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ABSTRACT 

 

Electromyography is commonly used in signal monitoring for the rehabilitation of prosthetic 

systems. The extraction and selection of the features is equally critical for monitoring and 

controlling a more precise prosthetic device. We aim to create an invariant feature set which 

would allow amputees to control their prosthetics intuitively and precisely, no matter at 

which limb position the movement starts. This study introduces a new different set of feature 

which is Logarithmic Band Power fused with Spectral Amplitude. LDA classifier was 

implemented to evaluate the performance of various combinations of feature sets involving 

both time and frequency domain. Classification performance of some comparable feature sets 

along with the proposed feature set is evaluated on sEMG data. Data of ten participants  

performing four different motion classes, at three different limb positions was extracted for 

training and testing. Results demonstrate that, relative to other feature sets, the proposed 

feature set achieves a substantial reduction in the classification error rate. Achieving a 

classification accuracy of 83% when averaged across all subjects and limb positions, the 

proposed method is comparable to the existing state of the art techniques. 

Key Words: Surface EMG, Hand motion, Linear discriminant analysis, Feature extraction, 

Logarithmic band power, Classification accuracy, Cross validation. 
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CHAPTER 1: Introduction 

For decades, Surface Electromyography (sEMG) has played a very significant role in 

providing an insight into monitoring muscle activities [1][2][3]. The technique pertains to the 

collection of signals from skeletal muscle tissues that are regulated by the nervous system and 

emitted during muscle contraction [4][5][6]. People who suffer from upper limb impairment 

are unable to produce a contraction during movement [7]. Recording these signals is the 

primary tool for understanding the behavior of the human body under both normal and 

pathological conditions [8][9]. Many techniques have been introduced to monitor muscle 

movements and behavior [10][11]. EMG signals are becoming increasingly valuable and 

have been widely applied in many applications including biomedical, prosthesis and 

rehabilitation devices [12][13][14]. 

Recent studies, however, have highlighted one of the advanced approaches to signal 

processing which is pattern recognition (PR) algorithm [15][16][17]. The PR scheme has 

demonstrated the ability to control several degrees of freedom and have reported high 

performance in laboratory conditions [18]. PR unlocks the ability of prosthetic users by 

enabling them to discriminate multiple degrees of freedom (DOFs) and gain simultaneous 

control in a manner more similar to the natural upper limb movement, providing the user 

unprecedented limb control [19]. Because PR offers a full intuitive control system, any 

changes in skin conditions or discomfort can be treated without the need to remove the 

prosthesis, thereby reducing the user's mental effort [20]. 

Despite current advances, the performance of this system in the commercial world remains 

low owing to the following reasons: lack of class robustness [21], a large number of 
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electrodes requirement at the same time [22], interpretation of EMG signals acquired through 

surface electrodes alone, is inherently noisy and thus has been found debatable in providing 

an objective framework to assess the overall performance of prosthetic systems [23,24,25], 

and the impact of the limb position which implies that a system would probably not 

generalize well in various arm positions when being trained on single limb position.[26]. 

The EMG identification, processing and classification framework allows for a more 

systematic and accurate evaluation of neurophysiological and rehabilitative tools [27][28]. 

One of the challenges we need to address in order to achieve robust results is to pick a feature 

vector which must be considered carefully. [12].  

Feature extraction plays a key role in analyzing and classifying the signals of EMG as it can 

speed up and boost the classifiers performance [29][30][31]. Time domain features are 

calculated as a time function and are by far the most prominent in EMG hand motion 

recognition, because of their ease of application and measurement [32]. All functions in the 

time domain could be used in real time. Commonly, features of this group are widely used to 

detect the onset of muscle contraction and muscle shrinkage activity. [12][33]. 

In my thesis, I intend to determine the most insightful and compact feature set to be provided 

to the classifier in order to avoid the use of redundant features and to analyze a good vector 

function using the classifier and statistical analysis. We have proposed our novel feature set; 

the Logarithmic Band Power based on time domain derivations, fused with frequency domain 

Spectral Amplitude within the already available techniques, which improves the classification 

accuracy. Logarithmic band power creates a visible threshold gap by minimizing and 

maximizing the values, thus detecting minute changes in signal to noise ratio in dynamic 

environment [34], which otherwise handicap the architecture because of noise in the signals. 
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Furthermore, we also benchmark our proposed scheme with other available techniques by 

extracting features from the EMG signal obtained with only two channels on the whole and 

that too by using surface electrodes alone, which then has been used as a feature extraction 

tool for the application of hand gesture differentiation.  

Statement of Purpose 

The EMG signals obtained using surface electrodes is inherently noisy and not a robust 

source of input information for prosthetic systems alone [15]. Additionally, one of the 

problems associated is the limb position effect, which states that a system trained on a single 

arm position is likely to fail to generalize to different arm positions [16]. 

One of the challenges we need to address to achieve robust performance, is the careful 

selection of a feature vector, as selecting the appropriate set of features is one of the 

important factors for successful classification of EMG signal [8]. 

Aims and Objectives 

The aim of our study is to evaluate the most informative and compact feature set, to examine 

a good feature vector using statistical analysis and classifier. 

The objectives include: 

• Data acquisition by using surface electrodes 

• Preprocessing and feature extraction of acquired signal 

• Analysis of feature combinations using LDA classifier 
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CHAPTER 2: Literature Review 

The literature review is presented in relation to two things, i.e. feature extraction and data 

acquisition techniques. Both aspects have a direct impact on the outcome of the results 

(prediction) and are thus consistent with the wider approach set out in this study. 

Feature Extraction 

Many features are resilient across various forms of noise; thus, intensive approaches for  pre-

processing of the data shall be avoided as proposed by Phinyomark et al.[12]. Furthermore, 

appropriate features may achieve high accuracy of classification depicted by Oskoe et al.[35].  

Three parameters have been recommended by Bostani et al.[36] to be used for quantitative 

analysis namely; maximum class separability, robustness, and complexity. A number of 

research works were primarily concerned with exploring the appropriate feature vector for 

various EMG signal classification applications. [36],[35],[12],[37]. Du et al.[38] proposed 

there are several works which allow a profound  comparison of efficiency of features, 

especially from the point of view of redundancy . Usually the features required for analysis of 

EMG signal can typically be divided into three main broad groups: time domain, frequency 

domain (FD) and time frequency. 

In our study, we have considered only the first two feature groups, since features in the last 

group cannot be used directly on their own as shown by Engelhart  et al.[39]. Time domain 

features are simple and easy to implement as they have no raw EMG time-series based 

transformation. Spectral or frequency domain features are frequently used for the 

interpretation of motor unit (MU) recruitment and muscle fatigue analysis [12]. 
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Data Acquisition Techniques 

Literature explains some important techniques used for acquiring EMG signals. Angkoon 

Phinyomark et al.[12] summarizes the impact on the hand and finger movements 

classification performance, at a sampling rate (low: 200Hzvs. high: 1000Hz) , for twenty-six 

different features as well as on eight sets of multiple features, that too by using a range of 

datasets of both capable and amputee subjects [40]. Mad jochumsom et al.[23] study the 

influence of arm position on classification of hand gestures by integrating the signals 

acquired through surface and  intramuscular EMG, thus gained a classification accuracy of 

98% for Mean Absolute Value (MAV) and Waveform Length (WL) compared to Zero 

Crossing (ZC) and Slope Sign Change (SSC) features.  

J.Too et al.[41] chose flexor carpi radialis, and flexor pollicis longus muscles selected to 

evaluate multiple hand movement with two reference electrodes at the elbow. 6 motions of 

fingers were performed, followed by flint rehab exercise guideline using LDA classifier. 

Time domain features (RMS, MAV) and Frequency Domain features were evaluated (mean 

frequency (MNF), median frequency (MDF) and frequency ratio). The present study showed 

that the FD features achieved the highest accuracy of 91.34% in LDA. Nizam Uddin Ahamed 

et al.[42] summarizes specifically the erector spinae and trapezium muscles, which make up 

upper back and lower musculature, while offering the Islamic prayer (Salat). Multiple 

frequency as well as time domain features of the EMG signal have been studied in order to 

detect major differences in muscle activity. Both time and frequency domain features were 

evaluated. The experiments indicated that both these muscles strike the right balance in terms 

of relaxation and contraction while bowing during Salat. Furthermore, frequency domain 

features suggest that the lower spinal muscle contracts at every alternate position during 
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prayer. Findings of this research helped to set up a recovery treatment plan for elderly people 

with back pain, which helps them to not skip performing their compulsory Salats. 
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CHAPTER 3: Methodology 

Methodology 

The block diagram of proposed methodology has been presented in Figure 1. 

 

Figure 1. Block diagram representing proposed method. 

 

Data Acquisition 

Dataset 

The data used for the experimentation was taken from [44]. From this datatset, we extracted 

the data of ten participants for two channels, at three degrees (0°, 45° and 90° respectively), 

for the following four hand motions: close hand, open hand, extend hand, flex hand, for three 

trials each. The targeted muscles were extensor carpi radialis and flexor carpi ulnaris where 

the electrodes were mounted on the right forearm. A reference electrode was placed on the 

left forearm near the subject’s wrist. Signal was sampled at a sampling frequency of 4000 Hz, 

converted by a 12bit analog- to- digital converter. A visual representation of the set-up 
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depicting the four motions specifically extracted from the above dataset for the three angles is 

shown in Figure 2. 

 

Figure 2. Visual Representation of extracted data (from the dataset) of only four motion 

classes (close, open, flex, and extend) for three different arm positions (0°, 45° and 90°). 

 

Preprocessing  

In each trial, sEMG data was acquired at a sampling frequency of 4000 samples/second (5 

seconds for each trial). The sEMG was band pass filtered between 50 to 150 HZ for each 

motion. Following this, temporal filtering was performed, after which five best features were 

extracted for each of the motion at each of the respective three degrees (0°, 45° and 90°), 

from 1 second data window with 0.0625 seconds (62.5ms) increment. 
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Feature Extraction 

Feature Screening 

Forward Feature Selection technique has been applied in order to reduce the dimensionality 

of feature sets. Features were selected such that if the classification accuracy improved by 

adding a certain feature to the feature set, that feature is to be kept in the feature set. 

However, if the added feature negatively affects classification accuracy, then it is to be 

removed. Similarly, features were removed from the feature set one by one in an inverted 

order, so long as their subtraction did not negatively impact the classification accuracy. 

Whichever feature reduced the accuracy considerably, that feature was not removed from the 

feature set [45]. 

Feature Combinations 

The features extracted were variance, root mean square, zero crossing, logarithmic band 

power, spectral amplitude (mentioned in Table 1). Features were classified with LDA 

classifier using 5-folds. 
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Table 1. Description of Features. 

FEATURE DESCRIPTION 

ROOT MEAN SQUARE (RMS) 

This is the square root of the arithmetic mean of the squares of a set 

of numbers [12]. 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁

𝑖=1
                (1) 

VARIANCE (VAR) 

It is described as an average of the variable’s square deviation 

values. [23] 

𝑉𝐴𝑅 =
1

𝑁−1
∑ 𝑥𝑖

2𝑁

𝑖=1
                   (2) 

ZERO CROSSING (ZC) 

It is the number of times the amplitude values of EMG signal 

crosses zero amplitude level [23]. 

LOGARITHMIC BAND POWER 

(LBP) 

The logarithmic quantity known as power or field level. On a 

logarithmic scale could be used to describe a change in value or an 

absolute value respectively. [24]. 

LBP=𝑙𝑜𝑔(1 + 𝑥)2                   (3) 

SPECTRAL AMPLITUDE (SA) 
Spectral analysis highlights the amplitude of signal at discrete 

frequencies. [12] 

VARIANCE (VAR) 

It is described as an average of the variable’s square deviation 

values. [23] 

𝑉𝐴𝑅 =
1

𝑁−1
∑ 𝑥𝑖

2𝑁

𝑖=1
                   (2) 
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The cross-validation accuracies of various combinations of features, from the previously 

shortlisted features (as represented in Table 1), have been calculated to finalize the feature 

sets that we have used later in this study. Following were the combinations, shown in Figure 

3, which had the best cross validation accuracies when tested on each of the positions 

separately. 

 

Analysis 

Offline analysis was performed using various combinations of the features mentioned in 

above table. A variety of combination of various feature sets will be debated in order to 

explain the uses of existing feature sets and to provide the solution for the search of an 

appropriate set of feature. Cross-validation accuracies of different feature set combinations 

were computed to handpick the best feature set which are then tested on later. 

Figure 3. Selected features and their respective combinations. 
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Cross-validation accuracies depict that logarithmic band power when combined with the 

certain other features (variance, RMS, and spectral amplitude) gave the best cross-validation 

accuracies at all the three positions when given to a classifier. We further move on with the 

testing of these feature sets (LBPSA, LBPR, LBPV, RV). 

Classification 

Two types of classification analyses were carried out: 1). Between position classification 

(BPC), 2). Across position classification (APC). 

1. For BPC, classification accuracy was calculated using a 5-fold cross-validation 

procedure in the case where data to train and test pertained to different positions. The 

impact of classifier performance on being trained with the knowledge of data from 

one position and then tested on another position was checked in the BPC scenario 

(e.g. trained on 0° and tested on 45°). All pairwise comparisons were tested here. 4-

class classification accuracy was calculated for each comparison. 

Figure 4. Representation of Between Position Classification (BPC), when 

testing at single positions. 



 

17 

 

2. For APC, classification accuracy was determined on the basis of the same 5-fold cross 

validation technique as used for BPC, and this scenario involved the training of the 

classifier on data that included information from all three arm positions, with testing 

being carried out at single as well as at multiple positions. Again, the performance of 

the classifier is checked by reporting the average classification accuracies (4 class 

problems) across the test folds. 

 

Statistics 

One-way ANOVA was applied for the calibration of training and testing at single limb 

position (BPC). The effect of "Arm position” (0°,45°,90°) has been taken out using statistics, 

for the best feature set ,LBPSA. 

Figure 5. Representation of Across Position Classification (APC). (A) Single 

position testing, (B) Multiple position testing. 
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One-way ANOVA was applied for the calibration of training at multiple positions and testing 

at single position only (APC). The effect of "Feature Type" (LBPV, RLBP, LBPSA, and 

LBPR) on classification error rate has been investigated using the statistical analysis. To 

analyze the impact of the APC framework on the training role, the mean was reported across 

the test participants (e.g. train on subject 1-9 and test on subject 10). Following this, a 1-way 

ANOVA test was used, with 'Arm Position' as the predictor for sEMG  (three levels: 0°, 45° 

and 90°).  

Statistical significance was determined with Bonferroni’s post hoc test, where significance 

was surmised when P < 0.05 and the proportion of variance and effect size is given by r2. All 

the analysis was conducted using GraphPad Prism. 
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CHAPTER 4: Results 

Training at Single Limb Position (BPC) 

In the first part, classifier is trained at one of the limb positions, namely, P1 (0°), P2 (45°) and 

P3 (90°), while we check the ability of the trained classifier to generalize upon unknown data 

from some other position. The first row of Table 2 displays the classification performance 

when  LDA classifier is equipped with EMG features only from position one and then 

checking out with the new data from position 2.  

Table 2. Classification error rates averaged across all ten subjects while training and testing 

at single limb position, for the feature set LBPSA. The results are reported as mean ± 

standard deviation (across the subjects) for surface EMG (sEMG). 
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These findings reflect the average throughout all the problem classes (motions) during the 

training of classifier and then testing the classifier with data of each of the applicable limb 

position one after the other stated in columns. For the purpose of avoiding complexity by 

mentioning the testing results of all the feature set combinations, we have reported here the 

combination logarithmic band power fused with spectral amp (LBPSA), with the best training 

and testing results.  

Each entry in the Table 2 reflects the average performance for the defined train and test sets 

of all movement classes for all the subjects for log spectral feature set combination. 

The mean inter-position classification accuracies (an average of 10 subjects performing four 

motion classes at three different positions) were 62.45%, 51.18%, 53.7%, 50.5%, 51.38%, 

50.2% respectively, when training and testing at various positions.  

Statistics for BPC 

The statistics results in no significant difference (F(2,6) = 0.01; P = 0.9; r2 = 0.006) between 

‘Arm position’ for sEMG for 0°, 45° and 90° for the feature set of LBPSA (as represented in 

Figure 6, 7 and 8, respectively). 

As predicted, influence of the various limb positions can be clearly demonstrated from the 

accuracy of myoelectric PR system . In this sort of situation, the classifier can properly 

generalize on data, at which the classifier has initially been trained on, i.e. the classification 

error performance of EMG is largely dependent on the limb location. As a consequence, 

developing a prosthetic control system trained at one limb position could not be sufficient to 

build a system which is good for  multi-position usage. Therefore, it is necessary to train 

data in many EMG recording positions, as suggested by Chen [33]. 



Chapter 4  Results 

22 

 

 

 

Figure 7. Graphs representing the error rates in percentage when classifier is trained at 0° 

and tested individually at all positions individually, for the feature LBPSA. 

Figure 6. Graphs representing the error rates in percentage when classifier is trained at 45° 

and tested individually at all positions individually, for the feature LBPSA. 
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On the other hand, it has been proposed that, accelerometer has indicated that classification 

error rate could be reduced during the multi position data training [43]. In our next segment, 

we check the hypothesis whether or not the inclusion of training statistics from more than one 

limb positions will enhance the output of the classifier. It is supported by the assumption that 

the classifier is aware of the given data distribution at various positions of limb such that the 

unknown data can be generalized more effectively.  

Training at Multiple Limb Positions (APC) 

Trained at Multiple, Tested at Single Position 

Here three different take a look at situations are suggested, each referring to one position. 

Unknown data from one position will be kept for testing, which means that the information 

from each of the three positions P1 (0°), P2 (45°), P3 (90°) will be used to train the classifier 

Figure 8. Graphs representing the error rates in percentage when classifier is trained at 90° 

and tested individually at all positions individually, for the feature LBPSA. 
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on all positions. For instance, when data of P1 is used for testing of classifier, all other 

data from P2 and P3 will be kept for training, and so on shown in Figure 9. 

 

Figure 9. Confusion matrix plots while training at multiple limb positions and testing on 

individual unseen limb position data. 

 

The error rate of classification for this experiment is shown as in Table 3 in relation to three 

test positions at which the classifier was tested. ‘All’ represents the combination of individual 

features( LBP,VAR,RMS,SA) taken together. LDA result demonstrated that LBPSA feature 

set obtained the highest classification accuracy of 82.2%, 82.18%, 81.33%, shown in Table 3, 

as compared to other features set. In addition, the result indicated that this features in 

discriminating the hand movements was more accurate compared to other feature sets. 

Results also indicate an overall improvement when training on EMG records from multiple 

positions. A classification average of 81.99% over various limb positions is obtained. 
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Table 3. Error Rate when training at all positions and testing at single positions. The results 

are reported as mean ± standard deviation (across the subjects) for surface EMG [s]. ‘LV’: 

Log and Variance, ‘RV’: RMS and Variance, ‘LS’: Log and Spectral, and ‘LR’: Log and 

RMS. 

 

These results represent that EMG classification performance is depending on the chosen 

feature set. This dependency can be associated with the shift patterns of Musculo-tendon 

lever arm and muscle composition differences. Since the classifier now is being trained at 

various samples, representing the above-mentioned variants, classification error rates were 

generally reduced by the error rates caused by training at individual limb position. Table 3 

further supports the statement of how significant data obtained from multiple limb positions 

is for training. Moreover, it should be noted here that Logarithmic band power and Spectral 

Amplitude feature combination exhibits the least error rate compared to other set of features. 

Even if we combine all the features together, LBPSA gave the least classification error. The 

graph below (Figure 10) shows feature wise error rates. The difference can be easily 

compared from the above Table 3. 

Position 

Feature Type 

All (%) [s] LV (%) [s] RV (%) [s] LS (%) [s] LR (%) [s] 

0° 20.25 ± 5 24.925 ± 9 56.25 ± 10 17.8 ± 4 23.575 ± 12 

45° 27.95 ± 6 23.55 ± 8 58.6 ± 10 17.825 ± 5 27.2 ± 8 

90° 29.775 ± 6 22.525 ± 15 54.9 ± 10 18.675 ± 4 24.675 ± 9 



Chapter 4  Results 

26 

 

 

 

 

Statistics for APC 

The statistics indicate a significant effect of ‘feature type’ for sEMG. (F(3,36) = 45.39; P < 

0.05, r2 = 0.79). Classification accuracies were higher for LBPSA as compared to RV, LBPV, 

LBPR and ALL (when all four individual features are taken together) combination shown in 

fig.7. However, the statistics showed no significant difference (F(2,27) = 0.18; P = 0.8; r2 = 

0.01) between ‘Arm position’ for sEMG for 0°, 45° and 90° (as represented in Figure 11). 

Figure 10. Error rates across the subjects using LDA classifier. The results are displayed as 

mean (across the subjects) for surface EMG [s] for feature type. ‘LBPV’: Logarithmic band 

power and Variance, ‘RV’: RMS and Variance, ‘LBPSA’: Logarithmic band power and 

Spectral Amplitude, and ‘LBPR’: Log and RMS, ‘All’ ,combination of individual features. 



Chapter 4  Results 

27 

 

 

Trained at Multiple, Tested at Multiple Positions 

Our findings also show that the classification system is capable of successfully performing 

the testing on unknown EMG data from all three P1, P2, P3 positions, while being trained on 

all three positions. For example, for testing on subject 1 and subject 2 (combined at the three 

angles), classifier was trained on combined dataset from subject 2 to subject 10 (from all the 

three positions combined) as shown in Figure 12. 

The classifier has been able to better generalize unknown test data from either position in a 

particular way. Mean cross validation accuracies for LBPSA were 85.86% (when trained on 

subject 1-8), which further supports the evidence that LBPSA combination seem to be an 

efficient feature combination. 

Figure 11. Error rates across the subjects when training at all positions (0°, 45° and 90°) and 

testing at individual positions. The results are displayed as mean (across the subjects) for 

surface EMG [s] for feature type. `LBPV': Logarithmic band power and Variance, `RV': 

RMS and Variance, `LBPSA': Logarithmic band power and Spectral Amplitude, and `LBPR': 

Log and RMS, `All’: combination of individual features. 
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The results depict an overall average of 83.07% classification test accuracy for LBPSA 

feature set (when tested on subject 9 and 10). 

 

Figure 12. Training and testing at multiple positions (angles) for all motions. 
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CHAPTER 5: Discussion 

Although the changes in arm position had some influence on all of the feature type 

combinations, however,  LBPSA group was least affected by the position changes. Among 

the various combination of features, the best set of features were RV, LBPV and LBPR. The 

combination of LBPSA was the best feature type which resulted in much higher classification 

accuracies than those obtained for the other feature sets, when using sEMG alone.  

One of the causes is shift in muscle due to motion artifact. It is in accordance with the 

approach that the four-class motion demonstrates a lowest accuracy of classification, where 

training is carried out on data from all the three positions whereas testing at a single position 

i.e. 90 degree.  

In addition, motor variation may also affect the classification accuracy because of a shift of ar

m position during active motions [44]. With adjustments in position, we believe the ability of 

subjects to render movements with identical characteristics in terms of kinetics is somehow 

diminished. Our study showed that two factors influence the effectiveness of the EMG 

system at various limb positions. The first factor shows to be linked to the best of extracted 

features and their potential to distinguish hand movements at numerous limb positions. 

Changes in the properties of EMG signal may lead to changes in signal intensity, structure, 

frequency and time spectrum interpretation. 

The second factor is use of the feature set. We proposed a new feature set (LBPSA) based on 

time domain derivative fused with spectral analysis to deal with the effects of the above listed 

factors. However, various methods have been used to resolve the impact of limb position, 

such as the use of accelerometers for identifying  the arm location or simply calibrate the 

device at several positions [43].  
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Findings indicate that it is possible to generalize well on unknown positions by using the 

proposed feature set by acquiring data of EMG from multiple limb positions. For example, 

LBPSA yielded an overall testing classification accuracy of 83.07% while feature set 

consisting of RV, LBPR, LBPV, LBPSA yielded an overall classification performance of 

76.20% for the same subjects which supports our research fact that recruitment of more(or 

even all features) is unable to make up for the loss of signal information in case of surface 

EMG, which in turn indicates that our current feature set has been effective in tackling the 

impact of the limb position to a large extent.  

Our analysis has also compared with some of the already available feature extraction 

methods, from the literature suggesting that our newly proposed feature set in the present 

study was more efficient than many of the already available features and seem to be far less 

sensitive to outliers and yields good classification performance. Hence this novel feature set 

is recommended to be used instead of other common features ,as it may help to reduce data 

collection costs ,since we have focused on the signals obtained from surface EMG alone, 

which are thought to be relatively  unreliable because of their sensitivity to environmental 

conditions. 
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CHAPTER 6: Conclusion 

Conclusion 

In this study, it has been determined that the classification accuracy improved as more arm 

positions were taken up for training and testing i.e. training and testing the classifier at all 

limb positions. Similarly, the lowest classification accuracy was obtained by training the 

classification system on data from one position and testing on another position (BPC). 

Among all the feature set combinations, the proposed feature set - Logarithmic Band Power 

with Spectral Amplitude (LBPSA) - was the best feature type. 

Future Aspects 

It would be important to undertake a detailed function investigation study in future by 

involving more useful techniques to obtain data. Also, testing the model on less noisy 

intramuscular EMG data to evaluate the performance between surface and intramuscular 

EMG is also required. Clinical trials of real-time EMG classifications on subjects with upper 

limb amputation to test versatility of our model also needs to be conducted. 
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