronouns, prepositions, conjunctions. These words
are pointless in Text mining, so eliminating these words from the training
data would be used in sense of accuracy and precision. In our algorithm,
all NER objects (O) and special characters such as semicolon, colon and
percentage sign are stop-words. We used a rule-based remover algorithm to
eliminate stop words in our dataset. By removing the stop words, we got
dimensionally a reduced dataset.

4.1.4 POS Tagger (POST)

Identification of a part-of-speech for a given word is an important precursor
to any information extraction task. POS tagger is a tool used to distinguish
parts of speech for each word. Before applying POST, text has to be
segmented into linguistically significant units, such as words, symbols,
numbers, and punctuation. This process is referred as tokenization. These
words then be tagged with different Part Of Speech (POS) such as verb,
noun, adjective, adverb etc. POS information for each token is required by
the relation extraction modules. Table 4.2 shows the output for POS tagging
of the example 3 sentence. The tokens of the sentence are listed in the first
column, whereas the corresponding tags in the second and their descriptions
in the third column.

4.1.5 Named Entity Recognition (NER)

We used seven class model for entity recognition to recognize entities in each
individual question. This phase identifies name of entities that are the names
of location, person, organization, money, percent, date and time. If a token
does not fall in any of the above class, it is categorized as a general object
(O).
POS tag is a pre requirement for NE recognitions. Table 4.3 shows the entity
relations generated from POS tags and the NER model for the example 3.
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Table 4.2: POS tags for example 3

Token Tag Description

teller NN Personal Noun
has VBZ Verb
55 CD Cardinal number

5-dollar JJ Adjective
and CC Conjunction
bills NNS Noun
In IN Preposition

Bank NNP Personal Noun
The DT Determiner
value NN Noun

Of IN Preposition
is VBZ Verb

Table 4.3: NER for example 3

Token NE relation

teller O
has O
54 NUMBER
5-dollar NUMBER
bills O
Bank ORGANIZATION
780 MONEY
dollars MONEY

4.1.6 Dependency Parsing

This module uses the result from POST and apply dependency parsing that
gives the exact relationship between two consecutive words. CoreNLP uses a
Neural Network Dependency Parser for finding out the dependency relations.
The Neural Network Dependency Parser builds parse by performing a linear-
time scan over the words. At every step, it maintains a stack of words which
are currently being processed, and a buffer of words yet to be processed. The
initial state is to have all of the words in order on the buffer, with a single
ROOT node on the stack. The following transitions could be applied:

1. LEFT-ARC: marks the second item on the stack as a dependent of the
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first item, and removes the second item from the stack.

2. RIGHT-ARC: marks the first item on the stack as a dependent of the
second item, and removes the first item from the stack.

3. SHIFT: removes a word from the buffer and pushes it onto the stack.

These transitions are chosen using the neural network classifier in each state.
Figure 4.3 shows full algorithm for Neural Network Dependency parser.

Figure 4.3: Algorithm for Neural Network Dependency Parser [2]

Table 4.4 shows the dependency relations for a sentence “A bank teller
has 54 5-dollar and 20-dollar bills in her cash drawer.” from example 3.

4.2 Equation Prediction Module

We have ready to use a dataset after finding out POS tags, Entity relation
and dependency relation. The Equation Prediction Module is for training
and predicting equation template against each question (Figure 4.4). To
get the equation template, this module follows three steps that are named
as: TF calculation, generation of similarity matrix and classification. Term
frequency is calculated against each document. The document consists of
POS tags, entity relation, dependency type and some of the dependency
relations that are prep, num, poss, amod and advmod. A similarity matrix
is generated for applying a classification algorithm on it [3]. In the following
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Table 4.4: Dependency relations for a sample sentence

Word pair (governor, dependent) Dependency type Description

ROOT, has root
teller, A det Determiner

teller, bank nn Noun compound modifier
has, teller nsubj Nominal subject

5-dollar, 54 num Numeric modifier
has, 5-dollar dobj Direct object
5-dollar, and cc Coordination

bills, 20-dollar amod Adjective modifier
5-dollar, bills conj Conjunct
5-dollar, in prep Prepositional modifier
drawer, her poss Possession modifier
drawer, cash nn Noun compound modifier
in, drawer pobj Prepositional object

subsections, we will discuss detailed steps followed by equation prediction
module.

Figure 4.4: Equation Prediction Module

4.2.1 Term Frequency and Similarity Matrix

Term Frequency (TF) measures the count of term i that occur in a document
j . TF is useful in the field of natural language processing as it provides aids
to ease text mining using data mining algorithms. For calculating TF of a i
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word in j document, a formula is:

tf ij = Nij/Nj (4.1)

where Nij is a count of a word i in j document and Nj is total number of
count in j document.
There exist two most common methods in java for calculating TF, both are
equally useful, that are:
Using Eclipse Collections method
It converts the list of words to a Bag by keeping multiplicity, i.e.,

Bag < String > words = Lists(“bye“, “bye“, “ciao“, “bye“, “ciao“).toBag()

The occurrences (count) of a bag word can be easily found, i.e.,

countCiao = words.occurrencesOf (“ciao“)

Using map-and-reduce method
This method converts a list of words into a stream of words, and then group
them according to their unique identity, i.e.,

Map < String , int > collect = wordsList.stream().

collect(groupingBy(Function.identity(), counting()))

TF of individual words is not useful until it is presented in the form of a
vector that could be achieved using a similarity matrix.
A similarity matrix or document-term matrix is a two dimensional matrix
which contains TF against each document. Where rows correspond to
documents in a corpus and columns correspond to terms, so each entry (i , j)
represents term frequency. For instance, if a corpus has the following three
documents:

Document1: “Subtract two from three”

Document2: “Add two and three”

Document3: “Subtract three from one”

Table 4.5 shows the similarity matrix in correspondence to TF.
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Table 4.5: Similarity Matrix on TF

ADD AND FROM ONE SUBTRACT THREE TWO

DOCUMENT1 0 0 1 0 1 1 1

DOCUMENT2 1 1 0 0 0 1 1

DOCUMENT3 0 0 1 1 1 1 0

4.2.2 Classifier Algorithm

In this module, we used a Random Forest (RF) classification algorithm
that is applied on a similarity matrix of our dataset. The algorithm gives
us equation(s) that would be solved through the equation solving module.
RF algorithm constructs a forest of random trees with attributes chosen at
random, then uses an ensemble of decision trees by a bootstrap sample of
the training set (Figure 4.5).

Figure 4.5: Random Forest Classifier
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In Weka, the default parameters set for RF Classification are:
−I <number of trees> 100
−K <number of features> considered while creating each random tree, by
default value is 0 that mean not specific.
−depth <num> the maximum depth of the trees, by default it is 0 that is
for unlimited.
Weka generates an RF on hundred randomly generated trees, where each
tree created through random attributes. An ensemble chooses one tree out
of hundred based on majority voting. In 10-fold cross validation method, ten
randomly selected trees are used to generate 10 RF tree iteratively. The final
tree is selected out of 10 RF tree based on majority voting.

We chose RF for our proposed system as it could have performed better
on datasets having multiple classes. Also, gives more accurate result than
SVM (Support Vector Machine) and KStar Algorithm as RF is used 100
trees, each constructed while considering 9 random features.
The predicted equation for example 3 is “b ∗ x + c ∗ y = d ; 1 ∗ x +1 ∗ y = a”.

4.3 Equation Solving Module

This module converts an equation template into an equation system against
given problem and provides an evaluated result of the converted equation(s).
Figure 4.6 shows the process of conversion and evaluation of an equation
system.

Figure 4.6: Equation Solving Process

An equation template that is selected through a classification algorithm
is instantiate with variables and constants for a given word problem. If the
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instantiated equation only contains one variable it is evaluated instantly using
Evaluate Function of JEP (Java Expression Parser), otherwise equations are
converted into a matrix system, and Cramer Rule of JEP is applied to solve
it.
The solution of example 3 is “x = 20, y = 34”.

Summary
In this chapter a detailed discussion of the proposed methodology has been
presented. The three main modules of the system, i.e. NLP module, equation
prediction module and equation solving module have been described in detail.



Chapter 5

IMPLEMENTATION AND
EVALUATION

This chapter has two main parts. The first part will discuss the technical
details about the system implementation and the second part will focus on
the evaluation of the proposed system.

5.1 System Implementation

In this section we will discuss system specification, software specification,
and output of the proposed system, that are illustrated through a series of
screen shots.
The system specifications, used in the development of the system, are shown
in Table 5.1.

Table 5.1: System Specification

Processor Intel 1.7GHz Corei3 4010U 32-bit or 64-bit
RAM 4 GB
Operating System Windows 8.1 Pro
Hard disk space 16 GB

Table 5.2: Software Specification

Development Language Java version 8 update 40
Designing Language HTML, CSS, jQuery
IDE Eclipse & Weka
Libraries StanfordCoreNLP, JEP & Weka

40
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The software specifications, used in the development of the system,
are shown in Table 5.2. We used Eclipse IDE (Integrated Development
Environment) to develop our proposed system as it is free of cost and have
a lot of useful built-in libraries.

As discussed in chapter 2, the process for text classification involves two
steps training and prediction (Figure 2.4). The training step is further sub
divided into two sub-steps that are: (i) preprocessing and NLP processing
dataset (ii) applying machine learning algorithm.
Figure 5.1 shows the sub-code to get a processed training set from a raw
dataset. Getting a trained dataset involves five steps:

1. Put each question into a separate document from a given corpus of
dataset that is having 752 questions.

2. Find annotator against each document by using StanfordCoreNLP
library that will generate XML file containing annotators.

3. Read XML files and find out only useful POS tags, NER and
Dependency parsing relation.

4. Generate a similarity matrix contains term frequency against each word
in a document

5. Merge similarity matrix with equation templates that are already
extracted in dataset.

Figure 5.1: Training dataset implementation

The second step involves in training is using a machine learning algorithm
on a given dataset. Figure 5.2 shows, RandomForest classifier is applied on
the dataset.
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Figure 5.2: Training through RF classifier

Figure 5.3 shows the prediction step and Figure 5.4 shows web-based
interface of proposed system.

Figure 5.3: Predicting through RF classifier
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Figure 5.4: Web-Based Interface

5.2 Dataset Specifications

In our experiment, we used a dataset from two different sources to evaluate
and compare our system with existing math-word problem solvers. The
specification of each data source is described in the following sub-sections. An
equation template against each question is manually prepared by concerting
experts. A sample of our dataset is shown in Figure 5.5.

5.2.1 Online Source

We collected a live dataset of algebra word problems from algebra.com [20].
As questions are posted by students, so these problems are highly varied and
taken from real problems faced by students. We randomly chose 500 linear
algebra questions which did not require any explicit background knowledge.

5.2.2 Book Source

We collectively got 252 questions from the following syllabus books:
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Figure 5.5: Sample of the Dataset

• 70 questions from Mathematics-9 [21]; Chapter 4: Algebraic
Expressions and Algebraic Formulas, Chapter 6: Algebraic
Manipulation & Chapter 7: Linear Equation

• 58 questions from Cambridge o-level mathematics volume 1 [22];
Chapter 3: Beginning Algebra & Chapter 5: Working with Algebra

• 49 question Cambridge o-level mathematics volume 2 [23]; Chapter 2:
Algebra I & Chapter 4: Algebra II

• 44 questions from Mathematics-8 [24].

• 31 questions from Mathematics-7 [25].

5.3 Evaluation Metrics

We have selected the widely used measures to evaluate the performance of our
proposed system that are (i) Recall, (ii) False Positive Rate, (iii) Precision
and (iv) F-measure. Before interpreting these terms, it is important to
understand TP (True Positive), TN (True Negative), FP (False Positive)
and FN (False Negative) (as shown in Table 5.3).
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Table 5.3: Confusion matrix [3]

Prediction: Positive Prediction: Negative

Reality: Positive TP FN P

Reality: Negative FP TN N

• TP: Both reality and prediction of the model are positive

• FN: Reality is positive but prediction of the model goes to negative

• FP: Reality has been negative but prediction goes for positive

• TN: Both reality and prediction are negative

Recall Recall also known as Sensitivity or True Positive (TP) rate, is about
how accurately each question of a dataset is classified into their relevant
equation template. In other words, it measures how many of the questions
that should have been identified are actually identified. Equation 5.1 shows
the formula:

Recall =
TP

P
(5.1)

False Positive (FP) Rate It measures how many of the questions are
wrongly classified. In other words, the FP Rate is calculated as the ratio
between the number of questions that should have not been identified are
actually identified and the total number of not identified questions. Equation
5.2 shows the formula:

FP − Rate =
FP

N
(5.2)

Precision Precision measures the number of correctly identified questions
as a percentage of number of questions identified. In other words, it measures
how many of the questions that the system identified are correct. Equation
5.3 shows the formula:

Precision =
TP

(TP + FP)
(5.3)

F-measure F-measure is the harmonic mean of precision and recall,
calculated as:

F −measure = 2 ∗ Precision.Recall

Precision + Recall
(5.4)
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5.4 Performance Evaluation

We evaluated the proposed system against Hosseni et al. [4] and Kushman
et al. [5] systems, and their related datasets. We evaluated the systems to
compute Recall, Precision and F-measure.
Table 5.4 shows the evaluation metrics against proposed’s dataset. While
Table 5.5 and Table 5.6 show the evaluation metrics against Hosseni et al.
[4]’s dataset and Kushman et al. [5]’s dataset respectively.

Table 5.4: Evaluation metrics using proposed’s dataset

Approaches Recall Precision F-Measure

Hosseni et al. [4]’s 0.80 0.772 0.778
Kushman et al. [5]’s 0.72 0.691 0.697
Proposed System 0.835 0.806 0.812

Table 5.5: Evaluation metrics using Hosseni et al. [4]’s dataset

Approaches Recall Precision F-Measure

Hosseni et al. [4]’s 0.776 0.748 0.753
Proposed System 0.658 0.629 0.64

Table 5.6: Evaluation metrics using Kushman et al. [5]’s dataset

Approaches Recall Precision F-Measure

Kushman et al. [5]’s 0.69 0.671 0.68
Proposed System 0.786 0.766 0.77

The illustrations shown in Table 5.4 and 5.6 demonstrate that the
proposed system achieves better results than the template-based method
of Kushman et al. Our system improves both precision and recall at the
same time. The reason behind the better performance is that our approach
uses just POS tags, NER and dependency relations instead of using lemmas
against each word that would only increase the number of features. Moreover,
the proposed system effectively instantiate nouns and numbers into classified
equation templates.

While, Table 5.5 illustrated that the system proposed by Hosseni et al.
[4] gives better result, the reason behind is that Hosseni et al. [4] used verb
categorization as it is specific for only subtraction and addition problems.
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Summary
In this chapter, we discussed our system’s implementation and evaluation
methodology. The hardware and software specification have been described.
The output of the system modules was illustrated with screen shots. The
description of the dataset used for the system evaluation and comparison have
been described. The system evaluation against the existing methodologies
has been included, also a discussion on system’s comparison with existing
techniques based on their implementation and evaluation methodologies is
presented.



Chapter 6

CONCLUSION AND
FUTURE DIRECTION

In this chapter, we present a summary of the contributions of the research
work documented in this thesis. Some of the fundamental limitations of our
approach and an outlook of the future directions where this work can be
extended are presented at the end of this chapter.

6.1 Conclusion

In this research, a system has been proposed that automatically extract
and solve arithmetic and linear algebra word problems. Equations are
extracted through template-based method that used preprocessing, NLP and
classification algorithm. While these problems are solved through equation
evaluation API named JEP (Java Expression Parser). The proposed system
targeting students of grade 4 to 9. The proposed system has been evaluated
against two existing datasets besides proposed’s dataset. The existing
datasets have been fetched from Hosseini et al. [4] and Kushman et al. [5].
The system has been evaluated through the proposed and existing system’s
dataset. The model gives 83+% accuracy. High accuracy is because of
using dependency relation besides with POS (Part Of Speech), NER (Named
Entity Recognition).

The following sections demonstrate the proposed system’s contributions,
limitations and future work.

48
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6.2 Contributions

Improved Accuracy The proposed model got much higher accuracy in
comparison of existing template-based algorithms. Improvement in accuracy
is the cause of using dependency types and relations.

Targeting Real Problems The dataset was collected from two different
data sources that are from course books and online portal.

Simplicity Compared to other approaches, the proposed approach is fairly
straightforward to implement and achieves competitive performance. It is
because the proposed model does not use unnecessary features. So it also
saves time for learning a model. Additionally, much less computing resources
used in comparing with other template-based algorithms.

6.3 System Limitations & Future Work

• Does not give throughput toward questions with irrelevant information.

• To further improve the accuracy we intended to incorporate the co-
reference resolution technique along with dependency relation during
natural language processing.

• This work could be extended to the general domain, i.e., for all
mathematical word problems such as geometry, quadratic algebra,
statistics, logical and analytical problems.

• Advanced dataset might be used that have also been targeted to higher
level problems.
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