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While statistical mechanics can describe the equilibrium state of systems with many

degrees of freedom, and dynamical systems can explain the irregular evolution of

systems with few degrees of freedom, new tools are needed to study the evolution

of systems with many degrees of freedom. This book presents the basic aspects of

chaotic systems, with emphasis on systems composed of a huge number of particles.

The first part of the book introduces the basic concepts of chaotic dynamics. The

book then moves on to explore the role of ergodicity and chaos for the validity of

statistical laws. The last part of the book is devoted to the treatment of problems

characterized by the presence of more than one significant scale. In addition, the

authors also discuss the relevance that many degrees of freedom, coarse-graining

procedure, and instability mechanisms, have in justifying a statistical description

of macroscopic bodies. The book introduces the tools to characterize the non-

asymptotic behaviors of chaotic systems. This text will be of interest to researchers

and graduate students in statistical mechanics and chaos.
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Preface

Statistical Mechanics has been founded during the XIX-th century by the seminal

work of Maxwell, Boltzmann and Gibbs, with the main aim to explain the properties

of macroscopic systems from the atomistic point of view. Accordingly, from the

very beginning, starting from the Boltzmann’s ergodic hypothesis, a basic question

was the connection between the dynamics and the statistical properties. This is a

rather difficult task and, in spite of the mathematical progress, by Birkhoff and von

Neumann, basically ergodic theory had a marginal relevance in the development

of the statistical mechanics (at least in the physics community). Partially this was

due to a misinterpretation of a result of Fermi1 and a widely spreaded opinion

(based also on the belief of influential scientists as Landau) on the key role of the

many degrees of freedom and the practical irrelevance of ergodicity. This point of

view found a mathematical support on some results by Khinchin who was able to

show that, in systems with a huge number of particles, statistical mechanics works

(independently of the ergodicity) just because, on the constant energy surface, the

most meaningful physical observables are nearly constant, apart from regions of

very small measure,

On the other hand the discovery of the deterministic chaos (from the anticipating

work of Poincaré to the contributions, in the second half of the XX-th century,

by Chirikov, Hénon, Lorenz and Ruelle, to cite just the most famous) beyond its

undoubted relevance for many natural phenomena, showed how the typical statis-

tical features observed in systems with many degrees of freedom, can be generated

also by the presence of deterministic chaos in simple systems. For example low

dimensional models can emulate spatially extended dynamics modelling transport

and conduction processes.

1 A theorem about non integrable Hamiltonian systems with N degrees of freedom assures the non existence of
smooth invariant surfaces of dimension 2N − 2; from this result Fermi (erroneously) concluded that generic
Hamiltonian systems are ergodic.

vii



viii Preface

Surely the rediscovery of deterministic chaos has revitalized investigations on

the foundation of Statistical Mechanics forcing the scientists to reconsider the

connection between statistical properties and dynamics. However, even after many

years, there is not a consensus on the basic conditions which should ensure the

validity of the statistical mechanics. Roughly speaking the two extreme positions are

the “traditional” one, for which the main ingredient is the presence of many degrees

of freedom and the “innovative” one which considers chaos a crucial requirement

to develop a statistical approach.

It is unnecessary to stress the role of simplified models and numerical simulation.

Because of technical difficulties in the treatment of any realistic system, the nu-

merical study of simple models is essential. One of the first numerical experiments

was the celebrated paper Studies of non-linear problems by Fermi, Pasta and Ulam,

that showed that the ergodic problem was still far from being solved; and pointed

out the necessity of using numerical simulation as a research tool complementary

to analytical studies.

The main aim of this book is to show how, for understanding the conceptual

aspects of the statistical mechanics, one has to combine concepts and techniques

developed in the context of the dynamical systems with statistical approaches able

to describe systems with many degrees of freedom. We discuss with particular

emphasis the relevance of non asymptotic quantities, e.g ε-entropy, and the role of

pseudochaotic systems, i.e. non chaotic systems with a non trivial behaviour.

We do not pretend to write a treatise on dynamical systems or statistical mechan-

ics, however we tried to make the book as self-contained as possible.

The book is divided into three parts:

Part I : Deterministic chaos and complexity (Chapters 1, 2 and 3)

Part II : Foundation of equilibrium and non equilibrium statistical mechanics
(Chapters 4, 5 and 6)

Part III : Effective equations, multiscale and renormalization group (Chapters 7 and 8)

In the first part we start introducing the basic concepts and ideas on chaotic

dynamics. There exist well established ways to define the complexity of a temporal

evolution, in terms of either Lyapunov exponents (LE) or Kolmogorov-Sinai (KS)

entropy. This approach has been rather successful in deterministic low dimensional

systems. On the other hand in high dimensional systems, as well as in low dimen-

sional cases without a unique characteristic time some interesting features cannot

be captured by LE or KS entropy. The basic reason of this weakness is that these

quantities are properly defined only in specific asymptotic limits, that are: very

long times and arbitrary accuracy. On the contrary in realistic situations one has

to deal with finite accuracy and finite time, so it is important to take into account

these limitations. For instance relaxing the limit of arbitrary high accuracy, one can
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introduce suitable tools, such as the Finite Size Lyapunov Exponent (FSLE) and

the ε-entropy.

An analysis in terms of FSLE and ε-entropy allows for the characterization

of non trivial systems in situations far from asymptotic (i.e. finite time and finite

observational resolution). In particular we discuss the utility of ε-entropy and FSLE

for a pragmatic classification of signals, and the use of chaotic systems in the

generation of sequences of (pseudo) random numbers.

The second part discusses the role of ergodicity and chaos for the validity of statis-

tical laws. Detailed numerical studies show in a clear way that for high dimensional

Hamiltonian systems chaos is not a fundamental ingredient for the validity of the

equilibrium statistical mechanics. Therefore the point of view that good statistical

properties need chaos is unnecessarily demanding: even in the absence of chaos,

one can have (according to Khichin ideas) a good agreement between the time

averages and the predictions by the equilibrium statistical mechanics.

About the problem of the irreversibility of macroscopic processes it seems to us

that Boltzmann was basically able to understand the essence of mechanism of the

Second Law. The possible presence of chaos plays a minor role while the relevant

aspects are the large number of degrees of freedom, and the selection of “good”

initial conditions in such a way that the molecular chaos hypothesis is satisfied.

With such assumptions one can eliminate the fluctuations in the time behaviour

of H(t) vs t and therefore the classical objections by Loschmidt and Zermelo are

overcome. Exact mathematical results have shown that the original intuitions of

Boltzmann were correct.

Usually one deals with the behaviour of single macroscopic systems, and in-

deed thermodynamics, as a physical theory, has been developed to describe the

properties of single systems, made of many microscopic, interacting parts. Thus

it seems to us that it is quite fair to conclude that statistical ensembles are just

useful mathematical tools. The study of a system made of many weakly coupled

subsystems evidences the objective nature of the growing in time of the Boltzmann

entropy, i.e. its independence from the coarse graining resolution, as far as it is small

enough.

There is a rather strong evidence that chaos (in the technical sense of the existence

of a positive Lyapunov exponent) is not a necessary ingredient for the validity of

the statistical mechanics laws as diffusion and conduction. Numerical results show

that the basic elements are: an instability mechanism, able to induce a particle

dispersion at small scales, and the suppression of periodic orbits, to allow for a

diffusion at large scale. In chaotic systems the instability mechanism is nothing but

the sensitivity to the initial condition; however also in systems with zero maximal

Lyapunov exponent finite-size instability mechanisms can exist.
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The last part is devoted to the treatment of problems characterized by the presence

of more than one significant scale, i.e. with a variety of degrees of freedom with

different time scales. For this class of systems it is necessary, both practically

and conceptually, to treat the “slow dynamics” in terms of effective equations.

These equations are able to catch some general features and to evidence dominant

ingredients which can remain hidden in the detailed description.

We discuss some general aspects of the multiple-scale method and its connection

with other important issues as the renormalization group. We see at work, in some

simple cases,the basic tools necessary for the study of phenomena as diffusion

and mesoscopic description of non-equilibrium statistical mechanics. In multiscale

analysis one replaces the original evolution equation with an effective one which is

valid at very large time (or at large spatial distance). As an example we can mention

the asymptotic behaviour of the transport problem as described by a Fick’s equation

containing the eddy diffusion coefficients to take into account the inhomogeneity

due to the advection field in the original problem.

This book is not an updated text of the most recent progresses in all the fields

of statistical physics (in particular those regarding non equilibrium stationary

states). Since we want to limit the treatment to some basic aspects, we do

not discuss those results like fluctuations theorems which, for the technical as-

pects would almost deserve another and different book. Of course the selection

of issues in this book reflects our scientific interest during the last years. We

would like to express our thanks for inspiration, collaboration and correspon-

dence to E. Aurell, L. Biferale, G. Boffetta, F. Cecconi, A. Celani, M. Cencini,

E. Charpentier, P. Collet, A. Crisanti, D. del-Castillo-Negrete, P. Grassberger,

C. Gruber, S. Isola, M.H. Jensen, K. Kaneko, H. Kantz, G. Lacorata, M. Laguës,

R. Livi, V. Loreto, G. Mantica, U. Marini Bettolo Marconi, A. Mazzino, P. Muratore

Ginanneschi, E. Olbrich, G. Parisi, L. Palatella, S. Pigolotti, A. Politi, A. Puglisi,

L. Rondoni, S. Ruffo, M. Serva, A.Torcini, M. Vergassola and D. Vergni.

A special thank to G. Benettin for having provided us with figures 4.1, 4.2 and 4.3.

Finally we thank F. Cecconi, M. Cencini, R. Livi, P. Muratore Ginanneschi,

A. Ponno, A. Puglisi and L. Rondoni for valuable comments on some parts of the

manuscript.



1

Basic concepts of dynamical systems theory

Everything should be made as simple as possible, but not simpler.
Albert Einstein

1.1 Deterministic systems

Since the Pythagorean attempts to explain the tangible world by means of numer-

ical quantities related to integer numbers, western culture has been characterized

by the idea that Nature can be described by mathematics. This idea comes from

the explicit or hidden assumption that the world obeys some precise rules. It may

appear obvious today, but the systematic application of mathematics to the study of

natural phenomena dates from the seventeenth century when Galileo inaugurated

modern physics with the publication of his major work Discorsi e Dimostrazioni
Matematiche Intorno a Due Nuove Scienze (Discourses and Mathematical Demon-

strations Concerning Two New Sciences) in 1638. The fundamental step toward

the mathematical formalization of reality was taken by Newton and his mechanics,

explained in Philosophiae Naturalis Principia Mathematica (The Mathematical

Principles of Natural Philosophy), often referred to as the Principia, published in

1687. This was a very important date not only for the philosophy of physics but

also for all the other sciences; this great work can be considered to represent the

high point of the scientific revolution, in which science as we know it today was

born. From the publication of the Principia to the twentieth century, for a large

community of scientists the main goal of physics has been the reduction of natu-

ral phenomena to mechanical laws. A natural phenomenon was considered really

understood only when it was explained in terms of mechanical movements.

The idea of determinism was established in a rather vivid way by Pierre Simon de

Laplace (1814), in his book Essai Philosophique sur les Probabilités (Philosophical

Essay on Probability):

1



2 Basic concepts of dynamical systems theory

We must consider the present state of Universe as the effect of its past state and the cause of its
future state. An intelligence that would know all forces of nature and the respective situation
of all its elements, if furthermore it was large enough to be able to analyze all these data,
would embrace in the same expression the motions of the largest bodies of Universe as well
as those of the slightest atom: nothing would be uncertain for this intelligence, all future
and all past would be as known as present.

This statement has been a point of reference for scientific thought: a good sci-

entific theory has to describe a natural phenomenon using mathematical methods.

Once the temporal evolution equations of the phenomenon are written and the initial

conditions are determined, the state of the system can be known at each future time

by solving the equations. However, we would like to emphasize that Laplace was

not naive at all about the true relevance of determinism (see later), as has sometimes

been asserted by some writers of popular science.

1.1.1 Dynamical systems

Let us now introduce the notion of dynamical system. A deterministic dynamical

system is essentially described by:

(a) the phase space �, containing the vectors x that determine, in a quantitative way, all

the possible states of the system;

(b) an evolution law U (t, t0), i.e. a rule that allows us to determine the state x(t) of the

system at time t , given the state x(t0) at time t0. Formally we can write

x(t) = U (t, t0)x(t0) = U (t − t0)x(t0) ≡ U t−t0 x(t0),

where, in the second equality, the stationarity of the evolution rule has been assumed,

i.e. the system undergoes the same evolution from a given state x0, independently from

the time it is found in x0. Moreover, U t is a semigroup, that is Ur+s = UrU s (r, s > 0)

and U 0 = I , i.e. x(t0) = U 0x(t0).

The state of the system is typically specified by a d-dimensional vector x, whose

d components x1, x2, . . . , xd , are called the degrees of freedom of the system. An

elementary example is given by the pendulum, whose state is determined by the

angle θ to the vertical and the angular velocity ω = dθ/dt ; therefore the phase

space is a cylindrical surface defined by θ ∈ [0, 2π ] and ω ∈ [−∞, +∞]: all the

states of the pendulum are represented by points on this surface.

The most common deterministic evolution laws are maps and differential equa-

tions. In the first case the time is a discrete variable and the evolution law reads

x(t + 1) = g[x(t)] (1.1)
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corresponding to the following system of d equations

x1(t + 1) = g1[x1(t), x2(t), . . . , xd(t)]

· · · · · · · · · (1.2)

xd(t + 1) = gd[x1(t), x2(t), . . . , xd(t)].

In the case of differential equations the time is a continuous variable and the evo-

lution law is prescribed as

dx(t)

dt
= f [x(t)] (1.3)

which corresponds to the system of equations

d

dt
x1(t) = f1[x1(t), x2(t), . . . , xd(t)]

· · · · · · · · · (1.4)

d

dt
xd(t) = fd[x1(t), x2(t), . . . , xd(t)].

The functions g and f in (1.1) and (1.3) do not contain an explicit time dependence,

as a consequence of the stationarity assumption on the evolution. This assumption

is not a severe limitation. A system can be made formally time independent by

increasing by one unit the number of degrees of freedom.

The deterministic nature of the maps (1.1) is evident: given the initial state x(t0),

the state x(t) at time t > t0 = t − n is given by

x(t) = g [x(t − 1)] = g [g [x(t − 2)]] = · · · = g(n)[x(t0)], (1.5)

where g(2)(x) = g [g [x]] , . . . , g(n)(x) = g
[
g(n−1) [x]

]
.

The deterministic nature of the differential equations (1.3) is assured, under quite

general conditions, by the existence and unicity theorem of the solution to a system

of ordinary differential equations (Arnold 1974).

In particular, if f1(x1, . . . , xd), . . . , fd(x1, . . . , xd) are linear functions of the

variables x1, . . . , xd ,

f1(x1, . . . , xd) = a11x1 + a12x2 + · · · + a1d xd

· · · · · · · · · (1.6)

fd(x1, . . . , xd) = ad1x1 + ad2x2 + · · · + add xd,

and if the ai j coefficients are constant, the solution of the system can be easily

written in an explicit form (Arnold 1974):

x(t) = eAt x(0), (1.7)
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x3

x2

x1

P(1) P(2)
P(3)

Figure 1.1 The generation of the Poincaré map by means of the Poincaré surface
of section method in a three-dimensional flow.

where A is the matrix whose elements are {ai j }. An analogous result holds for linear

map systems.

It is not difficult to understand that the maps and the differential equation systems

are not completely disconnected representations of dynamical systems. For exam-

ple, we can consider the simplest algorithm for the numerical integration of (1.4),

i.e. the Euler scheme, to compute x(t + τ ) from x(t) with τ small enough: applying

the definition of derivative, and neglecting terms of order τ 2, one obtains the

map

x1(t + τ ) = x1(t) + f1[x1(t), x2(t), . . . , xd(t)]τ

· · · · · · · · · (1.8)

xd(t + τ ) = xd(t) + fd[x1(t), x2(t), . . . , xd(t)]τ.

Of course the Euler scheme is not very accurate. Nevertheless, more precise algo-

rithms, for example the popular Runge–Kutta method, are nothing but maps which

determine x(t + τ ) from x(t). Another way to reduce a continuous time dynamical

system (or “flow”) to a discrete time map is through the Poincaré surface of section

method. If we consider the d-dimensional flow (1.4), the Poincaré map gives its re-

duction to a (d − 1)-dimensional map. For illustrative purposes, consider the three-

dimensional case. The trajectory x(t) crosses the plane x3 = h with dx3/dt < 0,

the Poincaré surface, in the points P(0), P(1), . . . , P(n) at times t0, t1, . . . , tn (see

Figure 1.1). Since the point x(tn+1) = (x1(tn+1), x2(tn+1), h) is determined uniquely

by the point x(tn), one has a deterministic rule connecting P(n) with P(n + 1), i.e.
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the Poincaré map which describes the evolution of the system on the plane:

P(n + 1) = g[P(n)]. (1.9)

In general the explicit form of the Poincaré map associated with a given ordinary

differential equation is not known, however its existence is useful for characterizing

the behavior of the flow. For example, if the continuous time dynamical system

is periodic, there will be only a finite number of isolated points on the Poincaré

section. If the trajectory is quasi-periodic,1 then there will be a regular closed figure,

while if the trajectory is very irregular, there will be a non-structured set of points.

1.1.2 Attractors

The dynamical systems can be divided into two large classes: the conservative
and the dissipative systems. A conservative dynamical system preserves the volume

of the phase space. That is, given a regionA0, whose volume is V0, the points evolved

from A0 define a region At whose volume is Vt = V0. This property is translated

in differential terms as ∣∣∣∣det

[
∂

∂xi
g j (x)

]∣∣∣∣ = 1 for maps, (1.10)

and

∇ · f =
d∑

i=1

∂

∂xi
fi (x) = 0 for flows. (1.11)

An important example of a conservative system is given by Hamilton’s equations for

the motion of particles without friction. In contrast, a dissipative dynamical system

does not preserve the volume of the phase space, i.e. Vt < V0. The mathematical

formulation of the contraction of the phase space in differential form is∣∣∣∣det

[
∂

∂xi
g j (x)

]∣∣∣∣ < 1 for maps, (1.12)

and

∇ · f =
d∑

i=1

∂

∂xi
fi (x) < 0 for flows. (1.13)

1 An N -frequency quasi-periodic motion can be represented by N independent variables, f1(t), f2(t), . . . , fN (t),
such that each fk is periodic with period Tk and the N frequencies �i = 2π/Ti are incommensurate, that
is, the relation m1�1 + m2�2 + · · · + m N �N = 0 does not hold for any set of integers, m1, m2, . . . , m N ,
except for the trivial solution m1 = m2 = · · · = m N = 0. A two-frequency quasi-periodic motion lies on a
two-dimensional torus.
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Figure 1.2 Example of a simple attractor: a stable fixed point.

A simple example of a dissipative system is the one-dimensional damped harmonic

oscillator

d2x

dt2
+ ν

dx

dt
+ ω2x = 0.

Because of the friction term νdx/dt , the system is dissipative and, as time goes

on, the oscillation amplitude x and the velocity ẋ of the oscillator decrease and

approach the asymptotic values x = 0, ẋ = 0. A trajectory in the phase space is

shown in Figure 1.2 where the orbit spirals to the origin for any initial condition.

In this case, the point (0, 0) is an attracting point of the dynamical system.

Another example of a dissipative system is the pendulum clock, where the energy

lost due to friction is reintegrated by a non-linear mechanism so that the oscillation

amplitude is stabilized, as in the system described by the Van der Pol equation:

d2x

dt2
+ (x2 − ν)

dx

dt
+ ω2x = 0 .

Figure 1.3 shows two typical trajectories of this kind of system: in both cases, the

orbit, with time, spirals (inwards or outwards) to approach the closed curve on

which it circulates in periodic motion in the t → ∞ limit. The closed curve is a

limit cycle.

As the above examples show, a very important property of dissipative systems is

the presence of attracting sets or attractors in the phase space. These are bounded

subsets of � to which regions of initial conditions of non-zero phase space volume
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2

1

0

−1

−2
−2 −1 0 1 2

Figure 1.3 Example of a simple attractor: a stable limit cycle.

asymptote as time increases. From the property of volume preservation, it is easy

to see that conservative dynamical systems do not possess attractors.

The attractors of the two continuous time systems considered above have a

regular geometrical structure (a point, a closed curve) but this is not the case for

all dissipative systems. An example of a non-trivial geometrical structure is the

attractor of the two-dimensional Hénon map{
x(t + 1) = 1 − ax2(t) + y(t)
y(t + 1) = bx(t).

(1.14)

Figure 1.4 shows the attractor of the Hénon map, for a = 1.4 and b = 0.3. The

blow-up of the boxed region in Figure 1.4 (see Figure 1.5) reveals a small-scale

pattern consisting of almost parallel lines. A further zoom in of a portion of Figure

1.5, shown in Figure 1.6, reveals that the part has the same structure as the whole.

On continuing this zooming in procedure we would find a similar structure on

arbitrarily small scales. This property of self-similarity qualifies the attractor as a

fractal; see, e.g., Ott (1993). When the motions on the attractor, as in the case of

the Hénon map, are also chaotic (see Section 1.3) the attractor is called a strange
attractor.

1.2 Unpredictability: systems with many degrees of freedom

After Newton’s foundation of the dynamical laws, the deterministic approach be-

came a powerful and successful method for the understanding of natural phenomena

especially in astronomy. As remarkable examples one can mention the derivation
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Figure 1.4 The attractor of the Hénon map, obtained using Eq. (1.14) with a = 1.4
and b = 0.3.

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.10
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

y

x

Figure 1.5 Enlargement of the boxed region in Figure 1.4.



1.2 Unpredictability: many degrees of freedom 9

0.154

0.152

0.150

0.148

0.146

0.144

0.142

0.140
0.80 0.82 0.84 0.86 0.88

x

y
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of Kepler’s laws from the Newtonian dynamical equations, and the gravitational

force. Another paradigmatic success of Newtonian mechanics was the discovery of

the planet Neptune, whose existence was predicted theoretically by Le Verrier and

Adams. Today, the positions of many celestial bodies and artificial satellites can be

calculated quickly with good accuracy by the powerful computers of astronomical

study centers.

Nevertheless, everyday life is characterized by a lot of phenomena which exhibit

unpredictable behaviors like the evolution of the weather or the fall of a leaf. How

do we reconcile the deterministic Laplacian assumption with the “irregularity” and

“unpredictability” of many natural phenomena? Laplace answered this question,

again in his book Essai Philosophique sur les Probabilités (Philosophical Essay

on Probability), by identifying the origin of the irregularity in our ignorance on the

system:

The curve described by a simple molecule of air or vapor is regulated in a manner
just as certain as the planetary orbits; the only difference between them is that which
comes from our ignorance. Probability is relative, in part to this ignorance, in part to our
knowledge.

Thus, according to the previous point of view, the observed irregularity is more

apparent than real: it is due to a large number of simple reasons, for example,

a large number of simple mechanical equations that rule the evolution of the

system. This interpretation is at the basis of Langevin’s approach to Brownian

motion.
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1.2.1 Brownian motion

In 1827 the Scottish botanist Robert Brown noticed that pollen grains suspended

in water jiggled about under the lens of the microscope, following a zig-zag path.

Initially, he believed that such activity was peculiar to the male sexual cells of

plants, but then he observed that pollen of plants dead for over a century showed

the same movement. Further study revealed that the same motion could be observed

not only with particles of other organic substances but even with chips of glass or

granite or particles of smoke.

In 1889 Gouy found that Brownian motion was more rapid for smaller parti-

cles, lower viscosity of the surrounding fluid and higher temperatures. These facts

suggest that the basic cause of Brownian motion lies in the “thermal molecular mo-

tion in the liquid environment.” Therefore it is natural (at least today!), following

the atomistic point of view, to suppose that a suspended particle is constantly and

randomly bombarded from all sides by the molecules of the liquid.

After important and independent works by Einstein (1905) and Smoluchowski

(1906), Langevin (1908) proposed an approach in terms of a stochastic differential

equation (to use modern terminology) for the particle movement, taking into account

the effect of the molecular hits by means of an average force, as given by the fluid

friction, and a random fluctuating term.

The basic physical assumptions in both Einstein’s and Langevin’s approaches

are

(a) Stokes’s law for the friction of a body moving in a liquid;

(b) equipartition of the kinetic energy among the various degrees of freedom of the system,

i.e. between the particles of the fluid and the grain performing Brownian motion.

A colloidal particle suspended in a liquid at temperature T is somehow assimilated

to a particle of the liquid, so that it possesses an average kinetic energy RT/(2NA),

in each spatial direction, where R is the perfect gas constant and NA is the Avogadro

number (the number of molecules in one mole); therefore one has:

1

2
m〈v2

x〉 = RT

2NA

. (1.15)

According to Stokes’s law, a spherical particle of radius a, moving in a liquid

with the speed vx in the x direction experiences a viscous resistance:

FStokes = −αvx = −6πηavx ,

where η is the viscosity. The above law holds if a is much larger than the average

distance between the liquid molecules, and Stokes’s force represents the average

macroscopic effect of the large number of irregular impacts of the molecules of the

fluid.
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Therefore, isolating the average force, the dynamical equation of the particle in

the direction x can be written as

m
dvx

dt
= FStokes + Fx (t) = −αvx + Fx (t) (1.16)

where Fx (t) is a random fluctuating force mimicking the effects of the molecules.

By construction 〈Fx (t)〉 = 0, and, since the characteristic time of Fx is much smaller

than τ = m/α (the characteristic time of the deterministic Stokes equation), one

can assume 〈Fx (t)Fx (t ′)〉 = cδ(t − t ′), where c can be determined by the energy

equipartition.

By multiplying Eq. (1.16) by �x(t) = x(t) − x(0), and taking the average over

a large number of identical particles one has

m

〈
d2�x

dt2
�x

〉
= −α

〈
d�x

dt
�x

〉
+ 〈Fx (t)�x〉. (1.17)

Using Eq. (1.15) and the fact that Fx (t) and x(t) are not correlated, we obtain

1

2

d

dt
〈�x2〉 = RT

α NA

(
1 − e−(α/m)t

)
, (1.18)

the solution of which is

〈(x(t) − x(0)2〉 = 2RT

α NA

[
t − m

α

(
1 − e−(α/m)t

)]
. (1.19)

For a grain of size O(1 μm) in a standard liquid (such as water) at room temper-

ature, the characteristic time τ = m/α = m/6πηa is O(10−7s), in the limit t 
 τ ,

we get

〈(x(t) − x(0)2〉 � 2RT

α NA

α

2m
t2 = RT

NA m
t2 (1.20)

while for t � τ

〈(x(t) − x(0)2〉 � 2RT

α NA

t = RT

3NAπηa
t. (1.21)

Now we have the celebrated Einstein relation which gives the diffusion coeffi-

cient D in terms of macroscopic variables and the Avogadro number:

D = lim
t→∞

〈(x(t) − x(0)2〉
2t

= RT

6NAπηa
. (1.22)

Let us stress that the previous equation gives an unambiguous link between the

microscopic and macroscopic levels, since it allows the determination of the Avo-

gadro number (i.e. a quantity related to the microscopic level of description) from

experimentally accessible macroscopic quantities.
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Brownian motion had a central role in the development of physics and mathe-

matics. The theoretical work by Einstein and the experiments by Perrin gave clear

and conclusive evidence of the relationship between the diffusion coefficient and

Avogadro’s number (Perrin 1913). This result could be considered as the definitive

“proof” of the existence of atoms: after that even two champions of the energetic

point of view, Helm and Ostwald, accepted atomism as a physical fact and not

merely a useful hypothesis. In a lecture in Paris in 1911, Arrhenius, summarizing

the work of Einstein and Perrin, declared that “after this, it does not seem possible

to doubt that the molecular theory entertained by the philosophers of antiquity,

Leucippus and Democritos, has attained the truth at least in essentials” (Mehra

2001).

In addition, Langevin’s approach to Brownian motion was the first example of a

stochastic differential equation, and inspired the development of the mathematical

theory of continuous time stochastic processes.

Although Langevin’s (as well Einstein’s) approach is, from a mathematical point

of view, rather simple, there is a very subtle conceptual point at the basis of the

theory of Brownian motion. The ingenious idea is the assumption of the validity of

Stokes’s law (which is macroscopic in nature), and at the same time the assumption

that the Brownian particle is in statistical equilibrium with the molecules in the

liquid. In other words, in spite of the fact that the mass of the colloidal particle

is much larger than the mass of the molecules, energy equipartition is assumed to

hold.

1.3 Unpredictability: deterministic chaos

According to the view of Laplace, prediction of the system state at any future time

is possible whenever exact knowledge of the initial state is available. However,

typically our knowledge of the state of a system is not perfect: there is always an

uncertainty due at least to the accuracy of the measurement instruments.

Therefore the proper question to ask about the prediction of a deterministic

system is: what is the temporal evolution of the difference between two states

which are initially close? Henri Poincaré was one of the first to understand that

even a deterministic system can have “irregular” behavior. As he writes in his book

Science et Méthode (1908):

A very small cause which escapes our notice determines a considerable effect that we cannot
fail to see, and then we say that the effect is due to chance. If we knew exactly the laws of
nature and the situation of the universe at the initial moment, we could predict exactly the
situation of the same universe at a succeeding moment. But even if it were the case that the
natural laws had no longer any secret for us, we could still know the situation approximately.
If that enabled us to predict the succeeding situation with the same approximation, that is all
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Figure 1.7 Billiard table with convex obstacles. The center of the bead follows
the full line; another bead, whose initial direction is slightly different, follows the
dashed line. After a few collisions the two trajectories are completely different.

we require, and we should say that the phenomenon had been predicted, that it is governed
by the laws. But it is not always so; it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossible and we have the
fortuitous phenomenon.

An example of a fast temporal amplification of an initially small difference between

two states is found in the system of a bead rolling on a rectangular billiard table

with fixed circular obstacles, and undergoing elastic collisions with the obstacles

and the borders. If r is the radius of the bead, R the radius of the obstacles, L1 × L2

the size of the billiard table, the system can be represented as a point (the center

of the bead) moving on a billiard table of size (L1 − 2r ) × (L1 − 2r ) having fixed

circular obstacles of radius R + r . It is easy to realize that if two beads have initially

slightly different directions, the collisions with the circular obstacles will amplify

the angle between the two directions in such a way that after a few collisions the

trajectories of the two beads will be very different (see Figure 1.7).

In this case we say that one has deterministic chaos, i.e. a deterministic system

with sensitive dependence on initial conditions.

One of the most celebrated systems with this property is the Lorenz model

introduced in 1963 as a drastic simplification of atmospheric convection. Such a
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Figure 1.8 The variable x versus t of the Lorenz system, for σ = 10, b = 8/3 and
r = 28.

system is given by the ordinary differential equations:

⎧⎨
⎩

dx/dt = σ (y − x)

dy/dt = x(r − z) − y
dz/dt = xy − bz,

(1.23)

where x , y and z are the coefficients of the Fourier expansion of the velocity and

the temperature field; σ, r and b are positive parameters, r being proportional to the

Rayleigh number, one of the basic parameters for atmospheric convection (Lorenz

1963).

The Lorenz model has become one of the paradigmatic systems displaying de-
terministic chaos: its generic solutions are aperiodic with a sensitive dependence

on the initial conditions. For example, numerical experiments with σ = 10, r = 28

and b = 8/3, show that the trajectories achieve aperiodic motion (see Figure 1.8),

and after a transient settle on a set of zero volume in the phase space, a strange

attractor. A measure of the sensitive dependence on the initial conditions is shown

in Figure 1.9.

This example shows in a rather convincing way, how even a deterministic system

with a few degrees of freedom can exhibit unpredictable behavior.

The chaotic character of the Lorenz model is evident if one reduces the system to

a discrete time map. Let m(n) be the value of the nth maximum of z(t). By plotting

m(n + 1) versus m(n), the successive pairs (m(n), m(n + 1)) for n = 1, 2, . . . fall
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Figure 1.9 The increase in the distance, �(t), between two trajectories initially
close, in the Lorenz system, for σ = 10, b = 8/3 and r = 28. The dashed line
represents exponential growth.

on a graph close to a tent shape:

x(n + 1) =
{

2 x(n) if x(n) < 1/2

2 [1 − x(n)] if x(n) ≥ 1/2,
(1.24)

where x is now a generic variable, not to be confused with the variable x of

Eq. (1.23).

It is fairly easy to study the above map and recover the sensitive dependence on

initial conditions as follows. Let the initial condition x(0) ∈ [0, 1] be represented

as a binary number

x(0) =
∞∑
j=1

2− j a j

where each of the digits a j is either 0 or 1.

The sequence {a j } ( j = 1, 2, . . .) is the binary representation of x(0), and to

simplify the notation we write x(0) = [a1, a2, . . .]. Denoting by N the negation

operator, defined so that N0 = 1, N1 = 0 and N 0 = I (the identity operator), we

can write

x(1) =
{

[a2, a3, a4, . . .] if x(0) < 1/2

[Na2,Na3,Na4, . . .] if x(0) ≥ 1/2.
(1.25)
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Using the properties of the negation operator N one has

x(1) = [N a1a2,N a1a3, . . .]. (1.26)

Iterating the above argument one has:

x(n) = [N a1+a2+···+an an+1,N a1+a2+···+an an+2, . . .]. (1.27)

Now consider two initial conditions x1(0) and x2(0) such that

|x1(0) − x2(0)| ≤ 2−M

for some arbitrary (large) integer number M ; this means that x1(0) and x2(0) have

the first M binary digits identical, and they may differ only afterwards. However,

the expression (1.27) shows that the distance between the points increases rapidly

and that as soon as n > M one can only conclude that

|x1(n) − x2(n)| ≤ 1.

Therefore, even an arbitrarily small error in the initial conditions eventually

dominates the solution of the system, making long-term prediction impossible.

1.4 Probabilistic aspects of dynamical systems

Since the time evolution of a deterministic system is determined perfectly by its

initial condition, apparently there is no room for chance, so at first glance the use

of probabilistic concepts and methods can appear as a paradox or at least as a sort

of “spurious” trick. On the other hand, as we saw in the previous sections, even in

a deterministic world the use of probability may become necessary.

If for any reason there is not perfect control of the state x of the system, it is

rather natural to introduce the probability density of x and then to wonder about its

time evolution.

The different origins for this necessity can be grouped in two large classes:

(a) the system has a very large number of degrees of freedom, but only a small number of

them are accessible or interesting;

(b) the deterministic system is chaotic, and therefore small uncertainties are amplified

exponentially.

From a historical point of view the first example of the necessity of using statis-

tical concepts in physics was statistical mechanics, i.e. case (a), where one wants to

study the small set of collective variables describing the thermodynamic properties

of a macroscopic system. The Brownian motion, which was at the origin of the

modern theory of stochastic processes, is another example of situation (a), where
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one is interested in the small number of degrees of freedom of the Brownian

particle.

We start with the probabilistic description of a discrete time system (1.1). Sup-

pose a probability density ρt (x) is given such that the probability of finding the state

of the system in a region b of its phase space is: Prob[x(t) ∈ b] = ∫
b ρt (x)dx. The

time evolution of ρt (x) is ruled by

ρt+1(x) = L
PF
ρt (x), (1.28)

where L
PF

is referred to as the Perron–Frobenius operator (Lasota and Mackey

1985, Ott 1993):

L
PF
ρt (x) =

∫
ρt (y)δ(x − g[y])dy; (1.29)

for the one-dimensional case one can write

L
PF
ρt (x) =

∑
k

ρt (yk)

|g′(yk)| (1.30)

where yk are the pre-images of x , i.e. the points such that g(yk) = x , and g′ indicates

the derivative.

Equation (1.29), or (1.30) in the one-dimensional case, says that

Prob[x(t) ∈ b] = Prob[x(t − 1) ∈ g(−1)(b)]

where g(−1)(b) is the pre-image of b.

In an analogous way, when a dynamical system is described by a set of ordinary

differential equations (1.3), for the evolution of a density ρ(x, t) one has

∂ρ

∂t
= Lρ = −∇ · (fρ) (1.31)

where L is known as the Liouville operator.

In spite of the different specific reasons for a probabilistic treatment, deterministic

systems and systems with an explicit random component in the evolution law share

many practical (and conceptual) aspects. One of the most common (and important)

stochastic processes is described by the stochastic differential equations (often in

physics the term Langevin equation is used):

dx j

dt
= f j (x) + R j (t), (1.32)

where j = 1, . . . , N and {R j (t)} is a multi-dimensional white noise, i.e. a Gaussian

stochastic process with

〈R j (t)〉 = 0, 〈R j (t)Ri (t
′)〉 = Qi jδ(t − t ′), (1.33)
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where the brackets indicate averaging over the various realizations of R j (t) and the

covariance matrix {Qi j } is positive definite (Chandrasekhar 1943). One can think

of the random variables R j (t) as emulating the effects of a fast internal dynamics

(this happens in Brownian motion, see Chapter 7) or the action of external random

disturbances, as in noisy electric circuits. The presence of the noise terms {R j }
changes the evolution equation for the probability density: Eq. (1.31) is replaced

by the Fokker–Planck equation (Gardiner 1990):

∂ρ

∂t
= −∇ · (fρ) + 1

2

∑
i j

Qi j
∂2ρ

∂x j∂x j
. (1.34)

The evolution laws (1.28), or (1.31), have a general validity, they hold for generic

deterministic systems. On the other hand, the behavior of ρt (x), or ρ(x, t), depends

on the deterministic dynamics (1.1), or (1.3), in particular whether the system is

chaotic or not.

Before a formal treatment we discuss a simple example, the logistic map

x(t + 1) = r x(t)(1 − x(t)), (1.35)

where r is a control parameter varying in the interval [0, 4]. We do not repeat here

the analysis of the stability for different values of r , the reader can find this in any

texbook, e.g. Ott (1993). For r < 3 one has a unique attracting fixed point x∗, that

is, x∗ = 0 for r < 1 and x∗ = 1 − 1/r for 1 < r < 3. It is easy to understand that

for r < 3, because of the presence of an attracting fixed point, at large time

ρt (x) → δ(x − x∗), (1.36)

independently of the initial probability density ρ0(x).

For 3 < r < r1 = 3.448, one has an attracting periodic trajectory taking values

x (1)(r ) and x (2)(r ). In this case one has that, after a transient,

ρt (x) = c1(t)δ(x − x (1)) + c2(t)δ(x − x (2)), (1.37)

where c1(t) and c2(t) evolve periodically in time, i.e. c1(t + 1) = c2(t), c2(t + 1) =
c1(t), and they depend on the initial probability density ρ0(x).

In an analogous way, in the range rn−1 < r < rn one has an attracting periodic

trajectory, of period 2n , taking values x (1), x (2), . . . , x (2n). After a transient,

ρt (x) =
2n∑

k=1

ck(t)δ(x − x (k)), (1.38)

where the coefficients c1(t), c2(t), . . . , c2n (t) evolve periodically in time (in a cyclic

way, i.e. c1(t + 1) = c2n (t); c2(t + 1) = c1(t); c3(t + 1) = c2(t); . . .) and depend

on the initial probability density ρ0(x).
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Let us now consider a chaotic case, e.g. r = 4. In such a case, as t → ∞

ρt (x) → ρ inv(x) = 1

π
√

x(1 − x)
(1.39)

independently of the initial probability density ρ0(x). By definition, an invariant

density ρ inv(x) satisfies the equation

ρ inv(x) = LPFρ
inv(x). (1.40)

In the continuous time case an invariant density of probability obeys the equation

Lρ inv(x) = 0. (1.41)

We can summarize the above results: if the dynamical behavior is regular, i.e.

periodic, ρt (x) is not able to forget the initial density ρ0(x) which, in general, does

not relax to an invariant density. In contrast, if the system is chaotic then ρt (x)

relaxes to a well-defined ρ inv(x) which does not depend on the initial ρ0(x).

1.4.1 Ergodicity

Consider now the abstract definition of dynamical system which is specified by a

deterministic evolution law in the phase space �,

x(0) → x(t) = U t x(0), (1.42)

and a measure dμ(x) invariant under the evolution U t , i.e. dμ(x) = dμ(U−t x).

Since in dissipative systems the invariant measure is singular with respect to the

Lebesgue measure, we use the symbol dμ(x) instead of the more familiar ρ inv(x)dx
(which can be used if a density exists).

The dynamical system (�, U t , dμ(x)) is called ergodic, with respect to the mea-

sure dμ(x), if, for every integrable function A(x), one has

A ≡ lim
T →∞

1

T

∫ t0+T

t0

A(x(t))dt =
∫

A(x)dμ(x) ≡ 〈A〉, (1.43)

where x(t) = U t−t0x(t0) (Arnold and Avez 1968). Of course in the case of discrete

time the integral must be replaced by a sum.

We can say that if a system is ergodic, a very long trajectory gives the same

statistical information as the measure μ(x).

For statistical physics, Hamiltonian systems are the most important ones: in the

case of N particles, � is the surface of constant energy, x = (q(N ), p(N )), q and

p being the vectors of position and momentum respectively, U is given by the

Hamilton equation, and dμ is the microcanonical distribution. Indeed this is the
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context that gave rise to the ergodic problem, that is, whether, in an isolated system

Eq. (1.43) is satisfied by the microcanonical measure (see Chapter 4).

It is easy to understand that the ergodicity property can hold even in systems

with very regular dynamics. As an example of an ergodic dynamical system whose

time evolution does not show any irregular behavior we can mention rotation on a

torus: {
x(t + 1) = x(t) + u mod 1

y(t + 1) = y(t) + v mod 1.
(1.44)

A simple computation shows that the Lebesgue measure dμ(x) = dxdy is invariant

under time evolution. If u/v is rational the evolution (1.44) is periodic and therefore

non-ergodic, with respect to dμ(x); while for irrational u/v the motion is quasi-

periodic and ergodic, with respect to dμ(x).

Note that, in such an ergodic system, one cannot have a relaxation to an invariant

density. If one starts with a given ρ0(x, y) localized around (x̂, ŷ) then ρt (x, y) is

the translation of the initially localized function, now around (U t (x̂), U t (ŷ)).

We do not enter into detail here on how to decide whether a generic dynamical

system is ergodic or not. In Chapter 4 we will discuss some aspects of ergodicity

which are relevant for equilibrium statistical mechanics.

1.4.2 Mixing

The dynamical system (�, U t , dμ(x)) is called mixing if, for all the sets a, b ⊂ �,

one has

lim
t→∞ μ(a ∩ U t b) = μ(a)μ(b). (1.45)

The above condition for mixing has a simple interpretation. The points x belonging

to a ∩ U t b are those such that x ∈ a and U−t x ∈ b. Therefore from (1.45) one has

that the fraction of points starting from b and ending up in a after a (large) time t
is nothing but the product of the measures of a and b and it is independent of the

positions of a and b in �.

As an example of a mixing system we discuss briefly the two-dimensional area-

preserving cat map:

{
x(t + 1) = x(t) + y(t) mod 1

y(t + 1) = x(t) + 2y(t) mod 1.
(1.46)

Consider a set of points, b, represented as a black region in Figure 1.10. Many

iterations “mix” the striations of U t b more and more finely within the square. We

can see that the cat map is mixing with essentially the same meaning that we use
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Figure 1.10 Evolution of the cat map. Going from left to right and from top to
bottom, the evolutions are plotted with 40 000 points, at times t = 0, 2, 4, 6.

when we describe the mixing of cream as a cup of coffee is stirred, if the usual

physical space is interpreted as a phase space.

It is easy to see that the mixing condition is stronger than ergodicity, i.e. a mixing

system must be ergodic. The opposite in general is not true, as the example given

by (1.44) shows.

For the sake of simplicity of notation, consider the discrete time case and assume

that a probability density exists, i.e. dμ(x) = ρ inv(x)dx. If a system is mixing then

one has a relaxation to the invariant measure, i.e. for large t one has

ρt (x) → ρ inv(x). (1.47)

The characteristic time τc of the relaxation process toward the invariant measure,

i.e. such that

ρt (x) = ρ inv(x) + O(e−t/τc ), (1.48)

is also relevant for the decay of the correlation between generic functions G and F :

〈G(x(t))F(x(0))〉 = 〈G(x)〉〈F(x)〉 + O(e−t/τc ) (1.49)
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where the average is on the invariant measure. One can see that τc is related to

the spectral properties of the Perron–Frobenius operator LPF (Lasota and Mackey

1985, Ruelle 1989, Ott 1993).

It is not difficult to repeat the above considerations for systems described by

ordinary differential equations, simply replacing the Perron–Frobenius operator

with the Liouville operator L. For the stochastic differential equations (1.32) one

has just to replace L with L + 1/2
∑

Qi j∂
2/∂x j∂x j .

1.4.3 Natural measure

The mathematical definition of dynamical system as (�, U t , dμ(x)) can sound a

bit pedantic, and sometimes in the physical literature one does not specify the

invariant measure which is assumed to be the one “selected by the dynamics.” This

is an important and delicate point which deserves a short discussion.

In a generic dynamical system, there are a lot of invariant ergodic measures so

one needs a criterion to select the “right one.” In order to clarify this point, let us

consider the logistic map (1.35) for r = 4. Noting that there exist unstable periodic

trajectories (x (1), x (2), . . . , x (2n)) of period 2n , with n = 1, 2, . . . , one understands

that, in addition to the ρ inv(x) in (1.39), there are an infinite number of invariant

measures:

ρ(n)(x) =
2n∑

k=1

2−nδ(x − x (k)). (1.50)

Is there a reason why the ρ inv(x) in (1.39) must be preferred to the ρ(n)(x)? First let

us note that the measures ρ(n)(x) in (1.50) are surely invariant but they are unstable,

so if one adds to the map (1.35) a small noise term of strength ε, the ρ(n)(x) have

no role at all for any ε �= 0.

It is reasonable to accept the view that the system under investigation is inherently

noisy (e.g., owing to the influence of the external world, not accounted for in the

system). Therefore one can assume that the “correct” measure is that measure

obtained by adding a (small) noise term (of strength ε) to the dynamical system

and then performing the limit ε → 0. The measure selected using this procedure is

called a “natural” (or physical) measure and it is, by construction, a “dynamically

robust” quantity. According to Eckmann and Ruelle (1985) this idea dates back to

Kolmogorov.

In any numerical simulation both computers and algorithms are not “perfect,” i.e.

there are unavoidable “errors” due to truncations, roundoff and so on. In a similar

way in laboratory experiments it is not possible to eliminate all the noisy interactions

with the environment. So it is evident (at least from a physical point of view) that
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with numerical simulations and experiments one obtains an approximation of the

natural measure.

Let us conclude by noting that the concepts of chaos, ergodicity and mixing,

introduced in this chapter, are completely general, i.e. they have mathematical

validity for generic (finite-dimensional) dynamical systems. On the other hand

we will see in Chapters 4, 5 and 6 that in the cases with a very large number of

degrees of freedom (which are those relevant for statistical mechanics) one can

see the emergence of concepts and behaviors which are absent in low-dimensional

systems.
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Arnold, V. I. (1974). Équations Différentielles Ordinaires, Moscow: Mir.
Arnold, V. I. and Avez, A. (1968). Ergodic Problems of Classical Mechanics, New York:

Benjamin.
Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy, Rev. Mod. Phys.

15, 1.
Eckmann, J.-P. and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors, Rev.

Mod. Phys. 57, 617.
Einstein, A. (1905). Ann. Phys. 17, 549. English translation in: Investigations on the

Theory of Brownian Movement, New York: Dover, 1956. This volume contains
Einstein’s papers on Brownian motion.

Gardiner, C. W. (1990). Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences, Berlin: Springer.

Langevin, P. (1908). Sur la theorie du mouvement brownien, C. R. Acad. Sci. (Paris) 146,
530. English translation in Am. J. Phys. 65, 1079 (1997).

Laplace, P. S. (1814). Essai Philosophique sur les Probabilités, Paris: Seure Courciēre.
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2

Dynamical indicators for chaotic systems: Lyapunov
exponents, entropies and beyond

At any time there is only a thin layer separating what is trivial from what
is impossibly difficult. It is in that layer that discoveries are made . . .

Andrei N. Kolmogorov

An important aspect of the theory of dynamical systems is the formalization and

quantitative characterization of the sensitivity to initial conditions. The Lyapunov

exponents {λi } are the indicators used to measure the average rate of exponential

error growth in a system.

Starting from the idea of Kolmogorov of characterizing dynamical systems by

means of entropy-like quantities, following the work by Shannon in information

theory, another approach to dynamical systems has been developed in the context

of information theory, data compression and algorithmic complexity theory. In par-

ticular, the Kolmogorov–Sinai entropy, hKS, can be defined and interpreted as a

measure of the rate of information production of a system. Since the ability to pro-

duce information is tightly linked to the exponential diversification of trajectories,

it is not a surprise that a relation exists between hKS and {λi }, the Pesin relation.

One has to note that quantities such as {λi } and hKS are properly defined only

in specific asymptotic limits, that is, very long times and arbitrary accuracy. Since

in realistic situations one has to deal with finite accuracy and finite time – as

Keynes said, in the long run we shall all be dead – it is important to take into

account these limitations. Relaxing the requirement of infinite time, one can in-

vestigate the relevance of finite time fluctuations of the “effective” Lyapunov

exponent. In addition, relaxing the limit of arbitrary high accuracy, one can in-

troduce suitable tools, such as the finite size Lyapunov exponent (FSLE) and the

ε-entropy.

24
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2.1 Dynamical systems approach

2.1.1 Characteristic Lyapunov exponents

The characteristic Lyapunov exponents (LE) are somehow an extension of linear

stability analysis to the case of aperiodic motions. Roughly speaking, they measure

the typical rate of exponential divergence of nearby trajectories. In this sense they

give information on the rate of growth of a very small error in the initial state of a

system.

Consider a dynamical system with an evolution law given, in the case of contin-

uous time, by the differential equation

dx
dt

= F(x), (2.1)

or, in the case of discrete time, by the map

x(t + 1) = G(x(t)). (2.2)

The vector x ∈ IRd specifies uniquely one state of the system. We assume that

F and G are differentiable functions, that the evolution is well defined for time

intervals of arbitrary extension, and that the motion takes place in a bounded region

of the phase space. We intend to study the separation between two trajectories, x(t)
and x′(t), starting from two close initial conditions, x(0) and x′(0) = x(0) + δx(0),

respectively.

As long as the difference between the trajectories, δx(t) = x′(t) − x(t), remains

small (infinitesimal, strictly speaking), it can be regarded as a vector, z(t), in the

tangent space. The time evolution of z(t) is given by the linearized differential

equations,

dzi (t)

dt
=

d∑
j=1

∂ Fi

∂x j

∣∣∣∣
x(t)

z j (t), (2.3)

or, in the case of discrete time by the linear maps,

zi (t + 1) =
d∑

j=1

∂Gi

∂x j

∣∣∣∣
x(t)

z j (t). (2.4)

Under a rather general hypothesis, Oseledec (1968) proved that for almost all initial

conditions x(0) in the tangent space, an orthonormal basis {ei } exists such that, for

large times,

z(t) =
d∑

i=1

ci ei eλi t , (2.5)
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where the basis {ei } depends on x(0) and t and the coefficients {ci } depend on z(0)

(Goldhirsch et al. 1987). The quantities λ1 ≥ λ2 ≥ · · · ≥ λd are called characteris-
tic Lyapunov exponents. If the dynamical system has an ergodic invariant measure,

the spectrum of Lyapunov exponents {λi } does not depend on the initial condition,

except for a set of measure zero with respect to the invariant measure.

Loosely speaking, (2.5) tells us that in the phase space, where the motion evolves,

a d-dimensional sphere of small radius ε centered in x(0) is deformed with time

into an ellipsoid of semi-axes εi (t) = ε exp(λi t), directed along the ei vectors. Fur-

thermore, for a generic small perturbation δx(0), the distance between a trajectory

and a perturbed trajectory behaves as

|δx(t)| ∼ |δx(0)| eλ1 t
[
1 + O

(
e−(λ1−λ2)t

)]
. (2.6)

If λ1 > 0 we have a rapid (exponential) amplification of an error on the initial

condition. In such a case, the system is chaotic and, de facto, unpredictable over

long times. Indeed, if we put δ0 = |δx(0)| for the initial error, and we want to predict

the states of the system with a certain tolerance � (not too large), then the prediction

is possible just up to a predictability time given by

Tp ∼ 1

λ1

ln

(
�

δ0

)
. (2.7)

Therefore Tp is basically determined by the largest Lyapunov exponent, since its

dependence on δ0 and � is very weak. Because of its pre-eminent role, very often

one simply refers to λ1 as “the Lyapunov exponent,” and one indicates it by λ.

Equation (2.6) suggests how to compute λ1 numerically. We introduce the re-

sponse, after a time t , to an infinitesimal perturbation on x(τ ), defined as follows:

Rτ (t) ≡ |z(τ + t)|
|z(τ )| = |δx(τ + t)|

|δx(τ )| . (2.8)

In ergodic systems the Lyapunov exponent λ1 is obtained by averaging the logarithm

of the response along a typical trajectory:

λ1 = lim
t→∞

1

t
〈ln Rτ (t)〉, (2.9)

where 〈·〉 denotes the time average limT →∞(1/T )
∫ τ0+T
τ0

(·)dτ . Oseledec’s theorem

implies that (1/t) ln Rτ (t), for large t , is a non-random quantity, i.e. for almost all

the initial conditions its value does not depend on the specific initial condition.

Therefore, for large times, the average in (2.9) can be neglected.

As the typical growth rate of a generic small segment in phase space is driven by

the largest Lyapunov exponent, the sum of the first n (≤ d) Lyapunov exponents

controls the variations of small n-dimensional volumes in phase space. This gives us
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a way to compute the sub-leading Lyapunov exponents. After the selection of n ≤ d
non-parallel (i.e. independent) tangent vectors [z(1)(0), . . . , z(n)(0)], one introduces

the n-order response R(n)
τ (t) (Benettin et al. 1980)

R(n)
τ (t) ≡ |z1(t + τ ) × z2(t + τ ) × · · · × zn(t + τ )|

|z1(τ ) × z2(τ ) × · · · × zn(τ )| . (2.10)

Analogously to the Lyapunov exponent, it can be shown that

n∑
i=1

λi = lim
t→∞

1

t
〈ln R(n)

τ (t)〉. (2.11)

Let us stress that the Lyapunov exponents give information on the typical behav-

iors along a generic trajectory, followed for infinite time and keeping the perturba-

tion infinitesimally small. In this respect, they are global quantities characterizing

fine-grained properties of a system.

2.1.2 Lyapunov exponents and dimensions

As we discussed briefly in Chapter 1, the motions of dissipative chaotic systems can

evolve on strange attractors, that are created by the competitive effect of stretching

and folding. These structures typically have a non-integer fractal dimension.1 It is

quite natural to wonder whether a relation exists between this dimension and the

Lyapunov exponents, since the positive ones give rise to stretching along the corre-

sponding eigendirections, while the negative ones are responsible for contraction,

connected to the folding.

Kaplan and Yorke (1979) conjectured that the fractal dimension of the set where

the natural measure is concentrated on the attractor is estimated by the Lyapunov

dimension

DKY = J +
∑J

i=1 λi

|λJ+1| (2.12)

where J is the maximum integer such that
∑J

i=1 λi ≥ 0. It can be shown that

in some cases (e.g. hyperbolic maps of the plane), DKY coincides with the in-

formation dimension DI (Young 1982). Let us briefly sketch the argument that

leads to the Kaplan and Yorke formula. By the definition of J , J -dimensional

hypervolumes should increase or at least remain constant (since
∑J

i=1 λi ≥ 0),

while the J + 1-dimensional hypervolumes should be contracted to zero (since∑J+1
i=1 λi < 0). The dimension of the attractor is thus larger than J and smaller than

1 A chaotic attractor is characterized by its invariant measure, which is singular with respect to the Lebesgue
measure. The scaling properties of the invariant measure are given by Renyi dimensions. For the sake of simplicity
we do not discuss the difference between the several dimensions; for an analysis in terms of multifractal objects
see Paladin and Vulpiani (1987).
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J + 1. Finally, a linear interpolation allows one to obtain the fractional part of the

dimension.

The Kaplan–Yorke formula has great practical relevance. A direct computation of

the dimensions, for example using the celebrated Grassberger and Procaccia (1983)

method (or a suitable generalization (Paladin and Vulpiani 1987)), has rather severe

limitations. This is due to the obvious fact that the number of points necessary to

estimate DI increases exponentially with DI, so it is practically impossible to mea-

sure a value of DI larger than 5 or 6 (Eckmann and Ruelle 1992). In contrast, the

Lyapunov exponents can be easily numerically computed even in high-dimensional

systems. Therefore the Kaplan–Yorke formula is the unique way to compute nu-

merically the dimension of a high-dimensional attractor.

2.2 Information theory approach

In experimental investigations of physical processes, we typically have access to

the system only through a measuring device which produces a time record of a

certain observable, i.e. a sequence of data. In this regard a system, whether or not

chaotic, generates messages and may be regarded as a source of information. This

remark opens the possibility of studying dynamical systems from a very interesting

point of view.

Information has been given a rigorous and quantitative definition, in the frame-

work of the theory of communication, to cope with the practical problem of transmit-

ting a message in the cheapest way without losing information. The characterization

of the information contained in a sequence can be approached from two very dif-

ferent points of view. The first one, that of information theory (Shannon 1948), is a

statistical approach, i.e. it does not consider the transmission of a specific message

(sequence) but refers to the statistical properties of all the messages emitted by the

source. The information theory approach characterizes the source of information,

so that it gives us a powerful method to characterize chaotic systems.

The second point of view considers the problem of characterizing a single se-

quence. This has led to the theory of algorithmic complexity and algorithmic in-

formation theory (Solomonoff 1964, Kolmogorov 1965, Chaitin 1966).

2.2.1 Shannon entropy

At the end of the 1940s Shannon (1948) introduced powerful concepts and tech-

niques for a systematic study of sources emitting sequences of discrete symbols

(e.g. binary digit sequences). Originally information theory was introduced in the

practical context of electric communications, nevertheless in a few years it be-

came an important branch of both pure and applied probability theory with strong
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relations with other fields such as computer science, cryptography, biology and

physics (Zurek 1990).

For the sake of self-consistency we recall briefly the basic concepts and ideas of

Shannon entropy. Consider a source that can output m different symbols; denote

by s(t) the symbol emitted by the source at time t and by P(WN ) the probability

that a given word WN = (s(1), s(2), . . . , s(N )), of length N , is emitted:

P(WN ) = P(s(1), s(2), . . . , s(N )). (2.13)

We assume that the source is statistically stationary, so that the following statistical

time translation invariance holds: P(s(1), . . . , s(N )) = P(s(t + 1), . . . , s(t + N )).

We recall that, given a set of events whose probabilities of occurrence are

(p1, p2, . . . , pn), under rather natural assumptions and consistency requirements,

one can prove (Khinchin 1957) that

H ∝ −
n∑

i=1

pi log pi

is the unique quantity (called the entropy of the probabilistic scheme) which mea-

sures the average uncertainty about one outcome, or the average information that

is supplied by one occurrence. In the definition of H the proportionality sign is due

to freedom in the choice of the base of the logarithm.

Now we introduce the N -block (or N -word) entropy,

HN = −
∑
{WN }

P(WN ) ln P(WN ), (2.14)

which measures the information content of the N -word ensemble, and the “differ-

ential” entropy

hN = HN+1 − HN = −
∑
{WN }

P(WN )
∑

s

P(s|WN ) ln P(s|WN ), (2.15)

where P(s|WN ) is the probability of the symbol s conditioned by the word WN .

So hN is the average information supplied by observing the (N + 1)th symbol,

provided the N previous ones are known. One can also say that hN is the average

uncertainty about the (N + 1)th symbol, provided the N previous ones are given.

For a stationary source the limits in the following equations exist, are equal and

define the Shannon entropy hSh:

hSh = lim
N→∞

HN

N
= lim

N→∞
hN . (2.16)

The hN are non-increasing quantities, hN+1 ≤ hN , that is, knowledge of a longer

past history cannot increase the uncertainty on the next outcome.
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In the case of a periodic source, with period T , hSh = 0 since hN = 0 as soon

as N is larger than O(ln T ). In the case of a non-correlated source (i.e. emitting

independent identically distributed symbols) one has hN = h1 = H1 = hSh. In the

case of a kth order Markov process hN = hSh for all N ≥ k. This is because a kth

order Markov process has the property that the conditional probability of having a

given symbol depends only on the results of the last k times, i.e.

P(s(t)|s(t − 1), s(t − 2), . . .) = P(s(t)|s(t − 1), s(t − 2), . . . , s(t − k)) .

(2.17)

The Shannon entropy is a measure of the “surprise” the source emitting the

sequences can give us, since it quantifies the asymptotic uncertainty about the further

emission of a symbol in a very long sequence. However, it can also be viewed as

a measure of the richness (or “complexity”) of the source. This can be expressed

precisely by the first theorem of Shannon–McMillan (Khinchin 1957) which applies

to stationary ergodic sources. In this context ergodicity can be thought of as implying

that the sequences emitted by the source share the same statistical properties; so the

frequency of appearance of an N -word in a (infinitely) long sequence approaches

a definite limit (its probability) independent of the particular sequence.

Theorem If N is large enough, the ensemble of N-long sequences can be separated
in two classes, �1(N ) and �0(N ), such that all the words WN ∈ �1(N ) have
(roughly) the same probability P(WN ) ∼ exp(−NhSh) and∑

WN ∈�1(N )

P(WN ) → 1 for N → ∞, (2.18)

while ∑
CN ∈�0(N )

P(CN ) → 0 for N → ∞. (2.19)

The meaning of this theorem is the following. An m-state process admits in prin-

ciple m N possible sequences of length N , but the number of sequences effectively

observable, Neff(N ), (those in �1(N ), also called typical sequences) is

Neff(N ) ∼ exp(NhSh). (2.20)

Note that Neff 
 m N if hSh < ln m. The entropy per symbol, hSh, is a property of

the source. However, because of the ergodicity it can be obtained by analyzing just

one single sequence in the ensemble of typical sequences, and it can also be viewed

as a property of each one of the typical sequences. Therefore, as in the following,

one may speak about the Shannon entropy of a sequence, in this context.

The above theorem in the case of processes without memory is just the law of

large numbers. Let us observe that (2.20) is somehow the equivalent in information
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theory of the Boltzmann law in statistical thermodynamics: S ∝ ln W , W being the

number of possible microscopic configurations and S the thermodynamic entropy.

This justifies the name “entropy” for hSh.

Let us now mention another important result about the Shannon entropy. It is

not difficult to recognize that the quantity hSh sets the maximum compression rate

of a sequence {s(1), s(2), s(3), . . .}. Indeed a theorem of Shannon states that, if the

length T of a sequence is large enough, one cannot construct another sequence

(always using m symbols), from which it is possible to reconstruct the original

one, whose length is smaller than (hSh/ ln m)T (Shannon 1948). In other words

hSh/ ln m is the maximum allowed compression rate.

The relation between Shannon entropy and the data compression problem is

well highlighted by considering the Shannon–Fano code to map N objects (e.g.

the N -words WN ) into sequences of binary digits (0, 1) (Welsh 1989). The main

goal in building a code (with the intention to use it in communications and digital

storage) is to define the most efficient coding procedure, i.e. that which generates

the shortest possible (coded) sequence. The Shannon–Fano code is as follows. First

one orders the N objects according to their probabilities, in a decreasing way,

p1 ≥ p2 ≥ · · · ≥ pN . Then the passage from the N objects to the symbols (0, 1)

is obtained by defining the coding E(r ), of binary length 	(E(r )), of the r th object

with the requirement that the expected total length,
∑

r pr	r , be the minimal one.

This can be realized with the following choice:

− ln2 pr ≤ 	(E(r )) < 1 − ln2 pr . (2.21)

In this way highly probable objects are mapped into short code words while the low

probability objects are mapped into longer code words. So, in the case of N -words,

the average code length of a word is bounded by

HN

ln 2
≤

∑
r

pr	(E(r )) ≡ 〈	N 〉 ≤ HN + 1

ln 2
, (2.22)

and in the limit N → ∞ one has

lim
N→∞

〈	N 〉
N

= hSh

ln 2
. (2.23)

This means that in a good binary coding, the mean length of an N -word is equal

to N times the Shannon entropy, apart from a multiplicative factor, due to the fact

that in the definition (2.16) of hSh we used the natural logarithm (which happens to

be used more often in a dynamical system context) and here we want to work with

a two-symbol code and measure information in bits.
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The transient behavior of the block entropies

In addition to the asymptotic values of hN , the transient behavior of HN may also

be important. This has been underlined by Grassberger (1986) who proposed to

consider another quantity as well as the Shannon entropy: the “effective measure

of complexity,” namely

C =
∞∑

N=1

N (hN−1 − hN ) =
∞∑

N=0

N (hN − hSh). (2.24)

From the above definition, it follows that for large N , the block entropies grow as:

HN � C + NhSh. (2.25)

For trivial processes, for example for Bernoulli schemes or for a Markov chain of

order 1, C = 0 and hSh > 0, while in a periodic sequence (of period T ) hSh = 0

and C ∼ ln(T ).

The latter example shows the interest of the notion, since it allows discrimination

of behaviors associated with the same Shannon entropy. First of all, within all

stochastic processes with the same Hk , with k ≤ N , C is minimal for the Markov

processes of order N − 1 compatible with the block entropies of order k ≤ N . The

decrement δhN = hN−1 − hN is the average amount of information (per symbol)

by which the uncertainty of s(N + 1) decreases when s(N ), s(N − 1), . . . , s(1) are

known. Thus C is the average usable part of the information about the past which

has to be remembered at any time if one wants to be able to reconstruct the sequence

fully from its past.

In Chapter 3 we will see how even systems with hSh = 0 but large C can have

interesting behavior and can be useful, for example for the generation of a sequence

of (pseudo) random numbers with deterministic algorithms.

2.2.2 The Kolmogorov–Sinai entropy

After introducing the Shannon entropy we give a definition of the Kolmogorov–

Sinai (or metric) entropy (Kolmogorov 1958, Sinai 1959). Consider a trajectory,

x(t), generated by a deterministic system, sampled at the times t j = j τ , with

j = 1, 2, 3, . . . . Perform a finite partition A of the phase space. Since we are

considering motions that evolve in a bounded region, all the trajectories visit a

finite number of different cells (also known as the atoms of the partition), each one

identified by a symbol. With the finite number of symbols {s}A enumerating the

cells of the partition, the time-discretized trajectory x(t j ) determines a sequence

{s(1), s(2), s(3), . . .}, whose meaning is clear: at the time t j the trajectory is in

the cell labeled s( j). To each subsequence of length Nτ one can associate a word
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of length N : W N
j (A) = (s( j), s( j + 1), . . . , s( j + (N − 1))). If the system is er-

godic, as we suppose, from the observed frequencies of the words one obtains the

probabilities by which one calculates the block entropies HN (A):

HN (A) = −
∑

{W N (A)}
P(W N (A)) ln P(W N (A)). (2.26)

It is important to note that the probabilities P(W N (A)), computed by the frequencies

of W N (A) along a trajectory, are essentially dependent on the stationary measure

selected by the trajectory. This implies a dependence on this measure of all the

quantities defined below, hKS included. We shall always consider the natural in-

variant measure and do not indicate this kind of dependence. The entropy per unit

time of the trajectory with respect to the partition A, h(A), is defined as follows:

hN (A) = 1

τ
[HN+1(A) − HN (A)], (2.27)

h(A) = lim
N→∞

hN (A) = 1

τ
lim

N→∞
1

N
HN (A). (2.28)

Notice that, for the deterministic systems we are considering, the entropy per unit

time does not depend on the sampling time τ (Billingsley 1965) (by contrast with

the case of stochastic motions, see Gaspard and Wang (1993)). The Kolmogorov–

Sinai entropy, by definition, is the supremum of h(A) over all possible partitions

(Billingsley 1965, Eckmann and Ruelle 1985)

hKS = sup
A

h(A) . (2.29)

It is not simple at all to determine hKS according to this definition. A useful tool

in this respect would be the Kolmogorov–Sinai theorem, by means of which one

is granted that hKS = h(G) if G is a generating partition. A partition is said to

be generating if every infinite sequence {s( j)} j=1,...,∞ individuates a single initial

point. We have to note that, given a generating partition G, one can consider the

set F−τG, of the pre-images of the atoms of G, and then the intersections of all the

atoms with all the pre-images. This generates the atoms of a new partition, called

a dynamical refinement of G, and that is itself a generating partition. Since one

can consider pre-images referring to an arbitrary number of times, one obtains an

infinity of generating partitions.

However, the difficulty now is that, with the exception of very simple cases, we

do not know how to construct a generating partition. We only know that, for an

automorphism (i.e. invertible transformation), according to a theorem proved by

Krieger (1970), there exists a generating partition with k elements such that ehKS ≤
k ≤ ehKS + 1. Then, a more tractable way to define hKS is based upon considering
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the partition Aε made up by a grid of cubic cells of edge ε, from which one has

hKS = lim
ε→0

h(Aε). (2.30)

We expect h(Aε) to become independent of ε when Aε is fine enough to be “con-

tained” in a generating partition.

For discrete time maps the above is still valid, with τ = 1 (however, Krieger’s

theorem only applies to invertible maps).

The important point to note is that, while the entropy of a deterministic system is

finite, for a truly stochastic (i.e. non-deterministic) system, with continuous states,

h(Aε) is not bounded and hKS = ∞.

About the Kolmogorov–Sinai entropy

In this subsection, to simplify the discussion, we consider the case of discrete time

evolutions. All the results can be adapted to the continuous time case.

We begin by underlining that, even though we defined hKS for a (continuous-

valued) deterministic system, in what follows we were faced with Shannon’s analy-

sis of finite-alphabet sequences, originating from the partitioning of the phase space.

It is clear that the theoretical tools developed by Shannon, to study the statistical

properties of the ensembles of sequences, are independent of the way the latter are

generated, i.e. either by a deterministic rule or by a probabilistic rule. So the same

is true for the Kolmogorov–Sinai entropy, which is a quantity pertaining to both

deterministic and probabilistic processes. Bringing our attention to ensembles of

evolutions, one has a unifying scheme to study all kinds of dynamical processes. An

important fact about the Kolmogorov–Sinai entropy is that it is a (non-negative) real

number that characterizes a dynamical system in an invariant way. This means that

two systems have the same Kolmogorov–Sinai entropy if a one-to-one transforma-

tion between them exists, with correspondence between subsets of equal probability

and commuting with the two evolutions, such that the systems are isomorphic and

may be seen as different realizations of the same abstract dynamical system. This

invariant numerical quantity allowed Kolmogorov to split the class of measure-

preserving transformations according to the value of their entropies. In particular,

this showed that stationary sequences of independent random variables (Bernoulli

shifts) with different entropy values are not isomorphic (this was an open problem

at the time). The converse assertion, i.e. two Bernoulli shifts with the same entropy

are isomorphic, was proved by Ornstein (1974).

An important conceptual point to stress is the following. When the Kolmogorov–

Sinai entropy was introduced a general feeling was that it could also set a quan-

titative boundary separating deterministic from probabilistic evolutions. Indeed,

since hKS quantifies the uncertainty remaining on the next state of the system, if
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an infinitely long past is known, the Kolmogorov–Sinai entropy of a deterministic

system is expected to be zero, at variance with the probabilistic case. The finding

of deterministic evolutions with positive entropy came as a big surprise. However,

the theoretical tools underlying the definition of the Kolmogorov–Sinai entropy

provide us with a clear quantitative characterization of the notion of deterministic
chaos or deterministic randomness. In fact we know that for a deterministic invert-

ible transformation with hKS > 0 a generating partition exists with a finite number,

k, of elements such that ehKS ≤ k ≤ ehKS + 1. This implies that the trajectories of

the system are in isomorphic correspondence with those of a k-state (discrete time)

random process, whose asymptotic average uncertainty about the state is given by

hKS. We have a mathematical equivalence between a deterministic evolution and

a probabilistic process with finite state space. Moreover, this also means that to

obtain a faithful description of the original system, when the complete trajectories

are involved, we do not need too many details in the single observations.

Since the generating property of a partition permits a faithful representation of a

dynamical system as a finite-state process, by means of a kind of “natural” coarse

graining, some effort has been devoted to the construction of generating partitions.

It is worth recalling that if a generating partition exists, then there is an infinity

of them, given by its dynamical refinements. Clearly, the goal is to find partitions

with a small (minimum) number of states. In a few cases a solution is known.

For the one-dimensional maps a generating partition is obtained by considering the

coordinates where maxima, minima and vertical asymptotes (the critical points) are

located (Collet and Eckmann 1980). The effect of such a partitioning of the interval

is that the pre-images of a single point coming from different monotonic branches of

the map have different symbols, i.e. different histories. A solution is also available

for some two-dimensional maps. For instance, for the following baker-like map,

defined on the unit square,⎧⎪⎪⎨
⎪⎪⎩

x(t + 1) = 1

p
x(t)

if 0 ≤ x < p,

y(t + 1) = p y(t)

⎧⎪⎪⎨
⎪⎪⎩

x(t + 1) = 1

q
x(t) − p

q
if p ≤ x < 1,

y(t + 1) = q y(t) + p

with p + q = 1, a generating partition is obtained by dividing the square into two

rectangles with height 1, whose bases are intervals of length p and q. This map turns

out to be equivalent to a Bernoulli shift: its sequences, recorded on the described
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partition, are indistinguishable from those produced by independent extractions of

two symbols with probability p and q. It is an example of a general class of systems

usually referred to as hyperbolic systems (Eckmann and Ruelle 1985). For these

systems one can introduce the notion of Markov partition, that is, a generating

partition enjoying additional properties, very useful when computing, for example,

invariant measures and entropies (Badii and Politi 1997, Dorfman 1999). However,

it is difficult to construct Markov partitions, even when they exist; moreover a

generic system is not hyperbolic. Thus the construction of generating partitions

in general relies upon reasonable recipes. For instance, Grassberger and Kantz

(1985) consider the two-dimensional Hénon map which is one of the simplest of

the chaotic dissipative systems. By analogy with the one-dimensional maps, where

the generating partitions are determined by the critical points, they adopt a guiding

principle that the dividing lines of the partition must connect points where the stable

and unstable directions are tangential, the so-called homoclinic tangencies (see, for

instance, Badii and Politi (1997)). Of course the construction of such a partition

is not a simple task. For an explanation of this idea, its extension to conservative

systems and discussion of the difficulties, see Grassberger et al. (1989), Giovannini

and Politi (1991), Christiansen and Politi (1995, 1996), Jaeger and Kantz (1997),

and Lai et al. (1999). A different strategy for finding generating partitions has been

proposed by Plumecoq and Lefranc (2000a, 2000b) and Davidchack et al. (2000),

for systems endowed with unstable periodic orbits that are dense in the attractor.

Some algorithms to estimate generating partitions from observed data are proposed

by Kennel and Buhl (2003) and Hirata et al. (2004).

Kolmogorov–Sinai entropy and Lyapunov exponents

We can give an interpretation of the Kolmogorov–Sinai entropy based on the

Shannon–McMillan theorem. We construct a partition of the phase space with

cells of volume εd , then we consider the trajectories starting from a region of

volume V0 = εd at t0 and sampled at discrete times t j = j τ ( j = 1, 2, 3, . . . , t);
in the case of a map one can put τ = 1. In this way a unique sequence of sym-

bols {s(0), s(1), s(2), . . .} is associated with one trajectory. In a chaotic system

a great number of different symbolic sequences originates from the same initial

cell, because of the divergence of nearby trajectories. The total number of admis-

sible symbolic sequences, Ñ (ε, t), increases exponentially with a rate given by the

topological entropy

hT = lim
ε→0

lim
t→∞

1

t
ln Ñ (ε, t). (2.31)

However, if we discard the sequences of very small probability and we consider only

the number of remaining sequences Neff(ε, t) ≤ Ñ (ε, t), whose total probability in
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the long time limit is as near to 1 as one wants, we arrive at a more physical quantity

which is the Kolmogorov–Sinai entropy:

hKS = lim
ε→0

lim
t→∞

1

t
ln Neff(ε, t) ≤ hT. (2.32)

Thus hKS quantifies the long time exponential rate of growth of the number of

“effective” trajectories of a system, those that can be detected numerically or ex-

perimentally and that are associated with the natural measure.

By means of a heuristic reasoning, we can obtain a relation between hKS and the

Lyapunov exponents. We may wonder what is the number of cells where, at a time

t > t0, the points that evolved from V0 can be found, i.e. we wish to know how big

is the coarse-grained volume V (ε, t), occupied by the states evolved from V0, if the

minimum volume we can observe is εd . As stated at the end of Section 2.1.1, we

have V (t) ∼ V0 exp(t
∑d

i=1 λi ). However, this is true only in the limit ε → 0. In

this (unrealistic) limit, V (t) = V0 for a conservative system (where
∑d

i=1 λi = 0)

and V (t) < V0 for a dissipative system (where
∑d

i=1 λi < 0). As a consequence

of limited resolution power, in the evolution of the volume V0 = εd the effect of

the contracting directions (associated with the negative Lyapunov exponents) is

completely lost. We can experience only the effect of the expanding directions,

associated with the positive Lyapunov exponents. As a consequence, in the typical

case, the coarse-grained volume behaves as

V (ε, t) ∼ V0 e(
∑

λi >0 λi ) t
, (2.33)

when V0 is small enough. Since Neff(ε, t) ∝ V (ε, t)/V0, one has

hKS =
∑
λi >0

λi . (2.34)

This argument can be made more rigorous (Pesin 1976) to derive the Pesin relation:

hKS ≤
∑
λi >0

λi . (2.35)

Because of its relation with the Lyapunov exponents – or by the definition (2.32) –

it is clear that hKS is also a fine-grained and global characterization of a dynamical

system.

Extended systems

Let us discuss briefly extended dynamical systems, whose degrees of freedom de-

pend on space and time, and which can display unpredictable behaviors in both

time and space evolution, i.e. spatiotemporal chaos. Following Hohenberg and

Shraiman (1988) we can give a more precise meaning to the terms spatiotemporal
chaos and extended systems. For a generic system of size L , three characteristic
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lengths can be defined: 	D, 	E, ξ respectively associated with the scales of dissi-
pation (e.g. the scale at which dissipation becomes effective, smaller scales can be

considered as inactive), excitation (e.g. the scale at which energy is injected in the

system) and correlation (that we assume can be suitably defined). Note that 	E is an

external parameter, to be assumed as a fixed quantity, for example one can consider

	E ∼ O(L). Now one has two limiting situations.

When the characteristic lengths (generated by the dynamics) are of the same or-

der (	D, ξ ∼ O(L)) distant regions of the system are strongly correlated. Because

of the coherence, the spatial nature is not very important and one speaks of tem-
poral chaos, i.e. the system is basically low dimensional. More interesting is the

case L � ξ � 	D where distant parts of the system are weakly correlated so that

the number of (active) degrees of freedom is an extensive quantity, i.e. it increases

with the system size, and is asymptotically proportional to Ld , where d is the spa-

tial dimension. As a consequence, the number of positive Lyapunov exponents,

the Kolmogorov–Sinai entropy and the attractor dimension, DKY, are extensive

quantities. The above picture is just an approximate scenario (see Hohenberg and

Shraiman (1988) for further details) but sufficiently broad to include systems rang-

ing from fluid dynamics to biological and chemical reactions.

A great simplification in the study of extended systems can be achieved by

considering discrete time and space models, and introducing the coupled map
lattices (CML) (Kaneko 1993), i.e. maps defined on a discrete lattice. A typical

one-dimensional CML (the extension to d-dimensions is straightforward) can be

written in the following way:

xi (t + 1) = (1 − ε)fa[xi (t)] + 1

2
ε (fa[xi+1(t)] + fa[xi−1(t)]). (2.36)

Here i = −L/2, . . . , L/2, where L is the lattice size, x ∈ IRn is the state variable

which depends on the site and time, and fa is a map, which drives the local dynamics

and depends on a control parameter a. Usually, periodic boundary conditions xi+L =
xi are assumed and, for scalar variables (n = 1), one studies coupled logistic maps,

fa(x) = ax(1 − x) or tent maps, fa(x) = a|1/2 − |x − 1/2||.
Lyapunov exponents, attractor dimensions and the Kolmogorov–Sinai entropy

are also well-defined quantities for extended systems with a finite number of degrees

of freedom. In order to construct a statistical description of spatiotemporal chaos,

as Ruelle (1982) pointed out, one requires the existence of a good thermodynamic

limit for the Lyapunov spectrum {λi (L)}i=1,L . This means the existence of the limit

lim
L→∞

λi (L) = �(x), (2.37)

where x = i/L , in the limit L → ∞, becomes a continuous index in [0, 1], and

�(x) is a non-increasing function. The function �(x) can be viewed as a density
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of Lyapunov exponents. If such a limit did not exist, it would be impossible to

construct a statistical description of spatiotemporal chaos, i.e. the phenomenology

of these systems would depend on L .

Once the existence of a Lyapunov density is proved, one can use the Kaplan–

Yorke formula and the Pesin relation, and introduce an entropy for the degree of

freedom HKS and a dimension density DKY DKY, that is to say a density of active

degrees of freedom. Indeed one can write

hKS =
∑
λi >0

λi −→
∑
�>0

�

(
i

L

)
= L

∫ 1

0

�(x)θ (�(x))dx, (2.38)

where θ (x) is the step function, so that

HKS = lim
L→∞

hKS

L
=

∫ 1

0

dx�(x)θ (�(x)). (2.39)

Using the Kaplan–Yorke conjecture, the dimension density

DKY = lim
L→∞

DKY

L
(2.40)

is given implicitly by:

∫ DKY

0

dx�(x) = 0 . (2.41)

The existence of a good thermodynamic limit is supported by numerical simu-

lations (Kaneko 1986, Livi et al. 1986) and some exact results (Bunimovich and

Sinai 1993).

2.2.3 Algorithmic complexity

We saw that the Shannon entropy puts a limit on how efficiently the ensemble

of the messages emitted by a source can be coded. We may wonder about the

compressibility properties of a single sequence. This problem can be addressed

using the notion of algorithmic complexity, which is concerned with the difficulty

of reproducing a given string of symbols.

Everybody agrees that the sequence of binary digits

0111010001011001011010 . . . (2.42)

is, in some sense, more random than

1010101010101010101010 . . . ; (2.43)
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the notion of algorithmic complexity, introduced independently by Kolmogorov

(1965), Chaitin (1966) and Solomonoff (1964), is a way to formalize the intuitive

idea of randomness of a sequence.

Consider a binary digit sequence (this does not constitute a limitation) of length

N (i1, i2, . . . , iN ), generated by a certain computer code on some machine M. One

defines the algorithmic complexity, or algorithmic information content, KM(N ),

of the sequence as the bit length of the shortest computer program able to produce

the N -sequence and to stop afterward. Of course, such a length depends not only

on the sequence but also on the machine. However, a result of Kolmogorov (1965)

proves the existence of a universal computer, U , that is able to perform the same

computation a program p makes on M with a modification of p that depends only

on M (and not on p). This implies that for all finite strings:

KU (N ) ≤ KM(N ) + CM, (2.44)

where KU (N ) is the complexity with respect to the universal computer and CM
depends only on the machine M (and not on N ). At this point we can consider

the algorithmic complexity with respect to a universal computer – and we can drop

the machine dependence in the symbol for the algorithmic complexity, K (N ). The

reason for this is that we are interested in the limit of very long sequences, N → ∞,

for which one defines the algorithmic complexity per unit symbol:

C = lim
N→∞

K (N )

N
, (2.45)

which, because of (2.44), is an intrinsic quantity, i.e. independent of the machine.

Now coming back to the two N -sequences (2.42) and (2.43), it is obvious that

the second one can be obtained with a small-length minimal program, i.e.

“PRINT 10
N

2
TIMES.”

The bit length of the above program is O(ln N ) (the number N requires ln N bits

to be written) and therefore when taking the limit N → ∞ in (2.45), one obtains

C = 0. Of course K (N ) cannot exceed N , since the sequence can always be obtained

with a trivial program (of bit length N )

“PRINT i1, i2, . . . , iN .”

Therefore, in the case of a very irregular sequence, e.g. (2.42), one expects K (N ) ∝
N , i.e. C �= 0. In such a case one calls the sequence complex (i.e. of non-zero

algorithmic complexity) or random.

Algorithmic complexity cannot be computed. Indeed, since the algorithm which

computes K (N ) cannot have less than K (N ) binary digits and since in the case
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of random sequences K (N ) is not bounded in the limit N → ∞, then it cannot

be computed in the most interesting cases. The un-computability of K (N ) may be

understood in terms of Gödel’s incompleteness theorem (Chaitin 1990). In addition

to the problem of whether or not K (N ) is computable in a specific case, the concept

of algorithmic complexity allows us to clarify the vague and intuitive notion of

randomness. For a systematic treatment of algorithmic complexity, information

theory and data compression see Li and Vitanyi (1997).

There exists a relation between the Shannon entropy, hSh, and the algorithmic

complexity C. It is possible to show that

lim
N→∞

〈K (N )〉
HN

= 1

ln 2
, (2.46)

where 〈K (N )〉 = ∑
CN

P(CN )KCN (N ), and KCN (N ) is the algorithmic complex-

ity of the N -words. Therefore the expected complexity per symbol 〈K (N )/N 〉 is

asymptotically equal to the Shannon entropy (apart from the ln 2 factor).

Equation (2.46) stems from the results of the Shannon–McMillan theorem about

the two classes of sequences (i.e. �1(N ) and �0(N )). Indeed, in the limit of very

large N , the probability of observing a sequence in �1(N ) goes to 1, and the

entropy of such a sequence as well as its algorithmic complexity equals the Shannon

entropy. Apart from the numerical coincidence of the values of C and hSh/ ln 2 there

is a conceptual difference between information theory and algorithmic complexity

theory. The Shannon entropy essentially refers to the information content in a

statistical sense, i.e. it refers to an ensemble of sequences generated by a certain

source. On the other hand, the algorithmic complexity defines the information

content of an individual sequence. Of course, as noted above, the fact that it is

possible to use probabilistic arguments on an individual sequence is a consequence

of the ergodicity of the system, which allows the assumption of good and uniform

statistical properties of arbitrarily long N -words.

For a dynamical system one can define the notion of algorithmic complexity

of the trajectory starting from the point x, C(x). This requires the introduction of

finite open coverings of the phase space, the consideration of symbolic sequences

thus generated, for the given trajectory, sampled at constant time intervals, and a

search for the supremum of the algorithmic complexity per symbol on varying the

coverings (Alekseev and Yakobson 1981). Then it can be shown (Brudno 1983,

White 1993) that for almost all x (we always mean with respect to the natural

invariant measure) one has:

C(x) = hKS

ln 2
, (2.47)
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where, as before, the factor ln 2 is a conversion factor between natural logarithms

and bits.

This result says that the Kolmogorov–Sinai entropy quantifies not only the rich-

ness, or surprise, of a dynamical system but also the difficulty of describing (almost)

any of its typical sequences.

Algorithmic complexity and Lyapunov exponents

Summing up, the theorem of Pesin together with those of Brudno and White shows

that a chaotic dynamical system can be seen as a source of messages that cannot be

described in a concise way, i.e. they are complex. We present here two examples

that may help in understanding the previous conclusion and the relation between

the Lyapunov exponent, the Kolmogorov–Sinai entropy and the algorithmic com-

plexity.

Following Ford (1983), let us consider the shift map

x(t + 1) = 2x(t) mod 1, (2.48)

whose natural measure is the Lebesgue measure, and λ = ln 2. From Eqs. (2.47) and

(2.34) one expects that in this case C(x) = 1, i.e. almost all the trajectories generate

binary sequences of maximum complexity. If one writes an initial condition in

binary representation, i.e., x(0) = ∑∞
j=1 a j 2− j , such that a j = 0 or 1, it is clearly

seen that the action of the map (2.48) on x(0) is just a shift of the binary coordinates:

x(1) =
∞∑
j=1

a j+1 2− j · · · x(t) =
∞∑
j=1

a j+t 2− j . (2.49)

With this observation it is possible to verify that K (N ) � N for almost all the solu-

tions of (2.48). Let us consider x(t) with accuracy 2−k and x(0) with accuracy 2−l ,

of course l = t + k. This means that, in order to obtain the k binary digits of the

output solution of (2.48), we must use a program of length no less than l = t + k.

Basically one has to specify a1, a2, . . . , al . Therefore we are faced with the problem

of the algorithmic complexity of the binary sequence (a1, a2, . . . , a∞) which deter-

mines the initial condition x(0). Martin-Löf (1966) proved a remarkable theorem

stating that, with respect to the Lebesgue measure, almost all the binary sequences

(a1, a2, . . . , a∞), which represent a real number in [0, 1], have maximum complex-

ity, i.e. K (N ) � N . In practice no human being will ever be able to distinguish the

typical sequence (a1, a2, . . . , a∞) from the output of a fair coin toss.

As a second example we consider a one-dimensional chaotic map

x(t + 1) = f (x(t)) . (2.50)
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If one wants to transmit to a friend on Mars the sequence {x(t), t = 1, 2, . . . , T }
accepting only errors smaller than a tolerance �, one can apply the following

strategy (Paladin et al. 1995).

(1) Transmit the rule (2.50): for this task one has to use a number of bits independent of

the length of the sequence T .

(2) Specify to the friend the initial condition x(0) with a fixed precision δ0 < � using a

finite number of bits which is independent of T .

(3) Let the system evolve until the first time τ1 such that the distance between two trajec-

tories, that was initially δx(0) = δ0, equals � and then specify again the new initial

condition x(τ1) with precision δ0.

(4) Let the system evolve and repeat procedures (2) and (3), i.e. each time the error ac-

ceptance tolerance is reached specify the initial conditions, x(τ1 + τ2), x(τ1 + τ2 +
τ3), . . . , with precision δ0. The times τ1, τ2, . . . are defined as follows: putting x ′(τ1) =
x(τ1) + δ0, τ2 is given by the minimum time such that |x ′(τ1 + τ2) − x(τ1 + τ2)| ≥ �

and so on.

By following steps (1)–(4) the friend on Mars can reconstruct with a precision �

the sequence {x(t)} simply iterating on a computer the system (2.50) between 1 and

τ1 − 1, τ1 and τ1 + τ2 − 1, and so on.

Let us now compute the amount of bits necessary to implement the above trans-

mission (1)–(4). To simplify the notation we introduce the quantities

γi = 1

τi
ln

�

δ0

(2.51)

which can be considered as sort of effective Lyapunov exponents (see the following).

The Lyapunov exponent λ can be written in terms of {γi } as follows

λ = 〈γi 〉 =
∑

i τiγi∑
i τi

= 1

τ
ln

�

δ0

(2.52)

where

τ = 1

N

∑
τi ,

is the average time after which one has to transmit the new initial condition and N
is the number of transmissions (let us observe that to obtain λ from the γi one has

to perform the average (2.52) because the transmission time, τi , is not constant).

If T is large enough N = T/τ � λT/ ln(�/δ0). Therefore, noting that in each

transmission for the reduction of the error from � to δ0 one needs to use ln2(�/δ0)

bits, the total amount of bits used in the whole transmission is

T

τ
ln2

�

δ0

= λ

ln 2
T . (2.53)

In other words the number of bits per unit time is proportional to λ.
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In more than one dimension, we simply have to replace λ with hKS in (2.53).

This point can be understood intuitively by noting that one has to repeat the above

transmission procedure in each of the expanding directions and using Pesin’s for-

mula. Thus the number of bits to be supplied per unit time typically satisfies relation

(2.47).

2.3 Beyond the Lyapunov exponents and the Kolmogorov–Sinai entropy

When dealing with the problem of prediction of the behavior of a physical sys-

tem it is useful to introduce the predictability time Tp, i.e. the time interval

on which one can typically forecast the system. A simple argument previously

suggested

Tp ∼ 1

λ
ln

(
�

δ0

)
. (2.54)

However, in any realistic system, relation (2.54) is too naive to be of actual rel-
evance. Indeed, it does not take into account some basic features of dynamical
systems.

� The Lyapunov exponent (2.9) is a global quantity: it measures the average rate of di-

vergence of nearby trajectories. In general there exist finite-time fluctuations and the

probability distribution function of these fluctuations is important for the characterization

of predictability. The generalized Lyapunov exponents have been introduced with the aim

of taking these fluctuations into account (Fujisaka 1983, Benzi et al. 1985).
� The Lyapunov exponent, by definition, involved the linearized dynamics, since it amounts

to computing the rate of separation of two infinitesimally close trajectories. On the other

hand, with regard to the predictability time (2.54) one is interested in a finite tolerance �,

because the initial error δ0 is typically finite. A generalization of the Lyapunov exponent

to finite size errors extends the study of the perturbation growth to the non-linear regime,

i.e. neither δ0 nor � is infinitesimal (Aurell et al. 1996).

2.3.1 Characterization of finite-time fluctuations

Let us consider the linear response, at a delay t , to an infinitesimal perturbation

δx(0):

R(t) = |δx(t)|
|δx(0)| , (2.55)

from which the Lyapunov exponent is computed according to (2.9). In order to take

into account the finite-time fluctuations, we can compute the different moments

〈R(t)q〉 and introduce the so-called generalized Lyapunov exponents (of order q)
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(Fujisaka 1983, Benzi et al. 1985):

L(q) = lim
t→∞

1

t
ln〈R(t)q〉 (2.56)

where 〈. . .〉 indicates the time average along the trajectory (see Section 2.1.1). It is

easy to show that

λ = dL(q)

dq

∣∣∣∣
q=0

. (2.57)

In the absence of fluctuations (that is, R(t) is deterministic hence 〈R(t)q〉 =
〈R(t)〉q), λ completely characterizes the error growth and we have L(q) = λq, while

in the general case L(q) is concave in q (i.e. d2L/dq2 > 0) (Paladin and Vulpiani

1987). Before discussing the properties of the generalized Lyapunov exponents,

let us consider a simple example with a non-trivial L(q). The model is the one-

dimensional map

x(t + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(t)

a
for 0 ≤ x ≤ a

1 − x(t)

1 − a
for a < x ≤ 1,

(2.58)

which for a = 1/2 reduces to the tent map. For a �= 1/2 the system is characterized

by two different growth rates. The presence of different growth rates makes L(q)

non-linear in q. Since the map (2.58) is piecewise linear and with a uniform invariant

density, by means of ergodicity the explicit computation of L(q) is very easy. The

moments of the response after a time t are simply given by

〈R(t)q〉 =
[

a

(
1

a

)q

+ (1 − a)

(
1

1 − a

)q]t

. (2.59)

From (2.56) and (2.59) we obtain:

L(q) = ln
[
a1−q + (1 − a)1−q

]
, (2.60)

which recovers the non-intermittent limit L(q) = q ln 2 in the symmetric case

a = 1/2 and, from (2.57), gives for the Lyapunov exponent the known result

λ = −a ln a − (1 − a) ln(1 − a). In the general case, assuming 0 ≤ a < 1/2, we

have that for q → +∞, L(q) is dominated by the less probable, most unstable

contributions and L(q)/q � − ln(a). In the opposite limit, q → −∞, L(q)/q �
− ln(1 − a).

We now show how L(q) is related to the fluctuations of R(t) at finite time t .
Define an “effective” Lyapunov exponent γ (t) at time t by

R(t) ∼ eγ (t)t . (2.61)
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In the limit t → ∞, the Oseledec (1968) theorem ensures that, for typical trajecto-

ries, γ (t) = λ = −a ln a − (1 − a) ln(1 − a). Therefore, for large t , the probability

density of γ (t) peaks at the most probable value λ. Let us introduce the probability

density Pt (γ ) of observing a given γ on a trajectory of length t . Large deviation

theory suggests

Pt (γ ) ∼ e−S(γ )t , (2.62)

where S(γ ) is the Cramer function (Varadhan 1984). The Oseledec theorem implies

that limt→∞ Pt (γ ) = δ(γ − λ); this gives constraints on the Cramer function, i.e.

S(γ = λ) = 0 and S(γ ) > 0 for γ �= λ.

The Cramer function S(γ ) is related to the generalized Lyapunov exponent L(q)

through a Legendre transform. Indeed, at large t , one has

〈R(t)q〉 =
∫

dγ Pt (γ )eqγ t ∼ eL(q)t , (2.63)

and by a steepest descent estimation one obtains

L(q) = max
γ

[qγ − S(γ )]. (2.64)

In other words each value of q selects a particular γ ∗(q) given by

dS(γ )

dγ

∣∣∣∣
γ ∗

= q (2.65)

from which 〈R(t)q〉 receives the dominant contribution.

We have already discussed how, for negligible fluctuations of the “effective”

Lyapunov exponents, the Lyapunov exponent characterizes completely the error

growth and L(q) = λq. In the presence of fluctuations, the probability distribution

for R(t) can be approximated, in a limiting condition, by a log-normal distribution.

This can be done assuming weak correlations in the response function so that (2.55)

factorizes in several independent contributions and the central limit theorem applies.

We can thus write

Pt (R) = 1

R
√

2πμt
exp

(
− (ln R − λt)2

2μt

)
, (2.66)

where λ and μ are given by

λ = lim
t→∞

1

t
〈ln R(t)〉

(2.67)

μ = lim
t→∞

1

t

(〈[ln R(t)]2〉 − 〈ln R(t)〉2
)
.
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The log-normal distribution for R corresponds to a Gaussian distribution for γ ,

with mean λ and variance μ/t , namely

S(γ ) = (γ − λ)2

2μ
, (2.68)

and a generalized Lyapunov exponent that is quadratic in q:

L(q) = λq + 1

2
μq2. (2.69)

Let us remark that, in general, the log-normal distribution (2.66) is a good ap-

proximation for non-extreme events, i.e. small fluctuations of γ around λ, so that

the expression (2.69) is correct only for small q (see Figure 2.1). This is because

the moments of the log-normal distribution grow too fast with q (Paladin and

Vulpiani 1987). Indeed from (2.65) we have that the selected γ ∗(q) is given by

γ ∗(q) = λ + μq and thus γ ∗(q) is not finite for q → ∞. This is unphysical be-

cause γ ∗(∞) is the fastest error growth rate in the system, and we may reasonably

suppose that it is finite.

Let us consider again the map (2.58). In this case we have λ = L ′(0) =
−a ln(a) − (1 − a) ln(1 − a) and μ = L ′′(0) = a(1 − a) (ln(a) − ln(1 − a))2,

which are the coefficients of the Taylor expansion of (2.60) around q = 0. For

large q the log-normal approximation gives L(q)/q � qμ/2 while the correct

limit is the constant L(q)/q � − ln(a).

2.3.2 Renyi entropies

Analogous to the generalized Lyapunov exponent, it is possible to introduce a

generalization of the Kolmogorov–Sinai entropy in order to take into account the

intermittency (in the sense of fluctuation of the “effective” Lyapunov exponent).

Let us recall the definition of Kolmogorov–Sinai entropy

hKS = − lim
ε→0

lim
N→∞

1

Nτ

∑
{W N (Aε )}

P(W N (Aε)) ln P(W N (Aε)) (2.70)

where Aε is a partition of the phase space in cells of size ε and W N (Aε) denotes an

N -step trajectory described, at the level of this partition, by a symbol sequence. The

generalized Renyi entropies (Paladin and Vulpiani 1987, Badii and Politi 1997), Kq ,

can be introduced by observing that (2.70) is nothing but the average of − ln P(W N )

with the probability P(W N ):

Kq = − lim
ε→0

lim
N→∞

1

Nτ (q − 1)
ln

( ∑
{W N (Aε )}

P(W N (Aε))q

)
. (2.71)
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Figure 2.1 Generalized Lyapunov exponent, L(q), for the map (2.58) with a = 0.3
(solid line) compared with the linear non-intermittent approximation, λq (dashed
line), and with the log-normal one, Eq. (2.69) (dotted line).

As in (2.57) one has hKS = limq→1 Kq = K1; in addition, from general results of

probability theory, one can show that Kq is decreasing monotonically with q.

It is not difficult to realize that, by analogy with the L(q), for the Renyi entropies

it is also possible to introduce a description in terms of large deviations, connecting

the Kq to a suitable Cramer function via a Legendre transform (Paladin and Vulpiani

1987, Badii and Politi 1997).

2.3.3 Growth of non-infinitesimal perturbations

In realistic situations, the initial condition of a system is known with limited accu-

racy. In this case the Lyapunov exponent is of little relevance for the characterization

of predictability and new indicators are needed. To clarify the problem, let us con-

sider the following coupled map model:

{
x(t + 1) = R x(t) + εh(y(t))
y(t + 1) = G(y(t)),

(2.72)

where x ∈ IR2, y ∈ IR, R is a rotation matrix of an angle θ , h is a vector function

and G is a chaotic map. For simplicity we consider a linear coupling, with both the

components of h equal to y: h(y) = (y, y), and the logistic map: G(y) = 4y(1 − y).
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For ε = 0 we have two independent systems: a regular and a chaotic one. Thus

the Lyapunov exponent of the x subsystem is λx (ε = 0) = 0, i.e. it is completely

predictable. In contrast, the y subsystem is chaotic with Lyapunov exponent λy =
ln 2.

If we now switch on the (small) coupling (ε > 0) we are confronted with a single

three-dimensional chaotic system with a positive global Lyapunov exponent

λ = λy + O(ε).

We are interested in making predictions only on the x subsystem. A direct applica-

tion of (2.54) would give

T (x)
p ∼ Tp ∼ 1

λ
, (2.73)

but this result is clearly unsatisfactory: the predictability time for x seems to be

independent of the value of the coupling ε. Let us underline that this is not due to

an artifact of the chosen example. Indeed, one can use the same argument in many

physical situations (Boffetta et al. 1996). A well-known example is the gravitational

three-body problem with one body (asteroid) much smaller than the other two (the

Sun and one planet). If one neglects the gravitational feedback of the asteroid on

the two massive bodies (restricted problem) one has a chaotic asteroid in the regular

field of the two massive bodies. As soon as the feedback is taken into account (i.e.

ε > 0 in the example) one has a non-separable three-body system with a positive

Lyapunov exponent. Of course, intuition correctly suggests that it should be possible

to forecast the motion of the massive bodies for very long times if the asteroid has

a very small mass (ε → 0).

The paradox arises from the use of (2.54), which is valid only for the tangent

vectors, also in the non-infinitesimal regime. As soon as the errors become large

one has to take into account the full non-linear evolution. The effect is shown for

the model (2.3.3) in Figure 2.2. The evolution of δx is given by

δx(t + 1) = R δx(t) + ε δh(y), (2.74)

where, with our choice, δh = (δy, δy). At the beginning, both |δx| and δy grow

exponentially. However, the available phase space for y is finite and the uncertainty

reaches the saturation value δy ∼ O(1) in a time t ∼ 1/λ. At larger times the two

realizations of the y variable are completely uncorrelated and their difference δy in

(2.74) acts as a noisy term. As a consequence, the growth of the uncertainty δx(t)
on x(t) becomes diffusive with a diffusion coefficient proportional to ε2 (Boffetta

et al. 1996):

|δx(t)| ∼ εt1/2 (2.75)
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Figure 2.2 Growth of error |δx(t)| for the coupled map (2.72). The rotation angle
is θ = 0.82099, the coupling strength ε = 10−5 and the initial error only on the
y variable is δy = δ0 = 10−10. The dashed line indicates |δx(t)| ∼ eλt where λ =
ln 2, the solid line shows |δx(t)| ∼ t1/2.

so that

T (x)
p ∼ ε−2. (2.76)

This example shows that, even in simple systems, the Lyapunov exponent can

be of little relevance for characterization of the predictability.

In more complex systems, in which different scales are present, one is typically

interested in forecasting large-scale motion, while the Lyapunov exponent is re-

lated to the small-scale dynamics. A familiar example is weather forecasting: the

Lyapunov exponent of the atmosphere is indeed rather large owing to small-scale

turbulent motion, but (large-scale) weather prediction is possible for about 10 days

(Lorenz 1969). It is thus natural to look for a generalization of the Lyapunov expo-

nent to finite perturbations from which one can obtain a more realistic estimation

for the predictability time. It is worth underlining the important fact that finite errors

are not confined in the tangent space but are governed by the complete non-linear

dynamics. In this sense the extension of the Lyapunov exponent to finite errors will

give more information on the system.

With the aim of generalizing the Lyapunov exponent to non-infinitesimal pertur-

bations let us now define the finite size Lyapunov exponent (FSLE) (Aurell et al.
1996, Boffetta et al. 2002). Consider a reference trajectory, x(t), and a perturbed

one, x′(t), such that |x′(0) − x(0)| = δ ( | . . . | being the Euclidean norm, but one
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can also consider other norms). One integrates the two trajectories and computes

the time τ1(δ, r ) necessary for the separation |x′(t) − x(t)| to increase from δ to rδ.

At time t =τ1(δ, r ) the distance between the trajectories is rescaled to δ and the

procedure is repeated in order to compute τ2(δ, r ), τ3(δ, r ) . . . .

The threshold ratio r must be r > 1, but not too large in order to avoid contribu-

tions from different scales in τ (δ, r ). A typical choice is r = 2 (for which τ (δ, r ) is

properly a “doubling” time) or r = √
2. In the same spirit as the discussion leading

to Eqs. (2.51) and (2.52), we can introduce an effective finite-size growth rate:

γi (δ, r ) = 1

τi (δ, r )
ln r. (2.77)

After having performed N error-doubling experiments, we can define the FSLE

as

λ(δ) = 〈γ (δ, r )〉t =
∑

i τiγi (δ, r )∑
i τi

= 1

〈τ (δ, r )〉e
ln r, (2.78)

where 〈τ (δ, r )〉e is

〈τ (δ, r )〉e = 1

N
N∑

n=1

τn(δ, r ). (2.79)

(see Boffetta et al. (2002) for details). In the infinitesimal limit, the FSLE reduces

to the Lyapunov exponent

lim
δ→0

λ(δ) = λ. (2.80)

In practice this limit means that λ(δ) displays a constant plateau at λ for sufficiently

small δ (Figure 2.3). For finite value of δ the behavior of λ(δ) depends on the details

of the non-linear dynamics. For example, in the model (2.3.3) the diffusive behavior

(2.75), by simple dimensional arguments, corresponds to λ(δ) ∼ δ−2.

Since the FSLE measures the rate of divergence of trajectories at finite errors,

one might wonder whether it is just another way of looking at the average response

〈ln(R(t))〉 (2.55) as a function of time. A moment of reflection shows that this is

not the case. Indeed in the case of 〈ln(R(t))〉 one has to perform an average at fixed

time interval, which is not the same as computing the average doubling time at a

fixed scale δ, as in (2.78).

The FSLE method has been applied successfully to the analysis of geophysical

data (Lacorata et al. 2001, 2004). The remarkable advantage of the method is the

fact that it works at a fixed scale, instead of at a fixed time as in more traditional ap-

proaches. This is particularly important in the case of strongly intermittent systems,

in which R(t), i.e. the “effective” Lyapunov exponent, can be very different in each

realization. In the presence of intermittency, averaging over different realizations
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Figure 2.3 λ(δ) as a function of δ for the coupled map (2.3.3) with ε = 10−5. The
perturbation was initialized as in Figure 2.2. For δ → 0, λ(δ) � λ (solid line). The
dashed line shows the behavior λ(δ) ∼ δ−2.

at fixed times can produce a spurious regime owing to the superposition of expo-

nential and diffusive contributions by different samples at the same time (Artale

et al. 1997).

2.3.4 The ε-entropy

The Kolmogorov–Sinai entropy, hKS (2.32), of a system measures the amount of

information per unit time that is necessary to record without ambiguity a generic

trajectory of a system. Since the computation of hKS involves the limit of arbitrary

fine resolution and infinite times, it turns out that, practically, for most systems it is

not possible to compute hKS. Nevertheless, in the same philosophy as the FSLE, by

relaxing the strict requirement of reproducing a trajectory with arbitrary accuracy,

one can introduce the ε-entropy which measures the amount of information needed

to reproduce a trajectory with accuracy ε in phase space. Roughly speaking the

ε-entropy can be considered the counterpart, in information theory, of the FSLE

(as the Kolmogorov–Sinai entropy is for the Lyapunov exponent). This quantity

was originally introduced by Shannon (1948), and by Kolmogorov (1956). More

recently Gaspard and Wang (1993) and Boffetta et al. (2002) made use of this

concept (and its space-time extension, the (ε, τ )-entropy) to characterize a large

variety of processes.
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We start with a continuous (in time) variable x(t) ∈ IRd , which represents the

state of a d-dimensional system, we discretize the time by introducing an interval

τ and we consider the new variable

X(m)(t) = (x(t), x(t + τ ), . . . , x(t + (m − 1)τ )) . (2.81)

Of course X(m)(t) ∈ IRmd and it corresponds to a piece of trajectory which lasts for

a time T = mτ .

In data analysis, the space where the state vectors of the system live is not known.

Moreover, usually only a scalar variable u(t) can be measured. In such a situation, as

a special case of (2.81), one considers vectors (u(t), u(t + τ ), . . . , u(t + mτ − τ )),

that live in IRm and allow a reconstruction of the original phase space (that is, a

reconstruction of topologically equivalent geometrical features of the dynamics),

known as delay embedding in the literature (Takens 1981, Kantz and Schreiber

1997).

Introduce now a partition of the phase space IRd , using cells of edge ε in each

of the d directions. Since the region where a bounded motion evolves contains a

finite number of cells, each X(m)(t) can be coded into a word of length m, out of a

finite alphabet:

X(m)(t) −→ W m(ε, t) = (i(ε, t), i(ε, t + τ ), . . . , i(ε, t + mτ − τ )) , (2.82)

where i(ε, t + jτ ) labels the cell in IRd containing x(t + jτ ). From the time evo-

lution of X(m)(t) one obtains, according to the hypothesis of ergodicity, the prob-

abilities P(W m(ε)) of the admissible words {W m(ε)}. The (ε, τ )-entropy per unit

time, h(ε, τ ), is defined as follows:

hm(ε, τ ) = 1

τ
[Hm+1(ε, τ ) − Hm(ε, τ )], (2.83)

h(ε, τ ) = lim
m→∞ hm(ε, τ ) = 1

τ
lim

m→∞
1

m
Hm(ε, τ ), (2.84)

where Hm is the entropy of blocks of length m:

Hm(ε, τ ) = −
∑

{W m (ε)}
P(W m(ε)) ln P(W m(ε)). (2.85)

For the sake of simplicity, we ignored the dependence on details of the partition (that

is, details other than the cell size ε). To make h(ε, τ ) partition independent one has

to consider a generic partition of the phase space {A} and to evaluate the Shannon

entropy on this partition: hSh(A, τ ). The ε-entropy is thus defined as the infimum

over all partitions for which the diameter of each cell is less than ε (Gaspard and
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Wang 1993):

h(ε, τ ) = inf
A:diam(A)≤ε

hSh(A, τ ). (2.86)

Note that the time dependence in (2.86) is trivial for deterministic systems, and that

in the limit ε → 0 one recovers the Kolmogorov–Sinai entropy

hKS = lim
ε→0

h(ε, τ ).

The (ε, τ )-entropy h(ε, τ ) is well defined also for stochastic processes. Actually

the dependence of h(ε, τ ) on ε can give some insight into the underlying stochastic

process (Gaspard and Wang 1993, Boffetta et al. 2002). For instance, in the case

of a stationary Gaussian process with spectrum S(ω) ∝ ω−(1+2α) with 0 < α < 1,

one has (Kolmogorov 1956):

lim
τ→0

h(ε, τ ) ∼ ε−1/α. (2.87)

However, we have to stress that the above behavior may be difficult to observe

experimentally, mainly owing to problems related to the choice of τ (Cencini et al.
2000).

In the next chapter we will show how an entropic analysis in terms of h(ε) can

be very useful for treating the chaos/noise distinction issue, and more generally for

the scale-dependent description of the signal character.
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3

Coarse graining, entropies and Lyapunov
exponents at work

The meaning of the world is the separation of wish and fact.

Kurt Gödel

In the previous chapter we saw that in deterministic dynamical systems there exist

well established ways to define and measure the complexity of a temporal evolution,

in terms of either the Lyapunov exponents or the Kolmogorov–Sinai entropy. This

approach is rather successful in deterministic low-dimensional systems. On the

other hand in high-dimensional systems, as well as in low-dimensional cases with-

out a unique characteristic time (as in the example discussed in Section 2.3.3), some

interesting features cannot be captured by the Lyapunov exponents or Kolmogorov–

Sinai entropy. In this chapter we will see how an analysis in terms of the finite size

Lyapunov exponents (FSLE) and ε-entropy, defined in Chapter 2, allows the char-

acterization of non-trivial systems in situations far from asymptotic (i.e. finite time

and finite observational resolution). In particular, we will discuss the utility of ε-

entropy and FSLE for a pragmatic classification of signals, and the use of chaotic

systems in the generation of sequences of (pseudo) random numbers. In addition

we will discuss systems containing some randomness.

3.1 Characterization of the complexity and system modeling

Typically in experimental investigations, time records of only few observables are

available, and the equations of motion are not known. From a conceptual point

of view, this case can be treated in the same framework that is used when the

evolution laws are known. Indeed, in principle, with the embedding technique one

can reconstruct the topological features of the phase space and dynamics (Takens

1981, Abarbanel et al. 1993, Kantz and Schreiber 1997). Nevertheless there are

rather severe limitations in high-dimensional systems (Eckmann and Ruelle 1992)

58
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and even in low-dimensional systems non-trivial features can appear in the presence

of noise (Paladin et al. 1995).

3.1.1 A simple model

Consider the following map

xt+1 = [xt ] + F(xt − [xt ]), (3.1)

where [xt ] indicates the integer part of xt and F(y) is given by:

F(y) =
{

(2 + α)y if y ∈ [0, 1/2[

(2 + α)y − (1 + α) if y ∈ [1/2, 1],
(3.2)

with α > 0. The largest Lyapunov exponent λ can be obtained immediately: λ =
ln |F ′|, with F ′ = dF/dy = 2 + α. This map generates a diffusive behavior on

large scales (Geisel and Nierwetberg 1984) that can be characterized quantitatively

by the diffusion coefficient, D:

〈(xt − x0)2〉 ≈ 2Dt for large t. (3.3)

One expects the following behavior for h(ε):

h(ε) ≈ hKS = λ for ε < 1, (3.4)

h(ε) ∝ D

ε2
for ε > 1. (3.5)

Relation (3.4) says that, when ε is small enough, the ε-entropy reduces to the

Kolmogorov–Sinai entropy, given by the Lyapunov exponent in a one-dimensional

chaotic system. Relation (3.5) translates the idea that, owing to an efficient time

decorrelation, on a large scale the specific dynamical details are not important, and

a diffusive behavior dominates giving rise to the ε-entropy of Brownian motion (see

Section 2.3.4). Consider now as a stochastic system, the following special noisy

map

xt+1 = [xt ] + G(xt − [xt ]) + σηt , (3.6)

where G(y), as shown in Figure 3.1, is a piecewise linear map which approximates

the map F(y), and ηt is a stochastic process uniformly distributed in the interval

[−1, 1], with no correlation in time. When |dG/dy| < 1, as in the case we consider,

the map (3.6), in the absence of noise, gives a non-chaotic time evolution. From

a numerical point of view, computation of the FSLE is much less expensive than

computation of the ε-entropy, moreover one can safely assume that, at least in one

dimension, λ(ε) and h(ε) are practically the same thing (this has been checked
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Figure 3.1 The map F(x) (3.2) for α = 0.4 is shown together with the super-
imposed approximating (regular) map G(x) (3.6) obtained using 40 intervals of
slope 0.
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Figure 3.2 λ(ε) versus ε obtained with the map F(y) (3.2) with α = 0.4 (◦) and
with the noisy (regular) map (3.6) (�) with 10 000 intervals of slope 0.9 and
σ = 10−4. The straight lines indicate the Lyapunov exponent λ = ln 2.4 and the
diffusive behavior λ(ε) ∼ ε−2.

for ε not too small). Thus we now compare the FSLE for the chaotic map (3.1)

and for the noisy map (3.6). In the latter the FSLE has been computed using two

different realizations of the noise (see Section 3.3). In Figure 3.2 we show λ(ε)

versus ε for the two cases. The two curves are practically indistinguishable in the

region ε > σ . The differences appear only at very small scales ε < σ where one
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has a λ(ε) which grows with ε for the noisy case, remaining at the same value

for the chaotic deterministic case.1 This analysis shows that we can distinguish

three different regimes when observing the dynamics of (3.1) and (3.6) at different

length scales. At the large length scales ε > 1 we observe diffusive behavior in

both models, with FSLE and ε-entropy scaling as ε−2, as expected for a Wiener

process. At length scales σ < ε < 1 both models show a behavior that is typical of

chaotic deterministic systems, because the ε-entropy and FSLE are independent of

ε and larger than zero. Finally, at the smallest length scales ε < σ , while the system

(3.1) still shows chaotic behavior, we see stochastic behavior for the system (3.6),

signaled by the renewal of h(ε) variation. By “stochastic behavior” of a system on

a certain interval of ε we mean that its ε-entropy or FSLE decreases according to

a power law of ε in that interval. The reason is that important stochastic processes

display such behavior.

3.1.2 On the distinction between chaos and noise

The above results show that the distinction between chaos and noise can be highly

non-trivial, and makes sense only in very peculiar cases, for example, very low-

dimensional systems. Nevertheless, even in this case, the entropic analysis can be

unable to recognize the “true” character of the system owing to the lack of resolution.

Again, the comparison between the diffusive map (3.1) and the noisy map (3.6)

makes this point clearer. For σ ≤ ε ≤ 1 both the systems (3.1) and (3.6), in spite

of their “true” character, will be classified as deterministically chaotic, while for

ε ≥ 1 both can be considered as stochastic as a random walk.

In high-dimensional chaotic systems, with N degrees of freedom, one has typ-

ically h(ε) = hKS ∼ O(N ) for ε ≤ εc(N ) (where εc → 0 as N → ∞) while for

ε ≥ εc, h(ε) decreases, often with a power law (Gaspard and Wang 1993, Boffetta

et al. 2002). Since also in some stochastic processes, as noted above, the ε-entropy

obeys a power law, this can be a source of confusion.

These kinds of problems are not abstract ones, as a recent debate on “micro-

scopic chaos” demonstrates. The detection of microscopic chaos by data analysis

has recently been addressed in work by Gaspard et al. (1998), see also Grassberger

and Schreiber (1999) and Dettmann et al. (1999) for technical comments. Gaspard

et al. (1998), from the entropic analysis of an ingenious experiment on the position

of a Brownian particle in a liquid, claim to give empirical evidence for microscopic

chaos. In other words, they state that the diffusive behavior observed for a Brownian

1 Hereafter we use corresponding scale values ε for both the FSLE and the ε-entropy in order to make a direct
comparison between the two quantities.
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particle is the consequence of chaos at a molecular level. Their work can be sum-

marized briefly as follows. From a long (≈1.5 × 105 data) record of the position

of a Brownian particle they compute the ε-entropy, from which they obtain:

h(ε) ∼ D

ε2
, (3.7)

where D is the diffusion coefficient. Then, assuming that the system is deterministic,

and making use of the inequality h(ε > 0) ≤ hKS, they conclude that the system

is chaotic. However, their result does not give direct evidence that the system

is deterministic and chaotic. Indeed, the power law (3.7) can be produced with

different mechanisms:

(1) a genuine chaotic system with diffusive behavior, such as the map (3.2);

(2) a non-chaotic system with some noise, such as the map (3.6) (Cencini et al. 2000);

(3) a deterministic linear non-chaotic system with many degrees of freedom, see for instance

Mazur and Montroll (1960);

(4) a “complicated” non-chaotic system such as the Ehrenfest wind-tree model where a

particle diffuses in a plane owing to collisions with randomly placed square scatterers,

with fixed orientation, as discussed by Dettmann et al. (1999) in their comment on

Gaspard et al. (1998); see also Chapter 6.

It seems to us that the weak points of the analysis in Gaspard et al. (1998) are the

following:

(a) the explicit assumption that the system is deterministic;

(b) the limited number of data points and therefore limitations in both resolution and block

length.

Point (a) is crucial, since without this assumption (even with an enormous data set)

it is not possible to distinguish between cases (1) and (2). One has to say that in

cases (3) and (4), at least in principle, it is possible to understand that the systems

are not chaotic, but for this one has to use a huge number of data. For example

Dettmann et al. (1999) estimated that in order to distinguish between (1) and (4)

using realistic parameters of a typical liquid, the number of data points required is

at least ∼1034.

With respect to the discussion about the interpretation of the data of this experi-

ment, in Gaspard et al. (1999) and Briggs et al. (2001), the authors agree that the

data originally presented do not prove that the process generating them must be

chaotic. In any case, besides the technical aspects the experiment can be considered

an interesting step toward a demonstration that chaos takes place in microscopic

systems.

While exposing the difficulties we have set the basis for turning our limitations

into an advantage. Certainly, we do not have access to arbitrarily fine resolutions,
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but the testable ones can be analyzed by powerful tools that allow a useful classi-

fication of dynamical behaviors. So we have the apparently paradoxical result that

“complexity” helps in the construction of models. Basically, in the case in which one

has a variety of behaviors at varying scale of resolution, there is a certain freedom

in the choice of the model to be adopted. We have seen that, for some systems, the

behavior at large scales can be realized using both chaotic deterministic models and

suitable stochastic processes. From a pragmatic point of view, the fact that in cer-

tain stochastic processes h(ε) ∼ ε−α can indeed be extremely useful for modeling,

for example, high-dimensional systems. Perhaps the most relevant case in which

one can use this freedom in modeling is fully developed turbulence where the non-

infinitesimal (the so-called inertial range) properties can be mimicked successfully

in terms of multi-affine stochastic processes (Boffetta et al. 2002).

3.1.3 Macroscopic chaos in globally coupled maps

The emergence of non-trivial collective behaviors in high-dimensional dynamical

systems has attracted much attention (Kaneko 1990, Chaté and Manneville 1992,

Pikovsky and Kurths 1994). A limiting case of macroscopic coherence is the global

synchronization of all the parts of the system. In addition to synchronization there

exist other interesting phenomena (Pikovsky et al. 2003), among which we just

mention clustering (Konishi and Kaneko 1992), and collective motion in globally

coupled maps (Kaneko 1995). The latter behavior can be called macroscopic chaos
(Shibata and Kaneko 1998, Cencini et al. 1999) (see below).

Let us consider a globally coupled map (GCM) defined as follows

xn(t + 1) = (1 − c) fa(xn(t)) + c

N

N∑
i=1

fa(xi (t)), (3.8)

where N is the total number of elements and fa(x) is a non-linear function; in the

following we consider the tent map fa(x) = a(1/2 − |x − 1/2|).
The evolution of a macroscopic variable, for example the center of mass

m(t) = 1

N

N∑
i=1

xi (t), (3.9)

upon varying c and a in Eq. (3.8), displays different behaviors (Shibata and Kaneko

1998, Cencini et al. 1999):

(a) standard chaos: m(t) is almost constant, obeying a Gaussian statistics with a standard

deviation σN =
√

〈m(t)2〉 − 〈m(t)〉2 ∼ N−1/2 around a fixed value;

(b) macroscopic periodicity: m(t) is a superposition of a periodic function and small fluc-

tuations O(N−1/2);
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(c) macroscopic chaos: m(t) displays an irregular but quasi-deterministic motion, as can

be seen by looking at the plot of m(t) versus m(t − 1) which appears as a structured

function (with thickness ∼N−1/2), and suggests a chaotic motion for m(t).

In the case of macroscopic chaos one expects that the center of mass evolves

with typical times longer than the characteristic time of the full dynamics (i.e. the

microscopic dynamics); the order of magnitude of the latter time may be estimated

as 1/λ, with λ the Lyapunov exponent of the microscopic dynamics.

Indeed, conceptually, macroscopic chaos for a GCM can be thought of as anal-

ogous to hydrodynamical chaos for molecular motion, where, in spite of a huge

microscopic Lyapunov exponent (λ ∼ 1/τc ∼ 1011s−1, τc being the collision time),

one can have rather different behaviors at a hydrodynamical (coarse-grained) level,

i.e. regular motion (λhydro ≤ 0) or chaotic motion (0 < λhydro � λ). In principle, if

one knows the hydrodynamic equations, it is possible to characterize the macro-

scopic behavior using standard dynamical system techniques. However, in generic

coupled map lattices there are no general systematic methods to build up the macro-

scopic equations, except for in particular cases (Pikovsky and Kurths 1994, Kaneko

1995). Therefore, here we discuss the macroscopic behavior of the system relying

upon the full microscopic level of description and its numerical simulation.

Since the microscopic Lyapunov exponents cannot give a characterization of

the macroscopic motion, different approaches have been proposed recently based

on evaluation of the self-consistent Perron–Frobenius2 (PF) operator (Perez and

Cerdeira 1992, Pikovsky and Kurths 1994, Kaneko 1995) and on the FSLE (Shibata

and Kaneko 1998, Cencini et al. 1999). Despite the conceptual interest of the former,

in some sense the self-consistent PF operator plays a role similar to the Boltzmann

equation for gases (Cencini et al. 1999); here we shall only discuss the latter which

seems to us more appropriate to address the predictability problem.

We recall that for chaotic systems, in the limit of infinitesimal perturbations

ε → 0, the FSLE behaves as λ(ε) → λ, i.e. λ(ε) displays a plateau at the value λ

for sufficiently small ε. For non-infinitesimal ε, one expects the ε-dependence of

λ(ε) to give information on the existence of other characteristic time scales gov-

erning the system, and, hence, that it could be able to characterize the macroscopic

motion. In particular, at large scales, i.e. ε � 1/
√

N , one expects the (fast) micro-

scopic components to saturate and λ(ε) ≈ λM, where λM can be fairly called the

“macroscopic” Lyapunov exponent.

The FSLE of system (3.8) has been determined by looking at the evolution of

|δm(t)|, which has been initialized at the value δm(t) = εmin by shifting all the

elements of the unperturbed system by the quantity εmin (i.e. x ′
i (0) = xi (0) + εmin),

2 The self-consistent PF operator relates to the evolution of the single variable probability density function.
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Figure 3.3 (a) λ(ε) versus ε for the system (3.8) with a = 1.7, c = 0.3 for N = 104

(×), N = 105 ( ), N = 106 (◦) and N = 107 (�). The first plateau corresponds
to the microscopic Lyapunov exponent λ ≈ 0.17 and the second one corresponds
to the macroscopic Lyapunov exponent λM ≈ 0.007. The average is over 2 × 103

realizations for N = 104, 105, 106 and 250 realizations for N = 107. (b) The same

as (a) after rescaling the ε-axis by
√

N .

for each realization. The computation has been performed by choosing the tent

map as local map, but similar results can be obtained for other maps (Shibata and

Kaneko 1998, Cencini et al. 1999). Figure 3.3(a) shows λ(ε) versus ε in the case of

macroscopic chaos. One has two plateaus: at small values of ε(ε ≤ ε1), as expected

from general considerations, λ(ε) = λ; for ε ≥ ε2 one has another plateau, revealing

the existence of a “macroscopic” Lyapunov exponent, λ(ε) = λM. Moreover, ε1 and

ε2 decrease at increasing N : indeed, by looking at Figure 3.3(b) one can see that

ε1, ε2 ∼ 1/
√

N . It is important to observe that the macroscopic plateau, which is

almost non-existent for N = 104, becomes more and more resolved and extended

at large values of ε
√

N on increasing N up to N = 107. Therefore we can argue

that the macroscopic motion is well defined in the limit N → ∞ and one can

conjecture that in this limit the microscopic signature in the evolution of δm(t)
disappears completely in favor of the macroscopic behavior. In the case of standard

chaos (λM < 0) one has only the microscopic plateau and then a fast decrease in

λ(ε) (Cencini et al. 1999).

We can summarize the main result briefly as follows:

� at small ε (� 1/
√

N ), where N is the number of elements, one recovers the “microscopic”

Lyapunov exponent, i.e. λ(ε) ≈ λ;
� at large ε (� 1/

√
N ) one observes another plateau λ(ε) ≈ λM which can be much smaller

than the microscopic one.

The emerging scenario is that at a coarse-grained level, i.e. ε � 1/
√

N , the system

can be described by an “effective” hydrodynamical equation (which in some cases
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can be low dimensional), while the “true” high-dimensional character appears only

at very high resolution, i.e. ε ≤ εc = O(1/
√

N ).

3.1.4 Hydrodynamic Lyapunov modes

We saw how in high-dimensional systems one can have coherent behavior of the

numerous degrees of freedom. Typically the global quantities which determine the

“macroscopic” behavior are rather slow compared with the “microscopic” dynam-

ics, i.e. their typical times are much longer than the inverse of the first Lyapunov

exponent. An attempt to connect the macroscopic dynamics with the microscopic

dynamics, with a coarse-graining approach (in terms of the FSLE), was discussed

in the previous subsection.

Another interesting way is to try to associate the macroscopic behavior of a high-

dimensional system with the Lyapunov exponents close to zero. In the last few years,

some interest has been devoted to the so-called hydrodynamic Lyapunov modes
(HLMs), i.e. to the Lyapunov vectors that correspond to the nearly zero Lyapunov

exponents (McNamara and Mareschal 2001, Hoover et al. 2002, Eckmann et al.
2005). Let us review this approach briefly. Write in a formal way the evolution of

the tangent vector, induced by the dynamics x(0) → x(t) = S t x(0), as

z(t) = M(t)z(0) (3.10)

where M(t) is determined by the evolution of the state between 0 and t , see Section

2.1. We know from the Oseledec theorem that, in an ergodic system, the Lyapunov

exponents λ1, λ2, . . . , λN are determined by the eigenvalues α1(t), α2(t), . . . , αN (t)
of the matrix

V(t) = [
M†(t)M(t)

]1/2t

since in the limit t → ∞ one has α1(t) → eλ1, α2(t) → eλ2, . . . for almost all the

initial conditions.

In a similar way one can define the Lyapunov vectors as the eigenvectors (in the

limit t → ∞) of the matrix V(t). As a technical point we note that, at variance with

the Lyapunov exponents, the Lyapunov vectors usually depend on x(0) (Crisanti

et al. 1993).

Numerical studies of hard-sphere fluid and other systems, for example coupled

map lattices and chains of anharmonic oscillators, reveal that Lyapunov exponents

close to zero correspond to “hydrodynamic” Lyapunov vectors, i.e. with a structure

of weakly perturbed coherent long wavelength waves (McNamara and Mareschal

2001, Hoover et al. 2002, Yang and Radons 2006). In order to give an idea of such

behavior consider Np � 1 disks moving in a two-dimensional box, of sides Lx and

L y , with periodic conditions, with elastic scattering (Eckmann and Gat 2000). The
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Lyapunov vectors have 4Np components which we indicate as(
z(x)

j , z(y)
j , z(px )

j , z
(py )

j

)
j = 1, 2, . . . , Np.

Let us introduce a vector field

v(x, t) = (
v(x)(x, t), v(y)(x, t), v(px )(x, t), v(py )(x, t)

) ∈ IR4,

defined only by the instantaneous positions x j of the particles:

v(x)(x, t) = z(x)
j (t),

i.e. one selects the j such that x = x j (t), and similarly for the other components

(Eckmann and Gat 2000). Of course in such a treatment the continuous limit is

assumed implicitly.

The vector field of the slow Lyapunov vectors, defined by the Lyapunov vectors

with small Lyapunov exponents, is well approximated by the long wavelength

eigenmodes of a “reverse wave equation” in the considered domain, i.e.

∂v(x, t)
∂t

= − 1

N 2
p


v(x, t);

note the unusual sign in front of 
. One has a long wavelength wave with, say, n
nodes in the x direction and m nodes in the y direction and the Lyapunov exponent

is proportional to

1

Np

√( n

Lx

)2

+
( m

L y

)2

.

In the case of the hard-sphere fluid these collective perturbations are due to the

conservation of certain quantities during collisions. These new conservation laws

generate new hydrodynamic fields, just as the conservation of mass, momentum,

and energy generate the density, velocity, and temperature fields (McNamara and

Mareschal 2001).

Such behavior is intriguing because the HLM may be related to hydrodynamic

fluctuations. If it were possible to extract the transport coefficients directly from

these exponents, it would be rather interesting to find a link between the reversible

microscopic dynamics and the irreversible macroscopic behavior.

Unfortunately, progress in such an ambitious project is very slow owing to

formidable technical difficulties. On the other hand some interesting results have

been obtained. There is numerical and analytical evidence of the existence of HLMs

in lattices of coupled Hamiltonian and dissipative maps. The HLMs in Hamiltonian

systems are propagating, whereas those of dissipative systems show only diffusive

motion. Simulations of various systems confirm that the existence of HLMs is a

very general feature of extended dynamical systems with continuous symmetries
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and that the above-mentioned differences between the two classes of systems are

universal to a large extent (Yang and Radons 2006). In a recent work (Ginelli

et al. 2007) a general method to determine Lyapunov vectors in both discrete-

and continuous-time dynamical systems was introduced. For spatially extended

systems, it has been shown that the Lyapunov vectors computed using the matrix

V(t) can have properties qualitatively different from those computed from M(t),
composing the orthonormalized basis obtained by the standard procedure used to

calculate the Lyapunov exponents.

3.1.5 Other high-dimensional systems: convective chaos

A general feature of systems evolving in space and time is that a generic perturba-

tion not only grows in time but also propagates in space. Aiming at a quantitative

description of such phenomena, Deissler and Kaneko (1987) introduced a gen-

eralization of the Lyapunov exponent to a non-stationary frame of reference: the

comoving Lyapunov exponent, providing an extension of the notion of convective

instability, capturing global and non-linear features. For the sake of simplicity, we

consider the case of a one-dimensional coupled map lattice with unidirectional

coupling (Rudzik and Pikovsky 1996):

xn(t + 1) = (1 − c) fa(xn(t)) + c fa(xn−1(t)), (3.11)

where t and n(=1, . . . , L) label the discrete time and space respectively, and c is

the coupling strength between near-neighboring lattice sites.

Such a class of models is able to capture the basic phenomenology of many

physical systems in which a privileged direction exists, for example boundary layers,

thermal convection and wind-induced water waves (Pikovsky 1989, Falcioni et al.
1999).

Let us consider an infinitesimally small perturbation initially different from zero

only in one site of the lattice. By following the evolution of the perturbation along

the sites defined by j(t) = [vt] (where [· · ·] denotes the integer part), one expects:

|δx j(t)(t)| ≈ |δx0(0)|eλ(v)t , (3.12)

where λ(v) is the largest comoving Lyapunov exponent, defined as

λ(v) = lim
t→∞ lim

L→∞
lim

|δx0(0)|→0

1

t
ln

( |δx[vt](t)|
|δx0(0)|

)
. (3.13)

In this equation the order of the limits is important to obtain a well-defined quantity

and avoid finite-size effects. For v = 0 one recovers the usual Lyapunov exponent.

Moreover, one has that λ(v) = λ(−v) (and the maximum value is obtained at v = 0)
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v

Figure 3.4 Sketch of the behavior of λ(v) for (a) absolutely stable and convectively
stable flow, (b) absolutely stable but convectively unstable flow, and (c) absolutely
unstable flow.

when a privileged direction does not exist, otherwise λ(v) can be asymmetric and

the maximum can be attained at value v �= 0.

Two other indicators can be defined, that are related to the comoving Lyapunov

exponent: the local Lyapunov exponent (Pikovsky 1993) and the specific (or tempo-

ral) Lyapunov exponents, see e.g. Cencini and Torcini (2001). A central concept in

the study of flow systems is that of convective instability, that presents itself when a

perturbation grows exponentially along the flow but vanishes locally. We can give a

description of the phenomenology of flow systems in terms of the largest Lyapunov

exponent and of the comoving Lyapunov exponent (see Figure 3.4). The absolute

stability is identified by the condition λ(v) < 0 for all v ≥ 0; the convective instabil-

ity corresponds to λ1 = λ(v = 0) < 0 and λ(v) > 0 for some velocities v > 0, and

finally standard chaos (absolute instability) is present when λ1 = λ(v = 0) > 0.

The convective instability is conceptually very interesting, because even if the

largest Lyapunov exponent is negative the behavior of the system may be very

irregular (Falcioni et al. 1999).

For the spatial “complexity” associated with convective instability there is no

simple and systematic characterization. A first explanation for these features may

be found in the sensitivity of convective unstable systems to small perturbations

at the beginning of the chain (always present in a physical system), which grow
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exponentially while they are transmitted along the flow. This simple intuition can

be made more quantitative by defining an indicator which measures the degree of

sensitivity to the boundary conditions (Falcioni et al. 1999). With regard to the state

of the initial site, we can have, for instance, x0(t) = x∗ with x∗ being an unstable

fixed point of the map fa(x), or more generic time-dependent boundary conditions

where x0(t) is equal to a known function of time y(t), which can be periodic, quasi-

periodic or chaotic. Here, following Pikovsky (1989), we consider a quasi-periodic

boundary condition x0(t) = 0.5 + 0.4 sin(ωt), with ω = π (
√

5 − 1). However, the

results we are going to discuss do not depend too much on the details of the

boundary conditions, i.e. on x0(t) being quasi-periodic or chaotic. We wonder how

an uncertainty |δx0(t)| of the order of δ0 in the knowledge of the boundary conditions

will affect the system. We consider only the case of infinitesimal perturbations, i.e.

δxn evolves according to the tangent space dynamics, and for the moment we do not

consider intermittency (i.e. time fluctuations of the comoving Lyapunov exponents).

The uncertainty δxn(t), in the determination of the variable at time t and site n,

is given by the superposition of the evolved δx0(t − τ ) with τ = n/v:

δxn(t) ∼
∫

δx0(t − τ )eλ(v)τ dv ∼ δ0

∫
e[λ(v)/v]ndv. (3.14)

Since we are interested in the asymptotic spatial behavior, i.e. large n, we can write:

δxn(t) ∼ δ0 e
n. (3.15)

The quantity 
 can be considered as a sort of spatial-complexity-index, an operative

definition of which is the following:


 = lim
n→∞

1

n

〈
ln

|δxn|
δ0

〉
, (3.16)

where the brackets mean a time average. The previous relation gives a link between

the comoving and the “spatial” Lyapunov exponent 
, i.e. a relation between the

convective instability of a system and its sensitivity to the boundary conditions. In

the particular case of a non-intermittent system, a saddle-point estimate of Eq. (3.14)

gives


 = 
∗ = max
v

[
λ(v)

v

]
. (3.17)

This equation holds exactly only in the absence of intermittency; in general the

relation is more complicated. One can introduce the effective comoving Lyapunov

exponent, γ̃t (v), which gives the exponential changing rate of a perturbation, in the

frame of reference moving with velocity v, on a finite time interval t . According to
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general arguments one has 〈γ̃t (v)〉 = λ(v). Then, instead of (3.14) one has

δxn(t) ∼ δ0

∫
e[γ̃t (v)/v]ndv, (3.18)

and therefore:


 = lim
n→∞

1

n

〈
ln

|δxn|
δ0

〉
= lim

n→∞
1

n
ln

|δx typical
n |
δ0

=
〈

max
v

[
γ̃t (v)

v

]〉
. (3.19)

Because of the fluctuations, it is not possible to write 
 in terms of λ(v), although

one can obtain a lower bound (Falcioni et al. 1999):


 ≥ max
v

[〈γ̃t (v)〉
v

]
= max

v

[
λ(v)

v

]
≡ 
∗. (3.20)

The difference between 
 and 
∗ is only due to intermittency, as investigations

of a non-intermittent map and computation of the generalized spatial Lyapunov

exponents Ls(q) confirm (Falcioni et al. 1999).

In conclusion we can say that the spatial complexity displayed by these systems

indicates that the unpredictability of a system cannot be completely reduced to the

existence of at least one positive Lyapunov exponent.

3.2 How random is a random number generator?

In most numerical computations, for example Monte Carlo simulations and molec-

ular dynamics, it is necessary to have a series of independent identically distributed

(i.i.d.) continuous random variables x(1), . . . , x(n) uniformly distributed in the in-

terval [0, 1]. One can produce true random number sequences only by using some

non-deterministic physical phenomenon, for example the decay of radioactive nu-

clei or the arrival on a detector of cosmic rays. A more practical way is to use a

computer that produces a “random-looking” sequence of numbers, by means of a

recursive rule. Let us comment on this point. It is now well established that de-

terministic systems may have a time evolution that appears rather “irregular” with

the typical features of genuine random processes. Moreover, we know, see Section

3.1.2, that there are rather severe restrictions on the possibility of distinguishing

between signals generated by different rules, such as regular (high-dimensional)

systems, deterministic chaotic systems, and genuine stochastic processes. However,

we know that, although the above result may appear negative, it allows a pragmatic

classification of the stochastic or chaotic features of a signal, according to the de-

pendence of the ε-entropy on ε, and this yields some freedom in modeling systems.

As a matter of fact in physical problems one normally uses these similarities to

model an “irregular” deterministic behavior by means of a truly stochastic process.
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We will see here that one can also use the practical difficulties in the distinction

chaos/noise to mimic random processes with deterministic chaotic systems.

We define a pseudo random number generator (PRNG), which is an algorithm, i.e.

a deterministic system, designed to mimic a random sequence on a computer. This

issue is far from being trivial; in Von Neumann’s words: “Anyone who considers

arithmetical methods of producing random digits is, of course, in a state of sin”

(Von Neumann 1963). Two unavoidable problems are the following.

(a) Since the algorithm is deterministic, the Kolmogorov–Sinai entropy (hKS) is finite.

The sequence {x(i)} cannot be “really random,” i.e. with an infinite Kolmogorov–Sinai

entropy, because the deterministic dynamical rule constrains the outputs that are near

in time and supplies us with a maximum of log2(ehKS ) random bits per unit time. This

limitation would be present also in a hypothetical computer able to work with real

numbers.

(b) Since any deterministic system with a finite number of states is periodic, any sequence

produced by an algorithm working with discrete numbers (as happens with a computer)

must be periodic, possibly after a transient; therefore, not only hKS < ∞, but also

hKS = 0. The computer-implemented system can only be pseudochaotic.

Let us stress the main points to bear in mind when using a deterministic chaotic

system as a PRNG.

(1) The outputs {x(t)} of a perfect RNG, for small ε, have h(ε) = ln(1/ε). Since in any

deterministic d-dimensional system h(ε) � hKS for small ε (i.e. ε < εc with ln εd
c ∼

−hKS), one should work with a very large hKS. In this way the true (deterministic) nature

of the PRNG becomes apparent only below the small scale εc. Another possibility is to

look only at one variable of a high-dimensional system, so that the lower scale is given

by ε1c ≈ εd
c � εc.

(2) In order to actually observe the behavior h(ε) ∼ ln(1/ε) (i.e. the behavior of independent

variables) for ε ≥ εc in a concrete deterministic algorithm, it is necessary that the time

correlation is very weak. We will discuss how this property may be achieved by taking

as output a single variable of a high-dimensional chaotic system.

A third point has to be added, dealing with the problem (b). Quantities like

hKS and the ε-entropy have an asymptotic nature, i.e. they are related to large

time behavior. This allows the existence of situations where the system is, strictly

speaking, non-chaotic (hKS = 0) but its features appear irregular to a certain extent.

Such a property (denoted by the term pseudochaos (Chirikov and Vivaldi 1999,

Mantica 2000, Zaslavsky 2002)) is basically due to the presence of long transient

effects. As noted above, the use of a computer discretizes the phase space of a

dynamical system, canceling (at least) its asymptotic chaotic properties. However,

we may have confidence that, if the period of the realized sequence is long enough,
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the effects related to points (1) and (2) can survive as a chaotic transient. According

to this observation, a third request must be added:

(3) the period of the series generated by the computer (i.e. with a state-discretization of the

deterministic system) must be very large.

In the following we discuss some examples of PRNGs.

3.2.1 A low-dimensional system with high entropy

A simple and popular PRNG is the multiplicative congruent one (Press et al. 1986):

zn+1 = N1zn mod N2

xn+1 = zn+1/N2,
(3.21)

with an integer multiplier N1 and modulus N2. The {zn} are integer numbers and

one hopes to generate a sequence of random variables {xn}, which are uncorrelated

and uniformly distributed in the unit interval. A first problem one has to face is the

periodic nature of (3.21), because of its discrete character. In practice one wants to

fix N1 and N2 in such a way as to maximize this period. Note that the rule (3.21)

can be interpreted as a deterministic dynamical system, i.e.

xn+1 = N1xn mod 1, (3.22)

which has a uniform invariant measure and a Kolmogorov–Sinai entropy hKS =
λ = ln N1. When imposing the integer arithmetics of Eq. (3.21) onto this system,

we are, in the language of dynamical systems, considering an unstable periodic

orbit of Eq. (3.22), with the particular constraint that, in order to achieve the period

N2 − 1 (i.e. all integers < N2 should belong to the orbit of Eq. (3.21)) it has to

contain all values k/N2, with k = 1, 2, . . . , N2 − 1. This results in a condition

to sample the uniform distribution, that gives the same weight to each interval

[k/N2, (k + 1)/N2[. Since the natural invariant measure of Eq. (3.22) is uniform,

such an orbit represents the measure of a chaotic solution in an optimal way. Every

sequence of a PRNG is characterized by two quantities: its period T and its positive

Lyapunov exponent λ, which is identical to the entropy of a chaotic orbit of the

equivalent dynamical system.

It is natural to ask how the required (apparent) randomness can be reconciled

with the facts that (a) the PRNG is a deterministic dynamical system, and (b) it is

a discrete state system (Kantz and Olbrich 2000). If the period is long enough on

shorter times one has to face only point (a). Let us discuss this point in terms of the

behavior of the ε-entropy. As noted above, one should realize the true deterministic

chaotic nature of the system when ln ε ≈ −hKS = − ln N1. Therefore, when ε �
1/N1, h(ε) � hKS = ln N1, while for ε � 1/N1 one expects to observe the “apparent
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Figure 3.5 The ε-entropies, hm(ε), on varying the embedding dimension m (equiv-
alently the block size) for the multiplicative congruential random number generator
Eq. (3.21) for different choices of N1 and N2.

random” behavior of the system, i.e. h(ε) ∼ ln(1/ε). On the other hand, when

the spatial resolution is high enough so that every point of this periodic orbit is

characterized by its own symbol, then, for arbitrary block length m, one has a finite

number of m-words whose probabilities are different from 0. Therefore, the block

entropy Hm , for large m, is constant and hm = 0.

Figure 3.5 presents the behavior of hm(ε), computed on sequences of length

60 000 of the PRNG with three different pairs (N1, N2) chosen to be (75, 232),

(2, 494539), and (107, 31771). The first pair is optimal and no deviation from

stochastic behavior is visible. The second pair has a small pseudo-entropy, and this

is seen in the saturation of all hm(ε) at ln N1 = ln 2, and the last pair has large

entropy but a rather short period, so that all hm(ε) drop to zero for some εm , where

εm becomes dramatically larger for increasing m (strong fluctuations arise from the

fact that data are confined to a grid of quite large spacing 1/31771 compared to

the spacing involved in the other two situations).

3.2.2 A system with low entropy and high dimension

As noted in Section 3.1.2 even non-chaotic high-dimensional systems may display

a long irregular regime as a transient effect, see also Politi et al. (1993). Such a

property can be used successfully to generate pseudo-random sequences in systems

with a moderate or even vanishing hKS. In these cases, one observes a single variable

and its block entropies, Hm , which are characterized by a transient with maximal
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(or almost maximal) value of the slope, i.e. Hm � m ln(1/ε), and then a crossover

when the block size m increases, to a regime with the slope of the true hKS of the

system.

The most familiar class of PRNGs using this property is given by the so-called

lagged Fibonacci generators (Green et al. 1959, Knuth 1981), which correspond to

the dynamical system:

x(t) = ax(t − τ1) + bx(t − τ2) mod 1 (3.23)

where a and b are O(1) and τ1 < τ2. Equation (3.23) can be written in the form

y(t) = Fy(t − 1) (3.24)

where F is a τ2 × τ2 matrix of the form

F =

⎛
⎜⎜⎜⎜⎝

0 . . . a . . . b
1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . 1 0

⎞
⎟⎟⎟⎟⎠ (3.25)

showing explicitly that the phase space of (3.23) has dimension τ2. It is easy to

prove that this system is chaotic for each value of a, b ∈ N, with a, b > 0. The

Kolmogorov–Sinai entropy does not depend on τ1 or on τ2, and the only way to

obtain high values of hKS is to use large values of a, b. Nevertheless, the lagged

Fibonacci generators are used with a = b = 1: for these values of the parameters

e−hKS ≈ 0.618 and εc is not small. This implies that the determinism of the system

is detectable also with large graining; however, the generator is a good one. This

can be explained because the m-words, built up by a single variable (say y1) of the

τ2-dimensional system (3.24), have the maximal allowed block-entropy (Falcioni

et al. 2005), Hm(ε) = m ln(1/ε), for m < τ2, so that:

Hm(ε) �
{

m ln(1/ε) for m < τ2

τ2 ln(1/ε) + hKS(m − τ2) for m ≥ τ2.
(3.26)

One may read Eq. (3.26) as follows. Though the “true” hKS is small, it can be

revealed only for very large values of m. Indeed, by observing the one-variable

m-words, which corresponds to an embedding procedure, before capturing the

dynamical entropy one has to realize that the system has dimension τ2. This happens

only for words longer than τ2.

The importance of the transient behavior of Hm can be understood in terms of

the “effective measure of complexity” C , introduced by Grassberger (1986) (see
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Section 2.2.1): for large m, the block entropies grow as

Hm � C + mhKS. (3.27)

In the case of the Fibonacci map, from (3.26) one has that, for small ε,

C = τ2

[
ln

(
1

ε

)
− hKS

]
≈ τ2 ln

(
1

ε

)
. (3.28)

For large τ2 (usually values O(102) are used) C is so huge that only an extremely long

sequence of the order exp(τ2) (likely outside the capabilities of modern computers)

can reveal that the “true” Kolmogorov–Sinai entropy is small. This is so because,

recalling that the number of relevant m-words is about exp(Hm), one has that in

order to detect a block-entropy Hm one needs a sequence whose length is at least

O(exp(Hm)).

3.2.3 A system with high entropy and high dimension

We discuss here a multi-dimensional version of the Arnold map (or cat map, see

Section 1.4.2) as a PRNG, showing that this system possesses a high value of hKS

and very good properties from the point of view of correlation functions (Falcioni

et al. 2005).

The multi-dimensional generalization of the two-dimensional Arnold map can

be written in the following way:(
x′

y′

)
= M

(
x
y

)
mod 1, (3.29)

with

M =
(

I A
B I + BA

)
(3.30)

where M is a 2N × 2N matrix, x, y ∈ IRN , I is the N × N identity matrix and A, B
are symmetric N × N matrices with integer entries in order to obtain a mapping

that is continuous at the boundaries. It easy to see that the evolution law given by

the equations above is symplectic, indeed one can write Eq. (3.29) and Eq. (3.30)

as a canonical transformation

x = ∂S(x′, y)

∂y
, y′ = ∂S(x′, y)

∂x′ , (3.31)

where the generating function is

S(x′, y) =
N∑

j=1

x ′
j y j − 1

2

N∑
j,k=1

(y j A jk yk + x ′
j B jk x ′

k). (3.32)

The ordinary Arnold map is obtained with N = 1 and A = B = 1.
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It can be shown that when Tr M > 2N , map (3.29) is a chaotic system with

a uniform invariant measure. The Arnold map is an example of what is usually

referred to as an Anosov system (see, e.g. Eckmann and Ruelle (1985)). It is not

difficult to compute the Kolmogorov–Sinai entropy of the 2N -dimensional cat

map, showing that it grows proportional to the number of dimensions. Detailed

numerical computations show that for low enough values of ε, i.e. for ε < εc,

h(ε) has a “plateau” around the value of hKS. If one aims to use the map as a

generator to produce a random sequence of ≈1/ε symbols then, when ε > εc, to a

good approximation one is near the value corresponding to a theoretical RNG, i.e.

h(ε) = − log(ε).

If, as the output of the generator one takes a single component of the 2N -

dimensional vector x, one obtains an important advantage compared with other

generators. This is the factorization of all n-times, with n < 2N , correlation func-

tions. Under rather general conditions on the matrices A and B, it is possible to

prove (Falcioni et al. 2005) the vanishing of any correlation of up to n (< 2N )

functions of time-delayed variables:

〈g1(z(t1)) . . . gn(z(tn))〉 = 〈g1(z(t1))〉 . . . 〈gn(z(tn))〉 (3.33)

for every gi ∈ L2, where z is one component of the vector x, e.g. z = x1. This is

basically due to the high dimensionality of the system and the presence of “hidden

variables.” This result is rigorously true for the system with continuous states;

however, numerical checks show that this property survives in the discrete case.

3.2.4 The problem of the period for systems with discrete states

What a computer really calculates is a finite-digit dynamics that can be represented

as a dynamics on integers. Therefore one is dealing with a deterministic system with

M discrete states which is periodic. Unfortunately there are no general methods to

determine a priori the length of the periodic orbits. A nice result, based on prob-

abilistic considerations, suggests that the period scales as T ∼ M1/2 (Coste and

Hénon 1986), although strong fluctuations are present. The use of high-dimensional

systems may also be a natural solution for this problem: calling M the number of

states along each of the d dimensions, the typical period scales on average as

T ∼ Md/2 and grows very fast with increasing M and d (note that a lower bound

would be sufficient for the present purpose).

In some cases one can estimate the period T . Consider the behavior of the

discrete Fibonacci generator:

z(t) = az(t − τ1) + bz(t − τ2) mod M (3.34)
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where z(t) ∈ [0, M − 1] is an integer variable, a, b, τ1, τ2, M are integer parameters

and M � τ2. The parameters τ1, τ2 and M are chosen in order to have a period as

long as possible. Number-theoretical arguments (Knuth 1981) allow us to choose

these parameters such that the period of the orbit is maximum T = Mτ2 − 1.

When the period is maximum, for ε ≥ 1/M one has:

Hm(ε) �
⎧⎨
⎩

m ln(1/ε) for m < τ2

τ2 ln(1/ε) + hKS(m − τ2) for τ2 ≤ m ≤ m∗

τ2 ln(M) for m > m∗
(3.35)

where

m∗ = τ2

hKS

[
ln

(
1

ε

)
− ln M + hKS

]
. (3.36)

When ε = 1/M we have m∗ = τ2, the second regime in Eq. (3.35) disappears and

the block-entropy behavior is independent of hKS. Still, as for the continuous case,

if τ2 is large one observes only the pseudo-chaotic transient

Hm(ε) ≈ m ln

(
1

ε

)
. (3.37)

Consider now the discrete multi-dimensional cat map, namely

(
z′

w′

)
=

(
I A
B I + BA

) (
z
w

)
mod M, (3.38)

where, as usual, A, B have integer entries, zi , wi ∈ [0, 1, . . . , M − 1].

A peculiar feature of cat maps is that periodic orbits of the continuum sys-

tem have rational coordinates (Percival and Vivaldi 1987). Consequently, the or-

bits of the discretized version of the map are completely equivalent to periodic

orbits of the continuous system with coordinates zi/M, wi/M . As a corollary,

since the map is invertible, periodic orbits do not have any transient: every state is

periodic.

The cat map typically has many orbits, and the great majority of them are of

the same length. A theoretical analysis of these orbits has been made in the two-

dimensional case (Percival and Vivaldi 1987). The scaling T ∼ M N , suggested by

the random map arguments, has been observed numerically for a discrete multi-

dimensional cat map (Falcioni et al. 2005) and it is rather typical, i.e. it appears for

the discrete (state) version of chaotic systems (Grebogi et al. 1988).

Unfortunately we have no theoretical control over the period, and wild fluctua-

tions are present when M varies; therefore it is better to choose a value of M, N , A, B
and check T or a lower bound directly. With the choice N = 3, M = 1001400791
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and

A =
⎛
⎝1 1 1

1 3 1

1 1 5

⎞
⎠ B =

⎛
⎝7 1 1

1 3 1

1 1 9

⎞
⎠ , (3.39)

numerically one obtainsT > 7 × 1012, which is a satisfying lower bound for typical

simulations.

3.2.5 Conclusions on the pseudo random number generators and
deterministic chaos

We have shown how, using some properties of high-dimensional deterministic

chaotic systems, it is possible to generate a good approximation of a random

sequence. This is in spite of unavoidable constraints of deterministic algorithms

running on real computers.

There are two possible mechanisms for obtaining good PRNGs using determin-

istic systems: very high Kolmogorov–Sinai entropy, and “transient chaos” with a

large finite-time ε entropy (due to the high dimensionality of the algorithm). The

multi-dimensional cat map introduced above as a PRNG has rather good properties.

For example, the generator discussed here has been able to pass all the severe “ex-

ams” which have been proposed in order to test “how random” is a given sequence

of numbers. These algorithms are available in easy-to-use software packages col-

lecting dozens of different tests, for example, the DieHard (Marsaglia 1995), and

the NIST batteries.3

The main disadvantage of the high-dimensional Arnold map is that one can-

not predict analytically the period given the parameters or, equivalently, write a

condition on the parameters in order to obtain the maximum period. However,

probabilistic arguments (Coste and Hénon 1986), confirmed by numerical checks,

show that the period increases exponentially with N ; therefore with a proper choice

of the parameters we have extremely large periods.

3.3 Lyapunov exponents and complexity in dynamical systems with noise

We consider here systems containing random perturbations, which are always

present in physical systems as a consequence of thermal fluctuations or hidden

changes of control parameters, and, in numerical experiments, because of the round-

off errors. The combined effect of the noise and of the deterministic part of the

3 See The National Institute of Standards and Technology, A Statistical Test Suite for the Validation of
Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications,
http://csrc.nist.gov/rng/SP800-22b.pdf.
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evolution law can produce highly non-trivial behaviors. Let us mention stochastic

resonance, where there is a synchronization with the deterministic periodic forc-

ing of the noise-induced jumps between two stable points (Benzi et al. 1982), the

phenomena of so-called noise-induced order (Matsumoto and Tsuda 1983) and

noise-induced instability (Bulsara et al. 1990).

When facing systems with noise, the simplest possibility is to treat the random

term as a given time-dependent forcing term, that is to consider the separation of two

close trajectories with the same realization of noise. In this way one computes the

largest Lyapunov exponent, λσ , associated with the separation rate of two nearby

trajectories with the same realization of the stochastic term (where σ indicates the

noise strength). Although λσ is a well-defined quantity, i.e. the Oseledec (1968)

theorem holds, sometimes it is not the most useful characterization of complexity.

In addition, a moment of reflection shows that it is practically impossible to extract

λσ from experimental data.

We will show that, for noisy and random systems, a more natural indicator of

complexity can be obtained by computing the separation rate of nearby trajectories

evolving with different noise realizations. This measure of complexity, defined

in Paladin et al. (1995) and Loreto et al. (1996a) and inspired by the ideas of

information theory, is related to the mean number of bits per unit time that are

necessary to specify the sequence generated by a random evolution law.

3.3.1 The naive approach: noise treated as a standard function of time

The approach in which one treats the random term as a usual time-dependent

external force can lead to misleading results, as illustrated in the following example.

Let us consider a one-dimensional Langevin equation

dx

dt
= −∂V (x)

∂x
+

√
2ση, (3.40)

where η(t) is a white noise and V (x) diverges for | x |→ ∞, for example the usual

double well potential V = −x2/2 + x4/4.

The Lyapunov exponent λσ , associated with the separation rate of two nearby

trajectories with the same realization of η(t), is defined as

λσ = lim
t→∞

1

t
ln |z(t)| (3.41)

where the evolution of the tangent vector is given by:

dz

dt
= −∂2V (x(t))

∂x2
z(t). (3.42)
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Since the system is ergodic, with invariant probability distribution P(x) =
Ce−V (x)/σ , in the first place one has that (except for a zero measure set of initial

conditions and noise realizations) λσ is independent both of the initial condition

and of the particular realization of the noise. Moreover one can write:

λσ = lim
t→∞

1

t
ln |z(t)| = − lim

t→∞
1

t

∫ t

0

∂2
xx V (x(t ′))dt ′

= −C
∫

∂2
xx V (x)e−V (x)/σ dx = −C

σ

∫
(∂x V (x))2e−V (x)/σ dx < 0.

(3.43)

This result has a rather intuitive meaning: the trajectory x(t) spends most of the

time in one of the “valleys” where −∂2
xx V (x) < 0 and only short time intervals

on the “hills” where −∂2
xx V (x) > 0, so that the distance between two trajectories

evolving with the same noise realization typically decreases. The result obtained for

the one-dimensional Langevin equation can easily be generalized to any dimension

for gradient systems if the noise is small enough (Loreto et al. 1996a).

We have to emphasize that a negative value of λσ implies a fully predictable

process only if the realization of the noise is known. In the case of two initially

close trajectories evolving under two different noise realizations, after a certain time

Tσ , the two trajectories can be very distant, because they can be in two different

valleys. For σ small enough, according to the Kramers formula (Chandrasekhar

1943), one has Tσ ∼ exp(
V/σ ), where 
V is the difference between the values

of V on the top of the hill and at the bottom of the valley.

3.3.2 An information theory approach

The main difficulties in defining the notion of “complexity” of an evolution law with

a random perturbation already appear in one-dimensional maps. The generalization

to N -dimensional maps or to ordinary differential equations is straightforward.

Therefore, we consider the model

x(t + 1) = f [x(t), t] + σw(t), (3.44)

where t is an integer and w(t) is an uncorrelated random process, for example

the w are independent random variables uniformly distributed in [−1/2, 1/2]. To

obtain the largest Lyapunov exponent λσ , as defined in (3.41), one has to study the

equation

z(t + 1) = d f

dt

∣∣∣
x(t)

z(t). (3.45)
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However, we can follow the approach of Section 2.2.3 to write the Lyapunov

exponent of the system. Let x(t) be the trajectory starting at x(0) and x ′(t) be

the trajectory starting from x ′(0) = x(0) + δx(0). Let δ0 ≡ |δx(0)| and indicate

by τ1 the minimum time such that |x ′(τ1) − x(τ1)| ≥ 
. Then, we put x ′(τ1) =
x(τ1) + δx(0) and define τ2 as the time such that |x ′(τ1 + τ2) − x(τ1 + τ2)| > 


for the first time, and so on, yielding a sequence {τi } of time intervals. In this way

we can define the quantity

�σ = 1

τ
ln

(



δ0

)
(3.46)

where τ = ∑
τi/N , and N is the number of intervals in the sequence. If the above

procedure is applied by considering the same noise realization for both trajecto-

ries then, when λσ > 0, �σ = λσ . In other words, by considering two different

realizations of the noise for the two trajectories, we obtain a new quantity

Kσ = 1

τ
ln

(



δ0

)
, (3.47)

which arises naturally in the framework of information theory and algorithmic

complexity theory. The times τ1, τ2, . . . are the intervals at which it is necessary

to repeat the transmission of x(t), with a precision δ0, and Kσ / ln 2 is the number

of bits per unit time one has to specify in order to transmit the original sequence

with a tolerance 
. If the fluctuations of the effective Lyapunov exponent γ (t) (see

Section 2.3.1) are very small (i.e. weak intermittency) one has:

Kσ � λσ . (3.48)

The interesting situation occurs for strong intermittency when there are alterna-

tions of positive and negative γ during long time intervals: this induces a dramatic

change in the value of Kσ . This becomes particularly clear when we consider the

limiting case of positive γ (1) in an interval T1 � 1/γ (1) followed by a negative γ (2)

in an interval T2 � 1/|γ (2)|, and again a positive effective Lyapunov exponent and

so on. During the intervals with positive effective Lyapunov exponent the trans-

mission has to be repeated rather often with �T1/(γ (1) ln 2) bits at each time, while

during those with negative effective Lyapunov exponent no information has to be

sent. Nevertheless, at the end of the contracting intervals one has |δx | = O(σ ), i.e.

bounded below (on average) by a finite number, so that, at variance with the noise-

less case, it is impossible to use them to compensate for the expanding intervals.

This implies that in the limit of very large Ti only the expanding intervals contribute

to the evolution of the error δx(t) and Kσ is given by a time average of the positive

effective Lyapunov exponents:

Kσ � 〈γ θ (γ )〉. (3.49)
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Figure 3.6 λσ (squares) and Kσ (crosses) versus σ for the map (3.50).

Note that it may happen that Kσ > 0 with λσ < 0. We stress again that (3.49)

holds only for strong intermittency, while for uniformly expanding systems or

rapid alternations of contracting and expanding behaviors, Kσ � λσ .

The quantity Kσ is a kind of ε-entropy, indeed, the complexity we consider

is defined for δ0 not too small (δ0 � σ ). If δ0 and 
 are small enough, but still

much larger than σ , Kσ is essentially independent of their values. The relation

Kσ � 〈γ θ (γ )〉 is the time analog of the Pesin relation: hKS = ∑
i λi θ(λi ). The

latter relation expresses the fact that negative Lyapunov exponents do not decrease

the value of hKS, because the contraction along the corresponding directions cannot

be observed for any finite space partition. In the same way the contracting time

intervals, if long enough, do not decrease Kσ . Another important remark is that in

the usual treatment of the experimental data, where noise is usually present, one

practically computes Kσ and the result can be completely different from λσ .

Now we discuss briefly some numerical results for the system (3.44) when

f (x) gives rise to strongly intermittent behavior. This is the case for the Beluzov–

Zhabotinsky map (Matsumoto and Tsuda 1983), introduced to describe the famous

chemical reaction:

f (x) =
⎧⎨
⎩

[(1/8 − x)1/3 + a]e−x + b if 0 ≤ x < 1/8

[(x − 1/8)1/3 + a]e−x + b if 1/8 ≤ x < 3/10

c(10 x e−10x/3)19 + b if 3/10 ≤ x
(3.50)

with a = 0.50607357, b = 0.0232885279, c = 0.121205692. The map exhibits a

chaotic alternation of expanding and contracting time intervals. In Figure 3.6,
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one sees that while λσ passes from negative to positive values at decreasing σ

(Matsumoto and Tsuda 1983), Kσ is not sensitive to this transition.

The previous results show that the same system can be regarded either as reg-

ular (i.e. λσ < 0), when the same noise realization is considered for two nearby

trajectories, or as chaotic (i.e. Kσ > 0), when two different noise realizations are

considered. We can say that a negative λσ for relatively large values of σ is not an

indication that “noise induces order”; a correct conclusion is that noise can induce

synchronization (Pikovsky et al. 2003).

3.3.3 Random dynamical systems

We now discuss dynamical systems where the randomness is not simply given by

an additive noise. This kind of system has been of interest in relation to problems

involving disorder, such as the characterization of the so-called on-off intermittency
(Platt et al. 1993) and to model transport problems in turbulent flows (Yu et al.
1991). In these systems, in general, the random part represents an ensemble of

hidden variables believed to be implicated in the dynamics.

For the sake of simplicity we consider only the case of random maps, that exhibit

very interesting features ranging from stable or quasi-stable behaviors, to chaotic

behaviors and intermittency, see Platt et al. (1993). Let us denote by x(t) the state

of a system whose evolution law is given by

x(t + 1) = f(x(t), J (t)), (3.51)

where J (t) is a random variable that, we assume, may take on a discrete set of values.

As for the case of additive noise examined previously, the simplest approach is the

introduction of the Lyapunov exponent λJ computed considering the separation of

two nearby trajectories evolving with the same realization of the random process

J (t) = i1, i2, . . . , it . The Lyapunov exponent λJ generalizes λσ of Section 3.3.1

and can be computed from the tangent vector evolution:

λJ = lim
t→∞

1

t
ln |z(t)| (3.52)

where

zm(t + 1) =
∑

n

∂ fm(x(t), it )

∂xn
zn(t). (3.53)

We note that, assuming ergodicity, λJ does not depend either on the initial condition

or on the particular realization of J (t) (apart from zero measure sets of initial

conditions and random sequences). On the other hand, for these systems, as in the

case of additive noise, it is possible to introduce a measure of complexity, K J ,
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which accounts better for their chaotic properties (Paladin et al. 1995, Loreto et al.
1996a, 1996b)

K J � hSh + λJ θ (λJ ), (3.54)

where hSh is the Shannon entropy of the random sequence J (t), see Section 2.2.1.

The meaning of K J is rather clear: K J / ln 2 is the mean number of bits, for each

iteration, necessary to specify the sequence x1, . . . , xt with a certain tolerance


. Note that there are two different contributions to the complexity: (a) one has to

specify the sequence J (1), J (2), . . . , J (t) which requires hSh/ ln 2 bits per iteration;

(b) if λJ is positive, one has to specify the initial condition x(0) with a precision


e−λJ T , where T is the time length of the evolution. This requires λJ / ln 2 bits per

iteration; if λJ is negative the initial condition can be specified using a number of

bits independent of T .

A toy model: one-dimensional random maps

The following example may be useful in clarifying the subject since, in spite of its

simplicity, it captures some basic features of this kind of system (Platt et al. 1993):

x(t + 1) = at x(t)(1 − x(t)), (3.55)

where at is a random dichotomous variable given by

at =
{

4 with probability p
1/2 with probability 1 − p.

(3.56)

For x(t) close to zero, one can neglect the non-linear term to obtain

x(t) =
t−1∏
j=0

a j x(0); (3.57)

from the law of large numbers, applied to ln x(t) and the sequence of i.i.d. variables

{ln a j }, one has that the typical behavior is

x(t) ∼ x(0)e〈ln a〉t . (3.58)

The expression 〈ln a〉 = p ln 4 + (1 − p) ln 1/2 = (3p − 1) ln 2 gives a threshold

value pc = 1/3. For p < pc, x(t) → 0 for t → ∞ and the linear reasoning is

consistent. In contrast, for p > pc, after a certain time x(t) escapes from the fixed

point x = 0 and the non-linear term becomes relevant. Figure 3.7 shows a typical

on-off intermittency behavior of the system (3.55)–(3.56) for p slightly larger than

pc. Note that, in spite of this irregular behavior, numerical computations show that

the Lyapunov exponent λJ is negative for p < p̃ � 0.5.
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Figure 3.7 x(t) versus t for the random map (3.55)–(3.56), with p = 0.35.

By introducing a finite threshold ε, in order to discriminate laminar (i.e. x(t) < ε)

and intermittent phases (i.e. x(t) ≥ ε), we can define a complexity K (ε). We denote

by lL and lI the average lifetimes respectively of the laminar and of the intermittent

phases. When p is close to pc we expect lI � lL. The mean number of bits, per

iteration, one has to specify in order to transmit the sequence is (Loreto et al. 1996a,

1996b)

K (ε)

ln 2
� lIhSh

(lI + lL) ln 2
� lI

lL

hSh

ln 2
, (3.59)

where hSh is the Shannon entropy of the sequence {a j }. To obtain (3.59) first

notice that on an interval T one has approximatively T/(lI + lL) intermittent bursts

and the same number of laminar phases. During a laminar phase x(t) is close to

zero, therefore one has to specify only the duration of the phase, for which just

a small number of bits (O(ln lL)) is necessary. However, in the intermittent phase

one has to specify the sequence {a j }, which requires hSh/ ln 2 bits per iteration, on

average.

Sandpile models as random maps

A class of systems which can be treated in the framework of random maps is

represented by the so-called sandpile models that are a paradigmatic example of

self-organized criticality (SOC) (Bak et al. 1988). This term refers to the tendency

of some large dynamical systems to evolve spontaneously toward a critical state

characterized by spatial and temporal self-similarity. The original sandpile models

are probabilistic cellular automata inspired by the dynamics of avalanches in a pile
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of sand. Dropping sand slowly, grain by grain onto a limited base, one reaches

a situation where the pile is critical, i.e. it has a critical slope. This means that a

further addition of sand will produce sliding of sand (avalanches) that can be small

or cover the entire size of the system. In this case the critical state is characterized

by scale-invariant distributions for the size and the lifetime and it is reached without

tuning of any critical parameter.

We refer in particular to the model introduced by Zhang (1989), a continuous-

state version of the original sandpile model, defined on a d-dimensional lattice. The

variable on each site xi (interpretable as energy, sand, heat, mechanical stress etc.)

can vary continuously in the range [0, 1] with the threshold fixed at xc = 1. The

dynamics is the following:

(a) one chooses a site at random and adds to it an amount δx ;

(b) if at a certain time t the value of the variable in a site, say i , exceeds the threshold xc a

relaxation process is triggered defined as

{
xi+nn → xi+nn + xi/2d
xi → 0,

(3.60)

where nn indicates the 2d nearest neighbors of the site i ;
(c) one repeats point (b) until all the sites have relaxed;

(d) one goes back to point (a).

Let us discuss the problem of predictability in sandpile models on the basis of

some rigorous results (Caglioti and Loreto 1996), which clarify the role of the

Lyapunov exponent for this class of systems. It has been proved that the Lyapunov

exponent λJ is negative. In fact the dynamics of a small difference between two

configurations follows the same rules (a)–(d), i.e. the “error” is redistributed to the

nearest-neighbor sites, so that one has

λJ ≤ −constant

R2
(3.61)

where R is the diameter of the system.

As for the other examples already discussed, the existence of a negative Lyapunov

exponent (computed with a given realization of the randomness) does not mean per-

fect predictability. This can be understood by looking at the growth of the distance,

δ(t), between two initially close trajectories computed with two different realiza-

tions of randomness, i.e. by adding sand at different sites. Let us consider the case

of the “minimal error”: in the reference realization one adds sand on a site i cho-

sen at random. In the perturbed realization, instead, one adds a sand grain at one

of the nearest-neighbor sites of i . In such a case δ(t) increases up to a maximal

distance in few avalanches (Loreto et al. 1996a). Practically, one has the same kind
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of phenomenon, already discussed, as for the Langevin equation with two noise

realizations.

Let us now estimate the complexity K J of this system. An upper bound can

be given by using (3.54), K J = hSh + λJ θ (λJ ), where hSh is the entropy of the

random sequence of addition of energy. In sandpile models, since each site has the

same probability of being selected, one has hSh = ln V , where V is the number of

sites of the system. Since the Lyapunov exponent is negative, the complexity is just

determined by hSh, i.e. by the nature of the external randomness.

3.4 Conclusions

In this chapter we saw that it is possible to analyze different kinds of irregular

behaviors of a system by means of different quantities derived from the Lyapunov

exponents and the Kolmogorov–Sinai entropy.

At a practical and conceptual level, one has severe difficulty in distinguishing

between the deterministic or stochastic nature of systems displaying irregular be-

havior. Owing to the finiteness of the datasets, it is not possible to perform an

entropic analysis with an arbitrary fine resolution, i.e. to compute the ε-entropy

h(ε) for very small values of ε. Although the above result may appear negative, it

allows a pragmatic classification of the stochastic or chaotic feature of the signal,

according to the dependence of the ε-entropy on ε, and this yields some freedom

in modeling systems. As a relevant example of a representation of a deterministic

system in terms of stochastic processes, we mention fully developed turbulence.

In addition, one can follow the opposite strategy, i.e. one can mimic noise with

deterministic chaotic systems. This point of view is at the basis of the approach that

uses a deterministic chaotic system as a PRNG.

Some systems can also manifest irregular spatial properties as happens, for ex-

ample, in open flows with convective chaos but with negative Lyapunov exponents.

In such a case the “complexity” is due to a sort of sensitivity to the boundary con-

ditions. An uncertainty, δx0, on the boundary condition is exponentially amplified

with the distance, n, from the boundary as δxn ∼ δx0e
n . The “spatial” Lyapunov

exponent 
 is related to the comoving Lyapunov exponent and gives a characteri-

zation of the “spatial complexity.”

In the presence of randomness one can introduce two different Lyapunov expo-

nents, λσ (or λJ ) in the case of trajectories with the same realization of noise (or

generic randomness) and Kσ (or K J ) for different realizations. In general λσ and

Kσ do not coincide and characterize different aspects of the system. Both quantities

have their own relevance, moreover the comparison between λσ and Kσ has been

found to be useful in the understanding of apparently intricate phenomena, such as

noise-induced order and noise-induced instability.
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Summarizing, we can say that the study of these different aspects of predictability

constitutes a useful method for a quantitative characterization of “complexity,”

suggesting the following equivalences:

COMPLEX ↔ INCOMPRESSIBLE ↔ UNPREDICTABLE.
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4

Foundation of statistical mechanics and
dynamical systems

To know that you know when you do know, and know that you do
not know when you do not know: that is knowledge.

Confucius

Statistical mechanics was founded by Maxwell, Boltzmann and Gibbs to account for

the properties of macroscopic bodies, systems with a very large number of particles,

without very precise requirements on the dynamics (except for the assumption of

ergodicity).

Since the discovery of deterministic chaos it is now well established that statis-

tical approaches may also be unavoidable and useful, as discussed in Chapter 1,

in systems with few degrees of freedom. However, even after many years there is

no general agreement among the experts about the fundamental ingredients for the

validity of statistical mechanics.

It is quite impossible in a few pages to describe the wide spectrum of positions

ranging from the belief of Landau and Khinchin in the main role of the many

degrees of freedom and the (almost) complete irrelevance of dynamical properties,

in particular ergodicity, to the opinion of those, for example Prigogine and his

school, who consider chaos as the basic ingredient.

For almost all practical purposes one can say that the whole subject of statistical

mechanics consists in the evaluation of a few suitable quantities (for example, the

partition function, free energy, correlation functions). The ergodic problem is often

forgotten and the (so-called) Gibbs approach is accepted because “it works.” Such

a point of view cannot be satisfactory, at least if one believes that it is not less

important to understand the foundation of such a complex issue than to calculate

useful quantities.

The present chapter is meant to serve as a global introduction to the problem

of the connection between dynamical behavior (mainly ergodicity and chaos) and

statistical laws.
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4.1 The ergodic problem: a brief random walk among an intricate history

Sometimes Boltzmann and Gibbs are viewed as the champions of different points of

view about statistical mechanics. According to this vulgata Gibbs was the founder

of the ensemble approach while Boltzmann was the supporter of a dynamical the-

ory based on ergodicity. In modern textbooks we use Gibbs’s terminology for the

ensembles (i.e. microcanonical, canonical and grand canonical). Actually, both

ergodicity and ensembles are inventions of Boltzmann, though he is not always

credited with them. As a matter of fact a statistical ensemble was called a monode
by Boltzmann who was able to prove the equivalence, in the thermodynamic limit,

of the ergode and the holode (respectively the microcanonical and canonical en-

semble in Gibbs’s terminology). Indeed this explains the existence of the ergodic
hypothesis and of the consequent ergodic theory.

For a discussion about Boltzmann, Gibbs and the origin of statistical mechanics

we strongly recommend the wonderful book by Cercignani (1998) and the papers

by Gallavotti (1995) and Klein (1973).

4.1.1 Statistical mechanics as a form of statistical inference?

Let us open a short parenthesis. Beyond the historical events and the opinions of

the founding fathers, there exists an “extremistic anti-dynamical” point of view

which considers statistical mechanics as a form of statistical inference rather than

a description of objective physical reality. In this approach the probabilities are

interpreted as measures of the degree of “trueness” of a logical proposition, rather

than as quantities which can be measured physically.

Jaynes (1967, 1989) proposed the maximum entropy principle (MEP) as a rule to

find the probability of a given event, in circumstances where only partial information

is available. If the mean values of m independent functions fi (X) are given,

ci = 〈 fi 〉 =
∫

fi (X)ρ(X) dX i = 1, . . . , m, (4.1)

the prescribed rule of the MEP to determine the probability density function ρ(X)

is to maximize the entropy − ∫
ρ(X) ln ρ(X) dX under the constraints ci = 〈 fi 〉.

Using the Lagrangian multipliers one easily obtains

ρ(X) = 1

Z
exp

m∑
i=1

λi fi (X) (4.2)

where λ1, λ2, . . . , λm depend on c1, c2, . . . , cm .

This rule, when applied to statistical mechanics, with a fixed number of particles

and the unique constraint on the mean value of the energy, leads to the usual
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canonical distribution in a very simple way. In an analogous way, also imposing

the constraint of the mean value of the particles, one obtains the grand canonical

distribution. The most frequent objection to this point of view can be summarized

with the motto Ex nihilo nihil, i.e. it is not possible that because we are ignorant of

the matter we can know something about it.

The reader interested in this issue can consult the extended literature, see for

example Jaynes (1989), Buck and Macaulay (1991), and Uffink (1995).

4.1.2 From Boltzmann to Birkhoff

Let us come back to our main aim. Since there is a certain confusion, mainly

because of the terminology introduced in the celebrated monograph of Paul and

Tatiana Ehrenfest (1956) on Boltzmann’s work, it seems to us that a short discussion

is appropriate.

The ergodic theory begins with Boltzmann’s attempt at justifying the determi-

nation of average values in kinetic theory. His original “ergodic hypothesis” was

the following: the energy surface consists of finitely many cells, that can be labeled

and counted, and during the time evolution a trajectory will pass through all the

cells. This raises the possibility of replacing a time average by a far simpler phase

average (see below).

An interpretation, due to the Ehrenfests, in the context of classical mechanics of

point particles evolving in a continuum, reformulated the original “ergodic hypoth-

esis” into the hypothesis that a trajectory moving on the energy surface visits all its

points. It is well documented that Boltzmann had a resolutely finitist point of view:

for him, as in calculus, the concepts without any discrete representation are purely

metaphysical. Therefore it is certain that the ergodic hypothesis as formulated by

the Ehrenfests cannot be attributed to Boltzmann.

The (rather obvious) impossibility of a single phase trajectory visiting every

point of the energy surface led the Ehrenfests to formulate the so-called “quasi-

ergodic hypothesis” which basically proposed that each evolution on the energy

surface (but a zero measure set of initial points) covers densely the surface itself.

Modern ergodic theory can be viewed as a branch of the abstract theory of

measure and integration. The aim of this field goes far beyond its original problem

as formulated by Boltzmann in the statistical mechanics context. We can now

formulate the ergodic problem in the following terms. Consider a dynamical system,

i.e. a deterministic evolution law in the phase space �

X(0) → X(t) = U t X(0) (4.3)

and a measure dμ(X) invariant under the evolution given by U t , i.e. dμ(X) =
dμ(U−t X). The dynamical system (�, U t , dμ(X)) is called ergodic, with respect
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to the measure dμ(X), if, for every integrable function A(X) and for almost all

initial conditions X(t0), with respect to μ, one has:

A ≡ lim
T →∞

1

T

∫ t0+T

t0

A(X(t))dt =
∫

A(X)dμ(X) ≡ 〈A〉, (4.4)

where X(t) = U t−t0X(t0).

Let us now discuss the relation between this issue and the foundation of equilib-

rium statistical mechanics.

Macroscopic systems contain a very large number (of the order of Avogadro’s

number) of particles; this implies the practical necessity of a statistical descrip-

tion. Denoting by qi and pi the position and momentum vectors of the i th par-

ticle, the state of an N -particle system at time t is described by the vector

X(t) ≡ (q1(t), . . . , qN (t), p1(t), . . . , pN (t)) in a 6N -dimensional phase space. The

evolution law is given by Hamilton’s equations. If V ({q j }) is the interaction poten-

tial the Hamiltonian is

H =
N∑

i=1

p2
i

2m
+ V ({q j }), (4.5)

and the evolution equations are

dqi

dt
= ∂ H

∂pi
= pi

m
,

dpi

dt
= −∂ H

∂qi
= − ∂V

∂qi
,

(4.6)

with i = 1, . . . , N .

Here it is important to note that the macroscopic time scale (the time scale at

which we observe the system) is much larger than the microscopic dynamics time

scale over which the molecular changes take place. This means that an experimental

measurement is actually the result of a single observation during which the system

goes through a very large number of microscopic states. If the measurement refers

to an observable A(x), the result can be considered as an average taken over a very

long time (from the microscopic point of view):

A
T = 1

T

∫ t0+T

t0

A(X(t))dt . (4.7)

The calculation of the time average A
T

, in principle, requires both knowledge of

the complete microscopic state of the system at a given time and the determination

of its trajectory. These are evidently impossible requirements so that, beyond the

difficulty of integrating the system (4.6), if A
T

, for the system in equilibrium,

depends too strongly on the initial conditions, not even statistical predictions can
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be made. The ergodic hypothesis allows us to overcome this obstacle. A rather

natural candidate for the invariant measure dμ(X) is the microcanonical measure

on the constant energy surface H = E :

dμmc(X) = dσ (X)

|∇ H | (4.8)

where dσ is the surface element and ∇ H = (∂q
1
H, . . . , ∂qN

H, ∂p
1
H, . . . , ∂pN

H ).

The ergodic hypothesis is satisfied if for sufficiently large T the average A
T

depends only on the energy and hence it has the same value for (almost) all the

trajectories on the same constant energy surface and therefore:

A ≡ lim
T →∞

1

T

∫ t0+T

t0

A(X(t))dt =
∫

A(X)dμmc(X) ≡ 〈A〉. (4.9)

The validity of such an equality eliminates the necessity both of determining a

detailed initial state of the system and of solving Hamilton’s equations. Whether

(4.9) is valid or not, i.e. whether it is possible to substitute the temporal average by

an average in phase space, constitutes the main question of the ergodic problem. The

crucial role of this issue for statistical mechanics rests also in the following fact. If

the statistical properties of a large isolated system in equilibrium can be properly de-

scribed in terms of the microcanonical ensemble, then it is not difficult to show that

the equilibrium properties of a small subsystem (but still large at microscopic level)

is properly described by the canonical ensemble. Therefore a proof of the validity of

(4.9) provides the dynamical justification of the statistical ensembles. On the other

hand, one has to remember that, in this framework, the ensemble is just a useful

mathematical tool, but in reality one is considering only a single physical system.

It is rather natural, both from a mathematical and from a physical point of view,

to wonder under which conditions a dynamical system is ergodic. The problem, at

an abstract level, i.e. for a dynamical system given by (�, U t , dμ(X) ), was tackled

by Birkhoff (1931). He proved the following two theorems.

Theorem I For almost every initial condition X0 the infinite time average

A(X0) ≡ lim
T →∞

1

T

∫ T

0

A(U t X0)dt (4.10)

exists.

Theorem II A necessary and sufficient condition for the system to be ergodic, i.e.
the time average A(X0) does not depend on the initial condition (for almost all X0),
is that the phase space � be metrically indecomposable. This property means that
� cannot be subdivided into two invariant (under the dynamics U t ) parts each of
positive measure.
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(Sometimes instead of metrically indecomposable the equivalent term metrically

transitive is used.) Theorem I is rather general and not very stringent, in fact the

time average A(X0) can depend on the initial condition. The result of Theorem II is

more interesting although practically inconclusive as regards statistical mechanics,

since, in general, it is not possible to decide whether a given system satisfies the

condition of metrical indecomposability. So, at a practical level, Theorem II is only

a shift of the problem.

4.2 Beyond abstract ergodic theory

When one speaks of equilibrium of a physical system one must take into consider-

ation the problem of the observation time, with respect to the considered system.

This time cannot be too large, otherwise the equilibrium can become meaningless

(Ma 1985). As an example consider a cold cup filled with boiling water. After a

few minutes the water and the cup will reach the same temperature and within

five or ten minutes we can consider the cup and water systems to be in equilib-

rium. After a few hours the temperature of the water (and cup) will be equal to

room temperature: another equilibrium state. However, water molecules will evap-

orate, so if the observation time is over four or five days we will have another

equilibrium state. On the other hand, strictly speaking, this is not an absolute un-

changing state; in fact the molecules of the cup will also evaporate over a very long

time.

For a physicist the ergodic problem is surely interesting, but for the foundation of

statistical mechanics one has to consider more specific issues. First we note that the

mathematical infinite time limit A needs a physical interpretation. A more relevant

question is how long do we have to take T to be in such a way that A
T

is close

to 〈A〉. It is easy to realize that the answer to this question must depend both on

the observable A and on the number of particles N . As a simple example let us

consider a region G of the phase space �, and the observable

A(X) =
{

1 if X ∈ G
0 otherwise.

(4.11)

To be more specific we assume that the region G is a 6N -dimensional hypercube

whose edge is ε. Of course 〈A〉 ∝ ε6N is just the probability of remaining in G and

A
T

is the fraction of time the trajectory X(t) spent in G during the interval [0, T ].

A crude estimation of the equilibration time Teq, i.e. the time necessary to give a

fair agreement between A
T

and 〈A〉, is the following. Consider the projection μn

of G on the 6-dimensional space spanned by the variables (qn, pn) describing the

nth particle. If this particle starts from μn , it needs a certain time τn(ε) to come
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back to μn . A rough estimate gives τn(ε) ∼ ε−γ , the precise value of −γ is not

particularly relevant. If one assumes for the nth particle a random walk dynamics

among all the N ∼ ε−6 cells of volume ε6, the number of different cells visited

grows as t1/2, therefore the typical time required to pass again to the original cell

is τ ∼ ε−12. As a first approximation, which is reasonable in diluted gases, we can

assume that for different particles the return mechanisms are independent of each

other. Therefore in order to have A
T � 〈A〉 one has to wait until Teq ∼ ε−γ N , i.e.

a time exponentially large in N .

Note that the variable defined in (4.11) can also be written:

A(X) =
∏

n

χμn (qn, pn),

where χμn (qn, pn) is the characteristic function of the subset μn , i.e. χμn (qn, pn) = 1

if (qn, pn) ∈ μn and χμn (qn, pn) = 0 otherwise. This makes it clear that such a

function is not very interesting from a macroscopic point of view, since the exiting

of a single particle from the tagged region μn causes a variation of A(X) of the

same order as its value. This is why we call A(X) a microscopic function. The above

discussion shows that the equilibration time for a microscopic function typically

is closely related to the Poincaré recurrence time. On the other hand the previous

argument is nothing but a reformulation of the original answer of Boltzmann to

criticisms of the validity of his H theorem (Cercignani 1998). Because of the

enormous number of particles in a macroscopic system, the time of recurrence of

a non-equilibrium state is astonishingly large. For instance, Boltzmann estimated

that, in a sphere of air of radius 1 cm at temperature 300 K and standard pressure,

for a state of fluctuation in which the concentration of molecules will differ from

the average value by 1% one has to wait 101014

seconds!!

The exponentially large (in N ) times, appearing in these two examples, have a

common origin in the exponential smallness of the phase space regions involved:

the region where A(X) is different from zero and the region where the state of

the system is slightly out of equilibrium. However, they convey very different

information. In the first case such a large time is not helpful, since it means that

Eq. (4.9) is practically useless. In the second case it is welcome, since it allows

the notion of equilibrium of a macroscopic system to be introduced in statistical

mechanics. In this respect, it is necessary to stress that the relevant observables

for thermodynamics, those by which equilibrium states are characterized, are not

generic functions. They are few and mainly of a special kind, so that the physically

interesting question is whether the equilibration time can be short enough for these

special phase-functions.
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4.2.1 Possibility of ergodicity without metrical indecomposability

Khinchin (1949) in his celebrated book Mathematical Foundations of Statistical
Mechanics presents some important results on the ergodic problem which do not

need the metrical transitivity of the Birkhoff theorem. The general idea of this

approach is based on the following facts:

(a) in the systems which are of interest to statistical mechanics the number of degrees of

freedom is very large;

(b) in statistical mechanics the important observables are not generic (in the mathematical

sense) functions, so it is enough to show the validity of (4.9) for the relevant observables;

(c) one can allow that equation (4.9) does not hold for the initial conditions X0 in a region

of small measure (which goes to zero as N → ∞).

Therefore there is hope of obtaining some interesting results beyond the Birkhoff

theorems which hold for generic dynamical systems (i.e. also for the low-

dimensional case), for non-specific observables, and for almost all initial condi-

tions.

Kinchin considers a separable Hamiltonian system, i.e.

H =
N∑

n=1

Hn(qn, pn), (4.12)

and a special class of observables (called sum functions) of the form

f (X) =
N∑

n=1

fn(qn, pn) (4.13)

where fn = O(1). Interesting examples of sum functions are given by the pressure,

the kinetic energy, the total energy and the single-particle distribution function.

Notice that, at variance with the function A(X) in (4.11), a change O(1) in a single

fn results in a relative variation O(1/N ) in f (X): the sum functions are “good”

macroscopic functions, since they are not so sensitive to microscopic details.

Using the fact that the Hamiltonian is separable one has:

〈 f 〉 = O(N ) and σ 2 = 〈( f − 〈 f 〉)2〉 = O(N ). (4.14)

We recall that 〈 〉 indicates the microcanonical ensemble average. Consider the time

average f (X) of the observables f along a trajectory starting from X. Under quite

general hypothesis (without invoking metrical transitivity) one has:

〈 f (X)〉 = 〈 f 〉 and 〈[ f (X)]2〉 ≤ 〈 f 2〉 (4.15)
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so that

〈( f − 〈 f 〉)2〉 ≤ 〈( f − 〈 f 〉)2〉 = O(N ). (4.16)

Now we can use the Markov inequality

Prob

(
| f − 〈 f 〉|

|〈 f 〉| ≥ a

)
≤ σ

a|〈 f 〉| = 1

a
O(N−1/2) (4.17)

to obtain, taking a = O(N−1/4),

Prob

(
| f − 〈 f 〉|

|〈 f 〉| ≥ K1 N−1/4

)
≤ K2 N−1/4 (4.18)

where K1 and K2 are O(1).

Therefore we have that for the class of sum functions the set of points for which

time and phase averages differ more than a given amount, which goes to zero as

N → ∞, has a measure which goes to zero as N → ∞.

Note that, as already stressed, this result also holds for systems which are not

metrically transitive, so it is rather different from the Birkhoff theorem. The price

one has to pay in order to avoid metrical transitivity is

� the system must have a separable Hamiltonian;
� only special observables are concerned, i.e. sum functions;
� the number of degrees of freedom must be very large, N � 1;
� a region of small (but finite, for finite N ) measure exists where time and phase averages

do not coincide.

However, now we see that the physical interest is shifted from the ergodicity of

the system to that of some functions, those for which the time and phase averages

coincide for almost all trajectories. But this is not yet enough, because all these

results still concern infinite time averages.

Finally, since the dynamics in Khinchin’s approach plays a rather marginal role,

a much more interesting result, not concerning time averages, can be obtained.

From the assumptions (4.12)–(4.13) and the result (4.14) one can show that:

Prob

( | f − 〈 f 〉|
|〈 f 〉| ≥ K1 N−1/4

)
≤ K2 N−1/4, (4.19)

in other words, the physically relevant observables are self-averaging, i.e. they

are practically constant (except in a region of small measure) on a constant-energy

surface. This implies that the time average operation is not so important for assigning

a physical meaning to the quantity 〈 f 〉, which turns out to be the near constant value

of the observable. It also means, and this can be viewed as the essence of Khinchin’s
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results, that the ensemble based statistical mechanics can work independently of

the validity of ergodicity (in the mathematical sense). Actually this was also (and

already) the point of view of Boltzmann himself (Gallavotti 1999).

A weak aspect, from the physical point of view, of Khinchin’s approach concerns

the no-interaction assumption (4.12). In contrast, an essential requisite for thermo-

dynamic behavior is the possibility of an exchange of energy among the particles.

Of course Khinchin noted the problem and argued that the actual Hamiltonian is

indeed only approximated by the separable Hamiltonian. The feeling of Khinchin

was that the interaction among the particles contributes very little to evaluating

the averages and for the majority of computations in statistical mechanics one can

neglect these terms.

The undesirable restriction to the separable structure of the Hamiltonian, i.e.

(4.12), was removed by Mazur and van der Linden (1963). They extended the

result to systems of particles interacting through a short-range potential, showing

that the intuition of Khinchin, that the interaction among the particles is of little

relevance, was basically correct. The physical interpretation of the result is that,

owing to the short range of the interactions, a many-particle system behaves as if

it consists of a large number of non-interacting components. As Mazur and van

der Linden write: “One might think of subsystems consisting of large numbers

of particles; the interaction between these subsystems is then a surface effect and

very small compared to the energy content of the subsystems themselves.” Their

calculations then imply that “the energies of these subsystems behave as almost

independent random variables, so that a central limit theorem still applies.” It is

interesting to note that the result obtained is valid for all but a finite number of

values of the temperature, where the system may undergo a phase transition, at

variance with the non-interacting case considered by Khinchin.

Let us stress again that in the Khinchin result, as well as in the generalization of

Mazur and van der Linden, basically the dynamics plays no role and the existence

of good statistical properties is due to the fact that N � 1.

4.2.2 A note on the ergodic hypothesis

We introduced the ergodic problem by arguing that a macroscopic observation on

a thermodynamic system necessarily involves a huge number of microscopic states

of the system, so that, in order to relate theory with experiment, the computation of

a time average is mandatory. At this point of the reasoning the ergodic hypothesis

is introduced, freeing us from that impossible task, but replacing it with the need

to explain how thermodynamic finite time properties can be linked to infinite time

averages. The discussion above, about the sum functions and the relevant concept

of ergodic functions, gives a possible explanation.
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Since we put forward the ergodic hypothesis giving no detailed justification, it

may be interesting to arrive at it by following a route that is likely to be close to

the path followed by Boltzmann himself (Gallavotti 1999) and that, moreover, may

help in understanding why the hypothesis was formulated.
The starting point is a theorem initially studied by Boltzmann, and further also

elaborated by Helmholtz. It was called the heat theorem, not to be confused with the
heat theorem of Nernst. It can be stated as follows. Consider a mechanical system
belonging to the special class of monocyclic systems that, by definition, possess
motions that are periodic and non-degenerate, i.e. such that only one trajectory
corresponds to a given energy value. Assume that the potential energy, �, of the
system depends on a parameter, V , and put

� T the time average of the kinetic energy, K ,
� U = K + � the total energy of the system,
� P the time average of −∂V �.

Identify a state with a complete motion of given energy U and given V . If the

parameters defining a state vary by the infinitesimal quantities dU and dV , then

one has

Helmholtz’s theorem: the differential
dU + P dV

T
is exact.

Helmholtz’s theorem is intriguing since it states that, at least in these systems,

purely mechanical quantities can be found that satisfy a relation formally identical

to the one that allows the existence of the entropy function in thermodynamics.

Essentially, monocyclic Hamiltonian systems are one-dimensional. In order to

use these ideas in the case of high-dimensional systems, we can think that the lesson

of thermodynamics is just that macroscopic systems enjoy a kind of monocyclicity

property because, for example for a gas in a container, a unique behavior corresponds

to a given energy and a given volume. We may assume, as Boltzmann did within

a discrete view of nature, that an energy surface consists of finitely many cells,

that can be labeled and counted, and during the time evolution a motion will visit

all the cells. This is the “ergodic hypothesis,” as formulated by Boltzmann, and it

corresponds to the assumption that a generic Hamiltonian system can be considered

as monocyclic, i.e. all motions with a given energy are periodic and differ, at most,

by a time shift. Thus the ergodic hypothesis allows us to apply the heat theorem to

generic Hamiltonian systems. Moreover, at this point, it is clear that the calculation

of time averages over a complete period can be replaced by the calculation of phase

averages over the whole energy surface, with respect to the uniform distribution,

since the cells are all equal.

Now, let us consider a gas in a container, whose volume, V , is the parameter

on which the potential energy of the system depends, since a piston allows it to be

varied. If we calculate, by substituting time averages with microcanonical averages,
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the mean value of −∂V � (see, for instance, Gallavotti (1999)) the quantity we

obtain, that we named P , is just the average momentum communicated by the gas

molecules to the walls, per unit time and unit surface, i.e. the physical pressure;

this also satisfies the perfect gas law, once the average kinetic energy is taken as

proportional to the absolute temperature.

Summing up, we see that the ergodic hypothesis translates the requirement that

the system be monocyclic. The latter property suggests that mechanical analogs

of thermodynamical quantities may exist, it allows the microcanonical distribution

to be introduced, and it guarantees that the mechanically defined quantities having

the physical meaning of pressure and temperature satisfy, via Helmholtz’s theorem,

the correct properties that thermodynamics imposes. Thus we have a “mechanical

model” of thermodynamics.

However, the physical content of the model does not yet have a direct thermody-

namic interpretation. We are confronted again with the problem of infinite times.

Indeed the quantities appearing in Helmholtz’s theorem are obtained by perform-

ing averages over one period that, in macroscopic systems, is practically infinite. In

contrast, the physical quantities involved in the (true) thermodynamic relations are

obtained from measures localized in time. The remaining task is to find the relation

between infinite time properties and finite time laws. This is a problem whose so-

lution can be found, as already suggested by Boltzmann, in the peculiarities of the

physical observables, that are studied in a systematic way in Khinchin’s book, as

discussed above. The result is that the huge number of particles provides a solution,

since it is the reason why the physical observables involved are almost constant, so

that a short time average is the same as a long time average.

4.3 The connection between analytical mechanics and
the ergodic problem

The issue of ergodicity is entangled with the problem of the existence of non-trivial

integrals (i.e. conserved quantities) in Hamiltonian systems. Given a Hamiltonian

H (q, p), with q, p ∈ IRN , if there exists a canonical transformation (i.e. a change of

variables which does not change the Hamiltonian structure of the system) from the

variables (q, p) to the action-angle variables (I, φ), such that the new Hamiltonian

depends only on the action I,

H = H0(I), (4.20)

then the system is called integrable. In this case the time evolution of the system is{
Ii (t) = Ii (0)

φi (t) = φi (0) + ωi (I(0)) t,
(4.21)

where ωi = ∂ H0/∂ Ii and i = 1, . . . , N .
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Note that in integrable systems there are N independent first integrals, since

all the actions Ii are conserved and the motion evolves on N -dimensional tori.

The Solar System provides an important example: if the planetary interactions are

neglected one has the two-body problem (Sun–planet), for which the integrability

can be easily proved.

It is fairly natural to wonder about the effect of perturbations on (4.20), i.e. to

study the Hamiltonian

H (I, φ) = H0(I) + εH1(I, φ), (4.22)

also called a near-integrable Hamiltonian.

For the Solar System, this would imply accounting for the interactions between

planets, leading to ε ∼ 10−3, which is the ratio between the masses of Jupiter

(the largest planet) and the Sun. Do the perturbed system (4.22) trajectories end

up “close” to those of the integrable system (4.20)? Does the introduction of the

perturbation term εH1(I, φ) still allow for the existence of integrals of the motion

besides the energy?

These questions are of obvious interest to celestial mechanics, and also relevant

to the ergodic problem. Of course, if there are first integrals, beyond the energy, the

system cannot be ergodic: choosing one of the first integrals as the observable A,

one has A = A(X(0)), which depends on the initial condition X(0) and therefore,

in general, it cannot coincide with the phase average 〈A〉.
Curiously, in statistical mechanics and in celestial mechanics there are contrast-

ing expectations or, better, wishes: in statistical mechanics one wishes for “irregu-

lar” dynamical behavior, in order to justify the ergodic hypothesis; conversely, in

celestial mechanics “regular” behavior is desired so that accurate predictions can

be made.

4.3.1 The great Poincaré result

In a very important work Poincaré showed that generally a system like (4.22),

with ε �= 0, does not allow analytic first integrals, except for energy (Poincaré

1892). The existence of first integrals is equivalent to the possibility of finding

a change of variables (I, φ) → (I′, φ′) preserving the Hamiltonian nature of the

system (canonical transformation) such that the Hamiltonian is a function only of

the (new) actions I′. Practically, one has to find a generating function S(I′, φ),

which links (I, φ) to (I′, φ′):

In = ∂S(I′, φ)

∂φn
, φ′

n = ∂S(I′, φ)

∂ I ′
n

, (4.23)



4.3 Analytical mechanics and the ergodic problem 105

in such a way that the perturbed Hamiltonian

H (I, φ) = H0

(
∂S

∂φ

)
+ εH1

(
∂S

∂φ
, φ

)
(4.24)

is a function only of I′. One approach is to look for a solution in the form of a power

series in ε:

S = S0 + εS1 + ε2S2 + · · · . (4.25)

For S0 one has S0 = I′ · φ (this corresponds to the identity transformation for ε = 0).

Substituting the series (4.25) for S in (4.24) one obtains an equation for S1:

∂ H0(I′)
∂I′ · ∂S1(I′, φ)

∂φ
= −H1(I′, φ). (4.26)

If one expresses H1 and S1 as Fourier series in the angle vector φ:

H1 =
∑

m

h(1)
m (I′)eim·φ, S1 =

∑
m

s(1)
m (I′)eim·φ, (4.27)

where m is an N -component vector of integers, one obtains

S1 = i
∑

m

h(1)
m (I′)

m · ω0(I′)
eim·φ, (4.28)

where ω0(I) = ∂ H0(I)/∂I is the unperturbed N -dimensional frequency vector for

the torus corresponding to action I.

One understands immediately the origin of the non-existence of first integrals:

this is the celebrated problem of small denominators. Clearly (4.28) does not work

for the values of I for which m · ω0(I′) = 0 for some value of m. Also, in the case

where the unperturbed frequencies ω0(I) are rationally independent, the denom-

inator m · ω0(I′) can be arbitrarily small, therefore one has to conclude that first

integrals (beyond energy) cannot exist.

4.3.2 Does non-integrability imply ergodicity?

Poincaré’ s result sounds rather positive for statistical mechanics. In 1923 the young

Fermi first generalized Poincaré’s result, showing that in a Hamiltonian system

which is a perturbation of an integrable system, if N > 2, for a generic perturbation

H1, there cannot exist even a single surface of dimension 2N − 2 embedded in the

2N − 1 dimensional constant energy surface, and analytical in the variable (I,φ)

and ε, that contains all the trajectories starting on it (Fermi 1923). This (correct)

result induced Fermi to argue that Hamiltonian systems (apart from the integrable

ones, which must be considered atypical) in general, are ergodic, as soon as ε �= 0.

This conclusion has been generally accepted by the physics community.
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Following Fermi’s 1923 work, even in the absence of a rigorous demonstration,

the ergodicity problem seemed, at least to physicists, essentially solved. There

was a general consensus that the non-existence theorems for regular first integrals

implied ergodicity. It seems that Fermi was not very worried at the lack of rigor of

his “proof,” likely the main reason was his (and more generally the large part of the

physics community) interest in the development of quantum physics. In the 1930s

the ergodic problem thus became a subject studied mainly by mathematicians, who

tackled it in a rather general and abstract way, without particular interest in its

connections with statistical mechanics.

4.4 An unexpected result revitalizes interest in the ergodic problem

After the Second World War Fermi continued periodically to visit the Los Alamos

Laboratories. As Ulam wrote in the introduction to the celebrated paper Studies
of non-linear problems (Fermi et al. 1955) for Note e Memorie (Collected Papers)

(Fermi 1965), he quickly became interested in the development of computers and in

their use for scientific research. That paper, which is often referred to by the acronym

FPU (from the names of the authors: Fermi, Pasta and Ulam), was completed in May

1955, but appeared for the first time in 1965 as a contribution to Note e Memorie,

an anthology of Fermi’s papers. This work had a unique role in the development of

different fields of research such as dynamical chaos and numerical simulations. In

FPU Fermi and collaborators studied the time evolution of N + 2 particles of mass

m, interacting with non-linear springs (i.e. Hooke’s law is not exactly valid). The

Hamiltonian of the system is

H =
N∑

i=0

[
p2

i

2m
+ K

2

(
qi+1 − qi

)2 + ε

r

(
qi+1 − qi

)r
]

(4.29)

where q0 = qN+1 = 0 = p0 = pN+1 and r = 3 or r = 4.

If ε = 0 the system is integrable, since it is equivalent to N independent harmonic

oscillators. In such a case using the normal modes,

ak =
√

2

N + 1

∑
i

qi sin
i k π

N + 1
(k = 1, . . . , N ), (4.30)

the system reduces to N non-interacting harmonic oscillators whose angular fre-

quencies are

ωk = 2

√
K

m
sin

k π

2(N + 1)
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and whose energies are

Ek = 1

2

(
ȧ2

k + ω2
ka2

k

)
.

The Ek , in this case, are clearly constant during the time evolution and they are

proportional to the action variables Ek = ωk Ik . The Hamiltonian (4.29) is, therefore,

a typical example of a perturbed integrable system. For small values of ε it is not

difficult to compute all the thermodynamically relevant quantities in the framework

of equilibrium statistical mechanics, i.e. in terms of averages over a statistical

ensemble (e.g. the canonical or microcanonical ones). In particular, it can be shown

that

〈Ek〉 � Etot

N
. (4.31)

Equation (4.31) is just one way of writing the equipartition law. It must be noted

that equipartition can be valid for ε = 0, or small; however Ek , the time average

computed along a trajectory, can coincide with 〈Ek〉, only if ε is different from

zero, so that the normal modes interact, loosing memory of their initial conditions.

What happens if an initial condition is chosen in such a way that all the energy

is concentrated in a few normal modes, for instance E1(0) �= 0 and Ek(0) = 0 for

k = 2, . . . , N?

Before FPU, the general expectation would have been (based on the discussion of

the previous section) that the first normal mode would have progressively transferred

energy to the others and that, after some relaxation time, every Ek(t) would fluctuate

around the common value given by (4.31). Even though there is no specific evidence

(Ulam does not mention this explicitly), it is reasonable to think that Fermi shared

this expectation. Likely Fermi was interested in a numerical simulation, not so

much to verify his “demonstration” of the ergodic hypothesis, as to investigate the

thermalization times, i.e. the times necessary for the system to go from a non-

equilibrium state (all energy concentrated in only one mode) to the equipartition

expected by statistical mechanics. In FPU a numerical simulation was performed

with N = 16, 32, 64, ε �= 0 and all the energy concentrated initially in the first

normal mode. Unexpectedly, no tendency toward equipartition was observed, even

for long times. In other words, a violation of ergodicity and mixing was found.

In Figure 4.1 we show the time behavior of the quantities Ek/Etot, for several

values of k, for N = 32 and r = 3. Instead of a loss of memory of the initial

condition, we see an almost periodic mode: after a long time, E1 reverts almost

back to its initial value. The non-equipartition of energy can be clearly observed in

Figure 4.2, which shows the time-average energy of mode k, as a function of the
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Figure 4.1 E1(t)/Etot, E2(t)/Etot, E3(t)/Etot for the FPU system, with N = 32,
r = 3, ε = 0.1 and energy density E = Etot/N = 0.07. Courtesy of G. Benettin.
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Figure 4.2 Time-averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines,

from top to bottom) and
∑32

k=5 E(av)k(T )/Etot (dashed line). The parameters of the
system are the same as in Figure 4.1. Courtesy of G. Benettin.

observation time T :

Ek(T ) = 1

T

∫ T

0

Ek(t)dt, with k = 1, . . . , N . (4.32)

The FPU results contrasted strongly with expectations, and Fermi himself, accord-

ing to Ulam, said that he was rather surprised and that they were dealing with an

important discovery which showed unambiguously how the prevalent opinion (at
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that time) on the generality of mixing and thermalization properties of non-linear

systems might not always be justified.

4.5 Some modern developments

The existence of non-ergodic behavior in non-integrable Hamiltonian systems

had (paradoxically) already been found by the soviet mathematician Kolmogorov

(1954), one year before the FPU paper. This fact was surely unknown to the authors

of FPU.

4.5.1 The KAM theorem

Kolmogorov proposed (without a detailed proof, but clearly expressing the basic

idea) an important theorem, which was subsequently completed by Arnold (1963)

and Moser (1962). The theorem, now known as KAM, reads as follows.

Theorem (KAM) Given a Hamiltonian H (I,φ) = H0(I) + εH1(I,φ), with H0(I)

sufficiently regular and det |∂2 H0(I)/∂ Ii∂ I j | �= 0, if ε is small enough, then on the
constant-energy surface, invariant tori survive in a region whose measure tends to
1 as ε → 0. These tori, called KAM tori, result from a small deformation of those
present in the integrable system (ε = 0).

At first glance, if the theorems on the non-existence of non-trivial first integrals

were not known, the KAM theorem might seem obvious. Actually instead, as a

result of the small denominators, the existence of the KAM tori is a rather subtle

and strongly counterintuitive fact. In fact for every value (even very small) of ε,

some tori of the perturbed system, the so-called resonant tori, are destroyed, and

this forbids analytic first integrals. In spite of that, for small ε most tori survive,

even if slightly deformed; thus the perturbed system (at least for “non-pathological”

initial conditions) behaves similarly to the integrable system.

In a nutshell, the idea of the KAM theorem is the following. Poincaré’s result

shows that, because of the small denominators, it is not possible to find a canonical

transformation such that in the new variables the system is integrable. On the other

hand one can try to obtain a weaker result: i.e. not for the whole phase space but

for a region of non-zero measure. This is possible if the Fourier coefficients of

S1 in (4.28) are small. Assuming that H1 is an analytic function, the h(1)
m decrease

exponentially with m = |m1| + |m2| + · · · + |m N |. On the other hand, there exist

tori, with frequencies ω0(I), such that the denominator is not too small, i.e.

|m · ω0(I′)| > K (ω0)m−(N+1), (4.33)
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for all integer vectors m (except the zero vector). The set of ω0 for which Eq. (4.33)

holds has a non-zero measure in the ω0-space, and thus one can build the S1 in a

suitable non-zero measure region (around the non-resonant tori). Then one has to

repeat the procedure for S2, S3, . . . and to control the convergence.

The FPU results can be seen (a posteriori) as a “verification” of the KAM theorem

and above all, of its physical relevance, i.e. of the fact that the tori survive for

physically significant values of the non-linear parameter ε.

In the case of Hamiltonian systems with two degrees of freedom, the KAM tori

have dimension 2 and separate regions of the three-dimensional surface of constant

energy. Therefore chaotic disjoint regions separated by invariant surfaces (KAM

tori) can coexist. Let us note that in general the KAM tori have dimension N while

the available phase space has dimension 2N − 1. Thus in the case N = 2, the

tori are able to separate regions that, in principle, can exhibit different behaviors.

In contrast, for N ≥ 3 the complement of the set of invariant tori is connected.

This fact allows for so-called Arnold diffusion: the system can move on the whole

surface of constant energy, by diffusing among the unperturbed tori (Arnold 1964).

The presence of Arnold diffusion has been proved for particular systems, but it is

believed to hold in a generic system. Unfortunately it is not easy to give theoretical

estimates of the time scale of Arnold diffusion in the general case.

Let us note that the KAM theorem gives a result (i.e. the existence of the invariant

tori) which is valid at any time, but only for a part of the phase space. If one is

simply interested in times smaller than a given (large) Tmax and for generic initial

conditions, the results of the KAM theorem are somehow too restrictive (with regard

to the times) and not completely satisfactory (with regard to the initial conditions).

From an important theorem due to Nekhoroshev (1977) it follows that for a near-

integrable Hamiltonian system any of the actions remains close to its initial value.

Theorem (Nekhoroshev) Given a Hamiltonian H (I, φ) = H0(I) + εH1(I, φ),
with H0(I) satisfying the same assumptions as for the KAM theorem, positive con-
stants A, B, C, α, β, exist such that any motion (I(t), φ(t)) satisfies the inequality

|In(t) − In(0)| ≤ Aεα n = 1, . . . , N (4.34)

for

t ≤ B exp[Cε−β]. (4.35)

Both the KAM and Nekhoroshev theorems show clearly that both ergodicity

and integrability are not generic properties for Hamiltonian systems which are

perturbations of integrable systems. On the other hand it is not at all easy to master a

priori, even at a qualitative level, important physical aspects such as the dependence

on N of the constants A, B, C, α, β in the Nekhoroshev theorem or the behavior

of the measure of the KAM tori as a function of N and ε.
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4.5.2 A parenthesis on solitons, FPU and KAM

In the 1960s, Zabusky and Kruskal (1965) developed the idea that the regular

behavior of the Hamiltonian system (4.29) could be attributed to some solutions,

called solitons, of a partial differential equation for which the Hamiltonian (4.29),

is a discrete approximation.

Since this (often accepted) interpretation can generate some confusion we want

to discuss this point briefly.

The equations which govern the evolution of the FPU system are

m
d2qn

dt2
= f (qn+1 − qn) − f (qn − qn−1), (4.36)

where, for r = 3, f (y) = K y + εy2. Assuming that qn(t) is the value of a spatially

continuous variable, the field ψ(x, t) at n �x , where �x is the spacing of the

lattice with which one approximates a continuous interval, it is easy to write a

partial differential equation for ψ(x, t):

1

c2

∂2ψ

∂t2
= a

∂2ψ

∂x2
+ 2 g

∂ψ

∂x

∂2ψ

∂x2
, (4.37)

where, in the limit �x → 0, a proper rescaling of K , m and ε has been performed.

It can be shown that the solutions of (4.37) develop spatial discontinuities af-

ter a finite time tc ∼ 1/|ψ0|, where ψ0 is the maximum field amplitude at t = 0

(Cercignani 1977).

However, we can look for a solution of (4.36) which, in the continuous limit,

will be slowly varying with t , if x − ct is fixed. In such a limit, for the variable

v = ∂ψ/∂ξ we obtain the equation

∂v

∂τ
+ εv

∂v

∂ξ
+ 1

24

∂3v

∂ξ 3
= 0, (4.38)

where the variables ξ and τ are proportional to x − ct and to t respectively.

Equation (4.38) is another way of writing the Korteweg–de Vries (KdV) equa-

tion, which was introduced in 1895 to describe the propagation of surface waves

in shallow water. Equation (4.38) admits a “solitonic wave” solution of the type

v = F(ξ − V τ ), where V is a constant and F(z) is a localized function that de-

cays to zero at large values of |ξ − V τ |. Solitary waves have been considered

for a long time as a mere mathematical curiosity. Since the work of Zabusky and

Kruskal on vibrations in anharmonic crystals and plasma waves, solitonic proper-

ties have turned out to be fundamental to many physical phenomena (Cercignani

1977).
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The original Zabusky and Kruskal explanation of the regularity of the FPU system

in terms of solitary waves originating from the KdV equation, however, is not totally

convincing. In fact the passage from Eq. (4.36), with variables qn(t), i.e. an ordinary

differential equation, to a partial differential equation for the field ψ(x, t) is very

delicate, since similar assumptions can lead to very different systems. For instance,

one can obtain an equation such as (4.37) which develops singularities in a finite

time, or an equation such as (4.38) which has very regular behavior. On the other

hand, the feature observed in FPU is not pathological, mainly because of its relation

with the KAM theorem. Therefore the Zabusky and Kruskal interpretation of the

regular behavior of FPU does not seem completely appropriate.

4.5.3 Numerical results and physical questions

Since it is difficult to control the dependence on N of the constants involved in the

KAM theorem and the Nekhoroshev theorem, computer investigations are practi-

cally unavoidable. The great merit of numerical computations is that they allow

experimental tests, and thus serve as a guide toward future theories. Let us discuss

some simulations on the FPU. Izrailev and Chirikov (1966) first noted that for high

values of ε, where the effects of the KAM theorem are switched off, there is good

statistical behavior, as can be seen in Figure 4.3. The energy, initially concentrated

in the lowest frequency normal modes, can be seen to spread equally on all nor-

mal modes, therefore the time averages are in agreement with those of equilibrium

statistical mechanics. For a fixed number of particles N , at least for large but finite
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Figure 4.3 Time-averaged fraction of energy, in all the modes k = 1, . . . , 32. The
parameters of the system are N = 32, r = 3, ε = 0.1 and energy density E =
Etot/N = 1.2. Courtesy of G. Benettin.
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times, the following scenario essentially holds (Livi et al. 1985, Ruffo 2001, Carati

et al. 2005).

For a given energy density E = E/N there is a threshold εc for the strength of

the perturbation such that:

(a) if ε < εc the KAM tori play a major role and the system does not follow equipartition,

even after a very long time;

(b) if ε > εc the KAM tori have a minor effect, the system follows equipartition and there

is agreement with standard statistical mechanics.

It is easy to realize that if the value of the perturbation ε is given, as happens

in actual physical situations, the energy density could play the role of a control

parameter and a threshold Ec would exist which separates regular from irregular

behavior.

At variance with dissipative systems, in the Hamiltonian cases there is not a

sharp transition from regular to chaotic behavior, and regular and chaotic motions

can coexist.

Since the habitual aim of statistical mechanics is the study of systems with a

large number of degrees of freedom, it is of genuine physical interest to understand

whether the results observed in low-dimensional systems can be extended to cases

with N � 1. Several physical questions arise:

(1) whether the regular behavior for small non-linearities, and irregular behavior for large

non-linearities, is peculiar to the FPU Hamiltonian;

(2) what is the dependence of εc on N (at fixed E) or, equivalently, what is the dependence

of Ec on N (at fixed ε);

(3) what are the characteristic times of the equipartition process.

More generally (i.e. for generic Hamiltonian systems) open questions are:

(4) how small is the part of the phase space with regular behavior;

(5) how does it depend on the number of degrees of freedom;

(6) what is the behavior of the relaxation times as functions of N and ε.

Point (1) is clear: the mechanism of the transition to chaos for increasing ε is

standard for all systems which (like FPU) are obtained by perturbing harmonic sys-

tems. Furthermore, this behavior is present not only in one-dimensional lattices, but

also in multi-dimensional lattices, for instance in Lennard-Jones two-dimensional

systems at low energy, where the Hamiltonian can be written in form (4.22), i.e. a

harmonic part plus an anharmonic perturbation (Benettin and Tenenbaum 1983). For

points (2) and (3), the answers are less clear. The dependence of εc (or, equivalently,

of Ec at fixed ε) on N is obviously very important: if εc → 0 when N → ∞, the

traditional point of view, i.e. that preceding FPU, is re-established. On the contrary,
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if εc were not dependent on N , there would be a serious discrepancy with the results

expected from equilibrium statistical mechanics. Detailed numerical simulations

and analytic computations have been performed to answer points (2) and (3). In

spite of great effort, owing to technical and numerical difficulties, there is still no

general agreement. In the following we discuss briefly some recent results.

Casetti et al. (1997) show clearly that in FPU with cubic non-linearity (r = 3),

for an energy density smaller than Ec = Ec/N ∼ 1/N 2 the motion is very regular,

even in the limit N → ∞, with solitonic behavior, in agreement with the Zabusky

and Kruskal interpretation. Above this threshold the system has good statistical

behavior. However, the time τR(E) necessary to reach equipartition, starting from

a far-from-equilibrium initial condition (for instance all the energy is concentrated

in a few normal modes) may be very long: τR ∼ E−3. Similar results for quartic

(r = 4) non-linearities have been obtained by De Luca et al. (1999). The relaxation

time τR might also depend on the number of degrees of freedom N ; for instance,

if the initially excited normal modes are always between k1 and k2 (with fixed k1

and k2), on increasing N we have τR ∼ N 1/2E−1 (Ruffo 2001). Since Hamiltonian

systems do not have an attractor, the choice of initial conditions (particularly for

N � 1) is an important technical aspect and it may have a non-trivial influence,

even at a qualitative level, on the relaxation to statistical equilibrium. Without going

into detail we note that, even starting from initial conditions which are typical

of statistical equilibrium, partially regular behavior is also observed above the

stochasticity threshold (E > Ec) (Livi et al. 1987). For a recent review on the FPU

see Berman and Izrailev (2005) and Carati et al. (2005).

4.6 On the role of chaos in statistical mechanics

From the results discussed above one could be tempted to say that chaos (in the sense

of positive Lyapunov exponent) is a necessary ingredient for the validity of statistical

mechanics. Unfortunately this scenario seems to be much more complicated than

originally expected. Even if the system turns out to be chaotic and most KAM tori

are destroyed, the automatic validity of ordinary statistical mechanics is, in fact,

not obtained, at least over long but finite times (Livi et al. 1987). This behavior is

not restricted to systems similar to FPU, i.e. anharmonic perturbation of harmonic

chains. Let us discuss briefly the results of numerical studies of high-dimensional

symplectic coupled maps of the form{
φn(t + 1) = φn(t) + In(t) mod 2π

In(t + 1) = In(t) + ε∇F(φ(t + 1)) mod 2π
(4.39)

where n = 1, . . . , N and ∇ = (∂/∂φ1, . . . , ∂/∂φN ). It is easy to see that the above

symplectic map is just a canonical transformation from the “old” variables (I,φ),
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i.e. those at time t , to the “new” variables (I′,φ′), at time t + 1, via the generating

function:

S(I,φ′) =
∑

n

φ′
n In − 1

2

∑
n

I 2
n + εF(φ′). (4.40)

The map (4.39) can be seen as the Poincaré section of a Hamiltonian system with

N + 1 degrees of freedom. When the coupling constant ε vanishes the system is

integrable, and the term εF(φ) plays the role of the non-integrable perturbation

of the Hamiltonian. In Falcioni et al. (1991) and Hurd et al. (1994) one can find

clear evidence that the irregular behavior becomes dominant as N becomes large.

Specifically, one observes that the volume of the phase space occupied by the

KAM tori decreases exponentially as N increases. Although this sounds good for

the foundation of statistical mechanics, one finds that very long time scales are

involved: individual trajectories forget their initial conditions and invade a non-

negligible part of the phase space only after an extremely long time. Also, in very

large systems Arnold diffusion is very weak and, even with a high value of the

Lyapunov exponent, different trajectories maintain some of their own features for

a very long time.

Livi et al. (1987) studied the relevance of chaos in non-linear Hamiltonian sys-

tems with respect to the predictions of statistical mechanics. The canonical ensemble

is the most suitable for computing averages analytically. From a conceptual point

of view one can consider the canonical ensemble as describing the fluctuations of a

small part of a large conservative system. This naturally suggests how to simulate

a canonical ensemble, avoiding any noise source modeling the heat bath. Indeed

the dynamics of a canonical ensemble of the FPU system can be simulated by sub-

dividing a chain of N particles into N1 subsystems of N2 = N/N1 particles each,

with N1 � 1 and N2 � 1.

In such a way one can compute the time average of observables defined in the

subsystems and compare them with the values computed according to the canonical

ensemble. For example one can define the internal energy U as the mean value (over

time) of the energy E j in the j th subsystem: U = E j/N2. In an analogous way for

the specific heat CV one has:

CV = E2
j − E j

2

N2T 2
(4.41)

where the temperature is defined as T = p2.

Detailed numerical computations show that both the internal energy U and the

specific heat CV , as functions of the temperature, are close to the predictions of the

canonical ensemble. It is non-trivial that this agreement also holds in the region
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at small energy (i.e. small temperature) where the system behaves regularly (the

KAM tori are dominant).

The above result seems to confirm Khinchin’s approach (although the observ-

ables are not in the class of sum functions) with the small role played by dynamics.

However this conclusion does not seem to be general, in fact in other non-linear

systems one can find rather different behavior (Livi et al. 1987). Consider a system

of coupled rotators

H =
N∑

i=0

[
p2

i

2m
+ γ (1 − cos(qi+1 − qi ))

]
(4.42)

where the variables {qi } are defined in (0, 2π ). For fixed γ this system has two

different integrable limits:

(a) for very small energy one has perturbation of a harmonic chain of oscillators;

(b) for very large energy, because the potential is bounded, one has perturbation of inde-

pendent rotators.

For the system (4.42), though U is very close to the canonical prediction, at high

temperatures CV disagrees strongly with the results of the canonical ensemble.

The different behavior of CV in the two near-integrable regimes of low and high

temperature can be understood as follows. For the FPU system and for the low-

temperature rotators the “natural” variables are the normal modes, which, even in

a statistical analysis, are able to show regular behavior and where the energy of the

system is resident. However, even if the normal modes are almost decoupled, when

observing the energy of a subsystem, identified by some set of “local” variables

{p j , q j }, non-negligible fluctuations of the “local” energy can be seen. On the

other hand, for the chain of rotators at large energy the normal modes, i.e. the

carriers of the energy, are the “local” variables {p j , q j } themselves, and therefore

the fluctuations of the local energy are strongly depressed, as is the exchange of

energy among the subsystems.

4.7 Some general remarks

Let us conclude this chapter with some remarks on ergodicity and chaos with respect

to the foundation of statistical mechanics.

First we note that the ergodic approach can be seen as a natural way to introduce

probabilistic concepts in a deterministic context. It seems to us that the ergodic

theory provides support for the frequentistic interpretation of probability in the

foundation of statistical mechanics. The other way (which is not in disagreement

with the point of view of Boltzmann) to introduce probability is to assume an
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amount of uncertainty in the initial conditions. This approach is due to Maxwell

who considers that there are a great many systems the properties of which are the
same, and that each of these is set in motion with a different set of values for the
coordinates and momenta (Maxwell 1879).

Since one is forced to deal with a unique system (although with many degrees

of freedom) it seems natural to assume that the purpose of statistical mechanics,

for equilibrium phenomena, is to calculate time averages according to the temporal

evolution of the system. Therefore the ensemble theory should be seen only as a

practical mathematical tool and the ergodic theory (or a “weak” version, such as

that of Khinchin and Mazur and van der Linden) is an unavoidable step. Of course

there is no complete consensus on this; for example Jaynes’s opposite opinion is

that ergodicity is simply not relevant for the Gibbs method (Jaynes 1967).

The ergodicity is, at the same time, an extremely demanding property (i.e. the

time and phase averages must be equal for almost all the initial conditions), and not

very conclusive at a physical level (because of the average over an infinite time).

On the other hand, in the quasi-integrable limit the analytical results (KAM and

Nekhoroshev) give only qualitative indications and do not allow for quantitative

aspects. Therefore it is not possible to avoid detailed numerical investigations.

There are also opposing answers to the question of whether the systems which are

described by statistical mechanics must have a large number of degrees of freedom,

and it is possible to find eminent scientists with opposite opinions. For instance

Grad (1967) writes explicitly that “the single feature which distinguishes statistical

mechanics is the large number of degrees of freedom.” One can read rather similar

sentences in the well known textbook of Landau and Lifshitz. In contrast Gibbs

(1902) believed that “the laws of statistical mechanics apply to conservative systems

of any number of degrees of freedom, and are exact.”

Extended simulations on high-dimensional Hamiltonian systems show in a clear

way that chaos is not necessarily a fundamental ingredient for the validity of equi-

librium statistical mechanics: the naive idea that chaos implies good statistical prop-

erties is inconsistent. Indeed sometimes, even in the absence of chaos (in agreement

with Khinchin’s ideas), one can have good agreement between the time averages

and their values predicted by equilibrium statistical mechanics.
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5

On the origin of irreversibility

Since in the differential equations of mechanics themselves there is abso-
lutely nothing analogous to the Second Law of thermodynamics the latter
can be mechanically represented only by means of assumptions regarding
initial conditions.

Ludwig Boltzmann

By irreversibility here we mean a well evident fact which is part of the everyday

experience of everybody: there are a lot of phenomena of which we do not see the

reverse order evolution, and we do not expect to see it. For instance, if we put a hot

coffee on the table then, after a while it gets colder, transferring some heat to the

environment. However, if the coffee, at room temperature, has become too cold, and

we want to warm it up, then we put it in the microwave oven. This is because we are

pretty sure that the required heat will not come into the coffee from the surroundings,

even if the reverse process has just taken place, as always. This certainty allows us

to judge time ordering. Given the two states of the coffee on the table, hot and cold,

we know that, without external intervention, the hot state cannot come after the cold

state: it always comes before. As a consequence, once the cooling has occurred, we

say that something (spontaneously) irreversible has happened. So, irreversibility

is the asymmetric time evolution of certain macroscopic systems. The theoretical

frame where this kind of irreversibility is accommodated is thermodynamics, where

the Second Principle dictates the prohibitions.

5.1 The problem

As a fact within the coherent theoretical description of thermodynamics, irre-

versibility is not a problem. It becomes a problem when we adopt the atomistic

point of view, and we pretend to explain the behavior of the macroscopic world

starting from the laws of motion of its microscopic constituents. The origin of the

120
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problem lies in the fact that the laws of mechanics, that are assumed to govern the

evolution of the individual particles, are time-reversal invariant.

We are inclined to believe that the time-symmetry breaking process, leading

to decay of neutral kaons (Cronin 1981), cannot have any physically meaningful

effect in determining the behavior of the usual macroscopic systems, that exhibit

irreversibility under standard conditions of temperature and pressure. Moreover,

we can safely assume that the relevant features of an irreversible behavior do not

depend on the internal structure of the molecules forming the gas; this allows

us to restrict our attention to the translational degrees of freedom, for which a

classical mechanics description is fully adequate. So we can consider only classical

mechanics, leaving aside a possible discussion based on the (time-reversal invariant)

Schrödinger equation.

Assuming that the interparticle force, F, depends only on particle positions,

Newton’s equation of motion for N particles

mi
d2xi

dt2
= Fi (x1, . . . , xN ) (i = 1, 2, . . . , N ) (5.1)

is such that, if {xi (t)} is an allowed solution, describing a possible evolution of N
particles, then {xi (−t)}, describing the reverse motion, with all velocities inverted,

is also a solution. Essentially, this is because if one lets t → −t and vi → −vi

while the xi do not change, Eq. (5.1), which depends only on second deriva-

tives with respect to time, stays unaltered. More precisely, one considers an ini-

tial condition, with particles at positions (x1(0), . . . , xN (0)) possessing velocities

(v1(0), . . . , vN (0)), and lets it evolve, according to Eq. (5.1), until a time t . At this

time one inverts the velocities, and one takes as a new initial condition that with par-

ticles at (x1(t), . . . , xN (t)) and velocities (−v1(t), . . . , −vN (t)). The evolution of

the system from the new condition, during another time interval t , will bring it back

to the points (x1(0), . . . , xN (0)) with inverted velocities (−v1(0), . . . , −vN (0)).

It is nearly unavoidable to mention here the so-called echo phenomena, where the

time reversal of microscopic degrees of freedom (e.g. nuclear spins and positions

of impurities) is realized; see, for instance, Hahn (1950) and Rhim et al. (1971).

An interesting discussion of the subject can be found in Chapter 24 of Ma (1985).

The time invariance of classical dynamics implies the existence of the backward

running of every process. Thus, referring to the above example, together with

spontaneous cooling of the coffee, spontaneous warming up must also exist. That

is to say, if a molecular evolution takes energy away from the coffee (making it

colder, until its temperature is that of the room), then the inverted molecular motion

must exist which, starting from the cold coffee, realizes a transfer of energy from

the environment to the coffee, making its temperature increase. No one ever saw

this: where is it?
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Let us introduce another example that is more easily treated. Consider a gas

in a box, that is initially compressed (say, by a piston) in one half of the box.

When the piston is released the gas expands and fills the whole box uniformly.

Together with the motion that starts soon after the removal of the piston and takes

the molecules everywhere in the container, an inverted evolution must exist that

brings all the molecules back into the smaller region. Once again we wonder where

all the backward motions have gone.

5.2 Toward the solution

A possible answer to the question is to assume the drastic attitude of assigning to

irreversibility a “fundamental status.” As a consequence, the elementary laws of

motion must be reformulated in a larger theoretical structure, that includes, as a

genuine new kind of solution, the time-symmetry breaking solutions. We do not

go further along this path. For the state of the art of this program see Prigogine

(1999) and references therein; for a detailed critical analysis of this point of view

see Bricmont (1995).

Here we adhere to the more conservative point of view that does not consider

irreversibility as a fundamental behavior, that must play a part in the construction of

dynamical theory. On the contrary, we assume that the laws of thermodynamics, that

rule irreversibility, are not exactly valid, i.e. for all systems and on all physical scales.

We argue that thermodynamics is a very accurate “effective theory” to describe the

behavior of the macroscopic observables of large systems, whose microscopically

detailed evolution is governed by the known (quantum or classical) dynamics. This

thinking dates back to the founding fathers of statistical mechanics and, for instance,

motivated the work of Einstein on Brownian movement, also viewed as a means to

test the strict validity of the Second Law of thermodynamics. As Einstein writes in

the introduction of his first article (May, 1905): “If the movement discussed here

can actually be observed (together with the laws relating to it that one would expect

to find), then classical thermodynamics can no longer be looked upon as applicable

with precision to bodies even of dimension distinguishable in a microscope. . . ” The

experimental confirmation, provided by Perrin, of the Brownian motion fluctuation

theory of Einstein and Smoluchowski, seems to us good support of the position we

take (Mehra 2001).

In our treatment of the irreversibility problem we will not discuss the chaotic

properties, if any, of the underlying dynamics; this because, in agreement with

Bricmont (1995), we believe that the main ingredients for irreversibility are the

large number of degrees of freedom and the initial conditions. At the end of the

chapter we will discuss why, in spite of some claims, chaos plays a rather marginal

role in irreversibility.
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5.2.1 Some preliminary considerations

We will try to understand whether the reversible Newton equations of motion can

generate, in suitable conditions, practically irreversible behavior. We take upon

ourselves the task of explaining how certain kinds of motions can “disappear.” So

we have to characterize the favorable settings that could allow time inversion to

become a hidden symmetry.

About the size of the system

A first remark is that if Newton’s equations are applied to describe the evolution of a

small number of degrees of freedom, then direct and reversed motions are perceived

as equivalent, and one (usually) does not distinguish significantly between them.

For example, consider a billiard table with no pockets and two balls: neglecting

friction, whatever the motion of these “big molecules” can be, one realizes easily its

reverse motion; and the labeling of the motions, as direct or reversed, in these cases,

has no particular meaning. However, in this simple setting one can also get in trouble

with reversibility. Suppose that there are 16 balls on the table: 15 are numbered

and clustered at rest in a (triangular) region in the middle of one of the two halves

of the table; the 16th (and white) one is far apart in the middle of the other half of

the table. One then gives a high enough speed to the latter, that it hits the group of

balls, spreading them all around the table. We can call this motion, beginning with

the white ball approaching the cluster, the direct motion. We are accustomed to this

kind of behavior, which is a typical beginning of a game. But now, the reversed

motion, where 15 balls cluster together and stop, transferring all their energies to

only one ball, is so complicated to realize, and thus so unusual, that we feel a clear

substantial difference between the two processes. If we had a movie of the direct

event, that revealed to us the correct positions and velocities the balls must possess,

nonetheless the implementation of a starting configuration for the reversed process

would be a formidable task, involving the synchronized and calibrated action of

16 persons, or the rapid execution of 16 “right” shots by one person. This is to be

contrasted with the ease of setting up the initial condition of what we called the

direct motion. We are faced with a sort of “practical irreversibility,” given by the

extreme difficulty of preparing the initial state for the inverse motion, a motion

that, on the other hand, we are able to imagine clearly, and that dynamical laws do

not forbid. We can try to give a quantitative measure of the “strangeness” of the

inverse motion, imagining realizing it by chance. A very rough estimation could

be the following. In order to give an idea of the order of magnitude of the typical

numbers involved in the problem, we disregard the rotational degrees of freedom

and suppose that each ball can be located in R = 1000 different positions on the

table. If we admit that the speed of a ball ranges from 0 to 10 m/s with a step of
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0.1 m/s, and that the orientation of a vector in the plane can be selected between 50

different possibilities, then the velocity vector can be chosen in, about, V = 5000

ways. The number N of different states of B = 16 distinguishable billiard balls on

the table is

N = R!

(R − B)!
VB.

Among all the N states we must select those, N0, leading to the (reversed) initial

configuration, described above, with the white ball going away with maximum

speed. Since we are not so fussy, we do not pretend to see just the 15 numbered

balls stopping in exactly the initial positions, so that N0 = B! (not 1). At this point

we can try to “guess the state.” The fraction of good shots is

N0

N =
((R

B

)
VB

)−1

= B!(R − B)!

R!
V−B,

a quantity that we can also interpret as the probability of success. Using the values

in the text, the estimate for the fraction of propitious events is something like 10−94,

which is comparable with the probability of guessing the exact sequence of heads

and tails in 310 throws of a coin.

A process more within reach, conceptually analogous to the one described above,

is a drop of water falling from a faucet, hitting the sink and splashing around. The

time-reversed event would require an extremely fine tuning of the scattered tiny

masses, to be gathered together so as to rebuild the drop, with the correct vertical

velocity to jump back into the faucet. As in the previous example, the incomparable

degree of difficulty in the preparation of the two initial states has to be noted:

everyone is able to let a drop fall, but (we think) nobody has ever been able to

realize the “antisplashing.”

It appears that a great number of degrees of freedom in a system has the effect

of making it hard both to realize the very particular “good” initial states and to

determine them, among too many possibilities. The backward running states are

there, but are almost inaccessible. The complication originates in the enlargement

of the number of available states of the system, as a consequence of the relaxation

of some constraint, used to prepare the “direct” initial state. After the enlargement,

it becomes difficult to arrange all the degrees of freedom in order to produce, by

evolution, some very particular state belonging to the small class as the constrained

states.

At this point, we may notice that, from a theoretical point of view, the preparation

of states evolving toward a (very) small region of phase space results in a hard

task not only for high-dimensional systems but also for low-dimensional chaotic

systems. In the former (if non-chaotic) one has to control few digits for each one
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of a great number of degrees of freedom, in the latter one has to control very many

digits for each one of a small number of degrees of freedom. So, this is not the

whole story.

About the monitoring of the system

To proceed further, a second point to be stressed, as a relevant fact, is that our bare

perception is a direct and immediate witness of these irreversible behaviors.

In a system with many degrees of freedom one can decide to keep under obser-

vation only a few of them. In this case, as a consequence of their interaction with

the rest of the system, one would see a very irregular, chaotic looking, behavior.

The paradigmatic example is, of course, a Brownian particle. In the case of N iden-

tical particles, we can refer to the work of Mazur and Montroll (1960) where the

one-particle impulse in a system of harmonically coupled particles, at equilibrium,

was studied. It is shown that, in spite of the quasi-periodicity of the dynamics, in

the high N limit, almost all of the time the impulse undergoes fluctuations, well

described by an equilibrium Maxwellian distribution. On the other hand, it is known

that in an ideal gas, one obtains an approximately Maxwellian distribution of the

single-particle velocity, not only from the microcanonical uniform density but also

for almost any distribution on the energy sphere.

However, this single-particle stochasticity is not a characterizing property of the

irreversibility we are interested in. It is present in the states of macroscopic systems,

either in equilibrium or in non-equilibrium, and indeed, as remarked above, it is

an indication that thermodynamics, somehow, is not universally applicable. As a

fact, the irreversibility we are discussing shows itself in the evolution of collective

variables of macroscopic systems, that is, the variables underlying the image of the

system that is manifest to us and that we are able to observe in usual situations. It

is not concerned with properties of single molecules or of microscopic regions of

space.

Indeed, suppose that our sensory faculties were able to capture the microscopic

details of the external world. In the case of the coffee, we may suppose that one

is able to follow the motion of one particular molecule. If one is given the values

of the kinetic energy of the molecule at two different times, corresponding to the

two states of the coffee (hot and cold), one could hardly perceive a substantial

difference between the two cases. Because of the large variability of the possible

energy values, one does not have a clear characterization of the one-molecule

events, allowing for their time ordering. In the case of the gas in a box, we may

think that we are able to take under control microscopic regions of space (on the

scale, say, of the mean molecular separation). Then one is given two snapshots of

a fixed microscopic region, contained in the initially filled half-box, taken before

and after the piston is released. Also in this case, because of the large fluctuations
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in the number of molecules in the tagged region, one is not able to distinguish

unambiguously two different situations, so as to give an ordering. What we mean is

the following. One can decide that a higher kinetic energy and a higher number of

particles “come before.” However, upon repeating the tests, this will not always be

the correct answer. If one is driven by a microscopic view one does not recognize

a definite asymmetric time evolution.

It is only when one gathers information on a human scale and with human

ability (i.e. involving a macroscopic number of particles, macroscopic regions, and

with a coarse resolution) that one can notice a clear-cut distinction between two

situations, and one learns that one situation always comes after the other. In fact,

our lips come into contact with a macroscopic number of molecules of the coffee

and they experience the effect of a macroscopic kinetic energy, a quantity which is

very robust with respect to perceptible fluctuations, and is definitively different in

the two states of the system (as the temperature is). Upon repeating the experiment

we will always give the right answer. Also the density of the gas in the initially filled

half-box is a quantity that (in non-critical settings) is not plagued with macroscopic

fluctuations and is different before and after the free expansion of the gas.

The consideration that, in a dynamical system, the details of the states may be

not all equally relevant, or that the states are observed with bounded accuracy, in

information theory led to the notion, due to Shannon (1948) of “transmission to

within a given tolerance” and to the birth of rate distortion theory (Berger 1971).

The great value of Shannon’s original idea was immediately recognized by Kol-

mogorov, who developed the concept of ε-entropy for general dynamical systems

and functional analysis (Kolmogorov 1956). See Chapters 2 and 3 for the use of

the ε-entropy to treat some aspects of predictability and complexity in dynamical

systems.

5.2.2 Along the Boltzmann–Khinchin way

The role of the law of large numbers

To see a well-defined quantity, to within a certain accuracy, we must observe,

as we really do in everyday life, a global variable, one that refers additively to

a macroscopic number of particles. The contributions of all the molecules add

up to produce a very stable result, with respect to our capability of resolution.

This may be seen as an effect of central-limit kind. In fact, the observables one

typically encounters in statistical mechanics (e.g. temperature, energy, pressure,

number of particles in a given region) are of sum-function type (see Chapter 4).

In the case of the perfect gas, Khinchin (1949) showed that, over a surface of

given energy, the mean square deviations of these kinds of functions are so small,
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with respect to their mean values (macroscopic, of order N ), that the functions

can be regarded as practically (i.e. macroscopically) constant. One may say that

the sum functions are subject to the law of large numbers. This fact, as Khinchin

writes, establishes the “representability” of the mean values of the sum functions,
and permits us to identify them with the time averages which represent the direct
results of any physical measurement. Mazur and van der Linden (1963) explored

the case of molecules with a binary interaction given by the Herzfeld potential.

This is a piecewise constant potential possessing the characteristic properties of

a realistic short-range potential function with a hard core. Their results, on the

structure function of the system (that is, a quantity proportional to the measure of

the hypersurface with given energy E :
∫

dN x dN p δ[H (xN , pN ) − E]), show that

in this case the law of large numbers is also at work. One finds that, owing to the

short range of interactions, the system behaves as if it were split into a large number

of (almost) non-interacting components. So, we can safely retain that nice feature

of the sum functions as valid also in the case of interacting molecules.

The macrostates

The above remarkable property may be rephrased as follows. Given a system at

a fixed energy, one classifies the microscopic states according to a macroscopic

variable, F (of sum type), i.e. one puts in the same class all the states giving rise to

the same value of F . Then one measures the size of each class (in a continuous phase

space this means, for instance, computing the Liouville volume occupied by the

states in the class). It appears that there is one class containing the overwhelming

majority of the states. The F value of this class can be seen as the (practically

constant) value of F in the system. The grouping by classification of microscopic

states realizes partitions of the phase space, and that is useful when dealing with

macrostates of a macroscopic system. A macrostate specifies the values of a suitable

number of global variables (mostly additive), resulting in a very crude description

of the system, with respect to a detailed microscopic view, but which is considered

exhaustive from a macroscopic point of view. For instance, the macrostates of a gas

in a volume V can be defined by the number of molecules, their total energy, and

by the fraction of particles contained in each half of the available volume. Every

macrostate identifies a class of microscopic states: those on which the relevant

macroscopic variables assume, within a given tolerance, the correct values. The

above kind of reasoning leads us to believe that a class of microstates exists that

almost exhausts the available phase space, so defining an equilibrium macrostate.

It is worth stressing that equilibrium is a property of a macrostate, i.e. of the

variables pertaining to the way the system appears to us: the microstate of the system

is changing continuously, while the relevant macroscopic observables maintain

practically constant values.
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A very simple example where a similar state of affairs is at work is the following.

Consider the set of all N -long symbol sequences SN = (s1, s2, . . . , sN ) where the

variable s takes values from a finite alphabet A = a1, a2, . . . , aL . The type of a

sequence, P(SN ), is defined as its empirical distribution of the symbols. That is,

P(SN ) is given by the ensemble of frequencies, (ν1, ν2, . . . , νL ), with which each

symbol occurs in SN : we indicate a particular type by P (N )
α . In general several

sequences (related by a mere permutation of symbols) possess the same ensemble

of frequencies, so that a given P (N )
α characterizes a set of sequences, C(P (N )

α ), called

the type class of P (N )
α .

Let us make explicit the simple case N = 3 with L = 2, say a1 = a, a2 = b. We

must consider the following three-symbol sequences:

ω1 = a a a ω2 = a a θ, ω3 = a b a ω4 = b a a
(5.2)

ω5 = b b a ω6 = b a b ω7 = a b b ω8 = b b b.

The types of the sequences are:

P(ω1) = (νa = 1; νb = 0) P(ω2) =
(

2

3
;

1

3

)
= P(ω3) = P(ω4)

(5.3)

P(ω5) =
(

1

3
;

2

3

)
= P(ω6) = P(ω7) P(ω8) = (0; 1).

So we have four types: P1 = P(ω1) (we omit the exponent 3), P2 = P(ω2), P3 =
P(ω5), P4 = P(ω8) and the corresponding type classes contain 1, 3, 3, 1 elements,

respectively.

One may imagine SN as the analog of the microstate of a system with N particles,

each one having access to L states, and P (N )
α as the analog of a macrostate (a one-

particle distribution), represented by the microstates in C(P (N )
α ). One can show, (see

Cover and Thomas 1991), that the number of different types is only polynomial in

the length N (it is at most (N + 1)L ), while the number of sequences is exponential in

N (it is L N ), so there must be at least one type with exponentially many sequences

in its type class. Indeed one has that, when N is not small, to first order in the

exponent, the number of sequences in C(P (N )
α ) is given by

‖C(P (N )
α )‖ ≈ eN H (P (N )

α ), (5.4)

where

H (P (N )
α ) = −

L∑
i=1

νi ln νi . (5.5)

This implies that, when N is very large, the largest type class essentially contains the

entire set of sequences: it is the analog of the equilibrium macrostate. It is important
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to note that these results follow from simple combinatorial considerations in the

counting of symbol arrangements, plus the Stirling approximation for factorial

coefficients.

To summarize, when the number of particles of a system grows larger and larger,

the full microscopic state of the system goes very rapidly out of control, while

the variables pertaining to a small number of particles show irregular behavior,

with large fluctuations relative to their mean values. But, at the same time, global

observables, whose average values are of order N , become more and more well

defined, because their relative fluctuations become smaller and smaller. We may

suspect that the irreversible behavior is an emerging property of the evolution of

global variables in systems composed of a huge number of molecules.

5.2.3 A proposal for the solution

We set out on a path leading us to explore the following scenario for the appearance

of an asymmetric time behavior.

(a) The microscopic state of a system rapidly enters (if it is not already there) into the class

of states representing the largest class with common values of the relevant macroscopic

variables (we are, maybe, observing). These values can be identified as the equilibrium

values of the variables.

(b) Once the equilibrium values have been attained, a change is almost impossible, since the

microstates of the other classes represent an irrelevant fraction of the total: the system,

practically, has “no chance” to enter into one of them, on its own.

Since it is not difficult to prepare a system in a non-equilibrium macrostate (it is

enough to remove a constraint), point (a) says that it is easy to observe the spon-

taneous evolution of a macrostate toward equilibrium. This would account for the

existence of what we called the direct motions. At the same time point (b) says that

it is not at all easy to observe spontaneously the inverse motions.

We have stated qualitative expectancies, based on general considerations about

very-high-dimensional phase spaces. The hard task is to substantiate this description

by means of Newtonian dynamics, which drives each and every real macroscopic

system. In particular, we have to show that (a) and (b) are true for essentially all the

microstates belonging to a set of points describing a (initial) non-equilibrium situa-

tion. That is, we have to show that irreversibility is true for all macroscopic systems,

that are in the same macroscopic initial conditions. One can say that this must be

so, because thermodynamics has been developed independently from an atomistic

view of matter, and therefore the details of the microscopic description of the sys-

tem cannot have a part in thermodynamic irreversibility. We are sure to observe a
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certain irreversible behavior in a system, when some O(10) (macro)variables are

properly initialized, while the remaining O(1023) are completely neglected.

5.3 Some results

5.3.1 The freely expanding Knudsen gas

Quantitative aspects

So, let us analyze from a quantitative point of view the case of an isolated gas

performing a free expansion. We start with the simplest possible approximation of

non-interacting molecules (ideal gas) with no internal structure. This is also known

as the Knudsen gas, i.e. a gas in which the mean free path of the molecules is much

longer than the linear dimension of the container, so that the collisions between

particles may be neglected. When the system is at equilibrium (before and after the

expansion process) its state can be characterized macroscopically as having N (of

order 1023) identical molecules, with energy U , confined in a volume V . We begin

by posing the question: how many microscopic states belong to this macrostate. A

microscopic state is specified by the values of position (x) and impulse (p) of all

the N particles.

It is necessary here to make explicit an assumption already present in the reason-

ing above. In the scenario we are following, we consider, a priori, on an equal footing

all the microstates of a system that satisfy the constraints defining a macrostate (e.g.

fixed N , U , V in an isolated gas). That is, we assume that in a single realization of

the experiment the thermodynamic system can be found in any one of the allowed

microstates, with the same probability. Then, when a particular phenomenon has

to be explained, we feel satisfied if we are able to show that it takes place for all

the microstates but a set of very small phase space volume. Thus we are choosing

the Liouville measure in phase space as the “natural” tool to estimate the physical

relevance of sets of points. This means that, in this approach to the problem, a par-

ticular behavior will seldom appear if it is pertinent to microstates represented by

a set of phase space points with a small Liouville measure. This was the important

part of the remark. Now, if we prefer dimensionless quantities, so as to avoid arbi-

trariness in the values of volume (dependent on the units chosen for mass, length

and time) we have to introduce a reference phase space volume. A “natural” choice

is h3 for the elementary volume of the one-particle phase space, where h is Planck’s

constant. Of course, since we are dealing in a classical context, the actual value of

h is not relevant at all. At this point, if one is willing to think of h3 as the minimum

phase space extension of a one-particle state (because of the Uncertainty Principle)

then one can also think about the number of states instead of phase space volume.

In the present context this is a matter of taste.



5.3 Some results 131

According to these considerations, in order to answer the posed question about

the macrostate size, we have to compute the integral:

� (U, V, N ) =
∫

U−δU/2≤H≤U+δU/2

dN x dN p

N ! h3N
. (5.6)

In Eq. (5.6) H is the Hamiltonian function (the energy) of the system, U is its

actual value, known to within an uncertainty δU , and N ! takes into account the

physical indistinguishability of the particles. In the perfect gas approximation, and

considering only the translational degrees of freedom (H = ∑N
i=1 p2

i /2m), to the

leading order in N we have

� (U, V, N ) ≈
[(

V

N

) (
U

N

)3/2 (
4πm

3h2

)3/2

e5/2

]N

, (5.7)

where, owing to the very high dimension of the phase space, we do not consider the

small role of the uncertainty δU (the volume is concentrated in a very thin layer,

smaller than any macroscopic uncertainty). One could check here that macrostates

of homogeneous particle density, with respect to every splitting up of V into macro-

scopic regions, always contain the great majority of states of � (U, V, N ): at equi-

librium the gas is found in microstates of uniform density.

If now, by a free expansion, the volume accessible to the gas is doubled (with no

change in energy), then we see that the number of states after (�a) and before (�b)

the expansion are in the ratio

�a

�b

≈ 2N . (5.8)

The relaxing of the initial constraint gives each molecule twice the initial spatial

freedom, but multiplies by an astronomically huge factor the number of available

states of the macroscopic system. Let us assume, for a while, that all the microscopic

states of the gas in the volume V (“initial states”) lead to the final macroscopic state

of the gas filling the volume 2V . It is evidently very difficult (practically impossible)

to invert the velocities of all the molecules coming from any one of the initial states.

So, if we want to see the antidiffusion of the gas we can only hope for the chance

that, repeating the preparation of the state in the volume 2V , we hit a “good” one:

relation (5.8) says that this happens once every 21023

times, i.e. practically never.

If we identify the initial volume as VL and we put 2V − VL ≡ VR, then during the

expansion a suitable macrostate description of the gas is obtained giving NR, the

number of molecules in VR (or NL, the number of molecules in VL). Before lifting

the constraint, NR = 0 (or NL = N ).

We come back now, when considering the initial states, to stress that not all

of them can evolve into the space-filling states: some must exist that concentrate
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the gas in a smaller volume, say V/2. The reason for this is the same reason that

ensures that, among all the states of the gas in the volume 2V , those from the

above “initial states” are also included, together with their time-reversed states,

bringing the gas back to V . The aim of this observation is not to underline that the

chance of antidiffusion is smaller than we assumed (it is already small enough),

but to introduce another conceptual point, that will allow us to distinguish clearly

between the microscopic time direction and the macroscopic time-arrow. So far,

by counting the states, we have gained some confidence about the following. After

we prepared the gas in the volume V , because of relation (5.8), it will not become

concentrated into a smaller volume on its own (with a probability about 1 − 2−N ).

Moreover, if we relax the constraint keeping the gas in V , then its microscopic

state will wander in the new accessible states, whose macroscopic characteristic,

concerning the distribution of molecules, is a uniform density in the volume 2V . In

the macrostate picture, the final configuration is expected to be NL = NR = N/2,

within macroscopic accuracy. The given values of the macrovariables NL and NR

are those shared by the very great majority of microscopic states. In contrast, the

microstates with the initial values (NL = N , NR = 0) are only an infinitesimal

fraction in the final phase space, whereas they practically exhausted the initially

accessible phase space.

So we are brought to believe that practically all the microscopic states of the sys-

tem in V will evolve toward the uniform density in 2V , while only an infinitesimal

fraction will lead the gas to occupy a smaller volume. This may appear to generate

a problem. We could think that the application of the time-reversal operation to all

these states would produce an opposite situation: a great majority of concentrating

evolutions and an infinitesimal fraction of expanding evolutions. In the end we

stumbled over the paradox connected with the time-invariance of Newton’s equa-

tions. However, this would be so only if the time reversal of every expanding state

were a contracting one, and vice versa. But it is not so.

To proceed further we cannot avoid introducing some dynamical considerations.

Following Hurley (1980, 1981), one can show that, in the simple system we are

considering, practically all the microscopic states leading to a correct increase in

NR possess a time-reversed state again with increasing NR.

One would like to characterize the time behavior, with respect to NR, of mi-

crostates belonging to the class selected by a macrostate with NR < N/2. To this

end one computes �(+,+)(NR), the number of states which at the present time, say

t = 0, have NR(0) = NR particles in the right half of the box, and for which, a time


t before, NR was smaller (NR(−
t) < NR) and a time 
t after, NR will be greater

(NR(
t) > NR). Thus, �(+,+)(NR) is the number of states for which the number of

particles in the right side of the box is an increasing quantity both before and after

now. Here 
t is a short time, much less than the mean transit time of a particle in the
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box. Then one computes �(−,−)(NR), the number of states with negative derivatives

of NR; these are the states with NR(−
t) > NR and NR(
t) < NR. In the case at

hand (NR < N/2) the microstates contained in �(+,+)(NR) have expanding histo-

ries, going toward equilibrium, while those in �(−,−)(NR) are their time-reversed

states with contracting histories, moving away from equilibrium. These are the

kinds of states causing our troubles with time invariance. At this point, however,

one observes that different kinds of time behavior are possible. Let �(−,+)(NR)

count the states with NR(−
t) > NR and NR(
t) > NR, i.e. states that are nearer

to the equilibrium value for NR in both time directions. Finally, let us denote by

�(+,−)(NR) the number of states with NR(−
t) < NR and NR(
t) < NR, i.e. states

that are farther from equilibrium in both time directions. Note that, while the set

�(+,+) is transformed into �(−,−) by time reversal, �(−,+) and �(+,−) are left invariant

by the transformation: they contain together with a state its time-reversed state too.

From the above quantities one computes G(+,+)(NR), G(−,−)(NR), G(−,+)(NR) and

G(+,−)(NR), the fractions of microstates, with given NR, each subclass contains.

These quantities can be evaluated explicitly (Hurley 1980, 1981) in the thermody-

namic limit and one can write:

G(+,+) = g(1 − g)

G(−,−) = (1 − g)g
G(−,+) = (1 − g)2

G(+,−) = g2

(5.9)

where g(NR) is a function that in this limit and for this condition (NR < N/2) goes

rapidly to zero, at increasing N . From this result one obtains the following.

The diffusive states with antidiffusive time-reversed partners, �(+,+), are indeed a

near zero fraction of the total. This result is in agreement with the above observation

on the extreme smallness in V of the fraction of states coming from V/2, leading

us into trouble; however, here we can see the solution of the problem. Virtually all

the microscopic evolutions, belonging to a macrostate with NR < N/2, drive the

gas toward a more uniform density in both microscopic time directions, because

the fraction of states with this property, G(−,+) � 1 − 2g, is practically 1. So,

the latter microstates are the carriers of the typical behavior of the macrostate,

while the former are very untypical. A macroscopic system in a macrostate NR <

N/2 is almost certainly found in a microstate of the class �(−,+) and its evolution

will be diffusive, independently of possible time reversal (in the example we are

considering, practically all the states of the gas in V are ready to diffuse toward 2V in

both time directions). A system can be found in a �(+,+) microstate, that under time

reversal would generate an antidiffusive evolution, only if it comes from a lesser

uniform macrostate. Moreover, a system coming from a lesser uniform macrostate

can also be found in a �(+,−) microstate, with incorrect antidiffusive future behavior,
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but Eq. (5.9) tells us that this is an almost impossible event. A macroscopic system

that is expanding will continue the expansion, with a probability near 1. Indeed we

can identify

G(+,+)

G(+,+) + G(+,−)

= 1 − g

with the relative probability that a state with the right diffusion property in the past

will continue to expand in the future, and we can identify

G(+,−)

G(+,+) + G(+,−)

= g

with the relative probability for a diffusive evolution to change into a contracting

one. This allows us to say that among the states coming from a condition farther

from equilibrium, almost all persist on the “right way” toward equilibrium, sharing

a common evolution with the great majority of the microstates in the reached

macrostate. In the example, if the gas is contained in V/2 and expanded to V , then

it will not come back into V/2 but will continue toward 2V , just as if it had started

from V . Finally, notice that, since g(NR = N/2) = 1/2, a non-changing value for

NR = 1/2 is assured.

Qualitative considerations: the Boltzmann entropy

The above result is at the heart of a possible explanation, by means of statistical

reasoning, of the compatibility between observed macroscopic irreversibility and

microscopic time-symmetric dynamical equations. Time-symmetry invariance re-

mains fully active at the microscopic level, i.e. all the required states are there, but

the macroscopic evolutions are almost insensible to it. In fact the overwhelming

majority of microscopic evolutions lead to a sequence of values of global observ-

ables, with an ordering that their time-inverted evolutions would also generate.

That is, microscopic time invariance is hidden to the global variables we usually

experience.

This implies that the parameter ordering the history of macrovariables is not

the microscopic time. In the approach we are discussing, the evolution of a global

variable F (e.g. number of particles in a subvolume V ), when a constraint defining

the initial equilibrium state (e.g. all N particles in V ) is relaxed, points toward

a new equilibrium state, characterized by an F value (e.g. N/2 particles in V )

common to an exaggerated majority of microscopic states; this makes it a nearly

non-changing (or equilibrium) value. Thus it is apparent that a suitable macroscopic

evolution parameter is the number of microscopic states sharing the same values

of global variables that determine the macrostate of the system. If the logarithm

of the number of states is considered, then one sees that a macroscopic quantity
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(proportional to N , see Eq. (5.7)) may be conceived to give an ordering to the

observed evolution of macroscopic systems toward equilibrium. At this point one

can identify this quantity with entropy, just as Boltzmann did, thus obtaining its

possible microscopic interpretation.

According to Boltzmann’s ideas, the statistical theory of the approach to equi-

librium can be presented as follows (Lebowitz 1993a, 1993b). An isolated ther-

modynamic system out of equilibrium is in a microstate, X, belonging to the class

of all microstates giving rise to the same value of the non-equilibrium macrostate

M(X), that describes the actual macroscopic state of the system. The (Boltzmann)

entropy of this system, in this state, is:

SB(M) = kB ln ‖M‖ , (5.10)

where kB is the Boltzmann constant and ‖M‖ is the number of states in the class

(as given by a suitable integral in the system phase space) measuring the extension

of the macrostate. Letting the system evolve, ‖M‖ typically increases, and so does

SB(M), until the system reaches the macrostate of maximal extension in phase

space, and the growth ends:

SB(M(t ′)) ≥ SB(M(t)) for t ′ ≥ t . (5.11)

It is useful to remember that, in the proposed scenario, the end of macroscopic

evolution, i.e. reaching equilibrium values, would be due only to the fact that in

thermodynamic systems (for which SB ∝ N ) a class of maximal extension can exist

that dominates, exponentially in N , all the other classes. Starting from the micro-

scopic dynamics, one would like to prove Eq. (5.11) for the systems of interest or,

even better, to write out explicit evolution equations for the relevant macrovariables.

An important point to be stressed (again) is that, by experience, we expect to see

the appropriate unidirectional evolution of macrovariables in each actual realization

of a thermodynamic experiment on a single system. Thus one has to show that

the evolution of Boltzmann’s entropy, or of the macrovariables, is the same for

(almost) all initial microstates: the thermodynamic behavior must be shown to

be a “typical” behavior of the involved microstates. Indeed in the quantitative

considerations discussed above for the ideal gas in a box, the statistics of the events

shows that, in a suitable limit, anti-thermodynamic behavior can appear only in a

going-to-zero fraction of cases.

5.3.2 The Lorentz gas

To continue along this path we consider a more complex system, the Lorentz gas.

This has been analyzed with mathematical rigor, demonstrating the existence of irre-

versible macroscopic behavior. We limit ourselves to recalling briefly the interesting
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results. In the Lorentz system a macroscopic number of classical non-interacting

particles move in a fixed periodic array of hard convex scatterers. In contrast to

the ideal gas considered above, each particle now undergoes a chaotic motion and,

if it can travel only a bounded distance between collisions (what is called a finite
horizon), then the motion has a diffusive character (Bunimovich and Sinai 1981a,

1981b). One considers an ensemble of particles, whose initial spatial distribution

is given by a smooth density n0(r). Since the collisions with the scatterers are

elastic, single-particle kinetic energy is a conserved quantity and one considers all

particles as having unit speed, with uniform orientations. These conditions define

a macrostate, and its class of microstates. In a suitably defined limit that cleanly

separates the macroscopic and microscopic scales (Lebowitz and Spohn 1982a,

1982b), one can prove that the evolution of the density, n(r, t), is governed by the

standard diffusion equation, for each microstate typical of the initial macrostate.

Since in the Lorentz gas molecules do not interact, the model is not very satisfac-

tory. This means that not all the dynamical variables can evolve toward equilibrium.

The relevant macroscopic variable for this model, n(r, t), has irreversible behavior

but, for example, the particle kinetic energies are frozen and so no thermalization is

allowed. Notice, however, that if one initializes the system with an arbitrary distri-

bution of velocity orientation, then the chaotic single-particle dynamics drives the

particles toward an isotropic distribution of the velocities.

5.3.3 The dilute gas with collisions

The Boltzmann equation and the H-theorem

The next important system to be considered is a dilute gas, a large collection of

particles, interacting by short-range forces, in a state of very low density. The

diluteness condition allows us to neglect the contribution of interaction terms to

the numerical value of the total energy of the system, even if interactions have a

fundamental role in the evolution process. In this condition a meaningful macrostate

description of the gas is given by the occupation number function, or one-particle

distribution function, f (x, p), defined so that

f (x, p) dx dp

is the number of particles whose position and momentum is found in a volume

dxdp around the one-particle phase space point (x, p). One has∫
f (x, p) dx dp = N ,

where, as before, N � 1 is the number of particles of the gas. This function is a

generalization of the n(r, t), defined above, taking into account that in this system
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exchanges of momenta between particles are possible (and necessary, to reach a

complete equilibrium). The distribution function is defined in the six-dimensional

one-particle phase space, and it selects a class of microstates in the full 6N -

dimensional phase space of the gas: those states whose particles are (approximately)

distributed as specified by f .

For an ideal gas, f (x, p) evolves in time according to a conservation law that, in

the absence of external forces, is (exactly):

d

dt
f (x, p, t) =

(
∂

∂t
+ p

m
· ∇x

)
f (x, p, t) = 0. (5.12)

Equation (5.12) says that, since the particles evolve independently, the one-body

dynamics is volume conserving and, in the single-particle phase space, the density

cannot change along the motion. Note that a similar conservation law could also

be written for the Lorentz gas, for the full one-particle distribution, but not for the

density n(r, t), obtained from the latter by integration on the momenta.

The interactions among particles cause transitions of particles between volume

elements, and then the density can change:(
∂

∂t
+ p

m
· ∇x

)
f (x, p, t) ≡ (̃∂t f ). (5.13)

In the dilute gas approximation, it is possible to take into account binary collisions

alone, and one can write (see e.g. Huang 1987):

(̃∂t f ) =
∫

dp1d� |v − v1|
(

dσ

d�

)
(F2(x, p′, p′

1, t) − F2(x, p, p1, t)), (5.14)

where (dσ/d�) is the collision differential cross-section, depending on the details of

the interparticle potential, and the two-particle correlation function F2(x, p, p1, t)
has been introduced such that

F2(x, p, p1, t) dx dp dp1

is the number of couples of particles one finds, at time t , in a volume dx about x,

with momenta in the volume elements dp and dp1 about p and p1, respectively.

Of course, in Eq. (5.14) p′ and p′
1 are related to p and p1 by conservation of

energy and momentum. Boltzmann made the crucial assumption of “molecular

chaos,” according to which the momenta of the particles, interacting around x, are

independent, so that one can write

F2(x, p, p1, t) = f (x, p, t) · f (x, p1, t) . (5.15)

This factorization condition, based on physical common sense, allows us to turn

Eq. (5.13) into a closed equation, giving rise to the Boltzmann transport equation
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for the one-particle distribution function:(
∂

∂t
+ p

m
· ∇x

)
f (x, p, t) = J [ f, f ] , (5.16)

where J [ f, f ] is the quantity in (5.14) with the approximation (5.15). In contrast

to Newton’s equation (for the microstates), Boltzmann’s equation (for a particular

macrostate) is not invariant under time reversal. Indeed, if one lets t → −t and

p → −p, one does not recover (5.16), but rather the anti-Boltzmann equation(
∂

∂t
+ p

m
· ∇x

)
f (x, p, t) = − J [ f, f ] , (5.17)

with a changed sign in front of the collision term J . This non-invariance has a strik-

ing manifestation. In the case of the macrostate defined by f (x, p, t) the entropy,

according to (5.10), can be written as follows:

SB( f ) ≡ kB ln ‖ f ‖ = −kB

∫
dx dp f (x, p, t) ln f (x, p, t) ≡ −H( f ) . (5.18)

The remarkable fact is that if Eq. (5.16) holds (i.e. if condition (5.15) is applicable)

then the celebrated Boltzmann H-theorem follows:

dH(t)

dt
≤ 0 or

dSB(t)

dt
≥ 0 , (5.19)

where the equality holds if, and only if, the involved f is the Maxwell–Boltzmann

distribution, having the property of the equilibrium distribution. The theorem re-

flects the irreversible (or time-asymmetric) character of the Boltzmann equation;

and it is strictly dependent on the assumption of molecular chaos. Indeed the fac-

torization (5.15) introduces (by hand) a substantial difference in the relevance of

events before and after a collision, because interactions create correlations between

particles. Moreover, because of definition (5.10), this irreversibility shows itself in

an increase in the number of macroscopically similar microstates.

The objections of Loschmidt and of Zermelo

When Boltzmann put forward his microscopic interpretation of entropy, equipped

with the transport equation and H-theorem, two major criticisms were raised by his

opponents, against his explanation of the Second Principle. One is the “reversibility

objection” or “Loschmidt paradox,” named after the nineteenth century Bohemian

scientist who formulated it. The other is the “recurrence objection” or “Zermelo

paradox,” named after the German mathematician who formulated it.

The essence of the Loschmidt criticism is that Boltzmann’s H-theorem cannot

be a general theorem of mechanics, valid for all microscopic evolutions. This is due

to the fact that if in a system H becomes smaller, then by reversing the velocities of

all atoms an evolution with an increasing H is obtained, violating the “theorem.”
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Indeed this is the conflict between the time invariance of Newton’s equations and the

time-asymmetric thermodynamic behavior, the subject of this chapter. At the end,

the aim of this chapter is to show that Loschmidt’s assertion, though undoubtedly

right, is not relevant in the explanation of macroscopic behaviors, that characterize

practically all, although not rigorously, the microstates. In systems with a small

number of degrees of freedom the time-symmetric dynamics would certainly show

all its effectiveness. However, when the number of degrees of freedom is comparable

with Avogadro’s number then macroscopic observables can be defined. In this

case, in suitable (non-equilibrium) conditions a non-symmetric behavior emerges,

with respect to macroscopic properties, leading almost all the involved microstates

toward a unique macrostate, without violating the microscopic time symmetry.

Recalling the discussion on the quantity NR for the ideal gas in a box, we can see

that, in the present case, an irreversible evolution of H would derive from the fact

that, in the overwhelming majority of microstates, H(t) decreases in either time

direction. So, as for the increase in NR, the H-theorem surely is not valid for all the

microstates, nonetheless it rules their typical macroscopic behavior.

The criticism of Zermelo stems from Poincaré’s recurrence theorem. The latter

states that a mechanical system, evolving in a limited region of the phase space,

within a finite time TR, will come again near to its initial condition. So, if the initial

condition is a non-equilibrium microstate (i.e. corresponding to a non-equilibrium

macrostate), and H begins decreasing, after a time TR the H function will also

be back near to its initial value, and this implies a non-monotonic behavior. Also

in this case the objection is formally correct, but has no practical consequences.

Boltzmann himself noted that TR, for a macroscopic system, is extremely long and,

in fact, unobservable. For instance, he estimated that, for a cubic centimeter of gas

in normal conditions, the return time to an initial state, with a tolerance of 10−9 m on

atomic positions and 1 m/s on velocities, would be 101019

yr (to be compared with the

age of the Universe, about 1010 yr). More generally, an order of magnitude estimate

of the recurrence time, appropriate to the relevant macrovariables, is given by

‖M‖eq/‖M‖0, the ratio between the number of final equilibrium states to the number

of initial out of equilibrium states. For macrovariables this ratio is exponentially

large in N : in any usual unit of time it results in a non-human time and can be

considered as physically irrelevant. In the mathematical world the return is certain,

however in the physical world we are not able to verify it and, surely, the system

itself would not keep its properties unaltered over such a long time.

The Boltzmann–Grad limit and the Lanford theorem

Coming back to Eq. (5.16) and its consequence (5.19), it can be shown with

all mathematical rigor (Lanford 1981) that in a well-defined limit, the so-called

Boltzmann–Grad limit, at least for short times, the Boltzmann equation exactly

rules the evolution of a given distribution function for almost all the microstates
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representing it. It is important to underline that, in this limit, the result of f (x, p, t)
being driven by Eq. (5.16) follows directly from Newton’s equation. The limit can

be described as follows. Consider a system consisting of N particles interacting

by short-range forces, in the simplest case elastic spheres with diameter ε. The

limiting regime is obtained by letting N → ∞ and ε → 0, such that Nε2 remains

finite: this allows the mean free path to be finite (i.e. there are collisions) while the

volume occupied by the molecules vanishes (since Nε3 → 0). By depressing the

granularity of the gas, the Boltzmann–Grad limit is able to reduce the macroscopic

fluctuations of a macrovariable such as f (x, p), while it is still evolving, because

of collisions. The theorem ensures that the absence of macroscopic fluctuations in

f (x, p), a property of the initial set of microstates by construction, propagates to

later times, with the expected behavior of the macrovariable. The good behavior

(5.16) pertains to a fraction of the initial microstates that is as close to 1 as desired,

if N is large enough. This means that almost all the microstates {X}0, representing

initially f (x, p, 0), at time t represent the macrostate f (x, p, t), as evolved accord-

ing to (5.16). However, because of (5.19), f (x, p, t) has a class of representative

points {X}t that is much greater than {X}0: (almost all) the set {X}0 becomes, by

evolution, a tiny fraction of {X}t , but the future behavior of its points conforms to

the typical behavior of the points in the extended set {X}t .

It is to be stressed that the above results do not concern simply an average

behavior of the considered system, on the contrary they predict a practically certain

macroscopic behavior for it, i.e. (almost) independently of the microscopic state

realizing the initial macrostate. This expected feature is clearly linked to the large

value of the number N (→ ∞) of the constituent subsystems.

All this gives support to the idea that the irreversibility scenario outlined in points

(a) and (b) of Section 5.2.3 can also hold for real macroscopic systems, i.e. systems

with N very large but finite.

5.4 About ensembles, the number of degrees of freedom and chaos

We conclude this chapter with some remarks on the usual ensemble point of view

of statistical mechanics, the relevance of the large number of degrees of freedom

and the small role of chaos in the irreversibility problem.

5.4.1 Boltzmann and Gibbs entropies: their evolutions

If ρ0 describes a situation of initial equilibrium, its Gibbs entropy is defined by:1

SG(ρ0) = −kB

∫
d6N X ρ0(X) ln ρ0(X). (5.20)

1 We can consider all the phase space volumes as adimensional quantities, obtained by dividing them by h3N

(see Section 5.3.1); e.g. in Eq. (5.20) d6N X replaces d6N X/h3N . In this way the normalized ρ(X) is also an
adimensional quantity.
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The microstates that are “reasonably probable” with respect to ρ0 (those that are

“typical” of the given macroscopic equilibrium) can be found in a phase space region

whose (adimensional) volume is Wρ0
(Jaynes 1965); so the equilibrium entropy,

according to Boltzmann, is SB(ρ0) = kB ln Wρ0
. SG(ρ0) turns out to be the same

as SB(ρ0) and the two expressions for the entropy agree with the thermodynamic

Clausius equilibrium entropy.

After the relaxing of a constraint, the equilibrium is broken. If we follow these

microstates (they are contained essentially in a region of volume Wρ0
), in almost

all cases, the relevant macrovariables change their values according to the rule of

maximizing the extension in phase space, (5.11). This means that, with respect to

the considered observables, as time goes on, practically all the initial microstates

have the same behavior, that, moreover, is common to an ever larger number of

microstates (that were not in the initial set). From the point of view we are em-

bracing, this is the sign of the irreversible going toward equilibrium. It is worth

remembering that, because of the known results, here we are taking for granted a

behavior that nonetheless should be derived, from the appropriate dynamical laws,

in each specific case.

If one lets ρ0(X) evolve, by the Liouville equation, ρ(X, t) will be an adequate

density to predict the behavior of a macrosystem, independently (almost) of its initial

microstate and at least concerning the macrostate under investigation. However,

after the elapsing time has taken the macrovariables to the new equilibrium values,

ρ(X, t) will be spread over the phase space on a domain that will be, typically, very

convoluted. This is because the stretching of the initial distribution into finer and

finer filaments develops structures on smaller and smaller scales. Then the evolved

density will not look at all like a standard equilibrium ensemble, by which one

would describe the new equilibrium state (although they share the same values for

the macroscopic observables). Moreover, if one computes the Gibbs entropy of the

evolving ensemble

SG(ρ(t)) = −kB

∫
d6N X ρ(X, t) ln ρ(X, t) , (5.21)

then, as is known, it does not change. In fact, SG(ρ(t)) measures the extension in

phase space of the set supporting ρ(t) that, because of the Liouville theorem, is con-

stant. The Gibbs entropy of the density evolved by the Liouville equation misses

the point, that is the enlargement of the phase space extension of the “common

property” associated with the current macrostate. Now it does not seem difficult to

remedy this deficiency. One has to coarse grain the phase space: in this way the

increase in SG(ρ) is assured (Tolman 1980) and the distribution itself will appear

uniformly smeared out, as the standard equilibrium ensembles. The coarse graining

can be considered to be a consequence of the unavoidable inaccuracy in the mea-

surement, and/or as a technical device to arrive at a meaningful definition of entropy.
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One also follows this path for the Kolmogorov–Sinai entropy (see Chapter 2): in a

deterministic dynamical system, there is no room to ask how many trajectories of

a given length start from a given point of phase space. On the contrary, one can ask

(to obtain an unknown answer) how many trajectories of a given length start from

a given cell of the coarse-grained phase space (eventually, one lets the graining go

to zero). In this case, when a sufficiently long time has elapsed the coarse-grained

density, typically, has smoothly invaded all the available phase space, where the

macrovariable keeps almost a (macroscopically) unique value. For a long time, i.e.

at equilibrium, the relevant volumes, and the associated entropies, are again equal

and the two descriptions are again equivalent. However, the Gibbs and Boltzmann

entropies, in the time-dependent stage of the going to equilibrium process, con-

tinue measuring different quantities. The coarse-grained Gibbs entropy, including

at each time step all the microstates belonging to the current grain, now keeps

track of the “effective” expansion in phase space of the initial set of microstates.

It does not (cannot) yet take care of the expansion properties with respect to the

relevant macroscopic observables, as the Boltzmann entropy does, by definition,

including all the microstates corresponding to the current macrostate. Indeed, in

a high-dimensional phase space, the time an initial set of points needs to reach a

substantial part of the allowed region of motion (so that SG stops growing), can be

very long, also for a chaotic system. In contrast, the time a macrovariable needs to

enter its region of stability (so that SB stops growing) can be very short. Anyhow,

there is no evident reason for the two times to be equal. The straightforward way

of implementing the time evolution in the Gibbs ensemble approach does not agree

with the Boltzmann point of view.

It seems one can reasonably think that, for macroscopic systems, and at least

in the non-transient regime, the Boltzmann (single system) and Gibbs (ensemble)

descriptions agree. Moreover, the Boltzmann point of view provides a justification

of the Gibbs ensemble description.

5.4.2 About N

It is worth repeating that all the foregoing discussion concerns macroscopic bodies,

composed of a huge number N of elementary constituents. The rigorous results on

irreversible behavior of single systems pertain to the limit N → ∞ and are thought

to be meaningful also for N large but finite.

An interesting question one can put at last is what about systems with small N
values. As noted at the beginning, we do not expect to see any kind of irreversibility

in a single system with few degrees of freedom, e.g. a two billiard ball system. On

the contrary, we see “irreversible behavior” with 16 billiard balls, which is not so

large a number!
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As we tried to illustrate, irreversibility of thermodynamic systems is tightly

linked to the properties of their high-dimensional phase spaces and, in particular,

to the very peculiar partitioning induced by classification of microstates according

to macrovariables: the domination of one class allows both the existence of equi-

librium values and their description by (equilibrium) ensembles. A set of states,

representing given macroscopic variables at t = 0, can be described consistently

by an initial (equilibrium) distribution ρ(0), where the macrovariables have no

macroscopic fluctuations. Since N � 1, this can be done in a non-unique way, i.e.

different (but equivalent) equilibrium ensembles exist. After a constraint has been

relaxed, eventually the set is dispersed over the new accessible region of phase

space where, however, the macrovariables attain again almost constant new val-

ues, so that a final (equilibrium) distribution can be introduced. The system has

irreversibly moved toward the new equilibrium state. The initial and final equilib-

rium ensembles provide good descriptions of the properties of almost all the single

macroscopic systems, with respect to the concerned macrovariables.

If N is small, then the classification by observables, in general, is no longer

able to generate dominating classes in phase space. This means that, in general,

the (non-conserved) observables of one system, which is wandering about its phase

space, will undergo large relative fluctuations around a mean value, and there will

no longer be a notion of equilibrium, and the consequent irreversibility, as for a

macrovariable of a macroscopic system.

In this regard the calculations performed by Hobson and Loomis (1968) are very

instructive. A system consisting of N identical non-interacting point particles, with

mass m, in a rectangular box is considered. The initial set of microstates is selected

by assigning values for the center of mass, the total energy and the total momentum

of the system. These values are considered as the averages of the observables with

respect to an initial distribution. One way to select an appropriate generalized Gibbs

density ρ(X, 0) is via the “maximum entropy principle” (Jaynes 1963). Given the

Hamiltonian for this Knudsen gas:

H =
N∑

i=1

p2
i

2m
+ V (xi ),

where the potential energy V (x) takes into account the rigid walls of the box, i.e. it

is zero when x is inside the box and infinite for x outside; then the Liouville equa-

tion is solved exactly to obtain ρ(X, t). Even if, as we stressed above, the transient

behavior of ρ is not able to give a completely correct description of the physical

process, nonetheless its long time limit is expected to provide, somehow, a mean-

ingful description of the new equilibrium. From ρ(X, t) one can derive expressions

for various reduced distributions and moments. One obtains the following. The
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full exact distribution itself does not have a time-independent limit: ρ(X, t) under-

goes oscillatory behavior at any fixed point X, i.e. it does not relax to equilibrium.

Indeed, we know that some kind of coarse graining is needed for this to happen,

by overcoming the Liouville theorem. For instance, the reduced distribution for

the configuration space, ρ(x1, x2, . . . , xN , t), obtained by integrating away the im-

pulses, relaxes, as it must do, to the uniform distribution inside the box. However,

the reduced distribution for the momenta, ρ(p1, p2, . . . , pN , t), in this case cannot

relax, since the modulus of the momentum of every particle is conserved in the

elastic bouncing from the walls. Another way to extract coarse information from

the ensemble is by considering averages of phase space functions. One has:

〈xα pγ 〉t = 〈xα pγ 〉eq + Fαγ (t)

where x and p are any two out of the 6N phase space variables, Fαγ (t) is a function

that, for α �= 0, decays to zero exponentially in t and the time-independent part of

the expected value,

〈xα pγ 〉eq =
∫

xα pγ Peq(x, p) dx dp,

is given by an “equilibrium” distribution, Peq, satisfying the time-independent Li-

ouville equation. In the general case, Peq differs from the canonical distribution:

Peq(x, p) =
√

β/2πm

2L

[
exp[−β(p − p0)2/2m] + exp[−β(p + p0)2/2m]

]
,

where β = 1/kBT , L is the length of the container in the (real space) direction of the

coordinate x and p0 is the initial mean momentum per particle in the (momentum

space) direction of the coordinate p. But this is because, in this system, any even

power of the single-particle momentum is conserved. However, if p0 = 0 then Peq

is just the canonical distribution.

These results imply that, although the full N -particle distribution does not have

a long time limit, the expected value of any analytic phase function does have a

time-independent limit, and the system is said to relax “weakly” to equilibrium. It

is to be stressed that in the discussion above, N is an arbitrary parameter: it can

have a small as well as a large value. In either case the weak relaxation exists,

as a property of the average quantities that does not imply, by itself, irreversible

behavior of a single system. The latter feature, called predictability by Hobson and

Loomis (1968), is only present in sum type observables when N is very large, as a

consequence of suppression of the relative fluctuations, rendering the observables

macroscopically well defined. The former, namely the “statistical relaxation” is

a general property of an ensemble that is not automatically related to the single

system relaxation.
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5.4.3 On chaos and irreversibility

Let us now discuss why chaos in dynamical systems, although very important

from many points of view, has a rather marginal role in the irreversibility problem.

Since, it seems to us, a certain confusion exists concerning this point, we believe

it is important to try to clarify the situation by considering the problem from both

technical and conceptual points of view.

We saw in Chapter 1 that in mixing systems one has a relaxation to the invariant

measure, i.e. independently of the initial density distribution ρ(x, 0), for large t one

has

ρ(x, t) → ρ inv(x). (5.22)

The above property at first glance appears analogous to the irreversibility,2 but it is

not so.

(a) The relaxation to the invariant measure is a property of the “ensemble of the initial

conditions,” and it just reflects the fact that different points in the support of ρ(x, 0),

even if they are very close to each other at t = 0, will be separated as a consequence

of chaos. However this kind of “irreversible” behavior is rather different from the

irreversibility of real life, i.e. concerning a unique (large) system.

(b) The property (5.22) refers to a generic dynamical system, even a low-dimensional one.

In such systems, there is no sense of a micro/macro distinction, since it is not possible

to define macroscopic variables.

We know that there is not complete consensus on this. For example, Driebe (1994)

in a criticism of Lebowitz (1993b) writes that irreversible processes are well ob-

served in systems with few degrees of freedom, such as the baker or multibaker

transformation. Let us present a simple argument against this point of view. Con-

sider one particle of the (non-interacting) Lorentz gas or, equivalently, any chaotic

low-dimensional symplectic system (e.g. the baker or the standard map). Of course

the particle, as a consequence of chaos, shows irregular behavior. At a certain time

we invert its momentum and look. We do not observe anything surprising. It is easy

to realize that this is not in disagreement with the “irreversibility” in (5.22) which

is a property of the ensemble of the initial conditions.

The point is that, as already previously discussed in the example of the billiard

balls in Section 5.2.1, the irreversible phenomena deal somehow with macroscopic

variables. If one looks at a single molecule, or at a small number of molecules, there

is no sense in which one can speak of irreversibility which is a “global” property

of a large system. Only looking at time-reversed behavior of a large number of

particles do we observe something “strange.”

2 Some authors claim this explicitly. For a detailed discussion of this controversy see Bricmont (1995).
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Let us now discuss again the two objections of Zermelo and Loschmidt. The main

reason, as already realized by Boltzmann, for the non-relevance of the Poincaré

recurrence theorem in macroscopic systems, is that the recurrence time increases

exponentially with N . This is true in both chaotic and regular systems. In order

to understand this point it is enough to consider a periodic system with periods

T1, . . . , TN ; even if Tk/Tj are rational numbers the recurrence time T increases

exponentially with N .

Consider now the Loschmidt paradox regarding the consequences of velocity

inversion for the time evolution of a system in computer simulation, e.g. a two-

dimensional diluted gas of 100 hard disks in a periodic box (Orban and Belle-

mans 1967). One defines the quantity H, according to Eq. (5.18), via the function

f (x, p, t) that is obtained by making histograms of the positions and velocities of

the disks. Starting from a particular non-equilibrium configuration, one follows the

time behavior of H in direct evolution and in evolutions with velocity inversion

at certain times. If very small errors are introduced into the initial data after the

velocity inversion, in a chaotic system one does not observe the exact antikinetic

behavior. If the errors increase, the antikinetic behavior is suppressed more or less

completely, as shown in Figure 5.1.
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Figure 5.1 The effect of velocity inversion on h(t) = H(t) − Hmin. The pluses
correspond to direct evolution; the crosses, the stars and the squares are obtained
by reversing the velocities after 18 collisions with very small errors, after 26
collisions with small errors and after 26 collisions with (relatively) large errors,
respectively. This picture shows in a schematic way the computer experiment of
Orban and Bellemans (1967).
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Such a phenomenon is interesting in itself, for example in the context of quan-

tum chaos and quantum information (Veble and Prosen 2004, 2005). If N is not

large the deterministic chaos is, of course, important: the difference between the

“actual” initial condition after the velocity inversion and the “true” one is quickly

amplified both by the chaos and the rounding-off errors of the computers. There-

fore the antikinetic behavior is easily reduced (or erased). On the other hand, if

N � 1 the solution of the paradox does not involve chaos. In the velocity re-

version operation one unavoidably introduces some errors. According to Lanford

(1981) for the “actual” reversed initial condition (which is different from the “true”

one), with probability close to one, molecular chaos holds and therefore H(t) must

decrease.

5.4.4 Some general conclusions

It seems to us that Boltzmann was basically able to understand the essence of

the mechanism of the second law. The process of clarification, which started with

Boltzmann himself, has been rather slow and culminated with the work of Grad

(1949) and the precise formulation of Lanford (1981), and other mathematicians,

see Cercignani et al. (1994). The technical “tricks” are essentially the following:

(a) assume N → ∞ and rescale the size of the molecules in a proper way (i.e. the Grad–

Boltzmann limit);

(b) select “good” initial conditions in such a way that the molecular chaos hypothesis is

satisfied, and prove that in the limit N → ∞ such initial conditions have measure

approaching to one.

With the above assumptions one can eliminate the fluctuations in the time be-

havior of H(t) versus t and therefore the objections of Loschmidt and Zermelo are

overcome. It is thus very surprising that there still exists a large literature, including

books aimed at a wide audience (Prigogine and Stengers 1979), which claims that

the explanation à la Boltzmann of the irreversibility needs to be revised according

to modern approaches (mainly using arguments from deterministic chaos).3 We

recall a famous Latin adage:

Contra facta non valent argumenta
(It is not possible to contrast facts with words).

3 For example Hoover (1999) claims that “Our exploration of time reversibility from the perspective of computer
simulation and chaos has provided us with insights into the breaking of time symmetry which were not available
to Bolzmann or Gibbs . . . Simulations have clarified the formation and significance of time-reversible ergodic
multifractal phase-space structures.”
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6

The role of chaos in non-equilibrium
statistical mechanics

I am conscious of being only an individual struggling weakly against the
stream of time. But still remains in my power to contribute . . .

Ludwig Boltzmann

In Chapter 4 we discussed the connection between chaos and equilibrium statis-

tical mechanics, in particular with respect to the ergodic hypothesis. We saw that

in systems with many degrees of freedom, chaos (in the sense of at least one pos-

itive Lyapunov exponent) is not strictly necessary (nor sufficient) to obtain good

agreement between the time average and phase average. This is due, as Boltzmann

himself thought and Khinchin proved for an ideal gas, to the fact that in systems

with many components, for a large class of observables, the validity of the ergodic

hypothesis is basically a consequence of the law of large numbers, and it has a

rather weak connection with the underlying dynamics.

From a conceptual point of view the ergodic approach (possibly in a “weak”

variant, only pertaining to some interesting macroscopic variables) can be seen

as a natural way to introduce probabilistic concepts in a deterministic context.

In addition, since one deals with a unique system (although with many degrees

of freedom) the ergodicity is a possible (unique?) way to found the equilibrium

statistical mechanics on a physical ground, i.e. by exploiting the frequentistic in-

terpretation of probability to extract a statistical description from the analysis of

a single experimental trajectory. Finally, on the basis of the results in Chapter 4,

and not forgetting that thermodynamics, as a physical theory, was developed to

describe the properties of single systems made of many microscopic interacting

parts, it seems to us that it is quite fair to conclude that the ensemble viewpoint is

just a useful mathematical tool.

150
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On the other hand the situation is much more intricate for the non-equilibrium1

problems than for equilibrium problems, and even after many years of debate, there

is no general agreement about the fundamental ingredients needed for the valid-

ity of statistical laws. The discovery of chaos, implying that even deterministic

systems with a few degrees of freedom may present some statistical features typ-

ical of probabilistic evolutions, forced physicists to reconsider the foundations of

statistical mechanics from a new perspective (Bricmont 1995). These issues are

the source of heated debates, of which an example is the debate on irreversibility

originated by Lebowitz’s paper (Lebowitz 1993), and the partly contrasting views

on irreversible entropy production reported in Gaspard (1998), Tél and Vollmer

(2000), and Rondoni and Cohen (2000).

The aim of this chapter is to discuss the role of deterministic chaos, of coarse-

graining procedures and of the many degrees of freedom in non-equilibrium statis-

tical mechanics. The following issues will be treated.

(a) The connection between chaos and entropy production rate. If one adopts the Gibbs

point of view for the ensembles, this problem can also be treated in systems with few

degrees of freedom. We will see that in general there is just a weak (if any) connection

between the Kolmogorov–Sinai entropy and the production rate of the coarse-grained

Gibbs entropy.

(b) The relevance of chaos and of the coarse-graining procedure for the time evolution
of the Boltzmann entropy SB(t) of a large assembly of weakly interacting systems. As

a consequence of the interaction, a characteristic scale emerges, so that the behavior

of SB(t) versus t , at variance with that of the Gibbs entropy, does not depend on the

coarse-graining resolution, as long as it is finer than this dynamical scale. Therefore the

growth of SB(t) is an intrinsic property of the system.

(c) The linear response theory and the dissipation-fluctuation theorem. It is possible to

see that, in any system with good (but quite weak and general) chaotic properties, i.e.

with a mixing invariant measure, a fluctuation-response relation holds which links the

response to a finite perturbation with a suitable correlation function computed for the

unperturbed system. This relation is rather general and also holds in non-equilibrium

systems under the assumption that a stationary invariant measure exists.

(d) The role of chaos for the validity of statistical mechanics laws, e.g. diffusion and con-
duction. We will see that the main ingredient is not chaos in the technical sense (i.e.

a positive Lyapunov exponent); the presence of pseudochaos (i.e. λ1 = 0) and some

“large-scale instability” is enough to give a proper diffusive (or conductive) feature.

1 By the term “non-equilibrium” we indicate (a) cases where, at t = 0, the probability density function is not the
microcanonical (or canonical) one or, if one is dealing with a unique large system, the initial condition is not
“typical” (in the sense of the results of Khinchin, see Section 4.2), (b) systems whose invariant measure is not
the microcanonical (or canonical) distribution.
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6.1 On the connection between the Kolmogorov–Sinai entropy and
production rate of the coarse-grained Gibbs entropy

In statistical mechanics, the physical entropy of a (macroscopic) system in equilib-

rium is identified with the Gibbs entropy, that is the quantity2

S(ρeq) = −
∫

ρeq(x) ln[ρeq(x)]dx, (6.1)

where ρeq is the appropriate equilibrium density. In this section and in the following

one, for convenience, we set Boltzmann’s constant equal to 1. Almost immediately,

this formulation of equilibrium entropy leads to the idea of defining an entropy

for non-equilibrium situations, by simply extending definition (6.1) to the cases

of a time-dependent density. In such a way one obtains a time-dependent entropy

functional, S(ρt ), that, in the long time, hopefully should reduce to S(ρeq). However,

from a general point of view, setting aside the question of its physical meaning and

relation with the Second Principle, S(ρt ) may be considered merely as a well-

defined quantity of a given dynamical system whose evolution properties deserve

investigation. From such an aseptic perspective, the system involved does not need

to be either a Hamiltonian system or a high-dimensional system. The behavior of

dS(ρt )/dt is among the interesting problems about S(ρt ). On the basis of reasonable

arguments, see the following, and numerical computations (Latora and Baranger

1999), a simple relation has been suggested between rG, the variation rate of a

suitably average coarse-grained Gibbs entropy, and hKS, the Kolmogorov–Sinai

entropy of the dynamical system: rG = hKS, at least in a certain range of time.

However, the situation is not so clear and, as we are going to show in the following,

such a relationship between rG and hKS does not hold in the generic case.

6.1.1 A brief overview of basic facts about the Gibbs entropy

Consider a deterministic dynamical law

x → T t x (6.2)

(where x is a D-dimensional vector) and a probability density ρ(x, t) for the state of

the system throughout its phase space, at time t . The time-dependent Gibbs entropy

of the system is defined as follows

S(ρt ) = −
∫

ρ(x, t) ln[ρ(x, t)]dx. (6.3)

2 As noted in Chapter 5, all volumes of the phase space may be considered as adimensional quantities, when
they are related to an elementary volume h3N . In this way a normalized ρ(x) can also be considered as an
adimensional quantity.



6.1 The KS entropy and the coarse-grained Gibbs entropy 153

For chaotic dissipative systems, where ρ(x, t) tends to a singular (fractal) mea-

sure, definition (6.3) becomes meaningless. Nevertheless, following a nice idea of

Kolmogorov and Ruelle (1989), one can avoid this difficulty by adding (or con-

sidering unavoidably present) a small noise term in the evolution law. In such a

way one obtains a ρ(x, t) continuous with respect to the Lebesgue measure. Denot-

ing by J (x, t) the Jacobian of transformation (6.2), a straightforward computation

gives

S(ρt ) = S(ρ0) +
∫

ρ(x, t) ln |J (x, t)|dx. (6.4)

In the case of volume-conserving evolutions, where |J (x, t)| = 1, one has S(ρt ) =
S(ρ0); therefore in order to allow entropy variation a coarse graining is necessary

(Tolman 1980). Let us consider a hypercubic partition, with cells of linear size �,

and let us define the probability P�(i, t) of finding the state of the system in the

cell i at time t :

P�(i, t) =
∫

��
i

ρ(x, t)dx (6.5)

where ��
i is the region singled out by the i th cell. We can now introduce the

�-grained Gibbs entropy

S�(Pt ) = −
∑

i

P�(i, t) ln P�(i, t). (6.6)

If one considers a distribution of initial conditions different from zero over a small

number of cells, and � small enough (with respect to the typical linear size of the

phase space region where the motion evolves), then one can argue qualitatively,

as follows, about the behavior of S�(Pt ). Assume that ρ(x, 0) is localized around

xc(0) and that it has a Gaussian shape. For the sake of simplicity also assume that

the variance in any direction is σ 2
0 . In a suitable reference system (with the axes

along the eigendirections of the Lyapunov exponents), for some times ρ(x, t) is

well approximated by a product of D one-dimensional Gaussian distributions with

variances

σ 2
j (t) = σ 2

0 e2λ j t , (6.7)

that is:

ρ(x, t) �
D∏

j=1

1√
2πσ 2

j (t)
exp

{
− (x j − xc

j (t))
2

2σ 2
j (t)

}
(6.8)
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where xc(t) is the state evolved from xc(0). Therefore in the non-grained case one

has

S(ρt ) � S(ρ0) +
∑

j

ln
σ j (t)

σ0

= S(ρ0) +
D∑

j=1

λ j t. (6.9)

If the phase space volume is conserved by the dynamics, then
∑D

j=1 λ j = 0, and

so S(ρt ) = S(ρ0). In the coarse-grained case, supposing that the system possesses

m positive Lyapunov exponents, for a long enough t , one has:

σk(t) ≈ σ0e−|λk |t < �, (6.10)

for k > m, i.e. along the D − m directions of the negative Lyapunov exponents.

The previous inequality is satisfied for all k when t � (1/�) ln(σ0/�), where �

is the smaller among the absolute values of the negative Lyapunov exponents.

In the qualitative argument, the differences among Lyapunov exponents can be

disregarded, and as the characterizing time one can consider

tλ = 1

λ1

ln
σ0

�
,

where λ1 is the maximal exponent. Thus for t > tλ

ρ(x, t) �
m∏

j=1

1√
2πσ 2

j (t)
exp

{
− (x (i)

j − xc
j (t))

2

2σ 2
j (t)

}

and

S�(Pt ) � S�(P0) +
m∑

j=1

λ j t. (6.11)

Therefore using Pesin’s formula one can write

S�(Pt ) � S�(P0) + hKSt. (6.12)

However, at this point, one observes that this linear regime cannot last indefinitely.

It must change when the considered states, that were initially well concentrated in

a small region of the phase space, begin to be spread all over the accessible region

and the entropy begins to saturate, that is, when the width of ρ(x, t) becomes of the

same order as the system size. According to Eq. (6.7), this happens when the time

is greater than

tsat = 1

λ1

ln
L

σ0

,
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where L is the typical linear size of the system. Of course, the phase space is filled

faster along the more expanding directions.

Summing up, we see that in a conservative system a non-constant entropy is

allowed by the fact that, in the presence of a coarse graining, contraction below the

coarse-graining resolution � is no longer “efficient,” i.e. the contracting eigendi-

rections (corresponding to the negative values of the Lyapunov exponents) cannot

balance the effects of the expanding eigendirections.

One can roughly identify three different stages of the evolution. In the first stage

no entropy variation is present. This lasts until a time tλ, when the scales along

the contracting directions have been shrunk down to the graining size, and the

second stage begins. This is the linear regime of changing entropy, ending when

the saturation effects begin, around a time tsat.

Finally, a behavior like (6.12) may be expected to show up only during the time

interval

tλ = 1

λ1

ln
σ0

�
� t � 1

λ1

ln
L

σ0

= tsat. (6.13)

6.1.2 Remarks and numerical results

We believe that in general there is no room for relation (6.12) to hold, and that,

on the contrary, its realization is just a “lucky” coincidence (Falcioni et al. 2005).

With regard to this, we begin by stressing the following points.

(a) The usual physical justification of a coarse graining is the limited accuracy available

to the experimenter. From such a perspective, the graining must be realized by cells

of strictly finite size. Since we want to study the rate of change of S�(Pt ), in order to

speed up the appearance of the interesting time behavior, the numerical computations

described below are performed with initial distributions concentrated in single cells,

i.e. σ0 = �. In this way, according to (6.13), the useful time interval is extended to

t � tsat = 1

λ1

ln
L

�
, (6.14)

because the first time stage, t < tλ, during which there is no entropy variation, is com-

pletely suppressed.

(b) The Kolmogorov invariant hKS is a global characterizing property of a dynamical sys-

tem. In contrast, by definition, the Gibbs entropy (6.3) depends explicitly on the par-

ticular chosen initial density. In the discussion above this dependence may be labeled

by a point, xc, around which the distribution is different from zero at the starting time.

A generic system possesses a certain degree of intermittency, so that, for instance, the

expanding and contracting properties may depend strongly on the phase space region

the trajectory is visiting. So, one expects that density-independent behavior, as in (6.12),

can be found only in “friendly” dynamical systems, i.e. systems with no fluctuations.
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In all the other cases, the remark we made calls for averaging over the initial condition

xc, weighted, say, by the natural invariant measure of the system:

S(ρt ) → S(t) =
∫

S(t |xc)ρeq(xc)dxc, (6.15)

where S(t |xc) is S(ρt ) with ρ0(x) localized around xc. The same averaging procedure

leads to S�(t) from S�(Pt ). This operation yields intrinsic quantities, and can produce

a dependence of dS�(t)/dt on the Kolmogorov–Sinai entropy of the system as simple

as

dS�(t)

dt
� hKSt. (6.16)

(c) However, both the Kolmogorov–Sinai entropy and Lyapunov exponents are quantities

defined in the limits of long time (t → ∞) and high resolution (� → 0). In the present

situation, where a coarse-grained Gibbs entropy is involved and a finite � is mandatory,

condition (6.14) makes it clear that the two limits are both out of reach, and so may be

a growing rate like (6.16).

Let us show by numerical evidence that, notwithstanding the astute averaging

discussed in point (b), a certain degree of intermittency combined with a finite

resolution prevent Eq. (6.16) from holding.

We study the following simple one-dimensional system, which is a modified tent

map:

xt+1 =
{

xt/p if 0 ≤ xt ≤ p
(1 − xt )/(1 − p) if p ≤ xt ≤ 1.

(6.17)

This map reduces to the usual (symmetric) tent map if p = 1/2, and for p �=
1/2 it has an intermittent behavior characterized by two different local Lyapunov

exponents, namely:

λ+ = − log p, λ− = − log(1 − p). (6.18)

The stationary distribution is constant between 0 and 1 and consequently we have

hKS = λ1 = pλ+ + (1 − p)λ− = −p log p − (1 − p) log(1 − p), (6.19)

assuming its maximum value for p = 1/2.

The intermittent behavior of this system is rather weak and it is not as critical as

in strongly intermittent maps, for example Manneville’s map (see the following),

and the distribution of the time-length of the “laminar” zones (the permanence in

the interval [p, 1]) is simply exponential without a power-law tail. Nevertheless

one can observe that in this system Eq. (6.12) already does not hold. We recall

that, as explained in point (a), we consider ensembles that, at the beginning, are
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concentrated in a single cell, so that the evolution is already inside the changing

stage. The numerical analysis is performed as follows:

(1) we select several starting conditions x j
1 (0), x j

2 (0), . . . , x j
N (0) all located in the j th in-

terval of size �, ��
j ;

(2) we let evolve all the N � 1 starting conditions up to a time t , obtaining

x j
1 (t), x j

2 (t), . . . , x j
N (t);

(3) we calculate

P�, j (k, t) = 1

N

N∑
i=1

δ(x j
i (t), k)

with

δ(x, k) =
{

1 if x ∈ ��
k

0 otherwise;

(4) we compute the entropy of P�, j (k, t), according to (6.6)

S�( j, t) = −
∑

k

P�, j (k, t) log P�, j (k, t)

(we recall that j refers to the interval where the initial conditions are chosen);

(5) we average this quantity on the coarse-grained invariant distribution Peq( j), obtained

from ρeq(x) using the procedure of Eq. (6.5); recall that, in this case, ρeq(x) = 1, so we

have

S�(t) =
∑

j

Peq( j)S�( j, t). (6.20)

The results are shown in Figure 6.1. As one can see, the agreement with Eq. (6.12)

is good only for p = 1/2 (the case with no intermittency) and becomes worse and

worse for decreasing p. The main point is that, according to the heuristic arguments

leading to Eq. (6.13), the linear behavior of S�(t) should hold, until a time about

tsat = 1

λ1

log

(
1

�

)
(6.21)

corresponding, on the scaled time of Figure 6.1, to the value − log � � 7. This is

observed for p = 1/2, but for small values of p, S�(t) increases in time with a

“wrong” slope (i.e. different from hKS) and later it exhibits a rather long crossover.

The origin of this effect is the intermittent behavior of the system, that is, strong

inhomogeneities in the system evolution, depending on its initial condition. Indeed

if p is small then the realizations of S�( j, t) with x j (0) starting in the zone [0, p] are

quickly spread over the whole interval [0, 1], almost reaching the asymptotic value

of − log � after a few steps; the realizations starting, for example, near the unstable

equilibrium point x = 1/(2 − p) take several time steps to reach saturation, giving
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Figure 6.1 S�(t) as a function of t hKS(p) for the modified tent map of Eq. (6.17)
with � = 10−3, for different values of p. Note that Eq. (6.12) should give the
straight line t hKS(p) for all values of p.
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Figure 6.2 S�(t)/S�(∞) as a function of t/S�(∞) for the modified tent map of
Eq. (6.17) with different values of �. (a) p = 0.1, (b) p = 0.4.

a dominant contribution to the rate of increase of S�(t). In this way the S�(t)
computed with Eq. (6.20) does not increase in time following the naive argument

yielding Eq. (6.12).

Figure 6.2 shows other interesting properties of the behavior of S�(t) for p = 0.1

and p = 0.4 with varying value of �. As one can see, in the slightly intermittent

case p = 0.4, the rescaled curves collapse together, confirming the assumption of

Eq. (6.12); in the intermittent case p = 0.1, the curves do not collapse and only

for very low values of � is a linear growth of S�(t) present. Let us stress the

fact that, at variance with the case shown in Figure 6.2(b), in the intermittent case
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(Figure 6.2(a)) the crossover regime (after the linear regime and before saturation)

is very long and is comparable with the duration of the linear regime.

The above results are generic (Falcioni et al. 2005): for example, the same

qualitative behavior has been observed in systems with different time scales, in

automata with zero hKS, as well as for the Manneville map

xt+1 =
{

xt + kxz
t if xt < d

(1 − xt )/(1 − d) if d < xt < 1,
(6.22)

where d fulfills the relation d + kdz = 1, and an invariant distribution exists for

3/2 < z < 2 (Gaspard and Wang 1993).

6.2 Gibbs and Boltzmann entropies: the role of chaos,
interaction and coarse graining

In the previous section we introduced, and partially faced, the problem of the evo-

lution of the time-dependent Gibbs entropy (6.3). This problem, besides its abstract

interest in dynamical systems theory, can be regarded as relevant in characterizing

the entropic behavior of a system out of equilibrium. This can be called the Gibbs

approach to irreversibility. In Chapter 5 we discussed irreversibility according to

Boltzmann and his definition of entropy. In this section we compare the two points

of view, with the numerical analysis of a simple model. We want to show that

an interaction among the very many elementary constituents of a single (macro-

scopic) system is crucial to distinguish between the two entropies and to recognize

Boltzmann’s entropy as more appropriate in a physical context.

6.2.1 A brief overview of basic facts

For the sake of self-consistency we briefly recall some well-known facts. Because

of the physical perspective, in this section we are only concerned with either Hamil-

tonian or symplectic systems.

Consider a Hamiltonian system of N particles, and let the vector X(t) =
(q1(t), p1(t), . . . , qN (t), pN (t)) define its microscopic state in the phase space 
.

If one supposes that the system, at a certain time, can be found in a variety of

states constituting an ensemble, then, denoting by ρ(X, t)dX the probability that

the microscopic state is in a phase space volume dX around X, at time t , the Gibbs

entropy is defined as in (6.3):

SG(ρt ) = −
∫

ρ(X, t) ln[ρ(X, t)]dX, (6.23)
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where we again let Boltzmann’s constant be 1. We also add the subscript G to

distinguish this from Boltzmann’s entropy to be introduced later. As previously

discussed, a coarse graining of 
, by cells of size �, leads to a coarse-grained

density and to a corresponding coarse-grained entropy S�
G (t) that changes with time.

When the system is chaotic, and the initial probability distribution is supported over

a small region of linear size σ , simple arguments (see Section 6.1.1) suggest that

S�
G (t) increases linearly in time, after a short transient of length tλ:

S�
G (t) − S�

G (0) �
{

0 t < tλ
hKS(t − tλ) t ≥ tλ

(6.24)

where

tλ ∼ 1

λ
ln

( σ

�

)
(6.25)

and λ is the maximal Lyapunov exponent of the Hamiltonian equations. As dis-

cussed in the previous section, prediction (6.24) is valid only when intermittency

effects are negligible. But this is now a marginal aspect, therefore in the following,

for simplicity, we will assume its validity.

Some authors consider Eq. (6.24) to be an indicator of the deep connection

between chaos and non-equilibrium statistical mechanics. However, the kind of

behavior considered may have no relation at all to thermodynamics, essentially

because S�
G (t) may have no relation to thermodynamics (in a non-equilibrium sit-

uation). This is suggested by the following remarks:

(a) the quantity S�
G (t) describes properties of the 
-space that cannot be computed from

a single-system measurement (at least this is practically impossible in any realistic

situation);

(b) the time increase of S�
G (t) depends on an arbitrary coarse-graining procedure and this

appears as a non-ontological result.

Consider now Boltzmann’s viewpoint, applied to a macroscopic system of

weakly interacting identical particles. A one-body probability distribution func-

tion f (q, p, t) (the probability density of finding a particle in a given volume of

the single-particle μ-space) can be defined without any reference to an ensemble of

different states of the given system and the corresponding distribution in 
-space.

This can be done by introducing cells of linear size � in the μ-space of the sys-

tem. If the system lives in a d-dimensional physical space, let N � �−2d , so that

each cell contains a statistically relevant number of particles. Then, given one state

X(t), evolving in 
, the one-particle time-dependent coarse-grained distribution is
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defined as:

f�(q( j), p(k), t) = 1

N

N∑
i=0

�

(
1 − 2|q( j) − qi (t)|

�

)
�

(
1 − 2|p(k) − pi (t)|

�

)

(6.26)

where �(z) is the Heaviside step function and q( j), p(k) are the coordinates of the

center of each cell C jk having volume �2d , in the appropriate units. For a dilute gas,

this μ-space function is able to identify a meaningful macrostate, whose volume

�
, according to Boltzmann’s relation, gives the entropy as follows:

SB = log �
. (6.27)

Thus, for a dilute gas, log �
 and SB can be well approximated by

SB = log �
 ≈ −N
∑

j,k

f�(q( j), p(k)) ln f�(q( j), p(k)), (6.28)

where terms dependent on � and N have been disregarded. The Boltzmann entropy

for these systems can also be written, as usual, as

SB(t) = −N
∫

f (q, p, t) ln f (q, p, t)dq dp (6.29)

where f is the regular μ-space probability distribution, obtained in the N → ∞,

� → 0 limit of Eq. (6.26).3 For dilute systems according to the hypothesis of

molecular chaos, the celebrated Boltzmann H-theorem holds (Huang 1987):

dSB

dt
≥ 0. (6.30)

The validity of the molecular chaos hypothesis has been demonstrated for the

class of dilute systems in the Grad limit, where N → ∞ and the interaction range

between particles goes to zero, in order to keep the total cross-section constant

(Lanford 1981, Illner and Pulvirenti 1986).

The two main approaches are equivalent when describing equilibrium conditions,

both coinciding with plain thermodynamic entropy. Some textbooks try to connect

them out of equilibrium too, noticing that in dilute systems:

ρ(X, t) �
N∏

j=1

f (q j , p j , t), (6.31)

which implies SG � SB. However, relation (6.31) is a very delicate assumption and

must be interpreted cum grano salis otherwise, for instance, because of (6.30), one

would infer that the Gibbs entropy (6.23) increases.

3 Since, for small �, f�(q( j), p(k)) ≈ f (q( j), p(k))�2d , the quantities in (6.28) and (6.29) differ just by a term
O(ln �) which is constant in time and is not relevant.
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With respect to the relation between SG and SB, some important conceptual
differences should be stressed.

� The Gibbs point of view is based on the ensemble, i.e. an abstract collection of macro-

scopically identical systems, and does not depend on the number of particles of which

each system is made. In contrast, Boltzmann’s approach does not require an ensemble of

copies of the same system, but needs N � 1, in order to define a meaningful f (q, p, t)
for the single system.

� The Gibbs entropy deals with the 
-space, and necessitates a coarse-graining procedure

in order to escape the consequences of the Liouville theorem, so as to grow during an

irreversible evolution. The Boltzmann entropy has no no-grow theorem and the graining

of the μ-space is only introduced to deal with a smooth distribution.
� The two entropies capture different features of a given system. The Gibbs entropy is

concerned with the spreading in phase space of the initial ensemble of microstates, as it

is selected by the macroscopic observables of interest. In this picture, the time evolution

of these observables plays no role. In contrast, the Boltzmann entropy is concerned with

the evolution of phase space volumes, as determined by the evolution of the interesting

observables along a single history.

At this point one can wonder whether there is a means to reveal, in a quantitative

way, the possible differences in the time behavior of the two entropies.

6.2.2 Looking for the differences: the Boltzmann entropy of a chaotic system

We study here a system made of many chaotic elements and we compare the

behavior of quantity (6.28), as a function of the graining size �, in two different

settings: either no interaction among elements is present, or the elements interact.

A widely studied system consists of N particles that do not interact with each

other, and move in a periodic array of fixed convex scatterers, with which they

collide elastically. It is well established that such a system, commonly known as

the Lorentz gas,4 is chaotic and displays asymptotic diffusion.
The study of this system, for a large number of particles, is expensive from a

computational point of view. A reasonable substitute, which shares its main features,
can be given in terms of symplectic maps. For instance, one can consider a two-
dimensional map, with one “coordinate” and one “momentum,” in place of each
particle of the Lorentz gas. At a second stage one can introduce a form of interaction
among these “particles.” Thus we require the following:

� in the absence of interactions among the “particles,” the single-particle dynamics in the

corresponding μ-space is chaotic and volume preserving;

4 In Lorentz’s original model (Lorentz 1905), the moving particles were considered in thermal equilibrium with
the scatterers, which is impossible to achieve without energy exchanges between scatterers and particles, as in
the present model.
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� in the presence of interactions among particles, the dynamics of the whole system, de-

scribed by the vector X = (Q, P), Q = (q1 . . . qN ), P = (p1 . . . pN ), is symplectic and

volume preserving in the 
-space.

The resulting model will be easier to handle numerically, and still have some im-

portant properties of the particle system. To this end, we introduce the symplectic

map:

{
qi = ∂G(Q′, P)/∂pi mod 1

p′
i = ∂G(Q′, P)/∂q ′

i mod 1
(6.32)

with generating function

G(Q′, P) =
N∑

i=1

q ′
i pi − k

2π

N∑
i=1

NS∑
j=1

cos[2π (q ′
i − Y j )]

− ε

4π

N∑
i=1

M/2∑
n=−M/2

cos[2π (q ′
i − q ′

i+n)], (6.33)

where qi , pi ∈ [0, 1]. NS is the number of fixed “obstacles” having positions Y j ,

which play the role of the convex scatterers in the Lorentz gas, and N is the number of

“particles.” In order to make the numerical simulations faster, we assume that each

particle interacts only with a limited number M of other particles. The parameters k
and ε represent the interaction strengths between particles and obstacles and among

particles respectively. If k = ε = 0 one has free particles. The functional form of

the generating function is reminiscent of the standard map, which is a paragon of

symplectic dynamics.

Substituting Eq. (6.33) into (6.32), one finds:⎧⎪⎨
⎪⎩

q ′
i = qi + pi mod 1

p′
i = pi + k

NS∑
j=0

sin[2π (q ′
i − Y j )] + ε

M/2∑
n=−M/2

sin
[
2π (q ′

i − q ′
i+n)

]
mod 1.

(6.34)

We are going to discuss the growth in time of the Boltzmann entropy per particle,

SB(t, �)

N
≡ η(t, �) = −

∑
j,k

f�(q ( j), p(k), t) log f�(q ( j), p(k), t), (6.35)

by varying the cell size �.

We stress again that Eq. (6.35) (times N ) is an acceptable expression for the

Boltzmann entropy (6.27) only in the case of dilute systems. In such a case the

function f (q, p, t) is able to describe properly the macrostates of the system. Since

we are considering the case of weakly interacting subsystems we use Eq. (6.35).
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Simulations of system (6.34) have been performed with NS = 103, k = 0.017,

N = 107. The positions of the NS obstacles are selected at random with uniform

distribution. As initial non-equilibrium condition, we take a cloud of points dis-

tributed according to a Gaussian of variance σ 2 = (0.01)2, in a fixed region of phase

space. Then we compute the time evolution of differences between the entropy per

particle and its initial value at several resolutions �:

δS(t, �) = η(t, �) − η(0, �). (6.36)

We begin with the case ε = 0, about which an important general remark should

be made. A one-particle distribution, f�(q ( j), p(k), t), of one system consisting

of N � 1 non-interacting identical particles, can also be seen as a phase space

distribution, P�(q ( j), p(k), t), of an ensemble of N identical (and independent)

systems composed of one particle. The coordinates and velocities of the N particles

represent one state of the macrosystem, in its 6N -dimensional 
-space, by which

one can build a one-particle distribution in a six-dimensional μ-space. However,

they can also represent N independent states in a six-dimensional 
-space of a

single microsystem, by which one builds an ensemble distribution. The functional

forms of f� and P� are the same. Moreover, since the particles do not interact with

each other, f� evolves in the same manner as P�. Thus in the non-interacting case,

the quantity δS(t, �) represents either a δSB(t, �) or a δS�
G (t), according to the

adopted point of view. We stress that the two entropies refer to different systems,

but they share identical behavior.

The increase in entropy shown in Figure 6.3 must originate exclusively from the

discretization procedure since, when ε = 0, the evolution of f (q, p, t) obeys the
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Figure 6.3 δS(t, �) with ε = 0 (non-interacting particles) as a function of t for
different values of �. The slope of the straight line equals the Lyapunov exponent.
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Figure 6.4 δS(t, �) with ε = 10−4 as a function of t for different values of �. The
straight line slope equals the Lyapunov exponent.

Liouville theorem. Indeed, as one can see in the figure, the curves of the entropy

differences as functions of time stay constant up to a time tλ, depending on �. After

this transient, the slope of δS(t, �) is practically the same for all the curves and is

given approximately by hKS = λ (the numerically computed Lyapunov exponent

is λ = 0.162). One has δS � 0 for t � tλ(�) and δS � λ(t − tλ(�)) for t � tλ(�).

This is in agreement with Eq. (6.24) and with the indistinguishability between f�
and P� in the non-interacting case. Since tλ increases as � decreases, the “true”

Boltzmann entropy, together with the Gibbs entropy, for � → 0 is constant in

time.

Note that, when considering δS(t, �) as a coarse-grained Gibbs entropy, we are

analyzing its behavior during the first two stages of the evolution, as described in

Section 6.1.1. This is obtained by keeping the extension of the density fixed (σ =
0.01), when varying �. We choose this because here, in contrast to the preceding

section, we are also interested in the transient behavior before δS(t, �) begins to

increase.

Consider now the interacting case, with ε > 0. We underline that, in this situation,

δS(t, �) can only represent the evolution of the Boltzmann entropy (of a dilute

system), and has nothing to do with the Gibbs entropy. Figure 6.4 shows the curves

of δS(t, �) as a function of t for different values of �. In this case, the entropy

curves as functions of � no longer extrapolate to zero. After a characteristic time

depending on ε, t∗(ε), the entropy shows just a weak dependence on � and correctly

extrapolates to a finite value when � → 0.
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6.2.3 Comments and interpretations

Let us summarize and comment on the previous results.

(a) For non-interacting systems (ε = 0), δS(t, �) represents the evolution of the Boltzmann

entropy and of the Gibbs entropy at the same time. Its growth behavior reflects the

properties of the observation tools, and has a kind of “subjective” character, i.e. it does

not depend on the system alone. Since the time evolution of the coarse-grained S can be

delayed further and further, by taking finer and finer partitions, not only does the value

of the entropy depend on the coarse graining, but also the increase in entropy depends

(for “small” t) on the resolution scale.

(b) For weakly interacting systems, there is an effective cell size �∗(ε, λ), such that if

� < �∗(ε, λ) the value of δS(t, �) does not depend on �. In such a case, the growth

in Boltzmann entropy is an objective property, meaning that the limit for � → 0 of

δS(t, �) exists, is finite, and is an intrinsic property of the system.

(c) The role of chaos in the limit of vanishing coupling is relevant, i.e. the slope of δS(t, �),

for t large enough, is given by the Lyapunov exponent, but the existence of an effective

cell size �∗(ε, λ) and the corresponding t∗(ε, λ) depends on the coupling strength ε,

and on λ.

(d) In the above procedure, the quantities defined by Eqs. (6.26) and (6.35), are evaluated

with no assumptions such as the hypothesis of molecular chaos or dilution of the

system. From a mathematical point of view, we can define η(t, �) in Eq. (6.35) in

full generality. However, we consider only the weakly interacting limit of small ε for

the physical reason that only in such a case is f (q, p, t) endowed with an appropriate

thermodynamic meaning.

(e) The time evolution of f (q, p, t) for small values of ε is different from the case

ε = 0 only on very small graining scales. In other words, the coupling is necessary

for the “genuine” growth of the entropy, but it does not have any dramatic effect on

f (q, p, t) at scales � � �∗. Indeed, the non-interacting and the weakly interacting

cases do not appear to be very different, in terms of the single-particle phase space

distribution.

The previous results suggest the following interpretation: since the number of

particles is large, one can expect that the effect on each particle of the interactions

can be reasonably described by some kind of thermal bath. The single particle

dynamics can then be mimicked by the chaotic dynamics (corresponding to the

symplectic map of Eq. (6.34) with ε = 0) coupled to a noise term whose strength

is O(ε):

⎧⎨
⎩

qi (t + 1) = qi (t) + pi (t) mod 1

pi (t + 1) = pi (t) + k
∑

j
sin[2π (qi (t + 1) − Y j )] + √

2Dηi (t) mod 1

(6.37)
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where the ηi (t) are i.i.d. Gaussian variables with zero mean and unitary variance,

i.e.

〈ηi (t)〉 = 0, 〈ηi (t)η j (t
′)〉 = δt,t ′δi, j . (6.38)

With this approximation, one basically assumes that f (q, p, t) evolves according

to a discrete time Fokker–Planck equation. Supposing that each particle gives an

uncorrelated contribution to the noise term, one can roughly estimate the diffusion

coefficient D as Mε2/4. This heuristic estimate is well supported by numerical

simulations of (6.34): the quantity δS(t, �) practically does not change for varying

M and ε, keeping Mε2 constant.

In this stochastic framework, one can introduce a characteristic time tc, defined

as the time over which the scale of the noise-induced diffusion reaches the smallest

scale originated by the deterministic chaotic dynamics (Pattanayak 2001). This

definition of tc would correspond to t∗(ε, λ) introduced above. Noting that the

typical length due to noise behaves as
√

Mε2t/2 and the smallest chaotic scale

behaves as σ exp(−λt),5 the time tc may be estimated as the solution of the following

transcendent equation:

ε
√

Mtc/2 = σ exp(−λtc). (6.39)

Consequently, one can introduce a characteristic scale:

�c = ε
√

Mtc/2 , (6.40)

beyond which the value of the entropy still depends on the size of �. Numerical

checks confirm the consistency of this approach.

A similar reasoning leads to the decoherence mechanism proposed by Zurek and

Paz (1994, 1995), see also Casati and Chirikov (1995) for the semiclassical limit

of quantum mechanics.

6.3 Fluctuation-response relation and chaos

There exist physical situations where a system, on which a weak perturbation is

applied, produces a reaction, or response, that is proportional to the perturbation.

A simple example is an electric resistor, in which (in the Ohm regime) a density

of electric current is generated which is proportional to the applied electric field.

Another example is a particle in a fluid on which a constant force F is acting. The

particle will attain an asymptotic velocity, along the direction of the force, and

5 A rough explanation of this kind of behavior is obtained by considering that during a chaotic evolution, in a
two-dimensional volume-conserving case, an initial region σ is stretched by a factor exp(λt) along the unstable
direction while it shrinks along the stable direction by the factor exp(−λt).
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proportional to it: vd = |F|/γ , where γ is the friction constant of the particle in the

given fluid. The latter phenomenon, concerning a Brownian particle, and analyzed

from a molecular point of view, led Einstein to a physical remark with important

consequences. The impacts of the fluid molecules with the Brownian particle are at

the origin both of the viscous resistance (when the external force is present) and of

the wandering behavior (when there is no force). Thus it is sensible to expect some

relation between the parameters characterizing the two different manifestations of

the same physical process, i.e. a relation between the friction constant γ and the

diffusion coefficient D. Indeed (for simplicity restricting to the one-dimensional

case along the x direction) Einstein was able to prove that D = kT/γ . Moreover

he linked D in a quantitative way to the fluctuations of the particle displacement

per unit time:

kT

γ
= D = 〈(�x)2〉

2�t
. (6.41)

This equation, connecting the dissipative properties of the system, as embodied in γ ,

with the equilibrium fluctuations of the particle position, is the first example of the

so-called fluctuation-dissipation or fluctuation-response relations. If one rewrites

the diffusion coefficient in the form

D = lim
t→∞

1

2t

〈
(x(t) − x(0))2

〉 =
∫ ∞

0

〈
u(t0)u(t0 + t)

〉
dt,

with u = dx/dt , then Eq. (6.41) can also be read as a relation between a response

coefficient and a suitable time correlation function of the unperturbed system.

The connection between “non-equilibrium” features (e.g. response to an exter-

nal perturbation) and “equilibrium” properties (e.g. time correlations computed

according to an invariant measure) is a rather important issue in statistical mechan-

ics. Starting with Callen and Welton (1951), a systematic exploration of the subject

has been pursued, for both classical and quantum Hamiltonian systems, making

use of first-order time-dependent perturbation theory, and giving rise to the linear
response theory (Kubo 1966, 1986). The fluctuation-response theory was originally

developed in the context of (equilibrium) statistical mechanics of Hamiltonian sys-

tems; this can generate a misleading idea about the fluctuation-response relations.

For instance, some authors claimed, using qualitative arguments, that in fully devel-

oped turbulence (which is a non-Hamiltonian and non-equilibrium system) there is

no relation between spontaneous fluctuations and relaxation to the statistical steady

state (Rose and Sulem 1978). We will see that a generalized fluctuation-response

relation holds under rather general hypotheses, independently from the Hamiltonian

nature of the systems (Falcioni et al. 1990). As a matter of fact, fluctuation-response

relations can also be important in non-Hamiltonian systems, for instance, systems
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with chaotic dynamics (Ruelle 1989), in particular in hydrodynamics (Kraichnan

1959). This issue has an obvious relevance in geophysics and climate research

(Leith 1975) where one essential point is the possibility that the recovery of the

climate system from a perturbation (e.g. a volcanic eruption) can be estimated from

its time history (correlation time of the unperturbed system).

The fluctuation-response problem has often been studied for infinitesimal pertur-

bations; in statistical mechanics this is not a serious limitation. In a similar way this

problem has an importance in analytical approaches to the statistical description

of hydrodynamics, where Green functions are naturally involved both in perturba-

tive theories and in closure schemes (Kraichnan 1959, McComb and Kiyani 2005).

On the other hand, in different contexts, for example in geophysical or climate

problems, the interest in infinitesimal perturbations is rather academic, while the

interesting problem is the relaxation of large fluctuations in the system due to rapid

changes of the parameters (Boffetta et al. 2003).

6.3.1 A derivation of the fluctuation-response relation

Consider a dynamical system with states x belonging to an N -dimensional vector

space. For the sake of generality, we will consider the case in which the time

evolution may also not be completely deterministic (e.g. stochastic differential

equations). We assume the existence of an invariant probability distribution ρ(x)

and the mixing character of the system (from which its ergodicity follows). Note

that no assumption is made on N .

Our aim is to express the average response of a generic observable A to a per-

turbation, in terms of suitable correlation functions, computed according to the

invariant measure of the unperturbed system. As the first step we study the be-

havior of one component of x, say xi , when the system, described by ρ(x), is

subjected to an initial (non-random) perturbation such that x(0) → x(0) + �x0.6

This instantaneous kick modifies the density of the system to ρ ′(x), related to

the invariant distribution by ρ ′(x) = ρ(x − �x0). We introduce the probability of

transition from x0 at time 0 to x at time t , W (x0, 0 → x, t). For a deterministic

system, with evolution law x(t) = U t x(0), the probability of transition reduces to

W (x0, 0 → x, t) = δ(x − U t x0), where δ(·) is the Dirac delta. Then we can write

an expression for the mean value of the variable xi , computed with the density of

the perturbed system:

〈
xi (t)

〉′ =
∫ ∫

xiρ
′(x0)W (x0, 0 → x, t) dx dx0. (6.42)

6 The study of an “impulsive” perturbation is not a serious limitation because in the linear regime from the
(differential) linear response one understands the effect of a generic perturbation.
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The mean value of xi during the unperturbed evolution can be written in a similar

way:

〈
xi (t)

〉 =
∫ ∫

xiρ(x0)W (x0, 0 → x, t) dx dx0. (6.43)

Therefore, defining δxi = 〈xi 〉′ − 〈xi 〉, we have:

δxi (t) =
∫ ∫

xi
ρ(x0 − �x0) − ρ(x0)

ρ(x0)
ρ(x0)W (x0, 0 → x, t) dx dx0

= 〈
xi (t)F(x0, �x0)

〉
(6.44)

where

F(x0, �x0) =
[
ρ(x0 − �x0) − ρ(x0)

ρ(x0)

]
. (6.45)

Let us note here that the mixing property of the system is required so that the decay

to zero of the time-correlation functions ensures the switching off of the deviations

from equilibrium.

For an infinitesimal perturbation δx(0) = (δx1(0) · · · δxN (0)), if ρ(x) is non-

vanishing and differentiable, the function in (6.45) can be expanded to first order

and one obtains:

δxi (t) = −
∑

j

〈
xi (t)

∂ ln ρ(x)

∂x j

∣∣∣∣
t=0

〉
δx j (0)

≡
∑

j

Ri, j (t)δx j (0) (6.46)

which defines the linear response

Ri, j (t) = −
〈

xi (t)
∂ ln ρ(x)

∂x j

∣∣∣∣
t=0

〉
(6.47)

of the variable xi with respect to a perturbation of x j . One can repeat the computation

for a generic observable A(x):

δA (t) = −
∑

j

〈
A(x(t))

∂ ln ρ(x)

∂x j

∣∣∣∣
t=0

〉
δx j (0). (6.48)

At this point one could object that in a chaotic deterministic dissipative system

the above machinery cannot be applied, because the invariant measure is not smooth

at all. Nevertheless, a small amount of noise, that is always present in a physical

system, smoothes the ρ(x) and the fluctuation-response relation can be derived.

We recall that this “beneficial” noise has the important role of selecting the natural

measure, see Section 1.4, and, in the numerical experiments, it is provided by the
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roundoff errors of the computer. We stress that the assumption on the smoothness of

the invariant measure allows us to avoid subtle technical difficulties. In chaotic dis-

sipative systems, where the invariant measure is singular, the fluctuation-response

relation is valid only along the expanding directions. For a mathematically oriented

presentation see Ruelle (1998).

In Hamiltonian systems, taking the canonical ensemble as the equilibrium dis-

tribution, one has ln ρ = −β H (Q, P) + constant. If xi denotes the component qk

of the position vector Q and x j the corresponding component pk of the momentum

P, from Hamilton’s equations (dqk/dt = ∂ H/∂pk) one has

δqk(t)

δpk(0)
= β

〈
qk(t)

dqk(0)

dt

〉
= −β

d

dt

〈
qk(t)qk(0)

〉
(6.49)

which is just the differential form of the usual fluctuation-response relation (Kubo

1966, 1986).

In non-Hamiltonian systems, where usually the shape of ρ(x) is not known, rela-

tion (6.47) does not give very detailed information. It only guarantees the existence

of a connection between the mean response function Ri, j and a suitable correlation

function, computed in the non-perturbed systems:

〈
xi (t) f j (x(0))

〉
, with f j (x) = −∂ ln ρ

∂x j
, (6.50)

where, in the general case, the function f j is unknown. Let us stress that in spite

of the technical difficulty in the determination of the function f j , which depends

on the invariant measure, a fluctuation-response relation always holds in mixing

systems whose invariant measure is “smooth enough.” We note that the nature of

the statistical steady state (either equilibrium or non-equilibrium) has no effect at

all on the validity of the fluctuation-response relation.

In the case of Gaussian distribution, ρ(x) can be factorized and the elements of

the linear response matrix recover the normalized correlation functions:

Ri, j (t) =
〈
xi (t)xi (0)

〉
〈
x2

i

〉 δi j . (6.51)

One important non-trivial class of systems with a Gaussian invariant measure

is inviscid hydrodynamics, where the Liouville theorem holds, and a quadratic

invariant exists

N∑
i, j

αi, j xi x j = constant, (6.52)
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with αi, j a positive matrix (Bohr et al. 1998). In such a case the {x j } are the

coefficients of the Fourier series (or other similar expansions) of the velocity field.

Under the hypothesis of ergodicity, the invariant measure is the microcanonical

measure on the hypersurface
∑

i, j αi, j xi x j = constant, and therefore for large N the

ρ(x) is close to the multivariate Gaussian distribution (Kraichnan and Montgomery

1980, Bohr et al. 1998).

In the case of finite perturbations, the fluctuation-response relation (6.44) is typ-

ically non-linear in the perturbation �x0, and thus no simple relations analogous to

(6.47) exist. Nevertheless Eq. (6.44) guarantees the existence of a link between equi-

librium properties of the system and the response to finite perturbations. This fact

has a straightforward consequence for systems with one single characteristic time,

for example a low-dimensional system such as the Lorenz model. A generic cor-

relation function in principle gives information on the relaxation time of finite size

perturbations, even when the invariant measure ρ is not known (Boffetta et al. 2003).

In systems with many different characteristic times, such as fully developed

turbulence, one has a more complicated scenario: different correlation functions

can show different behaviors (i.e. different ranges and scales), which depend on the

observables. In addition, the amplitude of the perturbation can play a major role

in determining the response, because different amplitudes may trigger different

response mechanisms with different time properties (Boffetta et al. 2003).

6.3.2 Remarks on van Kampen’s objection and the connections between
the fluctuation-response relation and chaos

Since the fluctuation-response relation involves the evolution of differences between

variables computed on different realizations of the system, it seems natural to

expect that this issue is related to the predictability problem and, more in general,

to chaotic behavior. Actually it is possible to show that the two topics, i.e. the

fluctuation-response relation and predictability, have a subtle connection, making

the linear-response theory heavily indebted to chaos.

The standard derivation of the linear-response results, for Hamiltonian systems,

relies on a first-order truncation of the time-dependent perturbation theory, for the

evolution of probability density (or density matrix) (Kubo 1966). This procedure

was severely criticized by van Kampen (1971). In a nutshell, using the dynamical

system terminology, van Kampen’s argument is as follows. Given an initial pertur-

bation δx(0), one can write a Taylor expansion for δx(t), the difference between the

perturbed trajectory and the unperturbed trajectory:

δxi (t) =
∑

j

∂xi (t)

∂x j (0)
δx j (0) + O(|δx(0)|2). (6.53)
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Averaging over the initial condition one has the mean response function:

Ri, j (t) =
〈

∂xi (t)

∂x j (0)

〉
=

∫
∂xi (t)

∂x j (0)
ρ(x(0))dx(0). (6.54)

After an integration by parts the previous formula becomes Eq. (6.47). In the pres-

ence of chaos the terms ∂xi (t)/∂x j (0) grow exponentially as eλt , therefore it is not

possible to use the linear expansion (6.53) for a time larger than (1/λ) ln(L/|δx(0)|),
where L is the typical fluctuation of the variable x. On account of that estimate,

the linear-response theory is expected to be valid only for extremely small and un-

physical perturbations (or times). For instance, if one wants the fluctuation-response

relation to hold up to 1s when applied to the electrons in a conductor then, according

to this reasoning, a perturbing electric field should be smaller than 10−20 V/m, in

clear disagreement with experience. However, as shown in the previous subsection,

Eq. (6.47) can be derived without making any approximation on the evolution of

δx(t). Starting with the correct and complete expression (6.44) for the response,

only a linearization on the initial time-perturbed density is needed, and this implies

nothing but the smallness of the initial perturbation.

With regard to this point we have to observe that, from the evolution of the differ-

ence in trajectories, one can define the leading Lyapunov exponent λ by considering

the absolute values of δx(t): at small |δx(0)| and large enough t one has

〈ln |δx(t)|〉 � ln |δx(0)| + λt. (6.55)

On the other hand, in the fluctuation-response issue one deals with averages of

quantities with sign, such as 〈δx(t)〉. This apparently marginal difference is very

important and is the basis of an answer to van Kampen’s objection.

Indeed the reason for the seemingly inexplicable effectiveness of the linear-

response theory may reside in the “constructive role of chaos” because, as Kubo

suggested, “instability [of the trajectories] instead favors the stability of distribution
functions, working as the cause of the mixing” (Kubo 1986). An analysis performed

in the general case of perturbations taking place over finite times, makes clear the

positive role of mixing in restoring the validity of linear-response theory, and shows,

for instance, that in a conductor, with typical values for temperature and effective

electron mass, the fluctuation-response relation holds for an electric field of up to

O(103 V/m), instead of 10−20 V/m (Falcioni and Vulpiani 1995).

Nevertheless the objection that van Kampen raised remains relevant for numer-

ical computations. In numerical simulations, Ri, j (t) is obtained by perturbing the

variable xi at time t = t0 with a small perturbation of amplitude δxi (0) and then

evaluating the separation δxi (t) between the two trajectories x(t1) and x′(t1) which

are integrated up to a prescribed time t1 = t0 + t . At time t = t1 the variable xi of
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the reference trajectory is again perturbed with the same δxi (0), and a new sample

δx(t) is computed and so forth. The procedure is repeated M � 1 times and the

mean response is then evaluated. In the presence of chaos, the two trajectories x(t)
and x′(t) typically separate exponentially in time, therefore the mean response is

the result of a delicate balance of terms which grow in time in different direc-

tions. The average error in the computation of Ri, j (t) typically increases in time

as eL(2)t/2/
√

M , where L(2) is the generalized Lyapunov exponent. Thus very high

statistics (that is, very large M) is needed in order to capture this balance properly

and to compute Ri, j (t) for large t .

6.4 Chaos and pseudochaos for diffusion and conduction

Several simulations and theoretical works have suggested that, in systems with

very strong chaos (namely hyperbolic systems), a close relationship exists between

transport coefficients (e.g. viscosity, diffusivity, thermal and electrical conductivity)

and indicators of chaos (Lyapunov exponents, Kolmogorov–Sinai entropy, escape

rates) (Gaspard 1998, Dorfman 1999). At first glance, the existence of such relations

seems to support the point of view according to which chaos is the basic ingredient

for the validity of statistical mechanics laws. However, some counterexamples

show that chaos is not a necessary condition for the emergence of robust statistical

behaviors (Dettmann and Cohen 2001, Cecconi et al. 2003). The present section

aims to clarify this point.

6.4.1 Diffusion in deterministic non-chaotic systems

Soon after the (re)discovery of dynamical chaos (Lorenz 1963), it was realized that

simple low-dimensional deterministic systems may also exhibit diffusive behavior.

In this framework, the two-dimensional Lorentz gas (Lorentz 1905), describing the

motion of a free particle through a lattice of hard convex obstacles, provided the

paradigmatic example. Particle trajectories are chaotic as a consequence of the con-

vexity of the obstacles, and diffusive behavior is observed, i.e. the mean square

displacement from the initial position of the particle grows linearly in time (at large

time). The Lorentz system is closely related to the Sinai billiard (Sinai 1979, Buni-

movich and Sinai 1981) which can be obtained from the Lorentz gas by folding

the trajectories into the unitary lattice cell. On the other hand, even non-chaotic

deterministic systems, such as a bouncing particle on a two-dimensional billiard

table with polygonal, randomly distributed, obstacles (wind-tree Ehrenfest model),

may exhibit diffusion-like properties (Dettmann and Cohen 2001).

The relevant question can be recast as follows: what are the necessary micro-

scopic conditions for observing large-scale diffusion? We will see that the study
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of chaotic models exhibiting diffusion and their non-chaotic counterparts is im-

portant for a better understanding of the role of microscopic chaos in macroscopic

diffusion.

As argued by Dettmann and Cohen (2001), even an accurate numerical analysis

based on ε-entropy has no chance of detecting differences in the diffusive behavior

between a chaotic Lorentz gas and its non-chaotic counterpart, such as the wind-tree

Ehrenfest model. In this model, the maximal Lyapunov exponent is zero, since the

reflection by the flat edges of the obstacles cannot produce exponential separation of

trajectories. Let us note that the presence of corners can produce a stringent separa-

tion of trajectories; even if these unprobable events give a vanishing contribution to

the Lyapunov exponents they can have non-negligible effects on the overall dynam-

ics and its diffusive features. Thus, the disorder in the distribution of the obstacles

may happen to be crucial. In particular, one may conjecture that a finite spatial

(Shannon-like) entropy density, hS, is necessary for observing diffusion. Indeed

it is generally believed that deterministic diffusion might be a consequence either

of a non-zero “dynamical” entropy (hKS > 0) in chaotic systems or of a non-zero

“static” entropy (hS > 0), due to the random (quenched) positions of the obstacles,

in non-chaotic systems, as in the present case. This is a key point, because one can

argue that a deterministic infinite system with spatial randomness can be interpreted

as an effective stochastic system (this is probably a “matter of taste”). With the aim

of clarifying this point, we consider here a spatially disordered non-chaotic model

(Cecconi et al. 2003), which is the one-dimensional analog of a two-dimensional

non-chaotic Lorentz system with polygonal obstacles. Let us start with the map

already discussed in Section 3.1:

x(t + 1) = [x(t)] + F(x(t) − [x(t)]), (6.56)

where [ ] indicates the integer part, and F is

F(u) =
{

2(1 + a)u if u ∈ [0, 1/2[

2(1 + a)(u − 1) + 1 if u ∈ [1/2, 1]
(6.57)

with a > 0. Now we introduce some modifications to make the above map non-

chaotic. One can proceed as exemplified in Figure 6.5, that is by replacing the

function (6.57) on each unit cell C� ≡ [�, � + 1[ by its step-wise approximation

generated as follows. The first half of the interval [�, � + 1[, is partitioned in N
micro-intervals [� + ξn−1, � + ξn[ , n = 1, . . . , N , with ξ0 = 0 < ξ1 < ξ2 < . . . <

ξN−1 < ξN = 1/2. In each interval the map is defined by its linear approximation

F�(u) = u − ξn + F(ξn) if u ∈ [ξn−1, ξn[. (6.58)

The map in the second half of the unit cell is then determined by the anti-

symmetry condition with respect to the middle of the cell. The quenched random
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Figure 6.5 Sketch of the random staircase map in the unitary cell. The parameter
a is set to 0.23. The half-domain [0, 1/2] is divided into N = 12 micro-intervals
of random size. The map on [1/2, 1] is obtained by applying the antisymmetric
transformation with respect to the center of the cell (1/2, 1/2).

variables {ξk}N−1
k=1 are uniformly distributed in the interval [0, 1/2], i.e. the micro-

intervals have a random extension. Furthermore they are chosen independently in

each cell C� (so one should more properly write ξ (�)
n ). All cells are partitioned into

the same number N of randomly chosen micro-intervals (of mean size � = 1/2N ).

This modification of the continuous chaotic system is conceptually equivalent to re-

placing circular obstacles with polygonal obstacles in the Lorentz system (Dettmann

and Cohen 2001). Since F� has slope 1 almost everywhere, the map is no longer

chaotic; for � → 0 (i.e. N → ∞) the continuous chaotic map (6.57) is recovered.

However, this limit is singular and as soon as the number of intervals is finite, even

if arbitrarily large, chaos is absent.

It has been found (Cecconi et al. 2003) that this model still exhibits diffusion in

the presence of both quenched disorder and a quasi-periodic external perturbation

x(t + 1) = [x(t)] + F�(x(t) − [x(t)]) + γ cos(αt). (6.59)

The strength of the external forcing is controlled by γ and α defines its frequency,

while � indicates a specific quenched disorder realization, i.e. the random posi-

tions of ξ (�)
n . The results, summarized in Figure 6.6, show that D is significantly

different from zero only for γ > γc = O(1/N ), where D exhibits saturation to a

value close to that obtained with the chaotic system defined by Eqs. (6.56) and

(6.57). The existence of a threshold γc can be understood as follows. Owing to the

staircase nature of the system, the perturbation has to exceed the typical discon-

tinuity O(1/N ) of F� to activate the “macroscopic” instability, which is the first

step toward the diffusion. Data collapsing, obtained by plotting D versus γ N in

Figure 6.6, confirms this argument. These findings are robust and do not depend
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Figure 6.6 Log–log plot of the dependence of the diffusion coefficient D on the
external forcing strength γ . Different data relative to a number of cell micro-
intervals N = 50, 100 and 150 are plotted versus the natural scaling variable γ N
to obtain a collapse of the curves. The horizontal line represents the result for the
chaotic system (6.56), (6.57).

on the details of forcing. Therefore, we have an example of a model that is, by

construction, non-chaotic (in the sense that the Lyapunov exponent is not positive)

and which exhibits diffusion.

A tentative explanation of the diffusive behavior could be the presence of a

quenched randomness with non-zero spatial entropy per unit length. To clarify this

point, similar to Dettmann and Cohen (2001), the model can be modified in such a

way that the spatial entropy per unit cell is forced to be zero. This can be obtained by

repeating the same disorder configuration every M cells, i.e. ξ (�)
n = ξ (�+M)

n . Looking

at an ensemble of walkers it was observed that diffusion is still present, with D very

close to the value obtained with the chaotic system. A careful analysis (see Cecconi

et al. 2003), showed that the system displays genuine diffusion for very long times

even with a vanishing (spatial) entropy density, at least for sufficiently large M .
The above results are in perfect agreement with those of Dettmann and Cohen,

and allow us to draw some conclusions on the fundamental ingredients for observing
deterministic diffusion, in both chaotic and non-chaotic systems.

� An instability mechanism is necessary to ensure particle dispersion at small scales (in the

model above, small scale means that the distance between two particles is smaller than

�). In chaotic systems this is realized by the sensitivity to the initial conditions. In non-

chaotic systems this may be induced by a finite-size instability mechanism. Also, with

zero maximal Lyapunov exponent one can have a rapid increase in the distance between

two trajectories which are initially close (Torcini et al. 1995). In the wind-tree Ehrenfest

model this stems from the edges of the obstacles, in the “stepwise” system of Figure 6.5

it stems from the jumps.
� A mechanism able to suppress periodic orbits and therefore to allow for diffusion at large

scale.
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The first requirement is not particularly strong while the second is more subtle.

It is certainly fulfilled in systems with “strong chaos,” where all periodic orbits are

unstable. In non-chaotic systems, such as the map (6.59) and the polygonal billiards

studied by Dettmann and Cohen, the stable periodic orbits seem to be suppressed

or, at least, strongly depressed, by the quenched randomness (also in the limit of

zero spatial entropy). However, unlike the two-dimensional non-chaotic billiards,

in the one-dimensional system, the periodic orbits may survive in the presence of

disorder, so a quasi-periodic perturbation is needed, to produce their destruction

and the consequent diffusion.

The above results give a clear indication of the importance of pseudochaos, i.e.

non-trivial behavior of systems with zero Lyapunov exponent. The relevance of

this issue was already understood in the work of the late Ford (Vega et al. 1993,

1996), who stressed both the possible interesting behavior of some non-chaotic

systems, and the connection between pseudochaos and the semiclassical limit; see

also Mantica (2000) and Zaslavsky and Edelman (2004).

6.4.2 Heat transport in chaotic and non-chaotic systems

We saw that chaotic dynamics is not so important in the statistical mechanics

description of some equilibrium and out-of-equilibrium phenomena; in particular,

transport may also occur in the absence of deterministic chaos. This is so because

a chaotic motion has the statistical properties of a “random walk,” when observed

at finite resolution. However this “random walking behavior” on a large scale can

originate not only in a deterministic system with exponential instability, but also in

a system with intrinsic disorder and “finite size instabilities.” Heat conduction is

another important example of such an issue.

In the context of the conduction problem, FPU chains (see Section 4.4) have

recently played an important role in clarifying the transport properties of low spa-

tial dimension systems. FPU models represent simple but non-trivial candidates

to study heat transport by phonons in solids, whenever their boundaries are kept

at different temperatures. This issue becomes even more interesting at low spa-

tial dimension, e.g. d = 1, where the constraints set by the geometry may induce

anomalous transport properties, characterized by the presence of divergent transport

coefficients in the thermodynamic limit (Lepri et al. 2003). Thermal conductivity

χ , defined via Fourier’s law,

J = −χ∇T,

relates the heat (energy) flux J to a temperature gradient. When a small temperature

difference δT = T1 − T2 is applied to the ends of a system of linear size L , the heat
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current across the system is expected to be

J = −χδT

L
.

For some one- and even two-dimensional systems, theoretical arguments, con-

firmed by several simulations, predict a scaling behavior J ∼ Lα−1 implying a

size-dependent conductivity (Lepri et al. 2003):

χ (L) ∼ Lα. (6.60)

As a consequence, χ diverges in the limit L → ∞ with a power law whose exponent

α > 0 depends on the specific system considered. The presence of this divergence

is referred to as anomalous heat conduction, in contrast with normal conduction

which, according to dimensional analysis of Fourier’s law, prescribes a finite limit

for the conductivity χ .

FPU chains are systems where the anomaly in the heat transport is clearly ob-

served. Its origin can be traced back to the existence of low-energy modes which

survive long enough to propagate freely before scattering with other modes. Such

modes can carry much energy and since their motion is mainly ballistic rather than

diffusive, the overall heat transport happens to be anomalous. Models other than

FPU indeed reveal such peculiar conduction, as shown widely in the literature

(Grassberger et al. 2002, Eckmann and Young 2004, Gruber and Lesne 2005),

therefore the issue is the general understanding of the conditions leading to this

phenomenon.

A chaotic system, such as the Lorentz gas in a channel configuration, provides

an example of normal heat conduction (Alonso et al. 1999). This model consists

of a series of semicircular obstacles with radius R arranged in a lattice along a slab

of size L × h (h � L) see Figure 6.7. Two thermostats, at temperatures T1 and T2

respectively, are placed at each end of the slab to induce a non-equilibrium situation

and presumably transport. They reinject into the system those particles reaching

the ends with a velocity drawn from a Gaussian velocity distribution with variance

T2

T2

T1

T1

f y

Figure 6.7 Example of channel geometry used to study heat transport in low-
dimensional chaotic (upper panel) and non-chaotic billiards (lower panel).
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proportional to the temperatures T1 and T2. In the case of semicircular obstacles the

system is chaotic and one observes a standard Fourier’s law (Alonso et al. 1999). Li

et al. (2003) proposed some non-chaotic variants of the Lorentz channel, in order

to unravel the role of exponential instabilities in heat conduction. In these models,

called the Ehrenfest channel, the semicircular obstacles are replaced by triangular

obstacles, so that the system is trivially non-chaotic, since collisions with flat edges

of the obstacles cannot separate close trajectories more than algebraically. Numeri-

cal results (Grassberger et al. 2002, Li et al. 2003) show that when two angles (φ and

ψ in Figure 6.7) of the triangles are irrational multiples of π , the system exhibits nor-

mal heat conduction. However, for rational ratios, such as isosceles right triangles,

the conduction becomes anomalous. The single-particle heat flux across N cells,

J1(N ), scales as J1(N ) ∼ Nα, while the temperature gradient behaves as 1/N im-

plying that χ (N ) diverges as N → ∞. The explanation of such a divergence can be

found in the single-particle diffusivity along the channel direction which occurs in an

anomalous way. Indeed, the evolution of an ensemble of particles has a mean square

displacement from initial conditions which grows in time with a power law behavior:

〈[x(t) − x(0)]2〉 ∼ tb

with an exponent 1 < b < 2. Such super-diffusion is uniquely responsible for

divergent thermal conductivity, independently of Lyapunov instabilities, since the

model has zero Lyapunov exponents.

When an Ehrenfest channel with anomalous thermal conductivity is disordered,

for instance by randomly modulating the height of triangular obstacles or their

positions along the channel, the conduction follows Fourier’s law, becoming normal

(Li et al. 2002).

Lepri et al. (2003) and Li and Wang (2003) suggested that the anomalous con-

duction is associated with the presence of a mean free path of energy carriers that

can behave abnormally in the thermodynamic limit. For FPU the long mean free

path is due to soliton-like ballistic modes. In the channels the long free flights,

between consecutive particle collisions, become relevant.

The considerations above, and the results in the previous subsection on the

diffusion of non-chaotic maps, suggest a very weak role of chaos in heat transport,

and for transport in general, since systems without exponential instability may also

show transport, even an anomalous kind.

6.5 Remarks and perspectives

Let us sum up and conclude with some remarks and perspectives on the issues

discussed in this chapter.
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(a) The relation between the Kolmogorov–Sinai entropy and the growth of the coarse-

grained (Gibbs-like) entropy is rather weak. The main reason for this is the asymptotic

nature of hKS (and of the ε-entropy), i.e. its value is determined by the behavior of the

system at very large time intervals. In contrast, the growth of the coarse-grained entropy

involves short time intervals. In addition, during the early time evolution of the coarse-

grained Gibbs entropy one can have entanglement of behaviors at different characteristic

space scales. This phenomenon is similar to that observed in the spreading of passive

tracers in closed basins (Artale et al. 1997). In such a case, if the characteristic length

scale of the Eulerian velocities is not very small, compared with the size of the basin,

neither the diffusion coefficient nor the Lyapunov exponent gives relevant information

about the mechanism of large-scale spreading.

(b) The study of a system made of weakly coupled subsystems gives evidence of the objec-

tive nature of the growth with time of the Boltzmann entropy. An intrinsic characteristic

scale �∗ emerges and the Boltzmann entropy does not depend on the coarse-graining

resolution as long as it is smaller than this scale. Let us summarize the main conceptual

results.
� In spite of their apparent resemblance, systems composed of non-interacting sub-

systems and systems composed of weakly interacting subsystems are rather differ-

ent, for some aspects. This is shown by an analysis of their Boltzmann and Gibbs

entropies.
� The chaotic properties of the single subsystem rule the rate of the increase in Boltz-

mann entropy, but the coupling is a fundamental ingredient which allows for the

emergence of the intrinsic characteristic scale �∗.
� The Boltzmann entropy, which is a property of the μ-space, does not require the

introduction of an ensemble.

(c) A generalized fluctuation-dissipation theorem holds under rather general hypotheses.

As a result one has that, if the system is mixing and the invariant measure is “smooth”

enough, a connection exists between the “non-equilibrium” properties (response to

external perturbations of the state or evolution law) and the “equilibrium” properties

(correlation functions computed according to the invariant measure of the unperturbed

system). The validity of the fluctuation-response relation does not depend on the deter-

ministic or stochastic nature of the system or on the “equilibrium” or “non-equilibrium”

character of its statistical steady state.

(d) Chaos (in the technical sense of positive Lyapunov exponent) is not a necessary ingre-

dient for the validity of statistical mechanics laws such as diffusion and conduction.

Detailed numerical results show that the basic elements are the following.
� An instability mechanism able to induce particle dispersion at small scales. In chaotic

systems this is realized by the sensitivity to the initial conditions; in systems with

zero maximal Lyapunov exponent this mechanism may be induced by a finite-size

instability mechanism.
� A mechanism able to suppress periodic orbits and therefore to allow diffusion at large

scale.
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7

Coarse-graining equations in complex systems

To develop the skill of correct thinking is in the first place to learn
what you have to disregard. In order to go on, you have to know
what to leave out: this is the essence of effective thinking.

Kurt Gödel

Almost all the interesting dynamic problems in science and engineering are char-

acterized by the presence of more than one significant scale, i.e. there is a variety

of degrees of freedom with very different time scales. Among numerous impor-

tant examples we can mention protein folding and climate. While the time scale

of vibration of covalent bonds is O(10−15 s), the folding time for proteins may be

of the order of seconds. Also in the case of climate, the characteristic times of the

involved processes vary from days (for the atmosphere) to O(103 yr) (for the deep

ocean and ice shields). In such a situation one says that the system has a multiscale1

character (E and Engquist 2003).

The necessity of treating the “slow dynamics” in terms of effective equations is

both practical (even modern supercomputers are not able to simulate all the relevant

scales involved in certain difficult problems) and conceptual: effective equations

are able to catch some general features and to reveal dominant ingredients which

can remain hidden in the detailed description. The study of multiscale problems has

a long history in science (in particular in mathematics): an early important example

is the averaging method in mechanics (Arnold 1976). Consider the Hamiltonian

equations written in the action-angle variables:

dφ

dt
= 1

ε

[
ω(I ) + f (φ, I )

]
(7.1)

dI

dt
= g(φ, I )

1 In the literature one also finds multi-scale and multiple-scale.

185



186 Coarse-graining equations in complex systems

where the functions f and g are 2π -periodic in φ. Assuming ε � 1, φ and I are the

fast (i.e. of time scale O(ε)) and slow (of time scale O(1)) variables respectively.

In the averaging method one introduces a smoothed action J , which describes the

“slow motion,” as obtained by the filtering of the fast variable oscillations. The

dynamics of J is ruled by the force acting on I averaged over the fast variable φ:

dJ

dt
= G(J ) = 1

2π

∫ 2π

0

g(φ, J )dφ. (7.2)

The evolution of J gives the leading order behavior of I , see Arnold (1976).

Perhaps, at a fundamental level, the most important multiscale problem is the

rigorous derivation of the hydrodynamic equations from the microscopic level (i.e.

the deterministic Newton equations). This issue has an old and noble story, starting

with the seminal work by Boltzmann (Cercignani 1988, 1998, Cercignani et al.
1994) and continuing up to the recent attempts to model fluidodynamics with a

coarse-graining procedure of cellular automaton systems (Frisch et al. 1986). Here

we do not treat this intriguing and difficult topic, but we believe it is important

to recall the basic facts that allow us to derive macroscopic equations from the

microscopic dynamics.

The particle configurations on a molecular scale are quickly randomized by col-

lisions, therefore a local equilibrium2 is attained, described by a few macroscopic

quantities (mass density, temperature, momentum density, pressure and so on). The

key ingredient is the molecular chaos, discussed in Chapter 5. The partial differen-

tial equations of hydrodynamics rule the large-scale evolution of such macroscopic

variables. The interesting fact is that the macroscopic equations are determined

essentially by very general features (such as symmetry properties and conserva-

tion laws) and not by the precise details of the underlying microscopic dynamics.

Therefore one has the remarkable result that the same macroscopic equation can be

obtained for systems with completely different microscopic dynamics, for example

(a) deterministic systems evolving in a continuous way (i.e. molecules interacting with a

short-range potential), and

(b) cellular automata with discrete character, in both time and configuration states, whose

evolution is driven by probabilistic rules.

This is basically due to the large-scale separation between the microscopic charac-

teristic time τmicro = �/vt (� is a characteristic microscopic length, e.g. the mean

2 There is seemingly a paradox here, ubiquitous in all multiscale approaches: we speak at the same time of “local
equilibrium” and “evolution” of the macroscopic variables. The solution lies in the very notion of equilibrium,
meaning equilibrium at short time scales, large enough compared to molecular scales and the mixing time τmicro

associated with collisions and molecular chaos, but small compared to macroscopic (observation) scales. As
in “quasistatic” evolutions encountered in thermodynamics, the large-scale evolution will be composed of a
continued succession of local equilibrium states.
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free path, and vt is the typical speed of the molecules) and the macroscopic time

τmacro = L/U (L is a macroscopic length, for instance the size of the vessel con-

taining the fluid, and U is the typical velocity at hydrodynamic level).

We can sketch briefly the passage from the microscopic level to the macroscopic

level with the following scheme (Español 2003):

I microscopic level, �-space description (Liouville equation);

II microscopic level, μ-space description (Boltzmann equation);

III mesoscopic level, μ-space description but at “large scale” (Fokker–Planck equation);

IV macroscopic level, fluidodynamics description (Navier–Stokes equation, Fourier

law, . . . ).

The crossing from one level of description to another is determined by a coarse-

graining and/or a projection procedure with a “loss of information”; and rather

delicate mathematical singular limits are involved.

7.1 A short parenthesis: secular terms and multiscale analysis

Let us start with a brief discussion of multiscale analysis in the context of the per-

turbation theory techniques for ordinary differential equations (Bender and Orszag

1978). We can see at work, in a rather simple example, many of the basic tools

necessary for the study of important phenomena, such as diffusion and mesoscopic

description of non-equilibrium statistical mechanics.

Consider a non-linear oscillator ruled by Duffing’s equation

d2x

dt2
+ x + εx3 = 0, (7.3)

with the initial conditions x(0) = 1 and dx(0)/dt = 0. It is easy to show that a

naive perturbation approach is plagued by the appearence of secular terms, that are

unbounded in time, typically increasing as t , and that imply a non-uniform validity

of the perturbation expansion at large t . Let us expand x(t) as a power series in ε:

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · (7.4)

where x0(0) = 1, dx0(0)/dt = 0 and xn(0) = dxn(0)/dt = 0 for n ≥ 1. Substituting

(7.4) into (7.3) and equating to zero each coefficient of the resulting power series

in ε one obtains a sequence of ordinary differential equations:

d2x0

dt2
+ x0 = 0 (7.5)

d2x1

dt2
+ x1 = −x3

0 (7.6)
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and so on. Elementary manipulations give the solution

x0(t) = cos(t), x1(t) = 1

32
cos(3t) − 1

32
cos(t) − 3t

8
sin(t) (7.7)

showing that x1(t) contains a secular term O(t). Because of the conservation of

energy,

1

2

(
dx

dt

)2

+ 1

2
x2 + ε

4
x4, (7.8)

the exact solution x(t) must be bounded, therefore x0 + εx1 can be a fair approxi-

mation only for t < t∗(ε) = O(1/ε).

The secular term appears because of the forcing term in Eq. (7.6) x3
0 (t) =

cos3(t) = cos(3t)/4 + 3 cos(t)/4 which contains a component with the same fre-

quency as the unperturbed equation for x0, i.e. 3 cos(t)/4. A straightforward, but

lengthy (and inelegant), way to eliminate the most diverging secular contribu-

tions to the perturbation theory is to sum all orders in powers of ε to recover the

bounded exact behavior. This computation can be avoided with multiscale anal-

ysis. Let us introduce a new variable τ = εt ; since τ is appreciable only when

t > t∗(ε) = O(1/ε), it corresponds to a long time scale. The solution x(t) is a func-

tion of t alone, but in the multiscale analysis one treats t and τ as independent

variables. The additional freedom thus introduced will be compensated for in the

course of the computation by imposing a solvability condition ensuring the van-

ishing of the secular terms and the consistency of the perturbation method. The

procedure consists in assuming a perturbation expansion:

x(t) = x0(t, τ ) + εx1(t, τ ) + ε2x2(t, τ ) + · · · (7.9)

and replacing d/dt with ∂/∂t + ε∂/∂τ . This last recipe follows from the chain rule

for partial differentiation

d f

dt
= ∂ f

∂t
+ ∂ f

∂τ

∂τ

∂t
=

(
∂

∂t
+ ε

∂

∂τ

)
f. (7.10)

Simple computations give

∂2x0

∂t2
+ x0 = 0 (7.11)

∂2x1

∂t2
+ x1 = −x3

0 − 2
∂2x0

∂t∂τ
. (7.12)

The general solution of (7.11) is

x0(t, τ ) = A(τ )eit + A∗(τ )e−it , (7.13)
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so the t-dependence contributes only to fast, bounded evolution. The function A(τ )

must be determined by the condition that secular terms do not appear in x1(t, τ ).

The right-hand side of Eq. (7.12) is

(
−3A2 A∗ − 2i

dA

dτ

)
eit+

(
−3(A∗)2 A + 2i

dA∗

dτ

)
e−it − A3e3it − (A∗)3e−3it .

(7.14)

Since eit and e−it are solutions of (7.11), in order to preclude the appearance of sec-

ular terms, the coefficients of eit and e−it in (7.14) must be equal to zero. Therefore

A(τ ) must satisfy the equation

−3A2 A∗ − 2i
dA

dτ
= 0. (7.15)

The solution of the above equation can be obtained by writing A(τ ) = R(τ )eiθ (τ ),

where R and θ are real functions. A simple computation gives

x0(t, τ ) = 2R(0) cos

[
θ (0) + 3

2
R2(0)τ + t

]
, (7.16)

where R(0) and θ (0) are determined by the initial conditions; if x(0) = 1 and

dx(0)/dt = 0 one has

x(t) = cos

[
t

(
1 + 3

8
ε

)]
+ O(ε). (7.17)

The above approximation is now in good agreement with the actual solution also

for large values of t .

7.2 From molecular level to Brownian motion

Brownian motion played a central role in the development of physics and mathe-

matics, see Section 1.2.1.

A rigorous general derivation of Brownian motion from first principles is a

formidable task. Here we want to discuss the steps (via coarse-graining procedures)

from molecular dynamics to Brownian motion, stressing mainly the conceptual

aspects (Español 2003).

Consider a system of colloidal particles suspended in a liquid. At the microscopic

level we introduce the canonical coordinates (Qi , Pi ) and (qn, pn) of colloidal parti-

cles and solvent molecules respectively. Omitting external potentials, the complete
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Hamiltonian is

H =
∑

i

P2
i

2M
+

∑
n

p2
n

2m
+

∑
n,l,i, j

(V ss(q j − qi ) + V cc(Qn − Ql) + V sc(Qn − qi )),

(7.18)

where m is the mass of a solvent molecule, M is the mass of a colloidal particle (we

assume M � m), V ss, V sc and V cc are the potentials of the forces between solvent

molecules, solvent and colloidal particles, colloidal particles, respectively.

The evolution of such a system is ruled by the Hamiltonian equations:

dQi

dt
= ∂ H

∂Pi
,

dqn

dt
= ∂ H

∂pn
,

(7.19)
dPi

dt
= − ∂ H

∂Qi
,

dpn

dt
= − ∂ H

∂qn
.

The solutions of these equations give the most detailed description of the system.

If we are interested in the colloidal subsystem alone, the next, less accurate, level

of description is obtained by integrating over the degrees of freedom of the solvent

particles. In this case, the future state of the suspended particles is not determined

solely by a given {Qi , Pi } configuration, but also depends on the past history of the

subsystem (a unique evolution is obtained only if one knows the complete micro-

scopic state of the system at a given time). This means that the dynamical equations

for the variables (Qi , Pi ) must contain memory effects and, in general, cannot be

first order in time. However, since in comparison with the solvent molecules the

colloidal particles have a much larger mass, they have a much slower evolution.

Then, because of this time-scale separation between the two subsystems, and be-

cause of the huge number of solvent particles, we can suppose that the fast solvent

dynamics can be consistently decoupled from the slow colloid dynamics, by ap-

proximating its effects on the large suspended particles by means of an effective

force. This force can be decomposed into a systematic part, of viscous type, and

a truly stochastic fluctuating part, almost like white noise. In such a limit of very

different masses, we recover a practically Markovian evolution (i.e. first order in

time) for the colloidal subsystem, that is driven by a stochastic equation:

dQi

dt
= Vi

(7.20)
dPi

dt
= Fi −

∑
j

ζ̃i j V j + Gi

where Vi = Pi/M , Fi is the force on the i th particle due to the interactions with

other colloidal particles (and possibly external potentials), and ζ̃i j is the friction
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tensor (originating from the interaction of the solvent with the colloidal particles)

that can depend on the Q variables. The stochastic component of the force, Gi ,

is a Gaussian process with 〈Gk
i (t)〉 = 0 and 〈Gk

i (t) Gl
j (t

′)〉 = αkl
i j δ(t − t ′), where

Gk
i (k = 1, 2, 3) indicates the kth spatial component of Gi . Here α̃i j is a tensorial

quantity in the spatial indices, like the friction tensor ζ̃i j . The fluctuation-dissipation

theorem requires that αkl
i j = 2kBT ζ kl

i j , where T is the temperature of the solvent,

and kB is the Boltzmann constant (van Kampen 1990).

If the colloidal suspension is dilute then we expect that the mutual influence

among the colloidal particles is negligible, so Fi is due only to possible external

potentials and the friction tensor reduces to a scalar quantity: ζ kl
i j = ζ δi jδ

kl , ζ being

the friction coefficient. In this case Eq. (7.20) becomes the well-known Langevin

equation, for the independent evolution of each colloidal particle:

dQ
dt

= V

(7.21)
dP
dt

= F(Q) − ζV +
√

2kBT ζ g

where, for the components of the random vector g, one has 〈gk(t)〉 = 0 and

〈gk(t)gl(t ′)〉 = δklδ(t − t ′).
However, at this point we observe that, for a typical colloidal suspension, the

time scale over which the variables P evolve is very short, O(10−6 s), compared

with the time scale, O(10−3 s), of the evolution of Q. This suggests that, if one

is interested only in phenomena occurring on time scales above O(10−3 s), the

possibility exists of another level of description, looking only at the Q variables. In

this case, a suitable equation for the colloidal particle position variables is:

dQi

dt
= 1

kBT

∑
j

D̃i j F j +
∑

j

∂

∂Q j
D̃i j + Wi , (7.22)

where the force Fi is the same as in Eq. (7.20), D̃i j is the diffusion tensor (which,

in general, depends on Q) and Wi is a Gaussian stochastic contribution to the ve-

locity of the particle. We require that 〈Wi 〉 = 0 and, by the fluctuation-dissipation

theorem, 〈W k
i (t)W l

j (t
′)〉 = 2Dkl

i j δ(t − t ′). Also in this case, for a dilute suspen-

sion the equations simplify, since the diffusion tensor becomes a scalar quantity:

Dkl
i j = δi jδ

kl D, where D is the self-diffusion coefficient of the colloidal particles.

Equation (7.22) becomes

dQ
dt

= D

kBT
F + ∂ D

∂Q
+

√
2D w, (7.23)

where the random vector w enjoys the same properties as the vector g defined above.
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Finally we see that, owing to the large difference of masses, and to the large

number of solvent molecules, the memory effects, that arise from disregarding

some details, can be well approximated by a stochastic action of Markovian type

on the colloidal particles. That is, the unpredictability remains, but the future state

of the subsystem depends only on its present state.

Once the original deterministic dynamics, because of the graining, has been

transformed into a stochastic evolution, it is unavoidable to reason in terms of

probabilities for the state of the studied (sub)system. This means that, for instance, in

the first level of graining, the problem to be posed is: given the colloidal system in the

state {Qi , Pi }0 at time t = 0, what is the probability density function ρc({Qi , Pi }, t)
of finding it in the state {Qi , Pi } at a later time t (we do not write explicitly the

dependence of ρc on the initial state).

Moreover, usually one does not know the initial microscopic state of a sys-

tem, so that another source of uncertainty has to be considered, in the form of

a distribution on the possible initial states. This is not an uncertainty springing

from the randomness of the dynamics: indeed it is also present when the detailed

dynamical equations (7.19) drive the system. It is at the base of the ensemble

point of view, à la Gibbs. Thus, we begin from the description at the microscopic

level. In this case the probability density at time t = 0 is defined in the whole �-

space ρL (t = 0) = ρL ({Qi , Pi }0, {qn, pn}0) and evolves according to the Liouville

equation

∂ρL

∂t
= −{ρL , H}, (7.24)

where {ρL , H} is the Poisson bracket between ρL and H , with respect to the full

set of canonical variables. If one is able to find the solution ρL (t), then one also has

the density involving only the variables of the colloidal particles. For the first level

of approximation one gets

ρc({Qi , Pi }, t) =
∫

ρL ({Qi , Pi }, {qn, pn}, t) �ndqndpn, (7.25)

and for the second level

ρ({Qi }, t) =
∫

ρc({Qi , Pi }, t) �i dPi . (7.26)

Of course, when the exact solution is not attainable, one can resort to an approximate

one.

In the first graining level one has to solve the evolution equation for the probability

density function of systems evolving according to the random dynamics (7.20), that
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is the Fokker–Planck equation:3

∂ρc

∂t
= −

∑
i

(
Vi

∂

∂Qi
+ Fi

∂

∂Pi

)
ρc + kBT

∑
i, j

∂

∂Pi
ζ̃i j

(
∂

∂P j
+ P j

MkBT

)
ρc.

(7.27)

When system (7.20) gives a satisfying approximation of the dynamics, the solu-

tion of Eq. (7.27), with initial condition obtained by ρL (t = 0), must be a good

approximation of the density (7.25).

At the next level of graining, where the stochastic dynamics is given by Eq.

(7.22), the probability density function ρ({Qi }, t) of the colloidal particle positions

evolves according to the so-called Smoluchowski equation:

∂

∂t
ρ = −

∑
i j

∂

∂Qi

[
D̃i j F j

kBT
ρ

]
+

∑
i j

∂

∂Qi
D̃i j

∂

∂Q j
ρ. (7.28)

When the dilute approximation is applicable, the interesting probability den-

sities depend only on single-particle variables, and the equations above simplify

accordingly.

7.2.1 How to derive the Smoluchowski equation from the Kramers equation
with a multiscale approach

The transition from the Kramers equation (i.e. Fokker–Planck equation for Q and

P) to the Smoluchowski equation (i.e. Fokker–Planck equation only for Q) can be

explained with a simple heuristic argument, for a dilute suspension, in the limit

of very large ζ . For the sake of simplicity we consider the one-dimensional case,

and assume the possible dependence of D and ζ on Q to be so weak that it can be

neglected.

With these assumptions, the Kramers equation reduces to:

∂

∂t
ρc(Q, P, t) = −

(
V

∂

∂ Q
+ F(Q)

∂

∂ P

)
ρc + ζkBT

∂

∂ P

(
∂

∂ P
+ P

MkB T

)
ρc,

(7.29)

3 The Fokker–Planck equation (sometimes called the Chapman–Kolmogorov equation) determines the time evo-
lution of the probability density function of a Markov process according to the hypothesis that in a small time
interval the state of the system (here determined by the variables {Qi , Pi }) does not change too much; for
details see van Kampen (1990). We recall that the Fokker–Planck equation corresponding to a given stochastic
dynamics has a form that depends, in general, on how the stochastic integration is defined, either according to
Itô or according to Stratonovich, see Gardiner (1990). Here we follow the Itô calculus.
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and the underlying dynamics is given by the one-dimensional Langevin equation

(7.21): {
dQ/dt = V
dP/dt = F(Q) − ζ V + √

2kBT ζ g.
(7.30)

The Smoluchowski equation becomes

∂

∂t
ρ = − D

kBT

∂

∂ Q
(F(Q)ρ) + D

∂2

∂ Q2
ρ; (7.31)

and the one-dimensional version of Eq. (7.23) is

dQ

dt
= D

kBT
F +

√
2D w, (7.32)

where the constancy of D has been taken into account.

A relationship can be readily established between the stochastic equations, (7.30)

and (7.32). One considers Eq. (7.30), and notes that the time scale of the velocity

variable, which is proportional to 1/ζ , is much shorter than that of the spatial

variable. If one is interested only in the slower Q-evolution, one can treat V as

a relaxed variable and one can put formally dP/dt = 0 in the second equation of

(7.30). Therefore one can express V in terms of Q and g:

V = 1

ζ
F(Q) +

√
2kBT

ζ
g. (7.33)

The first equation of (7.30) then yields a Langevin equation for Q:

dQ

dt
= 1

ζ
F(Q) +

√
2kBT

ζ
g (7.34)

which is the process underlying the Fokker–Planck equation (7.31), if one puts

D = kBT

ζ
. (7.35)

This is the celebrated Einstein relation, giving a link between the microscopic

and macroscopic levels. We recall that for the validity of this relation, and all

the relations involving the fluctuation-dissipation theorem, one assumes that the

velocity variables, for t � 1/ζ , are described by a statistical equilibrium so that

energy equipartition holds.

In spite of the above simple argument, a consistent perturbative derivation of

(7.31) from (7.29) was obtained only about 40 years ago. In fact in well-known

textbooks one can find an inconsistent derivation, based on a perturbative scheme,

in the spirit of the Hilbert approach to the Boltzmann equation (Cercignani 1988,
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Gorban et al. 2004). In this approach hidden secular terms lead to a secular di-

vergence, i.e. a non-uniform convergence of the expansion for small 1/ζ ; see van

Kampen (1990), section VII.7. The key point is the singular nature of the limit

1/ζ → 0 which does not allow a straightforward application of perturbation the-

ory, see Bocquet (1997) for a detailed discussion.

Let us show how, using the multiscale analysis, one can derive in a consistent

way Eq. (7.31) from Eq. (7.29) when 1/ζ → 0. First we introduce new suitable

dimensionless variables

τ = t
vt

�
, v = V

vt
, x = Q

�
, f = F

�

Mv2
t
, ζd = ζ

�

vt
, (7.36)

where vt = √
kBT/M is the thermal velocity and � is a characteristic length scale

(e.g. the grain size). The Kramers equation takes the form:

∂

∂v

(
v + ∂

∂v

)
p(x, v, τ ) = 1

ζd

( ∂

∂τ
+ v

∂

∂x
+ f (x)

∂

∂v

)
p. (7.37)

Following the multiscale procedure we replace p with

p0(x, v, τ0, τ1, τ2, . . .) + 1

ζd
p1(x, v, τ0, τ1, τ2, . . .)

+ 1

ζ 2
d

p2(x, v, τ0, τ1, τ2, . . .) + · · · (7.38)

where τ0 = τ, τ1 = τ0/ζd, τ2 = τ1/ζd, . . . and

∂

∂τ
→ ∂

∂τ0

+ 1

ζd

∂

∂τ1

+ 1

ζ 2
d

∂

∂τ2

+ · · · . (7.39)

By simple computations one obtains:

Lp0 = 0, (7.40)

Lp1 =
(

∂

∂τ0

+ v
∂

∂x
+ f (x)

∂

∂v

)
p0, (7.41)

Lp2 =
(

∂

∂τ0

+ v
∂

∂x
+ f (x)

∂

∂v

)
p1 + ∂

∂τ1

p0, (7.42)

where

L = ∂

∂v

(
v + ∂

∂v

)
. (7.43)

The zeroth-order equation (7.40) imposes a Maxwellian velocity distribution

p0(x, v, τ0, τ1, . . .) = �(x, τ0, τ1, . . .)e
−v2/2, (7.44)
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where the function � has to be determined. The first-order equation (7.41) gives

Lp1 = ∂

∂τ0

� e−v2/2 + v
( ∂

∂x
� − f (x)�

)
e−v2/2. (7.45)

The solvability condition imposes

∂

∂τ0

� = 0. (7.46)

This can be understood in terms of the Fredholm alternative. We recall briefly the

basic fact. Consider a linear operator A with eigenvalues λ0 = 0 and λn �= 0 for

n �= 0 and the corresponding eigenvectors e0, e1, e2, . . .. Consider the equation

Az = w, (7.47)

where w is known. The following alternatives are given:

(a) w is not orthogonal to e0, i.e. w = a0e0 + a1e1 + · · ·, with a0 �= 0; in such a case

Eq. (7.47) does not admit a solution;

(b) w is orthogonal to e0, i.e. w = a1e1 + a2e2 + · · · ; in such a case one easily obtains

z = b0e0 + (a1/λ1)e1 + (a2/λ2)e2 + · · · , where b0 is arbitrary.

The eigenfunctions of L are the functions Hn(v/
√

2) exp(−v2/2) where Hn

is the nth Hermitian polynomial (H0 = 1, H1 = v, H2 = 1 − v2, . . .). Since the

Maxwellian distribution is associated with the null eigenvalue, the solvability con-

dition of Eq. (7.45) imposes (7.46) and p1 is given by:

p1(x, v, τ0, τ1, . . .) = �(x, τ0, τ1, . . .)e
−v2/2 − v

( ∂

∂x
� − f (x)�

)
e−v2/2,

(7.48)

where � must be determined. The equation for p2 becomes

Lp2 = A0e−v2/2 + A1v e−v2/2 + A2(1 − v2)e−v2/2, (7.49)

where

A0 = ∂

∂τ0

� + ∂

∂τ1

� − ∂

∂x

( ∂

∂x
� − f (x)�

)
(7.50)

A1 = ∂

∂x
� − f (x)� (7.51)

A2 = −
(

f − ∂

∂x

)( ∂

∂x
� − f (x)�

)
. (7.52)
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The solvability condition then requires A0 = 0:

∂

∂τ0

� = − ∂

∂τ1

� + ∂

∂x

( ∂

∂x
� − f (x)�

)
, (7.53)

since the function � does not depend on τ0, see Eq. (7.46):

∂

∂τ0

� = 0. (7.54)

In such a way one has a closed equation for �:

∂

∂τ1

� = − ∂

∂x

(
f (x)�

)
+ ∂2

∂x2
�. (7.55)

The above equation is the Smoluchowski equation (7.31), with a change of variables.

7.2.2 Some conceptual and technical remarks

Let us note that the Kramers equation (7.27) describes the colloidal system at a level

which is less accurate than the microscopic level ruled by the complete Hamiltonian

(7.18). At such a level, which we indicate by the term mesoscopic level I (MeLI),

the relevant variables are, in the dilute limit (for the colloidal particles), those of

the single colloidal particle (Q, P).

The Smoluchowski equation (7.28) represents another level of description, meso-

scopic level II (MeLII), which describes the system at times larger than the typical

time 1/ζ , so that the asymptotic statistical properties of the velocity are well cap-

tured by the (stationary) Maxwell–Boltzmann distribution. In the dilute limit, the

only relevant variable is the position Q of the colloidal particle.

Beyond the Kramers and Smoluchowski equations there is another level of de-

scription, which rules the evolution of ρ(Q, t) at very long time and large spatial

scale. In order to understand this point, we discuss the case where Q reduces to a

one-dimensional variable and F(Q) is a periodic function of period L . We write

F(Q) = −∂U (Q)/∂ Q and we denote by {Qn} the minima of U . It is easy to un-

derstand that, for small values of the diffusion coefficient D, the trajectory Q(t)
is a kind of random walk jumping at random times from one minimum {Qk} to

one of the two nearest-neighbor minima, i.e. {Qk+1} or {Qk−1}. The difference t j

between two successive jumping times is a stochastic process whose mean value

〈t j 〉 depends on D and on the shape of U . In the limit of small D one has the

celebrated Kramers formula (Chandrasekhar 1943, Gardiner 1990):

〈t j 〉 � τ0e�U/D (7.56)
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where�U is the difference in potential between the maximum and the minimum and

τ0 is a characteristic time which depends on the second derivatives of U computed

at the minimum and the maximum.

Therefore at very large time, t � 〈t j 〉, the field ρ̃(Q, t), obtained by a local

average over a spatial window of dimension much larger than L , evolves according

to the Fick equation:

∂

∂t
ρ̃(Q, t) = DE ∂2

∂ Q2
ρ̃(Q, t) (7.57)

where DE depends on U and D. In the limit of very small D,

DE ∼ L2

τ0

e−�U/D. (7.58)

In the next section we will discuss the procedure for obtaining (7.57) from the

Smoluchowski equation.

Let us conclude this section with a brief summary of the levels of description

introduced above:

(1) microscopic level (MiL), describing solvent and colloidal particles (deterministic

Hamiltonian equations of the global system (7.19) and Liouville equation (7.24));

(2) mesoscopic level I (MeLI), describing only colloidal particles (stochastic equations

(7.20) and Kramers equation (7.27));

(3) mesoscopic level II (MeLII), describing only the positions of colloidal particles

(stochastic equations (7.22) and Smoluchowski equation (7.28));

(4) macroscopic level (MaL), large scale and long time description of the spatial distribution

of colloidal particles (Fick equation).

In each crossover from a more detailed description to a less precise level one has

a loss of information, i.e. a reduction in the number of degrees of freedom and/or

a less detailed description in space and/or time resolution.

From MiL → MeLI we “forget” the solvent and the description is valid only for

times much larger than the typical molecular time O(10−11 s).

In the transition MeLI → MeLII we “delete” the velocity of the colloidal parti-

cles. Such a description is valid only for times much larger than 1/ζ ∼ O(10−6 s).

Finally for MeLII → MaL we look at the system at very large spatial scale (� L)

and very large time (t � 〈t j 〉).

7.3 Diffusion at large scale and eddy diffusivity

In order to show how to use the multiscale technique for the construction of “macro-

scopic” equations from “microscopic” dynamics, let us briefly discuss the problem
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of passive scalar transport in incompressible velocity fields (Biferale et al. 1995,

Majda and Kramer 1999). Taking into account molecular diffusion, the time evo-

lution of a test particle is ruled by the Langevin equation

dx
dt

= u(x, t) +
√

2D0η (7.59)

where u(x, t) is the Eulerian velocity field at the position x and time t , D0 being the

molecular diffusion and η a white noise vector with independent components, i.e.

a Gaussian process with 〈ηi (t)〉 = 0 and 〈ηi (t)η j (t ′)〉 = δi jδ(t − t ′). The density of

tracers θ (x, t) evolves according to the transport equation:

∂

∂t
θ + ∇ · (uθ ) = D0�θ (7.60)

which is the Fokker–Planck equation of the stochastic process (7.59).

To simplify the notation, we assume that 〈u〉 = 0 and that at initial time t = 0

the field θ (x, 0) is localized around x = 0. We denote by U the typical speed of the

field u(x, t) and by L its typical length. At time much larger than the characteristic

time T = U/L , it is reasonable to expect that the field �(x, t), obtained by locally

averaging θ (x, t) over a volume of linear dimension much larger than L , evolves

according to the Fick equation:

∂

∂t
�(x, t) =

∑
i, j

DE
i j

∂2

∂xi∂x j
�(x, t). (7.61)

It is easy to see that the asymptotic solution of (7.61) is a multivariate Gaussian

distribution:

�(x, t) ∼
√

|det A|
(4π t)d

exp −
[ 1

4t

∑
i, j

xi Ai j x j

]
, (7.62)

where A = (DE)−1 and d is the spatial dimension. The above solution reveals the

physical meaning of DE
i j :

DE
i j = lim

t→∞
1

2t
〈xi (t)x j (t)〉. (7.63)

The standard diffusive behavior, i.e. 〈x(t)2〉 ∼ t and the Gaussian shape of the

probability density function, are simply related to the central limit theorem.

Let us show that for the Fick equation to be valid (and consequently, for the

existence of standard diffusion) it is necessary that

(a) the variance of the Lagrangian velocity vi = dxi/dt is finite,

(b) the time correlation, between vi (t) and vi (t ′), decays fast enough, i.e. 〈vi (t ′)vi (t)〉 ∼
|t − t ′|−β with β > 1.
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Writing

xi (t) − xi (0) =
∫ t

0

vi (t
′)dt ′, (7.64)

one obtains the following formula (Taylor relation):

〈(xi (t) − xi (0))2〉 =
∫ t

0

∫ t

0

〈vi (x(t1))vi (x(t2))〉dt1dt2 � 2t
∫ t

0

Cii (τ )dτ, (7.65)

where Cii (τ ) = 〈vi (x(τ ))vi (x(0))〉 is the correlation function of the Lagrangian

velocity v = ẋ. If the integral
∫ ∞

0
Cii (τ )dτ is finite one has

DE
i i =

∫ ∞

0

Cii (τ )dτ, (7.66)

which is just a way of writing the Green–Kubo formula. From the above consid-

erations one understands that the Fick equation (7.57) is plausible as an effective

equation for long time and large spatial scales of the transport equation (7.60).

The multiscale analysis is a way to rationalize the previous heuristic considera-

tions (Frisch 1995, Majda and Kramer 1999). Let us begin with a presentation of

the basic ingredients of the method, that allows us to derive the Fick equation (7.57)

from the transport equation (7.60) and to compute the diffusion coefficient DE
i j .

Consider the diffusion equation in one spatial dimension:

∂

∂t
θ = ∂

∂x

(
D(x)

∂

∂x
θ
)

(7.67)

where D(x) is a periodic function with period L . The aim is to write an effective

(Fick’s) equation valid at long time and large scale (much larger than L), i.e. we

have to find DE in terms of D(x). The Langevin equation associated with (7.67) is

dx

dt
= u(x) +

√
2D(x)η, u(x) = ∂

∂x
D(x) (7.68)

where the Itô formulation has been used. The stochastic process x(t) ruled by

the Langevin equation (7.68) spends a time interval �t(x) ∼ (�x)2/2D(x) in a

segment of length �x centered in x . Let us now follow x(t) up to the time tN such

that N jumps (among �x-segments) occur. Elementary considerations give

〈x(tN ) − x(0)〉 = 0, 〈(x(tN ) − x(0))2〉 = N�x2 (7.69)

and for N � 1

tN = �x2

2

N∑
j=1

1

D(x(t j ))
� N�x2

2

〈
1

D(x(t j ))

〉
= N�x2

2L

∫ L

0

dx

D(x)
, (7.70)
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where we used the fact that the process x(t) is ergodic and its stationary probability

density function is constant. Note that here the phase space coincides with real space

so one can exchange the time average with the spatial average. Since 〈(x(tN ) −
x(0))2〉 � 2DEtN , from (7.69) and (7.70) one obtains the eddy diffusion coefficient

DE =
〈

1

D(x(t j ))

〉−1

=
(

1

L

∫ L

0

dx

D(x)

)−1

. (7.71)

7.3.1 Fick equation from the transport equation with a multiscale approach

Here we derive in a more precise way (Frisch 1995), using the multiscale method,

the previous results obtained using qualitative arguments. In contrast to the example

discussed in Section 7.2.1, now we have to introduce, in addition to the slow time

T , a large scale spatial variable X :

T = ε2t, X = εx . (7.72)

The procedure is very similar to that described in Section 7.2.1, i.e. we expand θ

in powers of ε:

θ (x, X, t, T ) = θ0(x, X, t, T ) + εθ1(x, X, t, T ) + ε2θ2(x, X, t, T ) + · · · .
(7.73)

The space and time derivatives must be decomposed as follows:

∂

∂x
→ ∂

∂x
+ ε

∂

∂ X
,

∂

∂t
→ ∂

∂t
+ ε2 ∂

∂T
. (7.74)

Using (7.73), (7.74) and (7.67) we obtain the equations:

Lθ0 = 0 (7.75)

Lθ1 = ∂

∂x

(
D(x)

∂

∂ X
θ0

)
+ ∂

∂ X

(
D(x)

∂

∂x
θ0

)
(7.76)

Lθ2 = − ∂

∂T
θ0 + ∂

∂x

(
D(x)

∂

∂ X
(θ1 + θ2)

)
+ ∂

∂ X

(
D(x)

( ∂

∂x
θ1 + ∂

∂ X
θ0

))
,

(7.77)

where

L = ∂

∂t
− ∂

∂x

(
D(x)

∂

∂x

)
. (7.78)

Now we go on as in Section 7.2.1. Equation (7.75) expresses that θ0 is the null

space of the heat operator L and, because of the L-periodicity, θ0 will relax to a

constant, independent of x and t so that ∂xθ0 = 0. Since after a transient ∂tθ1 = 0,
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Eq. (7.76) can be written

D(x)
( ∂

∂x
θ1 + ∂

∂ X
θ0

)
= C, (7.79)

dividing by D(x) and using the result 〈∂xθ1〉 = 0 (because of the spatial periodicity)

we have

C

〈
1

D(x)

〉
= ∂

∂ X
θ0, (7.80)

where the average is now over the fast variables.

Let us now discuss the equation for θ2: it can be solved only if a solvabil-

ity condition, on θ0(X, T ) = 〈θ0(x, X, t, T )〉, is imposed. Taking the average of

Eq. (7.77) one has:

∂

∂T
θ0 = ∂

∂ X

(
〈D(x)〉 ∂

∂ X
θ0

)
+ ∂

∂ X

〈
D(x)

∂

∂x
θ1

〉
. (7.81)

Using (7.79) and (7.80) one obtains

∂

∂T
θ0 = DE ∂2

∂ X2
θ0, (7.82)

with DE given by (7.71).

The multiscale method can be applied, without particular difficulties, to the

more general problem (7.60) in two or three dimensions and with a given generic

incompressible velocity field u(x, t) (Biferale et al. 1995, Majda and Kramer 1999).

The computations are rather similar, the unique difference is that now the solvability

condition yields an additional equation for an auxiliary vector w,

∂

∂t
w + (u · ∇)w − D0�w = −u, (7.83)

to be solved in such a way that one can express DE
i j in terms of w:

DE
i j = D0δi j − 1

2

[
〈uiw j 〉 + 〈u jwi 〉

]
. (7.84)

Now all the, often non-trivial, effects of the advecting field u on the asymp-

totic properties of the Lagrangian behavior are included in the eddy diffusivity

coefficients DE
i j (Biferale et al. 1995, Majda and Kramer 1999).
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Figure 7.1 Sketch of the adiabatic piston. The superscripts − and + indicate the
left and right compartments, respectively.

7.4 The adiabatic piston: a system between the microscopic
and macroscopic realms

Up to now we have considered issues which are essentially well understood. Now

we want to discuss a problem which is still open, and very appropriate, to see how

the multiscale procedure works.

The adiabatic piston problem refers to a model system composed of N non-

interacting point particles of mass m (i.e. an ideal gas) in a container of length

L and cross-section A, separated in two regions by a movable wall (the piston)

of mass M � m (see Figure 7.1). The walls of the container are supposed to be

perfect insulators preventing any mass or heat exchanges with the exterior. Gas

particles undergo purely elastic collisions with the piston and the walls. The piston

is constrained to move along the x-axis, therefore the problem is essentially one-

dimensional. The main problem is to predict the final state to which the system will

evolve after releasing a constraint fixing the piston in some prescribed initial state.

At this stage, “adiabatic” piston only means “with no internal degree of freedom”:

when fixed, this piston does not conduct heat. Part of the issue is to determine in

what respect the piston still behaves as an adiabatic partition when it is allowed

to move. We shall see that the parameter α � 2m/(M + m) and the time scale of

the observation dramatically control the answer. Since α � 1 one has a time scale

separation, therefore it is natural to develop a multiscale approach allowing the

singular nature of the straightforward perturbation expansion in powers of α to be

circumvented.

Although very simple to state, the above problem is far less simple to solve: it

is a well-known controversial example where the two principles of thermostatics
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(conservation of energy and maximum entropy) are not sufficient to obtain the fi-

nal state of the system. They predict an evolution toward a state of mechanical

equilibrium but with no way of determining the position of the piston or the final

temperatures of the gases (Feynman 1963, Lieb 1999). This point can be foreseen

since the final state will depend upon the “friction coefficients” of the piston in

the gases, which do not appear in the entropy: here it is essential to describe the
dynamics of the system. Nevertheless, it took time to reach this understanding since

the first formulation of this problem by Rayleigh. During recent decades, various

analytical approaches, and direct simulations, gradually led to the now acknowl-

edged but still outstanding conclusion that the piston, although adiabatic when
fixed, becomes diathermal when it is allowed to move. For a detailed discussion see

Curzon (1969), Crosignani et al. (1996), Lieb (1999) and Gruber et al. (2003). We

shall see that the very final state is a state of both mechanical and thermal equi-

librium: a slow, fluctuation-driven evolution toward thermal equilibrium follows a

fast thermodynamic relaxation toward mechanical equilibrium.

On purpose, this piston model is of the utmost simplicity, allowing us to dissect

the different basic mechanisms at work in the relaxation of real systems. The investi-

gations performed on this piston model are exemplary of the subject of this chapter:

as sketched below, they show at work all the various approaches and techniques

paving the way from a complete deterministic description to various stochastic

mesoscopic descriptions to a phenomenological description in the framework of

irreversible thermodynamics.

Let us denote by v and V the x-components of the velocities of a particle and

the piston. Being purely elastic, a collision of a particle with the boundary at x = 0

or x = L is associated with the velocity change v → v′ = −v. Similarly, from the

conservation of kinetic energy and momentum it follows that, after the collision,

the velocities are transformed according to:

v → v′ = 2V − v + α(v − V ), V → V ′ = V + α(v − V ), (7.85)

where

α = 2m

M + m
≈ 2m

M
� 1. (7.86)

The relative change in the velocities is directly related to the small parameter

according to

|V ′ − V |
|v′ − v| � α

2
� 1. (7.87)

The simplicity of the model allows direct simulation of the microscopic dy-

namics, which is deterministic and reversible, in the whole phase space (2N + 2
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degrees of freedom). This is done by sampling at random the initial conditions and

then implementing the deterministic collision rules (7.85). The role and relevance

of numerics are thus to be specially underlined: they guide intuition, help to for-

mulate proper conjectures, allow validation of the assumptions and approximations

involved in the analytical resolution and determination of the range of validity of

perturbation expansions.

The starting point of the dynamic analysis is the exact deterministic description

of the system evolution, namely Hamilton’s equations for the 2(N + 1) degrees of

freedom. Since we are concerned with the case N � 1, but we are not interested

in the state of the gas molecules, it is natural to adopt a statistical viewpoint using

the probability distribution in the �-space, that evolves according to the Liouville
equation. Focusing on the evolution of the piston, we integrate out particle velocities

and positions to reduce the Liouville equation to the relevant degrees of freedom,

here the piston velocity V and its distribution �(V ; t).4 This approach is similar to

the spirit of the derivation of hydrodynamics from the microscopic level. One can

write the evolution equation for �(V ; t) in terms of powers of the small parameter α,

with coefficients Fk related to the moments of order k of the gas particle velocity at

the piston surface, in the reference frame of the piston (see the following subsection).

The resulting equation exhibits the flaw encountered in any kinetic hierarchy (e.g.

the BBGKY hierarchy), namely it involves higher-order distribution functions, here

the joint distributions of the velocity of the piston and of the particles of the gas: the

equation has to be supplemented with a closure relation. For a detailed discussion

of the problem in the framework of kinetic theory see Gruber and Pache (2002),

Gruber et al. (2002) and Gruber and Morris (2003); recently approaches based

on hydrodynamics have been developed by Caglioti et al. (2004). See Gruber and

Lesne (2006) for a review.

7.4.1 About the kinetic hierarchy and Kramers–Moyal expansion

Integrating out the piston position and the 2N degrees of freedom of all gas particles

in the Liouville equation, then performing a formal expansion in powers of α �
2m/M , yields the reduced equation for the velocity distribution �(V ; t) of the

piston:

∂t�(V ; t) = αA
∞∑

k=1

(−1)kαk−1

k!

∂k Gk+1(V, ρ±
surf)

∂V k
, (7.88)

4 We consider only the velocity of the piston as a relevant variable, because its position has a distribution whose
evolution can be recovered, once the initial value of the position is given and the evolution of the velocity
distribution is known.
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where

Gk(V, ρ±
surf) =

∫ ∞

V
(v − V )kρ−

surf(v; V ; t)dv −
∫ V

−∞
(v − V )kρ+

surf(v; V ; t)dv

(7.89)

involves the joint distributions of the piston velocity V and one gas particle velocity

v at the piston surface (the signs − and + indicate the left and right surfaces of the

piston respectively). The distribution �(V ; t) can be formally factorized out of Gk

for any k. This can be done by introducing a conditional distribution a±(v; V ; t) such

that ρ±
surf(v; V ; t) = a±(v; V ; t) �(V ; t), and then defining the functions (Fk)k≥2 by

the equations

Gk(V, ρ±
surf) = �(V ; t)Fk(V, a±). (7.90)

At this stage, the unique assumption is that there actually exist continuous con-

ditional distributions a±(v; V ; t). The structure of Eq. (7.88) is quite general and

currently encountered in kinetic theory, e.g. in the Kramers–Moyal expansion, in

the case of a Markov evolution for a variable z:

∂t�(z; t) =
∫

W (z′ → z)�(z′; t)dz′ (7.91)

turning into a perturbation expansion under the assumption that only small jumps

z′ − z = O(α) are actually observed:

∂t� = α

∞∑
k=1

αk

k!

∂k[�Mk(z, α)]

∂zk
, Mk(z, α) =

∫
W (z − αu → z) uk du.

(7.92)

When only the terms for k = 1 and k = 2 are non-vanishing (or non-negligible),

the Kramers–Moyal expansion reduces to a Fokker–Planck equation for �(z, t).
This corresponds to the case of a continuous Markov process.

7.4.2 The time evolution of the piston

Consider first the limiting case M → ∞, taking L fixed, and performing the fol-

lowing limiting procedures:

m fixed,
A

M
= constant, R± = m

M
N± = constant,

where N+ and N− are the number of particles in the right and left compartments of

the container respectively. In this limit Eq. (7.88) can be exploited at lowest order

in α, keeping only the term k = 1. In this “thermodynamic limit for the piston,” the
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self-consistent assumption ρ±
surf(v; V ; t) = a±(v; t)�(V ; t) yields:

�(V ; t) = δ(V − 〈V (t)〉) where
d〈V 〉

dt
= αAF2(〈V 〉; t). (7.93)

This expression for the solution validates a posteriori the decoupling assumption,

i.e. a±(v; V ; t) are functions of v and t only. Moreover, the motion of the piston is

purely deterministic since 〈V n(t)〉 = 〈V (t)〉n for any n.

When L = ∞, the piston reaches a stationary state with a velocity 〈V 〉∞ which is

a solution of F2(〈V 〉∞) = 0, and which is satisfactorily proportional to the pressure

difference P−
0 − P+

0 .

In the finite size case (L < ∞ fixed), the stationary state 〈V 〉∞ is observed

only transiently, i.e. as long as the boundaries in x = 0 and x = L do not yet

influence the piston motion, namely at times shorter than the recollision time:

t < t1 ∼ L
√

m/kBT (the time for a gas particle to hit the piston surface twice).

Then recollisions and damping set in: the piston motion, by varying the volume of

the compartments, modifies the collision rates of the gas particles on the piston,

inducing friction and relaxation toward mechanical equilibrium. The damping is

controlled by the dimensionless parameters R± = N±m/M : one observes damped

oscillations for R± small enough (R± < 4) whereas the relaxation is overdamped

at larger R±. This behavior is in agreement with the prediction of thermodynamics
and it corresponds to an adiabatic evolution: no heat transfer occurs between the
compartments and their thermodynamic entropies both increase monotonously.

Let us now turn to the less idealized situation where the piston mass M is large but

finite. It was observed in numerical simulations that at a first stage, the evolution is

described by the above infinite-mass behavior: after a very short transient at constant

velocity 〈V 〉∞ toward the low pressure side (“phase 0”), the piston relaxes to a state

of “mechanical equilibrium” where the pressures are equal but the temperatures

different, with or without oscillations according to the value of R±. In this regime

(“phase 1”), the piston behaves as an adiabatic wall, with no heat transfer between

the compartments.

Then a second stage (“phase 2”) takes place on a time scale O(M/m), during

which the piston motion is driven by the asymmetry in the fluctuations felt by the

left/right walls, and the temperatures vary very slowly to reach a final equilibrium

state where the densities, pressures and temperatures of the two gases are the

same. The conclusion, already stated by Feynman (1963) on the basis of qualitative

arguments, is that a wall which is adiabatic when fixed becomes heat-conducting

when it experiences stochastic motion.

For real macroscopic systems, the time (scaling as M/m) involved to reach this

thermal equilibrium will be several million times the age of universe: the above

conclusion is purely theoretical and for all practical purposes at current observation
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scales, the piston is actually an adiabatic wall relaxing to mechanical equilibrium

only. This point should nevertheless be reconsidered at smaller scales, for example

for nanoscale devices, feasible today, or biological systems at work inside the cell:

the mass ratio M/m � 1, and hence the thermal equilibration time, decreases by

a factor of O(1018) when passing from the millimeter scale to the nanometer scale

and the second, heat-conducting regime might then become of relevance.

7.4.3 Different temporal regimes

From the above qualitative picture of the system evolution, it appears that whereas
the first stage is actually described by the leading order α = 0 (“thermodynamic
behavior” M = ∞, in which the evolution is a fast relaxation toward mechanical
equilibrium), the fluctuations of order O(α) rule the behavior observed in a sec-
ond stage, corresponding to a slow relaxation toward thermal equilibrium. A naive
perturbation approach cannot give access to both regimes; this difficulty is remi-
niscent of the boundary-layer problems encountered in hydrodynamics; the idea is
to implement two different perturbation expansions (Gruber and Lesne 2006):

� one at short times, describing a transient regime ruled exclusively by the fast dynamics,

during which the order of the observables changes, e.g. initially V (0) = O(1) whereas

V (t) = O(α) once t = O(1/α); this transient regime (a “boundary layer” in time) is

required to match the “bulk” behavior observed at times O(1/α) with non-compatible

initial conditions;
� one for longer times, involving a rescaled time variable τ = αt � 2mt/M .

The perturbation approach is then supplemented with a “slaving principle” (see,

e.g., Gruber and Lesne (2006)), expressing that at each time of the slow evolution,

i.e. at fixed τ , the fast dynamics has reached a local asymptotic state, slaved to the

values of the slow observables. Technically, this principle is best implemented using

a multiscale method valid once V and P− − P+ have decreased to values O(α).

Basically, this slaving principle ensures that the fast dynamics do not interfere with

the slow dynamics and thus prevents the emergence of secular divergences in the

perturbation expansion for the slowly varying observables. The initial conditions

are set on the first-stage solution, at t = 0. The initial conditions of the second

regime, at τ = 0, match the asymptotic behavior t → ∞ of the first-stage solution

(“matching condition”) (Gruber and Lesne 2006).

The perturbation approach for the piston problem is singular in two ways and

hence requires two different methods: a matched expansion to bridge the first

and second regimes (namely to bridge values of different orders in α for V and

P+ − P−), and a multiscale method in the second regime, to express the super-

imposition of a slow evolution and a fast relaxation slaved to the slowly evolving

temperatures.
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Figure 7.2 Evolution of the piston position x(t) in the simulation of an ideal
gas with N− = N+ = 1000, M = 100, m = 1 and L = 2000, corresponding to
R = 10, the initial state is set as Tl = 40, Tr = 60 and x = 0.6L . In order to obtain
a clear curve we performed an average over 100 independent realizations.
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Figure 7.3 As in Figure 7.2 with M = 5000, corresponding to R = 0.2, the initial
state is set as Tl = 150, Tr = 50 and x = 0.6L .

The evolution equation (7.88) of the velocity distribution function of the piston

�(V ; t) is not exploited directly but is replaced with the hierarchy of equations de-

scribing the evolution of its moments 〈V n〉. Whereas it is exact in the thermodynamic

limit, the Boltzmann-like decorrelation property ρ±
surf(v; V ; t) = a±(v; t) �(V ; t)

now has to be introduced as an assumption.5 As an additional assumption one iden-

tifies the densities and temperatures of the fluids at the piston surface with their

bulk values.

Results following from the multiscale analysis of these moment equations are

shown in Figures 7.2 and 7.3, and they can be summarized as follows.

Phase 0 The evolution begins with a short transient, of duration shorter than the

recollision time t1 ∼ L
√

m/kBT , during which the piston motion is a fast relaxation

to a stationary velocity 〈V 〉 (what is observed steadily if M = ∞ and L = ∞).

Phase 1 At times t ∼ O(t1), the motion of the piston is no longer at constant

velocity and the system evolves to a state of mechanical equilibrium where the

pressures on both sides are approximately equal, but the temperatures are different.

5 This is similar to the Boltzmann stossahlansatz f2(x, v1; x, v2; t) = f1(x, v1; t) f1(x, v2; t) introduced in the
kinetic theory of a single dilute species, leading to the celebrated Boltzmann kinetic equation and supported by
molecular chaos.
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The evolution is adiabatic, similar to the case M = ∞. In particular, it is inde-

pendent of M for M sufficiently large. The motion is essentially deterministic:

�(V ; t) = δ(V − 〈V (t)〉).
Phase 2 Then on a much larger time scale, t2 ∼ Mt1/m, the piston evolves stochas-
tically and with heat transfer to a state of thermal equilibrium, where the tem-

peratures (and still the pressures) on both sides of the piston are equal. Thermal

fluctuations of the piston velocity have developed and now the temperature TP of

the piston can no longer be ignored (it coincides with the common temperature of

the gases at the end of this phase).

Phase 3 Finally, one observes an indirect relaxation of the gases toward thermal

equilibrium (Maxwellian distributions), induced by a common interaction with the

moving piston.

7.5 Remarks and perspectives

We conclude the chapter with some general remarks on the multiscale method,

its connections with other important issues and a short discussion of some open

problems.

In the mathematical literature the multiscale method is also known by the name

of homogenization technique. The origin of this term is the fact that one has a

replacement of a heterogeneous context (associated with the presence of u(x, t)
in (7.60) or the spatial dependence of D(x) in (7.67)) with a homogeneous one,

associated with Eq. (7.57) which describes the system at large scale and long time.

Let us underline some technical and conceptual resemblances between the mul-

tiscale treatment of ordinary differential equations (Section 7.1) and the homog-

enization method for partial differential equations (Sections 7.2.1 and 7.3.1). In

both cases the “non-trivial part” of the problem (i.e. the non-linear contribution

for ordinary differential equations and the presence of u(x, t) in (7.60)) induces

asymptotically a “renormalization” of relevant parameters.

For ordinary differential equations we saw that with the multiscale analysis one

replaces the original non-linear equation (7.3) with an effective linear one

d2x

dt2
+ ω2(ε)x = 0 (7.94)

which is also valid at very large time, where ω(ε) depends both on ε and on the

initial conditions; in the example discussed in Section 7.1 one has ω(ε) = 1 +
3ε/8 + O(ε2). In a similar way the asymptotic (in both space and time) behavior

of the transport problem (including an advection velocity term) is described by a

Fick’s equation. Now the eddy diffusion coefficients take into account the original
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inhomogeneity due to the presence of the advection field (and/or non-constant D)

in the starting problem.

7.5.1 Chapman–Enskog and multiple time scale method

We want to stress that the multiple time scale method is rather close in spirit to

the Chapman–Enskog procedure for the Boltzmann equation (Cercignani 1988,

Gorban et al. 2004). One can interpret the Chapman–Enskog method as an ad

hoc formal expansion of the time derivative in powers of a small parameter ε (the

Knudsen number, i.e. the ratio between the collision length and the typical scale

of the hydrodynamic field). Let us recall briefly the key points of the method: the

Boltzmann equation can by written in the form

( ∂

∂t
+ D

)
f = 1

ε
J ( f | f ) (7.95)

where

D = v · ∂

∂x
+ F

m
· ∂

∂v
, (7.96)

F is the external force and J ( f | f ) is the collision integral. One expands f in a

power series

f = f0 + ε f1 + ε2 f2 + · · · (7.97)

and the time derivative is replaced by

∂ (0)

∂t
+ ε

∂ (1)

∂t
+ ε2 ∂ (2)

∂t
+ · · · (7.98)

where the ∂ (n)/∂t are defined by the nth approximation of the conservation theorem,

e.g. ∂ (0)/∂t is given by the equation

∂ (0)

∂t
ρ + ∂

∂x

(
ρu

)
= 0, (7.99)

where ρ is the mass density and u is the hydrodynamic velocity field. The phys-

ical motivation of (7.98) is the assumption that f depends on t only through the

hydrodynamical field ρ, u and the energy density.

With (7.95), (7.96) and (7.97) one obtains a chain of equations:

J ( f0| f0) = 0 (7.100)(
∂ (0)

∂t
+ D

)
f0 = J ( f0| f1) + J ( f1| f0) (7.101)

(
∂ (0)

∂t
+ D

)
f1 = −∂ (1)

∂t
f0 + J ( f0| f2) + J ( f2| f0) + J ( f1| f1), (7.102)
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and so on. The resemblance to the multiscale procedure discussed in Section 7.2.1

is evident. The zeroth-order equation (7.100) gives for f0 the usual Maxwellian,

f1 is determined by the solvability condition (via the Fredholm alternative). With

the first correction f1 of the Chapman–Enskog method it is possible to write the

dissipative hydrodynamics (e.g. Navier–Stokes and Fourier equations) where the

kinetic coefficients are expressed in terms of interaction of the microscopic particles.

This result was the first “true” success of the Boltzmann equation since it made it

possible to derive the macroscopic equations without a priori guessing.

7.5.2 On standard and anomalous diffusion

One can wonder what is the reason for the specific choice (7.72) for the slow

variables, that is a special case of T = εs t , X = εx . The value s = 2 is due to

the fact that at long time one expects standard diffusion, i.e. 〈x2(t)〉 ∼ t . This is

somehow the usual behavior as shown by Avellaneda and Majda (1989): if the

molecular diffusion coefficient D0 is positive, in an incompressible velocity field

the standard diffusion holds when the infrared contribution to u is not too strong,

i.e. ∫
dk

〈|û(k)|2〉
k2

< ∞, (7.103)

where 〈·〉 indicates the time average and û(k) is the Fourier transform of u(x).

However, one can have anomalous diffusion, in particular super-diffusion, i.e.

〈x2(t)〉 ∼ t2ν with ν ≥ 1/2 (this corresponds to DE = ∞), and a non-Gaussian

shape of the probability density function. The result of Avellaneda and Majda

(1989) implies that only two possible origins exist for this super-diffusion:

I D0 > 0 and strong infrared contributions to the velocity field, i.e. a violation of relation

(7.103);

II D0 = 0 and strong temporal correlations in the Lagrangian velocity, i.e. 〈vi (t ′)vi (t)〉 ∼
|t − t ′|−β with β ≤ 1, in such a way that DE is formally infinite, see Eq. (7.66).

We do not enter here into a detailed discussion of this difficult issue. As an

example of anomalous diffusion according to mechanism I we mention the remark-

able result of Matheron and de Marsily (1980) who showed, in a rigorous way,

the existence of super-diffusion in certain random shear flows. For instance, if in

Eq. (7.60) u = (u(y), 0), where u(y) is a random function obtained with a spatial

Brownian motion process, then one has ν = 3/4 and a non-Gaussian probability

density function. The mechanism II is much more delicate and can be obtained

only in systems with rather peculiar dynamics, for example deterministic chaotic
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systems with fine tuning of the control parameters (Zaslavsky et al. 1993, Leboeuf

1998).

Now we discuss briefly two aspects of the diffusion problem wich are of general

interest. First we note that the Fick equation (7.61), which describes the asymptotic

evolution of the transport equation (7.60), is an approximation in the sense that it

is not able to catch the small spatial scales and short time behavior. Nevertheless

Eq. (7.61), where the DE
i j are computed according to (7.83) and (7.84), is extremely

precise in its asymptotic context; i.e. it is able to describe the possible delicate (and

often counterintuitive) dependence of the eddy diffusion on D0 and on the control

parameters of the field u (Castiglione et al. 1999). As an example, we consider

the diffusion in a two-dimensional field u(x, y, t) = (−∂ψ/∂y, ∂ψ/∂y) where the

stream function ψ(x, y, t) is

ψ(x, y, t) = ψ0 sin
(

x + B sin(ωt)
)

sin(y). (7.104)

This simple model is able to capture the essential features of Rayleigh–Bénard

convection, since the term B sin(ωt), giving the lateral oscillation of the rolls, takes

into account the oscillatory instability. For a generic value of ω (and D0 > 0) one

has standard diffusion (Castiglione et al. 1999). On the other hand one observes

anomalous diffusion (with ν > 1/2) for D0 = 0 and special values of ω (resonance

with the characteristic frequency of the test particle in the steady case limit). For

these values of ω the eddy diffusivity DE diverges in the limit D0 → 0, i.e. DE ∼
D−a

0 with a > 0. The multiscale approach is able to reproduce in a perfect way all

these non-trivial behaviors of DE as a function of ω and D0.

It is rather natural to wonder about the effective equation which rules the asymp-

totic evolution, i.e. at large spatial scales and long time, in the case of anomalous

diffusion. In other words, one would like to know what is the equation replacing

the Fick one. As far as we know this is still an open (interesting) problem.

The simplest (not so interesting from a physical point of view) example of

anomalous diffusion is the Lévy flight, for which the probability density function

of x at time t is the α-stable Lévy distribution function (Bouchaud and Georges

1990). The asymptotic behavior at large |x | is

P(x, t) ∼
( x

t1/α

)−(1+α)

(7.105)

with 1 ≤ α < 2. Note that 〈|x(t)|q〉 ∼ tq/α for q < α and 〈|x(t)|q〉 = ∞ for q ≥ α,

so that the “typical” value of |x(t)| is O(t1/α) and therefore one can consider the Lévy

flight as an example of anomalous diffusion. In such a case the time evolution of

P(x, t) is obtained simply by replacing the operator ∂2
xx in (7.61) with −(−∂2

xx )α/2,
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i.e. the probability density function evolves according to:

∂t P(x, t) = −D(−∂2
xx )α/2 P(x, t). (7.106)

The fractional derivative (−∂2
xx )α/2 indicates an integral operator whose represen-

tation in the Fourier space is just a multiplication by |k|α.

In more interesting cases it is not at all simple to find the evolution rule which

replaces the Fick equation, and knowing the scaling exponent ν (given by 〈x(t)2〉 ∼
t2ν) is not enough to find the shape of P(x, t). Still assuming a scaling relation

P(x, t) ∼ 1

tν
F(x/tν), (7.107)

the function F(·) is not determined by ν (Bouchaud and Georges 1990). Other

forms have been proposed in specific cases, in terms of fractional time and/or

spatial derivative, for which the interested reader can see Zaslavsky (2002).

Additional difficulties arise in the presence of the so-called strong anomalous
diffusion (Castiglione et al. 1999), i.e. when one has

〈|x(t)|q〉 ∼ tqν(q) (7.108)

where ν(q) is not constant. In such a case it is evident that Eq. (7.107) cannot hold.

7.5.3 Remarks and perspectives on the piston problem

Despite, or rather because of, its highly idealized character, the piston problem has

many pedagogical virtues. Using this problem one can understand the following

points.

(a) The relative nature of an equilibrium state, depending on the time scales and on the

observed variables. Here three different equilibrium states have been revealed:
� for the piston at short times (mechanical equilibrium, P+ = P−);
� for the piston at long times (thermal equilibrium, T + = T − = TP);
� for the whole system, at still longer times (complete thermodynamic equilibrium).

(b) As also discussed in Chapter 5, irreversibility arises from the fact that the system has

been prepared in some special, non-typical state, i.e. the initial (macroscopic) state

(P−
0 , T −

0 , P+
0 , T +

0 , X0) is in a region of the whole phase space (position–velocity of the

N particles and the piston) which is very small compared to the region associated with

mechanical (and thermal) equilibrium.

(c) The piston is a typical instance where a high-dimensional deterministic system (N � 1)

produces an effective stochastic motion for a reduced number of variables, here the

piston position X and velocity V .

(d) In a variant of the model used in Section 7.4, the ideal gas is replaced by a hard-sphere
gas (Mansour et al. 2005). In such a case one also has particle–particle collisions which

are generally (as soon as the density is not vanishingly small) more efficient than the
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indirect coupling of the particles (via collision with the piston). Therefore the relaxation

of the gas particle distribution toward the Maxwell distribution (phase 3 above) occurs

sooner, at pace with the evolution of the temperatures. In addition to the technical

aspects, an interesting fact is that, at least if the initial probability distribution of the

particle velocity is Maxwellian, the time evolution of the piston (apart from phase 3)

does not depend too much on the model of the gas. So we have two models (perfect gas

and hard spheres) which are very different from a dynamical point of view (i.e. integrable

and chaotic) and produce the same macroscopic behavior. This is rather similar to the

results discussed in Chapter 3 for diffusive behavior and it is further evidence of the

small role of chaos in systems with many degrees of freedom.

(e) A more general conclusion, actually relevant for the whole chapter, is that a multiscale

approach is required as soon as the phenomenon involves different scales that cannot be

decoupled; in particular, plain averaging or naive perturbation procedures are invalid.

The signature of such a situation is a singular dependence with respect to the small

parameter quantifying the scale separation, here α � 2m/M . This means that the be-

havior for α → 0 is qualitatively different from the behavior observed for α = 0, with

no possible way to match continuously (far less in a perturbative way) these behaviors.
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8

Renormalization-group approaches

If we study the history of science we see produced two phenomena
which are, so to speak, each the inverse of the other. Sometimes
it is simplicity which is hidden under what is apparently complex;
sometimes, on the contrary, it is simplicity which is apparent, and
which conceals extremely complex realities.

Henri Poincaré

Devoting only a short chapter to the renormalization group (RG) is a challenge

owing to the wealth of both fundamental concepts and computational tools asso-

ciated with this term. The RG is indeed encountered in many different domains of

theoretical physics, ranging from quantum electrodynamics to second-order phase

transitions to fractal growth and diffusion processes – one should rather speak of

renormalization groupS! We refer to Brown (1993) and Fisher (1998) for an histor-

ical account, to Goldenfeld (1992) and Lesne (1998) and references therein for an

overview of the domains of application and variants of RGs.

We here emphasize that the RG is a way, maybe the most successful and with

no doubt the most systematic and constructive, to derive effective low-dimensional
descriptions that capture large-scale and/or long-time behavior. The RG can be

extended far beyond the specific scope of critical phenomena, to an iterated mul-
tiscale approach allowing the construction of robust and minimal macroscopic

models describing the universal large-scale features and asymptotics of a complex

system. This generalized viewpoint brings out the close logical and even tech-

nical connections that bridge, within a unified framework, perturbative RG for

singular series expansions, spin-block RG and momentum-shell RG for critical

phenomena, RG for the asymptotic analysis of differential and partial differen-

tial equations, and probabilistic RG for the derivation of statistical laws and limit

theorems.
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8.1 Renormalization group(s): a brief overview

8.1.1 Renormalization-group philosophy

The RG resembles a chameleon, changing appearance when passing from one
domain of application to another: the connection between the RG in quantum
electrodynamics, the RG describing the onset of chaos, and the RG for polymer
conformations, for instance, is not obvious, to say the least. Let us summarize the
main features, both conceptual and technical, common to all RGs.

� RGs are implemented in situations involving (infinitely) many different scales when

moreover there is no decoupling of these scales: when arbitrarily small-scale features or

events might have major consequences at arbitrarily large scales, that reflects in singular
behaviors and divergences, e.g. of susceptibilities and response functions. RGs then offer

an operational and systematic way of taming or circumventing these singularities.
� RGs involve the determination of effective terms, for instance effective parameters, ac-

counting in an integrated and physically meaningful way, e.g. directly measurable in

some experiment, for many indirect or smaller-scale contributions. An important benefit

of this procedure is to take advantage of cancellations that happen between large or even

diverging contributions, when their singularity is a feature of the (idealized) mathemat-

ical model but not of physical reality, rather associated with the resulting effective (and

finite) terms. An historical example is the renormalization of the electron mass in quan-

tum electrodynamics: the bare mass m0 arising in the original theory is involved in an

unbounded number of successive (e+, e−) paired annihilations and creations, of arbitrar-

ily short durations. These events, occurring at arbitrarily high frequencies (equivalently

high energies) introduce divergences in the theory: the so-called ultraviolet divergences.

But in fact, most of these events cancel out when taken all together and the remaining

contribution is physically well defined: it yields the measurable mass m of the electron.

By contrast, the bare mass m0 appears only as an auxiliary parameter in a mathematical

picture; actually, the individual physical reality of the elementary events parametrized

by m0 might be questioned. Other examples will be detailed in the following sections,

for instance the renormalization treatment of singular perturbation series encountered in

celestial mechanics and non-linear physics.
� RG methods describe macroscopic behaviors, at long times and large spatial scales (equiv-

alently at small frequencies and wave vectors, hence also named infrared behaviors). RGs

are required when these behaviors are singular insofar as they cannot be obtained by a mere

averaging over microscopic scales or projection techniques. Typical instances are critical

phenomena where long-range correlations build up a singular macroscopic behavior, but

we shall see that RGs are relevant in many other contexts.
� A common idea of RG methods is to investigate the links between behaviors at different

scales in time and space. Along this line, one way to handle divergences and extract

meaningful information from diverging behaviors is to determine finite relations (e.g.

finite ratios or finite differences) between infinite quantities relative to different levels;

another way is to determine the rate of divergence of an observable quantity X (a, N ) as
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the system size or evolution duration N goes to infinity, under the form of a scaling law
with respect to the control parameter a and size N : X (a, N ) ∼ Nα f [(a − ac)N γ ], termed

a finite-size scaling relation. Compared to other approaches that are merely phenomeno-

logical, RGs prove to be a constructive method insofar as they allow the values of the

exponents α and γ , and even in some instances the universal function f , to be computed

explicitly, thus demonstrating the existence of a scaling behavior and its expression, with

no need for preliminary guesses or scaling assumptions.
� RGs currently involve joint rescalings, acting as zooms or magnifying glasses and al-

lowing a straightforward comparison of features at different scales: one here recovers the

standard and intuitive way to reveal quantitatively self-similarity and scaling laws.

8.1.2 Renormalization transformations

Any RG centrally involves a renormalization transformation R (an operator) ex-
pressing the effect of coarse graining or cutoffs and rescalings on the quantities
ruling the evolution or the equilibrium statistics: the evolution law or map, the
Hamiltonian, the set of transition probabilities, a partial differential equation, to
quote the most current cases. The main ingredients of R are the following.

� A change in our viewpoint on the system, following from a cutoff, a coarse graining, a

modification in the definition of elementary units or in the decomposition between zeroth-

order and perturbation terms. Indeed, defining a model always implies splitting the system

into a core and a remaining part (fine structure, noise, perturbation), and the first step of

renormalization is to modify this subjective partition: that amounts to considering another

modeling of the same system.
� A corresponding change in the set of variables describing the system state.
� A modification of the structure and evolution rules themselves, now expressed as functions

of the new variables to fit with our modified viewpoint. For instance, changing the scale of

our description amounts to coarse graining the state variables, and the renormalized model

should express the evolution or equilibrium equations at this coarser level. In particular,

this step embeds the replacement of parameters by effective ones, accompanied in most

cases by an extension of the parameter space since the original parametrized form of

the evolution or equilibrium equations ( e.g. the parametrized form of the Hamiltonian)

is in general not preserved upon the action of R, and additional terms involving extra

parameters arise.
� Additional rescalings to preserve normalizations or physical invariants (the physical sys-

tem is indeed unchanged upon renormalization) and to make self-similarity appear as a

fixed-point property.

The renormalization operator R acts at the level of models; it expresses how
our modeling of a given system has to be modified when we change our viewpoint
on the system. We emphasize that the underlying physical reality (or mathematical

reality in the case of series expansions or probabilistic theorems) is not modified:
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renormalization acts upon its representations at different scales. Consistency

relations, called renormalization equations, arise that express this fact precisely:

that we are dealing with various models corresponding to different views of the

same system.

8.1.3 Renormalization groups

The renormalization transformation R is then to be iterated, thus generating a

discrete group structure: R j ◦ Rm = R j+m . Here the so-called renormalization
group appears, actually a semi-group since R is not invertible in most if not all

cases, owing to the loss of information accompanying coarse graining. A more

general and less trivial group structure arises in the dependence with respect to the

rescaling factors, say (k0, k1, . . . , kn), involved in the renormalization:

Rk0,k1,...,kn ◦ Rk ′
0,k

′
1,...,k

′
n
= Rk0k ′

0,k1k ′
1,...,knk ′

n .
(8.1)

This group relation expresses the consistency of the model transformations upon

changes of viewpoints or description scales. When the rescaling factors can take

any positive real values (and under some regularity conditions) the RG is endowed

with a continuous group structure: a Lie semi-group in mathematical terms. It is

then fruitful to consider the infinitesimal transformations, called the infinitesimal
generators of the group, providing a basis of the Lie algebra of the group:

Ti ≡
(

∂ R

∂ki

)
k0=···=kn=1.

(8.2)

Most often, the (n + 1) rescalings are not independent but on the contrary are per-

formed jointly: k0 ≡ k, k1 = kα1 , . . . , kn = kαn , what is called a scaling limit when

k → ∞. The basic rescaling factor k is usually that associated with linear spatial

extension: each iteration of R amounts to increasing the scale of the description

by a factor of k. In consequence, the asymptotics of the RG flow, generated by the
action of R in the space of models, corresponds to effective large-scale models.
Accordingly, the exponents (α1, . . . , αn) leading to a non-trivial fixed point under

the iterated action of Rk,kα1 ,...,kαn are the scaling exponents describing the critical or

anomalous asymptotic behavior of the system (or ratios of such exponents). This

fact will be worked out explicitly in Sections 8.3.2 and 8.3.3.

Since RG techniques and achievements are too numerous even to be listed, we

shall present only a small sample of applications, chosen to illustrate how the RG

achieves a multiscale analysis, as argued in the introduction.

8.2 Renormalization groups to cure singular perturbation expansions

Several RG techniques have been developed since the seminal works of Lindstedt

and Rayleigh to obtain uniformly valid perturbation expansions allowing the
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investigation of asymptotic behaviors (Lindstedt 1882, Rayleigh 1917). In its sim-

plest formulation, the RG demanding problem is encountered when the evolution of

the system is described by a differential equation which depends on a small param-

eter ε in a singular way. Typically, the singularity is associated with turning points
(i.e. when some leading term involves a vanishingly small multiplicative parameter

ε) or with resonances between forcing terms of amplitude ε and the linearized

evolution (see the discussion in Chapter 7 on the ensuing secular divergences).

It is always possible to look for a solution in the form u(t) = ∑
n≥0 εnun(t)

and identify term-wise the successive powers of ε in the evolution equation. It is

another matter to prove that the components {un(t)} obtained in this way yield a

well-behaved solution: this requires assessing good convergence properties for the

perturbation expansion
∑

n≥0 εnun(t). One gets a regular behavior on a time inter-

val [t0, t1] as soon as each component is bounded: sup[t0,t1] |un(t)| ≤ Mn and the

series
∑

εn Mn converges for ε < ε∗ (with a finite radius of convergence ε∗ > 0).

Mathematical theorems then ensure that the solution u(t) inherits the regularity

properties of the components {un(t)}. But difficulties often appear while investigat-

ing the asymptotic behavior of the system since it requires control of the expansion

of u(t) for arbitrarily long times (t1 = +∞). Singular behaviors are expected when

the condition of uniform boundedness fails to be true, e.g. limt→∞ un(t) = ∞
for some n (at the very least, this failure already spoils the consistency of the

method since the perturbation order no longer reflects the ordering of the term

strengths). In this section we show how the RG allows such singularities to be

cured.

8.2.1 Lindstedt method of strained parameters

The basic idea goes back to Lindstedt (1882). Consider a weakly non-linear oscil-

lator:

d2u

dt2
+ ω2

0u = ε f

(
u,

du

dt

)
with ε � 1, (8.3)

the effect of the anharmonicity ε f (u, du/dt) can be accounted for by a redefinition

of the original frequency ω0 into an effective one:

ω(ε) = ω0 + εω1 + ε2ω2 + O(ε3). (8.4)

The time variable is accordingly rescaled into a dimensionless variable:

τ = tω(ε). (8.5)

The benefit of this procedure is to make valid the determination of the solution as a

perturbation series u(τ ) = u0(τ ) + εu1(τ ) + ε2u2(τ ) + O(ε3). The key step is the

self-consistent determination of the coefficients {ωi } so as to prevent the appearance
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of secular terms in the expansion for u(τ ) and get a uniformly convergent series

(Nayfeh 1973). Today one would see this technique as a renormalization method,

calling ω0 the bare frequency and ω(ε) the renormalized frequency. As underlined

in Section 8.1.1, the experimentally measurable parameter is the renormalized and

not the bare parameter, which appears only as an auxiliary quantity in the original

mathematical model.

Compared to the multiscale approach presented in Chapter 7, the redefinition of

the time variable t as τ = tω(ε) is here performed not at the level of the evolution

equation (as in Chapter 7), but within the straightforward perturbation expansion of

its solution. In consequence, the consistency conditions determining ω(ε) involve

algebraic equations instead of differential ones, which is obviously a technical

benefit. Moreover, no prior guess of what would be the proper rescaled times
is involved, thus circumventing the failure of the multiscale approach when an

intuitively unexpected rescaled variable enters the scene (e.g. t1 = √
εt0 and t2 = εt0

while one would have naively introduced t1 = εt0 and t2 = ε2t0).

8.2.2 Renormalization group alternative to the
multiscale approach: an example

To illustrate further the application of the RG to singular perturbation analysis,

and to single out its principles compared with multiscale analysis, let us detail its

implementation for an example encountered in Chapter 7: the Duffing oscillator

with given initial conditions (a0, b0),

d2u

dt2
+ u + εu3 = 0, u(t0) = a0,

du

dt
(t0) = b0. (8.6)

The general idea is first to implement the straightforward perturbation scheme,

simply plugging the expansion u(t) = ∑
n≥0 εnun(t) into the evolution equation;

then the secular divergences arising in the resulting series are cured by replacing

the bare parameters a0 and b0 with slowly varying renormalized values a1(t, ε) and

b1(t, ε), in such a way that good convergence properties are recovered at fixed a1

and b1. Following this program, one first gets at the lowest order:

u0(t) = a0 cos t + b0 sin t = Re[A0 eit ] with A0 = a0 − ib0. (8.7)

The equation at next order is written:

d2u1/dt2 + u1 = − u3
0. (8.8)
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The coefficients appearing in its solution are fully determined given the bare com-

plex parameter A0:

u1(t) = Re[Beit + Ce3it + Dteit ] with C = A3
0

32
, D = 3iA0|A0|2

8
,

(8.9)

and

B = −Re(C) + i Re(D) − 3i Im(C).

This expression for u1(t) clearly reveals the singular nature of the perturbation

analysis, due to the presence of the secular term Dteit . At this stage, the RG

principle is to replace A0 by a slowly varying renormalized parameter A1(t, ε) in

the expression (8.7):

ũ0(t) = Re[A1(ε, t) eit ] (8.10)

so as to regularize the equation for the next component ũ1(t) by eliminating the

source of the secular divergence. By imposing the condition that the coefficient of

eit on the right-hand side of this equation vanishes, we get

− i

2

d2 A1

dt2
+ dA1

dt
= εD(A1) + O(ε2) where D(A) = 3iA|A|2

8
. (8.11)

In other words, the consistency of the regularization, i.e. the fact that the secular

term is fully absorbed in the time dependence of the effective initial condition

A1(t, ε), is expressed by a renormalization equation for A1(ε, t), that appears as

the analog of the solvability condition in the multiscale approach.

The very presence of ε on the right-hand side of (8.11) ensures that the function

A1(t, ε) is a slowly varying function of time, hence better expressed as a function of

τ = εt : A1(t) = Ã1(τ ) so that dA1/dt = εd Ã1/dτ , d2 A1/dt2 = εd2 Ã1/dτ 2. Since

only the lowest order in ε is relevant (and consistent), this scaling of the derivatives

allows us to ignore d2 A1/dt2 (it would contribute to equations for higher-order

components un(t) with n > 1), leading to:

d Ã1/dτ = D[ Ã1]. (8.12)

Turning back to real-valued quantities by writing A1 = a1 − ib1 yields:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

da1

dτ
= 3b1

8

(
a2

1 + b2
1

)

db1

dτ
= − 3a1

8

(
a2

1 + b2
1

)
.

(8.13)
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It is straightforward to conclude from (8.13) that |A1| does not vary with time:

|A1|2 = (a2
1 + b2

1) = r2 = constant. The evolution for the phase θ that follows from

(8.13) finally yields the following first-order solution, with A1(ε, t) = |A1| eiθ (ε,t):

θ = θ0 + εω(t − t0) = θ0 + ω(τ − τ0) where ω = 3r2

8
and τ = εt,

(8.14)

recovering the first-order solution given in Chapter 7 when plugged into (8.10).

8.2.3 Perturbative renormalization groups

The previous example illustrates the general idea of perturbative RGs: first one

performs formally a straightforward perturbation expansion, as if the problem were

regular, with the advantage of using a standard and fully determined procedure.

Then the coefficients are renormalized in such a way that convergence properties

(at fixed values for the renormalized coefficients) are improved.

This second step in fact applies to any singular series
∑

n≥0 εnun(t, a0) not nec-

essarily associated with some ordinary differential equation. Such a series is said

to be renormalizable when it is possible to turn it into a uniformly valid expansion∑
n≥0 εn ũn(t, a), for ε < ε∗ small enough, by transforming the bare parameters

a0 of the original expansion into renormalized parameters a(a0, ε, t). The formu-

lation possibly embeds a redefinition of the time variable t → b(ε)t , associated

with a bare parameter b0 = 1. Both the suitable time rescaling b(ε) and the other

renormalized parameters a(a0, ε, t) are to be determined in a self-consistent way,

at successive orders in the expansion parameter ε, typically by imposing a uniform

bound supt | ũn[t, a(a0, ε, t)] | < ∞ and a slow time dependence da/dt = O(εa).

Let us underline that such a self-consistent determination is ubiquitous in renormal-

ization procedures: the proper redefinitions and rescalings are the only ones leading

to a non-trivial and well-behaved solution, endowing the RG with a constructive

character, requiring no prior guess or scaling assumptions.

Still more generally, let us consider a function F(a0, t, ε) exhibiting some singu-

lar part εFsing, typically a perturbative correction whose amplitude remains small

and controlled by a parameter ε � 1 in finite time, but asymptotically becomes an

overwhelming influence. The general perturbative RG scheme amounts to replacing

the bare parameter a0 with an unknown function a(a0, t, ε) of time and perturbation

parameter ε, to be determined by the following regularization condition:

F(a0, t, ε) ≡ Freg(a0, t, ε) + εFsing(a0, t, ε) = Freg[a(a0, t, ε), t, ε] + h.o.

(8.15)
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As already mentioned above in the more restricted instance of a series, what is

termed renormalizability of F is the possibility of absorbing all its singularities in

such a redefinition of some parameters or variables. The very definition of a(a0, t, ε)

ensures that Freg(a, t, ε) remains regular as t → ∞ and ε → 0 at fixed a, and

reduces to a limiting function F0(a). Accordingly, it now becomes possible to

describe the leading behavior of F in these limits:

F(a0, t, ε) ∼ F0[a(a0, t, ε)] + h.o. (t → ∞, ε → 0). (8.16)

The singularity of the asymptotic behavior is now embedded in the correspon-

dence t → a(a0, t, ε). The renormalized coefficient a(a0, t, ε) appears as a “macro-

scopic” parameter integrating all the underlying, “microscopic” influences involved

in Fsing(a0, t, ε) and building up its singularities. The consistency of this effective

description, absorbing the singular part Fsing into a regular renormalized component

F0[a(a0, t, ε)], is expressed through the following renormalization equations:

∂ F0

∂a
.
∂a

∂t
= ∂ Fsing

∂t
,

∂ F0

∂a
.
∂a

∂ε
= ∂ Fsing

∂ε
and a(a0, t, ε = 0) = a0.

(8.17)

These equations re-express the solvability condition arising in the multiscale ap-

proach. The RG thus appears as an extension of multiscale methods with the main

advantage of providing a constructive method: there is no need to guess the proper

rescaled variables since they arise naturally in solving RG equations.

The RG ideas presented in this section, first implemented for singular perturba-

tion series arising in mechanics (three-body problem, driven or anharmonic oscilla-

tors), non-linear physics and kinetic theory, have been applied to critical phenomena

and phase transitions, introducing our next section. In this context, the time t and

the perturbation parameter ε are replaced by the size N (number of particles) and

temperature difference T − Tc between T and the critical temperature Tc: indeed,

the issue encountered in the perturbation approach of critical phase transitions lies

in the non-uniformity with respect to N of the temperature expansion of the free

energy F(T, N ) around T = Tc, preventing interchange of the expansion in powers

of T − Tc with the thermodynamic limit N → ∞.

8.3 A multiscale and constructive approach to capture critical behavior

The RG developed in the context of statistical mechanics (in the 1970s) and

dynamical systems (in the 1980s) initially appeared as a framework specially de-

signed to investigate universal large-scale features of critical phenomena (Stanley

1999). This is at the same time a restriction, insofar as such an RG can only capture

asymptotic and self-similar features, and a strength: by focusing on the critical
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features and their origin, namely strong correlations at all scales, the RG allows us

to prove the existence of scaling laws describing the behavior around the critical

points and to compute the numerical values of their exponents, the so-called critical
exponents. The RG is here to be seen as an efficient alternative approach when

scale separation and mean-field arguments fail to apply. We shall see in Section 8.4

how this RG and its central principle of iterated coarse graining in fact extend into

a more general technique for asymptotic analysis, far beyond the scope of critical

behaviors.

8.3.1 Scaling theories and critical exponents

Criticality is a multiform notion acknowledged in many domains of the natural
sciences, and the best way to grasp its meaning and content is to describe the
signatures of a critical state (also termed a critical point, in the control parameter
space).

� The range of the correlations that take place between subsystems is unbounded in space

and time, which is expressed quantitatively in the divergence of the correlation length
ξ → ∞ and time τc → ∞.

� Accordingly, a system in a critical state exhibits slow relaxation properties, instead of

an exponential decrease as e−t/τc toward its steady state when τc < ∞ (the relaxation

times are indeed related to the correlation time and diverge together). In the same spirit, a

system in a critical state exhibits a singular response to perturbations: response functions

diverge at the critical point of the system.
� The strongly correlated statistics near a critical point, say T = Tc if the control parameter

is the temperature, is also reflected in scaling laws A(T ) ∼ |T − Tc|α for the correlation

functions and order parameters (actually any macroscopic observable A in the thermo-

dynamic limit) as a function of the temperature difference T − Tc.
� Fluctuations at all scales (in amplitude, spatial extension and duration) are observed at a

critical point.

These features have been known for a long time in the context of second-order
phase transitions, observed at the so-called critical point (Pc, Tc), a single iso-

lated point in the phase diagram, ending a line of phase coexistence and first-order

transition points. For instance, in the case of the liquid–gas transition in a sim-

ple fluid, the presence at the critical point of fluctuations at all spatial scales can

be visualized directly as a sudden milky appearance, called critical opalescence;

its origin is the diffraction of visible light on large density inhomogeneities, in-

dicating that their size is of the order of visible wavelengths (roughly half of a

micrometer), much larger than the typical molecular size of the density fluctuations

observed far from the critical point. Another experimental evidence is the direct

observation under the microscope of large micrometer-size domains of differing
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concentrations. Nevertheless, when crossing the critical point by varying T at fixed

P = Pc or varying P at fixed T = Tc, the average density (called the order parame-
ter of the system) exhibits a continuous variation and no phase coexistence occurs:

we, macroscopic observers, see one and the same fluid experiencing only slight

morphological changes, by contrast to the liquid–vapor transition just below the

critical temperature. Whereas no discontinuity occurs in the order parameter at the

critical point, singularities appear in its derivatives, and then markedly, associated

with a divergence: such a transition is termed a second-order phase transition. In the

same way, all the susceptibilities, specific heat, and response functions also diverge

at the critical point, endowing it with enough striking experimental signatures to be

located very accurately, as an isolated point, in the control parameter space {(P, T )}.
The same features arise in various second-order phase transitions, for instance at the

Curie point T = Tc (transition between ferromagnetic and paramagnetic behavior

in a magnet) with mesoscopic domains of differing spin orientations, a continuous

average magnetization M(T ) and divergence of the magnetic susceptibility χ (T )

at Tc.

The first major step in understanding critical phenomena was the recognition of

their scale invariance, originating1 in the divergence of the correlation ranges ξ and

τc and the associated absence of any finite characteristic scale. A scaling theory
was developed to express and exploit this remarkable property. This theory assumes
(on experimental grounds) the existence of scaling laws, describing for example

the divergence of the specific heat, Cv(T ) ∼ |T − Tc|−α, the divergence of the

correlation length ξ (T ) ∼ |T − Tc|−ν measured as the size of inhomogeneities or

domains, or the behavior of the order parameter M(T ) ∼ |T − Tc|β at the critical

point T = Tc. Beyond providing a simple analytical fit for the relevant observ-

ables, this theory predicts some relations between the exponents of the scaling

laws; it was thus shown in the early 1960s that only two critical exponents are
independent.

What took more time, and was achieved only in the 1970s or even later, was

to compute the anomalous2 values for the critical exponents. The main challenge

was to understand their remarkable universality: for instance, the same values are

observed within experimental accuracy for the liquid–gas transition and transi-

tions occurring in binary mixtures or metallic alloys. The main problem was the

1 On mathematical grounds, the connection between scale invariance and the divergence ξ → ∞ of the correlation
range lies in the fact that the generic alternative to an exponential decay e−x/ξ is provided by power laws x−γ .

2 One speaks of anomalous scaling laws or anomalous exponents (from the Greek anomalos, meaning “con-
trary to custom”) when they differ from those obtained by a mere dimensional analysis. For instance, a frac-
tal object (e.g. a porous medium) is anomalous since its mass M(r ) does not plainly scale with its volume
r3 (where r is the linear size of the sample), but scales as rdf with an exponent df < 3 called its fractal
dimension.
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indisputable evidence that exponent values computed within a mean-field approach3

were wrong. This was shown both by experimental values established with an

exquisite accuracy and by an analytically exact calculation achieved by Onsager

for the Ising model in dimension d = 2 yielding an exponent β = 1/8 whereas the

mean-field prediction, independent of the system and its dimension d, is β = 1/2.

The quantitative understanding of critical phenomena remained an outstanding

puzzle for many years; whose difficulty was clearly related to the singularities

arising in thermodynamic functions at critical points. From the mathematical view-

point, critical points appeared as situations where a plain expansion of the free en-

ergy, order parameter and other statistical properties in powers of T − Tc does not

work, reflecting the non-commuting character of the thermodynamic limit N → ∞
(where N is the number of particles or more generally the number of degrees of

freedom of the system) and the limit T → Tc. It is at least clear that scales do not

decouple in a system at or near a critical point as they do far away, and that, in

consequence, all scales should be jointly handled using some non-trivial multiscale

procedure in order to account for critical behavior.

8.3.2 Iterated coarse graining and renormalization-group transformation

The major breakthrough in solving the puzzle was the idea of iterated coarse
graining proposed by Kadanoff in the context of spin lattices and the critical fer-

romagnetic transition at the Curie point (Kadanoff 1966). The starting point was

the investigation of a regular spin lattice of dimension d (square lattice for d = 2,

cubic lattice for d = 3) where neighboring spins 
si and 
s j on the lattice are coupled

through a ferromagnetic interaction −J 
si .
s j , with a coupling constant J > 0. The

equilibrium properties of such a spin lattice are fully prescribed by its Hamiltonian

H , where the pair interactions are supplemented with the influence of the local

magnetic field 
hi at site i , namely

H = −
∑
〈i, j〉

J 
si .
s j −
∑

i


hi .
si .

The first idea was to describe the system with a coarser resolution, considering

blocks of 2d spins as basic units instead of the initial description at the level of

single spins, and to compute the effective interactions between these spin-blocks as

3 In brief, a mean-field approach amounts to identifying the local environment, which is in general fluctuating and
spatially inhomogeneous (e.g. the local magnetic field generated by neighboring spins in a spin lattice model)
with the average environment (a spatial average or equivalently a statistical average in the limit as the system
size tends to infinity). This average local field is identified with a homogeneous mean field depending only on
the average order parameter of the whole sample, hence the established name of the method. We know now that
mean-field approaches are valid only in high enough spatial dimension d > dc, when they yield the exact critical
exponents (becoming dimension independent in this regime); they fail dramatically for d < dc. The threshold
dc, called the critical dimension, depends on the class of the critical phenomenon: dc = 4 for the liquid–vapor
transition or the ferromagnetic transition, whereas dc = 6 for percolation.
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the net result of spin–spin interactions between adjacent blocks. The interactions

between spins of the same block (internal to a block) contribute to the renormalized

local magnetic field (at the scale of a block).

The second idea underlying the design of the RG transformationRwas to express
self-similar properties in terms of a functional invariance upon renormalization,

provided R involves adequate rescalings, as explained in Section 8.1.3. The coarse

graining and associated transformation of the model are thus supplemented with a

spatial rescaling x → x/2 in each space direction, in order to restore the apparent
value of the lattice cell size. Accordingly, the apparent correlation length decreases

by a factor of 2, indicating that the critical character of the rescaled system of spin-

blocks is weakened compared with the initial system of spins. Another requirement

supporting the introduction of such rescalings and prescribing their actual values is

the conservation of physical invariants upon renormalization: indeed, renormaliza-

tion amounts to changing the model as the standing point of the observer changes

but without changing the underlying real system. In a spin lattice, the physical

invariant to be preserved is the value of the partition function since it is directly

related to the free energy of the system. With this aim, an additional spin rescaling,

depending upon the dimension d and the lattice geometry, has to be included in the

renormalization procedure, leading to a certain expression 
s ′
b = 2−α

∑
j∈block(b)i


s j

for the renormalized spin associated with block b.

The third idea was to iterate the whole renormalization procedure. This provides

a constructive way, now known as a renormalization group, to integrate out recur-

sively all the small-scale features (occurring at the spin level, inside blocks) into

their increasingly large-scale consequences (occurring at the block level, for blocks

increasing in size at each iteration of the renormalization), at scales increasing up

to infinity (in the thermodynamic limit).

To implement these ideas operationally, a first technical point is to work with

generalized Hamiltonians H = H/kT encapsulating the temperature dependence.

Another more decisive step has to be taken: to extend the initial space of Hamil-

tonians, or equivalently the initial space of coupling parameters, into a more gen-

eral infinite-dimensional space. This is essential because the RG transformation

generates new terms in the effective Hamiltonians, that cannot be cast in a mere

modification of the initial coupling parameters: it is a “trajectory” in a whole set of

possible Hamiltonians that should be constructed upon repeated action of R and

analyzed. This step was achieved by Wilson (1971, 1975), with the following key

results (see Figure 8.1).

(1) Starting from a model Hc at its critical point, the limiting behavior of this trajectory

(RnHc)n≥0 under the RG action is a hyperbolic fixed point H∗ of R describing an “ide-

ally critical” system in the sense that it is exactly scale invariant, by the very construction

ofR. The fixed-point conditionRH∗ = H∗ requires that ξ (RH∗) ≡ ξ (H∗)/2 = ξ (H∗),
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Figure 8.1 RG flow around a hyperbolic fixed point H∗, in a space of models
{H} (for instance a space of Hamiltonians). The stable manifold V s is the locus
of models at their critical point; the unstable eigenvalues are directly related to
the critical exponents (for the sake of simplicity, only one stable direction and one
unstable direction are represented here).

with two possible solutions ξ ∗ = 0 and ξ ∗ = ∞. Critical fixed points correspond to

ξ ∗ = ∞. Fixed points with ξ ∗ = 0 correspond to trivially self-similar systems, typically

the statistically homogeneous and uncorrelated systems obtained at infinite temperature.

(2) The linear stability analysis of the RG transformation R around the critical fixed point

H∗, i.e. determination of the eigenvalues of DR(H∗), gives access to the critical expo-

nents, thus providing a constructive and systematic method to compute their values. To

understand this point, let us consider the simplified case of a parametrized Hamiltonian

HJ such that the renormalization is expressed at the leading order as a transformation

rk of the coupling constant J (i.e. a transformation acting in the control parameter

space) according to RkHJ ≈ Hrk (J ). The critical Hamiltonian in this one-parameter

family {HJ } will be HJc
where Jc is an approximate fixed point of rk in the param-

eter space. Taking together the approximate fixed-point equation, the renormalization

ξ [rk(J )] = ξ (J )/k of the correlation length, the scaling law ξ (J ) ∼ |J − Jc|−ν and the

linear expansion rk(J ) ≈ Jc + r ′
k(Jc)(J − Jc) yields the value of the exponent:

ν = log k

log |r ′
k(Jc)| (8.18)

where k is the length rescaling factor (often k = 2). The RG group structure ensures

that the resulting exponent ν does not depend on k. In the typical instance, J is di-

rectly related to the temperature T in a monotonous way, thus yielding scaling laws

with variable T − Tc. As illustrated in Figure 8.1, the relation RkHJ ≈ Hrk (J ) defin-

ing the map rk , hence the fixed-point equation rk(Jc) ≈ Jc, is only valid at the leading

order, provided HJc
is close enough to the actual fixed point H∗ of R. They would

be exact only for a one-parameter family embedded in the unstable manifold Vu . The

idea here is that the RG action upon a transverse one-parameter family {HJ } is es-

sentially the same as its action within the unstable manifold. This argument and the
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above sequence of relations have to be made more rigorous by working, as under-

lined above, in a space of Hamiltonians instead of restricting to a parametrized form

J → HJ , and by carefully handling and controlling the higher-order terms, but the rea-

soning and the formula remain basically the same. Detailed examples can be found in

Goldenfeld (1992), Plischke and Bergersen (1994), Lesne (1998) and in Section 8.3.3

below.

(3) Each critical fixed point H∗ of R defines a universality class gathering systems whose

critical behaviors are described by the same set of critical exponents. This universality

class is related to the basin of attraction of H∗ that contains all the critical Hamiltoni-

ans sharing the same critical features. More precisely, any one-parameter family HJ

crossing the stable manifold of H∗ for some Jc will exhibit the same scaling laws with

the same critical exponents, as derived in (2).

(4) The unstable and stable eigenvectors of DR(H∗) correspond respectively to essen-
tial and inessential perturbations of the Hamiltonian, modifying or not its degree of

criticality (it decreases when departing from H∗ along unstable directions).

(5) Finally, perturbations of the initial Hamiltonian such that the ensuing trajectory upon the

action ofR converges to a different critical fixed point, hence modifying the universality

class of the original systems, are called crossover terms.

When the definition of the renormalization transformation involves a rescaling

of the system size (number N of time steps, of particles, of spatial cells), the

RG also yields a quantitative account of the size dependence of the collective

behavior of the system, typically in the form already mentionned in Section 8.1.1

of finite-size scaling relations, i.e. scaling laws involving N among the variables.

Specifically, a scaling law X ∼ (a − ac)−ν becomes X N ∼ Nα f [(a − ac)N γ ] in

finite size, typically with f (z) ∼ z−ν when z → ∞. Consistency yields α = νγ ;

hence finite-size scaling analysis, by plotting Nα X N as a function of N γ (a − ac),

gives access to the scaling exponent ν. The RG can be seen as a form of finite-size

scaling analysis, an interpretation that will be met again in Section 8.5.1.

8.3.3 The renormalization group time analog: the example
of scenarios to chaos

Kadanoff’s idea of iterated coarse graining, initially introduced and described above

in a spatial setting at thermal equilibrium, was later developed in a purely temporal
setting (among others by Kadanoff himself) for discrete-time dynamical systems.

The position 
r in real space and the time t might indeed be treated on the same foot-

ing: the examples presented in this subsection will reveal the parallel between the

spatial RGs developed in equilibrium statistical mechanics, aimed at determining

thermodynamic behavior, and the dynamic RGs aimed at determining asymptotic

behavior.
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One of the most striking achievements of the temporal RG methods is the com-

putation of the universal number δ ≈ 4.66920 describing the accumulation of bi-

furcation values {μ j } toward the value μc corresponding to the onset of chaos

in the period-doubling scenario: μc − μ j ∼ δ− j , where μ is a control parame-

ter of the evolution law that typically quantifies the strength of its non-linearities,

as exemplified by the normal form4 xn+1 = fμ(xn) ≡ 1 − μx2
n . In this scenario, a

period-doubling bifurcation occurs in the dynamics at each value μ = μ j , during

which a 2 j -cycle loses its stability and continuously gives birth to a stable 2 j+1-

cycle. The onset of chaos at μ = μc appears as the time analog of a critical point;
in particular, the attractor exhibits remarkable self-similar properties at this point.

Several scaling laws around μ = μc (for instance for the envelope of the Lyapunov

exponent or the typical time for reaching the attractor) reinforce the analogy (Lesne

1998).

In this context, the relevant class of models is the set F of unimodal (i.e. single-

humped) maps of the interval [−1, 1] having a quadratic maximum, e.g. in x = 0:

F =
⎧⎨
⎩

f : I �→ I, even, analytical, f (0) = 1

f ′(0) = 0 and f is strictly increasing in [−1, 0[

S f < 0 in [−1, 0[ ∪ ]0, 1] where S f = f ′′′/ f ′ − 3/2
(

f ′′/ f ′)2

⎫⎬
⎭ .

(8.19)

Translating the block-spin RG principles in this temporal setting, we consider time

steps twice as long and an appropriate normalization so that the renormalized maps

still take their values in [−1, 1] with a maximum value 1 reached at x = 0. The

appropriate renormalization transformation is thus written

R f (x) = 1

λ f
f ◦ f (xλ f ) with λ f = f [ f (0)] = f (1). (8.20)

In other words, the RG exploits the similarity betweeen f and its iterate f 2 = f ◦ f
around the point x = 0 after a truncation to the interval [1/λ f , −1/λ f ] and a suitable

rescaling by a factor of λ−1
f < 0. One then shows that this renormalization operator

R admits a unique hyperbolic5 fixed point ϕ, and that δ is the unique unstable

eigenvalue (δ > 1) of DR(ϕ) (Feigenbaum 1978, Collet and Eckmann 1981). Let us

detail this proof since it provides an exemplary RG implementation and shows that

its strength lies in the relation between critical exponents and unstable eigenvalues

of the linearized renormalization operator around fixed points.

4 A simple computation shows that this even map in [−1, 1] is equivalent to the so-called logistic map ga(z) =
az(1 − z) in [0, 1] with a one-to-one increasing correspondence between the control parameters μ ∈ [0, 2] and
a ∈ [0, 4].

5 A fixed point of a discrete flow is said to be hyperbolic if it has stable and unstable directions with well-separated
stable and unstable eigenvalues: sup |λs| < 1 < inf |λu|.
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Figure 8.2 Given any one-parameter family (Fμ)μ in F , transverse to the stable
manifold V s , the action of the renormalization operator R is expressed in the re-
lations limn→∞ Rn Fμc

= ϕ (with Fμc
∈ V s) and RFμ j ∈ W j−1 (with Fμ j ∈ W j ).

Linearization of the approximate relation RFμ j ≈ Fμ j−1
yields the scaling law

μc − μ j ∼ δ j where δ > 1 is the unique unstable eigenvalue of DR(ϕ), roughly
quantifying the action of R along the unstable manifold Vu (see the text).

The renormalization operator R given in (8.20) is well defined only in a subset

D0 of F whose elements remain in F upon the action of R, yielding

D0 = { f ∈ F, λ f < 0, f (λ f ) > 0, f 2(λ f ) < −λ f } ⊂ F . (8.21)

The boundaries of D0 are the manifolds S0 = { f ∈ F, λ f = 0} and U0 = { f ∈
F, f 2(λ f ) + λ f = 0}. One then introduces the subset W0 of maps at a pitchfork

bifurcation point (in particular fμ0
∈ W0). Similar definitions are introduced for

the iterates R j , with straightforward relations D j = R1− j [D0], S j = R1− j [S0],

U j = R1− j [U0] andW j = R1− j [W0] (see Figure 8.2). The elements ofS j possess a

stable cycle of period 2 j+1, whereas the 2 j th iterate of an element ofW j experiences

a pitchfork bifurcation. Since

Rn f (x) = 1

�n
f 2n

(�nx) with � = f 2n
(0), (8.22)

the asymptotic behavior n → ∞ of the trajectories {xn = f n(x0)} is directly related

to the asymptotic behavior j → ∞ of the RG trajectory {R j f }. In particular, given

two maps f and g, comparison of the RG trajectories {R j f } and {R j g} provides

a direct comparison of the asymptotic properties of the flows generated by f and

g, considered as a whole.

A central feature of the RG flow asymptotic behavior is the existence and stability

of fixed points ϕ of R. By plugging the analytical expansion of a putative fixed

point ϕ in equations λ = ϕ(1) and Rϕ = ϕ, solving term-wise and checking the
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good convergence properties of the resulting expansion, it is shown that R admits

a unique non-trivial fixed point. The linearized renormalization operator is written

[DR(ϕ).g](x) = 1

λ
[g(1)[xϕ′ − ϕ(x)] + g[ϕ(λx)] + ϕ′[ϕ(λx)]g(λx)]. (8.23)

One shows that it possesses a unique unstable eigenvalue δ > 1 and strictly stable

ones (that is, ϕ is a hyperbolic fixed point). The stable manifold can be characterized

alternatively as the subset where R can be iterated indefinitely

V s = ∩∞
j=0D j = lim

j→∞
D j (8.24)

(the second equality follows from the inclusion D j ⊂ D j−1). It is also straight-

forward to check that V s = lim j→∞ W j = lim j→∞ S j = lim j→∞ U j . Manifolds

{W j } comprise a bundle accumulating on V s (see Figure 8.2). The manifolds {S j }
intermingle in between whereas the manifolds {U j } are located on the other side of

V s.

Let Fμ be a one-parameter family of maps in F . The critical value μc of the

control parameter follows from the condition Fμc
∈ V s, from which it follows that

lim
j→∞

R j [Fμc
] = ϕ. (8.25)

This means that Fμc
is the evolution map of a dynamical system at the onset of

chaos. By definition of W j , the sequence {μ j } of bifurcation values is obtained

according to the condition Fμ j ∈ W j . By construction, one has R[Fμ j ] ∈ W j−1,

close to Fμ j−1
. When Fμc

is close to ϕ and for large enough j , it is possible to

perform linear analysis of the approximate relation R[Fμ j ] ≈ Fμ j−1
. With this aim,

one introduces the projection Pu on the unstable direction eu of DR(ϕ) associated

with the unique unstable eigenvalue δ > 1. It satisfies Pu ◦ DR(ϕ) = δ.Pu, from

which it follows that Pu[RFμ j − ϕ] ≈ δ.Pu[Fμ j − ϕ] when quadratic and higher-

order terms are neglected. The action of Pu on the relation R[Fμ j ] ≈ Fμ j−1
yields

δ.Pu[Fμ j − ϕ] ≈ Pu[Fμ j−1
− ϕ]. Plugging in this relation the linear-order estimate

Pu[Fμ − ϕ] ≈ Pu[Fμ − Fμc
] ≈ (μ − μc) Pu

(
∂ Fμ

∂μ

)
μ=μc

+ O(μ − μc)2,

(8.26)

allows us to conclude that μ j−1 − μc ≈ δ(μ j − μc). To be fully rigorous, this

reasoning requires the transversality condition Pu(∂ Fμ.∂μ)μ=μc �= 0 to be satisfied

and the non-linear terms to be controlled so as to ensure that they do not spoil the

conclusion.

Other universality classes are obtained when the space of models is extended

and one considers the sets Fε of single-humped maps that behave as |x |1+ε near
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x = 0 for some ε > 0. The universal scaling factor δ(ε) computed in a similar way

to δ = δ(1) is the unstable eigenvalue of DR(ϕε) (Lesne 1998).

Another nice application of this temporal RG concerns the intermittency scenario
of chaos, describing the destabilization of a low-dimensional and fully predictable

dynamics through bursts of irregular evolution, unpredictable in both amplitude

and duration. This scenario occurs via a saddle-node bifurcation (that is, in which

a stable fixed point disappears by merging with an unstable point) and the issue is

to determine the scaling law of the persistence time of the laminar regime.

For simplicity, we shall consider the simplest discrete-time family exhibit-

ing saddle-node intermittency: fa(x) = [−a + x − x2]a . Two fixed points x±
a =

±√−a are present for a < 0 where x+
a is stable and x−

a is unstable as soon as

a > −1. They coalesce in ac = 0 with x±
ac

= 0 and f ′
ac

(0) = +1. For a > 0, there

is no longer a fixed point, either stable or unstable, but the dynamics is nevertheless

slowed down near x = 0. Indeed, the trajectory is trapped in the channel delineated

by the diagonal y = x and the graph y = fa(x) of the evolution map, during a time

depending on the entrance point in the channel.

The RG idea for computing the average time τ (a) spent in the channel, corre-

sponding to the duration of regular phases in the observed dynamics, is to perform

a temporal coarse graining by a factor, say, of 2. This amounts to comparing the

original discrete dynamics with �t = 1 and the dynamics observed at the larger

time scale �t = 2, namely comparing the evolutions generated respectively by f
and f ◦ f . As in the case of the period-doubling scenario, the corresponding RG

transformation is completed with a rescaling R f = λ−1 f ◦ f (λx) so as to max-

imize the similarity between f and R f : here the criterion is identification of the

coefficient of the monomial x in these maps yielding λ = 1/2. Taking together the

renormalization action τ (R f ) = τ ( f )/2 on the persistence time and the approxi-

mate action R fa ≈ f4a of R on the parametrized family (that is, R fa ≈ fr (a) with

r (a) = 4a) leads to the scaling law:

τ (a) ∼ 1√
a
, i.e. τ (a) ∼ a−μ with μ = log 2

log |r ′(0)| = 1/2. (8.27)

The action of R on fa in fact generates extra cubic and quartic terms beyond

fr (a), and a more rigorous RG analysis has to be performed in a whole functional

space instead of being restricted to a given one-parameter family and its one-

dimensional parameter space. The main step is the determination of the fixed points

of R and associated eigenvalues, while controlling the higher-order terms in order

to assess the robustness of the result beyond linear RG analysis. This shows that

the scaling law for τ (a) does not depend on the details of the maps but only on

their belonging to the universality class of intermittency, whose normal form is the

family fa(x) = [−a + x − x2]a .
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As in the case of the period-doubling scenario, it is worth noticing that other

universality classes can be determined by extending the action of R to an enlarged

functional space, obtained by considering monomials |x |1+ε instead of x2; a differ-

ent exponent μ(ε) is obtained for each value of ε (Lesne 1998).

8.4 Renormalization groups: a multiscale approach
for asymptotic analysis

Moving beyond the study of critical phenomena, the RG has been extended more re-

cently to an iterated multiscale approach allowing the determination in a systematic

and constructive way of effective equations describing the large-scale behavior, in

both real space and time, of multiscale systems and the investigation of their struc-

tural stability (see e.g. Chen et al. (1994), Oono (2000), Mazzino et al. (2004),

Cencini et al. (2006)). RG approaches are specially relevant and fruitful for partial
differential equations, encountered for instance in hydrodynamics, growth phenom-

ena, or diffusion in complex media (Goldenfeld 1992), that are singular insofar as

the asymptotic and large-scale behavior of their solutions cannot be determined

straightforwardly by a simple averaging procedure, due to resonances (generating

secular divergences) or essential non-linearities (inducing mode coupling).

8.4.1 Asymptotic analysis and structural stability

In the previous subsections, we have seen that the RG devised to cure non-

uniformities and secular divergences in perturbation series unifies various singular

perturbation techniques, including the multiscale approach presented in Chapter 7.

A main advantage of the RG is that it does not require any a priori guess of the
proper rescalings: the slow-time, large-scale components of the solution arise natu-

rally through a slow dependence in time and space of the renormalized parameters,

without invoking any arbitrary choice in their description. The discussion of RG

principles for critical phenomena and chaos, in Section 8.3, has allowed us to un-

derstand better the meaning and significance of secular divergences: they reflect

persistent large-scale consequences of microscopic perturbations; in this regard

they are closely related to criticality.

Our point is now to emphasize that only the secular terms are relevant when
dealing with asymptotics, exactly like the mechanisms generating long-range cor-

relations are the only relevant ones to give a full account of the large-scale behavior

at a critical point. Accordingly, in asymptotic analysis, one can ignore other con-

tributions (inessential terms) and reduce the dynamics to its secular terms. This

reveals the bridge between the perturbative RG devised to handle and regularize

secular terms in perturbation series and the RG related notion of universality of
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large-scale features at a critical point. Whatever the context, the essential terms
are all those, and only those, with non-trivial behavior under the renormalization
action. This signature provides constructive access to the robustness properties of

asymptotic behavior, at the cost of devising the proper renormalization operator

and analyzing the associated RG flow.

We have seen in Section 8.3.2 that the RG philosophy to capture universal critical

features relies on their invariance upon coarse graining, rescaling and associated

transformation of parameters into effective parameters, translated into an invariance
upon renormalization and a fixed-point property for the Hamiltonian or evolution

law. We shall see now that this philosophy can be extended far beyond the scope

of self-similar critical phenomena to achieve a systematic extraction of asymptotic

features and to investigate their structural stability, that is, to determine the class

of models sharing these features. The central RG step is the self-consistent deter-
mination of an adapted transformation (the renormalization transformation) of the

model that leaves invariant its asymptotics. Determining that the original model

and its renormalized version share the same large-scale behavior puts constraints

on the renormalization transformation, for instance relations between the different

rescaling factors or the very expression of renormalized parameters. Accordingly,

devising an RG amounts to capturing quantitatively the underlying inter-level re-
lationships and the multiscale organization inducing this behavior. This explains

why the renormalization operator encapsulates quantitative features of the asymp-

totic behavior and how they can be unraveled, “with no magic,” by the analysis of

the RG flow.

8.4.2 Green’s function approach and general RG equations

Here we show how general RG principles apply to determine the asymptotic be-

havior of evolution equations (ordinary or partial differential equations) in the case

when their solutions depend in a singular way on initial conditions. One here recov-

ers the early developed Green function RG approach (Stueckelberg and Petermann

1953, Jona-Lasinio 2001). For simplicity we restrict the discussion to ordinary dif-

ferential equations, with only one space or time variable z, and consider a given

solution,

f (z|z0, f0) with f (z0|z0, f0) = f0 (8.28)

with special emphasis on boundary/initial conditions in z = z0. As an illustration

think for instance of an expression f (z|z0, f0) = f0(z/z0)α with α > 0. The singu-

larity is expressed as a divergence when z → +∞ at fixed z0, that can be handled

upon renormalization and tamed by a redefinition of initial conditions and associ-

ated integration constant, as explained in Section 8.2.2. But the singularity is also
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expressed as a divergence when z0 → 0 at fixed z, hinting at another method of

regularization, by introducing the multiplicative analog of a cutoff. Namely, regu-

larization might be achieved by changing the initial point z0 into λz0 with λ ≥ 1

and by an adapted change of the initial condition f0 into f (λz0|z0, f0):

f (z|z0, f0) = f [z|λz0, f (λz0|z0, f0)]. (8.29)

These joint changes are nothing but a renormalization transformation,

f (λz0|z0, f0) = R(λz0, z0, f0), (8.30)

endowed with a bona fide RG structure through the semi-group relation

R(λ2z0, λ1z0, R(λ1z0, z0, f0)) = R(λ2z0, z0, f0) with λ2 ≥ λ1 ≥ 1. (8.31)

The RG equation follows, that expresses the validity of (8.31) for any intermediary

scaling factor; in particular, for λ2z0 = z and λ1 = 1, it reduces to

∂2 R(z, z0, f0) + ∂3 R(z, z0, f0).∂1 R(z0, z0, f0) = 0. (8.32)

The scaling behavior, if any, is expressed in a relation which is no longer dependent

on the initial point z0 (scale invariance here appears as a homogeneity property):

f (z|z0, f0) = F(z/z0, f0) (for any z ≥ z0) and F(1, f0) = f0. (8.33)

In this case, there is a direct link between the singularities as z → +∞ and z0 → 0

and associated renormalizations, both expressed in the following relation:

F(x, f0) = F(x/λ, F(λ, f0)) (for any λ ≥ 1 and any x ≥ λ ≥ 1).

(8.34)

The explicit singularity as x → +∞ is reduced upon dividing x by λ > 1 while its

integrated effect on the overall asymptotics is conserved, by means of the redefi-

nition of the initial condition f0, replaced with F(λ, f0). RG consistency requires

that the right-hand side should not depend on λ, yielding a so-called RG equation
describing the regularized dependence of asymptotics on the initial conditions,

x
∂ F

∂x
(x, f0) = a( f0)

∂ F

∂ f0

(x, f0) with a( f0) = ∂ F

∂x
(1, f0), (8.35)

recovering (8.32) in the special case where R(z, z0, f0) = F(z/z0, f0). A change

of variable t = log z casts the above multiplicative framework into an additive one.

In particular, a scale invariance for z turns into a translation invariance for t ; a

singularity when z0 → 0 then corresponds to a singularity when t0 → −∞. In the

additive framework, the singularity is circumvented by introducing an intermediary

time t1 and decomposing (t − t0) = (t − t1) + (t1 − t0). This auxiliary time t1 > t0
plays the same regularizing role as a cutoff, considering the evolution over [t1, +∞[



8.4 RG: a multiscale approach for asymptotic analysis 239

instead of [t0, +∞[. The RG procedure accounts for the asymptotic consequences

of the singular transient [t0, t1[ into a modification of the initial conditions:

f1 = R(t1, t0, f0) = R(et1, et0, f0). (8.36)

In other words, renormalization encapsulates the only meaningful way to perform

the limit t0 → −∞: it requires jointly an adapted variation of f0, following the vari-

ation of t0 according to relation (8.36), at fixed t1 and f1. The relations x = et1−t0

and R(t1, t0, f0) = F(x, f0) provide the link with the previous multiplicative for-

mulation (8.34). As above, the consistency condition that the solution should not

depend on the arbitrarily chosen intermediary time t1 is equivalent to the require-

ment of a semi-group structure ensuring that replacing (t1, f1) with the intermediary

time t2 and associated initial condition f2 still yields one and the same solution:

R(t2, t0, .) = R(t2, t1, .) ◦ R(t1, t0, .).
We illustrate in the next section how the RG equations (8.35) provide effective

large-scale hydrodynamic equations, starting from the Boltzmann kinetic equation,

and refer to Goldenfeld (1992), Chen et al. (1994), and Oono (2000) for other

applications.

8.4.3 Renormalization-group derivation of hydrodynamics
from the Boltzmann equation

A basic idea in the RG derivation of effective large-scale models (if any) is that the

essential dynamics at macroscopic scales corresponds to the slow evolution of a

low-dimensional manifold, invariant upon the short-term dynamics and termed the

slow manifold. At each fixed macroscopic time, a quasi-stationary approximation

quenches the slow manifold into an invariant manifold. The complete dynamics

is thus decomposed into a fast component, prescribing the invariant manifold, and

a slow evolution of this manifold, described in the space spanned by quantities

parametrizing the manifold. This viewpoint gives a precise meaning to the macro-
scopic dynamics of a complex system: a slow evolution taking place in a reduced

space compared to the original microscopic phase space. As an illustration, we now

show how this RG scheme can be exploited to derive Navier–Stokes equations from

the Boltzmann kinetic equation (Hatta and Kunihiro 2002, Kunihiro and Tsumura

2006), and how it is closely related to the initial condition renormalization pre-

sented in the previous section. Taking as a basis the observed existence of a regular

macroscopic behavior, the initial value is determined self-consistently so as to en-

capsulate the appropriate counter-terms, ensuring cancellation of the secular terms

(arising in the naive perturbation treatment of the influence of this initial condition)

and giving access to the macroscopic evolution.
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The starting point is the Liouville equation describing the evolution of the overall

probability distribution function fN (
r1, 
v1, . . . , 
rN , 
vN , t) of an N -particle system

upon its Hamiltonian dynamics. The Boltzmann equation is derived by integrating

over N − 1 particles and using the Boltzmann decorrelation ansatz (see Chapter 5)

f2(
r , 
v1, 
r , 
v2, t) ≈ f1(
r , 
v1, t) f1(
r , 
v2, t) to obtain a close evolution equation for

the one-particle distribution function f ≡ f1:

∂

∂t
f (
r , 
v, t) + 
v. 
∇ f (
r , 
v, t) = J [ f ](
r , 
v, t) (8.37)

where the right-hand side of the above equation is the collision integral

J [ f ](
r , 
v, t) =
∫

d3
v1d3
v2d3
v3 B(
v, 
v1 | 
v2, 
v3)

× [ f (
r , 
v2, t) f (
r , 
v3, t) − f (
r , 
v, t) f (
r , 
v1, t)]. (8.38)

This collision term (where B contains the details of the binary collisions) describes

the particle interactions at the level of the marginal distribution f .

In order to adapt the RG procedure acting at the level of initial conditions, Section

8.4.2, to the Boltzmann equation, the first trick is to give a special role to 
v turning

f (
r , 
v, t) into a family [ f
v(
r , t)]
v of functions with variable z = (
r , t). Given the

initial condition f
v(
r , t0), we denote by F
v(
r , t, t0) the solution of the Boltzmann

equation around t = t0 and consider situations where the fluid motion is slow with

a macroscopic characteristic scale in space, that is


v. 
∇
r F
v = O(ε) with ε � 1. (8.39)

Defining the rescaled variable 
R = ε
r explicitly introduces a small parameter ε � 1

in the Boltzmann equation, since the term 
v. 
∇
r F
v is now written ε
v. 
∇
R F
v. This hints

at a perturbation analysis, implemented by plugging the straightforward expansion

F
v = ∑
n≥0 εn F (n)


v in the Boltzmann equation and solving term-wise. Investigating

the slow motion means at order 0 restricting to the stationary regime, ∂ F (0)

v /∂t = 0,

yielding (back in the original variable 
r ):

F (0)

v (
r , t, t0) = n(
r , t0)

(
m

2πkT (
r , t0)

)3/2

exp

[
−m[
v − 
u(
r , t0)]2

2πkT (
r , t0)

]
(8.40)

which is independent of t by construction. The physically relevant solution should

be robust in the sense that its large-scale behavior should no longer depend on the

time t0 at which the initial condition has been prescribed; in particular, at t = t0,

(
∂ F

∂t0

)
t0=t

= 0. (8.41)
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Higher orders essentially contribute in this equation, as detailed below. Varying t0
requires an adapted change of the initial value, that will be embedded in the expres-

sion of F , with a semi-group structure since changing t0 into t2 should coincide with

changing t0 into t1, then t1 into t2. We here recover the Green function RG given in

an abstract formulation in Section 8.4.2, and (8.41) is nothing but a standard RG

equation. It also amounts to requiring that the initial condition belongs to the slow

manifold, so as to avoid secular divergences generated at any finite perturbation

order by the transverse components of the initial condition.

The expression of the zero-order solution involves five parameters n(
r , t0),


u(
r , t0) and T (
r , t0) whose hydrodynamic meaning becomes apparent when com-

puting the moments of the initial distribution:

n(
r , t0) =
∫

F (0)

v (
r , t, t0)d
v (density), (8.42)

n
u(
r , t0) =
∫


vF (0)

v (
r , t, t0)d
v (stream velocity), (8.43)

3nkT (
r , t0) =
∫

mv2 F (0)

v (
r , t, t0)d
v (temperature). (8.44)

They span the invariant manifold arising in the quasi-stationary approximation

(equivalent to restricting the solution to the zero-order stationary regime). Reduced

macroscopic dynamics, corresponding to the slow drift of this manifold, describes

the time evolution of these auxiliary variables generated by the higher-order con-

vection term 
v. 
∇
r F in the Boltzmann equation. The first order is written

(∂t − A)F (1) = −
v. 
∇
r F (0), (8.45)

where A is the linearized collision integral:

J (F (0) + εF (1)) = J (F (0)) + εAF (1). (8.46)

A basically acts on the 
v-dependence, coupling the components F
v at fixed position


r and time t . The kernel ofA is spanned by 1, 
v and v2, and all other eigenvectors are

stable (associated with eigenvalues with a negative real part) hence do not contribute

to the slow manifold (note that such spectral features support the existence of a slow

manifold). Denoting by P the projection onto the kernel of A, and making use of

the explicit expression for the first-order contribution to the solution,

F (1)

v = −(t − t0)P
v. 
∇
r F (0)


v + A−1(1 − P)
v. 
∇
r F (0)

v , (8.47)

turns the RG equation (8.41) into the closed equation

∂ F (0)

v

∂t0
+ εP
v. 
∇
r F (0)


v = 0, (8.48)
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from which follow the equations governing the evolution of n(
r , t0), 
u(
r , t0) and

T (
r , t0). The resolution in fact amounts to considering that the deformation εF (1) of

the equilibrium unperturbed solution F (0) (that is, the deformation of the invariant

manifold of the unperturbed motion into a slow manifold) belongs to the kernel of

A. This is fully relevant when investigating the asymptotic behavior, since it is only

influenced by the slow modes associated with eigenvectors spanning the kernel of

A. The other modes, although ultimately decreasing to 0, generate singular behavior

when plugged into a finite perturbation series; only a proper resummation of the

whole perturbation series can recover regular behavior.

At this stage, the variable t0 might be treated like the current time variable and

simply written t , yielding the usual hydrodynamic equations. Using the ideal gas

state equation nkT = P to define the pressure leads to the non-dissipative Euler

equations (with ρ = mn):

∂tρ + 
∇(ρ
u) = 0 (8.49)

∂t (ρui ) + ∂ j (ρu j ui ) + ∂i P = 0. (8.50)

Actually the first-order solution exhibits a distortion from local equilibrium F (0)

v

and gives rise to dissipation. Solving the RG equation at the second order allows us

to account for this dissipation in the resulting macroscopic equation, now yielding

the Navier–Stokes equations, written:6


∇.
u = 0 (8.51)

∂t 
u + 
u. 
∇
u = −

∇ P

ρ
+ ν�
u (8.52)

in the incompressible case where ρ = constant. The transport coefficient ν

(kinematic viscosity) arises as an effective parameter following from the RG pro-

cedure, that can be expressed explicitly as a function of the collision kernel B,

Eq. (8.38).

The microscopic phase space for the Boltzmann equation is the functional space

of the one-particle distribution functions f (
r , 
v, t). The slow manifold is spanned

by five hydrodynamic quantities, ρ(
r , t), 
u(
r , t) and P(
r , t), defined as moments

of f (
r , 
v, t) over 
v. These quantities are also involved in the parametrization of

the initial condition, bridging the present derivation and the invariant-manifold

viewpoint with the Green function RG presented in Section 8.4.2. It is also closely

reminiscent of the RG approach implemented in Section 8.2.2 for the example

of the Duffing oscillator, with two differences: the time variable is extended to a

space-time dependence and the renormalization is not applied to the integration

6 Note that such Navier–Stokes equations are obtained while neglecting higher spatial derivatives of the velocity
field; these contributions would lead to the so-called “Burnett terms.”



8.5 Probabilistic viewpoint on RGs 243

constant but directly at the level of the initial condition. In the example of the

Duffing oscillator, the invariant manifold was represented by u0(t) = Re(A(ε, t)eit )

and the idea was to encapsulate within the dependence t0 → A(t0) of the integral

constant upon the initial time the consistency conditions ensuring that we get proper

macroscopic behavior; the resulting slow evolution of A, Eq. (8.12), provided the

desired effective macroscopic equation.

8.5 Probabilistic viewpoint on renormalization groups

Since the very beginning of RG theory, a parallel probabilistic viewpoint on RG

techniques and their deep theoretical rationale has been developed, mainly by Jona-

Lasinio and collaborators (a short review is given in Jona-Lasinio (2001)). This re-

veals, from a more formal and mathematical point of view, how RGs are specially

designed to manage with long-range correlations. So doing, it unravels the statis-
tical nature of criticality: critical phenomena appear as “statistical catastrophes,”

differing dramatically from plain collective behaviors associated with the celebrated

law of large numbers and central limit theorem, for which standard mean-field argu-

ments apply for passing from microscopic descriptions to macroscopic predictions.

This probabilistic viewpoint also unravels other statistical anomalies, for instance

individual singularities, disorder or geometric frustration, at the origin of anoma-
lous large-scale behaviors. It explains how the quantitative features of RGs are

derived, in particular their anomalous exponents, and delineates their universality.

Conversely, we shall see how probability theory benefits from RG methods:

iterated coarse graining and joint rescalings provide a systematic procedure to
establish statistical laws, bridging knowledge of elementary ingredients and their

stochastic features with prediction of their typical collective behavior.

8.5.1 Statistical laws

Statistical laws describe the appearance of macroscopic features from assemblies

of stochastic elements. Their study gives deep insights into the ingredients and

parameters that control the emergence of reproducible behaviors from highly fluc-

tuating individual behaviors. Statistical laws provide typical examples of emergent
properties, not directly nor obviously foreseeable from the observation of individual

behaviors.

Two basic statistical laws, playing a central role in statistical mechanics, are the

law of large numbers and the central limit theorem, both relative to the asymptotic

behavior N → ∞ of a sum
∑N

i=1 Xi of independent and identically distributed
(i.i.d.) random variables {Xi } of finite variance σ 2. The law of large numbers states

the convergence with probability 1 of (
∑N

i=1 Xi )/N toward the value 〈X〉, whereas
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the central limit theorem states the convergence of the probability distribution

function of (
∑N

i=1 Xi − 〈X〉)/
√

σ 2 N toward a centered Gaussian distribution with

unit variance.7

The central limit theorem accounts for the normal diffusion law,

R2(t) ≡
〈(

t/τ∑
i=1

Xi

)2〉
∼ 2Dt (assuming here 〈Xi 〉 ≡ 0), (8.53)

describing the time dependence of the mean square displacement R2(t) of an ideal
random walk, that is, with independent, centered and identically distributed incre-

ments {Xi } of duration τ . The diffusion coefficient is given by D = a2/2τ where

a2 is the square average length of a step Xi . The theorem stated with N = t/τ also

gives the asymptotic distribution p(x, t) of the walker position x along the line at

large time, namely p(x, t) = 1/
√

4π Dt e−x2/4Dt .

Statistical laws appear as a special instance of asymptotic analysis since the issue

is to extract robust global features of an assembly of N elements, N → ∞. They

provide finite-size approximations for N large enough, but then their validity should

be checked by estimating the strength of finite-size effects, typically by computing

higher-order terms (in particular, at lowest order, the central limit theorem allows

us to estimate the fluctuations around the average behavior described by the law of

large numbers).

The link with RG motivations is obvious. We shall see that the RG approach to

statistical laws is possible because of the existence of relations between the prop-

erties at different scales, typically some kind of scale invariance or hierarchical

structure that rules the collective behavior and controls its features. The examples

proposed in this section will illustrate the achievements of the RG when imple-

mented in this probabilistic context:

(1) to integrate short-range correlations, moderate individual singularities or weak disorder

into effective parameters in the asymptotic statements;

(2) to derive anomalous scaling with respect to N of the emerging properties originating

in long-range correlations, if any, or other statistical “pathology” (like strong disorder

or extreme events with non-vanishing probability) strong enough to prevent the law of

large numbers and the central limit theorem holding;

(3) to discriminate between the essential ingredients and irrelevant details having no con-

sequence on the statistical behavior, that is, to investigate the robustness of this behavior

(also termed its structural stability);

(4) to determine the universality class associated with a given statistical law. The ex-

pected universal aspect of probabilistic limit theorems deserves to be underlined: these

7 In mathematical terms, the law of large numbers states an almost sure convergence toward 〈X〉 and the central
limit theorem a convergence in law toward the normal distribution.
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theorems assess some limiting statistical behavior in large classes of random variable

sequences, i.e. statistical ensembles defined by a few constraints on the nature (di-

mension, distribution shape) of their elements and their correlations, but none on the

physical entities or quantities they represent.

8.5.2 Coarse graining random variable sequences

The basic probabilistic interpretation of the RG was introduced more than three

decades ago by Jona-Lasinio. It now appears as the probabilistic formulation of

the Kadanoff–Wilson block-spin RG (Section 8.3.2) and more generally as real-

space RGs. For pedagogical purposes, the technical benefits and unifying power

offered by this more abstract and mathematical formulation are best captured in the

simplest framework of real random variable sequences 
X = {Xi }. They could be

one-dimensional arrays of spins (i then being the space-cell label) or sequences of

increments of a random walk (i then being a time label) where each elementary unit

(spin or increment) is described by a real-valued random variable Xi . The issue,

connected with those discussed in Section 8.5.1, is to determine the collective

behavior N → ∞ of the sum
∑N

i=1 Xi of N such variables, and the conditions for

its occurrence.

Extension to vector-valued variables Xi ∈ IRd corresponding to d-component

spins or random walk in a d-dimensional space is straightforward. Extensions to

continuous sequences (i.e. stochastic processes, with i ∈ IR) and multivariate se-

quences (i.e. random fields, with i ∈ IRd) can also be considered; the bridge between

discrete and continuous-time statistical laws will be implemented explicitly, as a

side benefit of their RG derivation, in Section 8.5.7.

RG principles teach us that a natural way to investigate the asymptotic behavior

N → ∞ of the sum SN = ∑N
i=1 Xi is to proceed recursively by performing nested

coarse grainings. This amounts to investigating the relation SNn → SNn+1
between

the successive terms of a subsequence where Nn+1/Nn = k is a given rescaling

factor (most often k = 2). More explicitly, following Jona-Lasinio (1975, 2001),

one defines a coarse-grained sequence {B j } according to:

B j ( 
X , ν, k) ≡ 1

kν

(
k∑

i=1

Xk( j−1)+i

)
(ν > 0, k integer). (8.54)

This coarse graining amounts to lumping together k random variables and rescaling

the resulting behavior by kν and the apparent time by k. It defines a bona fide RG

insofar as it exhibits a (semi)group structure upon composition:

Rν,k( 
X ) ≡ 
B( 
X , ν, k) with Rν,k1
◦ Rν,k2

= Rν,k1k2
. (8.55)
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A key point is the choice of the exponent ν: it is to be determined self-consistently
in the course of the RG procedure so as to give non-trivial asymptotic behavior for

the RG flow generated by (8.55). This requirement ensures a non-trivial limit as

k → ∞ for (8.54) since Rn
ν,k = Rν,kn : the group structure implies the equivalence

of iterating Rν,k at fixed k and increasing k. The recursive formulation is more

efficient in practice since it offers a systematic procedure, namely the investigation

of the RG flow, its fixed points, their basin of attraction and unstable directions.

It thus provides a constructive method to determine the limit k → ∞, while the

convergence property is nothing but the expression of the statistical law we are

looking for. The adequate rescalings (k, kν) reflect the unique way to rescale state

variables and time jointly so as to compensate for the integrated effect of small-scale

details and obtain a well-defined large-scale behavior. This is the core of the RG

principle since it gives access to the exponent ν and its possibly anomalous value.

In the case of i.i.d. variables with finite variance, the limiting behavior as k → ∞
is well known: the law of large numbers is recovered with ν = 1, whereas consid-

ering the centered sequence 
X − 〈X〉 and ν = 1/2 yields the central limit theorem.

Anomalous behaviors with different values for ν are expected if the conditions of

validity of the central limit theorem fail, namely if

(1) the variance of the variables {Xi } is infinite,

(2) the variables {Xi } are correlated,

(3) the duration τX (i) associated with Xi depends on i and {τX (i)} exhibits an anomalous

distribution, typically according to a power law, with 〈τX 〉 = ∞, instead of the normal

exponential decay associated with a Poisson distribution,

(4) the variables {Xi } are not independently distributed but some variability is present in

their individual statistical features; such a “disorder” is generally accounted for by

considering these features themselves as random variables, introducing a second level

of stochasticity (“probability of probabilities”).

These situations can be substantiated for random walks, yielding various anoma-

lous diffusions laws R2(t) ∼ t2ν (in other words, novel limit theorems), respec-

tively:

(1) super-diffusion with ν > 1/2, as observed in the Lévy flight model,

(2) persistent (with ν > 1/2) or anti-persistent (with ν < 1/2) motions,

(3) sub-diffusion, with ν < 1/2, due to trapping phenomena,

(4) anomalous diffusion in disordered media, with possibly a time dependence more com-

plicated than a mere power law R2(t) ∼ t2ν .

We shall detail case (1) in Section 8.5.4 and case (2) in Section 8.5.5; all have been

already discussed in Chapter 7, hence it is meaningful to reconsider the discussion

with a probabilistic RG viewpoint. For pedagogical purposes, it is fruitful first
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to present the RG at work in the simplest situation, namely the derivation of the

central limit theorem. Anomalous statistical laws embed the central limit theorem

as a special instance, and their RG derivation will follow the same line.

8.5.3 Renormalization-group derivation of the central limit theorem

We here consider sequences 
X = {Xi } of real independent and identically dis-
tributed (i.i.d.) random variables of finite variance σ 2

X < ∞. In practice, the “block-

RG” described in Section 8.5.2 is implemented on the probability distribution

functions: choosing k = 2, the basic renormalization transformation should de-

scribe the passage from the elementary probability distribution function p of any

Xi to the probability distribution function Rp of the coarse-grained variables

B j ( 
X , ν, k = 2) obtained by grouping the original variables in blocks of k = 2

units. We thus consider the operator acting upon probability distribution functions

in the following way:

Rν,k=2 p(x) = 2ν

∫ ∞

−∞
p(y)p(2ν x − y)dy ≡ 2ν p ⊗ p (2ν x). (8.56)

This obviously preserves the positivity p(x) ≥ 0 and the normalization to 1 of the

probability distribution functions. The rationale underlying the choice of the ex-

ponent ν is to render p and Rν,2 p as similar as possible, so as to optimize the

occurrence of a well-defined asymptotic behavior for the RG flow, namely the con-

vergence to a fixed point. Taking into account the i.i.d. character of the elementary

variables, and the ensuing i.i.d. character of the blocks as regards the subsequent

iterations of the renormalization procedure, the condition that R preserves the

variance (a necessary condition for the existence of a fixed point of R with finite

variance) prescribes ν = 1/2. The renormalization operatorR ≡ Rν=1/2,k=2 acts in

the space of univariate probability distribution functions and the associated discrete

flow admits a family of Gaussian fixed points:

p∗
σ (x) = 1√

2π σ
e−x2/2σ 2

satisfying Rp∗
σ = p∗

σ . (8.57)

According to the general RG scheme (see Figure 8.1 in Section 8.3.2) one has to

investigate the stability and the basin of attraction of each of these fixed points.

Showing the convergence toward p∗
σ would at the same time prove the central limit

theorem, put forward its conditions of validity and its robustness, and determine the

selection rule for the value of the parameter σ . Indeed, direct examination shows

that Rn p is the probability distribution function of
∑N

i=1 Xi/
√

N with N = 2n (it

is a mere consequence of the group relation Rn
ν,k=2 = Rν,k=2n and independence of

variables). Setting aside the technicalities required to interpolate between integers
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of the form 2n and fully assess the convergence as N → ∞, the central limit theorem

is here formulated as the weak convergence of Rn p to p∗
σ (p) for any probability

distribution function p of finite variance σ 2(p) < ∞.

To summarize the procedure from the perspective of its generalization, we are

thus led to investigate the RG flow seen as a dynamical system in the functional space
of probability distribution functions on R with finite variance (i.e. such that x2 p(x) is

integrable). An important property underlying the proof of the required convergence

is the existence of three conservation laws (normalization to 1, centered character

and variance):∫ ∞

−∞
p(x)dx = 1,

∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2 p(x)dx = σ 2. (8.58)

By construction ofR, these three integral relations are preserved upon renormaliza-

tion: we here recover the requirement that the RG should preserve the symmetries

and invariances of the initial system or setting. In particular, the third relation in

(8.58) shows that if convergence occurs to a fixed point p∗
σ , its variance σ 2 is deter-

mined by the variance σ 2(p) for the identically distributed elementary units with

distribution p. Necessary convergence conditions follow from the local stability

analysis of the fixed point, considering the action of R on p = p∗
σ (1 + εq) to first

order in ε. It reduces to study of the linearized operator DR(p∗
σ ) or equivalently

the linear operator Lσ such that DR(p∗
σ ) = p∗

σ Lσ ,

R[p∗
σ (1 + εq)] = p∗

σ (1 + εLσ q + O(ε2)), (8.59)

namely, using the symmetry p∗
σ (x) = p∗

σ (−x) of the Gaussian fixed point p∗
σ :

Lσ q(x) = 2√
πσ

∫ ∞

−∞
e−y2/σ 2

h

(
y + x√

2

)
dy. (8.60)

A direct computation shows that the eigenvalues of Lσ are:

λn = 21−n/2 for all integers n ≥ 1. (8.61)

hence λ1 = √
2, λ2 = 1, λ3 = 1/

√
2 and so on, in a decreasing sequence. The

relevant stability analysis is in fact to be restricted to R-invariant subsets of prob-

ability distribution functions satisfying the above three conservation laws (8.58),

defining one subset for each value of σ . Accordingly, one can verify that the compo-

nents of the relevant probability distribution function perturbations q onto the first

eigenvectors (n = 1 and n = 2) vanish owing to these conservation laws. Only the

eigenvalues with n ≥ 3 are actually considered, which proves the linear stability of

the fixed point p∗
σ since λn < 1 for any n ≥ 3. A non-linear analysis should then

be performed to ensure that non-linear contributions do not modify this conclu-

sion and to determine the basin of attraction of p∗
σ . Again, the situation is strongly
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constrained by the conservation laws: one shows that the basin of attraction of p∗
σ

is the whole set of probability distribution functions satisfying these three laws

with the same value σ . Finally, estimating the distance between Rn p and its limit

as a function of n would allow control of the error, that is, higher-order terms in

finite-size approximations Rn p ≈ p∗
σ (p)+ h.o.

It is possible, at least as a training exercise, to implement this RG approach for

vector variables 
X
i (with D components), in higher underlying dimension d > 1

(meaning that labels 
i now span Zd), and involving larger blocks of kd elementary

units (rescaling factor k instead of 2). The RG map is then written:

Rk p(x) = kd/2 p⊗kd

(kd/2 x) (
x ∈ IRD) (8.62)

(where ⊗ denotes the convolution, see (8.56)) similarly possessing a family of now

D-dimensional Gaussian fixed points.

This RG proof of the central limit theorem illustrates a general procedure, al-

lowing us to derive limit theorems in more complex instances when the classical

probabilistic approach does not provide a simpler way to get the result. The RG

shifts the analysis from the level of random variables to that of probability distribu-
tion functions by devising and analyzing transformations acting on these probability

distribution functions. We are now in a position to elaborate on this point, and show

moreover that it leads to the notion of continuous self-similar processes, in three

typical instances: when elementary events are independent but exhibit an infinite

variance (Section 8.5.4), when they are long-range coupled (Section 8.5.5), and

when they are long-range correlated (Section 8.5.6).

8.5.4 Stable laws and associated limit theorems

The starting point in this section will be the relevance of the RG in the context

of convolution equations. The idea is to reformulate the convolution equation as a

fixed-point equation Rp∗ = p∗ for an appropriate RG operator R. First, this yields

recursive access to the solution p∗ (namely, p∗ = limn→∞ pn with pn = Rpn−1 =
Rn p0) which could be more efficient than other methods of resolution. In addition,

unfolding the RG fixed-point property into a convergence property allows us to

establish novel limit theorems for i.i.d. variables whose individual distribution p
belongs to the basin of the fixed-point p∗ and to assess their validity conditions.

In this perspective, the RG fixed-point equation Rp∗ = p∗ with R defined in

(8.56) expresses that p ⊗ p has the same functional form as p, up to a suitable

transformation of its variables and numerical parameters. This question about sta-

bility upon convolution was answered a long time ago: the solutions are a family

of probability distribution functions known as stable laws (or Levy distributions),
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all of infinite variances except the special subfamily of Gaussian laws. Their ex-

plicit expression is easier to write in the conjugate space, considering characteristic

functions ϕ(u) = 〈eiu X 〉, and restricting to the centered laws for simplicity:

L̂a,ν(u) = e−a|u|1/ν

(8.63)

with 1/2 ≤ ν < 1; the Gaussian subfamily is recovered for ν = 1/2. The bounds

on ν are required to get a bona fide probability distribution function La,ν by in-

verse Fourier transform of L̂a,ν(u). Indeed, it is necessary that L̂a,ν(u = 0) = 1

and L̂ ′
a,ν(u = 0) = i〈X〉 = 0, requiring ν < 1 (actually ν ≥ 1 is still meaningful if

the existence of a well-defined first moment is also relaxed). To be a characteristic

function, L̂a,ν also has to be of positive type,8 requiring ν ≥ 1/2. In particular, this

shows that the Gaussian distribution is the only solution with finite variance. The

positive real a is related to the width of the distribution La,ν ; indeed, a−ν gives a

characteristic size in the conjugate space, hence in the direct space the distribution

will be more spread out as a is large.

These stable laws, first defined through their remarkable behavior upon convo-

lution, also appear to play a central role in generalized limit theorems extending

the central limit theorem to infinite-variance but still independent variables. Let us

present the RG derivation of this assertion. Denoting by p(x, t) the probability dis-

tribution function of the sum S(t) = ∑t
i=1 Xi of identical random variables {Xi },

the RG transformation (8.55) is written

Rν,k p(x, t) = kν p(kνx, kt). (8.64)

This transformation can be expressed equivalently in terms of characteristic func-

tions ϕ(u, t) ≡ 〈eiuSt 〉, the characteristic function Tν,kϕ that corresponds to Rν,k p
being:

Tν,kϕ(u, t) = ϕ(k−νu, kt). (8.65)

Extension to continuous time values is straightforward, allowing random walks and

stochastic processes to be encapsulated in a unified framework, as detailed in Sec-

tion 8.5.7. The fixed-point equation Rν,k(p∗) = p∗ defines self-similar processes
p∗(x, t). Since it should be satisfied for all k > 0, it can be written with k = 1/t ,
yielding the probability distribution function fixed-point functional form and the

corresponding expression for the characteristic function:

p∗(x, t) = t−ν P(xt−ν) or ϕ∗(u, t) = φ(utν). (8.66)

8 A function ϕ(u) is said to be of positive type if for any integer n, for any n-tuplet of variable values u1, . . . , un
and any n-tuplet of complex numbers c1, . . . , cn , it satisfies

∑
i, j=1,...,n ci c̄ j ϕ(ui − u j ) ≥ 0.
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Self-similarity of this fixed point is revealed by the involvement of a single scaling

variable xt−ν (respectively utν).

In the case of independent variables of characteristic function ϕ(u), it is

straightforward to show that the characteristic function of the aggregated variable

S(t) = ∑t
i=1 Xi is ϕ(u)t . Plugging this in (8.66) yields �(z) ∼ e−a|z|1/ν

, that is, we

recover the characteristic function L̂a,ν of a stable law La,ν . We here meet again a

general RG principle: the adequate rescalings involved in the RG transformation

precisely reflect the unique way of jointly rescaling space and time so that the RG

flow exhibits a non-trivial limiting behavior. In this way, by construction, for any

a, the law La,ν is a fixed point of Rν,k (for any k), and the RG fixed-point equation

expresses the self-similarity of the collective variables Bν(t) constructed from an

i.i.d. sequence {Xi } of random variables following the stable law La,ν . A straight-

forward scaling argument yields the associated diffusion law, anomalous as soon

as the stable law has an infinite variance (for ν > 1/2):

R2(t) ≡ 〈S(t)2〉 ≡∼ t2ν. (8.67)

More generally, one shows the stability of the fixed point La,ν in the space of

probability distribution functions that behaves as p(x) ∼ |x |−(1+1/ν) at large x . Ac-

cordingly, this stability ensures the convergence of the RG flow to La,ν . Translated

back in probabilistic terms, it yields an anomalous central limit theorem, stating

that if the original probability distribution function behaves as p0(x) ∼ |x |−(1+1/ν)

for |x | → ∞ with ν < 1, then Ba,ν(t) ≡ t−ν
∑t

i=1 Xi converges in law toward a

stable law La,ν . It means that these stable laws describe the asymptotic collective

behavior of sequences of i.i.d. variables of infinite variance. We here recover, us-

ing RG concepts and arguments, the limit theorems of probability theory for the

sum of independent variables, as investigated by Lévy (1954) and Gnedenko and

Kolmogorov (1954).

8.5.5 Renormalization-group analysis of the hierarchical model

A different illustration of departure from the normal behavior associated with the

central limit theorem is given by the so-called hierarchical model, namely a class of

abstract models specially devised to exhibit direct (physical) couplings at all scales,

in an explicitly workable way. The Hamiltonian Hn,c of the model with parameter

c, with 1 < c < 2, and 2n real-valued degrees of freedom is defined recursively

(see Figure 8.3):

Hn(x1, . . . , x2n ) = Hn−1(x1, . . . , x2n−1 )

+ Hn−1(x2n−1+1, . . . , x2n ) −
(c

2

)n
(

2n∑
i=1

xi

)2

. (8.68)
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x 1
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Figure 8.3 Hierarchical model up to n = 3. Each circle represents a term

−(c/2)n(
∑2n

i=1 xi )
2 where the sum runs over all the points contained within the

circle: H3(x1, . . . , x8) = H2(x1, . . . , x4) + H2(x5, . . . , x8) − (c/2)3(x1 + · · · +
x8)2, H2(x1, . . . , x4) = H1(x1, x2) + H1(x3, . . . , x4) − (c/2)2(x1 + · · · + x4)2

and H1(x1, x2) = H0(x1) + H0(x2) − (c/2)(x1 + x2)2.

It thus encapsulates a quadratic coupling −Ji j (c, n)xi x j between any pair (i, j)

of degrees of freedom (appearing twice for i �= j) whose strength Ji j is given by:

Ji j (c, n) =
n∑

q=n0(i, j)

(c

2

)q
with 2n0−1 ≤ | j − i | < 2n0 . (8.69)

Provided9 c < 2 and n is large enough, (8.68) yields:

Hn(x1, . . . , x2n ) ≈ −
∑
i, j

Ji, j (c)xi x j (n → ∞) (8.70)

where10

Ji, j (c) = Ji, j (c, n → ∞) ∼ J0(c)

| j − i |α(c)
(8.71)

with

α(c) = 1 − log2(c) and J0(c) = 1

1 − c/2
. (8.72)

These expressions provide a qualitative understanding of the thermodynamic be-

havior. For 1 < c < 2, 0 < α(c) < 1 hence the model exhibits a divergence of the

coupling range. It is accordingly expected to exhibit a divergence of the correla-

tion range and ensuing critical features in a domain [0, T ∗(c)[ of low temperatures

(or equivalently a domain ]β∗(c), ∞[ in terms of inverse temperature β) where

9 If c < 1, the coupling is sufficiently short range that
∑

j Ji j < ∞ for any fixed i , and the behavior is the same
as for a plain ferromagnetic Hamiltonian (same universality class). If c > 2, Ji j (c, n) diverges for n → ∞
and the model is thermodynamically unstable. Consistently, the bounds c = 1 and c = 2 are related to special
values α(1) = 1 and α(2) = 0 of the exponent α(c) = 1 − log2 c, see (8.71) and (8.72).

10 More precisely, 2−α(c)| j − i |−α(c) J0(c) < Ji, j (c, n → ∞) ≤ | j − i |−α(c) J0(c).
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thermal fluctuations are dominated by the couplings. By comparison, the ferro-

magnetic Ising model (Section 8.3.2) exhibits a divergence of the correlation range

at an isolated critical temperature T ∗(c) while the couplings remain restricted to

nearest neighbors. In both cases, criticality arises at the “balance temperature”

T ∗(c) where competing influences of bare couplings (toward order) and bare ther-

mal fluctuations (toward disorder) match, inducing an anomalous distribution for

the resulting statistical fluctuations.

An RG approach can be developed to assess quantitatively this qualitative picture,

mainly to determine the threshold β∗(c), to understand the complex subthreshold

interplay between thermal fluctuations and long-range couplings (inducing a strong

trend toward full order but at the same time enhancing thermal fluctuations by

propagating them to the whole system) and finally to describe the criticality at

β = β∗(c) and determine its universality class. The macroscopic consequences of

the couplings present at all scales will be determined by a recursive integration of

their influence into block distributions. Let us now work out this program explicitly,

best implemented on the probability distribution function of the order parameter∑2n

i=1 xi .

Starting with H0 = 0 and p0(x) = 1/
√

2π e−x2/2, we consider the Boltzmann

distribution for the model with 2n degrees of freedom and Hamiltonian Hn and

denote by pn the ensuing probability distribution function for the aggregated and

rescaled variable sn ≡ 2−n/2(
∑2n

i=1 xi ). It is straightforward to determine the relation

between pn and pn+1:

pn+1(s) = gn(s2) Rpn(s) (8.73)

where R has already been encountered in Section 8.5.3 and gn is a rescaling func-

tion:

Rp(s) =
√

2 (p ⊗ p)(s
√

2) and gn(s2) ∼ eβ(c/2)ns2

. (8.74)

Such a recursion is somehow peculiar and departs from the usual RG since it defines

a non-autonomous RG operator, depending explicitly on the number n of coarse

grainings, that plays the role of time in the dynamical system analogy for the RG

flow. It yields an increasing variance, that integrates part of the couplings:

σ 2
n = 1

1 − 2β
∑n

q=1(c/2)q
. (8.75)

As long as β < β∗(c) = 1/c − 1/2, this effective variance σ 2
n tends toward a finite

value:

σ 2
eff(β, c) = 1

1 − 2βc
2−c

= 1

1 − β/β∗(c)
≥ 1. (8.76)
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This effective variance diverges if β = β∗(c), reflecting the critical behavior of

the model and the failure of the central limit theorem at that point. The central

limit theorem holds only at large temperature, namely β < β∗(c). Nevertheless,

collective amplification of fluctuations implies that σeff(β) > 1 as soon as β > 0:

this result is not intuitive since it means that long-range coupling actually enhances

the consequences of thermal fluctuations, by propagating the fluctuation of some

xi to any other variable x j . Note finally that the enhancing factor gn(s2) tends to

1 as T → ∞ (β → 0) at fixed s and n and σeff(β = 0, c) = 1, so that the plain

recursion valid for i.i.d. variables is consistently recovered at infinite temperature.

At β = β∗
(c), a stronger rescaling of the block variables is required to compensate

for the couplings, that overwhelm thermal fluctuations above this threshold, and to

get a well-defined renormalized behavior as n → ∞. The proper coarse-grained

variable happens to be s̃n ≡ (
√

c/2)n(
∑2n

i=1 xi ) instead of sn ≡ 2−n/2(
∑2n

i=1 xi ).

Considering a different coarse graining leads to the definition of a different re-

cursion:

R̃c,β p(s) ≡ �(p, c) eβs2

(p ⊗ p) (2s/
√

c) (8.77)

where �(p, c) is a normalization constant ensuring that R̃c,β p is a probability

distribution function. The determination of the rescaling factor 2/
√

c >
√

2, instead

of
√

2, amounts to the determination of the proper rescaling exponent ν discussed

above in Sections 8.5.2 and 8.5.3: it is chosen self-consistently so that the RG flow

converges toward a non-trivial distribution. This limiting distribution obviously

has to be a fixed point of R̃c,β , and the convergence of the RG flow is nothing

but the expression of a statistical law. We here shift from ν = 1/2 to an anomalous

value 1 − log2

√
c = 1/2 + α(c)/2 > 1/2, reflecting the strong collective behavior

arising at (and above) the critical threshold β∗(c). By comparison, ν = 1 in the case

of fully coherent behavior of the elementary units (this case is also observed when

reaching the lower bound c = 1). The recursion (8.77) now defines a bona fide

renormalization operator, and we might carry on the RG program. R̃c,β admits a

Gaussian fixed point:

p̃G,c,β(s) =
√

1

2πa2(c, β)
e−s2/2a2(c,β) where a2(c, β) = 2 − c

2βc
= β∗(c)

β
≤ 1

(8.78)

a(c, β∗
(c)) = 1 hence one recovers a normal distribution at β = β∗(c).

For 2 > c >
√

2, the linear stability analysis of this fixed point shows that it has

a non-empty domain of attraction (a stable manifold in the language of dynamical

systems, termed a critical manifold in the RG context, see Figure 8.1). Translated

back in statistical terms, it means that variables {xi } coupled according to the

hierarchical model with β = β∗
(c) and 2 > c >

√
2 follow a generalized central
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limit theorem with a rescaling exponent ν = 1/2 + α(c)/2, that is, involving the

variables s̃n . We might speak of an “anomalous central limit theorem”.
At lower temperatures, for β > β∗(c), this theorem holds with moreover a renor-

malized variance a2 < 1 (smaller than the individual variance) reflecting the over-

whelming ordering influence of the couplings. As expected, complete order is

recovered at zero temperature since the variance then vanishes a(c, β = ∞) = 0.

For 1 < c <
√

2, the Gaussian fixed point p̃G,c,β is now unstable and an exchange

of stability occurs with a hyperbolic non-Gaussian fixed point. Thus a novel limit

theorem arises for c <
√

2, associated with this new fixed point and accordingly de-

scribing non-Gaussian asymptotic behavior. We are now faced with an “anomalous
and non-Gaussian central limit theorem.”

Let us summarize the results of this study. The hierarchical model exhibits long-

range correlations in the whole low-temperature domain β ≥ β∗
(c) following from

long-range couplings built into the Hamiltonian, reflected in an anomalous exponent

ν > 1/2: the variance of the order parameter
∑N

i=1 xi increases as N 2ν , faster than

N . By contrast, at high temperatures (β < β∗(c)), the influence of the couplings

does not spoil the normal central limit theorem, since they can be fully integrated

in a renormalized variance σ 2
eff(β, c), but it enhances the consequences of thermal

fluctuations: σ 2
eff(β, c) > 1.

Once the proper renormalization operator and its fixed points have been de-

termined, the RG analysis can be carried on as described in Section 8.3.2 and

Figure 8.1. In particular, the unstable eigenvalues of the linearized RG operator

(associated with eigenvectors transverse to the critical manifold) will be directly

related to critical exponents, as detailed in Sections 8.3.2 and 8.3.3.

8.5.6 Limit theorems for correlated variables

The hierarchical model analyzed in the previous subsection leads us to a caveat:

the difference between (physical) couplings and (statistical) correlations. In the

hierarchical model, the anomalous behavior was somehow rooted directly in the

Hamiltonian owing to the presence of direct couplings at all scales. But critical

phenomena arise as soon as long-range correlations at all scales are present, and

can occur in a system of short-range coupled or even non-interacting elements,

think for instance of a percolation network. Moreover, whereas couplings are fully

prescribed by the Hamiltonian, correlations are prescribed by the probability distri-

bution function of the model, and hence depend also on the temperature in a system

at thermal equilibrium.

The same distinction prevails in the dynamic context. Anomalous asymptotics

might originate from long-term memory prescribed at the basic level of evolution

equations. For instance, in the context of random walks, this situation occurs if
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the walker remembers at all times the sites already visited and avoids them; this

is called a self-avoiding walk and is used to model polymer conformations. But

anomalous asymptotics might already arise, without any memory, from strong

enough time correlations; such correlations are observed, for instance, in a Markov

chain whose transition matrix is quasi-reducible, with eigenvalues very close to

1 hence associated with slowly relaxing modes. In this case, time correlations are

emergent features of the whole stationary phase-space distribution of the dynamics.

Let us investigate in the present subsection this general situation by consider-

ing a sequence {Xi } of correlated variables, notwithstanding the origin of their

correlations. In the case of correlated variables, one of the validity conditions of

the standard central limit theorem is not satisfied hence we cannot a priori expect

normal behavior: the asymptotic behavior of
∑N

i=1 Xi has to be reconsidered and

it will possibly exhibit anomalous features. We show here how the RG allows us to

derive rigorously novel limit theorems in this context while revealing the criterion

separating normal and critical behavior.

To quantify the correlations, a meaningful and efficient notion is that of corre-
lation length ξ or correlation time in dynamic contexts. It is defined as the charac-

teristic length of the correlation function, typically given by the exponential decay

rate of correlations in the case of a statistically homogeneous sequence:

C( j − i) ≡ 〈Xi X j 〉 − 〈Xi 〉〈X j 〉 ∼ C0 e−|i− j |/ξ . (8.79)

ξ can be understood qualitatively as a coherence length, that is, the characteristic

size of regions that behave as a whole, each like a single block, as regards their

relaxation to equilibrium, their response to external forcings or perturbations, and

their interactions with adjacent regions.

If ξ is finite, the correlation function actually exhibits an exponential decay over

a distance of order ξ and correlations are accordingly termed short range. ξ gives

the relevant scale for defining the elementary units in the most meaningful and

efficient way: the best choice is to identify the elementary units with subsystems of

linear size ξ . Smaller subsystems are strongly correlated and never seen in isolation;

larger ones would involve unnecessary averaging and associated loss of resolution

and information. A typical example is encountered in conformational studies of

a linear polymer chain: the monomers are identified with segments of the size of

the Kuhn length (accounting on purely geometrical grounds for the combinatorial

variability of the angles between successive monomers along the chain) or at a larger

scale, aimed at a more integrated effective description, with segments of the size

of the persistence length (accounting for the thermal fluctuations of the monomer

relative orientations). Below we recover this interpretation of ξ more rigorously by

computing the renormalized step-length of a short-range correlated random walk.
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If ξ is infinite, the system contains correlated regions of any size. In consequence,

there is no way to reduce the system to an assembly of independent or short-range

correlated units by choosing a proper scale at which to define the units. At each

scale, strong correlations remain between the blocks and the RG should enter the

scene, integrating these correlations in a recursive way into the definition of larger

blocks and their effective features, up to the whole system.

Although intuitive, the distinction between finite versus infinite correlation

lengths does not exactly match the boundary between normal and anomalous sta-

tistical behaviors, rather it is related to the integrability of the correlations. Indeed,

considering a sequence {Xi }, stationary in the sense that the covariance of Xi and

X j is a function C( j − i) of | j − i |, the variance of SN = ∑N
i=1 Xi is written:

Var(SN ) =
N−1∑

q=1−N

C(q)(N − 1 − |q|). (8.80)

If the correlations are integrable, that is,
∑+∞

q=−∞ |C(q)| < ∞, the variance leading

order as N → ∞ is easily estimated (with t = Nτ where τ is the actual time step):

Var(SN ) ∼ N
+∞∑

q=−∞
C(q) = 2t Deff with Deff = 1

2τ

+∞∑
q=−∞

C(q). (8.81)

This case is encountered if ξ < ∞, or if ξ = ∞ and correlations exhibit an inte-

grable power-law decay C(q) ∼ |q|−γ with γ > 1. One consistently recovers the

expression D = Var(X )/2τ in the case of i.i.d. variables. This shows that integrable

correlations do not destroy the normal behavior, only turning the diffusion coef-

ficient into a renormalized one. The sum
∑+∞

q=−∞ C(q) can be interpreted as the

square step-length of an asymptotically equivalent ideal random walk, that is, a

random walk with independent steps and satisfying the same diffusion law. Con-

sidering the random walk with a coarser resolution k, the integration of short-range

correlations into the effective size of k-steps is highly reminiscent of the block-spin

RG and indeed provides the basis of a renormalization transformation.

The definition of RG operator, Rp(x) = √
2 (p ⊗ p)(x

√
2), used in the central

limit theorem derivation relies explicitly on the statistical independence of variables

in the sequences under investigation. Otherwise, there would be no relation between

the distribution of
∑N

i=1 Xi and Rp and no way to relate the fixed points and

asymptotic behavior of the RG flow with the statistical law describing the collective

behavior of the random variables {Xi }, through the size-dependence of their sum.

Accordingly, in the case of correlated random variables, as already illustrated in

Section 8.5.5, a different operator R should be devised. It should account for the

integration of correlations within a subsequence (Xi )i=1...k of length k (that is,

correlations of range smaller than k) into effective parameters of the renormalized
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distribution for the aggregated variable
∑k

i=1 Xi . When iterated to infinity, this

procedure integrates recursively the influence of correlations at all scales, and hence

gives access to their overall contributions to the collective statistical behavior,

namely the scaling properties of
∑N

i=1 Xi with respect to N .

Possible asymptotic behaviors for the sum of correlated random variables (as-

sumed to be centered, with no loss of generality) are of four types.

(1) In the case of integrable correlations, the probability distribution function of

N−1/2(
∑N

i=1 Xi ) converges to a Gaussian distribution with a renormalized variance
σ 2

eff �= σ 2 fully encapsulating the net large-scale influence of correlations (σ 2
eff > σ 2 in

the case of positive correlations).

(2) In the case of stronger correlations, an anomalous rescaling is required to obtain a well-

defined asymptotic behavior: N−ν
∑N

i=1 Xi converges to a Gaussian distribution for a

unique appropriate value of the rescaling exponent ν (ν > 1/2 in the case of positive

correlations).

(3) A still more drastic discrepancy might occur, where even a modified rescaling is

not enough to recover a well-defined asymptotic behavior, and a novel statistical

law emerges, stating the convergence in law of N−ν(
∑N

i=1 Xi ) toward a certain non-
Gaussian distribution.

(4) The fourth case covers all the remaining situations, where no well-defined non-trivial

behavior emerges (convergence to 0 of the rescaled sum N−ν
∑N

i=1 Xi if ν > νc, diver-

gence if ν < νc, and no regular behavior as N → ∞ for ν = νc).

In the case of correlated variables, the sum S(t) = ∑t
i=1 Xi is an aggregated

variable and its probability distribution function will be an emergent feature en-

capsulating the influence of correlations between all variables (Xs)1≤s≤t , that is,

of range smaller than t . Keeping the condition of finite variance and the Gaussian

character for the RG fixed point p∗(x, t), as defined in (8.66), we obtain the family

of fractal Brownian motions (associated with the names of Hurst and Mandelbrot)

(Lesne 1998).

8.5.7 From lattice random walks to the Wiener process
using the renormalization group

A marginal but nevertheless highly fruitful application of the RG in this probabilis-

tic context is to bridge random walks and continuous stochastic processes. This

illustrates, in the special case of diffusion processes, the power of the RG to unify

discrete and continuous models within the same universality class and, more gener-

ally, to bridge discrete and continuous models accounting for the same large-scale

phenomena. The RG offers a rigorous way to pass from discrete models to their

continuous limits and, conversely, to validate discretization of continuous models.
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Trying to bridge lattice random walks with a continuous description brings out a

difficulty: as the step size a goes to 0, one has to decrease accordingly the duration

τ , but choosing by which amount is not easy, since the walker velocity is ill defined

(it depends on the observation scale). The proper joint rescaling can be guessed

from previously obtained knowledge about the system; it can also be obtained in a

systematic way using RG methods. Let us implement this second approach in the

case of normal diffusion (see Section 8.5.3).

In the context of random walks, renormalization expresses the consequence of a

joint rescaling of space (by a factor of K ) and time (by a factor of k) at the level of

the transition probabilities Pa,τ (x, y, t) (density of the probability of jumping from

x to y in time t) ruling the random walk (Lesne 1998):

[RK ,k Pa,τ ](x, y, t) ≡ K d Pa,τ (K x, K y, kt) in dimension d, (8.82)

where x , y are restricted to the lattice (aZ)d and the time to τN. It should be noted

that the variables involved in RK ,k Pa,τ run over a finer lattice, x, y ∈ [(aK )Z]d ,

with a shorter time step, t ∈ (τ/k)N. The mean-square displacement is expressed

as D(P, t) ≡ [
∑

x

∑
y |x − y|2 P(x, y, t)], hence is transformed according to:

D(RK ,k Pa,τ , t) = 1

K 2
D(Pa,τ , kt). (8.83)

Taking K = kν (thus recovering the operator Rν,k used throughout this chapter),

the limit limk→∞ Rν,k Pa,τ , if it exists, will be a continuous transition probability

P∗(x, y, t) defined on R
d × R

d × R. The procedure11 for transition probabilities

is then identical to that developed for probability distribution functions in Section

8.5.6: if limk→∞ Rν,k Pa,τ = P∗, then

D(P∗, t) = 1

k2ν
D(P∗, kt) hence D(t) ∼ t2ν. (8.84)

This procedure can be implemented with ν = 1/2 in the case of ideal random walks

(independent and identically distributed steps). The self-similarity of these walks

ensures the existence of a limit P∗, which is the transition probability of a Wiener
process with diffusion coefficient D = a2/2τ , namely, in dimension d:

P∗
D(x, y, t) = 1

(4πd Dt)−d/2
e−(x−y)2/4d Dt . (8.85)

This shows that all ideal lattice random walks belong to the same universality class,

that of the Wiener process.

11 The set (RK ,k )K≥0,k≥0 is a bona fide continuous renormalization group with a Lie-group structure: RK1,k1 ◦
RK2,k2 = RK1 K2,k1k2 . In consequence, it would have been sufficient to investigate the action of the two infinites-
imal generators (∂ RK ,k/∂k)|K=1,k=1 and (∂ RK ,k/∂K )|K=1,k=1 spanning its Lie algebra (that is, its tangent
vector space).
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The link developed here between lattice random walks and continuous diffusion

processes relies on the self-similarity of diffusion. This feature, already acknowl-

edged by Perrin on experimental grounds, is a strong property, allowing us to bridge

microscopic and macroscopic dynamics: as soon as a normal diffusive motion is

observed, the diffusion law R2(t) ∼ Dt involves one and the same diffusion co-

efficient D, whatever the observation scale is (except of course if some crossover

occurs in the features of the underlying medium). In consequence, the best descrip-

tion of diffusive motion is the self-similar continuous Wiener process, that embeds

any lattice random walk. We have shown here that, conversely, a lattice random

walk supplemented with the self-similarity assumption (that is, invariance upon

renormalization) allows us to recover the continuous process as an RG fixed-point,

hence full knowledge at any scale.

In a more intricate setting where no simpler alternative approaches are available,

this RG approach has been fruitfully applied to diffusion in disordered systems,

the issue being to determine whether or not the disorder, accounted for as a noise

term in the transition probabilities, modifies the normal diffusion law obtained in

the unperturbed situation (Bricmont and Kupiainen 1991).

8.5.8 A statistical view of criticality and anomalous diffusion

A great interest of this probabilistic viewpoint is to reveal the origin of criticality and

more generally anomalous behaviors as being a “statistical catastrophe” associated

with the failure of the central limit theorem and even, possibly, of the weaker law of

large numbers. These two theorems describe a “normal” situation, in which bounded

and weakly correlated microscopic events build up a deterministic macroscopic

behavior with moderate Gaussian fluctuations, whose relative amplitude behaves

as 1/
√

N where N is the size of the system (e.g. the number of particles). They

appear as the cornerstone supporting the relation between statistical mechanics and

thermodynamics and underlying mean-field approaches. As discussed in Sections

8.5.4 and 8.5.6, departure from this standard thermodynamic behavior arises in two

typical instances.

(1) Elementary events X (uncorrelated or weakly correlated) have arbitrarily large strength,

i.e. an infinite variance 〈X2〉 = ∞, hence direct macroscopic consequences. In this case,

the partial average
∫ x0

0
x2 PX (x)dx is dominated by x0 (whereas it becomes independent

of large enough x0 if 〈X2〉 < ∞). Similarly, the net result of an accumulation of indi-

vidual events will be dominated by the largest (their rarity here being not low enough

to balance their strength) rather than by those of mean size. In other words, the notion
of “typical event” is irrelevant.

(2) Elementary events (still having a finite variance) are strongly correlated; then any mi-

nor change of one of these elements propagates to the whole, again with macroscopic
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consequences. This is reflected in the divergence of the correlation length, and accord-

ingly that of the correlation time, since fluctuations correlated at all scales will require

a diverging time to relax to 0.

In the first case, one speaks of anomalous behavior. Criticality is currently more

associated with the second instance. It thus reflects a qualitative change in the col-

lective behavior due to the reorganization of the correlations between the elements

that occurs through the emergence of a statistical singularity (thus strictly observed

only in an infinite-size system). In both cases, but for different reasons, a single event

might rule the whole behavior, i.e. a microscopic event might have macroscopic
consequences, that obviously prevents any decoupling between microscopic and

macroscopic scales. An RG approach is required to give account of the large-scale

collective behavior. In the first case, the core of the RG procedure is an anomalous

rescaling. In the second instance, the RG proceeds via an iterated integration of

correlations and a rescaling of the lengths, thus decreasing the apparent correlation

length and achieving a reduction in the relevant degrees of freedom of the system.

In both cases, the RG tames or circumvents the singularity in an adaptive way: the

transformation allowing this reduction itself brings information about the collective

behavior and associated scaling laws.

This once more puts forward the common core of the RG: a self-consistent
procedure to determine anomalous features, e.g. anomalous exponents that cannot

be determined straightforwardly by a plain dimensional analysis, designed to reveal

a non-trivial multiscale organization of the system, jointly in space, phase space and

time. Only special values of the exponents involved in the joint rescaling and coarse

graining (in other words, a consistent choice of joint rescaling factors) lead to a

non-trivial limiting behavior. More generally, the RG points at the possible origins

of anomalous large-scale behaviors and underlines their universality: they can be

explained on purely statistical grounds, irrespective of the specific physical features
(nature of the elements, mechanisms and detailed expression of the interactions)

and involving only generic conditions about the dimension of the real space, the

dimension of the phase space, or the interaction range.

Although a Wiener process trajectory (Brownian motion) exemplifies a fractal

curve with no characteristic length, its criticality is less strong than for strongly

correlated diffusion processes. Indeed, the normal diffusion law follows from a mere

dimensional analysis of the macroscopic diffusion equation or, at the microscopic

level, from a mere application of an averaging procedure. It corresponds to the

similarity of the first kind according to the classification of Barenblatt (1987). In

contrast, the exponents arising in the case of long-range correlations, for instance

those associated with the so-called fractal Brownian motions, do not follow from
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dimensional analysis; by no means can they be guessed and their determination

requires sophisticated RG recursive averaging. The first instance corresponds to

what could be called mean-field criticality, also observed in a purely temporal

context at a bifurcation point. The second case corresponds to the similarity of the
second kind and fails to satisfy any mean-field approach; it can be termed anomalous
criticality. It is also encountered at the transition to chaos (Section 8.3.3).

In conclusion, the RG formulated within a probabilistic framework offers a sys-

tematic tool to derive a wealth of new limit theorems, replacing the celebrated

central limit theorem in critical or other anomalous situations where it fails to

apply. The central limit theorem appears as the mean-field, normal behavior
whereas criticality departs from its range of validity owing to long-range cor-

relations arising between elementary units. Similarly, Brownian motion appears

as the normal diffusion process, contrasting with anomalous diffusion processes

originating in an anomalous distribution of the elementary events or their strong

correlations.

8.6 Conclusions and perspectives

Let us summarize the RG features we have focused on in this chapter.

� We presented the RG historical approach in non-linear physics, for curing singular per-
turbation series (Section 8.2) in the same context, aim and spirit as multiscale approaches

(presented in Chapter 7) but in a more systematic way;
� Then we gave a brief account of the standard RG devised to capture criticality and

associated scaling laws (Section 8.3).
� We underlined that far beyond the scope of critical phenomena, the RG offers a generalized

and systematic multiscale analysis to derive long-time and large-scale behaviors and

provides a systematic means of extracting large-scale features and reducing the number
of degrees of freedom (Section 8.4).

� We detailed how the RG provides a constructive and rigorous way to establish new limit
theorems and statistical laws, beyond the central limit theorem (Section 8.5).

In conclusion, we shall first underline the invaluable contribution of the RG on the

epistemological level, changing significantly our way of considering and devising

models, hence deeply changing our theoretical approach to real systems. The RG

is not only a powerful calculational tool for determining asymptotic behaviors and

their scaling exponents. It is also associated with a deep frameshift in our way

of analyzing and modeling real phenomena. Indeed, the RG does not analyze or

compare solutions of a given model but it acts at the level of a set of models.

Implementing an RG procedure amounts to studying a flow in a space of models,
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where the role of the time variable is played by the rescaling factor. In other words, it

amounts to investigating quantitatively the relationships between models at different
scales.

Since R acts upon the representation of the system (that is, its models) while

preserving the system itself (that is, its physical reality), it should also preserve its

symmetries. In order that the original model and its renormalized versions share the

same symmety properties, the renormalization operator has to commute with all

symmetry transformations preserving the system. Accordingly, symmetries appear

as additional constraints, but also as a guideline in defining R and the relevant

subspace of models in which to consider its action. The RG is nothing but a special

symmetry group expressing the system scale invariance.

RG approaches benefit, in a constructive way, from the remarkable feature of

scale invariant hierarchical structures and phenomena: the fact that their emergent
features are encapsulated in the inter-level relationship and in the equations ex-
pressing their scale invariance. The RG provides a somehow “transverse” view,

neither microscopic nor macroscopic but capturing the multiscale organization as

a whole and turning its consistency into quantitative predictions. In consequence,

the RG applies when there are simple relationships between the properties at dif-

ferent space, phase space and time scales. It allows us to capture recursively the

whole multiscale organization of the system as regards its influence on large-scale,

asymptotic observable behavior.

In multiscale approaches (Chapter 7), large-scale equations emerge under the

form of a solvability condition, expressing a posteriori the consistency of the a

priori decomposition in small-scale and large-scale contributions, i.e. ensuring that

the actual characteristic scales coincide with the assumed ones. We have seen in

the present chapter that in RG approaches, the large-scale descriptions arise, basi-

cally in a similar spirit, from renormalization equations showing that large-scale

consequences of small-scale mechanisms are thoroughly accounted for in the effec-

tive parameters and other renormalized quantities, wherever the boundary between

small scales and large scales lies. In this regard, RG methods appear as system-
atic and constructive procedures to derive macroscopic models from microscopic

ones.

RG theory today offers several perspectives and novel directions to be explored

further. For instance, it seems promising to investigate the physical interpretation of

other RG flow features (other than fixed points), to generalize the renormalization

group analysis using recent extensions of Lie group theory, to develop the RG on the

basis of more general covariance properties, and to extend the RG into an assembly

of local versions in the spirit of gauge theory extending global symmetries into

space-dependent local versions.
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