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Preface

Random signals and noise are present in several engineering systems. Practical signals

seldom lend themselves to a nice mathematical deterministic description. It is partly a

consequence of the chaos that is produced by nature. However, chaos can also be man-made,

and one can even state that chaos is a conditio sine qua non to be able to transfer

information. Signals that are not random in time but predictable contain no information,

as was concluded by Shannon in his famous communication theory.

To deal with this randomness we have to nevertheless use a characterization in

deterministic terms; i.e. we employ probability theory to determine characteristic descrip-

tions such as mean, variance, correlation, etc. Whenever chaotic behaviour is time-

dependent, as is often the case for random signals, the time parameter comes into the

picture. This calls for an extension of probability theory, which is the theory of stochastic

processes and random signals. With the involvement of time, the phenomenon of frequency

also enters the picture. Consequently, random signal theory leans heavily on both probability

and Fourier theories. Combining these subjects leads to a powerful tool for dealing with

random signals and noise.

In practice, random signals may be encountered as a desired signal such as video or audio,

or it may be an unwanted signal that is unintentionally added to a desired (information

bearing) signal thereby disturbing the latter. One often calls this unwanted signal noise.

Sometimes the undesired signal carries unwanted information and does not behave like noise

in the classical sense. In such cases it is termed as interference. While it is usually difficult to

distinguish (at least visually) between the desired signal and noise (or interference), by

means of appropriate signal processing such a distinction can be made. For example,

optimum receivers are able to enhance desired signals while suppressing noise and

interference at the same time. In all cases a description of the signals is required in order

to be able to analyse their impact on the performance of the system under consideration. In

communication theory this situation often occurs. The random time-varying character of

signals is usually difficult to describe, and this is also true for associated signal processing

activities such as filtering. Nevertheless, there is a need to characterize these signals using a

few deterministic parameters that allow a system user to assess system performance.

This book deals with stochastic processes and noise at an introductory level. Probability

theory is assumed to be known. The same holds for mathematical background in differential

and integral calculus, Fourier analysis and some basic knowledge of network and linear

system theory. It introduces the subject in the form of theorems, properties and examples.

Theorems and important properties are placed in frames, so that the student can easily



summarize them. Examples are mostly taken from practical applications. Each chapter

concludes with a summary and a set of problems that serves as practice material. The book is

well suited for dealing with the subject at undergraduate level. A few subjects can be skipped

if they do not fit into a certain curriculum. Besides, the book can also serve as a reference for

the experienced engineer in his daily work.

In Chapter 1 the subject is introduced and the concept of a stochastic process is presented.

Different types of processes are defined and elucidated by means of simple examples.

Chapter 2 gives the basic definitions of probability density functions and includes the

time dependence of these functions. The approach is based on the ‘ensemble’ concept.

Concepts such as stationarity, ergodicity, correlation functions and covariance functions are

introduced. It is indicated how correlation functions can be measured. Physical interpretation

of several stochastic concepts are discussed. Cyclo-stationary and Gaussian processes

receive extra attention, as they are of practical importance and possess some interesting

and convenient properties. Complex processes are defined analogously to complex variables.

Finally, the different concepts are reconsidered for discrete-time processes.

In Chapter 3 a description of stochastic processes in the frequency domain is given. This

results in the concept of power spectral density. The bandwidth of a stochastic process is

defined. Such an important subject as modulation of stochastic processes is presented, as

well as the synchronous demodulation. In order to be able to define and describe the

spectrum of discrete-time processes, a sampling theorem for these processes is derived.

After the basic concepts and definitions treated in the first three chapters, Chapter 4 starts

with applications. Filtering of stochastic processes is the main subject of this chapter. We

confine ourselves to linear, time-invariant filtering and derive both the correlation functions

and spectra of a two-port system. The concept of equivalent noise bandwidth has been

defined in order to arrive at an even more simple description of noise filtering in the

frequency domain. Next, the calculation of the spectrum of random data signals is presented.

A brief resumé of the principles of discrete-time signals and systems is dealt with using the

z-transform and discrete Fourier transform, based on which the filtering of discrete-time

processes is described both in time and frequency domains.

Chapter 5 is devoted to bandpass processes. The description of bandpass signals and

systems in terms of quadrature components is introduced. The probability density functions

of envelope and phase are derived. The measurement of spectra and operation of the

spectrum analyser is discussed. Finally, sampling and conversion to baseband of bandpass

processes is discussed.

Thermal noise and its impact on systems is the subject of Chapter 6. After presenting the

spectral densities we consider the role of thermal noise in passive networks. System noise is

considered based on the thermal noise contribution of amplifiers, the noise figure and the

influence of cascading of systems on noise performance.

Chapter 7 is devoted to detection and optimal filtering. The chapter starts by considering

hypothesis testing, which is applied to the detection of a binary signal disturbed by white

Gaussian noise. The matched filter emerges as the optimum filter for optimum detection

performance. Finally, filters that minimize the mean squared error (Wiener filters) are

derived. They can be used for smoothing stored data or portions of a random signal that

arrived in the past. Filters that produce an optimal prediction of future signal values can also

be designed.

Finally, Chapter 8 is of a more advanced nature. It presents the basics of random point

processes, of which the Poisson process is the most well known. The characteristic function

xii PREFACE



plays a crucial role in analysing these processes. Starting from that process several shot noise

processes are introduced: the homogeneous Poisson process, the inhomogeneous Poisson

process, the Poisson impulse process and the random-pulse process. Campbell’s theorem is

derived. A few application areas of random point processes are indicated.

The appendices contain a few subjects that are necessary for the main material. They are:

signal space representation and definitions of attenuation, phase shift and decibels. The rest

of the appendices comprises basic mathematical relations, a summary of probability theory,

definitions of special functions, a list and properties of Fourier transform pairs, and a few

mathematical and physical constants.

Finally, I would like to thank those people who contributed in one way or another to this

text. My friend Rajan Srinivasan provided me with several suggestions to improve the

content. Also, Arjan Meijerink carefully read the draft and made suggestions for improvement.

Last but certainly not least, I thank my wife Kitty, who allowed me to spend so many

hours of our free time to write this text.

Wim van Etten
Enschede, The Netherlands
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1
Introduction

1.1 RANDOM SIGNALS AND NOISE

In (electrical) engineering one often encounters signals that do not have a precise

mathematical description, since they develop as random functions of time. Sometimes this

random development is caused by a single random variable, but often it is a consequence of

many random variables. In other cases the causes of randomness are not clear and a

description is not possible, but the signal is characterized by means of measurements only.

A random time function may be a desired signal, such as an audio or video signal, or it

may be an unwanted signal that is unintentionally added to a desired (information) signal

and disturbs the desired signal. We call the desired signal a random signal and the unwanted

signal noise. However, the latter often does not behave like noise in the classical sense, but it

is more like interference. Then it is an information bearing signal as well, but undesired. A

desired signal and noise (or interference) can, in general, not be distinguished completely; by

means of well-defined signal processing in a receiver, the desired signal may be favoured in

a maximal way whereas the disturbance is suppressed as much as possible. In all cases a

description of the signals is required in order to be able to analyse its impact on the

performance of the system under consideration. Especially in communication theory this

situation often occurs. The random character as a function of time makes the signals difficult

to describe and the same holds for signal processing or filtering. Nevertheless, there is a need

to characterize these signals by a few deterministic parameters that enable the system user to

assess the performance of the system. The tool to deal with both random signals and noise is

the concept of the stochastic process, which is introduced in Section 1.3.

This book gives an elementary introduction to the methods used to describe random

signals and noise. For that purpose use is made of the laws of probability, which are

extensively described in textbooks [1–5].

1.2 MODELLING

When studying and analysing random signals one is mainly committed to theory, which

however, can be of good predictive value. Actually, the main activity in the field of random

signals is modelling of processes and systems. Many scientists and engineers have

Introduction to Random Signals and Noise W. van Etten
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contributed to that activity in the past and their results have been checked in practice. When

a certain result agrees (at least to a larger extent) with practical measurements, then there is

confidence in and acceptance of the result for practical application. This process of

modelling has schematically been depicted in Figure 1.1.

In the upper left box of this scheme there is the important physical process. Based on our

knowledge of the physics of this process we make a physical model of it. This physical

model is converted into a mathematical model. Both modelling activities are typical engineer

tasks. In this mathematical model the physics is no longer formally recognized, but the laws

of physics will be included with their mathematical description. Once the mathematical

model has been completed and the questions are clear we can forget about the physics for the

time being and concentrate on doing the mathematical calculations, which may help us to

find the answers to our questions. In this phase the mathematicians can help the engineer a

lot. Let us suppose that the mathematical calculations give a certain outcome, or maybe

several outcomes. These outcomes would then need to be interpreted in order to discover

what they mean from a physical point of view. This ends the role of the mathematician, since

this phase is maybe the most difficult engineering part of the process. It may happen that

certain mathematical solutions have to be discarded since they contradict physical laws.

Once the interpretation has been completed there is a return to the physical process, as the

practical applicability of the results needs to be checked. In order to check these the

quantities or functions that have been calculated are measured. The measurement is

compared to the calculated result and in this way the physical model is validated. This

validation may result in an adjustment of the physical model and another cycle in the loop is

made. In this way the model is refined iteratively until we are satisfied about the validation.

If there is a shortage of insight into the physical system, so that the physical model is not

quite clear, measurements of the physical system may improve the physical model.

In the courses that are taught to students, models that have mainly been validated in this

way are presented. However, it is important that students are aware of this process and the

fact that the models that are presented may be a result of a difficult struggle for many years

by several physicists, engineers and mathematicians. Sometimes students are given the

opportunity to be involved in this process during research assignments.

1.3 THE CONCEPT OF A STOCHASTIC PROCESS

In probability theory a random variable is a rule that assigns a number to every outcome of

an experiment, such as, for example, rolling a die. This random variable X is associated with

a sample space S, such that according to a well-defined procedure to each event s in the

PHYSICAL
SYSTEM

PHYSICAL
MODEL

MATH.
MODEL

MATH.
CALCUL.

MEASURE-
MENT

COM-
PARISON

INTER-
PRETATION

RESULT

Figure 1.1 The process of modelling
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sample space a number is assigned to X and is denoted by XðsÞ. For stochastic processes, on
the other hand, a time function xðt; sÞ is assigned to every outcome in the sample space.

Within the framework of the experiment the family (or ensemble) of all possible functions

that can be realized is called the stochastic process and is denoted by Xðt; sÞ. A specific

waveform out of this family is denoted by xnðtÞ and is called a sample function or a

realization of the stochastic process. When a realization in general is indicated the subscript

n is omitted. Figure 1.2 shows a few sample functions that are supposed to constitute an

ensemble. The figure gives an example of a finite number of possible realizations, but

the ensemble may consist of an infinite number of realizations. The realizations may even

be uncountable. A realization itself is sometimes called a stochastic process as well.

Moreover, a stochastic process produces a random variable that arises from giving t a

fixed value with s being variable. In this sense the random variable Xðt1; sÞ ¼ Xðt1Þ is

found by considering the family of realizations at the fixed point in time t1 (see Figure 1.2).

Instead of Xðt1Þ we will also use the notation X1. The random variable X1 describes

the statistical properties of the process at the instant of time t1. The expectation of X1

is called the ensemble mean or the expected value or the mean of the stochastic process

(at the instant of time t1). Since t1 may be arbitrarily chosen, the mean of the process

will in general not be constant, i.e. it may have different values for different values of t.

Finally, a stochastic process may represent a single number by giving both t and s fixed

values. The phrase ‘stochastic process’ may therefore have four different interpretations.

They are:

1. A family (or ensemble) of time functions. Both t and s are variables.

2. A single time function called a sample function or a realization of the stochastic process.

Then t is a variable and s is fixed.

3. A random variable; t is fixed and s is variable.

4. A single number; both t and s are fixed.

t

0

xn +2(t )

xn +1(t )

xn (t )

xn –1(t )

X(t 1)

...
...

Figure 1.2 A few sample functions of a stochastic process
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Which of these four interpretations holds in a specific case should follow from the

context.

Different classes of stochastic processes may be distinguished. They are classified on the

basis of the characteristics of the realization values of the process x and the time parameter t.

Both can be either continuous or discrete, in any combination. Based on this we have the

following classes:

� Both the values of XðtÞ and the time parameter t are continuous. Such a process is called a

continuous stochastic process.

� The values of XðtÞ are continuous, whereas time t is discrete. These processes are called

discrete-time processes or continuous random sequences. In the remainder of the book we

will use the term discrete-time process.

� If the values of XðtÞ are discrete but the time axis is continuous, we call the process a

discrete stochastic process.

� Finally, if both the process values and the time scale are discrete, we say that the process

is a discrete random sequence.

In Table 1.1 an overview of the different classes of processes is presented. In order to get

some feeling for stochastic processes we will consider a few examples.

1.3.1 Continuous Stochastic Processes

For this class of processes it is assumed that in principle the following holds:

�1 < xðtÞ < 1 and �1 < t < 1 ð1:1Þ
An example of this class was already given by Figure 1.2. This could be an ensemble of

realizations of a thermal noise process as is, for instance, produced by a resistor, the

characteristics of which are to be dealt with in Chapter 6. The underlying experiment is

selecting a specific resistor from a collection of, let us say, 100 � resistors. The voltage

across every selected resistor corresponds to one of the realizations in the figure.

Another example is given below.

Example 1.1:

The process we consider now is described by the equation

XðtÞ ¼ cosð!0t ��Þ ð1:2Þ

Table 1.1 Summary of names of different processes

XðtÞ Time

Continuous Discrete

Continuous Continuous stochastic process Discrete-time process

Discrete Discrete stochastic process Discrete random sequence

4 INTRODUCTION



with !0 a constant and � a random variable with a uniform probability density function on

the interval ð0; 2��. In this example the set of realizations is in fact uncountable, as �
assumes continuous values. The ensemble of sample functions is depicted in Figure 1.3.

Thus each sample function consists of a cosine function with unity amplitude, but the

phase of each sample function differs randomly from others. For each sample function a

drawing is taken from the uniform phase distribution. We can imagine this process as

follows. Consider a production process of crystal oscillators, all producing the same

amplitude unity and the same radial frequency !0. When all those oscillators are switched

on, their phases will be mutually independent. The family of all measured output waveforms

can be considered as the ensemble that has been presented in Figure 1.3.

This process will get further attention in different chapters that follow.

&

1.3.2 Discrete-Time Processes (Continuous Random Sequences)

The description of this class of processes becomes more and more important due to the

increasing use of modern digital signal processors which offer flexibility and increasing

speed and computing power. As an example of a discrete-time process we can imagine

sampling the process that was given in Figure 1.2. Let us suppose that to this process

ideal sampling is applied at equidistant points in time with sampling period Ts; with ideal

sampling we mean the sampling method where the values at Ts are replaced by delta

functions of amplitude XðnTsÞ [6]. However, to indicate that it is now a discrete-time process

we denote it by X½n�, where n is an integer running in principle from �1 to þ1. We know

from the sampling theorem (see Section 3.5.1 or, for instance, references [1] and [7]) that

the original signal can perfectly be recovered from its samples, provided that the signals are

band-limited. The process that is produced in this way is given in Figure 1.4, where the

sample values are presented by means of the length of the arrows.

......

......
t

Figure 1.3 Ensemble of sample functions of the stochastic process cosð!0t ��Þ, with � uniformly

distributed on the interval ð0; 2��
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Another important example of the discrete-time process is the so-called Poisson process,

where there are no equidistant samples in time but the process produces ‘samples’ at random

points in time. This process is an adequate model for shot noise and it is dealt with in

Chapter 8.

1.3.3 Discrete Stochastic Processes

In this case the time is continuous and the values discrete. We present two examples of this

class. The second one, the random data signal, is of great practical importance and we will

consider it in further detail in Chapter 4.

Example 1.2:

This example is a very simple one. The ensemble of realizations consists of a set of constant

time functions. According to the outcome of an experiment one of these constants may be

chosen. This experiment can be, for example, the rolling of a die. In that case the number of

realizations can be six ðn ¼ 6Þ, equal to the usual number of faces of a die. Each of the

outcomes s 2 f1; 2; 3; 4; 5; 6g has a one-to-one correspondence to one of these numbered

constant functions of time. The ensemble is depicted in Figure 1.5.

&

Example 1.3:

Another important stochastic process is the random data signal. It is a signal that is produced

by many data sources and is described by

XðtÞ ¼
X

n

Anpðt � nT ��Þ ð1:3Þ

0
n

...
...

Ts

xn+2[n]

xn+1[n]

xn[n]

xn–1[n]

Figure 1.4 Example of a discrete-time stochastic process
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where fAng are the data bits that are randomly chosen from the set An 2 fþ1;�1g. The
rectangular pulse pðtÞ of width T serves as the carrier of the information. Now � is supposed

to be uniformly distributed on the bit interval ð0; T �, so that all data sources of the family have

the same bit period, but these periods are not synchronized. The ensemble is given in Figure 1.6.

&

1.3.4 Discrete Random Sequences

The discrete random sequence can be imagined to result from sampling a discrete stochastic

process. Figure 1.7 shows the result of sampling the random data signal from Example 1.3.

We will base the further development of the concept, description and properties of

stochastic processes on the continuous stochastic process. Then we will show how these are

extended to discrete-time processes. The two other classes do not get special attention, but

.

.

.

.

0

xn(t )

x1(t )

x2(t )

x3(t )

t

Figure 1.5 Ensemble of sample functions of the stochastic process constituted by a number of

constant time functions

.....

T

t

Figure 1.6 Ensemble of sample functions of the stochastic process
P

n Anpðt � nT ��Þ, with �
uniformly distributed on the interval ð0; T �
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are considered as special cases of the former ones by limiting the realization values x to a

discrete set.

1.3.5 Deterministic Function versus Stochastic Process

The concept of the stochastic process does not conflict with the theory of deterministic

functions. It should be recognized that a deterministic function can be considered as nothing

else but a special case of a stochastic process. This is elucidated by considering Example 1.1.

If the random variable � is given the probability density function f�ð�Þ ¼ �ð�Þ, then the

stochastic process reduces to the function cosð!0tÞ. The given probability density function is

actually a discrete one with a single outcome. In fact, the ensemble of the process reduces in

this case to a family comprising merely one member. This is a general rule; when the

probability density function of the stochastic process that is governed by a single random

variable consists of a single delta function, then a deterministic function results. This way of

generalization avoids the often confusing discussion on the difference between a determi-

nistic function on the one hand and a stochastic process on the other hand. In view of the

consideration presented here they can actually be considered as members of the same class,

namely the class of stochastic processes.

1.4 SUMMARY

Definitions of random signals and noise have been given. A random signal is, as a rule, an

information carrying wanted signal that behaves randomly. Noise also behaves randomly but

is unwanted and disturbs the signal. A common tool to describe both is the concept of a

stochastic process. This concept has been explained and different classes of stochastic

processes have been identified. They are distinguished by the behaviour of the time

parameter and the values of the process. Both can either be continuous or discrete.

...
... n

xn +2[n]

xn +1[n]

xn[n]

xn –1[n]

xn –2[n]

Figure 1.7 Example of a discrete random sequence
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2
Stochastic Processes

In this chapter some basic concepts known from probability theory will be extended to

include the time parameter. It is the time parameter that makes the difference between a

random variable and a stochastic process. The basic concepts are: probability density

function and correlation. The time dependence of the signals asks for a few new concepts,

such as the correlation function, stationarity and ergodicity.

2.1 STATIONARY PROCESSES

As has been indicated in the introduction chapter we can fix the time parameter of a

stochastic process. In this way we have a random variable, which can be characterized by

means of a few deterministic numbers such as the mean, variance, etc. These quantities are

defined using the probability density function. When fixing two time parameters we can

consider two random variables simultaneously. Here also we can define joint random

variables and, related to that, characterize quantities using the joint probability density

function. In this way we can proceed, in general, to the case of N variables that are described

by an N-dimensional joint probability density function, with N an arbitrary number.

Roughly speaking we can say that a stochastic process is stationary if its statistical

properties do not depend on the time parameter. This rough definition will be elaborated in

more detail in the rest of this chapter. There are several types of stationarity and for the main

types we will present exact definitions in the sequel.

2.1.1 Cumulative Distribution Function and Probability
Density Function

In order to be able to define stationarity, the probability distribution and density functions as

they are applied to the stochastic process XðtÞ have to be defined. For a fixed value of time

parameter t1 the cumulative probability distribution function or, for short, distribution

function is defined by

FXðx1; t1Þ ¼4 PfXðt1Þ � x1g ð2:1Þ

Introduction to Random Signals and Noise W. van Etten
# 2005 John Wiley & Sons, Ltd



From this notation it follows that FX may be a function of the value of t1 that has been

chosen.

For two random variables X1 ¼ Xðt1Þ and X2 ¼ Xðt2Þ we introduce the two-dimensional

extension of Equation (2.1):

FXðx1; x2; t1; t2Þ ¼4 PfXðt1Þ � x1;Xðt2Þ � x2g ð2:2Þ
the second-order, joint probability distribution function. In an analogous way we denote the

Nth-order, joint probability distribution function

FXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼4 PfXðt1Þ � x1; . . . ;XðtNÞ � xNg ð2:3Þ
The corresponding ( joint) probability density functions are found by taking the derivatives

respectively of Equations (2.1) to (2.3):

fXðx1; t1Þ ¼4
@FXðx1; t1Þ

@x1
ð2:4Þ

fXðx1; x2; t1; t2Þ ¼4
@2FXðx1; x2; t1; t2Þ

@x1@x2
ð2:5Þ

fXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼4
@NFXðx1; . . . ; xN ; t1; . . . ; tNÞ

@x1 � � � @xN ð2:6Þ

Two processes XðtÞ and YðtÞ are called statistically independent if the set of random

variables fXðt1Þ;Xðt2Þ; . . . ;XðtNÞg is independent of the set of random variables fYðt01Þ;
Yðt02Þ; . . . ; Yðt0MÞg, for each arbitrary choice of the time parameters ft1; t2; . . . ; tN ; t01;
t02; . . . ; t

0
Mg. Independence implies that the joint probability density function can be factored

in the following way:

fX;Yðx1; . . . ; xN ; y1; . . . ; yM; t1; . . . ; tN ; t01; . . . ; t0MÞ
¼ fXðx1; . . . ; xN ; t1; . . . ; tNÞ � fYðy1; . . . ; yM; t01; . . . ; t0MÞ ð2:7Þ

Thus, the joint probability density function of two independent processes is written as the

product of the two marginal probability density functions.

2.1.2 First-Order Stationary Processes

A stochastic process is called a first-order stationary process if the first-order probability

density function is independent of time. Mathematically this can be stated as

fXðx1; t1Þ ¼ fXðx1; t1 þ �Þ ð2:8Þ
holds for all � . As a consequence of this property the mean value of such a process, denoted

by XðtÞ, is

XðtÞ � E½XðtÞ� ¼4
Z

x fXðx; tÞ dx ¼ constant ð2:9Þ

i.e. it is independent of time.
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2.1.3 Second-Order Stationary Processes

A stochastic process is called a second-order stationary process if for the two-dimensional

joint probability density function

fXðx1; x2; t1; t2Þ ¼ fXðx1; x2; t1 þ �; t2 þ �Þ ð2:10Þ

for all � . It is easy to verify that Equation (2.10) is only a function of the time difference

t2 � t1 and does not depend on the absolute time. In order to gain that insight put � ¼ �t1.

A process that is second-order stationary is first-order stationary as well, since the second-

order joint probability density function uniquely determines the lower-order (in this case

first-order) probability density function.

2.1.4 Nth-Order Stationary Processes

By extending the reasoning from the last subsection to N random variables Xi ¼ XðtiÞ, for
i ¼ 1; . . . ;N, we arrive at an Nth-order stationary process. The Nth-order joint probability

density function is once more independent of a time shift; i.e.

fXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ fXðx1; . . . ; xN ; t1 þ �; . . . ; tN þ �Þ ð2:11Þ

for all � . A process that is Nth-order stationary is stationary to all orders k � N. An

Nth-order stationary process where N can have an arbitrary large value is called a strict-

sense stationary process.

2.2 CORRELATION FUNCTIONS

2.2.1 The Autocorrelation Function, Wide-Sense Stationary
Processes and Ergodic Processes

The autocorrelation function of a stochastic process is defined as the correlation E½X1 X2� of
the two random variables X1 ¼ Xðt1Þ and X2 ¼ Xðt2Þ. These random variables are achieved

by considering all realization values of the stochastic process at the instants of time t1 and t2
(see Figure 2.1). In general it will be a function of these two times instants. The

autocorrelation function is denoted as

RXXðt1; t2Þ ¼4 E½Xðt1ÞXðt2Þ� ¼
ZZ

x1x2 fXðx1; x2; t1; t2Þ dx1 dx2 ð2:12Þ

Substituting t1 ¼ t and t2 ¼ t1 þ � , Equation (2.12) becomes

RXXðt; t þ �Þ ¼ E½XðtÞXðt þ �Þ� ð2:13Þ

CORRELATION FUNCTIONS 11



Since for a second-order stationary process the two-dimensional joint probability density

function depends only on the time difference, the autocorrelation function will also be a

function of the time difference � . Then Equation (2.13) can be written as

RXXðt; t þ �Þ ¼ RXXð�Þ ð2:14Þ

The mean and autocorrelation function of a stochastic process are often its most character-

izing features. Mostly, matters become easier if these two quantities do not depend on

absolute time. A second-order stationary process guarantees this independence but at the

same time places severe demands on the process. Therefore we define a broader class of

stochastic processes, the so-called wide-sense stationary processes.

Definition

A process XðtÞ is called wide-sense stationary if it satisfies the conditions

E½XðtÞ� ¼ XðtÞ ¼ constant

E½XðtÞXðt þ �Þ� ¼ RXXð�Þ ð2:15Þ

It will be clear that a second-order stationary process is also wide-sense stationary. The

converse, however, is not necessarily true.

0

xn +2(t )

xn +1(t )

xn(t )

xn –1(t )

X(t 1) X(t 2)
t

Figure 2.1 The autocorrelation of a stochastic process by considering E½Xðt1ÞXðt2Þ�
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Properties of RXXðsÞ
If a process is at least wide-sense stationary then its autocorrelation function exhibits the

following properties:

1. jRXXð�Þj � RXXð0Þ ð2:16Þ
i.e. jRXXð�Þj attains its maximum value for � ¼ 0.

2. RXXð��Þ ¼ RXXð�Þ ð2:17Þ
i.e. RXXð�Þ is an even function of � .

3. RXXð0Þ ¼ E½X2ðtÞ� ð2:18Þ
4. If XðtÞ has no periodic component then RXXð�Þ comprises a constant term equal to

XðtÞ2, i.e. limj� j!1 RXXð�Þ ¼ XðtÞ2.
5. If XðtÞ has a periodic component then RXXð�Þ will comprise a periodic component as

well, and which has the same periodicity.

A function that does not satisfy these properties cannot be the autocorrelation function of

a wide-sense stationary process. It will be clear from properties 1 and 2 that RXXð�Þ is not
allowed to exhibit an arbitrary shape.

Proofs of the properties:

1. To prove property 1 let us consider the expression

E½fXðtÞ � Xðt þ �Þg2� ¼ E½X2ðtÞ þ X2ðt þ �Þ � 2XðtÞXðt þ �Þ�
¼ 2fRXXð0Þ � RXXð�Þg � 0 ð2:19Þ

Since the expectation E½fXðtÞ � Xðt þ �Þg2� is taken over the squared value of a certain

random variable, this expectation should be greater than or equal to zero. From the last

line of Equation (2.19) property 1 is concluded.

2. The proof of property 2 is quite simple. In the definition of the autocorrelation function

substitute t0 ¼ t þ � and the proof proceeds as follows:

RXXð�Þ ¼ E½XðtÞXðt þ �Þ� ¼ E½Xðt0 � �ÞXðt0Þ�
¼ E½Xðt0ÞXðt0 � �Þ� ¼ RXXð��Þ ð2:20Þ

3. Property 3 follows immediately from the definition of RXXð�Þ by inserting � ¼ 0.

4. From a physical point of view most processes have the property that the random variables

XðtÞ and Xðt þ �Þ are independent when � ! 1. Invoking once more the definition of the
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autocorrelation function it follows that

lim
�!1RXXð�Þ ¼ lim

�!1E½XðtÞXðt þ �Þ�
¼ E½XðtÞ�E½Xðt þ �Þ� ¼ E2½XðtÞ� ¼ X

2 ð2:21Þ

5. Periodic processes may be decomposed into cosine and sine components according to

Fourier analysis. It therefore suffices to consider the autocorrelation function of one such

component:

E½cosð!t ��Þ cosð!t þ !� ��Þ� ¼ 1
2
E½cosð!�Þ þ cosð2!t þ !� � 2�Þ� ð2:22Þ

Since our considerations are limited to wide-sense stationary processes, the autocorrela-

tion function should be independent of the absolute time t, and thus the expectation of the

last term of the latter expression should be zero. Thus only the term comprising cosð!�Þ
remains after taking the expectation, which proves property 5.

When talking about the mean or expectation (denoted by E½��) the statistical average over the
ensemble of realizations is meant. Since stochastic processes are time functions we can

define another average, namely the time average, given by

A½XðtÞ� ¼4 lim
T!1

1

2T

Z T

�T

xðtÞdt ð2:23Þ

When taking this time average only one single sample function can be involved; conse-

quently, expressions like A½XðtÞ� and A½XðtÞXðt þ �Þ� will be random variables.

Definition

A wide-sense stationary process XðtÞ satisfying the two conditions

A½XðtÞ� ¼ E½XðtÞ� ¼ XðtÞ ð2:24Þ
A½XðtÞXðt þ �Þ� ¼ E½XðtÞXðt þ �Þ� ¼ RXXð�Þ ð2:25Þ

is called an ergodic process.

In other words, an ergodic process has time averages A½XðtÞ� and A½XðtÞXðt þ �Þ� that are
non-random because these time averages equal the ensemble averages XðtÞ and RXXð�Þ. In
the same way as several types of stationary process can be defined, several types of ergodic

processes may also be introduced [1]. We will confine ourselves to the forms defined by the

Equations (2.24) and (2.25). Ergodicity puts more severe demands on the process than

stationarity and it is often hard to prove that indeed a process is ergodic; often it is

impossible. In practice ergodicity is often just assumed without proof, unless the opposite is

evident. In most cases there is no alternative, as one does not have access to the entire family
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(ensemble) of sample functions, but rather just to one or a few members of it, for example

one resistor, transistor or comparable noisy device is available. By assuming ergodicity a

number of important statistical properties, such as the mean and the autocorrelation function

of a process may be estimated from the observation of a single available realization.

Fortunately, it appears that many processes are ergodic, but one should always be aware that

at times one can encounter a process that is not ergodic. Later in this chapter we will develop

a test for a certain class of ergodic processes.

Example 2.1:

As an example consider the process XðtÞ ¼ A cosð!t ��Þ, with A a constant amplitude, ! a

fixed but arbitrary radial frequency and � a random variable that is uniformly distributed on

the interval ð0; 2p�. The question is whether this process is ergodic in the sense as defined by

Equations (2.24) and (2.25). To answer this we determine both the ensemble mean and the

time average. For the time average it is found that

A½XðtÞ� ¼ lim
T!1

1

2T
A

Z T

�T

cosð!t ��Þ dt ¼ lim
T!1

1

2T
A
1

!
sinð!t ��Þ

���T
�T

¼ 0 ð2:26Þ

The ensemble mean is

E½XðtÞ� ¼
Z

f�ð�ÞA cosð!t � �Þ d� ¼ 1

2p
A

Z 2�

0

cosð!t � �Þ d� ¼ 0 ð2:27Þ

Hence, time and ensemble averages are equal.

Let us now calculate the two autocorrelation functions. For the time-averaged auto-

correlation function it is found that

A½XðtÞXðt þ �Þ� ¼ lim
T!1

1

2T
A2

Z T

�T

cosð!t � �Þ cosð!t þ !� � �Þ dt

¼ lim
T!1

1

2T

1

2
A2

Z T

�T

½cosð2!t þ !� � 2�Þ þ cosð!�Þ� dt ð2:28Þ

The first term of the latter integral equals 0. The second term of the integrand does not

depend on the integration variable. Hence, the autocorrelation function is given by

A½XðtÞXðt þ �Þ� ¼ 1
2
A2 cos!� ð2:29Þ

Next we consider the statistical autocorrelation function

E½XðtÞXðt þ �Þ� ¼ 1

2p
A2

Z 2�

0

cosð!t � �Þ cosð!t þ !� � �Þ d�

¼ 1

2p
1

2
A2

Z 2�

0

½cosð2!t þ !� � 2�Þ þ cosð!�Þ� d� ð2:30Þ
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Of the latter integral the first part is 0. Again, the second term of the integrand does not

depend on the integration variable. The autocorrelation function is therefore

E½XðtÞXðt þ �Þ� ¼ 1
2
A2 cos!� ð2:31Þ

Hence both first-order means (time average and statistical mean) and second-order means

(time-averaged and statistical autocorrelation functions) are equal. It follows that the process

is ergodic.

The process cosð!t ��Þ with f�ð�Þ ¼ �ð�Þ equals the deterministic function cos!t. This
process is not ergodic, since it is easily verified that the expectation (in this case the function

itself) is time-dependent and thus not stationary, which is a condition for ergodicity. This

example, where a probability density function that consists of a � function reduces the

process to a deterministic function, has also been mentioned in Chapter 1.

&

2.2.2 Cyclo-Stationary Processes

A process XðtÞ is called cyclo-stationary (or periodically stationary) if the probability

density function is independent of a shift in time over an integer multiple of a constant value

T (the period time), so that

fXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ fXðx1; . . . ; xN ; t1 þ mT ; . . . ; tN þ mTÞ ð2:32Þ

for each integer value of m. A cyclo-stationary process is not stationary, since Equation

(2.11) is not valid for all values of � , but only for discrete values � ¼ mT . However, the

discrete-time process XðmT þ �Þ is stationary for all values of � .
A relation exists between cyclo-stationary processes and stationary processes. To see this

relation it is evident from Equation (2.32) that

FXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ FXðx1; . . . ; xN ; t1 þ mT ; . . . ; tN þ mTÞ ð2:33Þ

Next consider the modified process XðtÞ ¼ Xðt ��Þ, where XðtÞ is cyclo-stationary and � a

random variable that has a uniform probability density function on the period interval ð0; T �.
Now we define the event AA as

AA ¼ fXðt1 þ �Þ � x1; . . . ;XðtN þ �Þ � xNg ð2:34Þ

The probability that this event will occur is

PðAAÞ ¼
Z T

0

PðAAj� ¼ �Þ f�ð�Þ d� ¼ 1

T

Z T

0

PðAAj� ¼ �Þ d� ð2:35Þ

For the latter integrand we write

PðAAj� ¼ �Þ ¼ PfXðt1 þ � � �Þ � x1; . . . ;XðtN þ � � �Þ � xNg
¼ FXðx1; . . . ; xN ; t1 þ � � �; . . . ; tN þ � � �Þ ð2:36Þ
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Substituting this result in Equation (2.35) yields

PðAAÞ ¼ 1

T

Z T

0

FXðx1; . . . ; xN ; t1 þ � � �; . . . ; tN þ � � �Þ d� ð2:37Þ

As XðtÞ is cyclo-stationary Equation (2.37) is independent of � . From Equation (2.34) it

follows, therefore, that PðAAÞ represents the probability distribution function of the process

XðtÞ. Thus we have the following theorem.

Theorem 1

If XðtÞ is a cyclo-stationary process with period time T and � is a random variable that is

uniformly distributed on the interval ð0; T �, then the process XðtÞ ¼ Xðt ��Þ is

stationary with the probability distribution function

FXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ 1

T

Z T

0

FXðx1; . . . ; xN ; t1 � �; . . . ; tN � �Þ d� ð2:38Þ

A special case consists of the situation where XðtÞ ¼ pðtÞ is a deterministic, periodic

function with period T . Then, as far as the first-order probability distribution function FXðxÞ
is concerned, the integral from Equation (2.38) can be interpreted as the relative fraction of

time during which XðtÞ is smaller or equal to x. This is easily understood when realizing that

for a deterministic function FXðx1; t1Þ is either zero or one, depending on whether pðt1Þ is
larger or smaller than x1.

If we take XðtÞ ¼ pðtÞ, then this process XðtÞ is strict sense cyclo-stationary and from the

foregoing we have the following theorem.

Theorem 2

If XðtÞ ¼ pðt ��Þ is an arbitrary, periodic waveform with period T and � a random

variable that is uniformly distributed on the interval ð0; T �, then the process XðtÞ is strict-
sense stationary and ergodic. The probability distribution function of this process reads

FXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ 1

T

Z T

0

Fpðp1; . . . ; pN ; t1 � �; . . . ; tN � �Þ d� ð2:39Þ

The mean value of the process equals

E½XðtÞ� ¼ 1

T

Z T

0

pðtÞ dt ¼ A½ pðtÞ� ð2:40Þ

and the autocorrelation function

RXXð�Þ ¼ 1

T

Z T

0

pðtÞ pðt þ �Þ dt ¼ A½ pðtÞ pðt þ �Þ� ð2:41Þ
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This latter theorem is a powerful expedient when proving strict-sense stationarity and

ergodicity of processes that often occur in practice. In such cases the probability distribution

function is found by means of the integral given by Equation (2.39). For this integral the

same interpretation is valid as for that from Equation (2.38). From the probability

distribution function the probability density function can be derived using Equation (2.4).

By adding a random phase � , with � uniformly distributed on the interval ð0; T�, to a cyclo-
stationary process the process can be made stationary. Although this seems to be an artificial

operation, it is not so from a physical point of view. If we imagine that the ensemble of

realizations originates from a set of signal generators, let us say sinusoidal wave generators,

all of them tuned to the same frequency, then the waves produced by these generators will as

a rule not be synchronized in phase.

Example 2.2:

The process XðtÞ ¼ cosð!tÞ is not stationary, its mean value being cosð!tÞ; however, it is
cyclo-stationary. On the contrary, the modified process XðtÞ ¼ cosð!t ��Þ, with �
uniformly distributed on the interval ð0; 2p�, is strict-sense stationary and ergodic, based

on Theorem 2. The ergodicity of this process was already concluded when dealing with

Example 2.1. Moreover, we derived the autocorrelation function of this process as 1
2
cosð!�Þ.

Let us now elaborate this example. We will derive the probability distribution and density

functions, based on Theorem 2. For this purpose remember that the probability distribution

function is given by Equation (2.39) and that this integral is interpreted as the relative

fraction of time during which XðtÞ is smaller than or equal to x. This interpretation has been

further explained by means of Figure 2.2. In this figure one complete period of a cosine is

presented. The constant value x is indicated. The duration that the given realization is

smaller than or equal to x has been drawn by means of the bold line pieces, which are

indicated by T1 and T2, and the complete second half of the cycle, which has a length of p. It
can be seen that the line pieces T1 and T2 are of equal length, namely arcsin x. Finally, the

probability distribution function is found by adding all the bold line pieces and dividing the

result by the period 2p. This leads to the probability distribution function

FXðxÞ ¼ PfXðtÞ � xg ¼
1
2
þ 1

� arcsin x; jxj � 1

0; x < �1

1; x > 1

8><
>: ð2:42Þ

ωt

x

πT1 T2

Figure 2.2 Figure to help determine the probability distribution function of the random phased cosine
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This function is depicted in Figure 2.3(a). From the probability distribution function the

probability density function is easily derived by taking the derivative, i.e.

fXðxÞ ¼4
dFXðxÞ
dx

¼
1
p

1ffiffiffiffiffiffiffiffi
1�x2

p ; jxj � 1

0; jxj > 1

�
ð2:43Þ

This function has been plotted in Figure 2.3(b). Note the asymptotic values of the function

for both x ¼ 1 and x ¼ �1.

&

Example 2.3:

The random data signal

XðtÞ ¼
X
n

Anpðt � nTÞ ð2:44Þ

with An a stationary sequence of binary random variables that are selected out of the set

f�1;þ1g and with autocorrelation sequence

E½An Ak� ¼ E½An Anþm� ¼ E½An An�m� ¼ Rm ð2:45Þ
constitutes a cyclo-stationary process, where Theorems 1 and 2 can be applied. Properties of

this random data signal will be derived in more detail later on (see Section 4.5).

&

2.2.3 The Cross-Correlation Function

The cross-correlation function of two stochastic processes XðtÞ and YðtÞ is defined as

RXYðt; t þ �Þ ¼4 E½XðtÞ Yðt þ �Þ� ð2:46Þ

0 01

1

1

1

−1 −1

½

(a) (b)
x x

π

F (x )x f (x )x

Figure 2.3 (a) The probability distribution function and (b) the probability density function of the

random phased cosine
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XðtÞ and YðtÞ are jointly wide-sense stationary if both XðtÞ and YðtÞ are wide-sense

stationary and if the cross-correlation function RXYðt; t þ �Þ is independent of the absolute

time parameter, i.e.

RXYðt; t þ �Þ ¼ E½XðtÞ Yðt þ �Þ� ¼ RXYð�Þ ð2:47Þ

Properties of RXYðsÞ
If two processes XðtÞ and YðtÞ are jointly wide-sense stationary, then the cross-

correlation function has the following properties:

1. RXYð��Þ ¼ RYXð�Þ ð2:48Þ
2. jRXYð�Þj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RXXð0ÞRYYð0Þ

p ð2:49Þ
3. jRXYð�Þj � 1

2
½RXXð0Þ þ RYYð0Þ� ð2:50Þ

A function that does not satisfy these properties cannot be the cross-correlation function of

two jointly wide-sense stationary processes.

Proofs of the properties:

1. Property 1 is proved as follows. In the definition of the cross-correlation function replace

t � � by t0 and do some manipulation as shown below:

RXYð��Þ ¼ E½XðtÞ Yðt � �Þ� ¼ E½Xðt0 þ �Þ Yðt0Þ�
¼ E½Yðt0ÞXðt0 þ �Þ� ¼ RYXð�Þ ð2:51Þ

2. To prove property 2 we consider the expectation of the process fXðtÞ þ cYðt þ �Þg2,
where c is a constant; i.e. we investigate

E½fXðtÞ þ cYðt þ �Þg2� ¼ E½X2ðtÞ þ c2Y2ðt þ �Þ þ 2cXðtÞ Yðt þ �Þ�
¼ E½X2ðtÞ� þ c2E½Y2ðt þ �Þ� þ 2cE½XðtÞ Yðt þ �Þ�
¼ c2RYYð0Þ þ 2cRXYð�Þ þ RXXð0Þ ð2:52Þ

This latter expression is a quadratic form as a function of c, and since it is the expectation

of a quantity squared, this expression can never be less than zero. As a consequence the

discriminant cannot be positive; i.e.

R2
XYð�Þ � RXXð0ÞRYYð0Þ � 0 ð2:53Þ

From this property 2 follows.
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3. Property 3 is a consequence of the well-known fact that the arithmetic mean of two

positive numbers is always greater than or equal to their geometric mean.

If for two processes XðtÞ and YðtÞ

RXYðt; t þ �Þ ¼ 0; for all t and � ð2:54Þ

then we say that XðtÞ and YðtÞ are orthogonal processes. In case two processes XðtÞ and YðtÞ
are statistically independent, the cross-correlation function can be written as

RXYðt; t þ �Þ ¼ E½XðtÞ�E½Yðt þ �Þ� ð2:55Þ

If, moreover, XðtÞ and YðtÞ are at least wide-sense stationary, then Equation (2.55) becomes

RXYðt; t þ �Þ ¼ X Y ð2:56Þ

Two stochastic processes XðtÞ and YðtÞ are called jointly ergodic if the individual processes

are ergodic and if the time-averaged cross-correlation function equals the statistical cross-

correlation function, i.e. if

A½XðtÞ Yðt þ �Þ� ¼ E½XðtÞ Yðt þ �Þ� ¼ RXYð�Þ ð2:57Þ

In practice one more often uses spectra, to be dealt with in the next chapter, than

correlation functions, as the measurement equipment for spectra is more developed than that

for correlations. In that chapter it will be shown that the correlation function acts as the basis

for calculating the spectrum. However, the correlation function in itself also has interesting

applications, as is concluded from the following examples.

Example 2.4:

It will be shown that based on a correlation function, by means of the system described in

this example, one is able to measure a distance. Consider a system (see Figure 2.4) where a

signal source produces a random signal, being a realization of a stochastic process. Let us

Reflecting object

waves

Source

X (t )

Y (t )

Correlator RXY (τ)

Transmitter

Receiver

Figure 2.4 Set-up for measuring a distance based on the correlation function
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assume the process to be wide-sense stationary. The signal is applied to a transmitter that

produces a wave in a transmission medium; let it be an acoustic wave or an electromagnetic

wave. We denote the transmitted random wave by XðtÞ. Let us further suppose that the

transmitted wave strikes a distant object and that this object (partly) reflects the wave. Then

this reflected wave will travel backwards to the position of the measuring equipment. The

measuring equipment comprises a receiver and the received signal is denoted as YðtÞ. Both
the transmitted signal XðtÞ and the received signal YðtÞ are applied to a correlator that

produces the cross-correlation function RXYð�Þ. In the next section it will be explained how

this correlation equipment operates. The reflected wave will be a delayed and attenuated

version of the transmitted wave; i.e. we assume YðtÞ ¼ �Xðt � TÞ, where T is the total

travel time. The cross-correlation function will be

RXYð�Þ ¼ E½XðtÞ Yðt þ �Þ� ¼ E½XðtÞ�Xðt � T þ �Þ� ¼ �RXXð� � TÞ ð2:58Þ

Most autocorrelation functions have a peak at � ¼ 0, as shown in Figure 2.5(a). Let

us normalize this peak to unity; then the cross-correlation result will be as depicted in

Figure 2.5(b). From this latter picture a few conclusions may be drawn with respect to

the application at hand. Firstly, when we detect the position of the peak in the cross-

correlation function we will be able to establish T and if the speed of propagation of the

wave in the medium is known, then the distance of the object can be derived from that.

Secondly, the relative height � of the peak can be interpreted as a measure for the size of the

object.

It will be clear that this method is very useful in such ranging systems as radar and

underwater acoustic distance measurement. Most ranging systems use pulsed continuous

wave (CW) signals for that. The advantage of the system presented here is the fact that for

the transmitted signal a noise waveform is used. Such a waveform cannot easily be detected

by the probed object, in contrast to the pulsed CW systems, since it has no replica available

of the transmitted signal and therefore is not able to perform the correlation. The probed

object only observes an increase in received noise level.

&

τ τ

RXX (τ) RXX (τ)

0 0 τ = T

(a) (b)

α

1

Figure 2.5 (a) The autocorrelation function of the transmitted signal and (b) the measured cross-

correlation function of the distance measuring set-up
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Example 2.5:

Yet another interesting example of the application of the correlation concept is in the field of

reducing the distortion of received information signals. Let us suppose that a private

subscriber has on the roof of his house an antenna for receiving TV broadcast signals.

Due to a tall building near his house the TV signal is reflected, so that the subscriber receives

the signal from a certain transmitter twice, once directly from the transmitter and a second

time reflected from the neighbouring building. On the TV screen this produces a ghost of the

original picture and spoils the picture. We call the direct signal XðtÞ and the reflected one

will then be �Xðt � TÞ, where T represents the difference in travel time between the direct

and the reflected signal. The total received signal is therefore written as YðtÞ ¼ XðtÞþ
�Xðt � TÞ. Let us consider the autocorrelation function of this process:

RYYð�Þ ¼ E½fXðtÞ þ �Xðt � TÞg fXðt þ �Þ þ �Xðt � T þ �Þg�
¼ E½XðtÞXðt þ �Þ þ �XðtÞXðt � T þ �Þ þ �Xðt � TÞXðt þ �Þ
þ �2Xðt � TÞXðt � T þ �Þ�

¼ ð1þ �2ÞRXXð�Þ þ �RXXð� � TÞ þ �RXXð� þ TÞ ð2:59Þ

The autocorrelation function RYYð�Þ of the received signal YðtÞ will consist of that of the

original signal RXXð�Þ multiplied by 1þ �2 and besides that two shifted versions of RXXð�Þ.
These versions are multiplied by � and shifted in time over respectively T and �T . If it is

assumed that the autocorrelation function RXXð�Þ shows the same peaked appearance as in

the previous example, then the autocorrelation function of the received signal YðtÞ looks like
that in Figure 2.6. Let us once again suppose that both � and T can be determined from this

measurement. Then we will show that these parameters can be used to reduce the distortion

caused by the reflection from the nearby building; namely we delay the received signal by an

amount of T and multiply this delayed version by �. This delayed and multiplied version is

subtracted from the received signal, so that after this operation we have the signal

ZðtÞ ¼ YðtÞ � �Yðt � TÞ. Inserting the undistorted signal XðtÞ into this yields

ZðtÞ ¼ YðtÞ � �Yðt � TÞ
¼ XðtÞ þ �Xðt � TÞ � �Xðt � TÞ � �2Xðt � 2TÞ
¼ XðtÞ � �2Xðt � 2TÞ ð2:60Þ

τ
0 TT

α

1+α2

α

RYY (τ)

Figure 2.6 The autocorrelation function of a random signal plus its delayed and attenuated versions
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From this equation it is concluded that indeed the term with a delay of T has been removed.

One may argue that, instead, the term �2Xðt � 2TÞ has been introduced. That is right, but it

is not unreasonable to assume that the reflection coefficient � is (much) less than unity, so

that this newly introduced term is smaller by the factor of � compared to the distortion in the

received signal. If this is nevertheless unacceptable then a further reduction is achieved by

also adding the term �2Yðt � 2TÞ to the received signal. This removes the distortion at 2T

and in its turn introduces a term that is still smaller by an amount of �3 at a delay of 3T , etc.

In this way the distortion may be reduced to an arbitrary small amount.

&

Apart from these examples there are several applications that use correlation as the basic

signal processing method for extracting information from an observation.

2.2.4 Measuring Correlation Functions

In a practical situation it is impossible to measure a correlation function. This is due to the

fact that we will never have available the entire ensemble of sample functions of the process

in question. Even if we did have them then it would nevertheless be impossible to cope with

an infinite number of sample functions. Thus we have to confine ourselves to a limited class

of processes, e.g. to the class of ergodic processes. We have established before that most of

the time it is difficult or even impossible to determine whether a process is ergodic or not.

Unless the opposite is clear, we will assume ergodicity in practice; this greatly simplifies

matters, especially for measuring correlation functions. This assumption enables the wanted

correlation function based on just a single sample function to be determined, as is evident

from Equation (2.25).

In Figure 2.7 a block schematic is shown for a possible set-up to measure a cross-

correlation function RXYð�Þ, where the assumption has to be made that the processes XðtÞ
and YðtÞ are jointly ergodic. The sample functions xðtÞ and yðtÞ should be applied to the

inputs at least starting at t ¼ �T þ � up until t ¼ T þ � . The signal xðtÞ is delayed and

applied to a multiplier whereas yðtÞ is applied undelayed to a second input of the same

multiplier. The multiplier’s output is applied to an integrator that integrates over a period 2T .

Looking at this scheme we conclude that the measured output is

Roð�; TÞ ¼ 1

2T

Z Tþ�

�Tþ�

xðt � �Þ yðtÞ dt ¼ 1

2T

Z T

�T

xðtÞ yðt þ �Þ dt ð2:61Þ

If the integration time 2T is taken long enough, and remembering the assumption on the

jointly ergodicity of XðtÞ and YðtÞ, the measured value Roð�; TÞ will approximate RXYð�Þ. By

delay τ

dt
− +T τ

T+τ
1

2T Ro(τ,T )

x (t )

y (t )

Figure 2.7 Measurement scheme for correlation functions
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varying � the function can be measured for different values of the argument. By simply

short-circuiting the two inputs and applying a single signal xðtÞ to this common input, the

autocorrelation function RXXð�Þ is measured.

In practice only finite measuring times can be realized. In general this will introduce an

error in the measured result. In the next example this point will be further elaborated.

Example 2.6:

Let us consider the example that has been subject of our studies several times before, namely

the cosine waveform with amplitude A and random phase that has a uniform distribution

over one period of the cosine. This process has been described in Example 2.1. Suppose

we want to measure the autocorrelation function of this process using the set-up given in

Figure 2.7. The inputs are short-circuited and the signal is applied to these common inputs. If

the given process is substituted in Equation (2.61), we find

Roð�; TÞ ¼ 1

2T
A2

Z T

�T

cosð!t � �Þ cosð!t þ !� � �Þ dt

¼ A2

4T

Z T

�T

½cos!� þ cosð2!t þ !� � 2�Þ� dt ð2:62Þ

In this equation the random variable � has not been used, but the specific value � that

corresponds to the selected realization of the process. The first term in the integrand of this

integral produces ðA2=2Þ cosð!�Þ, the value of the autocorrelation function of this process,

as was concluded in Example 2.1. The second term in the integrand must be a measurement

error. The magnitude of this error is determined by evaluating the corresponding integral.

This yields

eð�; TÞ ¼ A2

2
cosð!� � 2�Þ sinð2!TÞ

2!T
ð2:63Þ

The error has an oscillating character as a function of T , while the absolute value of the error

decreases inversely with T . At large values of T the error approaches 0. If, for example, the

autocorrelation function has to be measured with an accuracy of 1%, then the condition

1=ð2!TÞ < 0:01 should be fulfilled, or equivalently the measurement time should satisfy

2T > 100=!.
Although this analysis looks nice, its applicability is limited. In practice the autocorrela-

tion function is not known beforehand; that is why we want to measure it. Thus the above

error analysis cannot be carried out. The solution to this problem consists of doing a best-

effort measurement and then to make an estimate of the error in the correlation function.

Looking back, it possible to decide whether the measurement time was long enough for the

required accuracy. If not, the measurement can be redone using a larger (estimated)

measurement time based on the error analysis. In this way accuracy can be iteratively

improved.

&
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2.2.5 Covariance Functions

The concept of covariance of two random variables can be extended to stochastic processes.

The autocovariance function of a stochastic process is defined as

CXXðt; t þ �Þ¼4 E½fXðtÞ � E½XðtÞ�g fXðt þ �Þ � E½Xðt þ �Þ�g� ð2:64Þ

This can be written as

CXXðt; t þ �Þ ¼ RXXðt; t þ �Þ � E½XðtÞ�E½Xðt þ �Þ� ð2:65Þ

The cross-covariance function of two processes XðtÞ and YðtÞ is defined as

CXYðt; t þ �Þ¼4 E½fXðtÞ � E½XðtÞ�g fYðt þ �Þ � E½Yðt þ �Þ�g� ð2:66Þ

or

CXYðt; t þ �Þ ¼ RXYðt; t þ �Þ � E½XðtÞ�E½Yðt þ �Þ� ð2:67Þ

For processes that are at least jointly wide-sense stationary the second expressions in the

right-hand sides of Equations (2.65) and (2.67) can be simplified, yielding

CXXð�Þ ¼ RXXð�Þ � X
2 ð2:68Þ

and

CXYð�Þ ¼ RXYð�Þ � X Y ð2:69Þ

respectively. From Equation (2.68) and property 4 of the autocorrelation function in

Section 2.2.1 it follows immediately that

lim
j� j!1

CXXð�Þ ¼ 0 ð2:70Þ

provided the process XðtÞ does not have a periodic component. If in Equation (2.64) the

value � ¼ 0 is used we obtain the variance of the process. In the case of wide-sense stationary

processes the variance is independent of time, and using Equation (2.68) we arrive at

�2
X ¼4 E½fXðtÞ � E½XðtÞ�g2� ¼ CXXð0Þ ¼ RXXð0Þ � X

2 ð2:71Þ

If for two processes

CXYðt; t þ �Þ � 0 ð2:72Þ
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then these processes are called uncorrelated processes. According to Equation (2.67) this has

as a consequence

RXYðt; t þ �Þ ¼ E½XðtÞ�E½Yðt þ �Þ� ð2:73Þ

Since this latter equation is identical to Equation (2.55), it follows that independent

processes are uncorrelated. The converse is not necessarily true, unless the processes are

jointly Gaussian processes (see Section 2.3).

2.2.6 Physical Interpretation of Process Parameters

In the previous sections stochastic processes have been described from a mathematical point

of view. In practice we want to relate these descriptions to physical concepts such as a signal,

represented, for example, by a voltage or a current. In these cases the following physical

interpretations are connected to the parameters of the stochastic processes:

� The mean XðtÞ is proportional to the d.c. component of the signal.

� The squared mean value XðtÞ2 is proportional to the power in the d.c. component of the

signal.

� The mean squared value X2ðtÞ is proportional to the total average power of the signal.

� The variance �2
X ¼4 X2ðtÞ � XðtÞ2 is proportional to the power in the time-varying

components of the signal, i.e. the a.c. power.

� The standard deviation �X is the square root of the mean squared value of the time-

varying components, i.e. the root-mean-square (r.m.s.) value.

In Chapter 6 the proportionality factors will be deduced. Now it suffices to say that this

proportionality factor becomes unity in case the load is purely resistive and equal to one.

Although the above interpretations serve to make the engineer familiar with the practical

value of stochastic processes, it must be stressed that they only apply to the special case of

signals that can be modelled as ergodic processes.

2.3 GAUSSIAN PROCESSES

Several processes can be modelled by what is called a Gaussian process; among these is the

thermal noise process that will be presented in Chapter 6. As the name suggests, these

processes are described by Gaussian distributions. Recall that the probability density

function of a Gaussian random variable X is defined by [1–5]

fXðxÞ ¼ 1

�X

ffiffiffiffiffiffi
2p

p exp �ðx� XÞ2
2�2

X

" #
ð2:74Þ
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The Gaussian distribution is frequently encountered in engineering and science. When

considering two jointly Gaussian random variables X and Y we sometimes need the joint

probability density function, as will become apparent in the sequel

fXYðx; yÞ ¼ 1

2p�X�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p exp
�1

2ð1� �2Þ
ðx� XÞ2

�2
X

� 2�ðx� XÞðy� YÞ
�X�Y

þ ðy� YÞ2
�2
Y

" #( )

ð2:75Þ

where � is the correlation coefficient defined by

� ¼4
E½ðX � XÞðY � YÞ�

�X�Y

ð2:76Þ

For N jointly Gaussian random variables X1, X2; . . . ;XN , the joint probability density

function reads

fX1X2���XN
ðx1; x2; . . . ; xNÞ ¼ jC�1

X j12
ð2pÞN=2

exp �ðx� XÞTC�1
X ðx� XÞ
2

" #
ð2:77Þ

where we define the vector

x� X ¼4
x1 � X1

x2 � X2

..

.

xN � XN

2
6664

3
7775 ð2:78Þ

and the covariance matrix

CX ¼4
C11 C12 � � � C1N

C21 C22 � � � C2N

..

. ..
. ..

.

CN1 CN2 � � � CNN

2
6664

3
7775 ð2:79Þ

In the foregoing we used xT for the matrix transpose, C�1 for the matrix inverse and jCj for
the determinant. The elements of the covariance matrix are defined by

Cij ¼4 EðXi � XiÞðXj � XjÞ� ð2:80Þ

The diagonal elements of the covariance matrix equal the variances of the various random

variables, i.e. Cii ¼ �2
Xi
. It is easily verified that Equations (2.74) and (2.75) are special cases

of Equation (2.77).
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Gaussian variables as described above have a few interesting properties, which have their

consequences for Gaussian processes. These properties are [1–5]:

1. Gaussian random variables are completely specified only by their first and second order

moments, i.e. by their means, variances and covariances. This is immediately apparent,

since these are the only quantities present in Equation (2.77).

2. When Gaussian random variables are uncorrelated, they are independent. For uncorrelated

random variables (i.e. � ¼ 0) the covariance matrix is reduced to a diagonal matrix. It is

easily verified from Equation (2.77) that in such a case the probability density function of

N variables can bewritten as the product ofN functions of the type given in Equation (2.74).

3. A linear combination of Gaussian random variables produces another Gaussian variable.

For the proof of this see reference [2] and Problem 8.3.

We are now able to define a Gaussian stochastic process. Referring to Equation (2.77), a

process XðtÞ is called a Gaussian process if the random variables X1 ¼ Xðt1Þ, X2 ¼
Xðt2Þ; . . . ;XN ¼ XðtNÞ are jointly Gaussian and thus satisfy

fXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ jC�1
X j12

ð2pÞN=2
exp �ðx� XÞTC�1

X ðx� XÞ
2

" #
ð2:81Þ

for all arbitrary N and for any set of times t1; . . . ; tN . Now the mean values Xi of XðtiÞ are

Xi ¼ E½XðtiÞ� ð2:82Þ

and the elements of the covariance matrix are

Cij ¼ E½ðXi � XiÞðXj � XjÞ�
¼ E½fXðtiÞ � E½XðtiÞ�gfXðtjÞ � E½XðtjÞ�g
¼ CXXðti; tjÞ ð2:83Þ

which is the autocovariance function as defined by Equation (2.64).

Gaussian processes have a few interesting properties.

Properties of Gaussian Processes

1. Gaussian processes are completely specified by their mean E½XðtÞ� and autocorrelation
function RXXðti; tjÞ.

2. A wide-sense stationary Gaussian process is also strict-sense stationary.

3. If the jointly Gaussian processes XðtÞ and YðtÞ are uncorrelated, then they are

independent.

4. If the Gaussian process XðtÞ is passed through a linear time-invariant system, then the

corresponding output process YðtÞ is also a Gaussian process.
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These properties are closely related to the properties of jointly Gaussian random variables

previously discussed in this section. Let us briefly comment on the properties:

1. We saw before that the joint probability density function is completely determined when

the mean and autocovariance are known. However, these two quantities as functions of

time in their turn determine the autocorrelation function (see Equation (2.68)).

2. The nth-order probability density function of a Gaussian process only depends on the two

functions E½XðtÞ� and CXXðt; t þ �Þ. When the process is wide-sense stationary then these

functions do not depend on the absolute time t, and as a consequence

fXðx1; . . . ; xN ; t1; . . . ; tNÞ ¼ fXðx1; . . . ; xN ; t1 þ �; . . . ; tN þ �Þ ð2:84Þ

Since this is valid for all arbitrary N and all � , it is concluded that the process is strict-

sense stationary.

3. This property is a straightforward consequence of the property of jointly random

variables discussed before.

4. Passing a process through a linear time-invariant system is described by a convolution,

which may be considered as the limit of a weighted sum of samples of the input process.

From the preceding we know that a linear combination of Gaussian variables produces

another Gaussian variable.

2.4 COMPLEX PROCESSES

A complex stochastic process is defined by

ZðtÞ ¼4 XðtÞ þ jYðtÞ ð2:85Þ

with XðtÞ and YðtÞ real stochastic processes. Such a process is said to be stationary if XðtÞ
and YðtÞ are jointly stationary. Expectation and the autocorrelation function of a complex

stochastic process are defined as

E½ZðtÞ� ¼4 E½XðtÞ þ jYðtÞ� ¼ E½XðtÞ� þ jE½YðtÞ� ð2:86Þ

and

RZZðt; t þ �Þ ¼4 E½Z	ðtÞ Zðt þ �Þ� ð2:87Þ

where 	 indicates the complex conjugate.

For the autocovariance function the definition of Equation (2.87) is used, where ZðtÞ is
replaced by the stochastic process ZðtÞ � E½ZðtÞ�. This yields

CZZðt; t þ �Þ ¼ RZZðt; t þ �Þ � E	½ZðtÞ� E½Zðt þ �Þ� ð2:88Þ
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The cross-correlation function of two complex processes ZiðtÞ and ZjðtÞ reads

RZiZjðt; t þ �Þ ¼ E½Z	
i ðtÞ Zjðt þ �Þ� ð2:89Þ

and the cross-covariance function is found from Equation (2.89) by replacing Zi; jðtÞ with

Zi; jðtÞ � E½Zi; jðtÞ�; this yields

CZiZjðt; t þ �Þ ¼ RZiZjðt; t þ �Þ � E	½ZiðtÞ�E½Zjðt þ �Þ� ð2:90Þ

In the chapters that follow we will work exclusively with real processes, unless it is

explicitly indicated that complex processes are considered.

One may wonder why the correlation functions of complex processes are defined in the

way it has been done in Equations (2.87) and (2.89). The explanation for this arises from an

engineering point of view; namely the given expressions of the correlation functions

evaluated for � ¼ 0 have to result in the expectation of the squared process for real

processes. In engineering calculations real processes are replaced many times by complex

processes of the form I ¼ ÎI expðj!tÞ (for a current) or V ¼ V̂V expðj!tÞ (for a voltage). In

these cases the correlation function for � ¼ 0 should be a quantity that is proportional to the

mean power. The given definitions satisfy this requirement.

2.5 DISCRETE-TIME PROCESSES

In Chapter 1 the discrete-time process was introduced by sampling a continuous stochastic

process. However, at this point we are not yet able to develop a sampling theorem for

stochastic processes analogously to that for deterministic signals [1]. We will derive such a

theorem in Chapter 3. This means that in this section we deal with random sequences as

such, irrespective of their origin. In Chapter 1 we introduced the notation X½n� for random
sequences. In this section we will assume that the sequences are real. However, they can be

complex valued. Extension to complex discrete-time processes is similar to what was

derived in the former section.

In the next subsection we will resume the most important properties of discrete-time

processes. Since such processes are actually special cases of continuous stochastic processes

the properties are self-evident.

2.5.1 Mean, Correlation Functions and Covariance Functions

The mean value of a discrete-time process is found by

E½X½n�� ¼ X½n� ¼4
Z 1

�1
x fXðx; nÞ dx ð2:91Þ

Recall that the process is time-discrete but the x values are continuous, so that indeed the

expectation (or ensemble mean) is written as an integral over a continuous probability

density function. This function describes the random variable X½n� by considering all
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possible ensemble realizations of the process at a fixed integer position for example n1 (see

Figure 2.8). For real processes the autocorrelation sequence is defined as

RXX ½n1; n2� ¼4 E½X½n1�X½n2�� ¼4
ZZ

x1x2 fXðx1; x2; n1; n2Þ dx1 dx2 ð2:92Þ

where the process is now considered at two positions n1 and n2 jointly (see again Figure 2.8).

For the autocovariance sequence of this process (compare to Equation (2.65))

CXX½n1; n2� ¼ RXX½n1; n2� � E½X½n1��E½X½n2�� ð2:93Þ
The cross-correlation and cross-covariance sequences are defined analogously, namely

respectively as

RXY ½n; nþ m� ¼4 E½X½n� Y½nþ m�� ð2:94Þ
and (compare with Equation (2.67))

CXY ½n; nþ m� ¼4 RXY ½n; nþ m� � E½X½n��E½Y½nþ m�� ð2:95Þ

A discrete-time process is called wide-sense stationary if the next two conditions hold jointly:

E½X½n�� ¼ constant ð2:96Þ
RXX½n; nþ m� ¼ RXX½m� ð2:97Þ

i.e. the autocorrelation sequence only depends on the difference m of the integer positions.

0

...

xn +2[n]

xn +1[n]

xn[n]

X [n1] X [n2]

xn –1[n]

n

Figure 2.8 Random variables X½n1� and X½n2� that arise when considering the ensemble values of the

discrete-time process X½n� at fixed positions n1 and n2

32 STOCHASTIC PROCESSES



Two discrete-time processes are jointly wide-sense stationary if they are individually

wide-sense stationary and moreover

RXY ½n; nþ m� ¼ RXY ½m� ð2:98Þ
i.e. the cross-correlation sequence only depends on the difference m of the integer positions.

The time average of a discrete-time process is defined as

A½X½n�� ¼4 lim
N!1

1

2N þ 1

XN
n¼�N

X½n� ð2:99Þ

A wide-sense stationary discrete-time process is ergodic if the two conditions are satisfied

A½X½n�� ¼ E½X½n�� ¼ X½n� ð2:100Þ
and

A½X½n�X½nþ m�� ¼ E½X½n�X½nþ m�� ¼ RXX½m� ð2:101Þ

2.6 SUMMARY

An ensemble is the set of all possible realizations of a stochastic process XðtÞ. A realization

or sample function is provided by a random selection out of this ensemble. For the

description of stochastic processes a parameter is added to the well-known definitions of

the probability distribution function and the probability density function, namely the time

parameter. This means that these functions in the case of a stochastic process are as a rule

functions of time. When considering stationary processes certain time dependencies

disappear; we thus arrive at first-order and second-order stationary processes, which are

useful for practical applications.

The correlation concept is in random signal theory, analogously to probability theory,

defined as the expectation of the product of two random variables. For the autocorrelation

function these variables are XðtÞ and Xðt þ �Þ, while for the cross-correlation function of

two processes the quantities XðtÞ and Yðt þ �Þ are used in the definition.

A wide-sense stationary process is a process where the mean value is constant and the

autocorrelation function only depends on � , not on the absolute time t. When calculating the

expectations the time t is considered as a parameter; i.e. in these calculations t is given a

fixed value. The random variable is the variable based on which outcome of the realization is

chosen from the ensemble. When talking about ‘mean’ we have in mind the ensemble mean,

unless it is explicitly indicated that a different definition is used (for instance the time

average). In the case of an ergodic process the first- and second-order time averages equal

the first- and second-order ensemble means, respectively. The theorem that has been

presented on cyclo-stationary processes plays an important role in ‘making stationary’

certain classes of processes. The covariance functions of stochastic processes are the

correlation functions of these processes minus their own process mean values.

Physical interpretations of several stochastic concepts have been presented. Gaussian

processes get special attention as they are of practical importance and possess a few
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interesting and convenient properties. Complex processes are defined analogously to the

usual method for complex variables.

Finally, several definitions and properties of continuous stochastic processes are redefined

for discrete-time processes.

2.7 PROBLEMS

2.1 All sample functions of a stochastic process are constant, i.e. XðtÞ ¼ C ¼ constant,

where C is a discrete random variable that may assume the values C1 ¼ 1, C2 ¼ 3 and

C3 ¼ 4, with probabilities of 0.5, 0.3 and 0.2, respectively.

(a) Determine the probability density function of XðtÞ.
(b) Calculate the mean and variance of XðtÞ.

2.2 Consider a stationary Gaussian process with a mean of zero.

(a) Determine and sketch the probability density function of this process after passing

it through an ideal half-wave rectifier.

(b) Same question for the situation where the process is applied to a full-wave rectifier.

2.3 A stochastic process comprises four sample functions, namely xðt; s1Þ ¼ 1, xðt; s2Þ ¼ t,

xðt; s3Þ ¼ cos t and xðt; s4Þ ¼ 2 sin t, which occur with equal probabilities.

(a) Determine the probability density function of XðtÞ.
(b) Is the process stationary in any sense?

2.4 Consider the process

XðtÞ ¼
XN
n¼1

An cosð!ntÞ þ Bn sinð!ntÞ

where An and Bn are random variables that are mutually uncorrelated, have zero mean

and of which

E½A2
n� ¼ E½B2

n� ¼ �2

The quantities f!ng are constants.

(a) Calculate the autocorrelation function of XðtÞ.
(b) Is the process wide-sense stationary?

2.5 Consider the stochastic process XðtÞ ¼ A cosð!0tÞ þ B sinð!0tÞ, with !0 a constant and

A and B random variables. What are the conditions for A and B in order for XðtÞ to be

wide-sense stationary?

2.6 Consider the process XðtÞ ¼ A cosð!0t ��Þ, where A and � are independent random

variables and � is uniformly distributed on the interval ð0; 2p�.
(a) Is this process wide-sense stationary?

(b) Is it ergodic?

34 STOCHASTIC PROCESSES



2.7 Consider the two processes

XðtÞ ¼ A cosð!0tÞ þ B sinð!0tÞ
YðtÞ ¼ A cosð!0tÞ � B sinð!0tÞ

with A and B independent random variables, both with zero mean and equal variance of

�2. The angular frequency !0 is constant.

(a) Are the processes XðtÞ and YðtÞ wide-sense stationary?

(b) Are they jointly wide-sense stationary?

2.8 Consider the stochastic process XðtÞ ¼ A sinð!0t ��Þ, with A and !0 constants, and �
a random variable that is uniformly distributed on the interval ð0; 2p�. We define a new

process by means of YðtÞ ¼ X2ðtÞ.
(a) Are XðtÞ and YðtÞ wide-sense stationary?

(b) Calculate the autocorrelation function of YðtÞ.
(c) Calculate the cross-correlation function of XðtÞ and YðtÞ.
(d) Are XðtÞ and YðtÞ jointly wide-sense stationary?

(e) Calculate and sketch the probability distribution function of YðtÞ.
(f) Calculate and sketch the probability density function of YðtÞ.

2.9 Repeat Problem 2.8 when XðtÞ is half-wave rectified. Use Matlab to plot the

autocorrelation function.

2.10 Repeat Problem 2.8 when XðtÞ is full-wave rectified. Use Matlab to plot the

autocorrelation function.

2.11 The function pðtÞ is defined as

pðtÞ ¼ 1; 0 � t � 3
4
T

0; all other values of t

�

By means of this function we define the stochastic process

XðtÞ ¼
X1
n¼�1

pðt � nT ��Þ

where � is a random variable that is uniformly distributed on the interval ½0; TÞ.
(a) Sketch a possible realization of XðtÞ.
(b) Calculate the mean value of XðtÞ.
(c) Calculate and sketch the autocorrelation function of XðtÞ.
(d) Calculate and sketch the probability distribution function of XðtÞ.
(e) Calculate and sketch the probability density function of XðtÞ.
(f) Calculate the variance of XðtÞ.
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2.12 Two functions p1ðtÞ and p2ðtÞ are defined as

p1ðtÞ ¼ 1; 0 � t � 1
3
T

0; all other values of t

�

and

p2ðtÞ ¼ 1; 0 � t � 2
3
T

0; all other values of t

�

Based on these functions the stochastic processes XðtÞ and YðtÞ are defined as

XðtÞ ¼
X1
n¼�1

p1ðt � nT ��Þ

YðtÞ ¼
X1
n¼�1

p2ðt � nT ��Þ

and

WðtÞ ¼4 XðtÞ þ YðtÞ

where � is a random variable that is uniformly distributed on the interval ½0; TÞ.
(a) Sketch possible realizations of XðtÞ and YðtÞ.
(b) Calculate and sketch the autocorrelation function of XðtÞ.
(c) Calculate and sketch the autocorrelation function of YðtÞ.
(d) Calculate and sketch the autocorrelation function of WðtÞ.
(e) Calculate the power in WðtÞ, i.e. E½W2ðtÞ�.

2.13 The processes XðtÞ and YðtÞ are independent with a mean value of zero and

autocorrelation functions RXXð�Þ ¼ expð�j� jÞ and RYYð�Þ ¼ cosð2p�Þ, respectively.
(a) Derive the autocorrelation function of the sum W1ðtÞ ¼ XðtÞ þ YðtÞ.
(b) Derive the autocorrelation function of the difference W2ðtÞ ¼ XðtÞ � YðtÞ.
(c) Calculate the cross-correlation function of W1ðtÞ and W2ðtÞ.

2.14 In Figure 2.9 the autocorrelation function of a wide-sense stationary stochastic process

XðtÞ is given.
(a) Calculate the value of E½XðtÞ�.
(b) Calculate the value of E½X2ðtÞ�.
(c) Calculate the value of �2

X .

2.15 Starting from the wide-sense stationary process XðtÞ we define a new process as

YðtÞ ¼ XðtÞ � Xðt þ TÞ.
(a) Show that the mean value of YðtÞ is zero, even if the mean value of XðtÞ is not zero.
(b) Show that �2

Y ¼ 2fRXXð0Þ � RXXðTÞg.
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(c) If YðtÞ ¼ XðtÞ þ Xðt þ TÞ find expressions for E½YðtÞ� and �2
Y . Compare these

results with the answers found in (a) and (b).

2.16 Determine for each of the following functions whether it can be the autocorrelation

function of a real wide-sense stationary process XðtÞ.
(a) RXXð�Þ ¼ uð�Þ expð��Þ.
(b) RXXð�Þ ¼ 3 sinð7�Þ.
(c) RXXð�Þ ¼ ð1þ �2Þ�1

.

(d) RXXð�Þ ¼ � cosð2�Þ expð�j� jÞ.
(e) RXXð�Þ ¼ 3½sinð4�Þ=ð4�Þ�2.
(f ) RXXð�Þ ¼ 1þ 3 sinð8�Þ=ð8�Þ.

2.17 Consider the two processes XðtÞ and YðtÞ. Find expressions for the autocorrelation

function of WðtÞ ¼ XðtÞ þ YðtÞ in the case where:

(a) XðtÞ and YðtÞ are correlated;

(b) XðtÞ and YðtÞ are uncorrelated;

(c) XðtÞ and YðtÞ are uncorrelated and have mean values of zero.

2.18 The voltage of the output of a noise generator is measured using a d.c. voltmeter and a

true root-mean-square (r.m.s.) meter that has a series capacitor at its input. The noise is

known to be Gaussian and stationary. The reading of the d.c. meter is 3 V and that of

the r.m.s. meter is 2 V. Derive an expression for the probability density function of the

noise and make a plot of it using Matlab.

2.19 Two real jointly wide-sense stationary processes XðtÞ and YðtÞ are used to define two

complex processes as follows:

Z1ðtÞ ¼ XðtÞ þ jYðtÞ

and

Z2ðtÞ ¼ Xðt � TÞ � jYðt � TÞ

Calculate the cross-correlation function of the processes Z1ðtÞ and Z2ðtÞ.

0 5–5

9

25

τ

RXX (τ)

Figure 2.9
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2.20 A voltage source is described as V ¼ 5 cosð!0t ��Þ, where � is a random variable

that is uniformly distributed on ½0; 2pÞ. This source is applied to an electric circuit and

as a consequence the current flowing through the circuit is given by

I ¼ 2 cosð!0t ��þ p=6Þ.
(a) Calculate the cross-correlation function of V and I.

(b) Calculate the electrical power that is absorbed by the circuit.

(c) If in general an harmonic voltage at the terminals of a circuit is described by its

complex notation V ¼ V̂V exp½ jð!t ��Þ� and the corresponding current that is

flowing into the circuit by a similar notation I ¼ ÎI exp½ jð!t ��þ �Þ�, with � a

constant, show that the electrical power absorbed by the circuit is written as

Pel ¼ ðV̂V ÎI cos�Þ=2.
2.21 Consider a discrete-time wide-sense stationary process X½n�. Show that for such a

process

3RXX½0� � j4RXX½1� þ 2RXX ½2�j
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3
Spectra of Stochastic Processes

In Chapter 2 stochastic processes have been considered in the time domain exclusively;

i.e. we used such concepts as the autocorrelation function, the cross-correlation function and

the covariance function to describe the processes. When dealing with deterministic signals,

we have the frequency domain at our disposal as a means to an alternative, dual description.

One may wonder whether for stochastic processes a similar duality exists. This question is

answered in the affirmative, but the relationship between time domain and frequency domain

descriptions is different compared to deterministic signals. Hopping from one domain to the

other is facilitated by the well-known Fourier transform and its inverse transform. A

complicating factor is that for a random waveform (a sample function of the stochastic

process) the Fourier transform generally does not exist.

3.1 THE POWER SPECTRUM

Due to the problems with the Fourier transform, a theoretical description of stochastic

processes must basically start in the time domain, as given in Chapter 2. In this chapter we

will confine ourselves exclusively to wide-sense stationary processes with the autocorrela-

tion function RXXð�Þ. Let us assume that it is allowed to apply the Fourier transform to

RXXð�Þ.

Theorem 3

The Wiener–Khinchin relations are

SXXð!Þ ¼
Z 1

�1
RXXð�Þ expð�j!�Þ d� ð3:1Þ

RXXð�Þ ¼ 1

2p

Z 1

�1
SXXð!Þ expðj!�Þ d! ð3:2Þ

Introduction to Random Signals and Noise W. van Etten
# 2005 John Wiley & Sons, Ltd



The function SXXð!Þ has an interesting interpretation, as will follow from the sequel. For

that purpose we put the variable � equal to zero in Equation (3.2). This yields

RXXð0Þ ¼ E½X2ðtÞ� ¼ 1

2p

Z 1

�1
SXXð!Þ d! ð3:3Þ

However, from Equation (2.18) it is concluded that RXXð0Þ equals the mean squared value of

the process; this is called the mean power of the process, or just the power of the process.

Now it follows from Equation (3.3) that SXXð!Þ represents the way in which the total power

of the process is spread over the different frequency components. This is clear since

integrating SXXð!Þ over the entire frequency axis produces the total power of the process. In

other words, 2SXXð!0Þd!=ð2pÞ is the power at the output of the bandpass filter with the

passband transfer function

Hð!Þ ¼ 1; !0 < j!j < !0 þ d!
0; elsewhere

�
ð3:4Þ

when the input of this filter consists of the process XðtÞ. This is further explained by

Figure 3.1. Due to this interpretation the function SXXð!Þ is called the power spectral density,
or briefly the power spectrum of the process XðtÞ. The Wiener–Khinchin relations state that

the autocorrelation function and the power spectrum of a wide-sense stationary process are a

Fourier transform pair. From the given interpretation the properties of the Fourier transform

are as follows.

Properties of SXXð!!Þ
1. SXXð!Þ � 0 ð3:5Þ
2. SXXð�!Þ ¼ SXXð!Þ; for a real process XðtÞ ð3:6Þ
3. ImfSXXð!Þg � 0 ð3:7Þ

where Imf�g is defined as the imaginary part of the quantity between

the braces

4. 1
2p

R1
�1 SXXð!Þ d! ¼ E½X2ðtÞ� ¼ RXXð0Þ ¼ PXX ð3:8Þ

ω
−ω0−dω ω0+dω

−ω0 ω0

SXX (ω)

Figure 3.1 Interpretation of SXXð!Þ

40 SPECTRA OF STOCHASTIC PROCESSES



Proofs of the properties:

1. Property 1 is connected to the interpretation of SXXð!Þ and a detailed proof will be given

in Chapter 4.

2. Property 2 states that the power spectrum is an even function of !. The proof of this

property is based on Fourier theory and the fact that for a real process the autocorrelation

function RXXð�Þ is real and even. The proof proceeds as follows:

SXXð!Þ ¼
Z 1

�1
RXXð�Þ½cosð!�Þ � j sinð!�Þ� d� ð3:9Þ

Since RXXð�Þ is real and even, the product of this function and a sine is odd. Therefore,

this product makes no contribution to the integral, which runs over a symmetrical range of

the integration variable. The remaining part is a product of RXXð�Þ and a cosine, both

being even, resulting in an even function of !.

3. The third property, SXXð!Þ being real, is proved as follows. Let us define the complex

process XðtÞ ¼ RðtÞ þ jIðtÞ, where RðtÞ and IðtÞ are real processes and represent the real

and imaginary part of XðtÞ, respectively. Then after some straightforward calculations the

autocorrelation function of XðtÞ is

RXXð�Þ ¼ RRRð�Þ þ RIIð�Þ þ j½RRIð�Þ � RIRð�Þ� ð3:10Þ

Inserting this into the Fourier integral produces the power spectrum

SXXð!Þ ¼
Z 1

�1
½RRRð�Þ þ RIIð�Þ�½cosð!�Þ � j sinð!�Þ�

þ ½RRIð�Þ � RIRð�Þ�½ j cosð!�Þ þ sinð!�Þ� d� ð3:11Þ

The product of the sum of the two autocorrelation functions and the sine gives an odd

result and consequently does not contribute to the integral. Using Equation (2.48), the

difference RRIð�Þ � RIRð�Þ can be rewritten as RRIð�Þ � RRIð��Þ. This is an odd function

and multiplied by a cosine the result remains odd. Thus, this product does not contribute

to the integral either. Since all imaginary parts cancel out on integration, the resulting

power spectrum will be real.

4. Property 4 follows immediately from the definition of Equation (3.2) and the definition of

the autocorrelation function (see Equation (2.18)).

Example 3.1:

Consider once more the stochastic process XðtÞ ¼ A cosð!0t ��Þ, with A and !0 constants

and � a random variable that is uniformly distributed on the interval ð0; 2��. We know that

this process is often met in practice. The autocorrelation function of this process has been
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shown to be RXXð�Þ ¼ 1
2
A2 cosð!0�Þ (see Example 2.1). From a table of Fourier transforms

(see Appendix G) it is easily revealed that

SXXð!Þ ¼ p
2
A2½�ð!� !0Þ þ �ð!þ !0Þ� ð3:12Þ

This spectrum has been depicted in Figure 3.2 and consists of two � functions, one at ! ¼ !0

and another one at ! ¼ �!0. Since the phase is random, introducing an extra constant phase

to the cosine does not have any effect on the result. Thus, instead of the cosine a sine wave

could also have been taken.

&

Example 3.2:

The second example is also important from a practical point of view, namely the spectrum of

an oscillator. From physical considerations the process can be written as XðtÞ ¼
A cos½!0t þ�ðtÞ�, with A and !0 constants and �ðtÞ a random walk process defined by

�ðtÞ ¼ R t

�1 Nð�Þd� , where NðtÞ is a so-called white noise process; i.e. the spectrum of NðtÞ
has a constant value for all frequencies. It can be shown that the autocorrelation function of

the process XðtÞ is [8]

RXXð�Þ ¼ A2

2
expð��j� jÞ cosð!0�Þ ð3:13Þ

where !0 is the nominal angular frequency of the oscillator and the exponential is due to

random phase fluctuations. This autocorrelation function is shown in Figure 3.3(a). It will be

clear that A is determined by the total power of the oscillator and from the Fourier table (see

Appendix G) the power spectrum

SXXð!Þ ¼ �A2=2

�2 þ ð!� !0Þ2
þ �A2=2

�2 þ ð!þ !0Þ2
ð3:14Þ

follows. This spectrum has been depicted in Figure 3.3(b) and is called a Lorentz profile.

&

0
ω

SXX (ω)

−ω0 ω0

Figure 3.2 The power spectrum of a random phased cosine
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3.2 THE BANDWIDTH OF A STOCHASTIC PROCESS

The r.m.s. bandwidth We of a stochastic process is defined using the second normalized

moment of the power spectrum, i.e.

W2
e ¼4

R1
�1 !2SXXð!Þ d!R1
�1 SXXð!Þ d!

ð3:15Þ

This definition is, in its present form, only used for lowpass processes, i.e. processes where

SXXð!Þ has a significant value at ! ¼ 0 and at low frequencies, and decreasing values of

SXXð!Þ at increasing frequency.

Example 3.3:

In this example we will calculate the r.m.s. bandwidth of a very simple power spectrum,

namely an ideal lowpass spectrum defined by

SXXð!Þ ¼ 1; for j!j < B

0; for j!j � B

�
ð3:16Þ

Inserting this into the definition of Equation (3.15) yields

W2
e ¼

R B

�B
!2 d!R B

�B
d!

¼ 1

3
B2 ð3:17Þ

The r.m.s. bandwidth is in this case We ¼ B=
ffiffiffi
3

p
. This bandwidth might have been expected

to be equal to B; the difference is explained by the quadratic weight in the numerator with

respect to frequency.

&

ω

(b)(a)

τ −ω0 ω0

RXX (τ) SXX (ω)

Figure 3.3 (a) The autocorrelation function and (b) the power spectrum of an oscillator
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In case of bandpass processes (see Subsection 4.4.1) the second, central, normalized

moment is used in the definition

W2
e ¼4

4
R1
0
ð!� !0Þ2SXXð!Þ d!R1
0

SXXð!Þ d!
ð3:18Þ

where the mean frequency !0 is defined by

!0 ¼4
R1
0

!SXXð!Þ d!R1
0

SXXð!Þ d!
ð3:19Þ

the first normalized moment of SXXð!Þ. A bandpass process is a process where the power

spectral density function is confined around a frequency �!!0 and which has a negligible value

(zero or almost zero) at ! ¼ 0.

The necessity of the factor of 4 in Equation (3.18) compared to Equation (3.15) is

explained by the next example.

Example 3.4:

In this example we will consider the r.m.s. bandwidth of an ideal bandpass process with the

power spectrum

SXXð!Þ ¼ 1; for j!� !0j < B

2
and j!þ !0j < B

2
0; elsewhere

(
ð3:20Þ

The r.m.s. bandwidth follows from the definition of Equation (3.18):

W2
e ¼

4
R !0þB=2

!0�B=2 ð!� !0Þ2 d!R !0þB=2

!0�B=2 d!
¼ 1

3
B2 ð3:21Þ

which reveals that the r.m.s. bandwidth equals We ¼ B=
ffiffiffi
3

p
. Both the spectrum of the ideal

lowpass process from Example 3.3 and the spectrum of the ideal bandpass process from this

example are presented in Figure 3.4. From a physical point of view the two processes should

ωω

B

B−B −B/2

B

00

(b)(a)

11

SXX (ω) SXX (ω)

−ω0
−ω0

+B/2−ω0 −B/2ω0
ω0

+B/2ω0

Figure 3.4 (a) Power spectrum of the ideal lowpass process and (b) the power spectrum of the ideal

bandpass process
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have the same bandwidth and indeed both Equations (3.17) and (3.21) have the same

outcome. This is only the case if the factor of 4 is present in Equation (3.18).

&

3.3 THE CROSS-POWER SPECTRUM

Analogous to the preceding section, we can define the cross-power spectral density function,

or briefly the cross-power spectrum, as the Fourier transform of the cross-correlation

function

SXYð!Þ ¼
Z 1

�1
RXYð�Þ expð�j!�Þ d� ð3:22Þ

with the corresponding inverse transform

RXYð�Þ ¼ 1

2p

Z 1

�1
SXYð!Þ expðj!�Þ d! ð3:23Þ

It can be seen that the processes XðtÞ and YðtÞ have to be jointly wide-sense stationary.

A physical interpretation of this spectrum cannot always be given. The function SXYð!Þ
often acts as an auxiliary quantity in a few specific problems, such as in bandpass processes

(see Section 5.2). Moreover, it plays a role when two (or even more) signals are added. Let

us consider the process ZðtÞ ¼ XðtÞ þ YðtÞ; then the autocorrelation is

RZZð�Þ ¼ RXXð�Þ þ RYYð�Þ þ RXYð�Þ þ RYXð�Þ ð3:24Þ

From this latter equation the total power of ZðtÞ is PXX þ PYY þ PXY þ PYX and it follows

that the process ZðtÞ contains, in general, more power than the sum of the powers of the

individual signals. This apparently originates from the correlation of the signals. The cross-

power spectra show how the additional power components PXY and PYX are spread over the

different frequencies, namely

PXY ¼4 1

2p

Z 1

�1
SXYð!Þ d! ð3:25Þ

and

PYX ¼4 1

2p

Z 1

�1
SYXð!Þ d! ð3:26Þ

The total amount of additional power may play an important role in situations where an

information-carrying signal has to be processed in the midst of additive noise or interference.

Moreover, the cross-power spectrum is used to describe bandpass processes (see Chapter 5).

From Equation (3.24) it will be clear that the power of ZðtÞ equals the sum of the powers

in XðtÞ and YðtÞ if the processes XðtÞ and YðtÞ are orthogonal.
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Properties of SXYðxÞ for real processes
1. SXYð!Þ ¼ SYXð�!Þ ¼ S�YXð!Þ ð3:27Þ
2. RefSXYð!Þg and RefSYXð!Þg are even functions of ! ð3:28Þ

ImfSXYð!Þg and ImfSYXð!Þg are odd functions of ! ð3:29Þ
where Ref�g and Imf�g are the real and imaginary parts, respectively, of

the quantity in the braces

3. If XðtÞ and YðtÞ are independent, then

SXYð!Þ ¼ SYXð�!Þ ¼ 2�X Y�ð!Þ ð3:30Þ

4. If XðtÞ and YðtÞ are orthogonal, then

SXYð!Þ � SYXð!Þ � 0 ð3:31Þ

5. If XðtÞ and YðtÞ are uncorrelated, then

SXYð!Þ ¼ SYXð�!Þ ¼ 2pX Y�ð!Þ ð3:32Þ

Proofs of the properties:

1. Property 1 is proved by invoking Equation (2.48) and the definition of the cross-power

spectrum

SXYð!Þ ¼
Z 1

�1
RXYð�Þ expð�j!�Þ d� ¼

Z 1

�1
RXYð��Þ expðj!�Þ d�

¼
Z 1

�1
RYXð�Þ expðj!�Þ d� ¼ SYXð�!Þ ð3:33Þ

and from this latter line it follows also that SYXð�!Þ ¼ S�YXð!Þ.
2. In contrast to SXXð!Þ the cross-power spectrum will in general be a complex-valued

function. Property 2 follows immediately from the definition

SXYð!Þ ¼
Z 1

�1
RXYð�Þ cosð!�Þ d� � j

Z 1

�1
RXYð�Þ sinð!�Þ d� ð3:34Þ

For real processes the cross-correlation function is real as well and the first integral

represents the real part of the power spectrum and is obviously even. The second integral

represents the imaginary part of the power spectrum which is obviously odd.

3. From Equation (2.56) it is concluded that in this case RXYð�Þ ¼ X Y and its Fourier

transform equals the right-hand member of Equation (3.30).
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4. The fourth property is quite straightforward. For orthogonal processes, by definition,

RXYð�Þ ¼ RYXð�Þ � 0, and so are the corresponding Fourier transforms.

5. In the given situation, from Equations (2.69) and (2.72) it is concluded that

RXYð�Þ ¼ X Y . Fourier transform theory says that the transform of a constant is a �
function of the form given by Equation (3.32).

3.4 MODULATION OF STOCHASTIC PROCESSES

In many applications (such as in telecommunications) a situation is often met where signals

are modulated and synchronously demodulated. In those situations the signal is applied to a

multiplier circuit, while a second input of the multiplier is a harmonic signal (sine or cosine

waveform), called the carrier (see Figure 3.5). We will analyse the spectrum of the output

process YðtÞ when the spectrum of the input process XðtÞ is known. In doing so we will

assume that the cosine function of the carrier has a constant frequency !0, but a random

phase � that is uniformly distributed on the interval (0,2�] and is independent of XðtÞ. The
output process is then written as

YðtÞ ¼ XðtÞA0 cosð!0t ��Þ ð3:35Þ

The amplitude A0 of the carrier is supposed to be constant. The autocorrelation function of

the output YðtÞ is found by applying the definition to this latter expression, yielding

RYYðt; t þ �Þ ¼ A2
0E½XðtÞ cosð!0t ��ÞXðt þ �Þ cosð!0t þ !0� ��Þ� ð3:36Þ

At the start of this chapter we stated that we will confine our analysis to wide-sense

stationary processes. We will invoke this restriction for the input process XðtÞ; however, this
does not guarantee that the output process YðtÞ is also wide-sense stationary. Therefore we

used the notation RYYðt; t þ �Þ in Equation (3.36) and not RYYð�Þ. Elaborating Equation

(3.36) yields

RYYðt; t þ �Þ ¼ A2
0

2
RXXð�Þ E½cosð2!0t þ !0� � 2�Þ þ cos!0� �

¼ A2
0

2
RXXð�Þ 1

2p

Z 2p

0

cosð2!0t þ !0� � 2�Þ d�þ cos!0�

� �

¼ A2
0

2
RXXð�Þ cos!0� ð3:37Þ

A t-0cos( )ω Θ0

SXX (ω)

X (t ) Y (t )

SYY (ω)

Figure 3.5 A product modulator or mixer
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From Equation (3.37) it is seen that RYYðt; t þ �Þ is independent of t. The mean value of the

output is calculated using Equation (3.35); since � and XðtÞ have been assumed to be

independent the mean equals the product of the mean values E½XðtÞ� and E½cosð!0t ��Þ�.
From Example 2.1 we know that this latter mean value is zero. Thus it is concluded that the

output process YðtÞ is wide-sense stationary, since its autocorrelation function is independent
of t and so is its mean. Transforming Equation (3.37) to the frequency domain, we arrive at

our final result:

SYYð!Þ ¼ A2
0

4
½SXXð!� !0Þ þ SXXð!þ !0Þ� ð3:38Þ

In Figure 3.6 an example has been sketched of a spectrum SXXð!Þ. Moreover, the

corresponding spectrum SYYð!Þ as it appears at the output of the product modulator is

presented. In this figure it has been assumed that XðtÞ is a lowpass process. The analysis can,
however, be applied in a similar way to processes with a different character, e.g. bandpass

processes. As a consequence of the modulation we observe a shift of the baseband spectrum

to the carrier frequency !0 and a shift to �!0; actually besides a shift there is also a split-up.

This is analogous to the modulation of deterministic signals, a difference being that when

dealing with deterministic signals we use the signal spectrum, whereas when dealing with

stochastic processes we have to use the power spectrum.

Example 3.5:

The method of modulation is in practice used for demodulation as well; demodulation in this

way is called synchronous or coherent demodulation. The basic idea is that multiplication of

ω

ω

1

0

0

A2
0

4

(a)

(b)

ω0–ω0

SXX (ω)

SYY (ω)

Figure 3.6 The spectra at (a) input ðSXXð!ÞÞ and (b) output ðSYYð!ÞÞ of a product modulator
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a signal with an harmonic wave (sine or cosine) shifts the power spectrum by an amount

equal to the frequency of the harmonic signal. This shift is twofold: once to the right and

once to the left over the frequency axis. Let us apply this procedure to the spectrum of the

modulated signal as given in Figure 3.6(b). This figure has been redrawn in Figure 3.7(a).

When this spectrum is both shifted to the right and to the left and added, the result is given

by Figure 3.7(b). The power spectrum of the demodulated signal consists of three parts:

1. A copy of the original spectrum about �2!0;

2. A copy of the original spectrum about 2!0;

3. Two copies about ! ¼ 0.

The first two copies may be removed by a lowpass filter, whereas the copies around zero

actually represent the recovered baseband signal from Figure 3.6(a).

&

Besides modulation and demodulation, multiplication may also be applied for frequency

conversion. Modulation and demodulation are therefore examples of frequency conversion

(or frequency translation) that can be achieved by using multipliers.

3.4.1 Modulation by a Random Carrier

In certain systems stochastic processes are used as the carrier for modulation. An example is

pseudo noise sequences that are used in CDMA (Code Division Multiple Access) systems

[9]. The spectrum of such pseudo noise sequences is much wider than that of the modulating

ω

ω

0

0

(a)

(b)

ω0–ω0

–2ω0 2ω0

SYY (ω)

SZZ (ω)

Figure 3.7 (a) The spectra of a modulated signal and (b) the output of the corresponding signal after

synchronous demodulation by a product modulator
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signal. A second example is a lightwave communication system, where sources like light

emitting diodes (LEDs) also have a bandwidth much wider than the modulating signal.

These wideband sources can be described as stochastic processes and we shall denote them

by ZðtÞ. For the modulation we use the scheme of Figure 3.5, where the sinusoidal carrier is

replaced by this ZðtÞ. If the modulating process is given by XðtÞ, then the modulation signal

at the output reads

YðtÞ ¼ XðtÞ ZðtÞ ð3:39Þ

Assuming that both processes are wide-sense stationary, the autocorrelation function of the

output is written as

RYYðt; t þ �Þ ¼ E½XðtÞZðtÞXðt þ �ÞZðt þ �Þ�
¼ E½XðtÞXðt þ �Þ ZðtÞZðt þ �Þ� ð3:40Þ

It is reasonable to assume that the processes XðtÞ and ZðtÞ are independent. Then it follows

that

RYYðt; t þ �Þ ¼ RXXð�ÞRZZð�Þ ð3:41Þ

which means that the output is wide-sense stationary as well. Transforming Equation (3.41)

to the frequency domain produces the power spectrum of the modulation

SYYð!Þ ¼ 1

2p
SXXð!Þ � SZZð!Þ ð3:42Þ

where � presents the convolution operation.

When ZðtÞ has a bandpass characteristic and XðtÞ is a baseband signal, then the

modulated signal will be shifted to the bandpass frequency range of the noise-like carrier

signal. It is well known that convolution exactly adds the spectral extent of the spectra of the

individual signals when they are strictly band-limited. In the case of signals with unlimited

spectral extent, the above relation holds approximately in terms of bandwidths [7]. This

means that, for example, in the case of CDMA the spectrum of the transmitted signal is

much wider than that of the information signal. Therefore, this modulation is also called the

spread spectrum technique. On reception, a synchronized version of the pseudo noise signal

is generated and synchronous demodulation recovers the information signal. De-spreading is

therefore performed in the receiver.

3.5 SAMPLING AND ANALOGUE-TO-DIGITAL CONVERSION

In modern systems extensive use is made of digital signal processors (DSPs), due to the fact

that these processors can be programmed and in this way can have a flexible functionality.

Moreover, the speed is increasing to such high values that the devices become suitable for

many practical applications. However, most signals to be processed are still analogue, such

as signals from sensors and communication systems. Therefore sampling of the analogue

signal is needed prior to analogue-to-digital (A/D) conversion. In this section we will

consider both the sampling process and A/D conversion.
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3.5.1 Sampling Theorems

First we will recall the well-known sampling theorem for deterministic signals [7,10], since

we need it to describe a sampling theorem for stochastic processes.

Theorem 4

Suppose that the deterministic signal f ðtÞ has a band-limited Fourier transform Fð!Þ; i.e.
Fð!Þ ¼ 0 for j!j > W. Then the signal can exactly be recovered from its samples, if the

samples are taken at a sampling rate of at least 1=Ts, where

Ts ¼ p
W

ð3:43Þ

The reconstruction of f ðtÞ from its samples is given by

f ðtÞ ¼
Xn¼1

n¼�1
f ðnTsÞ sinWðt � nTsÞ

Wðt � nTsÞ ð3:44Þ

The minimum sampling frequency 1=Ts ¼ W=p ¼ 2F is called the Nyquist frequency,

where F ¼ W=ð2pÞ is the maximum signal frequency component corresponding to the

maximum angular frequency W.

The sampling theorem is understood by considering ideal sampling of the signal. Ideal

sampling is mathematically described by multiplying the continuous signal f ðtÞ by an

equidistant sequence of � pulses as was mentioned in Chapter 1. This multiplication is

equivalent to a convolution in the frequency domain. From Appendix G it is seen that an

infinite sequence of � pulses in the time domain is in the frequency domain an infinite

sequence of � pulses as well. A sampling rate of 1=Ts in the time domain gives a distance of

2p=Ts between adjacent � pulses in the frequency domain. This means that in the frequency

domain the spectrum Fð!Þ of the signal is reproduced infinitely many times shifted over

n2p=Ts, with n an integer running from �1 to 1. This is further explained by means of

Figure 3.8. From this figure the reconstruction and minimum sampling rate is also under-

stood; namely the original spectrum Fð!Þ, and thus the signal f ðtÞ, is recovered from the

ωW–W

F( )ω

ideal lowpass
filter

2 /π Ts

Figure 3.8 The spectrum of a sampled signal and its reconstruction
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periodic spectrum by applying ideal lowpass filtering to it. However, ideal lowpass filtering

in the time domain is described by a sinc function, as given in Equation (3.44). This

sinc function provides the exact interpolation in the time domain. When the sampling rate

is increased, the different replicas of Fð!Þ become further apart and this will still

allow lowpass filtering to filter out Fð!Þ, as is indicated in Figure 3.9(a). However,

decreasing the sampling rate below the Nyquist rate introduces overlap of the replicas

(see Figure 3.9(b)) and thus distortion; i.e. the original signal f ðtÞ can no longer be exactly

recovered from its samples. This distortion is called aliasing distortion and is depicted in

Figure 3.9(c).

For stochastic processes we can formulate a similar theorem.

Theorem 5

Suppose that the wide-sense stationary process XðtÞ has a band-limited power spectrum

SXXð!Þ; i.e. SXXð!Þ ¼ 0 for j!j > W. Then the process can be recovered from its samples

in the mean-squared error sense, if the samples are taken at a sampling rate of at least

1=Ts, where

Ts ¼ p
W

ð3:45Þ

The reconstruction of XðtÞ from its samples is given by

X̂XðtÞ ¼
Xn¼1

n¼�1
XðnTsÞ sinWðt � nTsÞ

Wðt � nTsÞ ð3:46Þ

The reconstructed process X̂XðtÞ converges to the original process XðtÞ in the mean-

squared error sense, i.e.

E½fX̂XðtÞ � XðtÞg2� ¼ 0 ð3:47Þ

Proof:

We start the proof by remarking that the autocorrelation function RXXðtÞ is a deterministic

function with a band-limited Fourier transform SXXð!Þ, according to the conditions

mentioned in Theorem 5. As a consequence, Theorem 4 may be applied to it. The

reconstruction of RXXðtÞ from its samples is written as

RXXðtÞ ¼
Xn¼1

n¼�1
RXXðnTsÞ sinWðt � nTsÞ

Wðt � nTsÞ ¼
Xn¼1

n¼�1
RXXðnTsÞ sinc½Wðt � nTsÞ� ð3:48Þ

For the proof we need two expressions that are derived from Equation (3.48). The first one is

RXXðtÞ ¼
Xn¼1

n¼�1
RXXðnTs � T1Þ sinc½Wðt � nTs þ T1Þ� ð3:49Þ
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This expression follows from the fact that the sampling theorem only prescribes a minimum

sampling rate, not the exact positions of the samples. The reconstruction is independent of

shifting all samples over a certain amount. Another relation we need is

RXXðt � T2Þ ¼
Xn¼1

n¼�1
RXXðnTsÞ sinc½Wðt � T2 � nTsÞ�

¼
Xn¼1

n¼�1
RXXðnTs � T2Þ sinc½Wðt � nTsÞ� ð3:50Þ

The second line above follows by applying Equation (3.49) to the first line.

The mean-squared error between the original process and its reconstruction is written as

E½fX̂XðtÞ � XðtÞg2� ¼ E½X̂X2ðtÞ þ X2ðtÞ � 2X̂XðtÞXðtÞ�
¼ E½X̂X2ðtÞ� þ RXXð0Þ � 2E½X̂XðtÞXðtÞ� ð3:51Þ

ω

ω

W−W

F( )ω

ω

F( )ω

ideal lowpass
filter

ideal lowpass
filter

π Ts

π Ts

(a)

(b)

(c)

Figure 3.9 The sampled signal spectrum (a) when the sampling rate is higher than the Nyquist rate;

(b) when it is lower than the Nyquist rate; (c) aliasing distortion
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The first term of this latter expression is elaborated as follows:

E½X̂X2ðtÞ� ¼ E
Xn¼1

n¼�1
XðnTsÞ sinc½Wðt � nTsÞ�

Xm¼1

m¼�1
XðmTsÞ sinc½Wðt � mTsÞ�

" #

¼
Xn¼1

n¼�1

Xm¼1

m¼�1
E½XðnTsÞXðmTsÞ� sinc½Wðt � nTsÞ� sinc½Wðt � mTsÞ�

¼
Xn¼1

n¼�1

Xm¼1

m¼�1
RXXðmTs � nTsÞ sinc½Wðt � mTsÞ�

( )
sinc½Wðt � nTsÞ� ð3:52Þ

To the expression in braces we apply Equation (3.50) with T2 ¼ nTs. This yields

E½X̂X2ðtÞ� ¼
Xn¼1

n¼�1
RXXðt � nTsÞ sinc½Wðt � nTsÞ� ¼ RXXð0Þ ð3:53Þ

This equality is achieved when we once more invoke Equation (3.50), but now with T2 ¼ t.

In the last term of Equation (3.51) we insert Equation (3.46). This yields

E½XðtÞX̂XðtÞ� ¼ E XðtÞ
Xn¼1

n¼�1
XðnTsÞ sinc½Wðt � nTsÞ�

" #

¼
Xn¼1

n¼�1
E½XðtÞXðnTsÞ� sinc½Wðt � nTsÞ�

¼
Xn¼1

n¼�1
RXXðt � nTsÞ sinc½Wðt � nTsÞ� ¼ RXXð0Þ ð3:54Þ

This result follows from Equation (3.53). Inserting Equations (3.53) and (3.54) into

Equation (3.51) yields

E½fX̂XðtÞ � XðtÞg2� ¼ 0 ð3:55Þ

This completes the proof of the theorem.

By means of applying the sampling theorem, continuous stochastic processes can be

converted to discrete-time processes, without any information getting lost. This facilitates

the processing of continuous processes by DSPs.

3.5.2 A/D Conversion

For processing in a computer or DSP the discrete-time process has to be converted to a

discrete random sequence. That conversion is called analogue-to-digital (A/D) conversion.

In this conversion the continuous sample values have to be converted to a finite set of

discrete values; this is called quantization. It is important to realize that this is a crucial step,

since this final set is an approximation of the analogue (continuous) samples. As in all
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approximations there are differences, called errors, between the original signal and the

converted one. These errors cannot be restored in the digital-to-analogue reconversion. Thus,

it is important to carefully consider the errors.

For the sake of better understanding we will assume that the sample values do not exceed

both certain positive and negative values, let us say jxj � A. Furthermore, we set the number

of possible quantization levels equal to Lþ 1. The conversion is performed by a quantizer

that has a transfer function as given in Figure 3.10. This quantization characteristic is

presented by the solid staircase shaped line, whereas on the dashed line the output is equal to

the input. According to this characteristic the quantizer rounds off the input to the closest of

the output levels. We assume that the quantizer accommodates the dynamic range of the

signal, which covers the range of f�A;Ag. The difference between the two lines represents

the quantization error eq. The mean squared value of this error is calculated as follows. The

difference between two successive output levels is denoted by �. The exact distribution of

the signal between A and �A is, as a rule, not known, but let us make the reasonable

assumption that the analogue input values are uniformly distributed between two adjacent

levels for all stages. Then the value of the probability density function of the error is 1=�
and runs from ��=2 to �=2. The mean value of the error is then zero and the variance

� 2
e ¼ 1

�

Z �=2

��=2

e2qdeq ¼
�2

12
ð3:56Þ

It is concluded that the power of the error is proportional to the square of the quantization

step size �. This means that this error can be reduced to an acceptable value by selecting

an appropriate number of quantization levels. This error introduces noise in the quantization

input

output

–A

A

∆

Figure 3.10 Quantization characteristic
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process. By experience it has been established that the power spectral density of the

quantization noise extends over a larger bandwidth than the signal bandwidth [11]. There-

fore, it behaves approximately as white noise (see Chapter 6).

Example 3.6:

As an example of quantization we consider a sinusoidal signal of amplitude A, half the value

of the range of the quantizer. In that case this range is fully exploited and no overload will

occur. Recall that the number of output levels was Lþ 1, so that the step size is

� ¼ 2A

L
ð3:57Þ

Consequently, the power of the quantization error is

Pe ¼ � 2
e ¼ A2

3L2
ð3:58Þ

Remembering that the power in a sinusoidal wave with amplitude A amounts to A2=2, the
ratio of the signal power to the quantization noise power follows. This ratio is called the

signal-to-quantization noise ratio and is

S

N

� �
q

¼ 3L2

2
ð3:59Þ

When expressing this quantity in decibels (see Appendix B) it becomes

10 log
S

N

� �
q

¼ 1:8þ 20 log L dB ð3:60Þ

Using binary words of length n to present the different quantization levels, the number of

these levels is 2n. Inserting this into Equation (3.60) it is found that

10 log
S

N

� �
q

� 1:8þ 6n dB ð3:61Þ

for large values of L. Therefore, when adding one bit to the word length, the signal-to-

quantization noise ratio increases by an amount of 6 dB. For example, the audio CD system

uses 16 bits, which yields a signal-to-quantization noise ratio of 98 dB, quite an impressive value.

&

The quantizer characterized by Figure 3.10 is a so-called uniform quantizer, i.e. all steps

have the same size. It will be clear that the signal-to-quantization noise ratio can be

substantially smaller than the value given by Equation (3.60) if the input amplitude is much

smaller than A. This is understood when realizing that in that case the signal power goes

down but the quantization noise remains the same.
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Non-uniform quantizers have a small step size for small input signal values and this step

size increases with increasing input level. As a result the signal-to-quantization noise

ratio improves for smaller signal values at the cost of that for larger signal levels (see

reference [6]).

After applying sampling and quantization to a continuous stochastic process we actually

have a discrete random sequence, but, as mentioned in Chapter 1, these processes are simply

special cases of the discrete-time processes.

3.6 SPECTRUM OF DISCRETE-TIME PROCESSES

As usual, the calculation of the power spectrum has to start by considering the autocorrela-

tion function. For the wide-sense stationary discrete-time process X½n� we can write

RXX½m� ¼ E½X½n�X½nþ m�� ð3:62Þ

The relation to the continuous stochastic process is

RXX ½m� ¼
Xm¼1

m¼�1
RXXðmTsÞ �ðt � mTsÞ ð3:63Þ

From this equation the power spectral density of X½m� follows by Fourier transformation:

SXXð!Þ ¼
Xm¼1

m¼�1
RXX½m� expð�j!mTsÞ ð3:64Þ

Thus, the spectrum is a periodic function (see Figure 3.8) with period 2�=Ts. Such a periodic
function can be described by means of its Fourier series coefficients [7,10]

RXX½m� ¼ Ts

2p

Z p=Ts

�p=Ts
SXXð!Þ expðj!mTsÞ d! ð3:65Þ

In particular, we find for the power of the process

PX ¼ E½X2½n�� ¼ RXX½0� ¼ Ts

2p

Z p=Ts

�p=Ts
SXXð!Þ d! ð3:66Þ

For ease of calculation it is convenient to introduce the z-transform of RXX ½m�, which is

defined as

~SSXXðzÞ¼4
Xm¼1

m¼�1
RXX½m� z�m ð3:67Þ
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The z-transform is more extensively dealt with in Subsection 4.6.2. Comparing this latter

expression to Equation (3.64) reveals that the delay operator z equals expðj!TsÞ and

consequently

~SSXXðexpðj!mTsÞÞ ¼ SXXð!Þ ð3:68Þ

Example 3.7:

Let us consider a wide-sense stationary discrete-time process X½n� with the autocorrelation

sequence

RXX½m� ¼ ajmj; with jaj < 1 ð3:69Þ

The spectrum expressed in z-transform notation is

~SSXXðzÞ ¼
Xm¼1

m¼�1
ajmjz�m ¼

Xm¼�1

m¼�1
a�mz�m þ

Xm¼1

m¼0

amz�m

¼ az

1� az
þ z

z� a
¼ 1=a� a

ð1=aþ aÞ � ðzþ 1=zÞ ð3:70Þ

From this expression the spectrum in the frequency domain is easily derived by replacing z

with expðj!TsÞ:

SXXð!Þ ¼ 1=a� a

ð1=aþ aÞ � 2 cosð!TsÞ ð3:71Þ

&

It can be seen that the procedure given here to develop the autocorrelation sequence and

spectrum of a discrete-time process can equally be applied to derive cross-correlation

sequences and corresponding cross-power spectra. We leave further elaboration on this

subject to the reader.

3.7 SUMMARY

The power spectral density function, or power spectrum, of a stochastic process is defined as

the Fourier transform of the autocorrelation function. This spectrum shows how the total

power of the process is distributed over the various frequencies. Definitions have been given

of the bandwidth of stochastic processes. It appears that on modulation the power spectrum

is split up into two parts of identical shape as the original unmodulated spectrum: one part

is concentrated around the modulation frequency and the other part around minus the

modulation frequency. This implies that we use a description based on double-sided

spectra. This is very convenient from a mathematical point of view. From a physical point
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of view negative frequency values have no meaning. When changing to the physical

interpretation, the contributions of the power spectrum at negative frequencies are mirrored

with respect to the y axis and the values are added to the values at the corresponding positive

frequencies.

The sampling theorem is redefined for stochastic processes. Therefore continuous

stochastic processes can be converted into discrete-time processes without information

becoming lost. For processing signals using a digital signal processor (DSP), still another

step is needed, namely analogue-to-digital conversion. This introduces errors that cannot be

restored in the digital-to-analogue reconstruction. These errors are calculated and expressed

in terms of the signal-to-noise ratio. Finally, the autocorrelation sequence and power

spectrum of discrete-time processes are derived.

3.8 PROBLEMS

3.1 A wide-sense stationary process XðtÞ has the autocorrelation function

RXXð�Þ ¼ A exp � j� j
T

� �

(a) Calculate the power spectrum SXXð!Þ.
(b) Calculate the power of XðtÞ using the power spectrum.

(c) Check the answer to (b) using Equation (3.8), i.e. based on the autocorrelation

function evaluated at � ¼ 0.

(d) Use Matlab to plot the spectrum for A ¼ 3 and T ¼ 4.

3.2 Consider the process XðtÞ, of which the autocorrelation function is given in Problem

2.14.

(a) Calculate the power spectrum SXXð!Þ. Make a plot of it using Matlab.

(b) Calculate the power of XðtÞ using the power spectrum.

(c) Calculate the mean value of XðtÞ from the power spectrum.

(d) Calculate the variance of XðtÞ using the power spectrum.

(e) Check the answers to (b), (c) and (d) using the answers to Problem 2.14.

(f) Calculate the lowest frequency where the spectrum becomes zero. By means of

Matlab calculate the relative amount of a.c. power in the frequency band between

zero and this first null.

3.3 A wide-sense stationary process has a power spectral density function

SXXð!Þ ¼
2; 0 � j!j < 10=ð2pÞ
0; elsewhere

�

(a) Calculate the autocorrelation function RXXð�Þ.
(b) Use Matlab to plot the autocorrelation function.

(c) Calculate the power of the process, both via the power spectrum and the

autocorrelation function.
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3.4 Consider the process YðtÞ ¼ A2 sin2ð!0t ��Þ, with A and !0 constants and � a

random variable that is uniformly distributed on ð0; 2p�. In Problem 2.8 we calculated

its autocorrelation function.

(a) Calculate the power spectrum SYYð!Þ.
(b) Calculate the power of YðtÞ using the power spectrum.

(c) Check the answer to (b) using Equation (3.8).

3.5 Reconsider Problem 2.9 and insert !0 ¼ 2p.

(a) Calculate the magnitude of a few spectral lines of the power spectrum by means

of Matlab.

(b) Based on (a), calculate an approximate value of the total power and check this on

the basis of the autocorrelation function.

(c) Calculate and check the d.c. power.

3.6 Answer the same questions as in Problem 3.5, but now for the process given in

Problem 2.11 when inserting T ¼ 1.

3.7 A and B are random variables. These variables are used to create the process

XðtÞ ¼ A cos!0t þ B sin!0t, with !0 a constant.

(a) Assume that A and B are uncorrelated, have zero means and equal variances.

Show that in this case XðtÞ is wide-sense stationary.

(b) Derive the autocorrelation function of XðtÞ.
(c) Derive the power spectrum of XðtÞ. Make a sketch of it.

3.8 A stochastic process is given by XðtÞ ¼ A cosð�t ��Þ, where A is a real constant, � a

random variable with probability density function f�ð!Þ and � a random variable that

is uniformly distributed on the interval (0,2p], independent of �. Show that the power

spectrum of XðtÞ is

SXXð!Þ ¼ pA2

2
½ f�ð!Þ þ f�ð�!Þ�

3.9 A and B are real constants and XðtÞ is a wide-sense stationary process. Derive the

power spectrum of the process YðtÞ ¼ Aþ B XðtÞ.
3.10 Can each of the following functions be the autocorrelation function of a wide-sense

stationary process XðtÞ?
(a) RXXð�Þ ¼ �ð�Þ.
(b) RXXð�Þ ¼ rectð�Þ.
(c) RXXð�Þ ¼ trið�Þ.
For definitions of the functions �ð�Þ, rectð�Þ and trið�Þ see Appendix E.

3.11 Consider the process given in Problem 3.1. Based on process XðtÞ of that problem

another process YðtÞ is produced, such that

SYYð!Þ ¼ SXXð!Þ; j!j < cð1=TÞ
0; elsewhere

�

where c is a constant.

60 SPECTRA OF STOCHASTIC PROCESSES



(a) Calculate the r.m.s. bandwidth of YðtÞ.
(b) Consider the consequences, both for SYYð!Þ and the r.m.s. bandwidth, when c ! 1.

3.12 For the process XðtÞ it is found that RXXð�Þ ¼ A exp½��2=ð2�2Þ�, with A and � positive

constants.

(a) Derive the expression for the power spectrum of XðtÞ.
(b) Calculate the r.m.s. bandwidth of XðtÞ.

3.13 Derive the cross-power spectrum of the processes given in Problem 2.9.

3.14 A stochastic process is defined by WðtÞ ¼ AXðtÞ þ BYðtÞ, with A and B real constants

and XðtÞ and YðtÞ jointly wide-sense stationary processes.

(a) Calculate the power spectrum of WðtÞ.
(b) Calculate the cross-power spectra SXWð!Þ and SYWð!Þ.
(c) Derive SWWð!Þ when XðtÞ and YðtÞ are orthogonal.

(d) Derive SWWð!Þ when XðtÞ and YðtÞ are independent.

(e) Derive SWWð!Þ when XðtÞ and YðtÞ are independent and have mean values of

zero.

(f) Derive SWWð!Þ when XðtÞ and YðtÞ are uncorrelated.

3.15 A wide-sense stationary noise process NðtÞ has a power spectrum as given in

Figure 3.11. This process is added to an harmonic random signal SðtÞ ¼ 3 cosð8t � �Þ
and the sum SðtÞ þ NðtÞ is applied to one of the inputs of a product modulator. To the

second input of this modulator another harmonic processXðtÞ ¼ 2 cosð8t ��Þ is applied.
The random variables� and� are independent, but have the same uniform distribution on

the interval ½0; 2pÞ. Moreover, these random variables are independent of the processNðtÞ.
The output of the product modulator is connected to an ideal lowpass filter with a cut-off

angular frequency !c ¼ 5.

(a) Make a sketch of the spectrum of the output of the modulator.

(b) Sketch the spectrum at the output of the lowpass filter.

(c) Calculate the d.c. power at the output of the filter.

(d) The output signal is defined as that portion of the output due to SðtÞ. The output

noise is defined as that portion of the output due to NðtÞ. Calculate the output

signal power and the output noise power, and the ratio between the two (called the

signal-to-noise ratio).

1

0 5 10–5–10 ω

SNN (ω)

Figure 3.11
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3.16 The two independent processes XðtÞ and YðtÞ are applied to a product modulator.

Process XðtÞ is a wide-sense stationary process with power spectral density

SXXð!Þ ¼
1; j!j � WX

0; j!j > WX

�

The process YðtÞ is an harmonic carrier, but both its phase and frequency are

independent random variables

YðtÞ ¼ cosð�t ��Þ

where the phase � is uniformly distributed on the interval ½0; 2pÞ and the carrier

frequency is uniformly distributed on the interval ð!0 �WY=2 < � < !0 þWY=2Þ
and with !0 > WY=2 ¼ constant.

(a) Calculate the autocorrelation function of the process YðtÞ.
(b) Is YðtÞ wide-sense stationary?

(c) If so, determine and sketch the power spectral density SYYð!Þ.
(d) Determine and sketch the power spectral density of the product ZðtÞ ¼ XðtÞYðtÞ.

Assume that WY=2þWX < !0 and WX < WY=2.

3.17 The following sequence of numbers represents sample values of a band-limited signal:

. . . ; 0; 5; 10; 20; 40; 0;�20;�15;�10;�5; 0; . . .

All other samples are zero.

Use Matlab to reconstruct and graphically represent the signal.

3.18 In the case of ideal sampling, the sampled version of the signal f ðtÞ is represented by

fsðtÞ ¼
Xn¼1

n¼�1
f ðnTsÞ �ðt � nTsÞ

In so-called ‘flat-top sampling’ the samples are presented by the magnitude of

rectangular pulses, i.e.

fsðtÞ ¼
Xn¼1

n¼�1
f ðnTsÞ rect t � nTs

�s

� �

where �s < Ts. (See Appendix E for the definition of the rectð�Þ function.) Investigate
the effect of using these rectangular pulses on the Fourier transform of the recovered

signal.

3.19 A voice channel has a spectrum that runs up to 3.4 kHz. On sampling, a guard band

(i.e. the distance between adjacent spectral replicas after sampling) of 1.2 kHz has to

be taken in account.
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(a) What is the minimum sampling rate?

(b) When the samples are coded by means of a linear sampler of 8 bits, calculate the

bit rate of a digitized voice channel.

(c) What is the maximum signal-to-noise ratio that can be achieved for such a voice

channel?

(d) With how many dB will the signal-to-noise reduce when only half of the dynamic

range is used by the signal?

3.20 A stochastic process XðtÞ has the power spectrum

SXX ¼ 1

1þ !2

This process is sampled, and since it is not band-limited the adjacent spectral replicas

will overlap. If the spill-over power, i.e. the amount of power that is in overlapping

frequency ranges, between adjacent replicas has to be less than 10% of the total power,

what is the minimum sampling frequency?

3.21 The discrete-time process X½n� is wide-sense stationary and RXX½1� ¼ RXX½0�. Show
that RXX½m� ¼ RXX ½0� for all m.

3.22 The autocorrelation sequence of a discrete-time wide-sense stationary process X½n� is

RXX½m� ¼ 1� 0:2jmj; jmj � 4

0; jmj > 4

�

Calculate the spectrum SXXð!Þ and make a plot of it using Matlab.
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4
Linear Filtering
of Stochastic Processes

In this chapter we will investigate what the influence will be on the main parameters of a

stochastic process when filtered by a linear, time-invariant filter. In doing so we will from

time to time change from the time domain to the frequency domain and vice versa. This may

even happen during the course of a calculation. From Fourier transform theory we know that

both descriptions are dual and of equal value, and basically there is no difference, but a

certain calculation may appear to be more tractable or simpler in one domain, and less

tractable in the other.

In this chapter we will always assume that the input to the linear, time-invariant filter is a

wide-sense stationary process, and the properties of these processes will be invoked several

times. It should be stressed that the presented calculations and results may only be applied in

the situation of wide-sense stationary input processes. Systems that are non-linear or time-

variant are not considered, and the same holds for input processes that do not fulfil the

requirements for wide-sense stationarity.

We start by summarizing the fundamentals of linear time-invariant filtering.

4.1 BASICS OF LINEAR TIME-INVARIANT FILTERING

In this section we will summarize the theory of continuous linear time-invariant filtering. For

the sake of simplicity we consider only single-input single-output (SISO) systems. For a

more profound treatment of this theory see references [7] and [10]. The generalization to

multiple-input multiple-output (MIMO) systems is straightforward and requires a matrix

description.

Let us consider a general system that converts a certain input signal xðtÞ into the

corresponding output signal yðtÞ. We denote this by means of the general hypothetical

operator T½�� as follows (see also Figure 4.1(a)):

yðtÞ ¼ T½xðtÞ� ð4:1Þ

Introduction to Random Signals and Noise W. van Etten
# 2005 John Wiley & Sons, Ltd



Next we limit our treatment to linear systems and denote this by means of L½�� as follows:

yðtÞ ¼ L½xðtÞ� ð4:2Þ

The definition of linearity of a system is as follows. Suppose a set of input signals fxnðtÞg
causes a corresponding set of output signals fynðtÞg. Then a system is said to be linear if any

arbitrary linear combination of inputs causes the same linear combination of corresponding

outputs, i.e.

if : xnðtÞ ) ynðtÞ
then :

X

n

anxnðtÞ )
X

n

anynðtÞ ð4:3Þ

with an arbitrary constants. In the notation of Equation (4.2),

yðtÞ ¼ L

�X

n

anxnðtÞ
�
¼
X

n

anL½xnðtÞ� ¼
X

n

anynðtÞ ð4:4Þ

A system is said to be time-invariant if a shift in time of the input causes a corresponding

shift in the output. Therefore,

if : xnðtÞ ) ynðtÞ
then : xnðt � �Þ ) ynðt � �Þ ð4:5Þ

for arbitrary �. Finally, a system is linear time-invariant (LTI) if it satisfies both conditions

given by Equations (4.3) and (4.5), i.e.

if : xnðtÞ ) ynðtÞ
then : xðtÞ ¼

X

n

anxnðt � �nÞ ) yðtÞ ¼
X

n

anynðt � �nÞ ð4:6Þ

x (t ) y (t )

tx (t )=exp(j )ω y t A t+( )= exp{ j( )}ω φ

[ ].T

(a)

(b)

( )
( )

h t
H ω

Figure 4.1 (a) General single-input single-output (SISO) system; (b) linear time-invariant

(LTI) system
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It can be proved [7] that complex exponential time functions, i.e. sine and cosine waves, are

so-called eigenfunctions of linear time-invariant systems. An eigenfunction can physically

be interpreted as a function that preserves its shape on transmission, i.e. a sine/cosine

remains a sine/cosine, but its amplitude and/or phase may change. When these changes are

known for all frequencies then the system is completely specified. This specification is done

by means of the complex transfer function of the linear time-invariant system. If the system

is excited with a complex exponential

xðtÞ ¼ expðj!tÞ ð4:7Þ

and the corresponding output is

yðtÞ ¼ A exp½ jð!t þ ’Þ� ð4:8Þ

with A a real constant, then the transfer function equals

Hð!Þ ¼ yðtÞ
xðtÞ
����
xðtÞ¼expðj!tÞ

ð4:9Þ

From Equations (4.7) to (4.9) the amplitude and the phase angle of the transfer function

follow:

jHð!Þj ¼ A

ffHð!Þ ¼ ’
ð4:10Þ

When in Equation (4.9), ! is given all values from �1 to 1, the transfer is completely

known. As indicated in that equation the amplitude of the input xðtÞ is taken as unity and the

phase zero for all frequencies. All observed complex values of yðtÞ are then presented by the

function Yð!Þ. Since the input Xð!Þ was taken as unity for all frequencies, Equation (4.9) is

in that case written as

Hð!Þ ¼ Yð!Þ
1

! Yð!Þ ¼ Hð!Þ � 1 ð4:11Þ

From Fourier theory we know that the multiplication in the right-hand side of the latter

equation is written in the time domain as a convolution [7,10]. Moreover, the inverse

transform of 1 is a � function. Since a � function is also called an impulse, the time domain

LTI system response following from Equation (4.11) is called the impulse response. We may

therefore conclude that the system impulse response hðtÞ and the system transfer function

Hð!Þ constitute a Fourier transform pair.

When the transfer function is known, the response of an LTI system to an input signal can

be calculated. Provided that the input signal xðtÞ satisfies the Dirichlet conditions [10], its

Fourier transform Xð!Þ exists. However, this frequency domain description of the signal is

equivalent to decomposing the signal into complex exponentials, which in turn are

eigenfunctions of the LTI system. This allows multiplication of Xð!Þ by Hð!Þ to find

Yð!Þ, being the Fourier transform of output yðtÞ; namely by taking the inverse transform of

Yð!Þ, the signal yðtÞ is reconstructed from its complex exponential components. This
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justifies the use of Fourier transform theory to be applied to the transmission of signals

through LTI signals. This leads us to the following theorem.

Theorem 6

If a linear time-invariant system with an impulse response hðtÞ is excited by an input

signal xðtÞ, then the output is

yðtÞ ¼
Z 1

�1
hð�Þ xðt � �Þ d� ð4:12Þ

with the equivalent frequency domain description

Yð!Þ ¼ Hð!ÞXð!Þ ð4:13Þ
where Xð!Þ and Yð!Þ are the Fourier transforms of xðtÞ and yðtÞ, respectively, and Hð!Þ
is the Fourier transform of the impulse response hðtÞ.

The two presentations of Equations (4.12) and (4.13) are so-called dual descriptions; i.e.

both are complete and either of them is fully determined by the other one. If an important

condition for physical realizability of the LTI system is taken into account, namely causality,

then the impulse response will be zero for t < 0 and the lower bound of the integral in

Equation (4.12) changes into zero.

This theorem is the main result we need to describe the filtering of stochastic processes by

an LTI system, as is done in the sequel.

4.2 TIME DOMAIN DESCRIPTION OF FILTERING
OF STOCHASTIC PROCESSES

Let us now consider the transmission of a stochastic process through an LTI system.

Obviously, we may formally apply the time domain description given by Equation (4.12) to

calculate the system response of a single realization of the ensemble. However, a frequency

domain description is not always possible. Apart from the fact that realizations are often not

explicitly known, it may happen that they do not satisfy the Dirichlet conditions. Therefore,

we start by characterizing the filtering in the time domain. Later on the frequency domain

description will follow from this.

4.2.1 The Mean Value of the Filter Output

The impulse response of the linear, time-invariant filter is denoted by hðtÞ. Let us consider the
ensemble of input realizations and call this input process XðtÞ and the corresponding output

process YðtÞ. Then the relation between input and output is formally described by the

convolution

YðtÞ ¼
Z 1

�1
hð�ÞXðt � �Þ d� ð4:14Þ
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When the input process XðtÞ is wide-sense stationary, then the mean value of the output

signal is written as

E½YðtÞ� ¼ E

Z 1

�1
hð�ÞXðt � �Þ d�

� �
¼
Z 1

�1
hð�ÞE½Xðt � �Þ� d�

¼ YðtÞ ¼ XðtÞ
Z 1

�1
hð�Þ d� ¼ XðtÞHð0Þ ð4:15Þ

where Hð!Þ is the Fourier transform of hðtÞ. From Equation (4.15) it follows that the mean

value of YðtÞ equals the mean value of XðtÞ multiplied by the value of the transfer function

for the d.c. component. This value is equal to the area under the curve of the impulse

response function hðtÞ. This conclusion is based on the property of XðtÞ at least being

stationary of the first order.

4.2.2 The Autocorrelation Function of the Output

The autocorrelation function of YðtÞ is found using the definition of Equation (2.13) and

Equation (4.14):

RYYðt; t þ �Þ ¼ E½YðtÞ Yðt þ �Þ�

¼ E

Z 1

�1
hð�1ÞXðt � �1Þ d�1

Z 1

�1
hð�2ÞXðt þ � � �2Þ d�2

� �

¼
Z1

�1

Z
E½Xðt � �1ÞXðt þ � � �2Þ�hð�1Þhð�2Þ d�1 d�2 ð4:16Þ

Invoking XðtÞ as wide-sense stationary reduces this expression to

RYYð�Þ ¼
Z1

�1

Z
RXXð� þ �1 � �2Þ�hð�1Þhð�2Þ d�1 d�2 ð4:17Þ

and the mean squared value of YðtÞ reads

E½Y2ðtÞ� ¼ Y2ðtÞ ¼ RYYð0Þ ¼
Z1

�1

Z
RXXð�1 � �2Þhð�1Þhð�2Þ d�1 d�2 ð4:18Þ

From Equations (4.15) and (4.17) it is concluded that YðtÞ is wide-sense stationary when

XðtÞ is wide-sense stationary, since neither the right-hand member of Equation (4.15) nor

that of Equation (4.17) depends on t.

Equation (4.17) may also be written as

RYYð�Þ ¼ RXXð�Þ � hð�Þ � hð��Þ ð4:19Þ

where the symbol � represents the convolution operation.
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4.2.3 Cross-Correlation of the Input and Output

The cross-correlation of XðtÞ and YðtÞ is found using Equations (2.46) and (4.14):

RXYðt; t þ �Þ¼4 E½XðtÞ Yðt þ �Þ� ¼ E XðtÞ
Z 1

�1
hð�ÞXðt þ � � �Þ d�

� �

¼
Z 1

�1
E½XðtÞXðt þ � � �Þ� hð�Þ d� ð4:20Þ

In the case where XðtÞ is wide-sense stationary Equation (4.20) reduces to

RXYð�Þ ¼
Z 1

�1
RXXð� � �Þhð�Þ d� ð4:21Þ

This expression may also be presented as the convolution of RXXð�Þ and hð�Þ:

RXYð�Þ ¼ RXXð�Þ � hð�Þ ð4:22Þ

In a similar way the following expression can be derived:

RYXð�Þ ¼
Z 1

�1
RXXð� þ �Þhð�Þ d� ¼ RXXð�Þ � hð��Þ ð4:23Þ

From Equations (4.21) and (4.23) it is concluded that the cross-correlation functions do not

depend on the absolute time parameter t. Earlier we concluded that YðtÞ is wide-sense

stationary if XðtÞ is wide-sense stationary. Now we conclude that XðtÞ and YðtÞ are jointly

wide-sense stationary if the input process XðtÞ is wide-sense stationary.

Substituting Equation (4.21) into Equation (4.17) reveals the relation between the

autocorrelation function of the output and the cross-correlation between the input and output:

RYYð�Þ ¼
Z 1

�1
RXYð� þ �1Þhð�1Þ d�1 ð4:24Þ

or, presented differently,

RYYð�Þ ¼ RXYð�Þ � hð��Þ ð4:25Þ

In a similar way it follows by substitution of Equation (4.23) into Equation (4.17) that

RYYð�Þ ¼
Z 1

�1
RYXð� � �2Þhð�2Þ d�2 ¼ RYXð�Þ � hð�Þ ð4:26Þ

Example 4.1:

An important application of the cross-correlation function as given by Equation (4.22)

consists of the identification of a linear system. If for the input process a white noise process,

i.e. a process with a constant value of the power spectral density, let us say of magnitude
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N0=2, is selected then the autocorrelation function of that process becomes N0 �ð�Þ=2. This
makes the convolution very simple, since the convolution of a � function with another

function results in this second function itself. Thus, in that case the cross-correlation

function of the input and output yields RXYð�Þ ¼ N0 hð�Þ=2. Apart from a constant N0=2, the
cross-correlation function equals the impulse response of the linear system; in this way we

have found a method to measure this impulse response.

&

4.3 SPECTRA OF THE FILTER OUTPUT

In the preceding sections we described the output process of a linear time-invariant filter in

terms of the properties of the input process. In doing so we used the time domain description.

We concluded that in case of a wide-sense stationary input process the corresponding output

process is wide-sense stationary as well, and that the two processes are jointly wide-sense

stationary. This offers the opportunity to apply the Fourier transform to the different

correlation functions in order to arrive at the spectral description of the output process

and the relationship between the input and output processes. It must also be stressed that in

this section only wide-sense stationary input processes will be considered.

The first property we are interested in is the spectral density of the output process. Using

what has been derived in Section 4.2.2, this is easily revealed by transforming Equation

(4.19) to the frequency domain. If we remember that the impulse response hð�Þ is a real

function and thus the Fourier transform of hð��Þ equals H�ð!Þ, then the next important

statement can be exposed.

Theorem 7

If a wide-sense stationary process XðtÞ, with spectral density SXXð!Þ, is applied to

the input of a linear, time-invariant filter with the transfer function Hð!Þ, then the

corresponding output process YðtÞ is a wide-sense stationary process as well, and the

spectral density of the output reads

SYYð!Þ ¼ SXXð!ÞHð!ÞH�ð!Þ ¼ SXXð!Þ jHð!Þj2 ð4:27Þ

The mean power of the output process is written as

PY ¼ RYYð0Þ ¼ 1

2p

Z 1

�1
SXXð!Þ jHð!Þj2 d! ð4:28Þ

Example 4.2:

Consider the RC network given in Figure 4.2. Then the voltage transfer function of this

network is written as

Hð!Þ ¼ 1

1þ j!RC
ð4:29Þ
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If we assume that the network is excited by a white noise process with spectral density of

N0=2 and taking the modulus squared of Equation (4.29), then the output spectral density

reads

SYYð!Þ ¼ N0=2

1þ ð!RCÞ2 ð4:30Þ

For the power in the output process it is found that

PY ¼ 1

2p

Z 1

�1

N0=2

1þ ð!RCÞ2 d! ¼ N0

4pRC
arctanð!RCÞ

����
1

�1
¼ N0

4RC
ð4:31Þ

&

In an earlier stage we found the power of a wide-sense stationary process in an alternative

way, namely the value of the autocorrelation function at � ¼ 0 (see, for instance, Equation

(4.16)). The power can also be calculated using that procedure. However, in order to be able

to calculate the autocorrelation function of the output YðtÞ we need the probability density

function of XðtÞ in order to evaluate a double convolution or we need the probability density

function of YðtÞ. Finding this latter function we meet two main obstacles: firstly, measuring

the probability density function is much more difficult than measuring the power density

function and, secondly, the probability density function of YðtÞ by no means follows in a

simple way from that of XðtÞ. This latter statement has one important exception, namely if

the probability density function of XðtÞ is Gaussian then the probability density function of

YðtÞ is Gaussian as well (see Section 2.3). However, calculating the mean and variance of

YðtÞ, which are sufficient to determine the Gaussian density, using Equations (4.15) and

(4.28) is a simpler and more convenient method.

From Equations (4.22) and (4.23) the cross-power spectra are deduced:

SXYð!Þ ¼ SXXð!ÞHð!Þ ð4:32Þ
SYXð!Þ ¼ SXXð!ÞHð�!Þ ¼ SXXð!ÞH�ð!Þ ð4:33Þ

We are now in a position to give the proof of Equation (3.5). Suppose that SXXð!Þ has a
negative value for some arbitrary ! ¼ !0. Then a small interval ð!1; !2Þ about !0 is found,

such that (see Figure 4.3(a))

SXXð!Þ < 0; for !1 < j!j < !2 ð4:34Þ

R

C

Figure 4.2 RC network
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Now consider an ideal bandpass filter with the transfer function (see Figure 4.3(b))

Hð!Þ ¼ 1; !1 < j!j < !2

0; for all remaining values of !

�
ð4:35Þ

If the process XðtÞ, with the power spectrum given in Figure 4.3(a), is applied to the input of

this filter, then the spectrum of the output YðtÞ is as presented in Figure 4.3(c) and is

described by

SYYð!Þ ¼ SXXð!Þ; !1 < j!j < !2

0; for all remaining values of !

�
ð4:36Þ

so that

SYYð!Þ � 0; for all ! ð4:37Þ

However, this is impossible as (see Equations (4.28) and (3.8))

PY ¼ RYYð0Þ ¼ 1

2p

Z 1

�1
SYYð!Þ d! � 0 ð4:38Þ

ω

ω1 ω2

(a)

(b)

(c)

1

SXX (ω)

SYY (ω)

H (ω)

Figure 4.3 Noise filtering
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This contradiction leads to the conclusion that the starting assumption SXXð!Þ < 0 must be

wrong.

4.4 NOISE BANDWIDTH

In this section we present a few definitions and concepts related to the bandwidth of a

process or a linear, time-invariant system (filter).

4.4.1 Band-Limited Processes and Systems

A process XðtÞ is called a band-limited process if SXXð!Þ ¼ 0 outside certain regions of the !
axis. For a band-limited filter the same definition can be used, provided that SXXð!Þ is

replaced by Hð!Þ. A few special cases of band-limited processes and systems are considered

in the sequel.

1. A process is called a lowpass process or baseband process if

Sð!Þ 6¼ 0; j!j < W

¼ 0; j!j > W

�
ð4:39Þ

2. A process is called a bandpass process if (see Figure 4.4)

Sð!Þ 6¼ 0; !0 �W1 � j!j � !0 �W1 þW

¼ 0; for all remaining values of !

�
ð4:40Þ

with

0 < W1 < !0 ð4:41Þ

3. A system is called a narrowband system if the bandwidth of that system is small

compared to the frequency range over which the spectrum of the input process extends. A

0 ωω0 − W1 ω0 ω0 − W1 + W

W

S( )ω

Figure 4.4 The spectrum of a bandpass process (only the region ! � 0 is shown)
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narrowband bandpass process is a process for which the bandwidth is much smaller than

its central frequency, i.e. (see Figure 4.4)

W 	 !0 ð4:42Þ

The following points should be noted:


 The definitions of processes 1 and 2 can also be used for systems if Sð!Þ is replaced by

Hð!Þ.

 In practical systems or processes the requirement that the spectrum or transfer function is

zero in a certain region cannot exactly be met in a strict mathematical sense. Never-

theless, we will maintain the given names and concepts for those systems and processes

for which the transfer function or spectrum has a negligibly low value in a certain

frequency range.


 The spectrum of a bandpass process is not necessarily symmetrical about !0.

4.4.2 Equivalent Noise Bandwidth

Equation (4.28) is often used for practical applications. For that reason there is a need for a

simplified calculation method in order to compute the noise power at the output of a filter. In

this section we will introduce such a simplification.

To that end consider a lowpass system with the transfer function Hð!Þ. Assume that the

spectrum of the input process equals N0=2 for all !, with N0 a positive, real constant (such a

spectrum is called a white noise spectrum). The power at the output of the filter is calculated

using Equation (4.28):

PY ¼ 1

2p

Z 1

�1

N0

2
jHð!Þj2 d! ð4:43Þ

Now define an ideal lowpass filter as

HIð!Þ ¼ Hð0Þ; j!j � WN

0; j!j > WN

�
ð4:44Þ

where WN is a positive constant chosen such that the noise power at the output of the ideal

filter is equal to the noise power at the output of the original (practical) filter. WN therefore

follows from the equation

1

2p

Z 1

�1

N0

2
jHð!Þj2 d! ¼ 1

2p

Z WN

�WN

N0

2
jHð0Þj2 d! ð4:45Þ

If we consider jHð!Þj2 to be an even function of !, then solving Equation (4.45) for WN

yields

WN ¼
R1
0

jHð!Þj2d!
jHð0Þj2 ð4:46Þ
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WN is called the equivalent noise bandwidth of the filter with the transfer function Hð!Þ. In
Figure 4.5 it is indicated graphically how the equivalent noise bandwidth is determined. The

solid curve represents the practical characteristic and the dashed line the ideal rectangular

one. The equivalent noise bandwidth is such that in this picture the dashed area equals the

shaded area.

From Equations (4.43) and (4.45) it follows that the output power of the filter can be

written as

PY ¼ N0

2p
jHð0Þj2WN ð4:47Þ

Thus, it can be shown for the special case of white input noise that the integral of Equation

(4.43) is reduced to a product and the filter can be characterized by means of a single number

WN as far as the noise filtering behaviour is concerned.

Example 4.3:

As an example of the equivalent noise bandwidth let us again consider the RC network

presented in Figure 4.2. Using the definition of Equation (4.46) and the result of Example 4.2

(Equation (4.29)) it is found that WN ¼ p=ð2RCÞ. This differs from the 3 dB bandwidth by a

factor of p=2. It may not come as a surprise that the equivalent noise bandwidth of a circuit

differs from the 3 dB bandwidth, since the definitions differ. On the other hand, both

bandwidths are proportional to 1=ðRCÞ.
&

Equation (4.47) can often be used for the output of a narrowband lowpass filter. For such a

system, which is analogous to Equation (4.43), the output power reads

PY � 1

2p

Z 1

�1
SXXð0Þ jHð!Þj2 d! ð4:48Þ

and thus

PY � SXXð0Þ
p

jHð0Þj2WN ð4:49Þ

0 ω

( )|ω 2

|HI( )|ω 2

–WN WN

|H

Figure 4.5 Equivalent noise bandwidth of a filter characteristic
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The above calculation may also be applied to bandpass filters. Then it follows that

WN ¼
R1
0

jHð!Þj2 d!
jHð!0Þj2

ð4:50Þ

Here !0 is a suitably chosen but arbitrary frequency in the passband of the bandpass filter, for

instance the centre frequency or the frequency where jHð!Þj attains its maximum value. The

noise power at the output is written as

PY ¼ N0

2p
jHð!0Þj2WN ð4:51Þ

When once again the input spectrum is approximately constant within the passband of the

filter, which often happens in narrowband bandpass filters, then

PY � SXXð!0Þ
p

jHð!0Þj2WN ð4:52Þ

In this way we end up with rather simple expressions for the noise output of linear time-

invariant filters.

4.5 SPECTRUM OF A RANDOM DATA SIGNAL

This subject is dealt with here since for the derivation we need results from the filtering of

stochastic processes, as dealt with in the preceding sections of this chapter. Let us consider

the random data signal

XðtÞ ¼
X

n

A½n� pðt � nTÞ ð4:53Þ

where the data sequence is produced by making a random selection out of the possible values

of A½n� for each moment of time nT . In the binary case, for example, we may have

A½n��f�1;þ1g. The sequence A½n� is supposed to be wide-sense stationary, where A½n� and
A½k� in general will be correlated according to

E
�
A½n�A½k�� ¼ E ½A½n�A�nþ m�� ¼ E

�
A½n�A½n� m�� ¼ R½m� ð4:54Þ

The data symbols amplitude modulate the waveform pðtÞ. This waveform may extend beyond

the boundaries of a bit interval. The random data signal XðtÞ constitutes a cyclo-stationary

process. We define a random variable � which is uniformly distributed on the interval ð0; T �
and which is supposed to be independent of the data A½n�; this latter assumption sounds

reasonable. Using this random variable and the process XðtÞ we define the new process

XðtÞ¼4 Xðt ��Þ ¼
X

n

A½n� pðt � nT ��Þ ð4:55Þ
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Invoking Theorem 1 (see Section 2.2.2) we may conclude that this latter process is

stationary. We model the process XðtÞ as resulting from exciting a linear time-invariant

system having the impulse response hðtÞ ¼ pðtÞ by the input process

YðtÞ ¼
X

n

A½n� �ðt � nT ��Þ ð4:56Þ

The autocorrelation function of YðtÞ is

RYYð�Þ ¼ E½YðtÞ Yðt þ �Þ�

¼ E

�X

n

X

k

A½n�A½k� �ðt � nT ��Þ �ðt � kT þ � ��Þ
�

¼
X

n

X

k

E
�
A½n�A½k��E½�ðt � nT ��Þ �ðt � kT þ � ��Þ�

¼
X

n

X

k

R½k � n� 1
T

Z T

0

�ðt � nT � �Þ �ðt þ � � kT � �Þ d� ð4:57Þ

For all values of T; t; � and n there will be only one single value of k for which both

�ðt � nT � �Þ and �ðt þ � � kT � �Þ will be found in the interval 0 < � � T . This means

that actually the integral in Equation (4.57) is the convolution of two � functions,which

is well defined (see reference [7]). Applying the basic definition of � functions (see Appendix
E) yields

RYYð�Þ ¼
X

m

R½m�
T

�ð� þ mTÞ ð4:58Þ

where m ¼ k � n. The autocorrelation function of YðtÞ is presented in Figure 4.6. Finally, the
autocorrelation function of XðtÞ follows:

RXXð�Þ ¼ RYYð�Þ � hð�Þ � hð��Þ ¼ RYYð�Þ � pð�Þ � pð��Þ ð4:59Þ

The spectrum of the random data signal is found by Fourier transforming Equation (4.59):

SXXð!Þ ¼ SYYð!Þ jPð!Þj2 ð4:60Þ

τ0 T 2T–T–2T

. . .. . .

RYY (τ)

Figure 4.6 The autocorrelation function of the process YðtÞ consisting of a sequence of � functions
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where Pð!Þ is the Fourier transform of pðtÞ. Using this latter equation and Equation (4.58)

the following theorem can be stated.

Theorem 8

The spectrum of a random data signal reads

SXXð!Þ ¼ jPð!Þj2
T

X1

m¼�1
R½m� expðj!mTÞ

¼ jPð!Þj2
T

R½0� þ 2
X1

m¼1

R½m� cosð!mTÞ
( )

ð4:61Þ

where R½m� are the autocorrelation values of the data sequence, Pð!Þ is the Fourier

transform of the data pulses and T is the bit time.

This result, which was found by applying filtering to a stochastic process, is of great

importance when calculating the spectrum of digital baseband or digitally modulated signals

in communications, as will become clear from the examples in the sequel. When applying

this theorem, two cases should clearly be distinguished, since they behave differently, both

theoretically and as far as the practical consequences are concerned. We will deal with the

two cases by means of examples.

Example 4.4:

The first case we consider is the situation where the mean value of XðtÞ is zero and

consequently the autocorrelation function of the sequence A½n� has in practice a finite extent.

Let us suppose that the summation in Equation (4.61) runs in that case from 1 to M.

As an important practical example of this case we consider the so-called polar NRZ

signal, where NRZ is the abbreviation for non-return to zero, which reflects the behaviour of

the data pulses. Possible values of A½n� are A½n� 2 fþ1;�1g, where these values are chosen
with equal probability and independently of each other. For the signal waveform pðtÞ we take
a rectangular pulse of width T , being the bit time. For the autocorrelation of the data

sequence it is found that

R½0� ¼ 121
2
þ ð�1Þ2 1

2
¼ 1 ð4:62Þ

R½m� ¼ 121
4
þ ð�1Þ21

4
þ ð1Þð�1Þ1

4
þ ð�1Þð1Þ1

4
¼ 0; for m 6¼ 0 ð4:63Þ

Substituting these values into Equation (4.61) gives the power spectral density of the polar

NRZ data signal:

SXXð!Þ ¼ T
sin! T

2

! T
2

� �2

ð4:64Þ
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since the Fourier transform of the rectangular pulse is the well-known sinc function (see

Appendix G). The resulting spectrum is shown in Figure 4.7.

The disadvantage of the polar NRZ signal is that it has a large value of its power spectrum

near the d.c. component, although it does not comprise a d.c. component. On the other hand, the

signal is easy to generate, and since it is a simplex signal (see Appendix A) it is power efficient.

&

Example 4.5:

In this example we consider the so-called unipolar RZ (return to zero) data signal. This once

more reflects the behaviour of the data pulses. For this signal format the values of A½n� are
chosen from the set A½n� 2 f1; 0g with equal probability and mutually independent. The

signalling waveform pðtÞ is defined by

pðtÞ¼4 1; 0 � t < T=2
0; T=2 � t < T

�
ð4:65Þ

It is easy to verify that the autocorrelation of the data sequence reads

R½m� ¼
1
2
; m ¼ 0

1
4
; m 6¼ 0

(
ð4:66Þ

Inserting this result into Equation (4.61) reveals that we end up with an infinite sum of

complex exponentials:

SXXð!Þ ¼ T

4

sin! T
4

! T
4

� �2
1

4
þ 1

4

X1

m¼�1
expðj!mTÞ

" #
ð4:67Þ

0 2 /π T 4 /π T 6 /π T
ω

–2 /π T–4 /π T–6 /π T

T

SXX (ω)

Figure 4.7 The power spectral density of the polar NRZ data signal
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However, this infinite sum of exponentials can be rewritten as

X1

m¼�1
expðj!mTÞ ¼ 2p

T

X1

m¼�1
� !� 2pm

T

� �
ð4:68Þ

which is known as the Poisson sum formula [7]. Applying this sum formula to Equation

(4.67) yields

SXXð!Þ ¼ T

16

sin! T
4

! T
4

� �2

1þ 2p
T

X1

m¼�1
� !� 2�m

T

� �" #
ð4:69Þ

This spectrum has been depicted in Figure 4.8. Comparing this figure with that of Figure 4.7

a few remarks need to be made. First of all, the first null bandwidth of the RZ signal

increased by a factor of two compared to the NRZ signal. This is due to the fact that the

pulse width was reduced by the same factor. Secondly, a series of � functions appears in the

spectrum. This is due to the fact that the unipolar signal has no zero mean. Besides the large

value of the spectrum near zero frequency there is a d.c. component. This is also discovered

from the � function at zero frequency. The weights of the � functions scale with the sinc

function (Equation (4.69)) and vanish at all zero-crossings of the latter.

&

Theorem 8 is a powerful tool for calculating the spectrum of all types of formats for data

signals. For more spectra of data signals see reference [6].

0 2 /π T 4 /π T 6 /π T

ω

–2 /π T–4 /π T–6 /π T 8π/T–8 /π T

T
16

SXX (ω)

Figure 4.8 The power spectral density of the unipolar RZ data signal
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4.6 PRINCIPLES OF DISCRETE-TIME SIGNALS AND SYSTEMS

The description of discrete-time signals and systems follows in a straightforward manner by

sampling the functions that describe their continuous counterparts. Especially for the theory

and conversion it is most convenient to confine the procedure to ideal sampling, i.e. by

multiplying the continuous functions by a sequence of � functions, where these � functions

are equally spaced in time.

First of all we define the discrete-time � function as follows:

�½n� ¼4 1; n ¼ 0;
0; n 6¼ 0

�
ð4:70Þ

or in general

�½n� m� ¼4 1; n ¼ m

0; n 6¼ m

�
ð4:71Þ

Based on this latter definition each arbitrary signal x½n� can alternatively be denoted as

x½n� ¼
X1

m¼�1
x½m� �½n� m� ð4:72Þ

We will limit our treatment to linear time-invariant systems. For discrete-time systems we

introduce a similar definition for linear time-invariant systems as we did for continuous

systems, namely

if : xi½n� ) yi½n�
then :

X

i

aixi½n� mi� )
X

i

aiyi½n� mi� ð4:73Þ

for any arbitrary set of constants ai and mi.

Also, the convolution follows immediately from the continuous case

y½n� ¼
X1

m¼�1
x½m� h½n� m� ¼

X1

m¼�1
h½n� x½n� m� ¼ x½n� � h½n� ð4:74Þ

This latter description will be used for the output y½n� of a discrete-time system with the

impulse response h½n�, which has x½n� as an input signal. This expression is directly deduced

by sampling Equation (4.12), but can alternatively be derived from Equation (4.72) and the

properties of linear time-invariant systems.

In many practical situations the impulse response function h½n� will have a finite extent.

Such filters are called finite impulse response filters, abbreviated as FIR filters, whereas the

infinite impulse response filter is abbreviated to the IIR filter.

4.6.1 The Discrete Fourier Transform

For continuous signals and systems we have a dual frequency domain description. Now we

look for discrete counterparts for both the Fourier transform and its inverse transform, since
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then these transformations can be performed by a digital processor. When considering for

discrete-time signals the presentation by means of a sequence of � functions

x½n� ¼
X1

n¼�1
xðtÞ �ðt � nTsÞ ¼

X1

n¼�1
xðnTsÞ �ðt � nTsÞ

¼
X1

n¼�1
x½n� �ðt � nTsÞ ð4:75Þ

where 1=Ts is the sampling rate, the corresponding Fourier transform of the sequence x½n� is
easily achieved, namely

Xð!Þ ¼
X1

n¼�1
x½n� expð�j!nTsÞ ð4:76Þ

Due to the discrete character of the time function its Fourier transform is a periodic function

of frequency with period 2p=Ts. The inverse transform is therefore

x½n� ¼ Ts

2p

Z p=Ts

�p=Ts
Xð!Þ expðjn!TsÞ d! ð4:77Þ

In Equations (4.76) and (4.77) the time domain has been discretized. Therefore, the

operations are called the discrete-time Fourier transform (DTFT) and the inverse discrete-

time Fourier transform (IDTFT), respectively. However, the frequency domain has not yet

been discretized in those equations. Let us therefore now introduce a discrete presentation of

! as well. We define the radial frequency step as �!¼4 2p=T , where T still has to be

determined. Moreover, the number of samples has to be limited to a finite amount, let us

say N. In order to arrive at a self-consistent discrete Fourier transform this number has to

be the same for both the time and frequency domains. Inserting this into Equation (4.76)

gives

X½k� ¼ X k
2p
T

� �
¼
XN�1

n¼0

x½n� exp �jk
2p
T

nTs

� �
ð4:78Þ

If we define the ratio of T and Ts as N¼4 T=Ts, then

X½k� ¼
XN�1

n¼0

x½n� exp �j2p
kn

N

� �
ð4:79Þ

Inserting the discrete frequency and limited amount of samples as defined above into

Equation (4.77) and approximating the integral by a sum yields

x½n� ¼ Ts

2p

XN�1

k¼0

X½k� exp j2p
nk

T
Ts

� �
2p
T

ð4:80Þ
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or

x½n� ¼ 1

N

XN�1

k¼0

X½k� exp j2p
nk

N

� �
ð4:81Þ

The transform given by Equation (4.79) is called the discrete Fourier transform (abbreviated

DFT) and Equation (4.81) is called the inverse discrete Fourier transform (IDFT). They are

a discrete Fourier pair, i.e. inserting a sequence into Equation (4.79) and in turn inserting

the outcome into Equation (4.81) results in the original sequence, and the other way around.

In this sense the deduced set of two equations is self-consistent. It follows from the

derivations that they are used as discrete approximations of the Fourier transforms. Modern

mathematical software packages such as Matlab comprise special routines that perform the

DFT and IDFT. The algorithms used in these packages are called the fast Fourier transform

(FFT). The FFT algorithm and its inverse (IFFT) are just DFT, respectively IDFT, but are

implemented in a very efficient way. The efficiency is maximum when the number of

samples N is a power of 2. For more details on DFT and FFT see references [10] and [12].

Example 4.6:

It is well known from Fourier theory that the transform of a rectangular pulse in the time

domain corresponds to a sinc function in the frequency domain (see Appendices E and G).

Let us check this result by applying the FFT algorithm of Matlab to a rectangular pulse.

Before programming the pulse, a few peculiarities of the FFT algorithm should be observed.

First of all, it is only based on the running variables n and k, both running from 0 to N � 1,

which means that no negative values along the x axis can be presented. Here it should be

emphasized that in Matlab vectors run from 1 to N, which means that when applying this

package the x axis is actually shifted over one position. Another important property is that

since the algorithm both requires and produces N data values, Equations (4.79) and (4.81)

are periodic functions of respectively k and n, and show a periodicity of N. Thanks to this

periodicity the negative argument values can be displayed in the second half of the period.

This actually means that in Figure 4.9(a) the rectangular time function is centred about zero.

Similarly, the frequency function as displayed in Figure 4.9(b) is actually centred about zero

as well. In this figure it has been taken that N ¼ 256.

In Figure 4.10 the functions are redrawn with the second half shifted over one period

to the left. This results in functions centred about zero in both domains and reflects the

well-known result from Fourier theory. It will be clear that the actual time scale and

frequency scale in this figure are to be determined based on the actual width of the

rectangular pulse.

&

From a theoretical point of view it is impossible for both the time function and the

corresponding frequency function to be of finite extent. However, one can imagine that if one

of them is limited the parameters of the DFT are chosen such that the transform is a good

approximation. Care should be taken with this, as shown in Figure 4.11. In this figure the

rectangular pulse in the time domain has been narrowed, which results in a broader function
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Figure 4.9 (a) The FFT applied to a rectangular pulse in the time domain; (b) the transform in the

frequency domain
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Figure 4.10 (a) The shifted rectangular pulse in the time domain; (b) the shifted transform in the

frequency domain
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in the frequency domain. In this case two adjacent periods in the frequency domain overlap;

this is called aliasing.

Although the two functions of Figure 4.11 form an FFT pair, the frequency domain result

from Figure 4.11(b) shows a considerable distortion compared to the Fourier transform,

which is rather well approximated by Figure 4.9(b). It will be clear that this aliasing can in

such cases be prevented by increasing the number of samples N. This has to be done in this

case by keeping the number of samples of value 1 the same, and inserting extra zeros in the

middle of the interval.

4.6.2 The z-Transform

An alternative approach to deal with discrete-time signals and systems is by setting

expðj!TsÞ¼4 z in Equation (4.76). This results in the so-called z-transform, which is defined as

~XXðzÞ¼4
X1

n¼�1
x½n� z�n ð4:82Þ

Comparing this with Equation (4.76) it is concluded that

~XXðexpðj!TsÞÞ ¼ Xð!Þ ð4:83Þ

Since Equation (4.82) is exactly the same as the discrete Fourier transform, only a different

notation has been introduced, the same operations used with the Fourier transform are

0 50 100 150 200 250

1

0 50 100 150 200 250

0

k

(a)

(b)

N=256

x [n ]

X [k ]

n

Figure 4.11 (a) Narrowed pulse in the time domain; (b) the FFT result, showing aliasing
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allowed. If we consider Equation (4.82) as the z-transform of the input signal to a linear

time-invariant discrete-time system, when calculating the z-transform of the impulse

response

~HHðzÞ ¼
X1

n¼�1
h½n� z�n ð4:84Þ

the z-transform of the output is found to be

~YYðzÞ ¼ ~HHðzÞ ~XXðzÞ ð4:85Þ
A system is called stable if it has a bounded output signal when the input is bounded. A

discrete-time system is a stable system if all the poles of ~HHðzÞ lie inside the unit circle of the
z plane or in terms of the impulse response [10]:

X1

n¼�1
jh½n�j < 1 ð4:86Þ

The z-transform is a very powerful tool to use when dealing with discrete-time signals and

systems. This is due to the simple and compact presentation of it on the one hand and the fact

that the coefficients of the different powers z�n are identified as the time samples at nTs on

the other hand. For further details on the z-transform see references [10] and [12].

Example 4.7:

Consider a discrete-time system with the impulse response

h½n� ¼ an; n � 0

0; n < 0

�
ð4:87Þ

and where jaj < 1. The sequence h½n� has been depicted in Figure 4.12 for a positive value of
a. The z-transform of this impulse response is

~HHðzÞ ¼ 1þ az�1 þ a2z�2 þ � � � ¼ 1

1� az�1
ð4:88Þ

...
n

h [n ]

Figure 4.12 The sequence an with 0 < a < 1
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Let us suppose that this filter is excited with an input sequence

x½n� ¼ bn; n � 0

0; n < 0

�
ð4:89Þ

with jbj < 1 and b 6¼ a. Similar to Equation (4.88) the z-transform of this sequence is

~XXðzÞ ¼ 1þ bz�1 þ b2z�2 þ � � � ¼ 1

1� bz�1
ð4:90Þ

Then the z-transform of the output is

~YYðzÞ ¼ ~HHðzÞ ~XXðzÞ ¼ 1

1� az�1

1

1� bz�1
ð4:91Þ

The time sequence can be recovered from this by decomposition into partial fractions:

1

1� az�1

1

1� bz�1
¼ a

a� b

1

1� az�1
� b

a� b

1

1� bz�1
ð4:92Þ

From this the output sequence is easily derived:

y½n� ¼
a

a� b
an � b

a� b
bn; n � 0

0; n < 0

8
<

: ð4:93Þ

&

As far as the realization of discrete-time filters is concerned two main types are

distinguished, namely the non-recursive filter structure and the recursive. The realization

of the non-recursive filter is quite straightforward and the structure is given in Figure 4.13; it

is also called the transversal filter or tapped delay line filter. The boxes represent delays of Ts
seconds and the outputs are multiplied by an. The delayed and multiplied outputs are added

Ts

Σ

Ts Ts

a0 a1 a2 aN

x [n ]

y [n ]

Figure 4.13 The structure of the discrete-time non-recursive filter, transversal filter or tapped delay

line filter

88 LINEAR FILTERING OF STOCHASTIC PROCESSES



to form the filter output sequence y½n�. It is easy to understand that the transfer function of

the filter in the z domain is described by the polynomial

~HHðzÞ ¼ ~AAðzÞ ¼ a0 þ a1z
�1 þ � � � þ aNz

�N ¼
Xn¼N

n¼0

anz
�n ð4:94Þ

From the structure it follows that it is a finite impulse response (FIR) filter and there is a

simple and direct relation between the multiplication factors and the polynomial coefficients.

An FIR filter is inherently stable.

The recursive filter is based on a similar tapped delay line filter, which is in a feedback

loop depicted in Figure 4.14. The transfer function of the feedback filter is

~BBðzÞ ¼ b1z
�1 þ b2z

�2 þ � � � þ bMz
�M ð4:95Þ

and from the figure it is easily derived that the transfer function of the recursive filter is

~HHðzÞ¼4
~YYðzÞ
~XXðzÞ ¼

1

1þ ~BBðzÞ ð4:96Þ

As a rule this transfer function has an infinite impulse response, so it is an IIR filter. The

stability of the recursive filter is guaranteed if the denominator polynomial 1þ ~BBðzÞ in

Equation (4.96) has no zeros outside the unit circle.

In filter synthesis the transfer function is often specified by means of a rational function;

i.e. it is given as

~HHðzÞ ¼ a0 þ a1z
�1 þ a2z

�2 þ � � � þ aNz
�N

1þ b1z�1 þ b2z�2 þ � � � þ bMz�M
¼

~AAðzÞ
1þ ~BBðzÞ ð4:97Þ

It can be seen that this function is realizable as the cascade of the FIR filter from Figure 4.13

and the IIR filter from Figure 4.14, as follows from Equations (4.94) to (4.96), while the

same stability criterion is valid as for the IIR filter.

The Signal Processing Toolbox from Matlab comprises several commands for the

analysis and design of discrete-time filters, one of which is filter, which calculates the

output of filters described by Equation (4.97) when excited by a specified input sequence.

Ts

Σ

+

TsTs

b1b2bM

-1

x [n ] y [n ]

Figure 4.14 The structure of the discrete-time recursive filter
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4.7 DISCRETE-TIME FILTERING OF RANDOM SEQUENCES

4.7.1 Time Domain Description of the Filtering

The filtering of a discrete-time stochastic process X½n� by a discrete-time linear time-

invariant system with the impulse response h½n� is described by the convolution (see

Equation (4.74))

Y ½n� ¼
X1

m¼�1
X½m� h½n� m� ¼

X1

m¼�1
X½n� m� h½m� ¼ X½n� � h½n� ð4:98Þ

It should be remembered that treatment is confined to real wide-sense stationary processes.

Then the mean value of the output sequence is

E
�
Y½n�� ¼

X1

m¼�1
E
�
X½n� m�� h½m� ¼ X

X1

m¼�1
h½m� ¼ X ~HHð1Þ ð4:99Þ

where ~HHð1Þ is the z-transform of h½n� evaluated at z ¼ 1, which follows from its definition

(see Equation (4.84)).

The autocorrelation sequence of the output process, which can be proved to be wide-sense

stationary as well, is

RYY ½m� ¼ E½Y½n� Y�nþ m��

¼ E
X1

k¼�1
X½n� k� h½k�

X1

l¼�1
X½nþ m� l� h½l�

" #

¼
X1

k¼�1

X1

l¼�1
E½X½n� k�X½nþ m� l�� h½k� h½l�

¼ RXX½m� � h½m� � h½�m� ð4:100Þ

The cross-correlation sequence between the input and output becomes

RXY ½m� ¼ E
�
X½n� Y ½nþ m��

¼ E X½n�
X

l

X½nþ m� l� h½l�
" #

¼
X

l

E
�
X½n�X½nþ m� l�� h½l�

¼
X

l

RXX ½m� l� h½l� ¼ RXX½m� � h½m� ð4:101Þ

In a similar way is derived

RYX ½m� ¼ RXX½m� � h½�m� ð4:102Þ
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Moreover, the following relation exists:

RYY ½m� ¼ RXY ½m� � h½�m� ¼ RYX½m� � h½m� ð4:103Þ

4.7.2 Frequency Domain Description of the Filtering

Once the autocorrelation sequence at the output of the linear time-invariant discrete-time

system is known, the spectrum at the output follows from Equation (4.100):

SYYð!Þ ¼ SXXð!ÞHð!ÞH�ð!Þ ¼ SXXð!Þ jHð!Þj2 ð4:104Þ

where the functions of frequency have to be interpreted as in Equation (4.76).

Using the z-transform, and assuming h½n� to be real, we arrive at

~SSYYðzÞ ¼ ~SSXXðzÞ ~HHðzÞ ~HHðz�1Þ ð4:105Þ

since for a real system H�ð!Þ ¼ Hð�!Þ and consequently ~HHðzÞ ¼ ~HHðz�1Þ.
Owing to the discrete-time nature of Y ½n� its spectrum is periodic. According to Equa-

tion (3.66) its power is denoted by

PY ¼ E
�
Y2½n�� ¼ RYY ½0� ¼ Ts

2p

Z p=Ts

�p=Ts
SXXð!Þ jHð!Þj2 d!

¼ Ts

2p

Z p=Ts

�p=Ts
SXXð!Þ j~HHðexpðj!TsÞÞj2 d!

¼
X

k

X

l

RXX½k � l� h½k� h½l� ð4:106Þ

The last line of this equation follows from Equation (4.100).

Example 4.8:

Let us consider the system with the z-transform

~HHðzÞ ¼ 1

1� az�1
ð4:107Þ

with jaj < 1; this is the system introduced in Example 4.7. We assume that the system is

driven by the stochastic process X½n� with spectral density ~SSXXðzÞ ¼ 1 or equivalently

RXX½m� ¼ �½m�; later on we will call such a process white noise. Then the output spectral

density according to Equation (4.105) is written as

~SSYYðzÞ ¼ z

z� a

z�1

z�1 � a
¼ z

ðz� aÞð1� azÞ ð4:108Þ
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Expanding this expression in partial fractions yields

~SSYYðzÞ ¼ 1

1� a2
1

1� az
þ 1

1� a2
az�1 1

1� az�1
ð4:109Þ

Next we expand in series the fractions with z and z�1:

~SSYYðzÞ ¼ 1

1� a2

	
1þ azþ a2z2 þ � � � 
þ 1

1� a2
az�1ð1þ az�1 þ a2z�2 þ � � �Þ

¼ 1

1� a2

X0

n¼�1
a�nz�n þ

X1

n¼1

anz�n

 !
¼ 1

1� a2

X1

n¼�1
ajnjz�n ð4:110Þ

The autocorrelation sequence of the output is easily derived from this, namely

RYY ½m� ¼ 1

1� a2
ajmj ð4:111Þ

and in turn it follows immediately that

PY ¼ RYY ½0� ¼ 1

1� a2
ð4:112Þ

The power spectrum is deduced from Equation (4.109), which for that purpose is rewritten as

~SSYYðzÞ ¼ 1

1� aðzþ z�1Þ þ a2
ð4:113Þ

Inserting z ¼ expðj!TsÞ leads to the spectrum in the frequency domain

SYYð!Þ ¼ ~SSYYðexpðj!TsÞÞ ¼ 1

1� 2a cosð!TsÞ þ a2
ð4:114Þ

In Figure 4.15 this spectrum has been depicted for a ¼ 0:8 and a sampling interval time of

1 second. As a consequence the spectrum has a periodicity of 2� in the angular frequency

domain. Clearly, this is a lowpass spectrum.

&

From this example it is concluded that the z-transform is a powerful tool for analysing

discrete-time systems that are driven by a stochastic process. The transformation and its

inverse are quite simple and the operations in the z domain are simply algebraic manipula-

tions. Moreover, conversion from the z domain to the frequency domain is just a simple

substitution.

Matlab comprises the procedures conv and deconv for multiplication and division of

polynomials, respectively. The filter command in the Signal Processing Toolbox can do

the same job (see also the end of Subsection 4.6.2). Moreover, the same toolbox comprises

the command freqz, which, apart from the filter operation, also converts the result to the

frequency domain.
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4.8 SUMMARY

The input of a linear time-invariant system is excited with a wide-sense stationary process. In

the time domain the output process is described as the convolution of the input process and

the impulse response of the system, e.g. a filter. Next from this description such character-

istics as mean value and correlation functions are to be determined, using the definitions

given in Chapter 2. Although the expression for the autocorrelation function of the output

process looks rather complicated, namely a twofold convolution, for certain processes this

may result in a tractable description. Applying the Fourier transform and arriving at the

power spectral density produces a much simpler expression. The probability density function

of the output process can, in general, not be easily determined in analytical form from the

input probability density function. There is an important exception for this; namely if the

input process has a Gaussian probability density function then the output process also has a

Gaussian probability density function.

The concept of equivalent noise bandwidth has been defined in order to arrive at an even

more simple description of noise filtering in the frequency domain. The theory of noise

filtering is applied to a specific stochastic process in order to describe the autocorrelation

function and spectrum of random data signals.

Next, attention is paid to discrete-time signals and systems. Specials tools for that are

dealt with. The discrete Fourier transform (DFT) and its inverse (IDFT) are derived and it is

shown that this transform can serve as an approximation of the Fourier transform. Problems

when applying the DFT for that purpose are indicated, including the ways used to avoid

them. A closely related transform, namely the z-transform, appears to be more tractable for

practical applications. The relation to the Fourier transform is quite simple. Finally, it is shown

how to apply these transforms to filtering discrete-time processes by discrete-time systems.
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Figure 4.15 The periodic spectrum of the example with a ¼ 0:8
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4.9 PROBLEMS

4.1 Consider the network given in Figure 4.16.

(a) Calculate the voltage transfer function. Make a plot of its absolute value on a

double logarithmic scale using Matlab and with R=L ¼ 1.

(b) Calculate the impulse response. Make a plot of it using Matlab.

(c) Calculate the response of the network to a rectangular input pulse that starts at

t ¼ 0, has height 1 and lasts for 2 seconds. Make a plot of the response using

Matlab.

4.2 Derive the Fourier transform of the function

f ðtÞ ¼ expð��jtjÞ cosð!0tÞ

Use Matlab to produce a plot of the transform with � ¼ 1 and !0 ¼ 10.

4.3 Consider the circuit given in Figure 4.17.

(a) Determine the impulse response of the circuit. Make a sketch of it.

(b) Calculate the transfer function Hð!Þ.
(c) Determine and draw the response yðtÞ to the input signal xðtÞ ¼ A rect

½ðt � 1
2
TÞ=T �, where A is a constant. (See Appendix E for the definition of the

rectangular pulse function rectð�ÞÞ.
(d) Determine and draw the response yðtÞ to the input signal xðtÞ ¼ A rect

½ðt � TÞ=ð2TÞ�, where A is a constant.

4.4 A stochastic process XðtÞ ¼ A sinð!0t ��Þ is given, with A and !0 real, positive

constants and � a random variable that is uniformly distributed on the interval ð0; 2p�.
This process is applied to a linear time-invariant network with the impulse response

L

Rinput output

Figure 4.16

delay
T

+ (.)dt

+

-

x (t ) y (t )

Figure 4.17
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hðtÞ ¼ uðtÞ expð�t=�0Þ. (The unit-step function uðtÞ is defined in Appendix E.) Here �0
is a positive, real constant. Derive an expression for the output process.

4.5 Awide-sense stationary Gaussian process with spectral density N0=2 is applied to the

input of a linear time-invariant filter. The impulse response of the filter is

hðtÞ ¼ 1; 0 < t < T

0; elsewhere

�

(a) Sketch the impulse response of the filter.

(b) Calculate the mean value and the variance of the output process.

(c) Determine the probability density function of the output process.

(d) Calculate the autocorrelation function of the output process.

(e) Calculate the power spectrum of the output process.

4.6 A wide-sense process XðtÞ has the autocorrelation function RXXð�Þ ¼ A2þ
Bð1� j� j=TÞ for j� j < T and with A, B and T positive constants. This process is used

as the input to a linear, time-invariant system with the impulse response hðtÞ ¼
uðtÞ � uðt � TÞ.
(a) Sketch RXXð�Þ and hðtÞ.
(b) Calculate the mean value of the output process.

4.7 White noise with spectral density of N0=2 V2=Hz is applied to the input of the system

given in Problem 4.1.

(a) Calculate the spectral density of the output.

(b) Calculate the mean quadratic value of the output process.

4.8 Consider the circuit in Figure 4.18, where XðtÞ is a wide-sense stationary voltage

process. Measurements on the output voltage process YðtÞ reveal that this process is
Gaussian. Moreover, it is measured as

RYYð�Þ ¼ 9 expð��j� jÞ þ 25; where � ¼ 1

RC

(a) Determine the probability density function fYðyÞ. Plot this function using Matlab.

(b) Calculate and sketch the spectrum SXXð!Þ of the input process.

(c) Calculate and sketch the autocorrelation function RXXð�Þ of the input process.

R

CX (t ) Y (t )

Figure 4.18
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4.9 Two linear time-invariant systems have impulse responses of h1ðtÞ and h2ðtÞ,
respectively. The process X1ðtÞ is applied to the first system and the corresponding

response reads Y1ðtÞ. Similarly, the input process X2ðtÞ to the second system results in

the response Y2ðtÞ. Calculate the cross-correlation function of Y1ðtÞ and Y2ðtÞ in terms

of h1ðtÞ, h2ðtÞ and the cross-correlation function of X1ðtÞ and X2ðtÞ, assuming X1ðtÞ
and X2ðtÞ to be jointly wide-sense stationary.

4.10 Two systems are cascaded. A stochastic process XðtÞ is applied to the input of the first

system having the impulse response h1ðtÞ. The response of this system is WðtÞ and

serves as the input of the second system with the impulse response h2ðtÞ. The response
of this second system reads YðtÞ. Calculate the cross-correlation function of WðtÞ and
YðtÞ in terms of h1ðtÞ and h2ðtÞ, and the autocorrelation function of XðtÞ. Assume that

XðtÞ is wide-sense stationary.

4.11 The process (called the signal) XðtÞ ¼ cosð!0t ��Þ, with � uniformly distributed on

the interval ð0; 2p�, is added to white noise with spectral density N0=2. The sum is

applied to the RC network given in Figure 4.2.

(a) Calculate the power spectral densities of the output signal and the output noise.

(b) Calculate the ratio of the mean output signal power and the mean output noise

power, the so-called signal-to-noise ratio.

(c) For what value of �0 ¼ RC does this ratio become maximal?

4.12 White noise with spectral density of N0=2 is applied to the input of a linear time-

invariant system with the transfer function Hð!Þ ¼ ð1þ j!�0Þ�2
. Calculate the power

of the output process.

4.13 A differentiating network may be considered as a linear time-invariant system with the

transfer function Hð!Þ ¼ j!. If the input is a wide-sense stationary process XðtÞ, then
the output process is dXðtÞ=dt ¼ _XXðtÞ. Show that:

(a) RX _XXð�Þ ¼
dRXXð�Þ

d�

(b) R _XX _XXð�Þ ¼ � d2RXXð�Þ
d�2

4.14 To the differentiating network presented in Problem 4.13 a wide-sense stationary

process XðtÞ is applied. The corresponding output process is YðtÞ.
(a) Are the random variables XðtÞ and YðtÞ, both considered at the same fixed time t,

orthogonal?

(b) Are these random variables uncorrelated?

4.15 A stochastic process with the power spectral density of

SXXð!Þ ¼ 1

ð1þ !2Þ2

is applied to a differentiating network.

(a) Find the power spectral density of the output process.

(b) Calculate the power of the derivative of XðtÞ.
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4.16 Consider the stochastic process

YðtÞ ¼
Z tþT

t�T

Xð�Þ d�

where XðtÞ is a wide-sense stationary process.

(a) Design a linear time-invariant system that produces the given relation between its

input process XðtÞ and the corresponding output process YðtÞ.
(b) Express the autocorrelation function of YðtÞ in terms of that for XðtÞ.
(c) Express the power spectrum of YðtÞ in terms of that for XðtÞ.

4.17 Reconsider Problem 4.16.

(a) Prove that the given integration can be realized by a linear time-invariant filter

with an impulse response rect½t=ð2TÞ�:
(b) Fill an array in Matlab with a harmonic function, let us say a cosine. Take, for

example, 10 cycles of 1=ð2pÞ Hz and increments of 0.01 for the time parameter.

Plot the function.

(c) Generate a Gaussian noise wave with mean of zero and unit variance, and of the

same length as the cosine using the Matlab command randn, add this wave to the
cosine and plot the result. Note that each time you run the program a different

wave is produced.

(d) Program a vector consisting of all ones. Convolve this vector with the cosine plus

noise vector and observe the result. Take different lengths, e.g. equivalent to

2T ¼ 0:05, 0.10 and 0.20. Explain the differences in the different curves.

4.18 In FM detection the white additive noise is converted into noise with spectral density

SNNð!Þ ¼ ! 2

and assume that this noise is wide-sense stationary. Suppose that the signal spectrum is

SXXð!Þ ¼
S0

2
; j!j � W

0; j!j > W

8
<

:

and that in the receiver the detected signal is filtered by an ideal lowpass filter of

bandwidth W.

(a) Calculate the signal-to-noise ratio.

In audio FM signals so-called pre-emphasis and de-emphasis filtering is applied to

improve the signal-to-noise ratio. To that end prior to modulation and transmission

the audio baseband signal is filtered by the pre-emphasis filter with the transfer

function

Hð!Þ ¼ 1þ j
!

Wp

; Wp < W
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At the receiver side the baseband signal is filtered by the de-emphasis filter such that

the spectrum is once more flat and equal to S0=2.

(b) Make a block schematic of the total communication scheme.

(c) Sketch the different signal and noise spectra.

(d) Calculate the improvement factor of the signal-to-noise ratio.

(e) Evaluate the improvement in dB for the practical values: W=ð2pÞ ¼ 15 kHz,

Wp=ð2�Þ ¼ 2:1 kHz.

4.19 A so-called nth-order Butterworth filter is defined by the squared value of the

amplitude of the transfer function

jHð!Þj2 ¼ 1

1þ ð!=WÞ2n

where n is an integer, which is called the order of the filter. W is the �3 dB bandwidth

in radians per second.

(a) Use Matlab to produce a set of curves that present this squared transfer as a

function of frequency; plot the curves on a double logarithmic scale for

n ¼ 1; 2; 3; 4.

(b) Calculate and evaluate the equivalent noise bandwidth for n ¼ 1 and n ¼ 2.

4.20 For the transfer function of a bandpass filter it is given that

jHð!Þj2 ¼ 1

1þ ð!� !0Þ2
þ 1

1þ ð!þ !0Þ2

(a) Use Matlab to plot jHð!Þj2 for !0 ¼ 10.

(b) Calculate the equivalent noise bandwidth of the filter.

(c) Calculate the output noise power when wide-sense stationary noise with spectral

density of N0=2 is applied to the input of this filter.

4.21 Consider the so-called Manchester (or split-phase) signalling format defined by

pðtÞ ¼ 1; 0 � t < T=2

�1; T=2 � t < T

�

where T is the bit time. The data symbols A½n� are selected from the set f1;�1g with

equal probability and are mutually independent.

(a) Sketch the Manchester coded signal of the sequence 1010111001.

(b) Calculate the power spectral density of this data signal. Use Matlab to plot it.

(c) Discuss the properties of the spectrum in comparison to the polar NRZ signal.

4.22 In the bipolar NRZ signalling format the binary 1’s are alternately mapped to

A½n� ¼ þ1 volt and A½n� ¼ �1volt. The binary 0 is mapped to A½n� ¼ 0 volt. The bits

are selected with equal probability and are mutually independent.

(a) Sketch the bipolar NRZ coded signal of the sequence 1010111001.
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(b) Calculate the power spectral density of this data signal. Use Matlab to plot it.

(c) Discuss the properties of the spectrum in comparison to the polar NRZ signal.

4.23 Reconsider Example 4.6. Using Matlab fill in an array of size 256 with a rectangular

function of width 50. Apply the FFT procedure to that. Square the resulting array and

subsequently apply the IFFT procedure.

(a) Check the FFT result for aliasing.

(b) What in the time domain is the equivalence of squaring in the frequency domain?

(c) Check the IFFT result with respect to your answer to (b).

Now fill another array of size 256 with a rectangular function of width 4 and apply the

FFT to it.

(d) Check the result for aliasing.

(e) Multiply the FFT result of the 50 wide pulse width that of the 4 wide pulse

and IFFT the multiplication. Is the result what you expected in view of the result

from (d)?

4.24 In digital communications a well-known disturbance of the received data symbols is

the so-called intersymbol interference (see references [6], [9] and [11]). It is actually

the spill-over of the pulse representing a certain bit to the time interval assigned to the

adjacent pulses that represent different bits. This disturbance is a consequence of the

distortion in the transmission channel. By means of proper filtering, called equaliza-

tion, the intersymbol interference can be removed or minimized. Assume that each

received pulse that represents a bit is sampled once and that the sampled sequence is

represented by its z-transform ~RRðzÞ. For an ideal channel, i.e. a channel that does not

produce intersymbol interference, we have ~RRðzÞ ¼ 1.

Let us now consider a channel with intersymbol interference and design a discrete-

time filter that equalizes the channel. If the z-transform of the filter impulse response is

denoted by ~FFðzÞ, then for the equalized pulse the condition ~RRðzÞ ~FFðzÞ ¼ 1 should be

satisfied. Therefore, in this problem the sequence ~RRðzÞ is known and the sequence ~FFðzÞ
has to be solved to satisfy this condition. It appears that the Matlab command deconv
is not well suited to solving this problem.

(a) Suppose that ~FFðzÞ comprises three terms. Show that the condition for equalization

is equivalent to

r½0� r½�1� r½�2�
r½1� r½0� r½�1�
r½2� r½1� r½0�

2
4

3
5 �

f ½�1�
f ½0�
f ½1�

2
4

3
5 ¼

0

1

0

2
4
3
5

(b) Consider a received pulse ~RRðzÞ ¼ 0:1zþ 1� 0:2z�1 þ 0:1z�2. Design the equal-

izer filter of length 3.

(c) As the quality factor with respect to intersymbol interference we define the ‘worst

case interference’. It is the sum of the absolute signal samples minus the desired

sample value 1. Calculate the output sequence of the equalizer designed in (b)

using conv and calculate its worst-case interference. Compare this with the

unequalized worst-case interference.
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(d) Redo the equalizer design for filter lengths 5 and 7, and observe the change in the

worst-case interference.

4.25 Find the transfer function and filter structure of the discrete-time system when the

following relations exist between the input and output:

(a) y½n� þ 2y½n� 1� þ 0:5y½n� 2� ¼ x½n� � x½n� 2�
(b) 4y½n� þ y½n� 1� � 2y½n� 2� � 2y½n� 3� ¼ x½n� þ x½n� 1� � x½n� 2�
(c) Are the given systems stable?

Hint: use the Matlab command roots to compute the roots of polynomials.

4.26 White noise with spectral density of N0=2 is applied to an ideal lowpass filter with

bandwidth W .

(a) Calculate the autocorrelation function of the output process. Use Matlab to plot

this function.

(b) The output noise is sampled at the time instants tn ¼ np=W with n integer. What

can be remarked with respect to the sample values?

4.27 A discrete-time system has the transfer function ~HHðzÞ ¼ 1þ 0:9z�1 þ 0:7z�2. To the

input of the system the signal with z-transform ~XXðzÞ ¼ 0:7þ 0:9z�1 þ z�2 is applied.

This signal is disturbed by a wide-sense stationary white noise sequence. The

autocorrelation sequence of this noise is RNN ½m� ¼ 0:01 �½m�.
(a) Calculate the signal output sequence.

(b) Calculate the autocorrelation sequence at the output.

(c) Calculate the maximum value of the signal-to-noise ratio. At what moment in time

will that occur?

Hint: you can eventually use the Matlab command conv to perform the required

polynomial multiplications. In this way the solution found using pencil and paper can

be checked.

4.28 The transfer function of a discrete-time filter is given by

~HHðzÞ ¼ 1

1� 0:8z�1

(a) Use Matlab’s freqz to plot the absolute value of the transfer function in the

frequency domain.

(b) If the discrete-time system operates at a sampling rate of 1 MHz and a sine wave

of 50 kHz and an amplitude of unity is applied to the filter input, compute the

power of the corresponding output signal.

(c) A zero mean white Gaussian noise wave is added to the sine wave at the input such

that the signal-to-noise ratio amounts to 0 dB. Compute the signal-to-noise ratio at

the output.

(d) Use the Matlab command randn to generate the noise wave. Design and

implement a procedure to test whether the generated noise wave is indeed

approximately white noise.

(e) Check the analytical result of (c) by means of proper operations on the waves that

are generated by Matlab.
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5
Bandpass Processes

Bandpass processes often occur in electrical engineering, mostly as a result of the bandpass

filtering of white noise. This is due to the fact that in electrical engineering in general, and

specifically in telecommunications, use is made of modulation of signals. These informa-

tion-carrying signals have to be filtered in systems such as receivers to separate them from

other, unwanted signals in order to enhance the quality of the wanted signals and to prepare

them for further processing such as detection.

Before dealing with bandpass processes we will present a summary of the description of

deterministic bandpass signals.

5.1 DESCRIPTION OF DETERMINISTIC BANDPASS SIGNALS

There are many reasons why signals are modulated. Doing so shifts the spectrum to a certain

frequency, so that a bandpass signal results (see Section 3.4). On processing, for example,

reception of a telecommunication signal, such signals are bandpass filtered in order to

separate them in frequency from other (unwanted) signals and to limit the amount of noise

power. We consider signals that consist of a high-frequency carrier modulated in amplitude

or phase by a time function that varies much more slowly than the carrier. For instance,

amplitude modulation (AM) signals are written as

sðtÞ ¼ A 1þ mðtÞð Þ cos!0t ð5:1Þ

where A is the amplitude of the unmodulated carrier, mðtÞ is the low-frequency modulating

signal and !0 is the carrier angular frequency. Note that lower case characters are used here,

since in this section we discuss deterministic signals. Assuming that ð1þ mðtÞÞ is never

negative, then sðtÞ looks like a harmonic signal whose amplitude varies with the modulating

signal.

A frequency-modulated signal is written as

sðtÞ ¼ A cos !0t þ
Z t

0

 ð�Þ d�
� �

ð5:2Þ

Introduction to Random Signals and Noise W. van Etten
# 2005 John Wiley & Sons, Ltd



The instantaneous angular frequency of this signal is !0 þ  ðtÞ and is found by differentiat-

ing the argument of the cosine with respect to t. In this case the slowly varying function  ðtÞ
carries the information to be transmitted. The frequency-modulated signal has a constant

amplitude, but the zero crossings will change with the modulating signal.

The most general form of a modulated signal is given by

sðtÞ ¼ aðtÞ cos !0t þ �ðtÞ½ � ð5:3Þ

In this equation aðtÞ is the amplitude modulation and �ðtÞ the phase modulation, while the

derivative d�ðtÞ=dt represents the frequency modulation of the signal. Expanding the cosine

of Equation (5.3) yields

sðtÞ ¼ aðtÞ cos’ðtÞ cos!0t � sin’ðtÞ sin!0t½ � ¼ xðtÞ cos!0t � yðtÞ sin!0t ð5:4Þ

with

xðtÞ¼4 aðtÞ cos’ðtÞ
yðtÞ¼4 aðtÞ sin’ðtÞ

ð5:5Þ

The functions xðtÞ and yðtÞ are called the quadrature components of the signal. Signal xðtÞ is
called the in-phase component or I-component and yðtÞ the quadrature or Q-component.

They will vary little during one period of the carrier. Combining the quadrature components

to produce a complex function will give a representation of the modulated signal in terms of

the complex envelope

zðtÞ¼4 xðtÞ þ jyðtÞ ¼ aðtÞ exp j’ðtÞ½ � ð5:6Þ

When the carrier frequency !0 is known, the signal sðtÞ can unambiguously be recovered

from this complex envelope. It is easily verified that

sðtÞ ¼ RefzðtÞ expð j!0tÞg ¼ 1
2
zðtÞ expð j!0tÞ þ z�ðtÞ expð�j!0tÞ½ � ð5:7Þ

where Ref�g denotes the real part of the quantity in the braces. Together with the carrier

frequency !0, the signal zðtÞ constitutes an alternative and complete description of the

modulated signal. The expression zðtÞ expðj!0tÞ is called the analytic signal or pre-envelope.
The complex function zðtÞ can be regarded as a phasor in the xy plane. The end of the phasor

moves around in the complex plane, while the plane itself rotates with an angular frequency

of !0 and the signal sðtÞ is the projection of the rotating phasor on a fixed line. If the

movement of the phasor zðtÞ with respect to the rotating plane is much slower than the speed

of rotation of the plane, the signal is quasi-harmonic. The phasor in the complex z plane has

been depicted in Figure 5.1.

It is stressed that zðtÞ is not a physical signal but a mathematically defined auxiliary

signal to facilitate the calculations. The name complex envelope suggests that there is

a relationship with the envelope of a modulated signal. This envelope is interpreted as
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the instantaneous amplitude of the signal, in this case aðtÞ. Now the relationship is clear,

namely

aðtÞ ¼ jzðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p

’ðtÞ ¼ arg½zðtÞ� ¼ arctan
yðtÞ
xðtÞ

ð5:8Þ

It is concluded that the complex envelope, in contrast to the envelope, not only comprises

information about the envelope aðtÞ but also about the phase ’ðtÞ.
As far as detection is concerned, the quadrature component xðtÞ is restored by multiplying

sðtÞ by cos!0t and removing the double frequency components with a lowpass filter:

sðtÞ cos!0t ¼ 1
2
xðtÞð1þ cos 2!0tÞ � 1

2
yðtÞ sin 2!0t ð5:9Þ

This multiplication operation can be performed by the modulator scheme presented in

Figure 3.5. After lowpass filtering, the signal produced will be xðtÞ=2. The second quadrature
component yðtÞ is restored in a similar way, by multiplying sðtÞ by � sin!0t and using a

lowpass filter to remove the double frequency components. A circuit that delivers an output

signal that is a function of the amplitude modulation is called a rectifier and such a circuit

will always involve a nonlinear operation. The quadratic rectifier is a typical rectifier; it has

an output signal in proportion to the square of the envelope. This output is achieved by

squaring the signal and reads

s2ðtÞ ¼ 1
2
½x2ðtÞ þ y2ðtÞ� þ 1

2
½x2ðtÞ � y2ðtÞ� cos 2!0t � xðtÞyðtÞ sin 2!0t ð5:10Þ

By means of a lowpass filter the frequency terms in the vicinity of 2!0 are removed, so that

the output is proportional to jzðtÞj2 ¼ a2ðtÞ ¼ x2ðtÞ þ y2ðtÞ. A linear rectifier, which may

consist of a diode and a lowpass filter, yields aðtÞ.
A circuit giving an output signal that is proportional to the instantaneous frequency

deviation ’0ðtÞ is known as a discriminator. Its output is proportional to d½Imfln zðtÞg�=dt.

a(t )

φ(t )

Re {z(t )}

Im {z(t )}

ω0t

y(t )

x (t )

Figure 5.1 The phasor of sðtÞ in the complex z plane
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If the signal sðtÞ comprises a finite amount of energy then its Fourier transform exists.

Using Equation (5.7) the spectrum of this signal is found to be

Sð!Þ ¼ 1
2

Z 1

�1
½zðtÞ expðj!0tÞ þ z�ðtÞ expð�j!0tÞ� expð�j!tÞ dt

¼ 1
2
½Zð!� !0Þ þ Z�ð�!� !0Þ� ð5:11Þ

where Sð!Þ and Zð!Þ are the signal spectra (or Fourier transform) of sðtÞ and zðtÞ,
respectively, and * denotes the complex conjugate.

The quadrature components and zðtÞ vary much more slowly than the carrier and will be

baseband signals. The modulus of the spectrum of the signal, jSð!Þj, has two narrow peaks,

one at the frequency !0 and the other at �!0. Consequently, sðtÞ is called a narrowband

signal. The spectrum of Equation (5.11) is Hermitian, i.e. Sð�!Þ ¼ S�ð!Þ, a condition that is

imposed by the fact that sðtÞ is real.
Quasi-harmonic signals are often filtered by bandpass filters, i.e. filters that pass

frequency components in the vicinity of the carrier frequency and attenuate other frequency

components. The transfer function of such a filter may be written as

Hð!Þ ¼ Hlð!� !cÞ þ H�
l ð�!� !cÞ ð5:12Þ

where the function Hlð!Þ is a lowpass filter; it is called the equivalent baseband transfer

function. Equation (5.12) is Hermitian, because hðtÞ, being the impulse response of a

physical system, is a real function. However, the equivalent baseband function Hlð!Þ will not
be Hermitian in general. Note the similarity of Equations (5.12) and (5.11). The only

difference is the carrier frequency !0 and the characteristic frequency !c. For !c, an arbitrary

frequency in the passband of Hð!Þ may be selected. In Equation (5.7) the characteristic

frequency !0 need not necessarily be taken as equal to the oscillator frequency. A shift in the

characteristic frequency over �! ¼ !1 merely introduces a factor of expð�j!1tÞ in the

complex envelope:

zðtÞ expðj!0tÞ ¼ ½zðtÞ expð�j!1tÞ� exp½jð!0 þ !1Þt� ð5:13Þ

This shift does not change the signal sðtÞ. From this it will be clear that the complex

envelope is connected to a specific characteristic frequency; when this frequency changes the

complex envelope will change as well. A properly selected characteristic frequency,

however, can simplify calculations to a large extent. Therefore, it is important to take the

characteristic frequency equal to the oscillator frequency. Moreover, we select the char-

acteristic frequency of the filter equal to that value, i.e. !c ¼ !0.

Let us suppose that a modulated signal is applied to the input of a bandpass filter. It

appears that using the concepts of the complex envelope and equivalent baseband transfer

function the output signal is easily described, as will follow from the sequel. The signal

spectra of input and output signals are denoted by Sið!Þ and Soð!Þ, respectively. It then
follows that

Soð!Þ ¼ Sið!Þ Hð!Þ ð5:14Þ
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Invoking Equations (5.11) and (5.12) this can be rewritten as

Soð!Þ ¼ 1
2
½Zoð!� !0Þ þ Z�

oð�!� !0Þ�
¼ 1

2
½Zið!� !0Þ þ Z�

i ð�!� !0Þ� ½Hlð!� !0Þ þ H�
l ð�!� !0Þ� ð5:15Þ

where Zið!Þ and Zoð!Þ are the spectra of the complex envelopes of input and output signals,

respectively. If it is assumed that the spectrum of the input signal has a bandpass character

according to Equations (4.40), (4.41) and (4.42), then the cross-terms Zið!� !0Þ H�
l ð�!�

!0Þ and Z�
i ð�!� !0ÞHlð!� !0Þ vanish (see Figure 5.2). Based on this conclusion Equation

(5.15) reduces to

Zoð!� !0Þ ¼ Zið!� !0Þ Hlð!� !0Þ ð5:16Þ

or

Zoð!Þ ¼ Zið!ÞHlð!Þ ð5:17Þ

Transforming Equation (5.17) to the time domain yields

zoðtÞ ¼
Z 1

�1
hlð�Þziðt � �Þ d� ð5:18Þ

with zoðtÞ and ziðtÞ the complex envelopes of the input and output signals, respectively. The

function hlðtÞ is the inverse Fourier transform of Hlð!Þ and represents the complex impulse

response of the equivalent baseband system, which is defined by means of Hlð!Þ or the dual
description hlðtÞ. The construction of the equivalent baseband system Hlð!Þ from the actual

system is illustrated in Figure 5.3. This construction is quite simple, namely removing the

part of the function around �!0 and shifting the remaining portion around !0 to the

baseband, where zero replaces the original position of !0. From this figure it is observed that

−ω0 0

Hl*(−ω−ω0)

Zi*(−ω−ω0) Zi(ω−ω0)

Hl(ω−ω0)

ω0
ω

Figure 5.2 A sketch of the cross-terms from the right-hand member of Equation (5.15)
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in general Hlð!Þ is not Hermitian, and consequently hlðtÞ will not be a real function. This

may not surprise us since it is not the impulse response of a real system but an artificially

constructed one that only serves as an intermediate to facilitate calculations.

From Equations (5.17) and (5.18) it is observed that the relation between the output of a

bandpass filter and the input (mostly a modulated signal) is quite simple. The signals are

completely determined by their complex envelopes and the characteristic frequency !0.

Using the latter two equations the transmission is reduced to the well-known transmission of

a baseband signal. After transforming the signal and the filter transfer function to equivalent

baseband quantities the relationship between the output and input is greatly simplified,

namely a multiplication in the frequency domain or a convolution in the time domain. Once

the complex envelope of the output signal is known, the output signal itself is recovered

using Equation (5.7). Of course, using the direct method via Equation (5.14) is always

allowed and correct, but many times the method based on the equivalent baseband quantities

is simpler, for instance in the case after the bandpass filtering envelope detection is applied.

This envelope follows immediately from the complex envelope.

5.2 QUADRATURE COMPONENTS OF BANDPASS PROCESSES

Analogously to modulated deterministic signals (as described in Section 5.1), stochastic

bandpass processes may be described by means of their quadrature components. Consider

the process

NðtÞ ¼ AðtÞ cos½!0t þ �ðtÞ� ð5:19Þ

with AðtÞ and �ðtÞ stochastic processes. The quadrature description of this process is readily

found by rewriting this latter equation by applying a basic trigonometric relation

NðtÞ ¼ AðtÞ cos�ðtÞ cos!0t � AðtÞ sin�ðtÞ sin!0t

¼ XðtÞ cos!0t � YðtÞ sin!0t ð5:20Þ

−ω0 0

0

Hl
*(−ω−ω0)

H
l
(ω)

Hl(ω−ω0)

ω0 ω

ω

Figure 5.3 Construction of the transfer function of the equivalent baseband system
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In this expression the quadrature components are defined as

XðtÞ¼4 AðtÞ cos�ðtÞ
YðtÞ¼4 AðtÞ sin�ðtÞ ð5:21Þ

From these equations the processes describing the amplitude and phase of NðtÞ are easily

recovered:

AðtÞ¼4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðtÞ þ Y2ðtÞ

p

�ðtÞ¼4 arctan
YðtÞ
XðtÞ

� � ð5:22Þ

The processes XðtÞ and YðtÞ are stochastic lowpass processes (or baseband processes), while

Equation (5.20) presents a general description of bandpass processes. In the sequel we will

derive relations between these lowpass processes XðtÞ and YðtÞ, and the lowpass processes

on the one hand and the bandpass process NðtÞ on the other. Those relations refer to mean

values, correlation functions, spectra, etc., i.e. characteristics that have been introduced in

previous chapters.

Once again we assume that the process NðtÞ is wide-sense stationary with a mean value of

zero. A few interesting properties can be stated for such a bandpass process. The properties

are given below and proved subsequently.

Properties of bandpass processes

If NðtÞ is a wide-sense stationary bandpass process with mean value zero and quadrature

components XðtÞ and YðtÞ, then XðtÞ and YðtÞ have the following properties:

1. XðtÞ and YðtÞare jointly wide-sense stationary: ð5:23Þ
2. E½XðtÞ� ¼ E½YðtÞ� ¼ 0 ð5:24Þ
3. E½X2ðtÞ� ¼ E½Y2ðtÞ� ¼ E½N2ðtÞ� ð5:25Þ
4. RXXð�Þ ¼ RYYð�Þ ð5:26Þ
5. RYXð�Þ ¼ �RXYð�Þ ð5:27Þ
6. RXYð0Þ ¼ RYXð0Þ ¼ 0 ð5:28Þ
7. SYYð!Þ ¼ SXXð!Þ ð5:29Þ
8. SXXð!Þ ¼ LpfSNNð!� !0Þ þ SNNð!þ !0Þg ð5:30Þ
9. SXYð!Þ ¼ j LpfSNNð!� !0Þ � SNNð!þ !0Þg ð5:31Þ

10. SYXð!Þ ¼ �SXYð!Þ ð5:32Þ

In Equations (5.30) and (5.31), Lpf�g denotes the lowpass part of the expression in the

braces.

QUADRATURE COMPONENTS OF BANDPASS PROCESSES 107



Proofs of the properties:

Here we shall briefly prove the properties listed above. A few of them will immediately be

clear. Expression (5.29) follows directly from Equation (5.26), and Equation (5.32) from

Equation (5.27). Moreover, using Equation (2.48), Equation (5.28) is a consequence of

Equation (5.27).

Invoking the definition of the autocorrelation function, it follows after some manipulation

from Equation (5.20) that

RNNðt; t þ �Þ ¼ 1
2
f½RXXðt; t þ �Þ þ RYYðt; t þ �Þ� cos!0�

� ½RXYðt; t þ �Þ � RYXðt; t þ �Þ� sin!0�

þ ½RXXðt; t þ �Þ � RYYðt; t þ �Þ� cos!0ð2t þ �Þ
� ½RXYðt; t þ �Þ þ RYXðt; t þ �Þ� sin!0ð2t þ �Þg ð5:33Þ

Since we assumed that NðtÞ is a wide-sense stationary process, Equation (5.33) has to be

independent of t. Then, from the last term of Equation (5.33) it is concluded that

RXYðt; t þ �Þ ¼ �RYXðt; t þ �Þ ð5:34Þ

and from the last but one term of Equation (5.33)

RXXðt; t þ �Þ ¼ RYYðt; t þ �Þ ð5:35Þ

Using these results it follows from the first two terms of Equation (5.33) that

RXXðt; t þ �Þ ¼ RXXð�Þ ¼ RYYð�Þ ð5:36Þ

and

RXYðt; t þ �Þ ¼ RXYð�Þ ¼ �RYXð�Þ ð5:37Þ

thereby establishing properties 4 and 5. Equation (5.33) can now be rewritten as

RNNð�Þ ¼ RXXð�Þ cos!0� � RXYð�Þ sin!0� ð5:38Þ

If we substitute � ¼ 0 in this expression and use Equation (5.26), property 3 follows.

The expected value of NðtÞ reads

E½NðtÞ� ¼ E½XðtÞ� cos!0t � E½YðtÞ� sin!0t ¼ 0 ð5:39Þ

This equation is satisfied only if

E½XðtÞ� ¼ E½YðtÞ� ¼ 0 ð5:40Þ

so that now property 2 has been established. However, this means that now property 1

has been proved as well, since the mean values of XðtÞ and YðtÞ are independent of t
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(property 2) and also the autocorrelation and cross-correlation functions Equations (5.36)

and (5.37).

By transforming Equation (5.38) to the frequency domain we arrive at

SNNð!Þ ¼ 1
2
½SXXð!� !0Þ þ SXXð!þ !0Þ� þ 1

2
j½SXYð!� !0Þ � SXYð!þ !0Þ� ð5:41Þ

and using this expression gives

SNNð!� !0Þ ¼ 1
2
½SXXð!� 2!0Þ þ SXXð!Þ� þ 1

2
j½SXYð!� 2!0Þ � SXYð!Þ� ð5:42Þ

SNNð!þ !0Þ ¼ 1
2
½SXXð!Þ þ SXXð!þ 2!0Þ� þ 1

2
j½SXYð!Þ � SXYð!þ 2!0Þ� ð5:43Þ

Adding Equations (5.42) and (5.43) produces property 8. Subtracting Equation (5.43) from

Equation (5.42) produces property 9.

Some of those properties are very peculiar; namely the quadrature processes XðtÞ and YðtÞ
both have a mean value of zero, are wide-sense stationary, have identical autocorrelation

functions and as a consequence have the same spectrum. The processes XðtÞ and YðtÞ
comprise the same amount of power and this amount equals that of the original bandpass

process NðtÞ (property 3). At first sight this property may surprise us, but after a closer

inspection it is recalled that XðtÞ and YðtÞ are the quadrature processes of NðtÞ, and then the

property is obvious. Finally, at each moment of time t, the random variables XðtÞ and YðtÞ
are orthogonal (property 6).

When the spectrum of NðtÞ is symmetrical about !0, the stochastic processes XðtÞ and

YðtÞ are orthogonal processes (this follows from property 9 and will be further explained by

the next example). In the situation at hand the cross-power spectral density is identical to

zero. If, moreover, the processes XðtÞ and YðtÞ are Gaussian, then they are also independent.

Example 5.1:

In Figure 5.4(a) an example is depicted of a spectrum of a bandpass process. In this figure the

position of the characteristic frequency !0 is clearly indicated. On the positive part of the

x axis the spectrum covers the region from !0 �W1 to !0 þW2 and on the negative part of

the x axis from �!0 �W2 to �!0 þW1. Therefore, the bandwidth of the process is

W ¼ W1 þW2. For a bandpass process the requirement W1 < !0 has to be satisfied.

In Figure 5.4(b) the spectrum SNNð!� !0Þ is presented; this spectrum is obtained by

shifting the spectrum given in Figure 5.4(a) by !0 to the right. Similarly, the spectrum

SNNð!þ !0Þ is given in Figure 5.4(c), and this figure is yielded by shifting the spectrum of

Figure 5.4(a) by !0 to the left. From Figures 5.4(b) and (c) the spectra of the quadrature

components can be constructed using the relations of Equations (5.30) and (5.31). By adding

the spectra of Figure 5.4(b) and Figure 5.4(c) the spectra SXXð!Þ and SYYð!Þ are found (see

Figure 5.4(d)). Next, by subtracting the spectra of Figure 5.4(b) and Figure 5.4(c) we arrive

at �jSXYð!Þ ¼ jSYXð!Þ (see Figure 5.4(e)). When adding and subtracting as described above,

those parts of the spectra that are concentrated about 2!0 and �2!0 have to be ignored. This

is in accordance with Equations (5.30) and (5.31). These equations include a lowpass

filtering after addition and subtraction, respectively.

&
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From a careful look at this example it becomes clear that care should be taken when using

properties 8 and 9. This is a consequence of the operation Lpf�g, which is not always

unambiguous. Although there is a different mathematical approach to avoid this, we will not

go into the details here. It will be clear that no problems will arise in the case of narrowband

bandpass processes. In many cases a bandpass process results from bandpass filtering of

white noise. Then the spectrum of the bandpass noise is determined by the equation (see

Theorem 7)

SNNð!Þ ¼ SIIð!0ÞjHð!Þj2 ð5:44Þ

where SIIð!0Þ is the spectral density of the input noise and Hð!Þ the transfer function of the

bandpass filter.

0 ω0−ω0 2ω0−2ω0

0 ω0−ω0 2ω0−2ω0

0 ω0−ω0 2ω0−2ω0

ω

SNN ( )ω

SNN ( )ω−ω0

SNN( )ω+ω0

S SXX YY( )= ( )ω ω

− S Sj ( )=j ( )XY YXω ω

0

0

(a)

(b)

(c)

(d)

(e)

Figure 5.4 Example of a bandpass process and construction of the related quadrature processes
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It should be stressed here that the quadrature processes XðtÞ and YðtÞ are not uniquely

determined; namely it follows from Equation (5.20) and Figure 5.4 that these processes are,

among others, determined by the choice of the characteristic frequency !0.

Finally, we will derive the relation between the spectrum of the complex envelope and the

spectra of the quadrature components. The complex envelope of a stochastic bandpass

process is a complex stochastic process defined by

ZðtÞ¼4 XðtÞ þ jYðtÞ ð5:45Þ

Using Equations (5.26), (5.27) and (2.87) we find that

RZZð�Þ ¼ 2½RXXð�Þ þ jRXYð�Þ� ð5:46Þ

and consequently

SZZð!Þ ¼ 2½SXXð!Þ þ jSXYð!Þ� ð5:47Þ

If SNNð!Þ is symmetrical about !0, then SXYð!Þ ¼ 0 and the spectrum of the complex

envelope reads

SZZð!Þ ¼ 2SXXð!Þ ð5:48Þ

It has been observed that the complex envelope is of importance when establishing the

envelope of a bandpass signal or bandpass noise. Equation (5.48) is needed when analysing

the envelope detection of (amplitude) modulated signals disturbed by noise.

5.3 PROBABILITY DENSITY FUNCTIONS OF THE ENVELOPE
AND PHASE OF BANDPASS NOISE

As mentioned in Section 5.2, in practice we often meet a situation that can be modelled by

white Gaussian noise that is bandpass filtered. Linear filtering of Gaussian noise in turn

produces Gaussian distributed noise at the filter output, and of course this holds for the

special case of bandpass filtered Gaussian noise. Moreover, we conclude that the quadrature

components XðtÞ and YðtÞ of Gaussian bandpass noise have Gaussian distributions as well.

This is reasoned as follows. Consider the description of bandpass noise in accordance with

Equation (5.20). For a certain fixed value of t, let us say t1, the random variable Nðt1Þ is

constituted from a linear combination of the two random variables Xðt1Þ and Yðt1Þ, namely

Nðt1Þ ¼ Xðt1Þ cos!0t1 � Yðt1Þ sin!0t1 ð5:49Þ

The result Nðt1Þ can only be a Gaussian random variable if the two constituting random

variables Xðt1Þ and Yðt1Þ show Gaussian distributions as well. From Equations (5.24) and

(5.25) we saw that these random variables have a mean value of zero and the same variance

�2, so they are identically distributed. As Xðt1Þ and Yðt1Þ are Gaussian and orthogonal
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(see Equation (5.28)), they are independent. In Section 5.2 it was concluded that in case the

bandpass filter, and thus the filtered spectrum, is symmetrical about the characteristic

frequency, the cross-correlation between the quadrature components is zero and conse-

quently the quadrature components are independent.

In a number of applications the problem arises about the probability density functions of

the envelope and phase of a bandpass filtered white Gaussian noise process. In ASK or FSK

systems, for instance, in addition to this noise there is still a sine or cosine wave of frequency

within the passband of the filter. When ASK or FSK signals are detected incoherently (which

is preferred for the sake of simplicity) and we want to calculate the performance of these

systems, the probability density function of the envelope of cosine (or sine) plus noise is

needed. For coherent detection we need to have knowledge about the phase as well.

We are therefore looking for the probability density functions of the envelope and phase

of the process

NðtÞ þ C cos!0t ¼ ½XðtÞ þ C� cos!0t � YðtÞ sin!0t ð5:50Þ

where C cos!0t is the information signal and quadrature components YðtÞ and

�ðtÞ¼4 XðtÞ þ C ð5:51Þ

These quadrature components describe the process in rectangular coordinates, while we need

a description on the basis of polar coordinates. When the processes for amplitude and phase

are denoted by AðtÞ and �ðtÞ, respectively, it follows that

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðtÞ þ Y2ðtÞ

p
ð5:52Þ

�ðtÞ ¼ arctan
YðtÞ
�ðtÞ

� �
ð5:53Þ

The conversion from rectangular to polar coordinates is depicted in Figure 5.5. The

probability that the outcome of a realization ð�; yÞ of the random variables ð�; YÞ lies in

the region ða; aþ da; �; �þ d�Þ is found by the coordinates transformation

� ¼ a cos�; y ¼ a sin�; d� dy ¼ a da d� ð5:54Þ

ξ

y

a

da

φ

adφ

Figure 5.5 Conversion from rectangular to polar coordinates
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and is written as

fXYðx; yÞ dx dy ¼ 1

2p�2
exp �ð� � CÞ2 þ y2

2�2

" #
dx dy

¼ 1

2p�2
exp �ða cos�� CÞ2 þ a2 sin2 �

2�2

" #
a da d� ð5:55Þ

From this the joint probability density function follows as

fA�ða; �Þ ¼ 1

2p�2
a exp �ða cos�� CÞ2 þ a2 sin2 �

2�2

" #
ð5:56Þ

The marginal probability density function of A is found by integration of this function with

respect to �:

fAðaÞ ¼ 1

2p�2

Z 2p

0

exp �ða cos�� CÞ2 þ a2 sin2 �

2�2

" #
a da d�

¼ 1

2p�2
a exp � a2 þ C2

2�2

� �Z 2p

0

exp
Ca cos�

�2

� �
d�; a � 0 ð5:57Þ

In this equation the integral cannot be expressed in a closed form but is closely related to

the modified Bessel function of the first kind and zero order. This Bessel function can be

defined by

I0ðxÞ¼4 1

2p

Z 2p

0

expðx cos�Þ d� ð5:58Þ

Using this definition the probability density function of A is written as

fAðaÞ ¼ a

�2
exp � a2 þ C2

2�2

� �
I0

Ca

�2

� �
; a � 0 ð5:59Þ

This expression presents the probability density function for the general case of bandpass

filtered white Gaussian noise added to an harmonic signal C cos!0t that lies in the passband.

This distribution is called the Rice distribution. In Figure 5.6 a few Rice probability density

functions are given for several values of C and for all curves where � ¼ 1. A special case can

be distinguished, namely when C ¼ 0, where the signal only consists of bandpass noise since

the amplitude of the harmonic signal is set to zero. Then the probability density function is

fAðaÞ ¼ a

�2
exp � a2

2�2

� �
; a � 0 ð5:60Þ

This latter probability density function corresponds to the so-called Rayleigh-distribution.

Its graph is presented in Figure 5.6 as well.
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Next we will calculate the probability density function of the phase. For that purpose we

integrate the joint probability density function of Equation (5.56) with respect to a. The

marginal probability density function of � is found as

f�ð�Þ ¼ 1

2p�2

Z 1

a¼0

a exp � a2 � 2Ca cos�þ C2 cos2 �þ C2 sin2 �

2�2

� �
da

¼ 1

2p�2

Z 1

a¼0

a exp �ða� C cos�Þ2 þ C2 sin2 �

2�2

" #
da

¼ 1

2p�2
exp �C2 sin2 �

2�2

� � Z 1

a¼0

a exp �ða� C cos�Þ2
2�2

" #
da ð5:61Þ

By means of the change of the integration variable

u¼4 a� C cos�

�
ð5:62Þ

we proceed to obtain

f�ð�Þ ¼ 1

2p�2
exp �C2 sin2 �

2�2

� �Z 1

�C cos�
�

ðu�þ C cos�Þ exp � u2

2

� �
� du

¼ 1

2p
exp �C2 sin2 �

2�2

� � Z 1

�C cos�
�

exp � u2

2

� �
d
u2

2
þ C cos�

�

Z 1

�C cos�
�

exp � u2

2

� �
du

" #

¼ 1

2p
exp � C2

2�2

� �
þ 1

�
ffiffiffiffiffiffi
2p

p C cos� exp �C2 sin2 �

2�2

� �
1� Q

C cos�

�

� �� �
; j�j < p

ð5:63Þ

0
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Figure 5.6 Rayleigh distribution ðC ¼ 0Þ and Rice distribution for several values of C 6¼ 0 and for

� ¼ 1
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where the Q function is the well-known Gaussian integral function as defined in Appendix F.

The phase probability density function is depicted in Figure 5.7. This unattractive phase

equation reduces drastically when C ¼ 0 is inserted:

f�ð�Þ ¼ 1

2p
; j�j < p ð5:64Þ

Thus, it is concluded that in the case of the Rayleigh distribution the phase has a uniform

probability density function. Moreover, in this case the joint probability density function of

Equation (5.56) becomes independent of �, so that from a formal point of view this function

can be factored according to fA�ða; �Þ ¼ fAðaÞ f�ð�Þ. Thus, for the Rayleigh distribution, the

envelope and phase are independent. This is certainly not true for the Rice distribution

(C 6¼ 0). Then the expression of Equation (5.63) can, however, be simplified if the power of

the sinusoidal signal is much larger than the noise variance, i.e. C � �:

f�ð�Þ � C cos�ffiffiffiffiffiffi
2p

p
�
exp �C2 sin2 �

2�2

� �
; j�j < p

2
ð5:65Þ

which is approximated by a Gaussian distribution for small values of �, and E½�� � 0 and

E½�2� � �2.

5.4 MEASUREMENT OF SPECTRA

5.4.1 The Spectrum Analyser

The oscilloscope is the most well-known measuring instrument used to show and record how

a signal behaves as a function of time. However, when dealing with stochastic signals this

0
0

1

2

π-π
φ

fΦ(φ) C/σ=5

C/σ=3

C/σ=0C/σ=1

Figure 5.7 Probability density function for the phase of a harmonic signal plus bandpass noise
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will provide little information due to random fluctuations with time. Measurements in the

frequency domain, especially the power spectrum as described in this section, is much more

meaningful in these situations. Here we discuss and analyse the mode of operation of the

spectrum analyser.

The simplest way to measure a power spectrum is to apply the stochastic signal to a

narrowband bandpass filter, to square the filter output and to record the result averaged over a

sufficiently long period of time. By tuning the central frequency of the bandpass filter and

recording the squared output as a function of frequency an approximation of the spectrum is

achieved. However, it is very difficult to tune the frequency of such a filter over a broad

range. Even more difficult is to guarantee the properties (such as a constant bandwidth) over

a broad frequency range. Therefore, in modern spectrum analysers a different technique

based on superheterodyning is used, which is discussed in the sequel.

In Figure 5.8 the basic scheme of this spectrum analyser is presented. First the signal is

applied to a lowpass filter (LP), after which it is multiplied by the signal of a local oscillator,

which is a voltage controlled oscillator. The angular frequency of this oscillator is denoted

by !L. Due to this multiplication the spectrum of the input signal is shifted by the value of

the frequency; this shifting process has been explained in Section 3.4. Next, the shifted

spectrum is filtered by a narrowband bandpass filter (IF), of which the central frequency is

!IF. By keeping the filter parameters (central frequency and bandwidth) fixed but tuning the

local oscillator frequency for different local oscillator frequencies, different portions of the

power spectrum are filtered. This has the same effect as tuning the filter, which was

suggested in the previous paragraph. The advantage of this so-called superheterodyne

technique is that the way the filter filters out small portions of the spectrum is the same

for all frequencies. The output of the filter is applied to a power meter. The tuning of the

voltage controlled oscillator is determined by a generator that generates a linear increasing

voltage as a function of time (ramp function), while the frequency is proportional to this

voltage. This ramp function is used as the horizontal coordinate in the display unit, whereas

the vertical coordinate is proportional to the output of the power meter. The shift of the

spectrum caused by the multiplication is depicted in Figure 5.9. Looking at this figure and

using Equation (3.38), we can conclude that the power after the IF filter and at a local

oscillator frequency of !L is written as

PYð!LÞ ¼ 1

2p

Z 1

�1

A2
0

4
½SXXð!� !LÞ þ SXXð!þ !LÞ� jHð!Þj2 d!

¼ 2
1

2p
A2
0

4

Z 1

0

SXXð!� !LÞ jHð!Þj2 d! ð5:66Þ

x(t) IF
filter

LP
filter

voltage controlled
oscillator ramp

generator

power
meter

display

Figure 5.8 Basic scheme of the superheterodyne spectrum analyser
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where Hð!Þ is the transfer function of the IF filter and A0 is the amplitude of the local

oscillator signal. This shows a second advantage of the superheterodyne method; namely the

recorded signal is boosted by the amplitude of the local oscillator signal, making it less

vulnerable to noise during processing. If the spectrum of the input signal is supposed to be

constant over the passband of the IF filter, then according to Equation (4.52) the measured

power reads

PYð!LÞ � A2
0

4p
SXXð! IF � !LÞ jHð! IFÞj2 WN ð5:67Þ

Thus, from the power indication of the instrument it appears that the spectrum at the

frequency !IF � !L is approximated by

SXXð! IF � !LÞ � 4p

A2
0WN jHð! IFÞj2

PYð!LÞ ð5:68Þ

Here ! IF is a fixed frequency that is determined by the design of the spectrum analyser and

!L is determined by the momentary tuning of the local oscillator in the instrument. Both

values are known to the instrument and thus the frequency !IF � !L at which the spectral

density is measured is known. Furthermore, the fraction in the right-hand member of this

equation is determined by calibration and inserted in the instrument, so that reliable data can

be measured.

In order to gain an insight into the measured spectra a few design parameters have to be

considered in more detail. The local oscillator frequency is chosen such that its value is

larger than the IF frequency of the filter. From Equation (5.68) it becomes evident that in that

case the frequency at which the spectrum is measured is actually negative. This is no

problem at all, as the spectrum is an even function of !; in other words, that frequency may

be replaced by its equal magnitude positive counterpart !L � !IF. Furthermore, the multi-

plication will in practice be realized by means of a so-called ‘mixer’, a non-linear device

ω

ω IF ω L0

0

H( )ω
SXX ( )ω−ωL

SXX ( )ω

(a)

(b)

Figure 5.9 (a) Spectrum to be measured; (b) spectrum after mixing and transfer function of the

IF filter
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(e.g. a diode). This device reproduces, besides the sum and difference frequencies, the

original frequencies. In order to prevent these components from entering the bandpass filter,

the IF frequency has to be higher than the highest component of the signal. The scheme

shows a lowpass filter at the input of the analyser; this filter limits the frequency range of the

signal that is applied to the mixer in order to make sure that the mixed signal comprises no

direct components within the passband range of the IF filter. Moreover, the mixer also

produces a signal of the difference frequency, by which the spectrum in Figure 5.9 shifts to

the left as well. The input filter also has to prevent these components from passing into the IF

filter.

In modern spectrum analysers the signal to be measured is digitized and applied to a

digital built-in signal processor that generates the ramp signal (see Figure 5.8). The output of

the processor controls the display. This processor is also able to perform all kinds of

arithmetical and mathematical operations on the measurement results, such as calculating

the maximum value, averaging over many recordings, performing logarithmic scale con-

version for decibel presentation, bandwidth indication, level indication, etc.

5.4.2 Measurement of the Quadrature Components

The measurement of the quadrature components of a stochastic process is done by

synchronous demodulation, as described in Section 3.4. The bandpass process NðtÞ is

multiplied by a cosine wave as well as by a sine wave, as shown in Figure 5.10. Multiplying

by a cosine as is done in the upper arm gives

2NðtÞ cosð!0tÞ ¼ 2XðtÞ cos2ð!0tÞ � 2YðtÞ sinð!0tÞ cosð!0tÞ
¼ XðtÞ þ XðtÞ cosð2!0tÞ � YðtÞ sinð2!0tÞ ð5:69Þ

When the bandwidth of the quadrature components is smaller than the central frequency !0,

the double frequency terms are removed by the lowpass filter, so that the component XðtÞ is
left at the output.

LP
filter

LP
filter

phase
shift π/2

N(t)

X(t )

Y(t )

2cos ω0t

Figure 5.10 Scheme for measuring the quadrature components XðtÞ and YðtÞ of a bandpass process
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Multiplying by the sine wave in the lower arm yields

�2NðtÞ sinð!0tÞ ¼ �2XðtÞ cosð!0tÞ sinð!0tÞ þ YðtÞ sin2ð!0tÞ
¼ XðtÞ sinð2!0tÞ þ YðtÞ � YðtÞ cosð2!0tÞ ð5:70Þ

and removing the double frequency terms using the lowpass filter produces the YðtÞ
component. If needed, the corresponding output spectra can be measured using the method

described in the previous section.

When the cross-power spectrum SXYð!Þ is required we have to cross-correlate the outputs

and Fourier transform the cross-correlation function.

5.5 SAMPLING OF BANDPASS PROCESSES

In Section 3.5, by means of Theorem 5 it was shown that a band-limited lowpass stochastic

process can be perfectly reconstructed (in the mean-squared-error sense) if the sampling rate

is at least equal to the highest frequency component of the spectrum. Applying this theorem

to bandpass processes would result in very high sampling rates. Intuitively, one would expect

that for these processes the sampling rate should be related to bandwidth, rather than the

highest frequency. This is confirmed in the next sections.

Looking for a minimum sampling rate is motivated by the fact that one wants to process

as little data as possible using the digital processor, owing to its limited processing and

memory capacity. Once the data are digitized, filtering is performed as described in the

foregoing sections.

5.5.1 Conversion to Baseband

The simplest way to approach sampling of bandpass processes is to convert them to

baseband. This can be performed by means of the scheme given in Figure 5.10 and

described in Subsection 5.4.2. Then it can be proved that the sampling rate has to be at

least twice the bandwidth of the bandpass process. This is explained as follows. If the

demodulation frequency !0 in Figure 5.10 is selected in the centre of the bandpass spectrum,

then the spectral width of both XðtÞ and YðtÞ is W=2, where W is the spectral width of the

bandpass process. Each of the quadrature components requires a sampling rate of at least

W=ð2�Þ (twice its highest frequency component). Therefore, in total W=� samples per

second are required to determine the bandpass process NðtÞ; this is the same amount as for a

lowpass process with the same bandwidth W as the bandpass process.

The original bandpass process can be reconstructed from its quadrature components XðtÞ
and YðtÞ by remodulating them by respectively a cosine and a sine wave and subtracting the

modulated signals according to Equation (5.20).

5.5.2 Direct Sampling

At first glance we would conclude that direct sampling of the bandpass process leads to

unnecessarily high sampling rates. However, in this subsection we will show that direct
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sampling is possible at relatively low rates. This is understood when looking at Figure 5.11.

The solid lines represent the spectrum of the passband process. When applying ideal

sampling, this spectrum is reproduced infinitely many times, where the distance in frequency

between adjacent copies is !s ¼ 2p=Ts. The spectrum of the sampled passband process can

therefore be denoted as

SSSð!Þ ¼
Xk¼1

k¼�1
SNN !� k

2p
Ts

� �
ð5:71Þ

The spectrum SNNð!Þ comprises two portions, one centred around !0 and another centred

around �!0. In Figure 5.11 the shifted versions of SNNð!Þ are presented in dotted and dashed
lines. The dotted versions originate from the portion around !0 and the dashed versions from

the portion around �!0. From the figure it follows that the shifted versions remain

undistorted as long as they do not overlap. By inspection it is concluded that this is the

case if ðk � 1Þ!s � 2!L and k!s � 2!H, where !L and !H are respectively the lower and

higher frequency bounds of SNNð!Þ. Combining the two conditions yields

2!H

k
� !s � 2!L

k � 1
ð5:72Þ

In order to find a minimum amount of data to be processed, one should look for the lowest

value of !s that satisfies these conditions. The lowest value of !s corresponds to the largest

possible value of k. In doing so one has to realize that

2 � k � !H

W
and W � !L ð5:73Þ

The lower bound on k is induced by the upper bound of !s and the upper bound is set to

prevent the sampling rate becoming higher than would follow from the baseband sampling

theorem. For the same reason the condition on W was introduced in Equations (5.73).

Example 5.2:

Suppose that we want to sample a bandpass process of bandwidth 50 MHz and with a central

frequency of 1 GHz. This means that !L=ð2pÞ ¼ 975 MHz and !H=ð2pÞ ¼ 1025 MHz. From

0

ωsωs

11 k−1 kk−1k

ωL ω0−ωH ωH−ωL

WW
ω

. . . . . . . . . .

 −ω0 

Figure 5.11 Direct sampling of the passband process
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Equations (5.73) it can easily be seen that the maximum allowable value is k ¼ 20. The

limits of the sample frequency are 102:5MHz < !s=ð2pÞ < 102:63 MHz, which follows

from Equation (5.72).

The possible minimum values of the sample frequency are quite near to what is found

when applying the conversion to the baseband method from Section 5.5.1, which results in a

sampling rate of 100 MHz.

&

5.6 SUMMARY

The chapter starts with a summary of the description of deterministic bandpass signals,

where the so-called quadrature components are introduced. Bandpass signals or processes

mostly result from the modulation of signals. Several modulation methods are briefly and

conceptually described. Different complex description methods are introduced, such as the

analytical signal and the complex envelope. Moreover, the baseband equivalent transfer

function and impulse response of passband systems are defined. When applying all these

concepts, their relation to the physical meaning should always be kept in mind when

interpreting results.

For bandpass processes all these concepts are further exploited. Both in time and

frequency domains a number of properties of the quadrature components are presented,

together with their relation to the bandpass process.

The probability density function of the amplitude and phase are derived for bandpass

filtered white Gaussian noise. These are of importance when dealing with modulated signals

that are disturbed by noise.

The measurement of spectra is done using a so-called spectrum analyser. Since this

equipment uses heterodyning and subsequently passband filtering, we use what we learned

earlier in this chapter to describe its operation. The instrument is a powerful tool in the

laboratory.

Finally, we describe the sampling of passband processes; two methods are given. It is

proved that the minimum sampling rate of these processes equals twice the bandwidth.

5.7 PROBLEMS

5.1 It is well known that baseband systems provide distortionless transmission if the

amplitude of the transfer characteristic is constant and the phase shift a linear function

of frequency over the frequency band of the information signal [6, 13].

Let us now consider the conditions for distortionless transmission via a bandpass

system. We call the transmission distortionless when on transmission the signal shape

is preserved, but a delay in it may be allowed. It will be clear that once more the

amplitude characteristic of the system has to be constant over the signal band.

Furthermore, assume that the phase characteristic of the transfer function over the

information band can be written as

�ð!Þ ¼ �j�0!0 � j�gð!� !0Þ
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with �0 and �g constants.

(a) Show that, besides the amplitude condition, this phase condition provides

distortionless transmission of signals modulated by the carrier frequency !0.

(b) What consequences have �0 and �g for the output signal?

5.2 The circuit shown in Figure 5.12 is a bandpass filter.

(a) Derive the transfer function Hð!Þ.
(b) Derive jHð!Þj and use Matlab to plot it for LC ¼ 0:01 and R

ffiffiffiffiffiffiffiffiffi
C=L

p ¼ 10; 20; 50.

(c) Let us call the resonance frequency !0. Determine the equivalent baseband transfer

function and plot both its amplitude and phase for R
ffiffiffiffiffiffiffiffiffi
C=L

p ¼ 10; 50, while

preserving the value of LC.

(d) Determine for the values from (c) the phase delay (�0 from Problem 5.1) and plot

the group delay (�g from Problem 5.1).

5.3 A bandpass process NðtÞ has the following power spectrum:

SNNð!Þ ¼
P cos½p ð!� !0Þ=W �; �W=2 � !� !0 � W=2

P cos½p ð!þ !0Þ=W �; �W=2 � !þ !0 � W=2

0; all other values of !

8><
>:

where P, W and !0 > W are positive, real constants.

(a) What is the power of NðtÞ?
(b) What is the power spectrum SXXð!Þ of XðtÞ if NðtÞ is represented as in Equation

(5.20)?

(c) Calculate the cross-correlation function RXYð�Þ.
(d) Are the quadrature processes XðtÞ and YðtÞ orthogonal?

5.4 White noise with spectral density of N0=2 is applied to an ideal bandpass filter with the
central passband radial frequency !0 and bandwidth W .

(a) Calculate the autocorrelation function of the output process. Use Matlab to plot it.

(b) This output is sampled and the sampling instants are given as tn ¼ n	 2p=W with

n integer values. What can be said about the sample values?

5.5 A bandpass process is represented as in Equation (5.20) and has the power spectrum

according to Figure 5.13; assume that !1 > W .

(a) Sketch SXXð!Þ and SXYð!Þ when !0 ¼ !1.

(b) Repeat (a) when !0 ¼ !2.

R

L C

Figure 5.12
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5.6 A wide-sense stationary process XðtÞ has a power spectrum as depicted in the upper

part of Figure 5.14. This process is applied to a filter with the transfer function Hð!Þ as
given in the lower part of the figure. The data for the spectrum and filter are:

S0 ¼ 10�6, W ¼ 2p	 107, !1 ¼ 2p	 0:4	 107, !2 ¼ 2p	 0:5	 107, !3 ¼ 2p	
0:6	 107, H1 ¼ 2 and H2 ¼ 3.

(a) Determine the power spectrum of the output.

(b) Sketch the spectra of the quadrature components of the output when !0 ¼ !1.

(c) Calculate the power of the output process.

5.7 A wide-sense stationary white Gaussian process has a spectral density of N0=2. This
process is applied to the input of the linear time-invariant filter. The filter has a

bandpass characteristic with the transfer function

Hð!Þ ¼ 1; !0 �W=2 < j!j < !0 þW=2

0; elsewhere

�

where !0 > W .

(a) Sketch the transfer function Hð!Þ.
(b) Calculate the mean value of the output process.

(c) Calculate the variance of the output process.

0

S0

ω

SNN ( )ω

ω1−ω1 ω1−W/2 ω1 + W/2

ω2−ω2

Figure 5.13

W0−W
ω

S0

SXX ( )ω

ω

H( )ω

0 ω1 ω3ω2

H 1

H 2

Figure 5.14
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(d) Determine and dimension the probability density function of the output.

(e) Determine the power spectrum and the autocorrelation function of the output.

5.8 The wide-sense stationary bandpass noise process N1ðtÞ has the central frequency !0.

It is modulated by an harmonic carrier to form the process

N2ðtÞ ¼ N1ðtÞ cosð!0t ��Þ

where � is independent of N1ðtÞ and is uniformly distributed on the interval ð0; 2p�.
(a) Show that N2ðtÞ comprises both a baseband component and a bandpass compo-

nent.

(b) Calculate the mean values and variances of these components, expressed in terms

of the properties of N1ðtÞ.
5.9 The noise process N1ðtÞ is wide-sense stationary. Its spectral density is given in

Figure 5.15. By means of this process a new process N2ðtÞ is produced according to

N2ðtÞ ¼ N1ðtÞ cosð!0t ��Þ � N1ðtÞ sinð!0t ��Þ

where � is a random variable that is uniformly distributed on the interval ð0; 2p�.
Calculate and sketch the spectral density of N2ðtÞ.

5.10 Consider the stochastic process

NðtÞ ¼ XðtÞ cosð!0t ��Þ � YðtÞ sinð!0t � �Þ

with !0 a constant. The random variables � and � are independent of XðtÞ and YðtÞ
and uniformly distributed on the interval ð0; 2p�. The spectra SXXð!Þ, SYYð!Þ and

SXYð!Þ are given in Figure 5.16, where WY < WX < !0 and in the right-hand picture

the solid line is the real part of SXYð!Þ and the dashed line is its imaginary part.

(a) Determine and sketch the spectrum SNNð!Þ in the case where � and � are

independent.

(b) Determine and sketch the spectrum SNNð!Þ in the case where � ¼ �.

ω−W

SN1N1
(ω)

W0

A

Figure 5.15

124 BANDPASS PROCESSES



5.11 Consider the wide-sense stationary bandpass process

NðtÞ ¼ XðtÞ cosð!0tÞ � YðtÞ sinð!0tÞ
where XðtÞ and YðtÞ are baseband processes. The spectra of these processes are

SXXð!Þ ¼ SYYð!Þ ¼
1; j!j < W

0; j!j � W

�

and

SXYð!Þ ¼
j !
W
; j!j < W

0; j!j � W

�

where W < !0.

(a) Sketch the spectra SXXð!Þ, SYYð!Þ and SXYð!Þ.
(b) Show how SNNð!Þ can be reconstructed from SXXð!Þ and SXYð!Þ. Sketch SNNð!Þ.
(c) Sketch the spectrum of the complex envelope of NðtÞ.
(d) Calculate the r.m.s. bandwidth of the complex envelope ZðtÞ.

5.12 A wide-sense stationary bandpass process has the spectrum as given in Figure 5.17.

The characteristic frequency is !0 ¼ 5 rad/s.

(a) Sketch the power spectra of the quadrature processes.

(b) Are the quadrature processes uncorrelated?

(c) Are the quadrature processes independent?

1 1 1

0 0 0ω ω ω−WX −WY −WYWX WY WY

SXX (ω) SYY (ω) SXY(ω)

Figure 5.16

0 ω

1

5 7

SNN( )ω

4−5−7 −4

Figure 5.17
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5.13 A wide-sense stationary bandpass process is given by

NðtÞ ¼ XðtÞ cosð!0tÞ � YðtÞ sinð!0tÞ

where XðtÞ and YðtÞ are independent random signals with an equal power of Ps and

bandwidth W < !0. These signals are received by a synchronous demodulator scheme

as given in Figure 5.10; the lowpass filters are ideal filters, also of bandwidth W . The

received signal is disturbed by additive white noise with spectral density N0=2.
Calculate the signal-to-noise ratios at the outputs.

5.14 The power spectrum of a narrowband wide-sense stationary bandpass process NðtÞ
needs to be measured. However, there is no spectrum analyser available that covers the

frequency range of this process. Two product modulators are available, based on which

the circuit of Figure 5.10 is constructed and the oscillator is tuned to the central

frequency of NðtÞ. The LP filters allow frequencies smaller than W to pass unatte-

nuated and block higher frequencies completely. By means of this set-up and a low-

frequency spectrum analyser the spectra shown in Figure 5.18 are measured.

Reconstruct the spectrum of NðtÞ.
5.15 The spectrum of a bandpass signal extends from 15 to 25 MHz. The signal is sampled

with direct sampling.

(a) What is the range of possible sampling frequencies?

(b) How much higher is the minimum direct sampling frequency compared with the

minimum frequency when conversion to baseband is applied.

(c) Compare the former two sampling frequencies with that following from the

Nyquist baseband sampling theorem (Theorems 4 and 5).

5.16 A baseband signal of bandwidth 1 kHz is modulated on a carrier frequency of 8 kHz.

(a) Sketch the spectrum of the modulated bandpass signal.

(b) What is the minimum sampling frequency based on the Nyquist baseband

sampling theorem (Theorems 4 and 5).

(c) What is the minimum sampling frequency based on direct sampling.

1 1

0 0ω ω−W −WW
W

SXX (ω) −jSXY (ω)

−1

Figure 5.18
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5.17 The transfer function of a discrete-time filter is given by

~HHðzÞ ¼ 1

1� 0:2z�1 þ 0:95z�2

(a) Is this a stable system?

(b) Use Matlab’s freqz to plot the absolute value of the transfer function.

(c) What type of filter is this? Search for the maximum value of the transfer function.

(d) Suppose that to the input of this filter a sinusoidal signal is applied with a

frequency where the absolute value of the transfer function has its maximum

value. Moreover, suppose that this signal is disturbed by wide-sense stationary

white noise such that the signal-to-noise ratio amounts to 0 dB. Calculate the

signal-to-noise ratio at the filter output.

(e) Explain the difference in signal-to-noise ratio improvement compared to that of

Problem 4.28.
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6
Noise in Networks and Systems

Many electrical circuits generate some kind of noise internally. The most well-known kind

of noise is thermal noise produced by resistors. Besides this, several other kinds of noise

sources can be identified, such as shot noise and partition noise in semiconductors. In this

chapter we will describe the thermal noise generated by resistors, while shot noise is dealt

with in Chapter 8. We shall show how internal noise sources can be transferred to the output

terminals of a network, where the noise becomes observable to the outside world. For that

purpose we shall consider the cascading of noisy circuits as well. In many practical

situations, which we refer to in this chapter, a noise source can adequately be described

on the basis of its power spectral density; this spectrum can be the result of a calculation or

the result of a measurement as described in Section 5.4.

6.1 WHITE AND COLOURED NOISE

Realization of a wide-sense stationary noise process NðtÞ is called white noise when the

power spectral density of NðtÞ has a constant value for all frequencies. Thus, it is a process

for which

SNNð!Þ ¼ N0

2
ð6:1Þ

holds, with N0 a real positive constant. By applying the inverse Fourier transform to this

spectrum, the autocorrelation function of such a process is found to be

RNNð�Þ ¼ N0

2
�ð�Þ ð6:2Þ

The name white noise was taken from optics, where white light comprises all frequencies (or

equivalently all wavelengths) in the visible region.

Introduction to Random Signals and Noise W. van Etten
# 2005 John Wiley & Sons, Ltd



It is obvious that white noise cannot be a meaningful model for a noise source from a

physical point of view. Looking at Equation (3.8) reveals that such a process would comprise

an infinitely large amount of power, which is physically impossible. Despite the short-

comings of this model it is nevertheless often used in practice. The reason is that a number of

important noise sources (see, for example, Section 6.2) have a flat spectrum over a very

broad frequency range. Deviation from the white noise model is only observed at very high

frequencies, which are of no practical importance.

The name coloured noise is used in situations where the power spectrum is not white.

Examples of coloured noise spectra are lowpass, highpass and bandpass processes.

6.2 THERMAL NOISE IN RESISTORS

An important example of white noise is thermal noise. This noise is caused by thermal

movement (or Brownian motion) of the free electrons in each electrical conductor. A resistor

with resistance R at an absolute temperature of T has at its open terminals a noise voltage

with a Gaussian probability density function with a mean value of zero and of which the

power spectral density is

SVVð!Þ ¼ Rhj!j
p exp

hj!j
2pkT

� �
� 1

h i ½V2 s� ð6:3Þ

where

k ¼ 1:38� 10�23 ½J=K� ð6:4Þ

is the Boltzmann constant and

h ¼ 6:63� 10�34 ½J s� ð6:5Þ

is the Planck constant. Up until frequencies of 1012 Hz the expression (6.3) has an almost

constant value, which gradually decreases to zero beyond that frequency. For useful

frequencies in the radio, microwave and millimetre wavelength ranges, the power spectrum

is white, i.e. flat. Using the well-known series expansion of the exponential in Equation (6.3),

a very simple approximation of the thermal noise in a resistor is found.

Theorem 9

The spectrum of the thermal noise voltage across the open terminals of resistance R which

is at the absolute temperature T is

SVVð!Þ ¼ 2kTR ½V2 s� ð6:6Þ

This expression is much simpler than Equation (6.3) and can also be derived from

physical considerations, which is beyond the scope of this text.
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6.3 THERMAL NOISE IN PASSIVE NETWORKS

In Chapter 4 the response of a linear system to a stochastic process has been analysed. There

it was assumed that the system itself was noise free, i.e. it does not produce noise itself. In

the preceding section, however, we indicated that resistors produce noise; the same holds for

semiconductor components such as transistors. Thus, if these components form part of a

system, they will contribute to the noise at the output terminals. In this section we will

analyse this problem. In doing so we will confine ourselves to the influence of thermal noise

in passive networks. In a later section active circuits will be introduced.

As a model for a noisy resistor we introduce the equivalent circuit model represented in

Figure 6.1. This model shows a noise-free resistance R in series with a noise process VðtÞ,
for which Equation (6.6) describes the power spectral density. This scheme is called

Thévenin’s equivalent voltage model. From network theory we know that a resistor in

series with a voltage source can also be represented as a resistance R in parallel with a

current source. The magnitude of this current source is

IðtÞ ¼ VðtÞ
R

ð6:7Þ

In this way we arrive at the scheme given in Figure 6.2. This model is called Norton’s

equivalent current model. Using Equations (4.27) and (6.7) the spectrum of the current

source is obtained.

Theorem 10

The spectrum of the thermal noise current when short-circuiting a resistance R that is at

the absolute temperature T is

SIIð!Þ ¼ 2kT

R
½A2 s� ð6:8Þ

In both schemes of Figures 6.2 and 6.1, the resistors are assumed to be noise free.

When calculating the noise power spectral density at the output terminals of a network,

the following method is used. Replace all noisy resistors by noise-free resistors in series with

R

V(t)SVV (ω) = 2kTR [V2s]

Figure 6.1 Thévenin equivalent voltage circuit model of a noisy resistor

THERMAL NOISE IN PASSIVE NETWORKS 131



a voltage source (according to Figure 6.1) or parallel with a current source (according to

Figure 6.2). The schemes are equivalent, so it is possible to select the more convenient of

the two schemes. Next, the transfer function from the voltage source or current source to the

output terminals is calculated using network analysis methods. Invoking Equation (4.27), the

noise power spectral density at the output terminals is found.

Example 6.1:

Consider the circuit presented in Figure 6.3. We wish to calculate the mean squared value of

the voltage across the capacitor.

Express Vcð!Þ in terms of V using the relationship

Vcð!Þ ¼ Hð!ÞVð!Þ ð6:9Þ

and

Hð!Þ ¼ Vcð!Þ
Vð!Þ ¼

1
j!C

1
j!C þ R

¼ 1

1þ j!RC
ð6:10Þ

R

R

V(t)

C
C Vc(t)

(a) (b)

Figure 6.3 (a) Circuit to be analysed; (b) Thévenin equivalent model of the circuit

RI(t)SII (ω) = 2kT/R [A2s]

Figure 6.2 Norton equivalent current circuit model of a noisy resistor
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Invoking Equation (4.27), the power spectral density of Vcð!Þ reads

SVcVc
ð!Þ ¼ 2kTR

1

1þ !2R2C2
½V2 s� ð6:11Þ

and using Equation (4.28)

PVc
¼ 1

2p

Z 1

�1

2kTR

1þ !2R2C2
d! ¼ kT

C
½V2 s� ð6:12Þ

&

When the network comprises several resistors, then these resistors will produce their

noise independently from each other; namely the thermal noise is a consequence of the

Brownian motion of the free electrons in the resistor material. As a rule the Brownian motion

of electrons in one of the resistors will not be influenced by the Brownian motion of the

electrons in different resistors. Therefore, at the output terminals the different spectra

resulting from the several resistors in the circuit may be added.

Let us now consider the situation where a resistor is loaded by a second resistor (see

Figure 6.4). If the loading resistance is called RL, then similar to the method presented in

Example 6.1, the power spectral density of the voltage V across RL due to the thermal noise

produced by R can be calculated. This spectral density is found by applying Equation (4.27)

to the circuit of Figure 6.4, i.e. inserting the transfer function from the noise source to the

load resistance

SVVð!Þ ¼ 2kTR jHð!Þj2 ¼ 2kTR
R2
L

ðRþ RLÞ2
½V2 s� ð6:13Þ

Note the confusion that may arise here. When talking about the power of a stochastic

process in terms of stochastic process theory, the expectation of the quadratic of the

stochastic process is implied. This nomenclature is in accordance with Equation (6.13).

However, when speaking about the physical concept of power, then conversion from the

stochastic theoretical concept of power is required; this conversion will in general be simply

multiplication by a constant factor. As for electrical power dissipated in a resistance RL, we

R RL

thermal noise
source

V

Figure 6.4 A resistance R producing thermal noise and loaded by a resistance RL
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have the formulas P ¼ V2=RL ¼ I2RL, and the conversion reads as

SPð!Þ ¼ 1

RL

SVVð!Þ ¼ RL SIIð!Þ ½Ws� ð6:14Þ

For the spectral density of the electrical power that is dissipated in the resistor RL we have

SPð!Þ ¼ 2kTR
RL

ðRþ RLÞ2
½Ws� ð6:15Þ

It is easily verified that the spectral density given by Equation (6.15) achieves its maximum

when R ¼ RL and the density is

SPmax
ð!Þ¼4 Sað!Þ ¼ kT

2
½Ws� ð6:16Þ

Therefore, the maximum power spectral density from a noisy resistor transferred to an

external load amounts to kT=2, and this value is called the available spectral density. It can be
seen that this spectral density is independent of the resistance value and only depends on

temperature.

Analogously to Equation (6.6), white noise sources are in general characterized as

SVVð!Þ ¼ 2kTeRe ½V2 s� ð6:17Þ

In this representation the noise spectral density may have a larger value than the one given

by Equation (6.6), due to the presence of still other noise sources than those caused by that

particular resistor. We consider two different descriptions:

1. The spectral density is related to the value of the physical resistance R and we define

Re ¼ R. In this case Te is called the equivalent noise temperature; the equivalent noise

temperature may differ from the physical temperature T .

2. The spectral density is related to the physical temperature T and we define Te ¼ T . In this

case Re is called the equivalent noise resistance; the equivalent noise resistance may differ

from the physical value R of the resistance.

In networks comprising reactive components such as capacitors and coils, both the

equivalent noise temperature and the equivalent noise resistance will generally depend on

frequency. An example of this latter situation is elucidated when considering a general-

ization of Equation (6.6). For that purpose consider a circuit that only comprises passive

components (R, L, C and an ideal transformer). The network may comprise several of each

of these items, but it is assumed that all resistors are at the same temperature T . A pair of

terminals constitute the output of the network and the question is: what is the power spectral

density of the noise at the output of the circuit as a consequence of the thermal noise

generated by the different resistors (hidden) in the circuit? The network is considered as a

multiport; when the network comprises n resistors then we consider a multiport circuit with

nþ 1 terminal pairs. The output terminals are denoted by the terminal pair numbered 0.
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Next, all resistors are put outside the multiport but connected to it by means of the terminal

pairs numbered from 1 to n (see Figure 6.5). The relations between the voltages across the

terminals and the currents flowing in or out of the multiport via the terminals are denoted

using standard well-known network theoretical methods:

I0 ¼ Y00V0 þ � � � þ Y0iVi þ � � � þ Y0nVn

� � � ¼ � � � � � � � � � � � � � � �
Ii ¼ Yi0V0 þ � � � þ YiiVi þ � � � þ YinVn

� � � ¼ � � � � � � � � � � � � � � �
In ¼ Yn0V0 þ � � � þ YniVi þ � � � þ YnnVn

ð6:18Þ

Then it follows for the unloaded voltage at the output terminal pair 0 that

V0open ¼
Xn
i¼1

� Y0i

Y00
Vi ð6:19Þ

The voltages, currents and admittances in Equations (6.18) and (6.19) are functions of !.
They represent voltages, currents and the relations between them when the excitation is a

harmonic sine wave with angular frequency !. Therefore, we may also write as an alternative

to Equation (6.19)

V0open ¼
Xn
i¼1

Hið!ÞVi ð6:20Þ

When the voltage Vi is identified as the thermal noise voltage produced by resistor Ri, then

the noise voltage at the output results from the superposition of all noise voltages originating

from several resistors, each of them being filtered by a different transfer function Hið!Þ. As
observed before, we suppose the noise contribution from a certain resistor to be independent

MULTI-PORT

I0

V0

Ri

Rn

R1

Vi

Vn

V1

I i

I n

I 1

Figure 6.5 A network comprising n resistors considered as a multiport
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of these of all other resistors. Then the power spectral density of the output noise voltage is

SV0V0
¼

Xn
i¼1

Hið!Þj j2SViVi
¼

Xn
i¼1

Y0i

Y00

����
����
2

SViVi
¼ 2kT

Xn
i¼1

Y0i

Y00

����
����
2

Ri ð6:21Þ

It appears that the summation may be substantially reduced. To this end consider the

situation where the resistors are noise free (i.e. Vi ¼ 0 for all i 6¼ 0) and where the voltage V0

is applied to the terminal pair 0. From Equation (6.18) it follows in this case that

Ii ¼ Yi0V0 ð6:22Þ

The dissipation in resistor Ri becomes

Pi ¼ jIij2Ri ¼ jYi0j2jV0j2Ri ½W� ð6:23Þ

As the multiport itself does not comprise any resistors, the total dissipation in the resistors

has to be produced by the source that is applied to terminals 0, or

jI0j2RefZ0g ¼ jV0j2
Xn
i¼1

jYi0j2Ri ð6:24Þ

where RefZ0g is the real part of the impedance of the multiport observed at the output

terminal pair. As a consequence of the latter equation

Xn
i¼1

jYi0j2
jY00j2

Ri ¼ RefZ0g ð6:25Þ

Passive networks are reciprocal, so that Yi0 ¼ Y0i. Substituting this into Equation (6.25) and

the result from Equation (6.21) yields the following theorem.

Theorem 11

If in a passive network comprising several resistors, capacitors, coils and ideal transfor-

mers all resistors are at the same temperature T , then the voltage noise spectral density at

the open terminals of this network is

SVVð!Þ ¼ 2kT RefZ0g ½V2 s� ð6:26Þ

where Z0 is the impedance of the network at the open terminal pair.

This generalization of Equation (6.6) is called Nyquist’s theorem. Comparing Equation

(6.26) with Equation (6.17) and if we take Te ¼ T , then the equivalent noise resistance

becomes equal to RefZ0g. When defining this quantity we emphasized that it can be

frequency dependent. This is further elucidated when studying Example 6.1, which is

presented in Figure 6.3.
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Example 6.2:

Let us reconsider the problem presented in Example 6.1. The impedance at the terminals of

Figure 6.3(a) reads

Z0 ¼ R

1þ j!RC
ð6:27Þ

with its real part

RefZ0g ¼ R

1þ !2R2C2
ð6:28Þ

Substituting this expression into Equation (6.26) produces the voltage spectral density at the

terminals

SVcVc
ð!Þ ¼ 2kT

R

1þ !2R2C2
½V2 s� ð6:29Þ

As expected, this is equal to the expression of Equation (6.11).

&

Equation (6.26) is a description according to Thévenin’s equivalent circuit model (see

Figure 6.1). A description in terms of Norton’s equivalent circuit model is possible as well

(see Figure 6.2). Then

SI0I0ð!Þ ¼
SV0V0

jZ0j2
¼ 2kTRefY0g ½A2 s� ð6:30Þ

where

Y0 ¼4 1

Z0
ð6:31Þ

Equation (6.30) presents the spectrum of the current that will flow through the shortcut that

is applied to a certain terminal pair of a network. Here Y0 is the admittance of the network at

the shortcut terminal pair.

6.4 SYSTEM NOISE

The method presented in the preceding section can be applied to all noisy components in

amplifiers and other subsystems that constitute a system. However, this leads to very

extensive and complicated calculations and therefore is of limited value. Moreover, when

buying a system the required details for such an analysis are not available as a rule. There is

therefore a need for an alternative more generic noise description for (sub)systems in terms

of relations between the input and output. Based on this, the quality of components, such as

amplifiers, can be characterized in terms of their own noise contribution. In this way the

noise behaviour of a system can be calculated simply and quickly.
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6.4.1 Noise in Amplifiers

In general, amplifiers will contribute considerably to noise in a system, owing to the

presence of noisy passive and active components in it. In addition, the input signals of

amplifiers will in many cases also be disturbed by noise. We will start our analysis by

considering ideal, i.e. noise-free, amplifiers. The most general equivalent scheme is

presented in Figure 6.6. For the sake of simplifying the equations we will assume that all

impedances in the scheme are real. A generalization to include reactive components is found

in reference [4]. The amplifier has an input impedance of Ri, an output impedance of Ro and

a transfer function of Hð!Þ. The source has an impedance of Rs and generates as open

voltage a wide-sense stationary stochastic voltage process Vs with the spectral density Sssð!Þ.
This process may represent noise or an information signal, or a combination (addition) of

these types of processes. The available spectral density of this source is Ssð!Þ ¼
Sssð!Þ=ð4RsÞ. This follows from Equation (6.15) where the two resistances are set at the

same value Rs. Using Equation (4.27), the available spectral density at the output of the

amplifier is found to be

Soð!Þ ¼ Sooð!Þ
4Ro

¼ jHð!Þj2 Siið!Þ
4Ro

¼ jHð!Þj2
4Ro

Ri

Rs þ Ri

� �2

Sssð!Þ ð6:32Þ

The available power gain of the amplifier is defined as the ratio of the available spectral

densities of the sources from Figure 6.6:

Gað!Þ¼4 Soð!Þ
Ssð!Þ ¼

Sooð!Þ
Sssð!Þ

Rs

Ro

¼ jHð!Þj2 Ri

Rs þ Ri

� �2
Rs

Ro

ð6:33Þ

In case the impedances at the input and output are matched to produce maximum power

transfer (i.e. Ri ¼ Rs and Ro ¼ RL), the practically measured gain will be equal to the

available gain.

Now we will assume that the input source generates white noise, either from a thermal

noise source or not, with an equivalent noise temperature of Ts. Then Ssð!Þ ¼ kTs=2 and the

available spectral density at the output of the amplifier, supposed to be noise free, may be

written as

Soð!Þ ¼ Gað!ÞSsð!Þ ¼ Gað!Þ kTs
2

ð6:34Þ

Rs Ro

Ri RLVs V H(ω)Vio = Vi

AMPLIFIER

Figure 6.6 Model of an ideal (noise-free) amplifier with noise input
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From now on we will assume that the amplifier itself produces noise as well and it seems

to be reasonable to suppose that the amplifier noise is independent of the noise generated by

the source Vs. Therefore the available output spectral density is

Soð!Þ ¼ Gað!Þ kTs
2

þ Sintð!Þ ð6:35Þ

where Sintð!Þ is the available spectral density at the output of the amplifier as a consequence

of the noise produced by the internal noise sources present in the amplifier itself. The model

that corresponds to this latter expression is drawn in Figure 6.7(a). The total available noise

power at the output is found by integrating the output spectral density

PNo
¼ 1

2p

Z 1

�1
Soð!Þ d! ¼ 1

2p
kTs

2

Z 1

�1
Gað!Þ d!þ 1

2p

Z 1

�1
Sintð!Þ d! ð6:36Þ

This output noise power will be expressed in terms of the equivalent noise bandwidth (see

Equation (4.51)) for the sake of simplifying the notation. For !0 we substitute that value for

which the gain is maximal and we denote at that value Gað!0Þ ¼ G. Then it is found that

1

p
GWN ¼ 1

2p

Z 1

�1
Gað!Þ d! ð6:37Þ

Using this latter equation the first term of the right-hand side of Equation (6.36) can be

written as GkTsWN=ð2pÞ. In order to be able to write the second term of that equation in a

similar way the effective noise temperature of the amplifier is defined as

Te ¼4 1

GkWN

Z 1

�1
Sintð!Þ d! ð6:38Þ

Based on this latter equation the total noise power at the output is written as

PNo
¼ GkTs

WN

2p
þ GkTe

WN

2p
¼ GkðTs þ TeÞWN

2p
ð6:39Þ

+

+

Ga(ω)

G

Ss(ω) = kTs/2

Sint(ω)

kTe/2

So(ω)

PNo

(a)

(b)

WN

filter of
bandwidth

Ss(ω) = kTs/2

Figure 6.7 Block schematic of a noisy amplifier with the amplifier noise positioned (a) at the output

or (b) at the input
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It is emphasized that WN=ð2pÞ represents the equivalent noise bandwidth in hertz. By the

representation of Equation (6.39) the amplifier noise is in the model transferred to the input

(see Figure 6.7(b)). In this way it can immediately be compared with the noise generated by

the source at the input, which is represented by the first term in Equation (6.39).

6.4.2 The Noise Figure

Let us now consider a noisy device, an amplifier or a passive device, and let us suppose that

the device is driven by a source that is noisy as well. The noise figure F of the device is

defined as the ratio of the total available output noise spectral density (due to both the source

and device) and the contribution to that from the source alone, in the later case supposing

that the device is noise free. In general, the two noise contributions can have frequency-

dependent spectral densities and thus the noise figure can also be frequency dependent. In

that case it is called the spot noise figure. Another definition of the noise figure can be based

on the ratio of the two total noise powers. In that case the corresponding noise figure is called

the average noise figure. In many situations, however, the noise sources can be modelled as

white sources. Then, based on the definition and Equation (6.39), it is found that

F ¼ Ts þ Te

Ts
¼ 1þ Te

Ts
ð6:40Þ

It will be clear that different devices can have different effective noise temperatures; this

depends on the noise produced by the device. However, suppliers want to specify the quality

of their devices for a standard situation. Therefore the standard noise figure for the situation

where the source is at room temperature is defined as

Fs ¼ 1þ Te

T0
; with T0 ¼ 290K ð6:41Þ

Thus for a very noisy device the effective noise temperature is much higher than room

temperature ðTe � T0Þ and Fs � 1. This does not mean that the physical temperature of the

device is very high; this can and will, in general, be room temperature as well.

Especially for amplifiers, the noise figure can also be expressed in terms of signal-to-

noise ratios. For that purpose the available signal power of the source is denoted by Ps, so

that the signal-to-noise ratio at the input reads

S

N

� �

s

¼ Ps

kTs
WN

2p

ð6:42Þ

Note that the input noise power has only been integrated over the equivalent noise bandwidth

WN of the amplifier, although the input noise power is actually unlimited. This procedure is

followed in order to be able to compare the input and output noise power based on the same

bandwidth; for the output noise power it does not make any difference. It is an obvious

choice to take for this bandwidth, the equivalent noise bandwidth, as this will reflect the

actual noise power at the output. Furthermore, it is assumed that the signal spectrum is

limited to the same bandwidth, so that the available signal power at the output is denoted as
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Pso ¼ GPs. Using Equation (6.39) we find that the signal-to-noise ratio at the output is

S

N

� �

o

¼ GPs

PNo

¼ GPs

GkðTs þ TeÞWN

2p

ð6:43Þ

This signal-to-noise ratio is related to the signal-to-noise ratio at the input as

S

N

� �

o

¼ Ps

ð1þ Te
Ts
ÞkTs WN

2p

¼ 1

1þ Te
Ts

S

N

� �

s

ð6:44Þ

As the first factor in this expression is always smaller than 1, the signal-to-noise ratio is

always deteriorated by the amplifier, which may not surprise us. This deterioration depends

on the value of the effective noise temperature compared to the equivalent noise temperature

of the source. If, for example, Te � Ts, then the signal-to-noise ratio will hardly be reduced

and the amplifier behaves virtually as a noise-free component. From Equation (6.44), it

follows that

S
N

� �
s

S
N

� �
o

¼ 1þ Te

Ts
¼ F ð6:45Þ

Note that the standard noise figure is defined for a situation where the source is at room

temperature. This should be kept in mind when determining F by means of a measurement.

Suppliers of amplifiers provide the standard noise figure as a rule in their data sheets, mostly

presented in decibels (dB).

Sometimes, the noise figure is defined as the ratio of the two signal-to-noise ratios given

in Equation (6.45). This can be done for amplifiers but can cause problems when considering

a cascade of passive devices such as attenuators, since in that case input and output are not

isolated and the load impedance of the source device is also determined by the load

impedance of the devices.

Example 6.3:

As an interesting and important example, we investigate the noise figure of a passive two-

port device such as a cable or an attenuator. Since the two-port device is passive it is

reasonable to suppose that the power gain is smaller than 1 and denoted as G ¼ 1=L, where L
is the power loss of the two-port device. The signal-to-noise ratio at the input is written as in

Equation (6.42), while the output signal power is by definition Pso ¼ Ps=L. The passive two-
port device is assumed to be at temperature Ta. The available spectral density of the output

noise due to the noise contribution of the two-port device itself is determined by the

impedance of the output terminals, according to Theorem 11. This spectral density is kTa=2.
The contribution of the source to the output available spectral density is kTs=ð2LÞ. However,
since the resistance Rs of the input circuit is part of the impedance that is observed at the

output terminals, the portion kTa=ð2LÞ of its noise contribution to the output is already

involved in the noise kTa=2, which follows from the theorem. Only compensation for the

difference in temperature is needed; i.e. we have to include an extra portion kðTs � TaÞ=ð2LÞ.
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Now the output signal-to-noise ratio becomes

S

N

� �

o

¼
Ps

L

½kTa þ k
L
ðTs � TaÞ�WN

2p

ð6:46Þ

After some simple calculations the noise figure follows from the definition

Fs ¼ 1þ ðL� 1Þ Ta
Ts

; with Ts ¼ T0 ð6:47Þ

When the two-port device is at room temperature this expression reduces to

Fs ¼ L ð6:48Þ

It is therefore concluded that the noise figure of a passive two-port device equals its power

loss.

&

6.4.3 Noise in Cascaded Systems

In this subsection we consider the cascade connection of systems that may comprise several

noisy amplifiers and other noisy components. We look for the noise properties of such a

cascade connection, expressed as the parameters of the individual components as they are

developed in the preceding subsection. In order to guarantee that the maximum power

transfer occurs from one device to another, we assume that the impedances are matched; i.e.

the input impedance of a device is the complex conjugate (see Problem 6.7) of the output

impedance of the driving device. For the time being and for the sake of better understanding

we only consider here a simple configuration consisting of the cascade of two systems (see

Figure 6.8). The generalization to a cascade of more than two systems is quite simple, as will

be shown later on. In the figure the relevant quantities of the two systems are indicated; they

are the maximum power gain Gi, the effective noise temperature Tei and the equivalent noise

bandwidth Wi. The subscripts i refer to system 1 for i ¼ 1 and to system 2 for i ¼ 2, while

the noise first enters system 1 and the output of system 1 is connected to the input of system

2 (see Figure 6.8). We assume that the passband of system 2 is completely encompassed by

that of system 1, and as a consequence W2 � W1. This condition guarantees that all systems

contribute to the output noise via the same bandwidth. Therefore, the equivalent noise

bandwidth is equal to that of system 2:

WN ¼ W2 ð6:49Þ

kTs /2
G T

W
1 e1

1

, G T
W
2 e2

2

, PNo

Figure 6.8 Cascade connection of two noisy two-port devices
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The gain of the cascade is described by the product

G ¼ G1G2 ð6:50Þ
The total output noise consists of three contributions: the noise of the source that is amplified

by both systems, the internal noise produced by system 1 and which is amplified by system 2

and the internal noise of system 2. Therefore, the output noise power is

PNo
¼ ðGkTs þ G2G1kTe1 þ G2kTe2ÞWN

2p
¼ Gk Ts þ Te1 þ Te2

G1

� �
WN

2p
ð6:51Þ

where the temperature expression

Tsys ¼4 Ts þ Te1 þ Te2

G1

ð6:52Þ

is called the system noise temperature. From this it follows that the effective noise

temperature of the cascade of the two-port devices in Figure 6.8 (see Equation (6.39)) is

Te ¼ Te1 þ Te2

G1

ð6:53Þ

and the noise figure of the cascade is found by inserting this equation into Equation (6.41), to

yield

Fs ¼ 1þ Te1

T0
þ Te2

G1T0
¼ Fs1 þ Fs2 � 1

G1

ð6:54Þ

Repeated application of the given method yields the effective noise temperature

Te ¼ Te1 þ Te2

G1

þ Te3

G1G2

þ � � � ð6:55Þ

and from that the noise figure of a cascade of three or more systems is

Fs ¼ 1þ Te1

T0
þ Te2

G1T0
þ Te3

G1G2T0
þ � � � ¼ Fs1 þ Fs2 � 1

G1

þ Fs3 � 1

G1G2

þ � � � ð6:56Þ

These two equations are known as the Friis formulas. From these formulas it is concluded

that in a cascade connection the first stage plays a crucial role with respect to the noise

behaviour; namely the noise from this first stage fully contributes to the output noise,

whereas the noise from the next stages is to be reduced by a factor equal to the gain that

precedes these stages. Therefore, in designing a system consisting of a cascade, the first

stage needs special attention; this stage should show a noise figure that is as low as possible

and a gain that is as large as possible. When the gain of the first stage is large, the effec-

tive noise temperature and noise figure of the cascade are virtually determined by those of

the first stage. Following stages can provide further gain and eventual filtering, but will

hardly influence the noise performance of the cascade. This means that the design demands

of these stages can be relaxed.
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Suppose that the first stage is a passive two-port device (e.g. a connection cable) with loss

L1. Inserting G1 ¼ 1=L1 into Equation (6.56) yields

Fs ¼ L1 þ L1ðFs2 � 1Þ þ L1
Fs3 � 1

G2

þ � � �

¼ L1Fs2 þ L1
Fs3 � 1

G2

þ � � � ð6:57Þ

Such a situation always causes the signal-to-noise ratio to deteriorate severely as the noise

figure of the cascade consists mainly of that of the second (amplifier) stage multiplied by the

loss of the passive first stage. When the second stage is a low-noise amplifier, this amplifier

cannot repair the deterioration introduced by the passive two-port device of the first stage.

Therefore, in case a lossy cable is needed to connect a low-noise device to processing

equipment, the source first has to be amplified by a low-noise amplifier before applying it to

the connection cable. This is elucidated by the next example.

Example 6.4:

Consider a satellite antenna that is connected to a receiver by means of a coaxial cable and

an amplifier. The connection scheme and data of the different components are given in

Figure 6.9. The antenna noise is determined by the low effective noise temperature of the

dark sky (30 K) and produces an information signal power of �90 dBm in a bandwidth of

1 MHz at the input of the cable, which is at room temperature. All impedances are such that

all the time maximum power transfer occurs. The receiver needs at least a signal-to-noise

ratio of 17 dB. The question is whether the cascade can meet this requirement.

The signal power at the input of the receiver is

Psr ¼ ð�90� 2þ 60Þ dBm ¼ �32 dBm ) 0:63 mW ð6:58Þ

Using Equation (6.51), the noise power at the input of the receiver is

PN0
¼ GamplGcoaxk Tsys

WN

2p
ð6:59Þ

antenna

coax
amplifier receiver

Ts  = 30K

L = 2 dB
G
F

ampl

s,ampl

 = 60 dB
 = 3.5 dB

Ps = −90 dBm S/N >17dB

Figure 6.9 Satellite receiving circuit
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On the linear scale, Gampl ¼ 106 and Gcoax ¼ 0:63. The effective noise temperatures of the

coax and amplifier, according to Equation (6.41), are

Te;coax ¼ T0ðFs;coax � 1Þ ¼ 290ð1:58� 1Þ ¼ 168K

Te;ampl ¼ T0ðFs;ampl � 1Þ ¼ 290ð2:24� 1Þ ¼ 360K
ð6:60Þ

Inserting the numerical data into Equation (6.59) yields

PN0
¼ 106 � 0:63� 1:38� 10�23 30þ 168þ 360

0:63

� �
� 106 ¼ 6:7� 10�9 ð6:61Þ

The ratio of Psr and PN0
produces the signal-to-noise ratio

S

N
¼ Psr

PN0

¼ 0:63� 10�6

6:7� 10�9
¼ 94 ) 19:7 dB ð6:62Þ

It is concluded that the cascade satisfies the requirement of a minimum signal-to-noise ratio

of 17 dB.

&

Although the suppliers characterize the components by the noise figure, in calculations as

given in this example it is often more convenient to work with the effective noise

temperatures in the way shown. Equation (6.41) gives a simple relation between the two data.

From the example it is clear that the coaxial cable does indeed cause the noise of the

amplifier to be dominant.

Example 6.5:

As a second example of the noise figure of cascaded systems, we consider two different

optical amplifiers, namely the so-called Erbium-doped fibre amplifier (EDFA) and the

semiconductor optical amplifier (SOA). The first type is actually a fibre and so the insertion

in a fibre link will give small coupling losses, let us say 0.5 dB. The second type, being a

semiconductor device, has smaller waveguide dimensions than that of a fibre, which causes

relatively high loss, let us say a 3 dB coupling loss. From physical reasoning it follows that

optical amplifiers have a minimum noise figure of 3 dB. Let us compare the noise figure

when either amplifier is inserted in a fibre link, where each of them has an amplification of

30 dB. On insertion we can distinguish three stages: (1) the coupling from the transmission

fibre to the amplifier, (2) the amplifier device itself (EDFA or SOA) and (3) the output

coupling from the amplifier device to the fibre. Using Equation (6.57) and the given data of

these stages, the noise figure and other relevant data of the insertion are summarized in

Table 6.1; note that in this table all data are in dB (see Appendix B). It follows from these

data that the noise figure on insertion of the SOA is approximately 2.5 dB worse than that of

the EDFA. This is almost completely attributed to the higher coupling loss at the front end

of the amplifier. The output coupling hardly influences this number; it only contributes to a

lower net gain.

&
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These two examples clearly show that in a cascade it is of the utmost importance that the

first component (the front end) consists of a low-noise amplifier with a high gain, so that the

front end contributes little noise and reduces the noise contribution of the other components

in the cascade.

6.5 SUMMARY

A stochastic process is called ‘white noise’ if its power spectral density has a constant value

for all frequencies. From a physical point of view this is impossible; namely this would

imply an infinitely large amount of power. The concept in the first instance is therefore only

of mathematical and theoretical value and may probably be used as a model in a limited but

practically very wide frequency range. This holds specifically for thermal noise that is

produced in resistors. In order to analyse thermal noise in networks and systems, we

introduced the Thévenin and Norton equivalent circuit models. They consist of an ideal, that

is noise-free, resistor in series with a voltage source or in parallel with a current source.

Then, using network theoretical methods and the results from Chapter 4, the noise at the

output of the network can easily be described. Several resistors in a network are considered

as independent noise sources, where the superposition principle may be applied. Therefore,

the total output power spectral density consists of the sum of the output spectra due to the

individual resistors.

Calculating the noise behaviour of systems based on all the noisy components requires

detailed data of the constituting components. This leads to lengthy calculations and

frequently the detailed data are not available. A way out is offered by noise characterization

of (sub)systems based on their output data. These output noise data are usually provided by

component suppliers. Important data in this respect are the effective noise temperature and/

or the noise figure. On the basis of these parameters, the influence of the subsystems on the

noise performance of a cascade can be calculated. From such an analysis it appears that

the first stage of a cascade plays a crucial role. This stage should contribute as little as

possible to the output noise (i.e. it must have a low effective noise temperature or, equiva-

lently, a low-noise figure) and a high gain. The use of cables and attenuators as a first stage

has to be avoided as they strongly deteriorate the signal-to-noise ratio. Such components

should be preceded by low-noise amplifiers with a high gain.

6.6 PROBLEMS

6.1 Consider the thermal noise spectrum given by Equation (6.3).

(a) For what values of ! will this given spectrum have a value larger than 0:9� 2kTR

at room temperature?

Table 6.1 Comparing different optical amplifiers

EDFA SOA Unit

Gain of device 30 30 dB

Coupling loss ð�2Þ 0.5 3 dB

Noise figure device 3 3 dB

Noise figure on insertion 3.5 6 dB

Net insertion gain 29 24 dB
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(b) Use Matlab to plot this power spectral density as a function of frequency, for

R ¼ 1 � at room temperature.

(c) What is the significance of thermal noise in the optical domain, if it is realized that

the optical domain as it is used for optical communication runs to a maximum

wavelength of 1650 nm?

6.2 A resistance R1 is at absolute temperature T1 and a second resistance R2 is at absolute

temperature T2.

(a) What is the equivalent noise temperature of the series connection of these two

resistances?

(b) If T1 ¼ T2 ¼ T what in that case is the value of Te?

6.3 Answer the same questions as in Problem 6.2 but now for the parallel connection of

the two resistances.

6.4 Consider once more the circuit of Problem 6.2. A capacitor with capacitance C1 is

connected parallel to R1 and a capacitor with capacitance C2 is connected parallel to

R2.

(a) Calculate the equivalent noise temperature.

(b) Is it possible to select the capacitances such that Te becomes independent of

frequency?

6.5 A resistor with a resistance value of R is at temperature T kelvin. A coil is connected

parallel to this resistor with a self-inductance L henry. Calculate the mean value of the

energy that is stored in the coil as a consequence of thermal noise produced by the

resistor.

6.6 An electrical circuit consists of a loop of three elements in series, two resistors and a

capacitor. The capacitance is C farad and the resistances are R1 and R2 respectively.

Resistance R1 is at temperature T1 K and resistance R2 is at T2 K. Calculate the mean

energy stored in the capacitor as a consequence of the thermal noise produced by the

resistors.

6.7 A thermal noise source has an internal impedance of Zð!Þ. The noise source is loaded
by the load impedance Zlð!Þ.
(a) Show that a maximum power transfer from the noise source to the load occurs if

Zl ¼ Z�ð!Þ.
(b) In that case what is the available power spectral density?

6.8 A resistor with resistance R1 is at absolute temperature T1. A second resistor with

resistance R2 is at absolute temperature T2. The resistors R1 and R2 are connected in

parallel.

(a) What is the spectral density of the net amount of power that is exchanged between

the two resistors?

(b) Does the colder of the two resistors tend to further cool down due to this effect or

heat up? In other words does the system strive for temperature equalization or does

it strive to increase the temperature differences?

(c) What is the power exchange if the two temperatures are of equal value?
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6.9 Consider the circuit in Figure 6.10, where all components are at the same temperature.

(a) The thermal noise produced by the resistors becomes manifest at the terminals.

Suppose that the values of the components are such that the noise spectrum at the

terminals is white. Derive the conditions in order for this to happen.

(b) In that case what is the impedance at the terminals?

6.10 Consider the circuit presented in Figure 6.11. The input impedance of the amplifier is

infinitely high.

(a) Derive the expression for the spectral density SVVð!Þ of the input voltage VðtÞ of
the amplifier as a consequence of the thermal noise in the resistance R.

The lowpass filter Hð!Þ is ideal, i.e.

Hð!Þ ¼ expð�j!�Þ; j!j � W

0; j!j > W

�

In the passband of Hð!Þ the constant � ¼ 1 and the voltage amplification A can also be

taken as constant and equal to 103. The amplifier does not produce any noise. The

component values of the input circuit are C ¼ 200 nF and R ¼ 1 k�. The resistor is at
room temperature so that kT ¼ 4� 10�21 W s.

(b) Calculate the r.m.s. value of the output voltage VoðtÞ of the filter in the case

W ¼ 1=ðRCÞ.
6.11 Consider the circuit given in Figure 6.12. The data are as follows: R ¼ 50 �;

L ¼ 1 mH; C ¼ 400 pF and A ¼ 100.

(a) Calculate the spectral density of the noise voltage at the input of the amplifier as a

consequence of the thermal noise produced by the resistors. Assume that these

resistors are at room temperature and the other components are noise free.

R R

L C

Figure 6.10

R C V(t) A=103

Vo(t)

H( )ω

Figure 6.11
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(b) Calculate the transfer function Hð!Þ from the output amplifier to the input filter.

(c) Calculate the spectral density of the noise voltage at the input of the filter.

(d) Calculate the r.m.s. value of the noise voltage at the filter output in the case where

the filter is ideal lowpass with a transfer of 1 and a cut-off angular frequency

!c ¼ p=TD, where TD ¼ 10 ns.

6.12 A signal source has a source impedance of 50 � and an equivalent noise temperature

of 3000 K. This source is terminated by the input impedance of an amplifier, which is

also 50 �. The voltage across this resistor is amplified and the amplifier itself is noise

free. The voltage transfer function of the amplifier is

Að!Þ ¼ 100

1þ j!�

where � ¼ 10�8 s. The amplifier is at room temperature. Calculate the variance of the

noise voltage at the output of the amplifier.

6.13 An amplifier is constituted from three stages with effective noise temperatures of

Te1 ¼ 1300K; Te2 ¼ 1750K and Te3 ¼ 2500K, respectively, and where stage number

1 is the input stage, etc. The power gains amount to G1 ¼ 20, G2 ¼ 10 and G3 ¼ 5,

respectively.

(a) Calculate the effective noise temperature of this cascade of amplifier stages.

(b) Explain why this temperature is considerably lower than Te2, respectively Te3.

6.14 An antenna has an impedance of 300 �. The antenna signal is amplified by an

amplifier with an input impedance of 50 �. In order to match the antenna to the

amplifier input impedance a resistor with a resistance of 300 � is connected in series

with the antenna and parallel to the amplifier input a resistance of 50 � is connected.

(a) Sketch a block schematic of antenna, matching network and amplifier.

(b) Calculate the standard noise figure of the matching network.

(c) Do the resistances of 300 and 50 � provide matching of the antenna and amplifier?

Support your answer by a calculation.

(d) Design a network that provides all the matching functionalities.

(e) What is the standard noise figure of this latter network? Compare this with the

answer found for question (b).

delay
TD

FILTERA

R R

L C

Figure 6.12
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6.15 An antenna is on top of a tall tower and is connected to a receiver at the foot of the

tower by means of a cable. However, before applying the signal to the cable it is

amplified. The amplifier has a power gain of 20 dB and a noise figure of F ¼ 3 dB. The

cable has a loss of 6 dB, while the noise figure of the receiver amounts to 13 dB. All

impedances are matched; i.e. between components the maximum power transfer

occurs.

(a) Calculate the noise figure of the system.

(b) Calculate the noise figure of the modified system where the amplifier is placed

between the cable and the receiver at the foot of the tower instead of between the

antenna and the cable at the top of the tower.

6.16 Reconsider Example 6.4. Interchange the order of the coaxial cable and the amplifier.

Calculate the signal-to-noise ratio at the input of the receiver for this new situation.

6.17 An antenna is connected to a receiver via an amplifier and a cable. For proper

operation the receiver needs at its input a signal-to-noise ratio of at least 20 dB. The

amplifier is directly connected to the antenna and the cable connects the amplifier

(power amplification of 60 dB) to the receiver. The cable has a loss of 1 dB and is at

room temperature (290 K). The effective noise temperature of the antenna amounts to

50 K. The received signal is �90 dBm at the input of the amplifier and has a

bandwidth of 10 MHz. All impedances are such that the maximum power transfer

occurs.

(a) Present a block schematic of the total system and indicate in that sketch the

relevant parameters.

(b) Calculate the signal power at the input of the receiver.

(c) The system designer can select one out of two suppliers for the amplifier. The

suppliers A and B present the data given in Table 6.2. Which of the two amplifiers

can be used in the system, i.e. on insertion of the amplifiers in the system which

one will meet the requirement for the signal-to-noise ratio? Support your answer

with a calculation.

6.18 Consider a source with a real source impedance of Rs. There are two passive networks

as given in Figure 6.13. Resistance R1 is at temperature T1 K and resistance R2 is at

temperature T2 K.

(a) Calculate the available power gain and standard noise factor when the circuit

comprising R1 is connected to the source.

(b) Calculate the available power gain and standard noise factor when the circuit

comprising R2 is connected to the source.

Table 6.2

Supplier

A B

Noise figure F (dB) 3.5 –

S=N reduction at the source temperature of 120 K (dB) – 6
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(c) Now assume that the two networks are cascaded where R1 is connected to the

source and R2 to the output. Calculate the available gain and the standard noise

figure of the cascade when connected to this source.

(d) Do the gains and the noise figures satisfy Equations (6.50) and (6.54), respec-

tively? Explain your conclusion.

(e) Redo the calculations of the gain and noise figure when Rs þ R1 is taken as the

source impedance for the second two-port device, i.e. the impedance of the source

and the first two-port device as seen from the viewpoint of the second two-port

device.

(f) Do the gains and the noise figures in case (e) satisfy Equations (6.50) and (6.54),

respectively?

6.19 Consider a source with a complex source impedance of Zs. This source is loaded by the

passive network given in Figure 6.14.

(a) Calculate the available power gain and noise factor of the two-port device when it

is connected to the source.

(b) Do the answers from (a) surprise you? If the answer is ‘yes’ explain why. If the

answer is ‘no’ explain why not.

6.20 Consider the circuit given in Figure 6.15. This is a so-called ‘constant resistance

network’.

(a) Show that the input impedance of this circuit equals R0 if Z1 Z2 ¼ R2
0 and the

circuit is terminated by a resistance R0.

(b) Calculate the available power gain and noise figure of the circuit (at temperature T

kelvin) if the source impedance equals R0.

R ,

T
2

2

R ,T1 1

Figure 6.13

C

Figure 6.14
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(c) Suppose that two of these circuits at different temperatures and with different

gains are put in cascade and that the source impedance equals R0 once more.

Calculate the overall available power gain and noise figure.

(d) Does the overall gain equal the product of the gains?

(e) Under what circumstances does the noise figure obey Equation (6.54)?

R0

Z1

R0
Z 2

Figure 6.15
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7
Detection and Optimal Filtering

Thus far the treatment has focused on the description of random signals and their analyses,

and how these signals are transformed by linear time-invariant systems. In this chapter we

take a somewhat different approach; namely starting with what is known about input

processes and of system requirements we look for an optimum system. This means that we

are going to perform system synthesis. The approach achieves an optimal reception of

information signals that are corrupted by noise. In this case the input process consists of two

parts, the information bearing or data signal and noise, and we may wonder what the optimal

receiver or processing looks like, subject to some criterion.

When designing an optimal system three items play a crucial role. These are:

1. A description of the input noise process and the information bearing signal;

2. Conditions to be imposed on the system;

3. A criterion that defines optimality.

In the following we briefly comment on these items:

1. It is important to know the properties of the system inputs, e.g. the power spectral density

of the input noise, whether it is wide-sense stationary, etc. What does the information

signal look like? Are information signal and noise additive or not?

2. The conditions to be imposed on the system may influence performance of the receiver or

the processing. We may require the system to be linear, time-invariant, realizable, etc. To

start with and to simplify matters we will not bother about realizability. In specific cases it

can easily be included.

3. The criterion will depend on the problem at hand. In the first instance we will consider

two different criteria, namely the minimum probability of error in detecting data signals

and the maximum signal-to-noise ratio. These criteria lead to an optimal linear filter

called the matched filter. This name will become clear in the sequel. Although the criteria

are quite different, we will show that there is a certain relationship in specific cases. In a

third approach we will look for a filter that produces an optimum estimate of the
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realization of a stochastic process, which comes along with additive noise. In such a case

we use the minimum mean-squared error criterion and end up with the so-called Wiener

filter.

7.1 SIGNAL DETECTION

7.1.1 Binary Signals in Noise

Let us consider the transmission of a known deterministic signal that is disturbed by noise;

the noise is assumed to be additive. This situation occurs in a digital communication system

where, during successive intervals of duration T seconds, a pulse of known shape may arrive

at the receiver (see the random data signal in Section 4.5). In such an interval the pulse has

been sent or not. In accordance with Section 4.5 this transmitted random data signal is

denoted by

ZðtÞ ¼
X

n

An pðt � nTÞ ð7:1Þ

Here An is randomly chosen from the set f0; 1g. The received signal is disturbed by additive

noise. The presence of the pulse corresponds to the transmission of a binary digit ‘1’

ðAn ¼ 1Þ, whereas absence of the pulse in a specific interval represents the transmission of a

binary digit ‘0’ ðAn ¼ 0Þ. The noise is assumed to be stationary and may originate from

disturbance of the channel or has been produced in the front end of the receiver equipment.

Every T seconds the receiver has to decide whether a binary ‘1’ or a binary ‘0’ has been sent.

This decision process is called detection. Noise hampers detection and causes errors to occur

in the detection process, i.e. ‘1’s may be interpreted as ‘0’s and vice versa.

During each bit interval there are two possible mutually exclusive situations, called

hypotheses, with respect to the received signal RðtÞ:

H0: RðtÞ ¼ NðtÞ; 0 � t � T ð7:2Þ
H1: RðtÞ ¼ pðtÞ þ NðtÞ; 0 � t � T ð7:3Þ

The hypothesis H0 corresponds to the situation that a ‘0’ has been sent ðAn ¼ 0Þ. In this case

the received signal consists only of the noise process NðtÞ. Hypothesis H1 corresponds to the

event that a ‘1’ has been sent ðAn ¼ 1Þ. Now the received signal comprises the known pulse

shape pðtÞ and the additive noise process NðtÞ. It is assumed that each bit occupies the ð0; TÞ
interval. Our goal is to design the receiver such that in the detection process the probability

of making wrong decisions is minimized. If the receiver decides in favour of hypothesis

H0 and it produces a ‘0’, we denote the estimate of An by ÂAn and say that ÂAn ¼ 0. In case

the receiver decides in favour of hypothesis H1 and a ‘1’ is produced, we denote ÂAn ¼ 1.

Thus the detected bit ÂAn 2 f0; 1g. In the detection process two types of errors can be made.

Firstly, the receiver decides in favour of hypothesis H1, i.e. a ‘1’ is detected ðÂAn ¼ 1Þ,
whereas a ‘0’ has been sent ðAn ¼ 0Þ. The conditional probability of this event is

PðÂAn ¼ 1jH0Þ ¼ PðÂAn ¼ 1jAn ¼ 0Þ. Secondly, the receiver decides in favour of hypothesis

H0 ðÂAn ¼ 0Þ, whereas a ‘1’ has been sent ðAn ¼ 1Þ. The conditional probability of this event

is PðÂAn ¼ 0 jH1Þ ¼ PðÂAn ¼ 0 jAn ¼ 1Þ. In a long sequence of transmitted bits the prior
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probability of sending a ‘0’ is given by P0 and the prior probability of a ‘1’ by P1. We assume

that these probabilities are known in the receiver. In accordance with the law of total

probability the bit error probability is given by

Pe ¼ P0 PðÂAn ¼ 1jH0Þ þ P1 PðÂAn ¼ 0 jH1Þ
¼ P0 PðÂAn ¼ 1jAn ¼ 0Þ þ P1 PðÂAn ¼ 0 jAn ¼ 1Þ ð7:4Þ

This error probability is minimized if the receiver chooses the hypothesis with the highest

conditional probability, given the process RðtÞ. It will be clear that the conditional

probabilities of Equation (7.4) depend on the signal pðtÞ, the statistical properties of the

noise NðtÞ and the way the receiver processes the received signal RðtÞ. As far as the latter is
concerned, we assume that the receiver converts the received signal RðtÞ into K numbers

(random variables), which are denoted by the K-dimensional random vector

r ¼ ðr1; r2; . . . ; rKÞ ð7:5Þ
The receiver chooses the hypothesis H1 if PðH1j rÞ � PðH0j rÞ, or equivalently

P1 frðr jH1Þ � P0 frðr jH0Þ, since it follows from Bayes’ theorem (reference [14]) that

PðHi j rÞ ¼ Pi frðr jHiÞ
frðrÞ ; i ¼ 0; 1 ð7:6Þ

From this it follows that the decision can be based on the so-called likelihood ratio

�ðrÞ ¼4 frðr jH1Þ
frðr jH0Þ <>

H1

H0

�0 ¼4 P0

P1
ð7:7Þ

In other words, hypothesis H1 is chosen if �ðrÞ > �0 and hypothesis H0 is chosen if

�ðrÞ < �0. The quantity �0 is called the decision threshold. In taking the decision the

receiver partitions the vector space spanned by r into two parts, R0 and R1, called the

decision regions. The boundary between these two regions is determined by �0. In the region

R0 we have the relation �ðrÞ < �0 and an observation of r in this region causes the receiver

to decide that a binary ‘0’ has been sent. An observation in the region R1, i.e. �ðrÞ � �0,

makes the receiver decide that a binary ‘1’ has been sent. The task of the receiver therefore is

to transform the received signal RðtÞ into the random vector r and determine to which of the

regions R0 or R1 it belongs. Later we will go into more detail of this signal processing.

Example 7.1:

Consider the two conditional probability densities

frðr jH0Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � r2

2

� �
ð7:8Þ

frðr jH1Þ ¼ 1
2
expð�j rj Þ ð7:9Þ

and the prior probabilities

P0 ¼ P1 ¼ 1
2

ð7:10Þ
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Let us calculate the decision regions for this situation. By virtue of Equation (7.10) the

decision threshold is set to one and the decision regions are found by equating the right-hand

sides of Equations (7.8) and (7.9):

1ffiffiffiffiffiffi
2p

p exp � r2

2

� �
¼ 1

2
expð�j rj Þ ð7:11Þ

The two expressions are depicted in Figure 7.1. As seen from the figure, the functions are

even symmetric and, confining to positive values of r, this equation can be rewritten as the

quadratic

r2 � 2r � 2 ln
2ffiffiffiffiffiffi
2p

p ¼ 0 ð7:12Þ

Solving this yields the roots r1 ¼ 0:259 and r2 ¼ 1:741. Considering negative r values

produces the same negative values for the roots. Hence it may be concluded that the decision

regions are described by

R0 ¼ fr : 0:259 < j rj < 1:741g ð7:13Þ
R1 ¼ fr : ðj rj < 0:259Þ [ ðj rj > 1:741Þ ð7:14Þ

&

One may wonder what to do when an observation is exactly at the boundaries of the

decision regions. An arbitrary decision can be made, since the probability of this event

approaches zero.

r

f rr( |H )0

f rr( |H )1

R1R0 R0R1 R1

Figure 7.1 Conditional probability density functions of the example and the decision regions R0

and R1
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The conditional error probabilities in Equation (7.4) are written as

PðÂAn ¼ 1jH0Þ ¼ Pf�ðrÞ � �0 jH0g ¼
Z

. . .
R1

Z
frðr jH0Þ dr1 � � � drK ð7:15Þ

PðÂAn ¼ 0 jH1Þ ¼ Pf�ðrÞ < �0 jH1g ¼
Z

. . .
R0

Z
frðr jH1Þ dr1 � � � drK ð7:16Þ

The minimum total bit error probability is found by inserting these quantities in Equation (7.4).

Example 7.2:

An example of a received data signal (see Equation (7.1)) has been depicted in Figure 7.2(a).

Let us assume that the signal RðtÞ is characterized by a single number r instead of a vector

and that in the absence of noise ðNðtÞ � 0Þ this number is symbolically denoted by ‘0’

(in the case of hypothesis H0Þ or ‘1’ (in the case of hypothesis H1Þ. Furthermore, assume that

in the presence of noise NðtÞ a stochastic Gaussian variable should be added to this

characteristic number. For this situation the conditional probability density functions are

given in Figure 7.2(a) upper right. In Figure 7.2(b) these functions are depicted once more,

but now in a somewhat different way. The boundary that separates the decision regions R0

and R1 reduces to a single point. This point r0 is determined by �0. The bit error probability

is now written as

Pe ¼ P0

Z 1

r0

frðr jH0Þ dr þ P1

Z r0

�1
frðr jH1Þ dr ð7:17Þ

t
0 T 2T-T

"1"

"0"

R1R0

10 r0
r

(a)

(b)

P ( |H )0 0f rr P ( |H )1 1f rr

P ( |H )0 0f rr

P ( |H )1 1f rr

Figure 7.2 (a) A data signal disturbed by Gaussain noise and (b) the corresponding weighted (by the

prior probabilities) conditional probability density functions and the decision regions R0 and R1
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The first term on the right-hand side of this equation is represented by the right shaded

region in Figure 7.2(b) and the second term by the left shaded region in this figure. The

threshold value r0 is to be determined such that Pe is minimized. To that end Pe is

differentiated with respect to r0

dPe

dr0
¼ �P0 frðr0 jH0Þ þ P1 frðr0 jH1Þ ð7:18Þ

When this expression is set equal to zero we once again arrive at Equation (7.7); in this way

this equation has been deduced in an alternative manner. Now it appears that the optimum

threshold value r0 is found at the intersection point of the curves P0 frðr jH0Þ and

P1 frðr jH1Þ. If the probabilities P0 and P1 change but the probability density function of

the noise NðtÞ remains the same, then the optimum threshold value shifts in the direction of

the binary level that corresponds to the shrinking prior probability.

Remembering that we considered the case of Gaussian noise, it is concluded that the

integrals in Equation (7.17) can be expressed using the well-known Q function (see

Appendix F), which is defined as

QðxÞ ¼4 1ffiffiffiffiffiffi
2p

p
Z 1

x

exp � y2

2

� �
dy ð7:19Þ

This function is related to the erfc(�) function as follows:

QðxÞ ¼ 1

2
erfc

xffiffiffi
2

p
� �

ð7:20Þ

Both functions are tabulated in many books or can be evaluated using software packages.

They are presented graphically in Appendix F.

More details on the Gaussian noise case are presented in the next section.

&

7.1.2 Detection of Binary Signals in White Gaussian Noise

In this subsection we will assume that in the detection process as described in the foregoing

the disturbing noise NðtÞ has a Gaussian probability density function and a white spectrum

with a spectral density of N0=2. This latter assumption means that filtering has to be

performed in the receiver. This is understood if we realize that a white spectrum implies an

infinitely large noise variance, which leads to problems in the integrals that appear in

Equation (7.17). Filtering limits the extent of the noise spectrum to a finite frequency band,

thereby limiting the noise variance to finite values and thus making the integrals well

defined.

The received signal RðtÞ is processed in the receiver to produce the vector r in a signal

space f’kðtÞg that completely describes the signal pðtÞ and is assumed to be an orthonormal

set (see Appendix A)

rk ¼
Z T

0

�kðtÞ RðtÞ dt; k ¼ 1; . . . ;K ð7:21Þ
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As the operation given by Equation (7.21) is a linear one, it can be applied to the two terms

of Equation (7.3) separately, so that

rk ¼ pk þ nk; k ¼ 1; . . . ;K ð7:22Þ

with

pk ¼4
Z T

0

�kðtÞ pðtÞ dt; k ¼ 1; . . . ;K ð7:23Þ

and

nk ¼4
Z T

0

�kðtÞ NðtÞ dt; k ¼ 1; . . . ;K ð7:24Þ

In fact, the processing in the receiver converts the received signal RðtÞ into a vector r that

consists of the sum of the deterministic signal vector p, of which the elements are given by

Equation (7.23), and the noise vector n, of which the elements are given by Equation (7.24).

As NðtÞ has been assumed to be Gaussian, the random variables nk will be Gaussian as well.

This is due to the fact that when a linear operation is performed on a Gaussian variable the

Gaussian character of the random variable is maintained. It follows from Appendix A that

the elements of the noise vector are orthogonal and all of them have the same variance N0=2.
In fact, the noise vector n defines the relevant noise (Appendix A and reference [14]).

Considering the case of binary detection, the conditional probability density functions for

the two hypotheses are now

frðr jH0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpN0ÞK

q exp � 1

N0

XK

k¼1

r2k

 !
ð7:25Þ

and

frðr jH1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpN0ÞK

q exp � 1

N0

XK

k¼1

ðrk � pkÞ2
 !

ð7:26Þ

Using Equation (7.7), the likelihood ratio is written as

�ðrÞ ¼ exp � 1

N0

XK

k¼1

ðrk � pkÞ2 þ 1

N0

XK

k¼1

r 2
k

" #

¼ exp
2

N0

XK

k¼1

pkrk � 1

N0

XK

k¼1

p 2
k

 !
ð7:27Þ

In Appendix A it is shown that the term
P

p2k represents the energy Ep of the deterministic

signal pðtÞ. This quantity is supposed to be known at the receiver, so that the only quantity

that depends on the transmitted signal consists of the summation over pkrk. By means of
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signal processing on the received signal RðtÞ, the value of this latter summation should be

determined. This result represents a sufficient statistic [3,9] for detecting the transmitted data

in an optimal way. A statistic is an operation on an observation, which is presented by a

function or functional. A statistic is said to be sufficient if it preserves all information that

is relevant for estimating the data. In this case it means that in dealing with the noise

component of r the irrelevant noise components may be ignored (see Appendix A or refer-

ence [14]). This is shown as follows:

X

k

pkrk ¼
X

k

pkðpk þ nkÞ

¼
Z T

0

X

k

�kðtÞpðtÞðpk þ nkÞ dt

¼
Z T

0

pðtÞ
X

k

ðpk þ nkÞ�kðtÞ dt

¼
Z T

0

pðtÞ½pðtÞ þ NrðtÞ� dt ð7:28Þ

where NrðtÞ is the relevant noise part of NðtÞ (see Appendix A or reference [14]). Since the

irrelevant part of the noise NiðtÞ is orthogonal to the signal space (see Appendix A), adding

this part of the noise to the relevant noise in the latter expression does not influence the result

of the integration:

X

k

pkrk ¼
Z T

0

pðtÞ½pðtÞ þ NrðtÞ þ NiðtÞ� dt

¼
Z T

0

pðtÞ½pðtÞ þ NðtÞ� dt ¼
Z T

0

pðtÞRðtÞ dt ð7:29Þ

The implementation of this operation is as follows. The received signal RðtÞ is applied to a

linear, time-invariant filter with the impulse response pðT � tÞ. The output of this filter is

sampled at the end of the bit interval (at t0 ¼ T), and this sample value yields the statistic of

Equation (7.29). This is a simple consequence of the convolution integral. The output signal

of the filter is denoted by YðtÞ, so that

YðtÞ ¼ RðtÞ � hðtÞ ¼ RðtÞ � pðT � tÞ ¼
Z T

0

Rð�Þhðt � �Þ d� ¼
Z T

0

Rð�Þpð� � t þ TÞ d�
ð7:30Þ

At the sampling instant t0 ¼ T the value of the signal at the output is

YðTÞ ¼
Z T

0

Rð�Þpð�Þ d� ð7:31Þ

The detection process proceeds as indicated in Section 7.1.1; i.e. the sample value YðTÞ is
compared to the threshold value. This threshold value D is found from Equations (7.27) and
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(7.7), and is implicitly determined by

�0 ¼ exp
2D� Ep

N0

� �
ð7:32Þ

Hypothesis H0 is chosen whenever YðTÞ < D, whereas H1 is chosen whenever YðTÞ � D. In

the special binary case where P0 ¼ P1 ¼ 1
2
, it follows that D ¼ Ep=2. Note that in the case at

hand the signal space will be one-dimensional.

The filter with the impulse response hðtÞ ¼ pðT � tÞ is called a matched filter, since the

shape of its impulse response is matched to the pulse pðtÞ. The scheme of the detector is very

simple; namely the signal is filtered by the matched filter and the output of this filter is

sampled at the instant t0 ¼ T . If the sampled value is smaller than D then the detected bit is

ÂAn ¼ 0 ðH0Þ and if the sampled value is larger than D then the receiver decides ÂAn ¼ 1 ðH1Þ.
This is represented schematically in Figure 7.3.

7.1.3 Detection of M-ary Signals in White Gaussian Noise

The situation of M-ary transmission is a generalization of the binary case. Instead of two

different hypotheses and corresponding signals there are M different hypotheses, defined as

H0 : RðtÞ ¼ p0ðtÞ þ NðtÞ
H1 : RðtÞ ¼ p1ðtÞ þ NðtÞ
� � � �

Hi : RðtÞ ¼ piðtÞ þ NðtÞ
� � � �

HM : RðtÞ ¼ pMðtÞ þ NðtÞ

ð7:33Þ

As an example of this situation we mention FSK; in binary FSK we have M ¼ 2.

To deal with the M-ary detection problem we do not use the likelihood ratio directly; in

order to choose the maximum likely hypothesis we take a different approach. We turn to our

fundamental criterion; namely the detector chooses the hypothesis that is most probable,

given the received signal. The probabilities of the different hypotheses, given the received

signal, are given by Equation (7.6). When selecting the hypothesis with the highest

probability, the denominator frðrÞ may be ignored since it is common for all hypotheses.

We are therefore looking for the hypothesis Hi, for which Pi frðr jHiÞ attains a maximum.

R(t)

threshold D

Anmatched
filter

closed at
=t T0

decision
device

Figure 7.3 Optimal detector for binary signals
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For a Gaussian noise probability density function this latter quantity is

Pi frðr jHiÞ ¼ Pi
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpN0ÞK
q exp � 1

N0

XK

k¼1

ðrk � pk;iÞ2
" #

; i ¼ 1; . . . ;M ð7:34Þ

with pk;i the kth element of piðtÞ in the signal space; the summation over k actually represents

the distance in signal space between the received signal and piðtÞ and is called the distance

metric. Since Equation (7.34) is a monotone-increasing function of r, the decision may also

be based on the selection of the largest value of the logarithm of expression (7.34). This

means that we compare the different values of

ln½Pi frðr jHiÞ� ¼ lnPi � 1

N0

XK

k¼1

ðr2k þ p2k;i � 2rkpk;iÞ � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpN0ÞK

q

¼ lnPi � 1

N0

XK

k¼1

r2k �
1

N0

XK

k¼1

p2k;i þ
2

N0

XK

k¼1

rkpk;i � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpN0ÞK

q
; i¼ 1; . . . ;M

ð7:35Þ

The second and fifth term on the right-hand side are common for all hypotheses, i.e. they do

not depend on i, and thus they may be ignored in the decision process. We finally end up with

the decision statistics

di ¼ N0

2
ln Pi � Ei

2
þ
XK

k¼1

rkpk;i; i ¼ 1; . . . ;M ð7:36Þ

where Ei is the energy in the signal piðtÞ (see Appendix A) and Equation (7.35) has been

multiplied by N0=2, which is allowed since it is a constant and does not influence the

decision. For ease of notation we define

bi ¼4 N0

2
ln Pi � Ei

2
ð7:37Þ

so that

di ¼ bi þ
XK

k¼1

rkpk;i ð7:38Þ

Based on Equations (7.37) and (7.38) we can construct the optimum detector. It is shown

in Figure 7.4. The received signal is filtered by a bank of matched filters, the ith filter being

matched to the signal piðtÞ. The outputs of the filters are sampled and the result represents

the last term of Equation (7.38). Next, the bias terms bi given by Equation (7.37) are added

to these outputs, as indicated in the figure. The resulting values di are applied to a circuit that

selects the largest, thereby producing the detected symbol ÂA. This symbol is taken from the

alphabet fA1; . . . ;AMg, the same set of symbols from which the transmitter selected its

symbols.
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In all these operations it is assumed that the shapes of the several signals piðtÞ as well as
their energy contents are known and fixed, and the prior probabilities Pi are known. It is

evident that the bias terms may be omitted in case all prior probabilities are the same and all

signals piðtÞ carry the same energy.

Example 7.3:

As an example let us consider the detection of linearly independent binary signals p0ðtÞ and
p1ðtÞ in white Gaussian noise. The signal space to describe this signal set is two-

dimensional. However, it can be reduced to a one-dimensional signal space by converting

to a simplex signal set (see Section A.5). The basis of this signal space is given by

�ðtÞ ¼ ½p0ðtÞ � p1ðtÞ�=
ffiffiffiffiffi
Ed

p
, where Ed is the energy in the difference signal. The signal

constellation is given by the coordinates ½� ffiffiffiffiffi
Ed

p
=2� and ½ ffiffiffiffiffiEd

p
=2� and the distance between

the signals amounts to
ffiffiffiffiffi
Ed

p
. Superimposed on these signals is the noise with variance N0=2

(see Appendix A, Equation (A.26)). We assume that the two hypotheses are equiprobable.

The situation has been depicted in Figure 7.5. In this figure the two conditional probability

R(t) A

filter matched
to p0(t )

filter matched
to (t )pi

filter matched
to (t )p

M

closed at
t0=T

closed at
=t T0

closed at
=t T0

select
largest

…

…

+

+

+

b1

d1

bi

di

bM

dM

Figure 7.4 Optimal detector for M-ary signals where the symbols are mapped to different signals

0 r

( |H )f rr 0 f rr( |H )1

Ed

2
Ed

2

Figure 7.5 Conditional probability density functions in the binary case with the error probability

indicated by the shaded area
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density functions are presented. The error probability follows from Equation (7.17), and

since the prior probabilities are equal we can conclude that

Pe ¼
Z 1

0

frðr jH0Þ dr ð7:39Þ

In the figure the value of the error probability is indicated by the shaded area. Since the noise

has been assumed to be Gaussian, this probability is written as

Pe ¼
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffi
2p

N0

2

r exp �
x�

ffiffiffiffiffi
Ed

p
2

� �2

N0

2
6664

3
7775 dx ð7:40Þ

Introducing the change of integration variable

z¼4
x�

ffiffiffiffiffi
Ed

p
2ffiffiffiffiffiffi

N0

2

r ¼) dx ¼
ffiffiffiffiffiffi
N0

2

r
dz ð7:41Þ

the error probability is written as

Pe ¼ 1ffiffiffiffiffiffi
2p

p
Z 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed=ð2N0Þ

p exp � z2

2

� �
dz ð7:42Þ

This expression is recognized as the well-known Q function (see Equation (7.19) and

Appendix F). Finally, the error probability can be denoted as

Pe ¼ Q

ffiffiffiffiffiffiffiffi
Ed

2N0

r� �
ð7:43Þ

This is a rather general result that can be used for different binary transmission schemes,

both for baseband and modulated signal formats. The conditions are that the noise is white,

additive and Gaussian, and the prior probabilities are equal.

It is concluded that the error probability depends neither on the specific shapes of the

received pulses nor on the signal set that has been chosen for the analysis, but only on the

energy of the difference between the two pulses. Moreover, the error probability depends on

the ratio Ed=N0; this ratio can be interpreted as a signal-to-noise ratio, often expressed in dB

(see Appendix B). In signal space the quantity Ed is interpreted as the squared distance of the

signal points. The further the signals are apart in the signal space, the lower the error

probability will be.

This specific example describes a situation that is often met in practice. Despite the fact

that we have two linearly independent signals it suffices to provide the receiver with a single

matched filter, namely a filter matched to the difference p0ðtÞ � p1ðtÞ, being the basis of the

simplex signal set.

&
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7.1.4 Decision Rules

1. Maximum a posteriori probability (MAP) criterion. Thus far the decision process was

determined by the so-called posterior probabilities given by Equation (7.6). Therefore this

rule is referred to as the maximum a posteriori probability (MAP) criterion.

2. Maximum-likelihood (ML) criterion. In order to apply the MAP criterion the prior probabi-

lities should be known at the receiver. However, this is not always the case. In the absence

of this knowledge it may be assumed that the prior probabilities for all the M signals are

equal. A receiver based on this criterion is called a maximum-likelihood receiver.

3. The Bayes criterion. In our treatment we have considered the detection of binary data.

In general, for signal detection a slightly different approach is used. The basics remain the

same but the decision rules are different. This is due to the fact that in general the

different detection probabilities are connected to certain costs. These costs are presented

in a cost matrix

C ¼ C00 C01

C10 C11

� �
ð7:44Þ

where Cij is the cost of Hi being detected when actually Hj is transmitted. In radar

hypothesis H1 corresponds to a target, whereas hypothesis H0 corresponds to the absence

of a target. Detecting a target when actually no target is present is called a false alarm,

whereas detecting no target when actually one is there is called a miss. One can imagine

that taking action on these mistakes can have severe consequences, which are differently

weighed for the two different errors.

The detection process can actually have four different outcomes, each of them

associated with its own conditional probability. When applying the Bayes criterion the

four different probabilities are multiplied by their corresponding cost factors, given by

Equation (7.44). This results in the mean risk. The Bayes criterion minimizes this mean

risk. For more details see reference [15].

4. The minimax criterion. The Bayes criterion uses the prior probabilities for minimizing the

mean cost. When the detection process is based on wrong assumptions in this respect, the

actual cost can be considerably higher than expected. When the probabilities are not known

a good strategy is to minimize the maximum cost; i.e. whatever the prior probabilities in

practice are, the mean cost can be guaranteed not to be larger than a certain value that can

be calculated in advance. For further information on this subject see reference [15].

5. The Neyman–Pearson criterion. In radar detection the prior probabilities are often

difficult to determine. In such situations it is meaningful to invoke the Neyman–Pearson

criterion [15]. It maximizes the probability of detecting a target at a fixed false alarm

probability. This criterion is widely used in radar detection.

7.2 FILTERS THAT MAXIMIZE THE SIGNAL-TO-NOISE RATIO

In this section we will derive a linear time-invariant filter that maximizes the signal-to-noise

ratio when a known deterministic signal xðtÞ is received and which is disturbed by additive
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noise. This maximum of the signal-to-noise ratio occurs at a specific, predetermined instant

in time, the sampling instant. The noise need not be necessarily white or Gaussian. As we

assumed in earlier sections, we will only assume it to be wide-sense stationary. The

probability density function of the noise and its spectrum are allowed to have arbitrary

shapes, provided they obey the conditions to be fulfilled for these specific functions.

Let us assume that the known deterministic signal may be Fourier transformed. The value

of the output signal of the filter at the sampling instant t0 is

yðt0Þ ¼ 1

2p

Z 1

�1
Xð!ÞHð!Þ expð j!t0Þ d! ð7:45Þ

where Hð!Þ is the transfer function of the filter. Since the noise is supposed to be wide-

sense stationary it follows from Equation (4.28) that the power of the noise output of the

filter is

PN0
¼ E½N2

0ðtÞ� ¼
1

2p

Z 1

�1
SNNð!ÞjHð!Þj 2 d! ð7:46Þ

with SNNð!Þ the spectrum of the input noise. The output signal power at the sampling instant

is achieved by squaring Equation (7.45). Our goal is to find a value of Hð!Þ such that a

maximum occurs for the signal-to-noise ratio defined as

S

N
¼4 j yðt0Þj 2

PN0

¼
1
2p

R1
�1 Xð!ÞHð!Þ expð j!t0Þ d!

�� �� 2
1
2p

R1
�1 SNNð!ÞjHð!Þj 2 d!

ð7:47Þ

For this purpose we use the inequality of Schwarz. This inequality reads

Z 1

�1
Að!ÞBð!Þ d!

����

����
2

�
Z 1

�1
jAð!Þj 2 d!

Z 1

�1
jBð!Þj 2 d! ð7:48Þ

The equality holds if Bð!Þ is proportional to the complex conjugate of Að!Þ, i.e. if

Að!Þ ¼ C B�ð!Þ ð7:49Þ

where C is an arbitrary real constant. With the substitutions

Að!Þ ¼ Hð!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNNð!Þ

p
ð7:50Þ

Bð!Þ ¼ Xð!Þ expðj!t0Þ
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNNð!Þ

p ð7:51Þ

Equation (7.48) becomes

1

2p

Z 1

�1
Xð!ÞHð!Þ expðj!t0Þ d!

����

����
2

� 1

2p

Z 1

�1
SNNð!ÞjHð!Þj 2 d! 1

2p

Z 1

�1

jXð!Þj 2
SNNð!Þ d!

ð7:52Þ
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From Equations (7.47) and (7.52) it follows that

S

N
� 1

2p

Z 1

�1

jXð!Þj 2
SNNð!Þ d! ð7:53Þ

It can be seen that in Equation (7.53) the equality holds if Equation (7.49) is satisfied. This

means that the signal-to-noise ratio achieves its maximum value. From the sequel it will

become clear that for the special case of white Gaussian noise the filter that maximizes the

signal-to-noise ratio is the same as the matched filter that was derived in Section 7.1.2. This

name is also used in the generalized case we are dealing with here. From Equations (7.49),

(7.50) and (7.51) the following theorem holds.

Theorem 12

The matched filter has the transfer function (frequency domain description)

Hoptð!Þ ¼ X�ð!Þ
SNNð!Þ expð�j!t0Þ ð7:54Þ

with Xð!Þ the Fourier transform of the input signal xðtÞ, SNNð!Þ the power spectral

density function of the additive noise and t0 the sampling instant.

We choose the constant C equal to 2p. The transfer function of the optimal filter appears

to be proportional to the complex conjugate of the amplitude spectrum of the received signal

xðtÞ. Furthermore, Hoptð!Þ appears to be inversely proportional to the noise spectral density

function. It is easily verified that an arbitrary value for the constant C may be chosen. From

Equation (7.47) it follows that a constant factor in Hð!Þ does not affect the signal-to-noise

ratio. In other words, in Hoptð!Þ an arbitrary constant attenuation or gain may be inserted.

The sampling instant t0 does not affect the amplitude of Hoptð!Þ but only the phase

expð�j!t0Þ. In the time domain this means a delay over t0. The value of t0 may, as a rule, be

chosen arbitrarily by the system designer and in this way may be used to guarantee a

condition for realizability, namely causality.

The result we derived has a general validity; this means that it is also valid for white

noise. In that case we make the substitution SNNð!Þ ¼ N0=2. Once more, choosing a proper

value for the constant C, we arrive at the following transfer function of the optimal filter:

Hoptð!Þ ¼ X�ð!Þ expð�j!t0Þ ð7:55Þ

This expression is easily transformed to the time domain.

Theorem 13

The matched filter for the signal xðtÞ in white additive noise has the impulse response

(time domain description)

hoptðtÞ ¼ xðt0 � tÞ ð7:56Þ
with t0 the sampling instant.
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From Theorem 13 it follows that the impulse response of the optimal filter is found by

shifting the input signal by t0 to the left over the time axis and mirroring it with respect to

t ¼ 0. This time domain description offers the opportunity to guarantee causality by setting

hðtÞ ¼ 0 for t < 0.

Comparing the result of Equation (7.56) with the optimum filter found in Section 7.1.2, it

is concluded that in both situations the optimal filters show the same impulse response. This

may not surprise us, since in the case of Gaussian noise the maximum signal-to-noise ratio

implies a minimum probability of error. From this we can conclude that the matched filter

concept has a broader application than the considerations given in Section 7.1.2.

Once the impulse response of the optimal filter is known, the output response of this filter

to the input signal xðtÞ can be calculated. This is obtained by applying the well-known

convolution integral

yðtÞ ¼
Z 1

�1
hoptð�Þxðt � �Þ d� ¼

Z 1

�1
xðt0 � �Þxðt � �Þ d� ð7:57Þ

At the decision instant t0 the value of the output signal yðt0Þ equals the energy of the

incoming signal till the moment t0, multiplied by an arbitrary constant that may be

introduced in hoptðtÞ.
The noise power at the output of the matched filter is

PN0
¼ 1

2p
N0

2

Z 1

�1
jHoptð!Þj 2 d! ¼ N0

2

Z 1

�1
h2optðtÞ dt ð7:58Þ

The last equality in this equation follows from Parseval’s formula (see Appendix G or

references [7] and [10]). However, since we found that the impulse response of the optimal

filter is simply a mirrored version in time of the received signal (see Equation (7.56)) it is

concluded that

PN0
¼ N0

2
Ex ð7:59Þ

with Ex the energy content of the signal xðtÞ. From Equations (7.57) and (7.59) the signal-to-

noise ratio at the output of the filter can be deduced.

Theorem 14

The signal-to-noise ratio at the output of the matched filter at the sampling instant is

S

N

� �

max

¼4 j yðt0Þj 2
PN0

¼ 2Ex

N0

ð7:60Þ

with Ex the energy content of the received signal and N0=2 the spectral density of the

additive white noise.

Although a method exists to generalize the theory of Sections 7.1.2 and 7.1.3 to include

coloured noise, we will present a simpler alternative here. This alternative reduces the

problem of coloured noise to that of white noise, for which we now know the solution, as
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presented in the last paragraph. The basic idea is to insert a filter between the input and

matched filter. The transfer function of this inserted filter is chosen such that the coloured

input noise is transformed into white noise. The receiving filter scheme is as shown in

Figure 7.6. It depicts the situation for hypothesis H1, with the input pðtÞ þ NðtÞ. The

spectrum of NðtÞ is assumed to be coloured. Based on what we want to achieve, the transfer

function of the first filter should satisfy

jH1ð!Þj 2 ¼ 1

SNNð!Þ ð7:61Þ

By means of Equation (4.27) it is readily seen that the noise N1ðtÞ at the output of this filter
has a white spectral density. For this reason the filter is called a whitening filter. The

spectrum of the signal p1ðtÞ at the output of this filter can be written as

P1ð!Þ ¼ Pð!ÞH1ð!Þ ð7:62Þ

The problem therefore reduces to the white noise case in Theorem 13. The filter H2ð!Þ has to
be matched to the output of the filter H1ð!Þ and thus reads

H2ð!Þ ¼ P�
1ð!Þ

SN1N1
ð!Þ expð�j!t0Þ ¼ P�ð!ÞH�

1ð!Þ expð�j!t0Þ ð7:63Þ

In the second equation above we used the fact that SN1N1
ð!Þ ¼ 1, which follows from

Equations (7.61) and (4.27). The matched filter for a known signal pðtÞ disturbed by

coloured noise is found when using Equations (7.61) and (7.63):

Hð!Þ ¼ H1ð!ÞH2ð!Þ ¼ P�ð!Þ
SNNð!Þ expð�j!t0Þ ð7:64Þ

It is concluded that the matched filter for a signal disturbed by coloured noise corresponds to

the optimal filter from Equation (7.54).

Example 7.4:

Consider the signal

xðtÞ ¼ at; 0 < t � T

0; elsewhere

�
ð7:65Þ

This signal is shown in Figure 7.7(a). We want to characterize the matched filter for

this signal when it is disturbed by white noise and to determine the maximum value of the

H1( )ω H2( )ω
p(t )+N(t )

coloured noise
white noise

p1(t )+N1(t ) po(t )+No(t )

Figure 7.6 Matched filter for coloured noise
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signal-to-noise ratio. The sampling instant is chosen as t0 ¼ 2T . In view of the simple

description of the signal in the time domain it seems reasonable to do all the necessary

calculations in the time domain. Illustrations of the different signals involved give a clear

insight of the method. The signal xð�tÞ is in Figure 7.7(b) and from this follows the optimal

filter characterized by its impulse response hoptðtÞ, which is depicted in Figure 7.7(c). The

maximum signal-to-noise ratio, occurring at the sampling instant t0, is calculated as follows.

The noise power follows from Equation (7.58) yielding

PN0
¼ N0

2

Z T

0

a2t2 dt ¼ N0

2
a2

1

3
t3
����
T

0

¼ N0a
2T3

6
ð7:66Þ

0

T

t

t

t

τ

τ

t

−T

(a)

(b)

(c)

(d)

(e)

(f)

2T

2T 3TT

x(t)

y(t)

x(−t)

t1

t2

hopt(τ)

hopt(τ)

hopt(t)=x(2T−t)

x(t1−τ)

x(t2−τ)

aT

Figure 7.7 The different signals belonging to the example on a matched filter for the signal xðtÞ
disturbed by white noise
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The signal value at t ¼ t0, using Equation (7.57), is

yðt0Þ ¼
Z T

0

a2t2 dt ¼ a2T3

3
ð7:67Þ

Using Equations (7.47), (7.66) and (7.67) the signal-to-noise ratio at the sampling instant t0 is

S

N
¼ y2ðt0Þ

PN0

¼ a4T6=9

N0a2T3=6
¼ 2a2T3

3N0

ð7:68Þ

The output signal yðtÞ follows from the convolution of xðtÞ and hoptðtÞ as given by Equation

(7.56). The convolution is

yðtÞ ¼
Z 1

�1
hoptð�Þxðt � �Þ d� ð7:69Þ

The various signals are shown in Figure 7.7. In Figure 7.7(d) the function hoptð�Þ has been
drawn, together with xðt � �Þ for t ¼ t1; the latter is shown as a dashed line. We distinguish

two different situations, namely t < t0 ¼ 2T and t > t0 ¼ 2T . In Figure 7.7(e) the latter case

has been depicted for t ¼ t2. These pictures reveal that yðtÞ has an even symmetry with

respect to t0 ¼ 2T . That is why we confine ourselves to calculate yðtÞ for t � 2T. Moreover,

from the figures it is evident that yðtÞ equals zero for t < T and t > 3T . For T � t � 2T we

obtain (see Figure 7.7(d))

yðtÞ ¼
Z t

T

að�� þ 2TÞað�� þ tÞ d�

¼ a2
Z t

T

ð�2 � t� � 2T� þ 2TtÞ d�

¼ a2
1

3
�3 � t þ 2T

2
�2 þ 2Tt�

� �t

T

¼ a2 � 1

6
t3 þ Tt2 � 3

2
T2t þ 2

3
T3

� �
; T � t � 2T ð7:70Þ

The function yðtÞ has been depicted in Figure 7.7(f). It is observed that the signal attains it

maximum at t ¼ 2T , the sampling instant.

&

The maximum of the output signal of a matched filter is always attained at t0 and yðtÞ
always shows even symmetry with respect to t ¼ t0.

7.3 THE CORRELATION RECEIVER

In the former section we derived the linear time-invariant filter that maximizes the signal-to-

noise ratio; it was called a matched filter. It can be used as a receiver filter prior to detection.

It was shown in Section 7.1.2 that sampling and comparing the filtered signal with the proper

threshold provides optimum detection of data signals in Gaussian noise. Besides matched

filtering there is yet another method used to optimize the signal-to-noise ratio and which

serves as an alternative for the matched filter. The method is called correlation reception.
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The scheme of the correlation receiver is presented in Figure 7.8. In the receiver a

synchronized replica of the information signal xðtÞ has to be produced; this means that

the signal must be known by the receiver. The incoming signal plus noise is multiplied by the

locally generated xðtÞ and the product is integrated. In the sequel we will show that the

output of this system has the same signal-to-noise ratio as the matched filter.

For the derivation we assume that the pulse xðtÞ extends from t ¼ 0 to t ¼ T . Moreover,

the noise process NðtÞ is supposed to be white with spectral density N0=2. Since the

integration is a linear operation, it is allowed to consider the two terms of the product

separately. Applying only xðtÞ to the input of the system of Figure 7.8 yields, at the output

and at the sampling moment t0 ¼ T , the quantity

yðt0Þ ¼
Z T

0

x2ðtÞ dt ¼ Ex ð7:71Þ

where Ex is the energy in the pulse xðtÞ.
Next we calculate the power of the output noise as

PN0
¼ E½N2

0ðtÞ� ¼ E

Z T

0

NðtÞ xðtÞ dt
Z T

0

Nð�Þ xð�Þ d�
� �

¼ E

ZT

0

Z
NðtÞNð�Þ xðtÞxð�Þ dt d�

2
4

3
5

¼
ZT

0

Z
E½NðtÞNð�Þ� xðtÞxð�Þ dt d�

¼
ZT

0

Z
N0

2
�ðt � �ÞxðtÞxð�Þ dt d�

¼ N0

2

Z T

0

x2ðtÞ dt ¼ N0

2
Ex ð7:72Þ

Then the signal-to-noise ratio is found from Equations (7.71) and (7.72) as

S

N
¼ j yðt0Þj 2

PN0

¼ E2
x

N0

2
Ex

¼ 2Ex

N0

ð7:73Þ

This is exactly the same as Equation (7.60).

(.) dt

x(t )

x(t )+N(t)

0

T

Figure 7.8 Scheme of the correlation receiver
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From the point of view of S=N, the matched filter receiver and the correlation receiver

behave identically. However, for practical application it is of importance to keep in mind that

there are crucial differences. The correlation receiver needs a synchronized replica of the

known signal. If such a replica cannot be produced or if it is not exactly synchronized, the

calculated signal-to-noise ratio will not be achieved, yielding a lower value. Synchronization

is the main problem in using the correlation receiver. In many carrier-modulated systems it is

nevertheless employed, since in such situations the phased–locked loop provides an

excellent expedient for synchronization. The big advantage of the correlation receiver is

the fact that all the time it produces, apart from the noise, the squared value of the signal.

Together with the integrator this gives a continuously increasing value of the output signal,

which makes the receiver quite invulnerable to deviations from the optimum sampling

instant. This is in contrast to the matched filter receiver. If, for instance, the information

signal changes its sign, as is the case in modulated signals, then the matched filter output

changes as well. In this case a deviation from the optimum sampling instant can result in the

wrong decision about the information bit. This is clearly demonstrated by the next example.

Example 7.5:

In the foregoing it was shown that the matched filter and the correlation receiver have equal per-

formance as far as the signal-to-noise ratios at the sampling instant is concerned. In this example

we compare the outputs of the two receivers when an ASK modulated data signal has to be

received. It suffices to consider a single data pulse isolated in time. Such a signal is written as

xðtÞ ¼ A cosð!0tÞ; 0 � t < T

0; elsewhere

�
ð7:74Þ

and where the symbol time T is an integer multiple of the period of the carrier frequency, i.e.

T ¼ n� 2p=!0 and n is integer. As the sampling instant we take t0 ¼ T . Then the matched

filter output, for our purpose ignoring the noise, is found as

yðtÞ ¼ A2

Z t

0

cos½!0ðt � �Þ� cos½!0ð�� þ TÞ� d�

¼ 1

2
A2

Z t

0

cos½!0ðt � TÞ� þ cos½!0ð�2� þ t þ TÞ� d�

¼ 1

2
A2 t cosð!0tÞ � 1

2!0

sin½!0ð�2� þ t þ TÞ�
����
t

0

� �

¼ 1

2
A2 t cosð!0tÞ þ 1

!0

sinð!0tÞ
� �

; 0 < t � T ð7:75Þ

and

yðtÞ ¼ 1

2
A2 ð2T � tÞ cosð!0tÞ � 1

!0

sinð!0tÞ
� �

; T < t < 2T ð7:76Þ

For other values of t the response is zero. The total response is given in Figure 7.9, with

parameter values of A ¼ T ¼ 1, n ¼ 4 and !0 ¼ 8p. Note the oscillating character of the

response, which changes its sign frequently.
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Next we consider the response of the correlation receiver to the same ASK signal as input.

Now we find

yðtÞ ¼ A2

Z t

0

cos2ð!0�Þ d� ¼ 1

2
A2

Z t

0

½1þ cosð2!0�Þ� d�

¼ 1

2
A2t þ A2

4!0

sinð2!0�Þ
����
t

0

¼ 1

2
A2t þ A2

4!0

sinð2!0tÞ; 0 < t < T ð7:77Þ
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Figure 7.9 The response of the matched filter when driven by an ASK signal
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Figure 7.10 Response of the correlation receiver to an ASK signal
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For negative values of t the response is zero and for t > T the response depends on the

specific design of the receiver. In an integrate-and-dump receiver the signal is sampled and

subsequently the value of the integrator output is reset to zero. The response of Equation

(7.77) is presented in Figure 7.10 for the same parameters as used to produce Figure 7.9.

Note that in this case the response is continuously non-decreasing, so no change of sign

occurs. This makes this type of receiver much less vulnerable to timing jitter of the sampler.

However, a perfect synchronization is required instead.

&

7.4 FILTERS THAT MINIMIZE THE MEAN-SQUARED ERROR

Thus far it was assumed that the signal to be detected had a known shape. Now we proceed

with signals that are not known in advance, but the shape of the signal itself has to be

estimated. Moreover, we assume as in the former case that the signal is corrupted by additive

noise. Although the signal is not known in the deterministic sense, some assumptions will be

made about its stochastic properties; the same holds for the noise. In this section we make an

estimate of the received signal in the mean-squared sense, i.e. we minimize the mean-

squared error between an estimate of the signal based on available data consisting of signal

plus noise and the actual signal itself. As far as the signal processing is concerned we confine

the treatment to linear filtering.

Two different problems are considered.

1. In the first problem we assume that the data about the signal and noise are available for all

times, so causality is ignored. We look for a linear time-invariant filtering that produces

an optimum estimate for all times of the signal that is disturbed by the noise. This

optimum linear filtering is called smoothing.

2. In the second approach causality is taken into account. We make an optimum estimate of

future values of the signal based on observations in the past up until the present time.

Once more the estimate uses linear time-invariant filtering and we call the filtering

prediction.

7.4.1 The Wiener Filter Problem

Based on the description in the foregoing we consider a realization SðtÞ of a wide-sense

stationary process, called the signal. The signal is corrupted by the realization NðtÞ of

another wide-sense stationary process, called the noise. Furthermore, the signal and noise are

supposed to be jointly wide-sense stationary. The noise is supposed to be added to the signal.

To the input of the estimator the process

XðtÞ ¼ SðtÞ þ NðtÞ ð7:78Þ

is applied. When estimating the signal we base the estimate ŜSðt þ TÞ at some time t þ T on a

linear filtering of the input data XðtÞ, i.e.

ŜSðt þ TÞ ¼
Z b

a

hð�ÞXðt � �Þ d� ð7:79Þ
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where hð�Þ is the weighting function (equal to the impulse response of the linear time-

invariant filter) and the integration limits a and b are to be determined later. Using Equation

(7.79) the mean-squared error is defined as

e¼4 E
	fSðt þ TÞ � ŜSðt þ TÞg2
 ¼ E Sðt þ TÞ �

Z b

a

hð�ÞXðt � �Þ d�
� �2
" #

ð7:80Þ

Now the problem is to find the function hð�Þ that minimizes the functional expression of

Equation (7.80). In the minimization process the time shift T and integration interval are

fixed; later on we will introduce certain restrictions to the shift and the integration interval,

but for the time being they are arbitrary. The minimization problem can be solved by

applying the calculus of variations [16]. According to this approach extreme values of the

functional are achieved when the function hð�Þ is replaced by hð�Þ þ �gð�Þ, where gð�Þ is an
arbitrary function of the same class as hð�Þ. Next the functional is differentiated with respect

to � and the result equated to zero for � ¼ 0. Solving the resulting equation produces the

function hð�Þ, which leads to the extreme value of the functional. In the next subsections we

will apply this procedure to the problem at hand.

7.4.2 Smoothing

In the smoothing (or filtering) problem it is assumed that the data (or observation) XðtÞ
are known for the entire time axis �1 < t < 1. This means that there are no restrictions

on the integration interval and we take a ! �1 and b ! 1. Expanding Equation (7.80)

yields

e ¼ E½S2ðt þ TÞ� þ E

Z 1

�1
hð�ÞXðt � �Þ d�

� �2
" #

� E 2Sðt þ TÞ
Z 1

�1
hð�ÞXðt � �Þ d�Þ

� �
ð7:81Þ

Evaluating the expectations we obtain

e ¼ RSSð0Þ þ
Z1

�1

Z
hð�Þhð�ÞE½Xðt � �ÞXðt � �Þ� d� d�

� 2

Z 1

�1
hð�ÞE½Sðt þ TÞXðt � �Þ� d� ð7:82Þ

and further

e ¼ RSSð0Þ þ
Z1

�1

Z
hð�Þhð�ÞRXXð� � �Þ d� d�� 2

Z 1

�1
hð�ÞRSXð�� � TÞ d� ð7:83Þ
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According to the calculus of variations we replace hð�Þ by hð�Þ þ �gð�Þ and obtain

e� ¼ RSSð0Þ þ
Z1

�1

Z
½hð�Þ þ �gð�Þ�½hð�Þ þ �gð�Þ�RXXð� � �Þ d� d�

� 2

Z 1

�1
½hð�Þ þ �gð�Þ�RSXð�� � TÞ d� ð7:84Þ

The procedure proceeds by setting

de�

d�

����
�¼0

¼ 0 ð7:85Þ

After some straightforward calculations this leads to the solution

RSXð�� � TÞ ¼ RXSð� þ TÞ ¼
Z 1

�1
hð�ÞRXXð� � �Þ d�; �1 < � < 1 ð7:86Þ

Since we assumed that the data are available over the entire time axis we can imagine that

we apply this procedure on stored data. Moreover, in this case the integral in Equation (7.86)

can be Fourier transformed as

SXSð!Þ expðj!TÞ ¼ Hð!Þ SXXð!Þ ð7:87Þ
Hence we do not need to deal with the integral equation, which is now transformed into an

algebraic equation. For the filtering problem we can set T ¼ 0 and the optimum filter follows

immediately:

Hoptð!Þ ¼ SXSð!Þ
SXXð!Þ ð7:88Þ

In the special case that the processes SðtÞ and NðtÞ are independent and at least one of these

processes has zero mean, then the spectra can be written as

SXXð!Þ ¼ SSSð!Þ þ SNNð!Þ ð7:89Þ
SXSð!Þ ¼ SSSð!Þ ð7:90Þ

and as a consequence the optimum filter characteristic becomes

Hoptð!Þ ¼ SSSð!Þ
SSSð!Þ þ SNNð!Þ ð7:91Þ

Once we have the expression for the optimum filter the mean-squared error of the estimate

can be calculated. For this purpose multiply both sides of Equation (7.86) by hoptð�Þ
and integrate over �. This reveals that, apart from the minus sign, the second term of

Equation (7.83) is half of the value of the third term, so that

emin ¼ RSSð0Þ �
Z 1

�1
hoptð�ÞRSXð��Þ d� ð7:92Þ
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If we define

�ðtÞ ¼4 RSSðtÞ �
Z 1

�1
hoptð�ÞRSXðt � �Þ d� ð7:93Þ

it is easy to see that

emin ¼ �ð0Þ ð7:94Þ
The Fourier transform of �ðtÞ is

SSSð!Þ � Hoptð!Þ SSXð!Þ ¼ SSSð!Þ � SSSð!Þ SSXð!Þ
SXXð!Þ ð7:95Þ

Hence the minimum mean-squared error is

emin ¼ 1

2p

Z 1

�1
SSSð!Þ � SSSð!Þ SSXð!Þ

SXXð!Þ
� �

d! ð7:96Þ

When the special case of independence of the processes SðtÞ and NðtÞ is once more invoked,

i.e. Equations (7.89) and (7.90) are inserted, then

emin ¼ 1

2p

Z 1

�1

SSSð!Þ SNNð!Þ
SSSð!Þ þ SNNð!Þ d! ð7:97Þ

Example 7.6:

A wide-sense stationary process has a flat spectrum within a limited frequency band, i.e.

SSSð!Þ ¼ S=2; j!j � W

0; j!j > W

�
ð7:98Þ

The noise is independent of SðtÞ and has a white spectrum with a spectral density of N0=2. In
this case the optimum smoothing filter has the transfer function

Hoptð!Þ ¼
S

Sþ N0

; j!j � W

0; j!j > W

8
<

: ð7:99Þ

This result can intuitively be understood; namely the signal spectrum is completely passed

undistorted by the ideal lowpass filter of bandwidth W and the noise is removed outside the

signal bandwidth. The estimation error is

emin ¼ 1

2p

Z W

0

SN0

Sþ N0

d! ¼ W

2p
SN0

Sþ N0

¼ W

2p
S

S=N0 þ 1
ð7:100Þ

Interpreting S=N0 as the signal-to-noise ratio it is observed that the error decreases with

increasing signal-to-noise ratios. For a large signal-to-noise ratio the error equals the noise

power that is passed by the filter.

&
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The filtering of an observed signal as described by Equation (7.91) is also called signal

restoration. It is the most obvious method when the observation is available as stored data.

When this is not the case, but an incoming signal has to be processed in real time, then the

filtering given in Equation (7.88) can be applied, provided that the delay is so large that

virtually the whole filter response extends over the interval �1 < t < 1. Despite the real-

time processing, a delay between the arrival of the signal SðtÞ and the estimate of Sðt � TÞ
should be allowed. In that situation the optimum filter has an extra factor of expð�j!TÞ,
which provides the delay, as follows from Equation (7.87). In general, a longer delay will

reduce the estimation error, as long as the delay is shorter than the duration of the filter’s

impulse response hð�Þ.

7.4.3 Prediction

We now consider prediction based on the observation up to time t. Referring to Equation

(7.79), we consider ŜSðt þ TÞ for positive values of T whereas XðtÞ is only known up to t.

Therefore the integral limits in Equation (7.79) are a ¼ �1 and b ¼ t. We introduce the

causality of the filter’s impulse response, given as

hðtÞ ¼ 0; for t < 0 ð7:101Þ
The general prediction problem is quite complicated [4]. Therefore we will confine the

considerations here to the simplified case where the signal SðtÞ is not disturbed by noise,

i.e. now we take NðtÞ � 0. This is called pure prediction. It is easy to verify that in this case

Equation (7.86) is reduced to

RSSð� þ TÞ ¼
Z 1

0

hð�ÞRSSð� � �Þ d�; � � 0 ð7:102Þ

This equation is known as the Wiener–Hopf integral equation. The solution is not as simple

as in former cases. This is due to the fact that Equation (7.102) is only valid for � � 0;

therefore we cannot use the Fourier transform to solve it. The restriction � � 0 follows from

Equation (7.84). In the case at hand the impulse response hð�Þ of the filter is supposed to be

causal and the auxiliary function gð�Þ should be of the same class. Consequently, the

solution now is only valid for � � 0. For � < 0 the solution should be zero, and this should

be guaranteed by the solution method.

Two approaches are possible for a solution. Firstly, a numerical solution can be invoked.

For a fixed value of T the left-hand part of Equation (7.102) is sampled and the samples

are collected in a vector. For the right-hand side RSSð� � �Þ is sampled for each value of � .
The different vectors, one for each � , are collected in a matrix, which is multiplied by the

unknown vector made up from the sampled values of hð�Þ. Finally, the solution is produced

by matrix inversion.

Using an approximation we will also be able to solve it by means of the Laplace

transform. Each function can arbitrarily be approximated by a rational function, the fraction

of two polynomials. Let us suppose that the bilateral Laplace transform [7] of the auto-

correlation function of SðtÞ is written as a rational function, i.e.

SSSðpÞ ¼ Aðp2Þ
Bðp2Þ ð7:103Þ
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Since the spectrum is an even function it can be written as a function of p2. If we look at the

positioning of zeros and poles in the complex p plane, it is revealed that this pattern is

symmetrical with respect to the imaginary axis; i.e. if pi is a root of Aðp2Þ then �pi is a root

as well. The same holds for Bðp2Þ. Therefore SSSðpÞ can be factored as

SSSðpÞ ¼ CðpÞ
DðpÞ

Cð�pÞ
Dð�pÞ ¼ KðpÞKð�pÞ ð7:104Þ

where CðpÞ and DðpÞ comprise all the roots in the left half-plane and Cð�pÞ and Dð�pÞ the
roots in the right half-plane, respectively; CðpÞ and Cð�pÞ contain the roots of A2ðpÞ and
DðpÞ and Dð�pÞ those of B2ðpÞ. For the sake of convenient treatment we suppose that all

roots are simple. Moreover, we define

KðpÞ¼4 CðpÞ
DðpÞ ð7:105Þ

Both this function and its inverse are causal and realizable, since they are stable [7].

Let us now return to Equation (7.102), the integral equation to be solved. Rewrite it as

RSSð� þ TÞ ¼
Z 1

0

hð�ÞRSSð� � �Þ d�þ f ð�Þ ð7:106Þ

where f ð�Þ is a function that satisfies

f ð�Þ ¼ 0; for � � 0 ð7:107Þ

i.e. f ð�Þ is anti-causal and analytic in the left-hand p plane ðRefpg < 0Þ. The Laplace

transform of Equation (7.106) is

SSSðpÞ expðpTÞ ¼ SSSðpÞHðpÞ þ FðpÞ ð7:108Þ

where HðpÞ is the Laplace transform of hðtÞ and FðpÞ that of f ðtÞ. Solving this equation for

HðpÞ yields

HðpÞ¼4 NðpÞ
MðpÞ ¼

expðpTÞCðpÞCð�pÞ � FðpÞDðpÞDð�pÞ
CðpÞCð�pÞ ð7:109Þ

with the use of Equation (7.104). This function may only have roots in the left half-plane. If

we select

FðpÞ ¼ Cð�pÞ
Dð�pÞ ð7:110Þ

then Equation (7.109) becomes

HðpÞ ¼ NðpÞ
MðpÞ ¼

expðpTÞCðpÞ � DðpÞ
CðpÞ ð7:111Þ
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The choice given by Equation (7.110) guarantees that f ðtÞ is anti-causal, i.e. f ðtÞ ¼ 0 for

t � 0. Moreover, making

Mð pÞ ¼ Cð pÞ ð7:112Þ
satisfies one condition on Hð pÞ, namely that it is an analytic function in the right half-plane.

Based on the numerator of Equation (7.111) we have to select Nð pÞ; for that purpose the

data of Dð pÞ can be used. We know that Dð pÞ has all its roots in the left half-plane, so if

we select Nð pÞ such that its roots pi coincide with those of Dð pÞ then the solution satisfies

the condition that Nð pÞ is an analytic function in the right half-plane. This is achieved when

the roots pi are inserted in the numerator of Equation (7.111) to obtain

expð piTÞCð piÞ ¼ Nð piÞ ð7:113Þ
for all the roots pi of Dð pÞ. Connecting the roots of the solution in this way to the polynomial

Dð pÞ guarantees on the one hand that Nð pÞ is analytic in the right half-plane and on the

other hand satisfies Equation (7.111). This completes the selection of the optimum Hð pÞ.
Summarizing the method, we have to take the following steps:

1. Factor the spectral function

SSSðpÞ ¼ Cð pÞCð�pÞ
Dð pÞDð�pÞ ð7:114Þ

where Cð pÞ and Dð pÞ comprise all the roots in the left half-plane and Cð�pÞ and Dð�pÞ
the roots in the right half-plane, respectively.

2. The denominator of the optimum filter Hð pÞ has to be taken equal to Cð pÞ.
3. Expand Kð pÞ into partial fractions:

KðpÞ ¼ Cð pÞ
Dð pÞ ¼

a1

p� p1
þ � � � þ an

p� pn
ð7:115Þ

where pi are the roots of Dð pÞ.
4. Construct the modified polynomial

Kmð pÞ ¼ expð p1TÞ a1

p� p1
þ � � � þ expð pnTÞ an

p� pn
ð7:116Þ

5. The optimum filter, described in the Laplace domain, then reads

Hoptð pÞ ¼ Kmð pÞDð pÞ
Cð pÞ ¼ Nð pÞ

Cð pÞ ð7:117Þ

Example 7.7:

Assume a process with the autocorrelation function

RSSð�Þ ¼ expð��j � j Þ; � > 0 ð7:118Þ
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Then from a Laplace transform table it follows that

SSSð pÞ ¼ 2�

�2 � p2
ð7:119Þ

which is factored into

SSSð pÞ ¼
ffiffiffiffiffiffi
2�

p

�þ p

ffiffiffiffiffiffi
2�

p

�� p
ð7:120Þ

For the intermediate polynomial KðpÞ it is found that

Kð pÞ ¼
ffiffiffiffiffiffi
2�

p

�þ p
ð7:121Þ

Its constituting polynomials are

Cð pÞ ¼
ffiffiffiffiffiffi
2�

p
ð7:122Þ

and

Dð pÞ ¼ �þ p ð7:123Þ

The polynomial Cð pÞ has no roots and the only root of Dð pÞ is p1 ¼ ��. This produces

Kmð pÞ ¼
ffiffiffiffiffiffi
2�

p

�þ p
expð��TÞ ð7:124Þ

so that finally for the optimum filter we find

Hoptð pÞ ¼ Nð pÞ
Mð pÞ ¼

Kmð pÞDð pÞ
Cð pÞ ¼ expð��TÞ ð7:125Þ

and the corresponding impulse response is

hoptðtÞ ¼ expð��TÞ �ðtÞ ð7:126Þ

The minimum mean-squared error is given by substituting zero for the lower limit in the

integral of Equation (7.92). This yields the error

emin ¼ RSSð0Þ �
Z 1

0

hð�ÞRSSð��Þ d� ¼ 1� expð��TÞ ð7:127Þ

&

This result reflects what may be expected, namely the facts that the error is zero when

T ¼ 0, which is actually no prediction, and that the error increases with increasing values

of T .
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7.4.4 Discrete-Time Wiener Filtering

Discrete-Time Smoothing:

Once the Wiener filter for continuous processes has been analysed, the time-discrete version

follows straightforwardly. Equation (7.86) is the general solution for describing the different

situations considered in this section. Its time-discrete version when setting the delay to

zero is

RXS½n� ¼
X1

m¼�1
h½m�RXX½n� m�; for all n ð7:128Þ

Since this equation is valid for all n it is easily solved by taking the z-transform of both sides:

~SSXSðzÞ ¼ ~HHðzÞ ~SSXXðzÞ ð7:129Þ

or

~HHoptðzÞ ¼
~SSXSðzÞ
~SSXXðzÞ

ð7:130Þ

The error follows from the time-discrete counterparts of Equation (7.92) or Equation (7.96).

If both RXX ½n� and RXS½n� have finite extent, let us say RXX ½n� ¼ RXS½n� ¼ 0 for j nj > N,

and if the extent of h½m� is limited to the same range, then Equation (7.128) can directly be

solved in the time domain using matrix notation. For this case we define the

ð2N þ 1Þ � ð2N þ 1Þ matrix as

RXX ¼4

RXX½0� RXX½1� RXX½2� � � � RXX½N� 0 � � � 0

RXX½1� RXX½0� RXX½1� � � � RXX½N � 1� RXX½N� � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 RXX½N� � � � RXX½0� RXX½1� � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � RXX½N� RXX½N � 1� � � � RXX½0�

2
66666666664

3
77777777775

ð7:131Þ

Moreover, we define the ð2N þ 1Þ element vectors as

RT
XS ¼4 	RXS½�N� RXS½�N þ 1� � � �RXS½0� � � �RXS½N � 1� RXS½N�


 ð7:132Þ

and

hT ¼4 	h½�N� h½�N þ 1� � � � h½0� � � � h½N � 1� h½N�
 ð7:133Þ

where RT
XS and hT are the transposed vectors of the column vectors RXS and h, respectively.
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By means of these definitions Equation (7.128) is rewritten as

RXS ¼ RXX � h ð7:134Þ

with the solution for the discrete-time Wiener smoothing filter

hopt ¼ R�1
XX � RXS ð7:135Þ

This matrix description fits well in a modern numerical mathematical software package such

as Matlab, which provides compact and efficient programming of matrices. Programs

developed in Matlab can also be downloaded into DSPs, which is even more convenient.

Discrete-Time Prediction:

For the prediction problem a discrete-time version of the method presented in Subsection

7.4.3 can be developed (see reference [12]). However, using the time domain approach

presented in the former paragraph, it is very easy to include noise; i.e. there is no need to

limit the treatment to pure prediction.

Once more we start from the discrete-time version of Equation (7.86), which is now

written as

RXS½nþ K� ¼
X1

m¼0

h½m� RXX½n� m�; for all n ð7:136Þ

since the filter should be causal, i.e. h½m� ¼ 0 for m < 0. Comparing this equation with

Equation (7.128) reveals that they are quite similar. There is a time shift in RXS and a

difference in the range of h½m�. For the rest the equations are the same. This means that the

solution is also the same, provided that the matrix RXX and the vectors RT
XS and hT are

accordingly redefined. They become the ð2N þ 1Þ � ðN þ 1Þ matrix

RXX ¼4

RXX½N� 0 � � � 0

RXX½N � 1� RXX½N� � � � 0

..

. ..
. ..

. ..
.

RXX½0� RXX½1� � � � RXX½N�
..
. ..

. ..
. ..

.

RXX½N� RXX½N � 1� � � � RXX½0�

2

666666664

3

777777775

ð7:137Þ

and the ð2N þ 1Þ element vector

RT
XS ¼4 	RXS½�N þ K� RXS½�N þ 1þ K� � � �RXS½N � 1þ K� RXS½N þ K�
 ð7:138Þ

respectively, and the ðN þ 1Þ element vector

hT ¼4 	h½0� h½1� � � � h½N � 1� h½N�
 ð7:139Þ

184 DETECTION AND OPTIMAL FILTERING



The estimation error follows from the discrete-time version of Equation (7.92), which is

e ¼ RSS½0� �
XN

n¼0

h½n�RSX½�n� ð7:140Þ

When the noise N½n� has zero mean and S½n� and N½n� are independent, they are orthogonal.

This simplifies the cross-correlation of RSX to RSS.

7.5 SUMMARY

The optimal detection of binary signals disturbed by noise has been considered. The

problem is reduced to hypothesis testing. When the noise has a Gaussian probability

density function, we arrive at a special form of linear filtering, the so-called matched

filtering. The optimum receiver for binary data signals disturbed by additive wide-sense

stationary Gaussian noise consists of a matched filter followed by a sampler and a

decision device.

Moreover, the matched filter can also be applied in situations where the noise (not

necessarily Gaussian) has to be suppressed maximally compared to the signal value at a

specific moment in time, called the sampling instant. Since the matched filter is in fact a

linear time-invariant filter and the input noise is supposed to be wide-sense stationary, this

means that the output noise variance is constant, i.e. independent of time, and that the signal

attains its maximum value at the sampling instant. The name matched filter is connected to

the fact that the filter characteristic (let it be described in the time or in the frequency

domain) is determined by (matched to) both the shape of the received signal and the power

spectral density of the disturbing noise.

Finally, filters that minimize the mean-squared estimation error (Wiener filters) have been

derived. They can be used for smoothing of stored data or portions of a random signal that

arrived in the past. In addition, filters that produce an optimal prediction of future signal

values have been described. Such filters are derived both for continuous processes and

discrete-time processes.

7.6 PROBLEMS

7.1 The input R ¼ Pþ N is applied to a detector. The random variable P represents the

information and is selected from P 2 fþ1;�0:5g and the selection occurs with the

probabilities PðP ¼ þ1Þ ¼ 1
4
and PðP ¼ �0:5Þ ¼ 3

4
. The noise N has a triangular

distribution fNðnÞ ¼ triðnÞ.
(a) Make a sketch of the weighted (by the prior probabilities) conditional distribution

functions.

(b) Determine the optimal decision regions.

(c) Calculate the minimum error probability.

7.2 Consider a signal detector with input R ¼ Pþ N. The random variable P is the

information and is selected from P 2 fþA;�Ag, with A a constant, and this selection
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occurs with equal probability. The noise N is characterized by the Laplacian

probability density function

fNðnÞ ¼ 1

�
ffiffiffi
2

p exp �
ffiffiffi
2

p j nj
�

� �

(a) Determine the decision regions, without making a calculation.

(b) Consider the minimum probability of error receiver. Derive the probability of error

for this receiver as a function of the parameters A and �.

(c) Determine the variance of the noise.

(d) Defining an appropriate signal-to-noise ratio S=N, determine the S=N to achieve an

error probability of 10�5.

7.3 The M-ary PSK (phase shift keying) signal is defined as

pðtÞ ¼ A cos !0t þ ði� 1Þ 2p
M

� �
; i ¼ 1; 2; . . . ;M; for 0 � t � T

where A and !0 are constants representing the carrier amplitude and frequency,

respectively, and i is randomly selected depending on the codeword to be transmitted.

In Appendix A this signal is called a multiphase signal. This signal is disturbed by

wide-sense stationary white Gaussian noise with spectral density N0=2.

(a) Make a picture of the signal constellation in the signal space for M ¼ 8.

(b) Determine the decision regions and indicate them in the picture.

(c) Calculate the symbol error probability (i.e. the probability that a codeword is

detected in error) for large values of the signal-to-noise ratio; assume, among

others, that this error rate is dominated by transitions to nearest neighbours in the

signal constellation. Express this error probability in terms of M, the mean energy

in the codewords and the noise spectral density.

Hint: use Equation (5.65) for the probability density function of the phase.

7.4 A filter matched to the signal

xðtÞ ¼ A 1� j tj
T

� �
; 0 < j tj < T

0; elsewhere

8
<

:

has to be realized. The signal is disturbed by noise with the power spectral density

SNNð!Þ ¼ W

W2 þ !2

with A, T and W positive, real constants.

(a) Determine the Fourier transform of xðtÞ.
(b) Determine the transfer function Hoptð!Þ of the matched filter.

(c) Calculate the impulse response hoptðtÞ. Sketch hoptðtÞ.
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(d) Is there any value of t0 for which the filter becomes causal? If so, what is that

value?

7.5 The signal xðtÞ ¼ uðtÞ expð�WtÞ, with W > 0 and real, is applied to a filter together

with white noise that has a spectral density of N0=2.

(a) Calculate the transfer function of the filter that is matched to xðtÞ.
(b) Determine the impulse response of this filter. Make a sketch of it.

(c) Is there a value of t0 for which the filter becomes causal?

(d) Calculate the maximum signal-to-noise ratio at the output.

7.6 In a frequency domain description as given in Equation (7.54) the causality of the

matched filter cannot be guaranteed. Using Equation (7.54) show that for a matched

filter for a signal disturbed by (coloured) noise the following integral equation gives a

time domain description:

Z 1

�1
hoptð�ÞRNNðt � �Þ d� ¼ xðt0 � tÞ

where the causality of the filter can now be guaranteed by setting the lower bound of

the integral equal to zero.

7.7 A pulse

xðtÞ ¼ A cosðpt=TÞ; j tj � T=2
0; j tj > T=2

�

is added to white noise NðtÞ with spectral density N0=2.

Find ðS=NÞmax for a filter matched to xðtÞ and NðtÞ.
7.8 The signal xðtÞ is defined as

xðtÞ ¼ A; 0 � t < T

0; elsewhere

�

This signal is disturbed by wide-sense stationary white noise with spectral density

N0=2.

(a) Make a sketch of xðtÞ.
(b) Sketch the impulse response of the matched filter if the sampling moment is

t0 ¼ T .

(c) Sketch the output signal yðtÞ of the filter.

(d) Calculate the signal-to-noise ratio at the filter output at t ¼ t0.

(e) Show that the filter given in Problem 4.3 realizes the matched filter of this signal in

white noise.

7.9 The signal xðtÞ is defined as

xðtÞ ¼ expð�t=�Þ; 0 � t < �
0; elsewhere

�
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This signal is disturbed by wide-sense stationary white noise with spectral density

N0=2.

(a) Make a sketch of xðtÞ.
(b) Sketch the impulse response of the matched filter if the sampling moment is

t0 ¼ 3�.

(c) Calculate and sketch the output signal yðtÞ of the filter.

(d) Calculate the signal-to-noise ratio at the filter output at t ¼ t0.

7.10 The signal xðtÞ is defined as

xðtÞ ¼
A; 0 � t < T=2
�A; T=2 � t < T

0; elsewhere

8
<

:

This signal is disturbed by wide-sense stationary white noise with spectral density

N0=2.

(a) Make a sketch of xðtÞ.
(b) Sketch the impulse response of the matched filter if the sampling moment is

t0 ¼ T .

(c) Sketch the output signal yðtÞ of the filter.

(d) Calculate the signal-to-noise ratio at the filter output at t ¼ t0 and compare this

with the outcome of Problem 7.8.

7.11 The signal pðtÞ is defined as

pðtÞ ¼ A; 0 � t � T

0; elsewhere

�

This signal is received twice (this is called ‘diversity’) in the following ways:

R1ðtÞ ¼ pðtÞ þ N1ðtÞ

and

R2ðtÞ ¼ � pðtÞ þ N2ðtÞ

where � is a constant. The noise processes N1ðtÞ and N2ðtÞ are wide-sense stationary,

white, independent processes and they both have the spectral density of N0=2. The
signals R1ðtÞ and R2ðtÞ are received by means of matched filters. The outputs of the

matched filters are sampled at t0 ¼ T .

(a) Sketch the impulse responses of the two matched filters.

(b) Calculate the signal-to-noise ratios at the sample moments of the two individual

receivers.

(c) By means of a new receiver design we produce the signal R3ðtÞ ¼ R1ðtÞ þ 	R2ðtÞ,
where 	 is a constant. Sketch the impulse response of the matched filter for R3ðtÞ
and calculate the signal-to-noise ratio at the sampling moment for this receiver.
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(d) For what value of 	 will the signal-to-noise ratio from (c) attain its maximum

value? (This is called ‘maximum ratio combining’.)

(e) Compare the signal-to-noise ratios from (b) with the maximum value found at (d)

and explain eventual differences.

7.12 For the signal xðtÞ which is defined as

xðtÞ ¼ A; 0 � t � T

0; elsewhere

�

a matched filter has to be designed. As an approximation an RC filter is selected with

the transfer function

Hð!Þ ¼ 1

1þ j!�0

with �0 ¼ RC. The disturbing noise is wide-sense stationary and white with spectral

density N0=2.

(a) Calculate and sketch the output signal yðtÞ of the RC filter.

(b) Calculate the maximum value of the signal-to-noise ratio at the output of the filter.

Find the value of �0 that maximizes this signal-to-noise ratio.

Hint: use the Matlab command fsolve to solve the non-linear equation.

(c) Determine and sketch the output of the filter that is matched to the signal xðtÞ.
(d) Calculate the signal-to-noise ratio of the matched filter output and determine the

difference with that of the RC filter.

7.13 A binary transmission system, where ‘1’s and ‘0’s are transmitted, is disturbed by

wide-sense stationary additive white Gaussian noise with spectral density N0=2. The
‘1’s are mapped on to the signal 3pðtÞ and ‘0’s on to pðtÞ, where

pðtÞ ¼ A; 0 � t � T

0; elsewhere

�

In the binary received sequence those pulses will not overlap in time.

(a) Sketch pðtÞ.
(b) Sketch the impulse response of the filter that is matched to pðtÞ and the noise, for

the sampling moment t0 ¼ T .

(c) Sketch yðtÞ, the output of the filter when the input is pðtÞ.
(d) Determine and sketch the conditional probability density functions when receiving

a ‘0’ and a ‘1’, respectively.

(e) Calculate the bit error probability when the prior probabilities for sending a ‘1’ or

a ‘0’ are equal and independent.

7.14 A binary transmission system, where ‘1’s and ‘0’s are transmitted, is disturbed by

wide-sense stationary additive white Gaussian noise with spectral density N0=2. The
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‘1’s are mapped on to the signal pðtÞ and the ‘0’s on to �pðtÞ, where

pðtÞ ¼ cosðpt=TÞ; 0 � t < T

0; elsewhere

�

In the binary received sequence those pulses will not overlap in time.

(a) Sketch pðtÞ.
(b) Sketch the impulse response of the filter that is matched to pðtÞ and the noise, for

the sampling moment t0 ¼ T .

(c) Calculate and sketch yðtÞ, the output of the filter when the input is pðtÞ.
(d) Determine and sketch the conditional probability density functions when receiving

a ‘0’ or a ‘1’.

(e) Calculate the bit error probability when the prior probabilities for sending a ‘1’ or

a ‘0’ are equal and independent.

7.15 Well-known digital modulation formats are ASK (amplitude shift keying) (see also

Example 7.5) and PSK (phase shift keying). If we take one data symbol out of a

sequence these formats are described by

XðtÞ ¼ A½n� cosð!0tÞ; 0 � t < T

where the bit levels A½n� are selected from A½n� 2 f0; 1g for ASK and from

A½n� 2 f�1; 1g for PSK. The angular frequency !0 is constant and T is the bit time.

Moreover, it is assumed that T ¼ n� 2p=!0 with n an integer; i.e. the bit time is an

integer number times the period of the carrier frequency. These signals are disturbed

by wide-sense stationary white Gaussian noise with spectral density N0=2. Assume that

the signals are detected by a correlation receiver, i.e. the received signal plus noise is

multiplied by cosð!0tÞ prior to detection.

(a) Sketch the signal constellations of ASK and PSK in signal space.

(b) Calculate the bit error rates, assuming the bits are equal probable. Express the

error rates in terms of the mean energy in a bit and the spectral density of the

noise.

7.16 An FSK (frequency shift keying) signal is defined as

XðtÞ ¼ A½n� cosð!1tÞ; 0 � t < T

�AA½n� cosð!2tÞ; 0 � t < T

(

where the bit levels A½n� are selected from A½n� 2 f0; 1g and �AA½n� is the negated value

of A½n�, i.e. �AA½n� ¼ 0 if A½n� ¼ 1 and �AA½n� ¼ 1 if A½n� ¼ 0. The quantities !1 and !2 are

constants and T is the bit time; the signal is disturbed by wide-sense stationary white

Gaussian noise with spectral density N0=2. As in Problem 7.15, the signal is detected

by a correlation receiver.

(a) Sketch the structure of the correlation receiver.

(b) What are the conditions for an orthogonal signals space?

(c) Sketch the signal constellation in the orthogonal signal space.
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(d) Calculate the bit error rate expressed in the mean energy in a bit and the noise

spectral density. Compare the outcome with that of ASK (Problem 7.15) and

explain the similarity or difference.

7.17 The PSK system presented in Problem 7.15 is called BPSK (binary PSK) or phase

reversal keying (PRK). Now consider an alternative scheme where the two possible

phase realizations do not have opposite phases but are shifted p=2 in phase.

(a) Sketch the signal constellation in signal space and indicate the decision regions.

(b) Calculate the minimum bit error probability and compare it with that of BPSK.

Explain the difference.

(c) Sketch the correlation receiver for this signal.

(d) Has this scheme advantages with respect to BPSK? What are the disadvantages?

7.18 A signal SðtÞ is observed in the middle of noise, i.e. XðtÞ ¼ SðtÞ þ NðtÞ. The signal

SðtÞ and the noise NðtÞ are jointly wide-sense stationary. Design an optimum

smoothing filter to estimate the derivative S0ðtÞ of the signal.

7.19 Derive the optimum prediction filter for a signal with spectral density

SSSð!Þ ¼ 1

1þ !4
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8
Poisson Processes and Shot Noise

8.1 INTRODUCTION

Random point processes described in this chapter deal with a sequences of events, where

both the time and the amplitude of the random variable is of a discrete nature. However, in

contrast to the discrete-time processes dealt with so far, the samples are not equidistant in

time, but the randomness is in the arrival times. In addition, the sample values may also be

random. In this chapter we will not deal with the general description of random point

processes but will confine the discussion to a special case, namely those processes where the

number of events k, in fixed time intervals of length T , is described by a Poisson probability

distribution

PðX ¼ k; TÞ ¼ expð��TÞ ð�TÞk
k!

; k � 0; integer ð8:1Þ

In this equation we do not use the notation for the probability density function, since it is a

discrete function and thus indeed a probability (denoted by Pð�Þ) rather than a density, which

is denoted by fXðxÞ.
An integer-valued stochastic process is called a Poisson process if the following proper-

ties hold [1,5]:

1. The probability that k events occur in any arbitrary interval of length T is given by

Equation (8.1).

2. The number of events that occur in any arbitrary time interval is independent of the

number of events that occur in any other arbitrary non-overlapping time interval.

Many physical phenomena are accurately modelled by a Poisson process, such as the

emission of photons from a laser source, the generation of hole/electron pairs in photodiodes

by means of photons, the arrival of phone calls in an exchange, the number of jobs offered to

a processor and the emission of electrons from a cathode.

In this chapter we will deal with the most important parameters of both Poisson processes

with a constant expectation, called homogeneous Poisson processes, and processes with an

Introduction to Random Signals and Noise W. van Etten
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expectation that is a function of time, called inhomogeneous Poisson processes. In both

models, the amplitude of the physical phenomenon that is related to the events is constant,

for instance the arrival of phone calls one at a time. Moreover, we will develop some theory

about stochastic processes, as far as it relates to Poisson processes. Finally, we will consider

Poisson impulse processes; these are processes where the amplitude of the event is a random

variable as well. An example of such a process is the number of electrons produced in

a photomultiplier tube, where the primary electrons (electrons that are directly generated by

photon absorption) are subject to a random gain. A similar effect occurs in an avalanche

photodiode [8].

8.2 THE POISSON DISTRIBUTION

8.2.1 The Characteristic Function

When dealing with Poisson and related processes, it appears that the characteristic function

is a convenient tool to use in the calculation of important properties of the process, such as

mean value, variance, etc.; this will become clear later on. The characteristic function of a

random variable X is defined as

�ðuÞ¼4 E½expðjuXÞ� ¼
Z 1

�1
fXðxÞ expðjuxÞ dx ð8:2Þ

where fXðxÞ is the probability density function of X. Note that according to this definition the

characteristic function is closely related to the Fourier transform of the probability density

function, namely �ð�uÞ is the Fourier transform of fXðxÞ. The variable u is just a dummy

variable and has no physical meaning. When X is a discrete variable with the possible

realizations fXkg, then the definition becomes

�ðuÞ¼4
X
k

PðX ¼ XkÞ expðjuXkÞ ð8:3Þ

Sometimes it is useful to consider the logarithm of the characteristic function

�ðuÞ¼4 ln�ðuÞ ð8:4Þ

This function is called the second characteristic function of the random variable X. From

Equation (8.2) it follows that

�ð0Þ ¼
Z 1

�1
fXðxÞ dx ¼ 1 ð8:5Þ

so that

�ð0Þ ¼ 0 ð8:6Þ
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For the random variable Y ¼ aX þ b, with a and b as constants, it follows that

�YðuÞ ¼ E½expðjuYÞ� ¼ expðjubÞ�XðauÞ ð8:7Þ

and

�YðuÞ ¼ jb uþ�XðauÞ ð8:8Þ

Example 8.1:

In this chapter we are primarily interested in the Poisson distribution given by Equation

(8.1). For convenience we take T ¼ 1 and for this distribution it can be seen that

�ðuÞ ¼ expð��Þ
X1
k¼0

expðjukÞ�
k

k!
¼ expf�½expðjuÞ � 1�g ð8:9Þ

and

�ðuÞ ¼ �½expðjuÞ � 1� ð8:10Þ

&

When on the other hand the characteristic function is known, the probability density function

can be restored from it using the inverse Fourier integral transform

fXðxÞ ¼ 1

2p

Z 1

�1
�ðuÞ expð�juxÞ du ð8:11Þ

The next example shows that defining the characteristic function by means of the Fourier

transform of the probability density function is a powerful tool and can greatly simplify

certain calculations.

Example 8.2:

Suppose that we have two independent Poisson distributed random variables X and Y with

parameters �X and �Y , respectively. Moreover, it is assumed that we are interested to know

what the probability density function of the sum S ¼ X þ Y of the two variables is. It is well

known [1] that the probability density function of the sum of two independent random

variables is found by convolving the two probability density functions. As a rule this is a

cumbersome operation, which is greatly simplified using the concept of the characteristic

function; namely from Fourier theory it is known that convolution in one domain is

equivalent to multiplication in the other domain. Using this property we conclude that

�SðuÞ ¼ �XðuÞ �YðuÞ ¼ expf�X½expðjuÞ � 1�g expf�Y ½expðjuÞ � 1�g
¼ expfð�X þ �YÞ½expðjuÞ � 1�g ð8:12Þ
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Since this expression corresponds to the characteristic function of the Poisson distribution

with parameter �X þ �Y, we may conclude that the sum of two independent Poisson

distributed random variables produces another Poisson distributed random variable of which

the parameter is given by the sum of the parameters of the constituting random variables.

&
The moments of the random variable X are defined by

E½Xn� ¼4 mn ð8:13Þ

It follows, using Fourier transform theory, that a relationship between the derivatives of the

characteristic function and these moments can be established. This relationship is found by

expanding the exponential of the integrand of Equation (8.2) as follows:

�ðuÞ ¼
Z 1

�1
fXðxÞ 1þ juxþ � � � þ ð juxÞn

n!
þ � � �

� �
dx ð8:14Þ

Assuming that integration term by term is allowed, it follows that

�ðuÞ ¼ 1þ jm1uþ � � � þ mn

ð juÞn
n!

þ � � � ð8:15Þ

From this equation the moments can immediately be identified as

dn�ð0Þ
dun

¼ jnmn ð8:16Þ

The operations leading to Equation (8.16) are allowed if all the moments mn exist and the

series expansion of Equation (8.15) converges absolutely at u ¼ 0. In this case fXðxÞ is

uniquely determined by its moments mn.

Sometimes it is more interesting to consider the central moments, e.g. the second central

moment or variance. Then the preceding operations are applied to the random variable

X � E½X�, but for such an important central moment as the variance there is an alternative, as

will be shown in the sequel.

8.2.2 Cumulants

Consider a probability distribution of which all the moments of arbitrary order exist. In the

characteristic function ju is replaced by p and the function that results is called the moment

generating function. The logarithm of this function becomes

�ðpÞ ¼ ln�ðpÞ

¼ ln

Z
fXðxÞ 1þ xpþ x2

2!
p2 þ � � � þ xn

n!
pn þ � � �

� �
dx

¼ ln 1þ m1pþ m2

2!
p2 þ � � � þ mn

n!
pn þ � � �

� �
ð8:17Þ
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Now, expanding �ðpÞ into a Taylor series about p ¼ 0 and remembering that

lnð1þ xÞ ¼ x� x2

2
þ x3

3
� � � � ð8:18Þ

it is found that

�ðpÞ ¼ m1pþ m2

2!
p2 þ � � � � m2

1

2
p2 þ � � �

¼ m1pþ 1

2
ðm2 � m2

1Þp2 þ � � �

¼ m1pþ �2

2
p2 þ

X1
k¼3

�k
k!
pk ¼

X1
k¼1

�k
k!
pk ð8:19Þ

where �2 is the variance of X and �k is the kth cumulant or semi-invariant [1,15].

Example 8.3:

Based on Equations (8.10) and (8.19) the mean and variance of a Poisson distribution are

easily established. For this distribution we have (see Equation (8.10))

�ðpÞ ¼ �½expðpÞ � 1� ¼ � 1þ pþ p2

2
þ � � � � 1

� �
¼ �pþ �

2
p2 þ � � � ð8:20Þ

Comparing this expression with Equation (8.19) and equating term by term reveals that for

the Poisson distribution both the mean value and the variance equal the parameter �.
&

8.2.3 Interarrival Time and Waiting Time

For such problems as queuing, it is of importance to know the probability density function of

the time that elapses between two events; this time is called the interarrival time. Suppose

that an event took place at time t; then the probability that the random waiting time W is

greater than some fixed value w represents the probability that no event occurs in the time

interval ft; t þ wg, or

PðW > wÞ ¼ Pð0;wÞ ¼ expð��wÞ; w � 0 ð8:21Þ
and

PðW � wÞ ¼ 1� expð��wÞ; w � 0

0; w < 0

�
ð8:22Þ

Thus, the waiting time is an exponential random variable and its probability density function

is written as

fWðwÞ ¼ dfPðW � wÞg
dw

¼ � expð��wÞ; w � 0

0; w < 0

�
ð8:23Þ
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The mean waiting time has the value

E½W � ¼
Z 1

0

�w expð��wÞ dw ¼ 1

�
ð8:24Þ

This result can also easily be understood when remembering that � is the mean number of

events per unit of time. Then the mean waiting time will be its inverse.

8.3 THE HOMOGENEOUS POISSON PROCESS

Let us consider an homogeneous Poisson process defined as the sum of impulses

XðtÞ ¼
X
i

�ðt � tiÞ ð8:25Þ

where the � impulses �ðt � tiÞ appear at random times ftig governed by a Poisson distri-

bution. This process can be used for modelling such physical processes as the detection of

photons by a photodetector. Each time an arriving photon is detected, it causes a small

impulse-shaped amount of current having an amplitude equal to the charge of an electron.

This means that the photon arrival and thus the production of current impulses may be des-

cribed by Equation (8.25), depicted as the input of Figure 8.1(b). Due to the travel time

of the moving charges in the detector and the frequency-dependent load circuit (see

Figure 8.1(a)), the response of the current through the load will have a different shape,

for instance as given in Figure 8.1(b). The shape of this response is called hðtÞ, being

Y(t )X(t )

h(t )
t

t

t

linear time-invariant
system

(a)

(b)

Figure 8.1 (a) Photodetector circuit with load and (b) corresponding Poisson process and shot

noise process
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the impulse response of the circuit. The total voltage across the load is described by the

process

YðtÞ ¼
X
i

hðt � tiÞ ð8:26Þ

This process is called shot noise and even if the rate � of the process is constant (in the

example of the photodetector the constant amount of optical power arriving), the process

YðtÞ will indeed show a noisy character, as has been depicted in the output of Figure 8.1(b).

The upper curve at the output represents the individual responses, while the lower curve

shows the sum of these pulses. Calculating the probability density function of this process is

a difficult problem, but we will be able to calculate its mean value and autocorrelation

function, and thus its spectrum as well.

8.3.1 Filtering of Homogeneous Poisson Processes and Shot Noise

In order to simplify the calculation of the mean value and the autocorrelation function of the

shot noise, the time axis is subdivided into a sequence of consecutive small time intervals of

equal width �t. These time intervals are taken so short that ��t � 1. Next we define the

random variable Vn such that for all integer values n

Vn ¼ 0; if no impulse occurs in the interval n �t < t < ðnþ 1Þ �t

1; if one impulse occurs in the interval n �t < t < ðnþ 1Þ �t

�
ð8:27Þ

In the sequel we shall neglect the probability that more than one impulse will occur in such

a brief time interval as �t. Following the definition of a Poisson process as given in the

introduction to this chapter, it is concluded that the random variables Vn and Vm are

independent if n 6¼ m. The probabilities of the two possible realizations of Vn read

PðVn ¼ 0Þ ¼ expð���tÞ � 1� ��t ð8:28Þ
PðVn ¼ 1Þ ¼ ��t expð���tÞ � ��t ð8:29Þ

where the exact expressions are achieved by inserting k ¼ 0 and k ¼ 1, respectively, in

Equation (8.1) and the approximations follow from the fact that ��t � 1. The expectation

of the random variable Vn is

E½Vn� ¼ 0� PðVn ¼ 0Þ þ 1� PðVn ¼ 1Þ ¼ PðVn ¼ 1Þ ¼ ��t ð8:30Þ

Based on the foregoing it is easily revealed that the process YðtÞ is approximated by the

process

ŶYðtÞ ¼
X1
n¼�1

Vn hðt � n �tÞ ð8:31Þ

THE HOMOGENEOUS POISSON PROCESS 199



The smaller the �t the closer the approximation ŶYðtÞ will approach the shot noise

process YðtÞ; in the limit of �t approaching zero, the processes will merge. The expectation

of ŶYðtÞ is

E½ŶYðtÞ� ¼
X1
n¼�1

E½Vn� hðt � n�tÞ ¼
X1

n¼�1
��t hðt � n�tÞ ð8:32Þ

When �t is made infinitesimally small then the summation is converted into an integral and

the expected value of the shot noise process is obtained:

E½YðtÞ� ¼ �

Z 1

�1
hðt � �Þ d� ¼ �

Z 1

�1
hð�Þ d� ð8:33Þ

In order to gain more information about the shot noise process we will consider its

characteristic function. This function is deduced in a straightforward way using the

approximation ŶYðtÞ:

�ŶYðuÞ ¼ E½expfjuŶYðtÞg�

¼ E exp ju
X1
n¼�1

Vn hðt � n�tÞ
( )" #

¼
Y1

n¼�1
E½expfjuVn hðt � n�tÞg� ð8:34Þ

In Equation (8.34) the change from the summation in the exponential to the product of the

expectation of the exponentials is allowed since the random variables Vn are independent.

Invoking the law of total probability, the characteristic function of ŶYðtÞ is written as

�ŶYðuÞ ¼
Y1

n¼�1
PðVn ¼ 0Þ � 1þ PðVn ¼ 1Þ exp½juhðt � n�tÞ� ð8:35Þ

and using Equations (8.28) and (8.29) gives

�ŶYðuÞ ¼
Y1

n¼�1
f1� ��t þ ��t exp½juhðt � n�tÞ�g

¼
Y1

n¼�1
ð1þ ��tfexp½juhðt � n�tÞ� � 1gÞ ð8:36Þ

Now we use the approximation 1þ x � expðxÞ to proceed as

�ŶYðuÞ �
Y1

n¼�1
expð��tfexp½juhðt � n�tÞ� � 1gÞ

¼ exp
X1
n¼�1

��tfexp½juhðt � n�tÞ� � 1g
 !

ð8:37Þ
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Once again �t is made infinitesimally small so that the summation converts into an integral

and we arrive at the characteristic function of the shot noise process YðtÞ:

�YðuÞ ¼ exp �

Z 1

�1
fexp½juhðt � �Þ� � 1g d�

� �

¼ exp �

Z 1

�1
fexp½juhð�Þ� � 1g d�

� �
ð8:38Þ

From this result several features of the shot noise can be deduced. By inverse Fourier

transforming it, we find the probability density function of YðtÞ, but this is in general a

difficult task. However, the mean and variance of the shot noise process follow immediately

from the second characteristic function

�YðuÞ ¼ ln�YðuÞ ¼ �

Z 1

�1
fexp½juhð�Þ� � 1g d�

¼ �

Z 1

�1
juhð�Þ � 1

2
u2h2ð�Þ þ � � �� �

d� ð8:39Þ

and by invoking Equation (8.19).

&

Theorem 15

The homogeneous shot noise process has the mean value

E½YðtÞ� ¼ �

Z 1

�1
hð�Þ d� ð8:40Þ

and variance

�2
Y ¼ �

Z 1

�1
h2ð�Þ d� ð8:41Þ

These two equations together are named Campbell’s theorem.

Actually, the result of Equation (8.40) was earlier derived in Equation (8.33), but here we

found this result in an alternative way. We emphasize that both the mean value and variance are

proportional to the Poisson parameter �. When the mean value of the shot noise process

is interpreted as the signal and the variance as the noise, then it is concluded that this type of

noise is not additive, as in the classical communication model, but multiplicative; i.e. the noise

variance is proportional to the signal value and the signal-to-shot noise ratio is proportional to �.

Example 8.4:

When we take a rectangular pulse for the impulse response of the linear time-invariant filter

in Figure 8.1, according to

hðtÞ ¼ 1; 0 � t � T

0; t < 0 and t > T

�
ð8:42Þ
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then it is found that

�YðuÞ ¼ expf�T½expðjuÞ � 1�g ð8:43Þ
Comparing this result with Equation (8.9), it is concluded that in this case the output

probability density function is a discrete one and gives the Poisson distribution of Equation

(8.1). Actually, the filter gives as the output value at time ts the number of Poisson impulses

that arrived in the past T seconds, i.e. in the interval t 2 fts � T; tsg.
&

Next we want to calculate the autocorrelation function RYðt1; t2Þ of the shot noise process
and from that the power spectrum. For that purpose we define the joint characteristic

function of two random variables X1 and X2 as

�ðu1; u2Þ¼4 E½expðju1X1 þ ju2X2Þ� ¼
Z1

�1

Z
fXðx1; x2Þ expðju1x1 þ ju2x2Þ dx1 dx2 ð8:44Þ

Actually, this function is the two-dimensional Fourier transform of the joint probability

density function of X1 and X2. In order to evaluate this function for the shot noise process

YðtÞ we follow a similar procedure as before, i.e. we start with the approximating process

ŶYðtÞ:

�ŶYðu1; u2Þ ¼ E½expfju1ŶYðt1Þ þ ju2ŶYðt2Þg� ð8:45Þ
Elaborating this in a straightforward manner as before (see Equations (8.34) to (8.38)) we

arrive at the joint characteristic function of YðtÞ:

�Yðu1; u2Þ ¼ exp �

Z 1

�1
fexp½ju1hðt1 � �Þ þ ju2hðt2 � �Þ� � 1g d�

� �
ð8:46Þ

The second joint characteristic function reads

�Yðu1; u2Þ¼4 ln½�Yðu1; u2Þ� ¼ �

Z 1

�1
fexp½ju1hðt1 � �Þ þ ju2hðt2 � �Þ� � 1g d� ð8:47Þ

In the sequel we shall show that by series expansion of this latter function, the autocorrela-

tion function can be calculated. However, we will first show how moments of several orders

are generated by the joint characteristic function. For that purpose we apply series expansion

to both exponentials in Equation (8.44):

�ðu1; u2Þ ¼
Z1

�1

Z
fXðx1; x2Þ

X1
n¼0

ðju1x1Þn
n!

X1
m¼0

ðju2x2Þm
m!

dx1 dx2

¼
Z1

�1

Z
fXðx1; x2Þ 1þ ju1x1 � u21x

2
1

2
þ � � �

� �
1þ ju2x2 � u22x

2
2

2
þ � � �

� �
dx1 dx2

¼ 1þ ju1E½X1� þ ju2E½X2� � u1u2E½X1X2� þ � � � ð8:48Þ
From this equation it is observed that the term with ju1 comprises E½X1�, the term with

ju2 comprises E½X2�, the term with �u1u2 comprises E½X1X2�, etc. In fact, series expansion of
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the joint characteristic function generates all arbitrary moments as follows:

�ðu1; u2Þ ¼
X1
n¼0

X1
m¼0

E½Xn
1X

m
2 �

ðju1Þnðju2Þm
n!m!

ð8:49Þ

Since the characteristic function given by Equation (8.46) contains a double exponential,

producing a series expansion is intractable. Therefore we make a series expansion of the

second joint characteristic function of Equation (8.47) and identify from that expansion the

second-order moment E½Yðt1ÞYðt2Þ� we are looking for. This expansion is once again based

on the series expansion of the logarithm lnð1þ xÞ ¼ x� x2=2þ � � �:

�ðu1; u2Þ ¼ ju1E½X1� þ ju2E½X2� � u1u2E½X1X2� � 1
2
u21E½X2

1 � � 1
2
u22E½X2

2 � þ � � �
� 1

2
ðju1E½X1� þ ju2E½X2� � u1u2E½X1X2� þ � � �Þ2 þ � � �

¼ ju1E½X1� þ ju2E½X2� � u1u2E½X1X2� � u21E½X2
1 � � u22E½X2

2 � þ � � �
� 1

2
ð�u21E

2½X1� � u22E
2½X2� � 2u1u2E½X1�E½X2� þ � � �Þ þ � � � ð8:50Þ

When looking at the term with u1u2, we discover that its coefficient reads �ðE½X1X2��
E½X1�E½X2�Þ. Comparing this expression with Equation (2.65) and applying it to the process

YðtÞ it is revealed that this coefficient equals the negative of the autocovariance function

CYYðt1; t2Þ. As we have already calculated the mean value of the process (see Equations

(8.33) and (8.40)), we can easily obtain its autocorrelation function. To evaluate this function

we expand Equation (8.47) in a similar way and look for the coefficient of the term with

u1u2. This yields

CYYðt1; t2Þ ¼ �

Z 1

�1
hðt1 � �Þ hðt2 � �Þ d� ¼ �

Z 1

�1
hð�Þ hðt2 � t1 þ �Þ d� ð8:51Þ

We observe that this expression does not depend on the absolute time, but only on the

difference t2 � t1. Since the mean was independent of time as well, it is concluded that the

shot noise process is wide-sense stationary. Its autocorrelation function reads

RYYð�Þ ¼ CYYð�Þ þ E2½YðtÞ� ¼ �

Z 1

�1
hð�Þ hð� þ �Þ d�þ �2

Z 1

�1
hð�Þ d�

� 	2
ð8:52Þ

From this we can immediately find the power spectrum by Fourier transforming the latter

expression:

SYYð!Þ ¼ �jHð!Þj2 þ 2p�2H2ð0Þ�ð!Þ ð8:53Þ

It can be seen that the spectrum always comprises a d.c. component if this component is

passed by the filter, i.e. if Hð0Þ 6¼ 0. As a special case we consider the spectrum of the input

process XðtÞ that consists of a sequence of Poisson impulses as given by Equation (8.25).

This spectrum is easily found by inserting Hð!Þ ¼ 1 in Equation (8.53). Then, apart from the

� function, the spectrum comprises a constant value, so this part of the spectrum behaves as

white noise.
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For large values of the Poisson parameter �, the shot noise process approaches a Gaussian
process [1]. This model is widely used for the shot noise generated by electronic components.

8.4 INHOMOGENEOUS POISSON PROCESSES

An inhomogeneous Poisson process is a Poisson process for which the parameter � varies

with time, i.e. � ¼ �ðtÞ. In order to derive the important properties of such a process we redo

the calculations of the preceding section, where the parameter � in Equations (8.28) to (8.37)

is replaced by �ðn�tÞ. The characteristic function then becomes

�YðuÞ ¼ exp

Z 1

�1
�ð�Þfexp½juhðt � �Þ� � 1g d�

� �
ð8:54Þ

Based on Equation (8.19), the mean and variance of this process follows immediately:

E½YðtÞ� ¼
Z 1

�1
�ð�Þhðt � �Þ d� ð8:55Þ

� 2
Y ¼

Z 1

�1
�ð�Þh2ðt � �Þ d� ð8:56Þ

Actually, these two equations are an extension of Campbell’s theorem.

Without going into detail, the autocorrelation function of this process is easily found in a

way similar to the procedure of calculating the second joint characteristic function in the

preceding section. The second joint characteristic function of the inhomogeneous Poisson

process is obtained as

�Yðu1; u2Þ ¼
Z 1

�1
�ð�Þfexp½ju1hðt1 � �Þ þ ju2hðt2 � �Þ� � 1g d� ð8:57Þ

and from this, once again, similarly to the preceding section, it follows that

RYYðt1; t2Þ ¼
Z 1

�1
�ð�Þhðt1 � �Þ hðt2 � �Þ d�

þ
Z 1

�1
�ð�Þhðt1 � �Þ d�

Z 1

�1
�ð�Þhðt2 � �Þ d� ð8:58Þ

Let us now suppose that the function �ðtÞ is a stochastic process as well, which is

independent of the Poisson process. Then the process YðtÞ is a doubly stochastic process

[17]. Moreover, we assume that �ðtÞ is a wide-sense stationary process. Then from Equation

(8.55) it follows that the mean value of YðtÞ is independent of time. In the autocorrelation

function we substitute t1 ¼ t and t2 ¼ t þ � ; this yields

RYYðt; t þ �Þ ¼ E½��
Z 1

�1
hðt � �Þhðt þ � � �Þ d�

þ
Z1

�1

Z
R��ð�1 � �2Þhðt � �1Þhðt þ � � �2Þ d�1 d�2 ð8:59Þ
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In this equation R��ð�Þ is the autocorrelation function of the process �ðtÞ. Further elaborating
the Equation (8.59) gives

RYYðt; t þ �Þ ¼ E½��
Z 1

�1
hð�Þhð� þ �Þ d�

þ
Z1

�1

Z
R��ð� þ �1 � �2Þhð�1Þhð�2Þ d�1 d�2

¼ E½�� hð�Þ 	 hð��Þ þ R��ð�Þ 	 hð�Þ 	 hð��Þ ð8:60Þ

Now it is concluded that the doubly stochastic process YðtÞ is wide-sense stationary as well.

From this latter expression its power spectral density is easily revealed by Fourier

transformation:

SYYð!Þ ¼ jHð!Þj2fE½�� þ S��ð!Þg ð8:61Þ
The interpretation of this expression is as follows. The first term reflects the filtering of the

white shot noise spectrum and is proportional to the mean value of the information signal

�ðtÞ. Note that E½�ðtÞ� ¼ 0 is meaningless from a physical point of view. The second term

represents the filtering of the information signal.

An important physical situation where the theory in this section applies is a lightwave that

is intensity modulated by an information signal. The detected current in the receiver is

produced by photons arriving in the photodetector. This arrival of photons is then modelled

as a doubly stochastic process with �ðtÞ as the information signal [8].

8.5 THE RANDOM-PULSE PROCESS

Let us further extend the inhomogeneous process that was introduced in the preceding

section. A Poisson impulse process consists of a sequence of � functions

XðtÞ ¼
X
i

Gi�ðt � tiÞ ð8:62Þ

where the number of events per unit of time are governed by a Poisson distribution and fGig
are realizations of the random variable G; i.e. the amplitudes of the different impulses vary

randomly and thus are subject to a random gain. In this section we again assume that the

Poisson distribution may have a time-variant parameter �ðtÞ, which is supposed to be a wide-
sense stationary stochastic process. Each of three random parameters involved is assumed to

be independent of all the others. When filtering the process XðtÞ we get the random-pulse

process

YðtÞ ¼
X
i

Gihðt � tiÞ ð8:63Þ

The properties of this process are again derived in a similar and straightforward way, as

presented in Section 8.3.1. Throughout the entire derivation a third random variable is
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involved and the expectation over this variable has to be taken in addition. This leads to the

following result for the characteristic function:

�YðuÞ ¼ exp

Z 1

�1
�ð�Þf�G½uhðt � �Þ� � 1g d�

� �
ð8:64Þ

where �GðuÞ is the characteristic function of G. From this another extension of Campbell’s

theorem follows:

E½YðtÞ� ¼ E½G�
Z 1

�1
�ð�Þhðt � �Þ d� ð8:65Þ

� 2
Y ¼ E½G2�

Z 1

�1
�ð�Þh2ðt � �Þ d� ð8:66Þ

The second joint characteristic function reads

�Yðu1; u2Þ ¼
Z 1

�1
fGðgÞ

Z 1

�1
�ð�Þfexp½ju1hðt1 � �Þ þ ju2hðt2 � �Þ� � 1g d�

� �
dg ð8:67Þ

where fGðgÞ is the probability density function of G. Also in this case the process YðtÞ
appears to be wide-sense stationary and the autocorrelation function becomes

RYYð�Þ ¼ E½G2� E½�� hð�Þ 	 hð��Þ þ E2½G� R��ð�Þ 	 hð�Þ 	 hð��Þ ð8:68Þ

and the power spectral density

SYYð!Þ ¼ jHð!Þj2 fE½G2� E½�� þ E2½G� S��ð!Þg

¼ jHð!Þj2 E2½G� E½G2�
E2½G�E½�� þ S��ð!Þ
� 


ð8:69Þ

The last term will in general comprise the information, whereas the first term is the shot

noise spectral density. In applications where the random impulse amplitude G is an

amplification generated by an optical or electronic device, the factor E½G2�=E2½G� is called
the excess noise factor. It is the factor by which the signal-to-shot noise ratio is decreased

compared to the situation where such amplification is absent, i.e. G is constant and equal to 1.

Since

E½G2�
E2½G� ¼

E2½G� þ �2
G

E2½G� ¼ 1þ �2
G

E2½G� > 1 ð8:70Þ

the excess noise factor is always larger than 1.

Example 8.5:

A random-pulse process with the Poisson parameter � ¼ constant is applied to a filter with

the impulse response given by Equation (8.42). The G’s are, independently from each other,
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selected from the set G 2 f1; �1g with equal probabilities. From these data and Campbell’s

theorem (Equations (8.65) and (8.66)), it follows that

E½G� ¼ E½Y� ¼ 0

E½G2� ¼ 1

�2
Y ¼ �T

ð8:71Þ

This reduces Equation (8.69) to just the first term. The power spectrum of the output

becomes

SYYð!Þ ¼ 4�
sin2 !T

2

� �
!2

ð8:72Þ

&

There are two main application areas for the processes dealt with in this section. The first

example is the current produced by a photomultiplier tube or avalanche photodiode when an

optical signal is detected. Each detected photon produces many electrons as a consequence

of the internal amplification in the detector device. This process can be modelled as a

Poisson impulse process, where G is a random variable with discrete integer amplitude.

Looking at Equation (8.70) one may wonder why such amplification is applied when the

signal-to-noise ratio is decreased by it. From the first line in this equation it is revealed that

the information signal is amplified by E2½G� and that is useful, since it raises the signal level

with respect to the thermal noise (not taken into account in this chapter), which is dominant

over the shot noise in the case of weak signal reception.

Secondly, when a radar on board an aircraft flying over the sea transmits pulses, it

receives many copies of the transmitted pulse, called clutter. These echoes are randomly

distributed in time and amplitude, due to reflections from the moving water waves. Similar

reflections are received when flying over land, due to the relative changes in the earth’s

surface and eventual buildings. This process may be modelled as a random-pulse process.

8.6 SUMMARY

The Poisson distribution is recalled. Subsequently, the characteristic function is defined. This

function provides a powerful tool for calculating moments of random variables. When taking

the logarithm of the characteristic function, the second characteristic function results and it

can be of help calculating moments of Poisson distributions and processes. Based on these

functions several properties of the Poisson distribution are derived. The probability density

function of the interarrival time is calculated.

The homogeneous Poisson process consists of a sequence of unit impulses with random

distribution on the time axis and a Poisson distribution of the number of impulses per unit of

time. When filtering this process a noise-like signal results, called shot noise. Based on the

characteristic function and the second characteristic function several properties of this

process are derived, such as the mean value, variance (Campbell’s theorem) and auto-

correlation function. From these calculations it follows that the homogeneous Poisson

process is a wide-sense stationary process. Fourier transforming the autocorrelation function
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provides the power spectral density. Although part of the shot noise process behaves

like white noise, it is not additive but multiplicative. Derivation of the properties of the

inhomogeneous Poisson process and the random-pulse process is similar to that of the

homogeneous Poisson process.

Although our approach emphasizes using the characteristic function to calculate

the properties of random point processes, it should be stressed that this is not the only

way to arrive at these results. A few application areas of random point processes are

mentioned.

8.7 PROBLEMS

8.1 Consider two independent random variables X and Y . The random variable Z is defined

as the sum Z ¼ X þ Y . Based on the use of characteristic functions show that the

probability density function of Z equals the convolution of the probability density

functions of X and Y .

8.2 Calculate the characteristic function of a Gaussian random variable.

8.3 Consider two jointly Gaussian random variables, X and Y , both having zero mean and

variance of unity. Using the characteristic functions show that the probability density

function of their sum, Z ¼ X þ Y , is Gaussian as well.

8.4 Use the characteristic function to calculate the variance of the waiting time of a

Poisson process.

8.5 The characteristic function can be used to calculate the probability density function of

a function gðXÞ of a random variable if the transformation Y ¼ gðXÞ is one-to-one.

Consider Y ¼ sinX, where X is uniformly distributed on the interval ð�p=2; p=2�.
(a) Calculate the probability density function of Y .

(b) Use the result of (a) to calculate the probability density function of a full sine

wave, i.e. Y ¼ sinX, where now X is uniformly distributed on the interval ð�p; p�
Hint: extend the sine wave so that X uniformly covers the interval ð�p; p�.

8.6 A circuit comprises 100 components. The circuit fails if one of the components fails.

The time to failure of one component is exponentially distributed with a mean time to

failure of 10 years. This distribution is the same for all components and the failure of

each components is independent of the others.

(a) What is the probability that the circuit will be in operation for at least one year

without interruption due to failure?

(b) What should the mean time to failure of a single component be so that the

probability that the circuit will be in operation for at least one year without

interruption is 0.9?

8.7 A switching centre has 100 incoming lines and one outgoing line. The arrival of calls

is Poisson distributed with an average rate of 5 calls per hour. Suppose that each call

lasts exactly 3 minutes.

(a) Calculate the probability that an incoming call finds the outgoing line blocked.
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(b) The subscribers have a contract that guarantees a blocking probability less than

0.01. They complain that the blocking probability is higher than what was

promised in the contract with the provider. Are they right?

(c) How many outgoing lines are needed to meet this condition in the contract?

8.8 Visitors enter a museum according to a Poisson distribution with a mean of 10 visitors

per hour. Each visitor stays in the museum for exactly 0.5 hour.

(a) What is the mean value of the number of visitors present in the museum?

(b) What is the variance of the number of visitors present in the museum?

(c) What is the probability that there are no visitors in the museum?

8.9 Consider a shot noise process with constant parameter �. This process is applied to a

filter that has the impulse response hðtÞ ¼ expð��tÞ uðtÞ, with uðtÞ the unit step

function.

(a) Find the mean value of the filtered shot noise process.

(b) Find the variance of the filtered process.

(c) Find the autocorrelation function of the filtered process.

(d) Calculate the power spectral density of the filtered process.

8.10 We want to consider the properties of a filtered shot noise process YðtÞ with constant

parameter � 
 1. The problem is that when � ! 1 both the mean and the variance

become infinitely large. Therefore we consider the normalized process with zero mean

and variance of unity for all � values:

�ðtÞ¼4 YðtÞ � E½YðtÞ�
�Y

¼ YðtÞ � A�

B
ffiffiffi
�

p

where

A¼4
Z 1

�1
hð�Þ d�

B2 ¼4
Z 1

�1
h2ð�Þ d�

Apply Equation (8.38) and the series expansion of Equation (8.39) to the process �ðtÞ
to prove that the characteristic function of �ðtÞ tends to that of a Gaussian random

variable (see the outcome of Problem 8.2) and thus the filtered Poisson process

approaches a Gaussian process when the Poisson parameter � becomes large.

8.11 The amplitudes of the impulses of a Poisson impulse process are independent and

identically distributed with PðGi ¼ 1Þ ¼ 0:6 and PðGi ¼ 2Þ ¼ 0:4. The process is

applied to a linear time-invariant filter with a rectangular impulse response of height

10 and duration T . The Poisson parameter � is constant.

(a) Find the mean value of the filter output process.

(b) Find the autocorrelation function of the filter output process.

(c) Calculate the power spectral density of the output process.

8.12 The generation of hole–electron pairs in a photodiode is modelled as a Poisson process

due to the random arrival of photons. When the optical wave is modulated by a
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randomly phased harmonic signal this arrival has a time-dependent rate of

� ¼ �0½1þ cosð!0t ��Þ�
with � a random variable that is uniformly distributed on the interval ð0; 2p�, and
where the cosine term is the information-carrying signal. Each hole–electron pair

creates an impulse of height e, being the electron charge. The photodetector has a

random internal gain that has only integer values and that is uniformly distributed on

the interval ½0; 10�. The travel time T in the detector is modelled as an impulse

response

hðtÞ ¼ 1; 0 � t < T

0; elsewhere:

�

(a) Calculate the mean value of the photodiode current and the power of the detected

signal current.

(b) Calculate the shot noise variance.

(c) Calculate the the signal-to-noise ratio in dB for �0 ¼ 7:5� 1012, T ¼ 10�9 and

!0 ¼ 2p� 0:5� 109.
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Appendix A
Representation of Signals
in a Signal Space

A.1 LINEAR VECTOR SPACES

In order to facilitate the geometrical representation of signals, we treat them as vectors.

Indeed, signals can be considered to behave like vectors, as will be shown in the sequel. For

that purpose we recall the properties of linear vector spaces. A vector space is called a linear

vector space if it satisfies the following conditions:

1: xþ y ¼ yþ x ðA:1Þ
2: xþ ðyþ zÞ ¼ ðxþ yÞ þ z ðA:2Þ
3: �ðxþ yÞ ¼ �xþ �y ðA:3Þ
4: ð�þ �Þx ¼ �xþ �x ðA:4Þ

where x and y are arbitrary vectors and � and � are scalars.

In an n-dimensional linear vector space we define a so-called inner product as

x � y¼4
Xn

i¼1

xiyi ðA:5Þ

where xi and yi are the elements of x and y, respectively. Two vectors x and y are said to be

orthogonal if x � y ¼ 0. The norm of a vector x is denoted by k x k and we define it by

k x k ¼4 ffiffiffiffiffiffiffiffiffi
x � xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

x2i

s
ðA:6Þ
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This norm has the following properties:

5: k x k� 0 ðA:7Þ
6: k x k¼ 0() x ¼ 0 ðA:8Þ
7: k xþ y k�k x k þ k y k ðA:9Þ
8: k �x k¼ j�j � k x k ðA:10Þ

In general, we can state that the norm of a vector represents the distance from an arbitrary

point described by the vector to the origin, or alternatively it is interpreted as the length of

the vector. From Equation (A.9) we can readily derive the Schwarz inequality

jx � yj � k x k � k y k ðA:11Þ

A.2 THE SIGNAL SPACE CONCEPT

In this section we consider signals defined on the time interval ½a; b�. As in the case of

vectors, we define the inner product of two signals xðtÞ and yðtÞ, but now the definition reads

hxðtÞ; yðtÞi¼4
Z b

a

xðtÞyðtÞ dt ðA:12Þ

Note that using this definition, signals behave like vectors, i.e. they show the properties 1 to

8 as given in the preceding section. This is readily verified by considering the properties of

integrals.

Let us consider a set of orthonormal signals f�iðtÞg, i.e. signals that satisfy the condition

h�iðtÞ; �jðtÞi ¼ �ij ¼4 1; i ¼ j;
0; i 6¼ j

�
ðA:13Þ

where �ij denotes the well-known Kronecker delta. When all signals of a specific class can

exactly be described as a linear combination of the members of such a signal set, we call it a

complete orthonormal signal set; here we take the class of square integrable signals. In this

case each arbitrary signal of that class is written as

sðtÞ ¼
Xn

i¼1

si�iðtÞ ðA:14Þ

and the sequence fsig can also be written as a vector s, where the si are the elements of the

signal vector s. Figure A.1 shows a circuit that reconstructs sðtÞ from the set fsig and the

orthonormal signal set f�iðtÞg; this circuit follows immediately from Equation (A.14).

No limitations are placed on the integer n; even an infinite number of elements is allowed.

The elements si are found by

si ¼ hsðtÞ; �iðtÞi ¼
Z b

a

sðtÞ�iðtÞ dt ðA:15Þ
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Therefore, when we construct a vector space using the vector s, we have a geometrical

representation of the signal sðtÞ. Along the ith axis we imagine the function �iðtÞ; i.e. the set
f�iðtÞg is taken as the basis for the signal space. In fact, si indicates to what extent �iðtÞ
contributes to sðtÞ. From Equation (A.15) a circuit is derived that produces the elements fsig
representing the signal sðtÞ in the signal space f�iðtÞg; the circuit is given in Figure A.2.

The inner product of a signal vector with itself has an interesting interpretation:

hsðtÞ; sðtÞi ¼
Z b

a

s2ðtÞ dt ¼k s k2 ¼
X

i

s2i ¼ Es ðA:16Þ

s(t)

φ1(t)

φ2(t)

φn(t)

...
..

...
..

...
..

s 1

s2

sn

Figure A.1 A circuit that produces the signal sðtÞ from its elements fsig in the signal space

s(t)

φ1(t)

φ2(t)

φn(t)

...
..

...
..

...
..

s1

s2

sn

(.) dt
a

b

(.) dt
a

b

(.) dt
a

b

Figure A.2 A circuit that produces the signal space elements fsig from the signal sðtÞ
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with Es the energy of the signal sðtÞ. From this equation it is concluded that the length of a

vector in the signal space equals the square root of the signal energy. For purposes of

detection it is important to establish that the distance between two signal vectors represents

the square root of the energy of the difference of the two signals involved.

This concept of signal spaces is in fact a generalization of the well-known Fourier series

expansion of signals.

Example A.1:

As an example let us consider the harmonic signal sðtÞ ¼ Refa exp½jð!0t þ  Þ�g, where
Ref�g is the real part of the expression in the braces. This signal is written as

sðtÞ ¼ a cos cos!0t � a sin sin!0t ðA:17Þ

As the orthonormal signal set we consider f ffiffiffi
2

p
cosð!0tÞ=

ffiffiffiffi
T

p
;� ffiffiffi

2
p

sinð!0tÞ=
ffiffiffiffi
T

p g and the

time interval ½a; b� is taken as ½0; T �, with T ¼ k � 2p=!0 and k integer. In this signal space,

the signal sðtÞ is represented by the vector s ¼ ½ ffiffiffiffi
T

p
a cos =

ffiffiffi
2

p
;

ffiffiffiffi
T

p
a sin =

ffiffiffi
2

p �. In fact, we

have introduced in this way an alternative for the signal representation of harmonic signals in

the complex plane. The elements of the vector s are recognized as the well-known quadrature

I and Q signals.

&

A.3 GRAM–SCHMIDT ORTHOGONALIZATION

When we have an arbitrary set ffiðtÞg of, let us say, N signals, then in general these signals

will not be orthonormal. The Gram–Schmidt method shows us how to transform such a set

into an orthonormal set, provided the members of the set ffiðtÞg are linearly independent, i.e.
none of the signal fiðtÞ can be written as a linear combination of the other signals. The first

member of the orthonormal set is simply constructed as

�1ðtÞ ¼4 f1ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihf1ðtÞ; f1ðtÞi
p ðA:18Þ

In fact, the signal f1ðtÞ is normalized to the square root of its energy, or equivalently to the

length of its corresponding vector in the signal space.

The second member of the orthonormal set is constructed by taking f2ðtÞ and subtracting

from this f2ðtÞ the part that is already comprised of �1ðtÞ. In this way we arrive at the

intermediate signal

g2ðtÞ ¼4 f2ðtÞ � hf2ðtÞ; �1ðtÞi�1ðtÞ ðA:19Þ
Due to this operation the signal g2ðtÞwill be orthogonal to �1ðtÞ. The functions �1ðtÞ and �2ðtÞ
will become orthonormal if we construct �2ðtÞ from g2ðtÞ by normalizing it by its own length:

�2ðtÞ ¼ g2ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihg2ðtÞ; g2ðtÞi
p ðA:20Þ
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Proceeding in this way we construct the kth intermediate signal by

gkðtÞ ¼4 fkðtÞ �
Xk�1

j¼1

hfkðtÞ; �jðtÞi�jðtÞ ðA:21Þ

and by proper normalization we arrive at the kth member of the orthonormal signal set

�kðtÞ ¼4 gkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihgkðtÞ; gkðtÞi
p ðA:22Þ

This procedure is continued until N orthonormal signals have been constructed. In case there

are linear dependences, the dimensionality of the orthonormal signal space will be lower

than N.

The orthonormal space that results from the Gram–Schmidt procedure is not unique; it

will depend on the order in which the above described procedure is executed. Nevertheless,

the geometrical signal constellation will not alter and the lengths of the vectors are invariant

to the order chosen.

Example A.2:

Consider the signal set f fiðtÞg given in Figure A.3(a). Since the norm of f1ðtÞ is unity, we
conclude that �1ðtÞ ¼ f1ðtÞ. Moreover, from the figure it is deduced that the inner product

h f2ðtÞ; �1ðtÞi ¼ 0 and h f2ðtÞ; f2ðtÞi ¼ 4, which means that �2ðtÞ ¼ f2ðtÞ=2. Once this is

known, it is easily verified that h f3ðtÞ; �1ðtÞi ¼ 1
2
and h f3ðtÞ; �2ðtÞi ¼ 0, from which it

follows that g3ðtÞ ¼ f3ðtÞ � �1ðtÞ=2. The set of functions fgiðtÞg has been depicted in

Figure A.3(b). From this figure we calculate k g3 k2¼ 1
4
, so that �3ðtÞ ¼ 2g3ðtÞ, and finally

from all those results the signal set f�iðtÞg, as given in Figure A.3(c), can be constructed. In

this example the given functions do not show linear dependence and therefore the set f�iðtÞg
contains as many functions as the given set f fiðtÞg.

&

A.4 THE REPRESENTATION OF NOISE IN SIGNAL SPACE

In this section we will confine our analysis to the widely used concept of wide-sense

stationary, zero mean, white, Gaussian noise. A sample function of the noise is denoted by

NðtÞ and the spectral density is N0=2. We construct the noise vector n in the signal space,

where the elements of this noise vector are defined by

ni ¼ hNðtÞ; �iðtÞi ðA:23Þ

Since this integration is a linear operation, these noise elements will also show a Gaussian

distribution and it will be clear that the mean of ni equals zero, for all i. When, besides these

data, the cross-correlations of the different noise elements are determined, the noise
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elements are completely specified. Those cross-correlations are found to be

E½ninj� ¼ E

Z b

a

NðtÞ �iðtÞ dt
Z b

a

Nð�Þ �jð�Þ d�
� �

¼ E

Zb

a

Z
NðtÞ Nð�Þ �iðtÞ �jð�Þ dt d�

2

4

3

5

¼
Zb

a

Z
E½NðtÞNð�Þ��iðtÞ�jð�Þ dt d� ðA:24Þ

In this expression the expectation represents the autocorrelation function of the noise, which

reads RNNðt; �Þ ¼ �ðt � �ÞN0=2. This is inserted in the last equation to arrive at

E½ninj� ¼ N0

2

Zb

a

Z
�ðt � �Þ�iðtÞ�jð�Þ dt d�

¼ N0

2

Z b

a

�iðtÞ�jðtÞ dt ðA:25Þ

f1(t)

φ1(t)

g1(t)

f3(t)

φ2(t)

g2(t)

f2(t)

g3(t)

φ3(t)

1

1

1

1

1 1

−1 −1

2

2

−2

−2

1

1

1

1

1

1

1 1

1

0

0

0

0

0

0

0 0

0

t

t

t

t

t

t

t t

t

¼ ¾

½

½

½ ¼

¼

¾

¾

(b)

(c)

(a)

½

−½

Figure A.3 The construction of a set of orthonormal functions f�iðtÞg from a set of given functions

ffiðtÞg using the Gram–Schmidt orthogonalization procedure
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Remembering that the set f�iðtÞg is orthonormal, the following cross-correlations result

E½ninj� ¼
N0

2
; for i ¼ j

0; for i 6¼ j

8
<

: ðA:26Þ

From this equation it is concluded that the different noise elements ni are uncorrelated and,

since they are Gaussian with zero mean, they are independent. Moreover, all noise elements

show the same variance of N0=2. This simple and symmetric result is another interesting

feature of the orthonormal signal spaces as introduced in this appendix.

A.4.1 Relevant and Irrelevant Noise

When considering a signal that is disturbed by noise we want to construct a common signal

space to describe both the signal and noise in the same space. In that case we construct a

signal space to completely describe all possible signals involved. When we want to attempt

to describe the noise NðtÞ using that signal space, it will, as a rule, be inadequate to comp-

letely characterize the noise. In that case we split the noise into one part NrðtÞ that is pro-
jected on to the signal space, called the relevant noise, and another part NiðtÞ that is

orthogonal to the space set up by the signals, called the irrelevant noise. Thus, the relevant

noise is given by the vector nr with components

nr;i ¼
Z b

a

NðtÞ�iðtÞ dt ðA:27Þ

By definition the irrelevant noise reads

NiðtÞ ¼4 NðtÞ � NrðtÞ ðA:28Þ

Next we will show that the irrelevant noise part is orthogonal to the signal space. For this

purpose let us consider a signal sðtÞ and an orthonormal signal space f�iðtÞg. Let us suppose
that sðtÞ can completely be described as a vector in this signal space. The inner product of

the irrelevant noise NiðtÞ and the signal reads

Z b

a

NiðtÞsðtÞ dt ¼
Z b

a

fNðtÞ � NrðtÞgsðtÞ dt

¼
Z b

a

NðtÞsðtÞ dt �
Z b

a

NrðtÞsðtÞ dt

¼
Z b

a

NðtÞ
X

k

sk�kðtÞ dt �
Z b

a

X

k

nr; k�kðtÞsðtÞ dt

¼
Z b

a

X

k

skNðtÞ�kðtÞ dt �
X

k

nr; ksk

¼
X

k

sknr; k �
X

k

nr; ksk ¼ 0 ðA:29Þ
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For certain applications, for instance optimum detection of a known signal in noise, it

appears that the irrelevant part of the noise may be discarded.

A.5 SIGNAL CONSTELLATIONS

In this section we will present the signal space description of a few signals that are often met

in practice. The signal space with indications of possible signal realizations is called a signal

constellation. In detection, the error probability appears always to be a function of Ed=N0,

where Ed is the energy of the difference of signals. However, we learned in Section A.2 that

this energy is in the signal space represented by the squared distance of the signals involved.

Considering two signals siðtÞ and sjðtÞ, their squared distance is written as

d2ij ¼k si � sj k2¼
Z b

a

½siðtÞ � sjðtÞ�2 dt ¼ Ei þ Ej � 2Eij ðA:30Þ

where Ei and Ej are the energies of the corresponding signals and Eij represents the inner

product of the signals. In specific cases where Ei ¼ Ej ¼ E for all i and j, Equation (A.30) is

written as

d2ij ¼ 2Eð1� �ijÞ ðA:31Þ

with the cross-correlations �ij defined by

�ij ¼4 si � sj
k si k � k sj k ðA:32Þ

A.5.1 Binary Antipodal Signals

Consider the two rectangular signals

s1ðtÞ ¼ �s2ðtÞ ¼
ffiffiffiffi
E

T

r
; 0 � t � T ðA:33Þ

and their bandpass equivalents

s1ðtÞ ¼ �s2ðtÞ ¼
ffiffiffiffiffiffi
2E

T

r
cos!0t; 0 � t � T ðA:34Þ

with T ¼ n� 2p=!0 and n integer.

The cross-correlation of those signals equals �1 and the distance between the two

signals is

d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð1� �12Þ

p
¼ 2

ffiffiffiffi
E

p
ðA:35Þ
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The space is one-dimensional, since the two signals involved are dependent. The signal vec-

tors are s1 ¼ ½ ffiffiffiffi
E

p � and s2 ¼ ½� ffiffiffiffi
E

p �. This signal set is called an antipodal signal constellation
and is depicted in Figure A.4.

A.5.2 Binary Orthogonal Signals

Next we consider the signal set

s1ðtÞ ¼
ffiffiffiffiffiffi
2E

T

r
cos!0t; 0 � t � T ðA:36Þ

s2ðtÞ ¼
ffiffiffiffiffiffi
2E

T

r
sin!0t; 0 � t � T ðA:37Þ

where either T ¼ np=!0 (with n integer) or T � 1=!0, so that �12 ¼ 0 or �12 � 0,

respectively. Due to this property those signals are called orthogonal signals. In this case

the signal space is two-dimensional and s1 ¼ ½ ffiffiffiffi
E

p
; 0�, while s2 ¼ ½0; ffiffiffiffi

E
p �. It is easily verified

that the distance between the signals amounts to d12 ¼
ffiffiffiffiffiffi
2E

p
. The signal constellation is

given in Figure A.5.

E E

s 1s 2

Figure A.4 The signal constellation of the binary antipodal signals

s1

s2

d 2E12 =

Figure A.5 The signal constellation of the binary orthogonal signals
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A.5.3 Multiphase Signals

In the multiphase case all possible signal vectors are on a circle with radius
ffiffiffiffi
E

p
. This cor-

responds to the M-ary phase modulation. The signals are represented by

siðtÞ ¼ Re

ffiffiffiffiffiffi
2E

T

r
exp j!0t þ jði� 1Þ 2p

M

� �( )
; for i ¼ 1; 2; . . . ;M; 0 � t � T ðA:38Þ

with the same requirement for the relation between T and !0 as in the former section. The

signal vectors are given by

si ¼
ffiffiffiffi
E

p
cos

ði� 1Þ2p
M

;
ffiffiffiffi
E

p
sin

ði� 1Þ2p
M

� �
ðA:39Þ

In Figure A.6 two examples are depicted, namely M ¼ 4 in Figure A.6(a) and M ¼ 8 in

Figure A.6(b). The case of M ¼ 4 can be considered as a pair of two orthogonal signals;

namely the pair of vectors ½s1; s3� is orthogonal to the pair ½s2; s4�. For that reason this is a

special case of the biorthogonal signal set, which is dealt with later on in this section. This

orthogonality is used in QPSK modulation.

A.5.4 Multiamplitude Signals

The multiamplitude case is a straightforward extension of the antipodal signal constellation.

The extension is in fact a manifold, let us say M, of signal vectors on the one-dimensional

axis (see Figure A.4). In most applications these points are equidistant.

s1 s1

s2

s2

s3

s4

s3 s5

s6

s4 s7

s8

E
E

(b)(a)

Figure A.6 The signal constellation of M-phase signals
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A.5.5 QAM Signals

A QAM (quadrature amplitude modulated) signal is a signal where both the amplitude and

phase are modulated. In that sense it is a combination of the multiamplitude and multi-

phase modulated signal. Different constellations are possible; two of them are depicted in

Figure A.7. Figure A.7(a) shows a rectangular grid of possible signal vectors, whereas in the

example of Figure A.7(b) the vectors are situated on circles. This signal constellation is used

in such applications as high-speed telephone modems, cable modems and digital distribution

of audio and video signals over CATV networks.

A.5.6 M-ary Orthogonal Signals

The M-ary orthogonal signal set is no more no less than an M-dimensional extension of the

binary orthogonal signal set; i.e. in this case the signal space has M dimensions and all

possible signals are orthogonal to all others. For M ¼ 3 and assuming that all signals bear

the same energy, the signal vectors are

s1 ¼ ½
ffiffiffiffi
E

p
; 0; 0�

s2 ¼ ½0;
ffiffiffiffi
E

p
; 0�

s3 ¼ ½0; 0;
ffiffiffiffi
E

p
� ðA:40Þ

This signal set has been illustrated in Figure A.8. The distance between two arbitrary signal

pairs is d ¼ ffiffiffiffiffiffi
2E

p
.

A.5.7 Biorthogonal Signals

An M-ary biorthogonal signal set is constructed from an M=2-ary orthogonal signal set by

simply adding the negatives of all the orthogonal signals. It will be clear that the dimension

(a) (b)

Figure A.7 The signal constellation of QAM signals: (a) rectangular distribution; (b) circular

distribution
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of the signal space remains as M=2. The result is given in Figure A.9(a) for M ¼ 4 and in

Figure A.9(b) for M ¼ 6.

A.5.8 Simplex Signals

To explain the simplex signal set we start from a set of M orthogonal signals ffiðtÞg with the

vector presentation ff ig. We determine the mean of this signal set

f ¼ 1

M

XM

i¼1

f i ðA:41Þ

s1

s3

s2

2E

2E

2E

Figure A.8 The signal constellation of the M-ary orthogonal signal set for M ¼ 3

s1

s2

−s1

−s2

(a) (b)

s1−s1

−s3

s3

s2

−s2

Figure A.9 The signal constellation of theM-ary biorthogonal signal set for (a)M ¼ 4 and (b)M ¼ 6
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In order to arrive at the simplex signal set, this mean is subtracted from each vector of the

orthogonal set:

si ¼ f i � �ff; i ¼ 1; 2; . . . ;M ðA:42Þ

In fact this operation means that the origin is translated to the point �ff. Therefore the distance
between any pair of possible vectors si remains d ¼ ffiffiffiffiffiffi

2E
p

. Figure A.10 shows the simplex

signals for M ¼ 2 and M ¼ 3. Note that the dimensionality is reduced by 1 compared to the

starting orthogonal set.

Due to the transformation the signals are no longer orthogonal. On the other hand, it will

be clear that the mean signal energy has decreased. Since the distance between signal pairs

are the same as for orthogonal signals, the simplex signal set is able to realize communication

with the same quality (i.e. error probability) but using less energy per bit and thus less power.

A.6 PROBLEMS

A.1 Derive the Schwarz inequality (A.11) from the triangular inequality (A.9).

A.2 Use the properties of integration and the definition of Equation (A.12) to show that

signals satisfy the properties of vectors as given in Section A.1.

A.3 Use Equation (A.19) to show that g2ðtÞ is orthogonal to �1ðtÞ.
A.4 Show that for binary orthogonal signals one of the two given relations between T and

!0 is required for orthogonality.

A.5 Calculate the distance between adjacent signal vectors, i.e. the minimum distance, for

the M-ary phase signal.

A.6 Calculate the energy of the signals from the simplex signal set, expressed in terms of

the energy in the signals of the M-ary orthogonal signal set.

A.7 Calculate the cross-correlation between the various signals of the simplex signal set.

s1 s1s2

s2

s3

2E

2E

(b)(a)

Figure A.10 The simplex signal set for (a) M ¼ 2 and (b) M ¼ 3
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Appendix B
Attenuation, Phase Shift
and Decibels

The transfer function of a linear time-invariant system, denoted by Hð!Þ, is in general a

complex function of !. It is indicative of the manner in which time harmonic signals (sine

and cosine) propagate through such a system. The modulus of Hð!Þ is the factor by which

the amplitude of the incoming harmonic signal is scaled and the argument of Hð!Þ indicates
the phase shift introduced by the system. We then can write

Hð!Þ ¼ exp½�að!Þ � jbð!Þ� ¼ exp½�að!Þ� exp½�jbð!Þ� ¼ jHð!Þj exp½�jbð!Þ� ðB:1Þ

where

að!Þ ¼ ln
1

jHð!Þj ðB:2Þ

is the attenuation of the system in neper (abbreviated as Np) and bð!Þ is the phase shift

introduced by the system. The neper is an old unit that is not used in practice anymore. A

more common measure of attenuation is the decibel (abbreviated as dB). The attenuation in

dB is defined as

adð!Þ ¼ 20 log10
1

jHð!Þj ðB:3Þ

From the relation

log10 x ¼
ln x

ln 10
ðB:4Þ

we conclude that

adð!Þ ¼ 20
1

ln 10
ln

1

jHð!Þj ¼ 20� 0:4343 ln
1

jHð!Þj ¼ 8:686 að!Þ ðB:5Þ
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From this it follows that 1 Np is equivalent to 8.686 dB. Because the neper is used

infrequently, we will drop the subscript ‘d’ and henceforth speak about attenuation exclu-

sively in terms of dB and denote this as a. The transfer function Hð!Þ is usually defined as a

ratio of the output voltage (or current) and the input voltage (or current). If we look at the

power ratio between the input and output, it is evident that the powers are proportional to the

square of the voltages or currents, i.e.

Pi

Po

¼ jIij2Ri

jIoj2Ro

¼
jVij2
Ri

jVoj2
Ro

ðB:6Þ

where the indices ‘o’ and ‘i’ indicate that the quantity is related to the output and input,

respectively. The quantities Ro;i give the real part of the impedances. If we assume the

situation where Ro ¼ Ri, which is often the case, then the power attenuation is found as

a ¼ 20� log10
jVij
jVoj ¼ 20� log10

jIij
jIoj

¼ 10� log10
Pi

Po

ðB:7Þ

The advantage in using a logarithmic measure for the ratio of magnitudes between the inputs

and outputs lies in the fact that in series connections of systems, the attenuation in each of

the systems expressed in dB needs only to be summed in order to obtain the total attenuation

in dB.

Furthermore, we mention that the decibel is also used to express the absolute levels of

power, current and voltage. The following notations are among others in use:

� dBW – power with respect to P0 ¼ 1 W

� dBm – power with respect to P0 ¼ 1 mW

� dB�V – voltage with respect to V0 ¼ 1 �V.

Definitions and general properties of logarithms are given in Appendix C, Section C.6.

Table B.1 presents a list of linear power ratios and the corresponding amount of dBs.

Table B.1 List of dB values for a

given linear power ratio

Linear ratio dB

0.25 �6

0.5 �3

1 0

2 3

4 6

10 10

100 20

1000 30
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Appendix C
Mathematical Relations

C.1 TRIGONOMETRIC RELATIONS

cosð�� �Þ ¼ cos� cos � � sin� sin � ðC:1Þ
sinð�� �Þ ¼ sin� cos � � cos� sin� ðC:2Þ
cosð�� p

2
Þ ¼ � sin� ðC:3Þ

sinð�� p
2
Þ ¼ � cos� ðC:4Þ

cos 2� ¼ cos2 �� sin2 � ðC:5Þ
sin 2� ¼ 2 sin� cos� ðC:6Þ
cos� ¼ 1

2
½expðj�Þ þ expð�j�Þ� ðC:7Þ

sin� ¼ 1

2j
½expðj�Þ � expð�j�Þ� ðC:8Þ

cos� cos � ¼ 1

2
½cosð�� �Þ þ cosð�þ �Þ� ðC:9Þ

sin� sin� ¼ 1

2
½cosð�� �Þ � cosð�þ �Þ� ðC:10Þ

sin� cos � ¼ 1

2
½sinð�� �Þ þ sinð�þ �Þ� ðC:11Þ

cos2 � ¼ 1

2
ð1þ cos 2�Þ ðC:12Þ

sin2 � ¼ 1

2
ð1� cos 2�Þ ðC:13Þ

cos3 � ¼ 3

4
cos�þ 1

4
cos 3� ðC:14Þ

sin3 � ¼ 3

4
sin�� 1

4
sin 3� ðC:15Þ
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cos4 � ¼ 3

8
þ 1

2
cos 2�þ 1

8
cos 4� ðC:16Þ

sin4 � ¼ 3

8
� 1

2
cos 2�þ 1

8
cos 4� ðC:17Þ

A cos�� B sin� ¼ R cosð�þ �Þ ðC:18Þ

where

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

; A ¼ R cos �

� ¼ arctanðB=AÞ; B ¼ R sin �

C.2 DERIVATIVES

y ¼ yðxÞ y0 ¼ dy=dx

y ¼ a y0 ¼ 0; a constant ðC:19Þ
y ¼ x y0 ¼ 1 ðC:20Þ
y ¼ xn y0 ¼ nxn�1 ðC:21Þ
y ¼ ln x; x > 0 y0 ¼ 1=x ðC:22Þ
y ¼ log x; x > 0 y0 ¼ ð1=xÞ log e ðC:23Þ
y ¼ sin x y0 ¼ cos x ðC:24Þ
y ¼ cos x y0 ¼ �sin x ðC:25Þ
y ¼ tan x y0 ¼ 1= cos2 x ðC:26Þ
y ¼ cot x y0 ¼ �1= sin2 x ðC:27Þ
y ¼ exp x y0 ¼ exp x ðC:28Þ
y ¼ ax y0 ¼ ax ln a ðC:29Þ
y ¼ arcsin x; jxj < 1 y0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

ðC:30Þ
y ¼ arccos x; jxj < 1 y0 ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

ðC:31Þ
y ¼ arctan x y0 ¼ 1=ð1þ x2Þ ðC:32Þ
y ¼ sinðaxþ bÞ y0 ¼ a cosðaxþ bÞ ðC:33Þ

C.2.1 Rules for Differentiation

y ¼ uþ v y0 ¼ u0 þ v0 ðC:34Þ
y ¼ uv y0 ¼ u0v þ uv0 ðC:35Þ
y ¼ u v w y0 ¼ u0vwþ uv0wþ uvw0 ðC:36Þ
y ¼ u=v y0 ¼ ðu0v � uv0Þ=v2 ðC:37Þ
y ¼ uv y0 ¼ uvðv0 ln uþ u0v=uÞ ðC:38Þ

C.2.2 Chain Rule

y ¼ f ðzÞ; z ¼ gðxÞ ! y0 ¼ dy

dz
� dz

dx
ðC:39Þ
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C.2.3 Stationary Points

maximum if : f 0ðxÞ ¼ 0 and f 00ðxÞ < 0 ðC:40Þ
minimum if : f 0ðxÞ ¼ 0 and f 00ðxÞ > 0 ðC:41Þ
point of inflection if : f 00ðxÞ ¼ 0 and f 000ðxÞ 6¼ 0 ðC:42Þ

C.3 INDEFINITE INTEGRALS

C.3.1 Basic Integrals
Z

f 0ðxÞ dx ¼ f ðxÞ ðC:43Þ
Z b

a

f ðxÞ dx ¼ FðbÞ � FðaÞ; if

Z

f ðxÞ dx ¼ FðxÞ ðC:44Þ
Z

xn dx ¼ xnþ1

nþ 1
ðC:45Þ

Z

1

x
dx ¼ ln jxj ðC:46Þ

Z

sin x dx ¼ �cos x ðC:47Þ
Z

cos x dx ¼ sin x ðC:48Þ
Z

tan x dx ¼ �ln cos x ðC:49Þ
Z

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx ¼ arcsin x ¼ p

2
� arccos x; jxj < 1 ðC:50Þ

Z

1

1þ x2
dx ¼ arctan x ¼ p

2
� arccot x ðC:51Þ

Z

exp x dx ¼ exp x ðC:52Þ
Z

ax dx ¼ ax

ln a
; a > 0 ðC:53Þ

Z

sinh x dx ¼ cosh x ðC:54Þ
Z

cosh x dx ¼ sinh x ðC:55Þ
Z

1

sin x
dx ¼ ln tan

x

2

� �

ðC:56Þ
Z

1

cos2 x
dx ¼ tan x ðC:57Þ

Z

1

sin2 x
dx ¼ � cot x ðC:58Þ
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C.3.2 Integration by Parts
Z

u dv ¼ u v �
Z

v du or

Z

u v0 dx ¼ u v �
Z

u0 v dx ðC:59Þ

example :

Z

ln x dx ¼ x ln x�
Z

x
1

x
dx ¼ xðln x� 1Þ

C.3.3 Rational Algebraic Functions

Z

ðaþ bxÞn dx ¼ ðaþ bxÞnþ1

bðnþ 1Þ ; n > 0 ðC:60Þ
Z

1

aþ bx
dx ¼ 1

b
ln jaþ bxj ðC:61Þ

Z

1

ðaþ bxÞn dx ¼ �1

bðn� 1Þðaþ bxÞn�1
; n > 1 ðC:62Þ

Z

1

ax2 þ bxþ c
dx ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p arctan

2axþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p

� �

; for b2 < 4ac

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p ln

2axþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2axþ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

�

�

�

�

�

�

�

�

�

�

; for b2 > 4ac

¼ �2

2axþ b
; for b2 ¼ 4ac

ðC:63Þ
Z

x

ax2 þ bxþ c
dx ¼ 1

2a
ln jax2 þ bxþ cj � b

2a

Z

1

ax2 þ bxþ c
dx ðC:64Þ

Z

1

a2 þ b2x2
dx ¼ 1

ab
arctan

bx

a

� �

ðC:65Þ
Z

x

a2 þ x2
dx ¼ 1

2
lnða2 þ x2Þ ðC:66Þ

Z

x2

a2 þ b2x2
dx ¼ x

b2
� a

b3
arctan

bx

a

� �

ðC:67Þ
Z

1

ða2 þ x2Þ2 dx ¼ x

2a2ða2 þ x2Þ þ
1

2a3
arctan

x

a

� �

ðC:68Þ
Z

x

ða2 þ x2Þ2 dx ¼ �1

2ða2 þ x2Þ ðC:69Þ
Z

x2

ða2 þ x2Þ2 dx ¼ �x

2ða2 þ x2Þ þ
1

2a
arctan

x

a

� �

ðC:70Þ
Z

1

ða2 þ x2Þ3 dx ¼ x

4a2ða2 þ x2Þ2 þ
3x

8a4ða2 þ x2Þ þ
3

8a5
arctan

x

a

� �

ðC:71Þ
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Z

x2

ða2 þ x2Þ3 dx ¼ �x

4ða2 þ x2Þ2 þ
x

8a2ða2 þ x2Þ þ
1

8a3
arctan

x

a

� �

ðC:72Þ
Z

x4

ða2 þ x2Þ3 dx ¼ a2x

4ða2 þ x2Þ2 �
5x

8ða2 þ x2Þ þ
3

8a
arctan

x

a

� �

ðC:73Þ
Z

1

ða2 þ x2Þ4 dx ¼ x

6a2ða2 þ x2Þ3 þ
5x

24a4ða2 þ x2Þ2 þ
5x

16a6ða2 þ x2Þ

þ 5

16a7
arctan

x

a

� �

ðC:74Þ
Z

x2

ða2 þ x2Þ4 dx ¼ �x

6ða2 þ x2Þ3 þ
x

24a2ða2 þ x2Þ2 þ
x

16a4ða2 þ x2Þ
þ 1

16a5
arctan

x

a

� �

ðC:75Þ
Z

x4

ða2 þ x2Þ4 dx ¼ a2x

6ða2 þ x2Þ3 �
7x

24ða2 þ x2Þ2 þ
x

16a2ða2 þ x2Þ
þ 1

16a3
arctan

x

a

� �

ðC:76Þ
Z

1

a4 þ x4
dx ¼

ffiffiffi

2
p

8a3
ln

x2 þ ax
ffiffiffi

2
p þ a2

x2 � ax
ffiffiffi

2
p þ a2

� �

þ 2 arctan
x

ffiffiffi

2
p

a
� 1

� ��

þ 2 arctan
x

ffiffiffi

2
p

a
þ 1

� ��

ðC:77Þ
Z

x2

a4 þ x4
dx ¼

ffiffiffi

2
p

8a
� ln

x2 þ ax
ffiffiffi

2
p þ a2

x2 � ax
ffiffiffi

2
p þ a2

� �

þ 2 arctan
x

ffiffiffi

2
p

a
� 1

� ��

þ 2 arctan
x

ffiffiffi

2
p

a
þ 1

� ��

ðC:78Þ

C.3.4 Trigonometric Functions

Z

cos x dx ¼ sin x ðC:79Þ
Z

x cosðaxÞ dx ¼ 1

a2
½cosðaxÞ þ ax sinðaxÞ� ðC:80Þ

Z

x2 cosðaxÞ dx ¼ 1

a3
½2ax cosðaxÞ þ ða2x2 � 2Þ sinðaxÞ� ðC:81Þ

Z

sin x dx ¼ � cos x ðC:82Þ
Z

x sinðaxÞ dx ¼ 1

a2
½sinðaxÞ � ax cosðaxÞ� ðC:83Þ

Z

x2 sinðaxÞ dx ¼ 1

a3
½2ax sinðaxÞ � ðax2 � 2Þ cosðaxÞ� ðC:84Þ
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Reduction formulae:

Z

sinn x dx ¼ �1

n
sinn�1 x cos xþ n� 1

n

Z

sinn�2 x dx ðC:85Þ
Z

cosn x dx ¼ 1

n
cosn�1 x sin xþ n� 1

n

Z

cosn�2 x dx ðC:86Þ
Z

tann x dx ¼ 1

n� 1
tann�1 x�

Z

tann�2 x dx; n 6¼ 1 ðC:87Þ

C.3.5 Exponential Functions

Z

expðaxÞ dx ¼ expðaxÞ
a

; a real or complex ðC:88Þ
Z

x expðaxÞ dx ¼ expðaxÞ x

a
� 1

a2

� �

; a real or complex ðC:89Þ
Z

x2 expðaxÞ dx ¼ expðaxÞ x2

a
� 2x

a2
þ 2

a3

� �

; a real or complex ðC:90Þ
Z

x3 expðaxÞ dx ¼ expðaxÞ x3

a
� 3x2

a2
þ 6x

a3
� 6

a4

� �

; a real or complex ðC:91Þ
Z

x expðax2Þ dx ¼ 1

2a
expðax2Þ ðC:92Þ

Z

expðaxÞ sinðbxÞ dx ¼ expðaxÞ
a2 þ b2

½a sinðbxÞ � b cosðbxÞ� ðC:93Þ
Z

expðaxÞ cosðbxÞ dx ¼ expðaxÞ
a2 þ b2

½a cosðbxÞ þ b sinðbxÞ� ðC:94Þ

Reduction formula:

Z

exp x

xn
dx ¼ �ðn� 1Þ exp x

xn�1
þ ðn� 1Þ

Z

exp x

xn�1
dx ðC:95Þ

C.4 DEFINITE INTEGRALS
Z 1

�1
expð�ax2Þ dx ¼

ffiffiffi

p
a

r

; a > 0 ðC:96Þ
Z 1

�1
expð�a2x2 þ bxÞ dx ¼

ffiffiffi

p
p
a

exp
b2

4a2

� �

; a > 0 ðC:97Þ
Z 1

0

x2 expð�ax2Þ dx ¼ 1

4a

ffiffiffi

p
a

r

; a > 0 ðC:98Þ
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Z 1

0

sin x

x
dx ¼ p

2
ðC:99Þ

Z 1

0

sin x

x

� �2

dx ¼ p
2

ðC:100Þ
Z 1

0

x sinðaxÞ
b2 þ x2

dx ¼ p
2
expð�abÞ; a > 0; b > 0 ðC:101Þ

Z 1

0

cosðaxÞ
b2 þ x2

dx ¼ p
2b

expð�abÞ; a > 0; b > 0 ðC:102Þ
Z 1

0

cosðaxÞ
ðb2 � x2Þ2 dx ¼ p

4b3
½sinðabÞ � ab cosðabÞ�; a > 0; b > 0 ðC:103Þ

C.5 SERIES

Taylor expansion:

f ðxþ aÞ ¼ f ðxÞ þ af 0ðxÞ þ a2

2!
f 00ðxÞ þ � � � þ an

n!
f ðnÞðxÞ þ � � � ðC:104Þ

McLaurin expansion:

f ðxÞ ¼ f ð0Þ þ xf 0ð0Þ þ x2

2!
f 00ð0Þ þ � � � þ xn

n!
f ðnÞð0Þ þ � � � ðC:105Þ

exp x ¼ 1þ xþ 1

2!
x2 þ 1

3!
x3 þ � � � ðC:106Þ

sin x ¼ x� 1

3!
x3 þ 1

5!
x5 � � � � ðC:107Þ

cos x ¼ 1� 1

2!
x2 þ 1

4!
x4 � � � � ðC:108Þ

tan x ¼ xþ 1

3
x3 þ 2

15
x5 þ � � � ðC:109Þ

arcsin x ¼ xþ 1

6
x3 þ 3

40
x5 þ � � � ðC:110Þ

arctan x ¼ x� 1

3
x3 þ 1

5
x5 � � � � ; jxj < 1 ðC:111Þ

sinc x ¼ 1� 1

3!
x2 þ 1

5!
x4 � � � � ðC:112Þ

lnð1þ xÞ ¼ x� 1

2
x2 þ 1

3
x3 � � � � ðC:113Þ

ð1þ xÞn ¼ 1þ nxþ nðn� 1Þ
2!

x2 þ nðn� 1Þðn� 2Þ
3!

x3 þ � � � ; jnxj < 1 ðC:114Þ
X

N

n¼1

n ¼ NðN þ 1Þ
2

ðC:115Þ
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X

N

n¼1

n2 ¼ NðN þ 1Þð2N þ 1Þ
6

ðC:116Þ

X

N

n¼1

n3 ¼ N2ðN þ 1Þ2
4

ðC:117Þ

X

N

n¼0

xn ¼ 1� xNþ1

1� x
ðC:118Þ

X

N

n¼0

N!

n!ðN � nÞ! x
nyN�n ¼ ðxþ yÞN ðC:119Þ

X

1

n¼0

axn ¼ a

1� x
; jxj < 1 ðC:120Þ

C.6 LOGARITHMS

Definitions:

If 10x ¼ y; then log y¼4 x; y � 0 ðC:121Þ
If exp x ¼ y; then ln y ¼4 x; y � 0 ðC:122Þ

Properties:

logðabÞ ¼ log aþ log b ðC:123Þ

log
a

b

� �

¼ log a� log b ðC:124Þ

lnðabÞ ¼ ln aþ ln b ðC:125Þ

ln
a

b

� �

¼ ln a� ln b ðC:126Þ

log ab ¼ b log a ðC:127Þ
ln ab ¼ b ln a ðC:128Þ

log a ¼ ln a

lnð10Þ ¼ 0:4343� ln a ðC:129Þ
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Appendix D
Summary of Probability Theory

1. Probability distribution function:

FXðxÞ ¼ PðX � xÞ ¼
Z x

�1
fXðuÞ du

2. Probability density function:

fXðxÞ ¼ dFXðxÞ
dx

3. Gaussian probability density function:

fXðxÞ ¼ 1

�
ffiffiffiffiffiffi
2p

p exp �ðx� XÞ2
2�2

" #

4. Independence:

fX;Yðx; yÞ ¼ fXðxÞ fYðyÞ

5. Expectation:

E½X� ¼
Z 1

�1
xfXðxÞ dx

E½gðXÞ� ¼
Z 1

�1
gðxÞfXðxÞ dx ! special case : E½X2� ¼

Z 1

�1
x2fXðxÞ dx
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6. Variance:

�2
X ¼4 E½ðX � E½X�Þ2� ¼ E½X2� � E2½X�

7. Addition of random variables:

E½X þ Y � ¼ E½X� þ E½Y �

8. Independent random variables:

E½X Y� ¼ E½X� E½Y�

9. Correlation:

RXY ¼ E½XY � ¼
Z1

�1

Z
xy fX;Yðx; yÞ dx dy
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Appendix E
Definition of a Few Special Functions

1. Unit-step function (Figure E.1):

uðxÞ ¼4 1; x � 0

0; x < 0

�

2. Signum function (Figure E.2):

sgnðxÞ¼4 1; x � 0

�1; x < 0

�

3. Rectangular function (Figure E.3):

rectðxÞ¼4 1; jxj � 1
2

0; jxj > 1
2

(
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0

u( )x

x

1

Figure E.1

0

sgn( )x

x

1

−1

Figure E.2

0
x

1

1/2−1/2

rect( )x

Figure E.3



4. Triangular function (Figure E.4):

triðxÞ¼4 1� jxj; jxj � 1

0; jxj > 1

�

5. Sinc function (Figure E.5):

sincðxÞ ¼4 sin x

x

6. Delta function (Figure E.6):

Z b

a

f ðxÞ�ðx� x0Þ dx ¼4 f ðx0Þ; a � x0 < b

0; elsewhere

�

0

tri( )x

x

1

−1 1

Figure E.4

sinc( )x

x
π−π−2π 2π 3π−3π 0

1

Figure E.5

x0

δ( )x

Figure E.6
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Appendix F
The Q(.) and erfc Functions

The Q function is defined as

QðxÞ ¼4 1
ffiffiffiffiffiffi

2p
p

Z 1

x

exp � y2

2

� �

dy ðF:1Þ

The function is used to evaluate the error probability of transmission systems that are

disturbed by additive Gaussian noise. Some textbooks use a different function for that

purpose, namely the complementary error function, abbreviated as erfc. This latter function

is defined as

erfcðxÞ ¼4 1� erfðxÞ ¼ 2
ffiffiffi

p
p

Z 1

x

expð�y2Þ dy ðF:2Þ

From Equations (F.1) and (F.2) it follows that the Q function is related to the erfc function as

follows:

QðxÞ ¼ 1

2
erfc

x
ffiffiffi

2
p

� �

ðF:3Þ

The integral in these equations cannot be solved analytically. A simple and accurate

expression (error less than 0.27 %) is given by

QðxÞ � 1

ð1� 0:339Þxþ 0:339
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 5:510
p

" #

expð�x2=2Þ
ffiffiffiffiffiffi

2p
p ðF:4Þ

Most modern mathematical software packages such as Matlab, Maple and Mathematica

comprise the erfc function as a standard function. Both functions are presented graphically in

Figures F.1 and F.2.
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Appendix G
Fourier Transforms

Definition:

Xð!Þ ¼
Z 1

�1
xðtÞ expð�j!tÞ dt () xðtÞ ¼ 1

2p

Z 1

�1
Xð!Þ expðj!tÞ d!

Properties:
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Time domain Frequency domain

1: ax1ðtÞ þ bx2ðtÞ aX1ð!Þ þ bX2ð!Þ
2: xðatÞ 1

jajX
�!
a

�

3: xð�tÞ X�ð!Þ
4: xðt � t0Þ Xð!Þ expð�j!t0Þ
5: xðtÞ expðj!0tÞ Xð!� !0Þ
6:

dnxðtÞ
dtn

ðj!ÞnXð!Þ

7:
R t

�1 xð�Þ d� Xð!Þ
j!
þ pXð0Þ�ð!Þ

8:
R1
�1 xðtÞ dt ¼!  ¼ Xð0Þ

9: xð0Þ ¼!  ¼ 1
2p

R1
�1 Xð!Þ d!

10: ð�jtÞnxðtÞ dnXð!Þ
d!n

11: x�ðtÞ X�ð�!Þ
12:

R1
�1 x1ð�Þx2ðt � �Þ d�ðconv:Þ X1ð!ÞX2ð!Þ

13: x1ðtÞx2ðtÞ 1

2p

R1
�1 X1ð�ÞX2ð!� �Þ d� ðconv:Þ

14:
R1
�1 jxðtÞj2 dt ¼!  ¼ 1

2p

R1
�1 jXð!Þj2 d! ðParsevalÞ

15: XðtÞ 2�xð�!ÞðdualityÞ



Fourier table with �, � , �, !0 and W real constants:

xðtÞ X(!) Condition

1: ��ðtÞ �

2:
�

2p
��ð!Þ

3: uðtÞ p�ð!Þ þ 1
j!

4: 1
2
�ðtÞ � 1

j2pt
uð!Þ

5: rectðt=�Þ � sincð!�=2Þ � > 0

6: ðW=pÞ sincðWtÞ rect
!

2W

� �
W > 0

7: triðt=�Þ � sinc2ð!�=2Þ � > 0

8: ðW=pÞsinc2ðWtÞ tri

�
!

2W

�
W > 0

9: sgnðtÞ 2

j!

10:
�1
jpt

sgnð!Þ
11: expðj!0tÞ 2p�ð!� !0Þ
12: �ðt � �Þ expð�j!�Þ
13: cosð!0tÞ p½�ð!� !0Þ þ �ð!þ !0Þ�
14: sinð!0tÞ �jp½�ð!� !0Þ � �ð!þ !0Þ�
15: uðtÞ cosð!0tÞ p

2
½�ð!� !0Þ þ �ð!þ !0Þ� þ j!

!2
0 � !2

16: uðtÞ sinð!0tÞ �j p
2
½�ð!� !0Þ � �ð!þ !0Þ� þ !0

!2
0 � !2

17: uðtÞ expð��tÞ 1

�þ j!
� > 0

18: uðtÞt expð��tÞ 1

ð�þ j!Þ2 � > 0

19: uðtÞt2 expð��tÞ 2

ð�þ j!Þ3 � > 0

20: uðtÞt3 expð��tÞ 6

ð�þ j!Þ4 � > 0

21: expð��jtjÞ 2�

�2 þ !2
� > 0

22:
1

�
ffiffiffiffiffiffi
2p
p exp

�t2
2�2

� �
exp

��2!2

2

� �
� > 0

23:
P1

n¼�1 �ðt � nTÞ 2p
T

X1
n¼�1

� !� n
2p
T

� �
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Appendix H
Mathematical and Physical
Constants

Base of natural logarithm: e ¼ 2:718 281 8
Logarithm of 2 to base 10: logð2Þ ¼ 0:301 030 0
Pi: p ¼ 3:141 592 7
Boltzmann’s constant: k ¼ 1:38� 10�23 ½J=K�
Planck’s constant: h ¼ 6:63� 10�34 ½J s�
Temperature in kelvin: Temperature in �Cþ 273

Standard ambient temperature: T0 ¼ 290 ½K� ¼ 17 ½�C�
Thermal energy kT at standard ambient temperature: kT0 ¼ 4:00� 10�21 ½J�
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Index

Symbols

�-function, 5, 67, 78, 81, 83, 205, 242
discrete-time -, 82

�-pulse, 51

a.c. component, 27

aliasing, 86

distortion, 52

amplifier

front-end -, 146

low-noise -, 146

optical -, 145

amplitude modulated (AM) signal, 101

amplitude shift keying (ASK), 112,

173, 190

analog-to-digital conversion, 54

analytic

function, 180, 181

signal, 102

antenna noise, 144

anti-causal function, 180, 181

antipodal signals, 222

attenuation, 229

autocorrelation function, 11, 69

properties of -, 13

autocorrelation of discrete-time process, 32, 57,

90

autocovariance of discrete-time process, 32

available

power gain, 138

spectral density, 134

spectral density in amplifiers, 138

average

time -, 14

band-limited process

definition of -, 74

band-limiting filter

definition of -, 74

bandpass

filter, 73

signal, 101

bandpass filtering

of white noise, 110

bandpass process, 44

conversion to baseband, 119

definition of -, 74

direct sampling of -, 119

properties of -, 107

bandwidth

of bandpass process, 44

of low pass process, 43

root-mean-squared (r.m.s.) -, 43

baseband process

definition of -, 74

Bayes’ theorem, 155

Bessel function, 113

biorthogonal signals, 225

binary detection

in Gaussian noise, 158

binary phase shift keying (BPSK), 191

bipolar nonreturn-to-zero (NRZ) signal, 98

bit error probability, 155, 157

Boltzmann’s constant, 130, 247

Brownian motion, 130, 133

Butterworth filter, 98

Campbell’s theorem, 201

extension of -, 204, 206
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CATV networks, 225

causality, 68

chain rule, 232

characteristic frequency, 104, 112

characteristic function, 194, 204

joint -, 202

of shot noise, 201

second -, 194

second joint -, 202, 204

clutter, 207

code division multiple access (CDMA), 49

coloured noise, 130

complementary error-function, 158, 243

complete orthonormal set, 216

complex envelope, 102, 105, 111

spectrum of -, 105, 111

complex impulse response, 105

complex processes, 30, 111

applied to current, 31

applied to voltage, 31

conditional probabilities, 154, 155, 159, 163

constant resistance network, 151

constants

mathematical -, 247

physical -, 247

convolution, 67, 68, 160, 245

discrete -, 82, 90

correlation, 240

coefficient, 28

receiver, 171

correlation function, 11

measurement of -, 24

cost matrix, 165

covariance function

auto-, 26

cross-, 26

cross-correlation, 220, 222

of discrete-time process, 32, 90

cross-correlation function, 19, 70

properties of -, 20

time averaged -, 21

cross-covariance of discrete-time process, 32

cross-power spectrum, 45

properties of -, 46

cumulant, 197

cumulative probability distribution function, 9

cyclo-stationary process, 16, 77

data signal, 19, 77, 154, 157

autocorrelation function of -, 78

spectrum of -, 78, 79

d.c. component, 27, 203

de-emphasis, 97

decibel, 118, 145, 229

list of - values, 230

decision

criterion, 165

regions, 155, 156

statistics, 162

threshold, 155, 160

decision rule

Bayes -, 165

maximum a posteriori (MAP) -, 165

maximum likelihood (ML) -, 165

minimax -, 165

Neyman-Pearson -, 165

demodulation

coherent -, 48

synchronous -, 48, 118

derivatives, 232

detection

of binary signals, 154

optimum -, 162

differentiating network, 96

differentiation, 232

digital signal processor (DSP), 50,

184

discrete Fourier transform (DFT),

84

discrete-time

process, 5, 54, 193

signal, 82, 86

system, 82, 86

discrete-time Fourier transform (DTFT),

83

discriminator, 103

distance

measurement, 21

metric, 162

distortionless transmission, 121

distribution function, 9

diversity, 188

doubly stochastic process, 205

duality, 245

dynamic range, 55

effective noise temperature, 139

eigenfunctions, 67

electrons, 193, 198, 207

ensemble, 3

mean, 3

envelope, 102

detection, 106, 111

distribution, 113
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equalization, 99

equivalent

noise bandwidth, 75, 140

noise resistance, 134

noise temperature, 134, 138

equivalent baseband

system, 105

transfer function, 104

Erbium doped fiber amplifier (EDFA), 145

ergodic

jointly -, 21

ergodic process

definition of -, 14

ergodicity of discrete-time process, 33

error probability, 155, 164

estimation error, 176, 178

excess noise factor, 206

expansion

McLaurin -, 237

Taylor -, 237

expectation, 239

false alarm, 165

fast Fourier transform (FFT), 84

filter

non-recursive -, 88

recursive -, 89

tapped delay line -, 88

transversal -, 88

filtering

of processes, 68

of thermal noise, 135

finite impulse response (FIR) filter, 82, 89

FM

detection, 97

signal, 101

Fourier series, 57, 218

Fourier transform, 39, 57, 67, 71, 194

discrete -, 82, 84

properties of -, 245

table, 246

two-dimensional -, 202

frequency conversion, 49

frequency shift keying (FSK), 112, 161,

190

Friis’ formulas, 143

front-end amplifier, 146

Gaussian noise, 158, 162, 163, 167, 219

Gaussian processes, 27, 72

bandpass -, 112

jointly -, 27

properties of -, 29

Gaussian random variables, 27

covariance matrix of -, 28

jointly -, 28

properties of -, 29

Gram-Schmidt orthogonalization, 218

group delay, 122

guard band, 62

harmonic signal, 218

Hermitian spectrum, 104

hypothesis testing, 154, 161

impulse response, 67, 68, 71, 87, 199, 201

complex -, 105

of matched filter, 161

of optimum filter, 167

independence, 239

independent processes, 10, 21

infinite impulse response (IIR) filter, 82, 89

information signal, 1, 205

inner product

of signals, 216

of vectors, 215

integrals

definite -, 236

indefinite -, 233

integrate-and-dump receiver, 175

interarrival time, 197

interpolation by sinc function, 52

intersymbol interference, 99

inverse discrete Fourier transform (IDFT), 84

inverse discrete-time Fourier transform

(IDTFT), 83

inverse fast Fourier transform (IFFT), 84

irrelevant noise, 160, 221

jitter, 175

Kronecker delta, 216

Laplace transform, 179

light emitting diode (LED), 50

likelihood ratio, 155

linear time-invariant (LTI)

filter, 65, 160, 201

system, 66

logarithms, 238

Lorentz profile, 42

low-noise amplifier, 146
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M-ary biorthogonal signals, 225

M-ary detection

in Gaussian noise, 161

M-ary phase modulation, 224

Manchester code, 98

matched filter, 161, 162, 167

for coloured noise, 167

matched impedances, 138

matching network, 149

mathematical

constants, 247

relations, 231

maximum ratio combining, 189

McLaurin expansion, 237

mean

ensemble -, 3

frequency, 44

of discrete-time process, 31

value, 10

mean-squared error, 52, 178

minimization of -, 176

miss, 165

mixer, 117

modems

cable -, 225

telephone -, 225

modulation, 47

amplitude -, 101

by random carrier, 49

frequency -, 101

phase -, 102

moment generating function, 196

moments of random variable, 196

multiamplitude signals, 224

multiphase signals, 224

multiple-input multiple-output (MIMO)

systems, 65

narrowband

bandpass process

definition of -, 75

system

definition of -, 74

neper, 229

noise, 1

coloured -, 130

Gaussian bandpass -, 111

in optical amplifiers, 145

in systems, 137

multiplicative -, 201

presentation in signal space, 219

thermal -, 130

vector, 159, 219

noise bandwidth

equivalent -, 76

noise figure

average -, 140

definition of -, 140

of a cable, 141

of an attenuator, 141

of cascade, 143

spot -, 140

standard -, 140

noise in amplifiers, 138

noise temperature

effective -, 139

of cascade, 143

system -, 143

noisy amplifier model, 139

nonreturn-to-zero (NRZ) signal

bipolar -, 98

polar -, 79, 98

norm of a vector, 215

Norton equivalent circuit, 131

Nyquist frequency, 51

Nyquist’s theorem, 136

optical amplifier

Erbium doped fiber -, 145

semiconductor -, 145

optical signal detection, 207

optimum filter characteristic, 177

optimum smoothing filter, 178

orthogonal

processes, 21

quadrature processes, 109

random variables, 109

vectors, 215

orthogonal signals, 223

M-ary -, 225

orthonormal set, 158, 216

complete -, 216

orthonormal signals, 216

oscillator spectrum, 42

Parseval’s formula, 168, 245

periodically stationary process,

16

phase

delay, 122

distribution, 5, 114, 115

shift, 229
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phase modulation

M-ary -, 224

phase reversal keying (PRK),

191

phase shift keying (PSK), 190

phasor, 102

photodetector, 198, 205

photodiode, 193, 194

avalanche -, 194, 207

photomultiplier tube, 194, 207

photons, 193, 198, 205

physical

constants, 247

interpretation, 27

Planck’s constant, 130

Poisson

distribution, 193

impulse process, 194, 205

processes, 193

sum formula, 81

Poisson processes

homogeneous -, 193, 198

inhomogeneous -, 194, 204

sum of independent -, 196

polar nonreturn-to-zero (NRZ) signal,

79, 98

posterior probabilities, 165

power, 40

a.c. -, 27

electrical -, 133

in output process, 71

maximum transfer of -, 138, 147

of discrete-time process, 57

of stochastic process, 133

power spectrum, 39

cross-, 45

measurement of -, 116

properties of -, 40

pre-emphasis, 97

pre-envelope, 102

prediction, 175, 179

discrete-time -, 184

pure -, 184

pure -, 179

prior probabilities, 154, 163, 165

probability density function, 10,

239

Gaussian -, 27, 239

joint -, 10

Laplacian -, 186

Poisson -, 193

probability distribution function, 239

joint -

Nth-order -, 10

second-order -, 10

process

bandpass -, 48, 106

stationary -

Nth-order -, 11

first-order -, 10

second-order -, 11

Q-function, 158, 164, 243

quadrature

components, 102, 106, 118

measurement of -, 118

description of bandpass processes, 106

description of modulated signals, 101

processes, 107–109

signals, 218

quadrature amplitude modulated (QAM)

signals, 225

quadrature phase shift keying (QPSK), 224

quantization, 54

characteristic, 55

error, 55

levels, 55

noise, 56

step size, 55

quantizer, 55

non-uniform -, 57

uniform -, 56

queuing, 197

radar, 207

detection, 165

ranging, 22

random

gain, 205

signal, 1

variable, 2

vector, 155

random data signal, 77, 154

spectrum of -, 78

random point processes, 193

random sequence

continuous -, 5

discrete -, 7

random-pulse process, 205

Rayleigh-distribution, 113

RC-network, 71, 76, 137

realization, 3
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reconstruction

of bandpass processes, 119

of sampled processes, 52

of sampled signals, 51

rectangular

function, 241

pulse, 79, 84, 201

rectifier, 103

relevant noise, 159, 221

return-to-zero signal

unipolar -, 80

Rice-distribution, 113

root-mean-squared (r.m.s.)

bandwidth, 43

value, 27

sample function, 3

sampling, 5

direct -, 119

flat-top -, 62

ideal -, 51

of bandpass processes, 119

rate, 51, 52, 119

theorem

for deterministic signals, 51

for stochastic processes, 52

Schwarz’s inequality, 166, 216

semi-invariant, 197

semiconductor optical amplifier (SOA),

145

series, 237

shot noise, 199

signal

constellation, 219, 222

energy, 159, 162, 218

harmonic -, 218

restoration, 179

space, 161, 163, 216

vector, 159, 216

signal-to-noise ratio, 140, 164, 166

matched filter output -, 168

signal-to-quantization-noise ratio,

56

signal-to-shot-noise ratio, 201, 206

signum function, 241

simplex signal set, 163, 164, 227

sinc function, 52, 81, 84, 242

single-input single-output (SISO) systems,

65

smoothing, 175, 176

discrete-time -, 183

spectrum

analyzer, 116

of data signal, 77

of discrete-time process, 57

of filter output, 71

spill-over, 63, 99

split-phase code, 98

spread spectrum, 50

stable system, 87

stationary

points, 233

processes, 9

stochastic processes, 2

continuous -, 4

discrete -, 4, 6

discrete-time -, 4, 5, 31

independent -, 10

spectra of -, 39

strict-sense stationary process, 11

sufficient statistic, 160

superheterodyne, 116

switching center, 208

synchronization, 175

system

causal -, 179

optimal -, 153

stable -, 180

synthesis, 153

Taylor expansion, 237

Thévenin equivalent circuit, 131

thermal noise, 130

current in passive networks,

137

in passive networks, 131

spectrum of current in a resistor,

131

spectrum of voltage across a resistor,

130

voltage in passive networks,

136

time average, 14

transfer function, 67, 89

equivalent baseband -, 104

of bandpass filter, 104

triangular function, 242

trigonometric relations, 231

uncorrelated processes, 27

unipolar return-to-zero, 80

unit-step function, 241
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variance, 26, 55, 197, 201, 204, 240

vector spaces, 215

voice channel, 62

waiting time, 197

white noise, 70, 75, 91, 129, 158, 163, 167, 203,

205, 219

bandpass filtering of -, 110

whitening filter, 169

wide-sense stationary, 219

jointly -, 175

wide-sense stationary processes, 71, 175,

206

definition of -, 12

discrete-time -, 57, 90

jointly -, 20, 70

Wiener filter, 154, 175

discrete time -, 183

Wiener-Hopf equation, 179

Wiener-Khinchin relation, 39

z-transform, 57, 86
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