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ABSTRACT 

 
The Brain-Computer Interface (BCI) is a system where the human brain and a hardware device interact 

instantly. This transfers the brain data recorded directly to the computer that can be used for external 

system control. There are four key components of the BCI method, namely the acquisition of signals, 

preprocessing of acquired signals, extraction, and classification of features. In conventional machine 

learning algorithms, the accuracy achieved is negligible and not up to the mark to classify motor 

imagery data for multiple classes. The main explanation for this is that features are manually selected, 

and we are unable to get certain features that result in greater precision. For classifying the multi-class 

motor imagery (MI) data, we have implemented deep learning algorithms in this work. Two different 

approaches have been explored in this study: Artificial Neural Network (ANN) and Long Short-Term 

Memory (LSTM). We evaluate the accuracy of classification on two datasets, i.e. Competition for BCI 

III, dataset IIIa and competition for BCI IV, dataset IIa. The results showed that deep learning 

algorithms provide higher accuracy outcomes than conventional machine learning algorithms. LSTM 

outperforms the ANN and the deep learning classifier gives 96.2 percent average classification 

accuracy. 
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Brain-computer interface; motor imagery; artificial neural network; long-short term memory, 

classification. 
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Motivation 

 
Brain-Computer Interface (BCI) is an evolving exploration area that expects to enhance the standard 

and level of computer-based applications on humans. Brain-Computer Interface offers ways to 

communicate your feelings without any vocal contact with the eternal system. For the last two, three 

decades BCI has gained researchers' attention and a lot of work started in this field. In 1973 French 

neurophysiologist Jaques Vidal first made use of the word Brain-Computer Interface while predicting 

the possibility of combing the brain activity and the power of the computer. 

 

A brain-computer interface-based computer system is a system in which movements related to 

muscles are replaced with device commands that are produced during the translation of brain signals. 

These types of systems are of great importance when used for locked-in state (LIS) patients that are 

suffering from movement related disorders and are not able to communicate with the outside world 

[1]-[3]. Other than the healthcare field, there are applications of BCI systems like gaming, virtual 

reality, every-day human-computer interaction (HCI), and performance monitoring for humans [4] –

[6]. 

 

A Brain-Computer Interface system comprises of the components: A BCI signal acquisition, signal 

processing, extraction of features, and classification [7] as shown in figure 1. In the first section, the 

electrical activity of the brain is gathered by performing some voluntary tasks. Brain signals may be 

obtained using two different methods: invasive and non-invasive. For signal acquisition purposes, the 

electrode is mounted in the brain’s scalp invasive method. In a non-invasive technique, signals are 

acquired without conducting any surgical intervention.  

 

 

Figure 1: Basic Components of BCI System 



3 

 

 

 

Electroencephalogram (EEG) is one of the most commonly used signal acquisition methods due to its 

non-invasive nature, low cost, and ease of usage. German psychiatrist Hans Berger in 1924 for the 

first-time recorded EEG signals. EEG is a technique in which the brain’s electrical signals are 

measured by placing an array of electrodes on the human brain’s scalp. The brain signals gather 

through EEG are then pre-processed. The next step after the pre-processing of signals is the feature 

extraction. Then the features vector is given as input to train a classifier. As a result, the classifier 

classifies the electrical signal according to the user’s motor imagery movement. 

 

Objective 

 
The prime objective of this research is to develop a novel algorithm for the motor imagery data for 

better classification of signals in the field of BCI. Different types of challenges are faced during  BCI 

studies like experiment design, signals acquisition features extraction, and training of data. All of 

these steps require time. Since the non-invasive methods of data acquisition are more prone to noise 

and artifacts like muscles movement and eye blink becomes a challenge in the classification of such 

data. Furthermore, the desired feature that is best for the classification of these data signals is not 

known. In traditional machine learning approaches the best features are collected by hit and trial 

method where you first evaluate the features and after evaluation, the best ones are chosen for 

classification purpose. 

 

In this study, we are optimizing the classification part of the BCI system by using different deep 

learning methods. In the previous studies, machine learning methods have provided better 

classification accuracies[9],[10], and [11]. The major issue is the extraction of features[8]. Moreover, 

the problem of features extraction in BCI is also resolved in deep learning techniques because in 

deep learning networks features can be extracted from the raw data. In this work, we are going to 

implement Artificial Neural Networks (ANN) and Recurrent Neural Network (RNN). There are 

different algorithms in RNN but we implemented Long Short-Term Memory (LSTM) architecture. 

The study will be split into the following major objectives to achieve the goal of this research: 
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• Literature Review  

 

This review will discuss the already existing Machine Learning approaches for the 

classification of EEG signals for this research. Testing methods and other requirements will 

also be researched and discussed in this review. 

 

 

•  Dataset and Methodology: 

 

In methodology, there will be a discussion about the data set used in this research and the 

architectures i.e. Artificial neural network (ANN) and Recurrent Neural Network (LSTM) 

that are used to classify those data sets. 

• Results: 

 

In the result section, there will be the results of both the architectures used in this research 

• Conclusion: 

 

In the end, there will be conclusions regarding this research and future works. 
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LITERATURE REVIEW 
 

 

 

 

 

 

  
 



6 

 

 

 

 

2.1 Understanding the EEG, ANN, and LSTM 

 
 In this study two different algorithms: Artificial Neural Network and Long-Short Term Memory 

are used for the classification of EEG datasets in four classes. Therefore, it is mandatory to 

understand EEG signals, working of ANN and LSTM. In this chapter, we describe the details of 

EEG, ANN, and LSTM. 

 

 2.1.1 Electroencephalography (EEG) 

   For capturing the brain’s activity there are different ways [12]: electrooculography 

(EOG), electroencephalography (EEG),  near-infrared spectroscopy (NIRS), and function near-

infrared spectroscopy (fNIRS) that is the most recent one. EEG is a mostly used method for imaging 

that can be used for Brain-Computer Interfaces (BCI) because of its non-invasive nature, ease of use, 

portability, and cheap. It is less sensitive to artifacts, which make it ideal for long-term studies. It 

also makes it possible for dysfunctional subjects such as children or partially or completely locked-in 

state patients. In the detection of hemodynamic brain response, spatial resolution is higher than the 

detection of neural stimulus-response in EEG [13],[14]. There is the following type of noises present 

in an EEG signal. 

 

(i) Motion Artifacts 

 

Different motion artifacts occur in the form of peaks and changes in baseline in data the 

major reason is due to muscle movements that can occur during the recording of signals and 

due to improper scalp attachment, they should be removed because if they are too many, the 

entire data is rejected. In situations where they cannot be ignored, for example, where the 

dataset is limited, small, or where recordings from subjects can not be prevented. The best 

solution is to remove those artifacts and restore the signal. Different approaches are used to 

remove motion artifacts, like recording additional data on the subject’s movement using 

referenced channels.[13],[14]and[15]. 
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(ii) Instrumental Noise 

 

Using basic low-pass filtering methods, instrumental noise is a random noise that can be 

removed. After data conversion to the frequency domain, a method such as Moving Average 

and cutting off higher frequencies are used. The sensitivity of these methods needs to be 

manually determined to avoid data distortion [13],[16]. 

 

 

(iii) Physiological Noise 

 

When coping with noise sources for physiological use, potentials of skin’s outer layer, and 

ionic features. It is important to regard the capacity of sweat glands also. The solution to 

handle this problem is to reduce the skin potential and improve the signal to noise ratio, by 

using abrasive cream on the skin.[11],[17] and[18]. 

 

 

Power line noise can be removed using a notch filter. For removing the noise from the raw dataset 

bandpass filter can be used. The lower cut-off frequency used in this dataset is 0.5 Hz and a higher 

cut-off frequency at 100 Hz. 

 

2.1.2 Artificial Neural Network (ANN) 

 
ANN is a network of feed-forward neurons comprising various layers [22]. To update the weights, 

backpropagation is used. In ANN architecture, there are various types of layers: an input layer, 

rectified linear units (ReLU) layer, dense layers which are also called fully connected layers. The 

input layer of the network is then transformed into a one-dimensional array and connected to eight 

hidden fully connected dense layers. In each hidden layer, the number of a neuron depends on input 

in every layer. Every input and output is linked via learnable weights in these layers. Non-liner 

activation function such as ReLU is also passed through each connected layer. Usually, in the final 

flatten layer there are the same amount of nodes as the number of classes or groups to which the 

input data must be classified. For the last layer, the activation function is chosen very carefully and 
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generally differ from previous fully connected layers. I this work the activation function used for the 

last layer is SoftMax. 

 

2.1.3 Recurrent Neural Network (LSTM) 
 

Long Short-Term Memory, one of the Recurrent Neural Network types, is the other architecture 

we use to explore the classification of EEG signals. Initially, the Recurrent Neural Network was 

represented by the study group of Schmidhuber and won eight international competitions in 

pattern recognition and machine learning [25],[26]. LSTM network provides the best results for 

data classification of time series and LSTM provides better results compared to traditional 

methods according to previous studies [27][28]. It operates on the concept of saving a layer’s 

output and feeding that output to the next input layer, which assists in predicting the outcome of 

the layer. LSTM is one of the RNN types capable of learning from observation, which is an 

advantage of LSTM over other types of RNNs and neural networks. The key thing about LSTM 

is the cell state that can be modified, i.e. it can be removed or added. In LSTM, there are three 

gates: the forget gate, the input gate, and the output gate [29]. The decision of deleting the cell 

data is taken by the forget gate and the input gate decides which information to be updated. The 

output gate gives the final output for the designed network [30]. 
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METHODOLOGY 
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The methods and descriptions of all the algorithms and experiments used in the remaining part of 

this thesis are discussed in this chapter. The first chapter describes a detailed description of ANN 

and LSTM and the techniques used to train them. Then there is a summary of the EEG signals, 

the problems faced during the training of these architectures, and finally how our algorithms used 

to classify the four-class EEG signals using classifiers like ANN and LSTM. 

 

3.1 Experimental Studies 

 
The datasets used in this study include EEG recordings of many subjects in four-class motor 

imagery.  

The four-class MI applies to motor imagery gestures for the right hand, left hand, tongue, and foot. 

Data collection IIIa [1] of BCI competition III comprises of the EEG recording of three normal 

subjects. Nine subjects from BCI competition IV, dataset IIa [2],[3] are included in the second 

dataset list. The Brain-Computer Interfaces Laboratory (BCI-Lab) was used to collect both of the 

datasets used in this study. All participants who took part in the experimental work were asked to 

carry out four different motor imagery tasks based on a symbolic cue shown to the participants. In 

the next section, there is an explanation of both datasets, their time scheme diagram, and the steps for 

preprocessing used in this work. 

 

3.1.1 Dataset IIIa from BCI Competition 

  

1) Paradigm   

The experiment begins with sitting on a relaxing chair with the subject. Subjects were asked to 

carry out Imagery movements for all the classes which include left-hand motor imagery, right-

hand motor imagery, foot motor imagery, and tongue motor imagery in response to a cue. The 

signs were shown randomly. With 40 trials each, there were at least 6 runs. In total, each run 

consists of 8 seconds. The first two seconds were blank and silent,  cue (beep sound) signals the 

beginning of a trial at time = 2s.  
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Figure 2: The time scheme for the paradigm 

 

For 1s, an arrow symbol was displayed at time t = 3s which points to the left, right, up, or 

down. In the meantime, the participant was told to perform imagery movement of the left hand, 

right hand, tongue, or foot according to the arrow displayed. This imagery process stops at t = 

7s before appearing the cross. The time scheme for this dataset is shown in figure 2. Participant 

1 of this K3 experiment consisted of a total of 9 runs, resulting in a total of 360 trials for K3. 

For each class, there were 90 trials. Of the 360 trials, 180 were for training, and 180 were for 

evaluation purposes. There were 6 runs for the subject 2(K6) and subject 3 (L1), which resulted 

in 240 trials for each subject. 

For the first two participants, there were 60 trials for each class. Data from the training and 

assessment comprises 120 trials for each subject with 30 trials for each class. As shown in 

figure 3, the raw signal is for a single subject. It contains all the data from a subject’s trials. A 

channel or electrode placement on the scalp is defined by each color in the figure. It contains all 

the data from a subject’s trials. In figure 3(a), the first 20 channels are shown in different colors 

and the remaining 21-40 and 41-60 channels are represented in figure 3(b) and figure 3(c) in the 

same way. The details of the labels are given in table 1. 
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Figure 3(a): Raw signal part 1 

 

 

Figure 3(b): Raw signal part 2 
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Figure 3(c): Raw signal part 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fp Frontal polar 

F Frontal lobes 

C Central lobes 

T Temporal lobes 

P Parietal lobes 

O Occipital lobes 

AF Intermediate between Fp and F 

FC Intermediate between F and C 

FT Intermediate between F and T 

CP Intermediate between C and P 

PO Intermediate between P and O 

TP Intermediate between T and P 

Z Electrode position on the middle 

Odd numbers Electrode on the left hemisphere 

Even number Electrode on the right hemisphere 

 

Table 1: Nomenclature 
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2) Pre-processing 

 

A 64-channel EEG amplifier was used for the recording of the data of all three subjects; the 

left mastoid was used for comparison purposes while the right one mastoid was used as 

ground. Sixty EEG-based electrodes were mounted on the brain’s scalp to record signals. 

The recorded EEG signals were sampled at 250 Hz. the data signals were filtered between 1 

and 50 Hz to eliminate power line noise using a notch filter. Figure 3 displays the raw and 

filtered signals. The single-electrode raw signal is shown in figure 5(c) and the resulting 

signal is shown in figure 5(d) after applying the filter. 

 The artifacts containing trials were also included. The data trig value tells about the 

beginning of each trial and Class Label provided information about the classes marked “1” 

(left-hand motor imagery), “2” (right-hand motor imagery), “3” (tongue motor imagery), 

and “4” (foot motor imagery). Data from the first three seconds are omitted for our analysis 

and data from t= 3s to t = 7s is gathered where the motor imagery activity occurs. 

 Figures 4(a), 4(b), and 4(c), each with 20 channels, display a single trial for Class1. The 

trial contains the movement component of 4-sec motor imaging. It collects a sample of size 

4s with 60 channels. At the sampling speed of 50 Hz, each sample is further segmented. A 

64-channel EEG amplifier from neurocan was used to record data from all three subjects, 

the left mastoid was used as a reference and the right mastoid was used as a ground. Sixty 

EEG electrodes were mounted on the scalp of the brain to record signals. The recorded EEG 

signals were filtered between 1 and 50 Hz to eliminate power line noise. 
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Figure 4(a): Single class trial part 1 

 

 

Figure 4(b): Single class trial part 2 
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Figure 4(c): Single class trial part 3 

 

 

 

Figure 5(a): Raw signal 
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Figure 5(b): Filtered signal 

 

3.1.2 Dataset IIa BCI Competition IV 

  

1) Paradigm 

 

The paradigm of data set IIa used in this work is shown in Fig. 3. At time t = 0s an auditory 

signal along with a fixation cross appeared in a dark screen which lasted for 2s. A visual 

cue with an arrow pointing to the left, right, upward, and downward was presented at time t 

= 2s. These arrows act as a guide for all the subject’s imagery movements of the left hand, 

right hand, tongue, or foot. The cue lasted for 1.25s. At time t = 3s subjects started 

performing motor imagery task and it lasted for 3s. At time t = 6s the motor imagery task 

was completed followed by a short break before starting the next trial. The complete 

scheme is shown in figure 6. 

 

Figure 6: The time scheme for the paradigm 
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  The data was collected from 9 subjects. There were four different classes labeled 

as ‘1’,’2’,’3’, and ‘4’. Class 1 for left-hand motor imagery, 2 for a right hand, 3 for feet, and 

4 for tongue imagery. The artifact data is included in this work. Two sessions were 

conducted on two different days for experimenting and there were a total of 6 runs in each 

of the sessions. Each run was separated by a short break. There were 48 trials in each run. 

Overall, there was 288 trial per session for each subject. For each class there were 72 trials, 

for training and evaluation, there were 288 trials for each subject. The raw data including all 

the runs along with short breaks for a single subject is shown in figure 7(a). Each color 

represents the channel or electrode placed on the scalp. There was a total of 25 channels. 

Since we were working on EEG signals only the first 22 channels were selected. Figure 7(b) 

shown single class motor imagery activity collected from time t=3s to t=6s. 

 
Figure 7(a): Raw signal of one subject’s data 

 

 
Figure 7(b): Single class trial 
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2) Pre-Processing 

 

The experiment consisted of 9 participants and consisted of 25 channels in the data 

collection. There were 22 EEG channels and 3 monopolar electrooculograms (EOG) 

channels among those 25. As a reference, the left mastoid was used and the right mastoid 

was used as ground. 22 EEG and 3 EOG electrodes were mounted on the scalp of the brain 

to monitor signals, and the data signals collected were sampled at 250 Hz. using notch 

filters, the data signals were filtered between 1 and 50 Hz to remove power line noise again. 

Then a bandpass filter was implemented at a lower cut-off frequency of 0.5 Hz and a higher 

cut-off at 100 Hz. Only samples of data from 22 EEG channels were used in this work. 

  The raw data set was presented in GDF format and the BioSig toolbox functions 

were used for data loading [20]. We collected the data samples after the onset of cross 

fixation in a time interval from 3s to 6s. Each sample collected was further segmented at a 

50 Hz rate. The data set is used to validate the classifier’s accuracy results with a window 

size of 1s, 2s, and 3s. for training and testing, separate datasets were provided 

 

3.2     Adopted Methodology 

 

The approach that was implemented for this work is shown in figure 8. In the previous portion, data 

acquisition and data preprocessing were addressed. The next step is selecting the architecture after 

collecting the preprocessed signals. We have used ANN and LSTM architecture to classify the 

datasets for motor imagery used in this work. We trained the model after selecting the required 

architecture. The test datasets were then transferred to the trained model to obtain the accuracy 

results for both architectures. In later pages, the architectures used in this research and the precision 

outcomes are discussed. 
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Figure 8: Adopted methodology flow chart 

 

 

3.3     Deep Learning Method 

 

Several layers of neurons are stacked above one another in deep neural networks. By adding 

hidden layers to the networks [21], the performance of the network can be increased. By 

increasing the number of layers, the complexity of the network rises. There is no need to 

manually extract features that are a challenging job in the machine learning approach, the key 

benefit of deep learning algorithms. We only have to feed the dataset to the network, which 

learns the characteristics automatically. In this work, we worked with LSTM in RNN and ANN 

architecture. 
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3.3.1     Artificial Neural Network (ANN) 

 
ANN is a network of feed-forward neurons comprising various layers [22]. To update 

the weights, backpropagation is used. The architecture consists of 10 layers. In this 

architecture, there are various types of layers: an input layer, rectified linear units 

(ReLU) layer, dense layers which are also called fully connected layers. The input layer 

of the network is then transformed into a one-dimensional array and connected to eight 

hidden fully connected dense layers. In each hidden layer, the number of a neuron 

depends on input in every layer. Every input and output is linked via learnable weights 

in these layers. Non-liner activation function such as ReLU is also passed through each 

connected layer. Usually, the final flatten layer has the same number of nodes as the 

number of groups to which the input data must be classified. The activation function of 

the last layer is very carefully chosen and generally differ from previous fully connected 

layers. SoftMax, which normalizes outcomes between 0 and 1 based on the likelihood of 

each class, is one of the most commonly used layers. Usually, through stochastic 

gradient descent, neural networks are modified: Stochastic gradient descent was selected 

as the training algorithm (sgd). The batch size and layers were set at 64. By training the 

network repeatedly to obtain maximum accuracy, all hyperparameters such as the 

number of neurons, learning rate, weights, optimizer, and batch size were chosen 

empirically. The accuracy results of the selection of hyper-parameters used in this 

analysis are shown in table 2. It is easy to freely change the iterations of training [24]. In 

our work, 150 epochs of the model were prepared. The learning rate of 0.01 was chosen 

for this study. A higher learning rate causes the network to diverge inversely, and 

sluggish convergence is caused by a lower learning rate. The mean classification 

accuracy with different window sizes on the subjects was considered for the 

performance analysis metrics. 
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Table 2: Hyper-parameters for ANN 

Number of layers 10 

Number of Neurons 3 

Learning rate 0.01 

Activation function Relu, Softmax 

Loss function Categorical cross-entropy 

Maximum number of Epochs to train 150 

Optimizer  Stochastic Gradient Descent (SGD) 

 

3.3.2     Recurrent Neural Network (LSTM) 
 

Long Short-Term Memory, one of the Recurrent Neural Network types, is the other architecture 

we use to explore the classification of EEG signals. Initially, the Recurrent Neural Network was 

represented by the study group of Schmidhuber and won eight international competitions in 

pattern recognition and machine learning [25],[26]. LSTM network provides the best results for 

data classification of time series and LSTM provides better results compared to traditional 

methods according to previous studies [27][28]. It operates on the concept of saving a layer’s 

output and feeding that output to the next input layer, which assists in predicting the outcome of 

the layer. LSTM is one of the RNN types capable of learning from observation, which is an 

advantage of LSTM over other types of RNNs and neural networks. The key thing about LSTM 

is the cell state that can be modified, i.e. it can be removed or added. In LSTM, there are three 

gates: the forget gate, the input gate, and the output gate [29]. The decision of deleting the cell 

data is taken by the forget gate and the input gate decides which information to be updated. The 

final output of the network is given at the end of the output gate [30]. 

 In this architecture, there are numerous layer types: the input layer, LSTM layer, 

rectified linear unit (ReLU) layer, dense layers are completely connected. For the LSTM layer 

pre-processed samples are given as input. The hidden layers that include the flatten layer and 

dense layers are connected to the LSTM layer. After each dense layer, the ReLU layer is added. 

The output layer that has SoftMax as the activation feature is followed by Relu. As four groups 

exist in our datasets, the output layer has 4 nodes. Adam was the optimizer used in LSTM. For 

the performance appraisal metrics, the mean accuracy of the classification of the subjects for 
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various window sizes was taken into account. The parameters used for LSTM architecture in 

this study are given in table 3. After training the network repeatedly, all the hyper-parameters 

were empirically selected to achieve maximum results for accuracy. The summary of LSTM is 

shown in figure 9. 

  

 Figure 9: Summary of LSTM 

 

                                  Table 3: Hyper-parameters for LSTM 

 

 

 

 

 

 

 

 

 

Total no. of layers 5 

Hidden layers 3 

Learning rate 0.001 

Activation function Relu 

Loss function Categorical cross-entropy 

Epochs 150 

Optimizer  Adaptive moment estimation 

(ADAM) 
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CHAPTER 4 
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To evaluate the performance of the architectures the trained models were tested against the test 

data provided in the dataset and the classification accuracy of Artificial Neural network (ANN) 

and Long-Short Term Memory (LSTM) of Recurrent Neural Network (RNN) was calculated 

against different window sizes. The test accuracy results using different window sizes were: 

 

4.1 Long-Short Term Memory (LSTM) Architecture Results on Data Set IIIa : 

 
The Model for Long-Short Term Memory on data set IIIa was trained using window sizes of 4s, 3s, 

2s, and 1s respectively. The highest train and test accuracies were achieved while using the window 

of 4 sec and the average test accuracy was 96.99%. The result of all window sizes are shown below: 

  

 

4.1.1 LSTM Accuracy and loss graph with 4sec Window: 

 

 

The average accuracy achieved using window size 4sec was 0.9620. The graph of train and test 

accuracies is given in Figure 10(a). The accuracy is increasing gradually and after a certain number 

of epochs the highest accuracy is achieved and after that the graph line becomes straight. Here the 

green color shows the training accuracy and the blue line shows the test accuracy. 

 

 

Figure 10(a): Accuracy graph 

 



26 

 

 

 

The   loss graphs are for LSTM architecture using 4-sec window size is shown in Figure 10(b). The 

loss values are decreasing as the number f epochs are increasing and weights are updated and 

optimized. After a certain time, the loss values achieve their minimum values. 

 

 
Figure 10(b): Loss graph 

 

4.2 Artificial Neural Network (ANN) Results on Data Set IIIa : 
 

The Model for Artificial Neural Network on data set IIIa was trained using window sizes of 4s, 3s, 

2s, and 1s respectively. The highest train and test accuracies were achieved while using a window of 

4 sec and the average test accuracy was 0.947%. The result of all window sizes are shown below: 

 

4.2.1 ANN Accuracy and Loss graph with 4sec Window: 

 

 

The average accuracy achieved using window size 4sec was 0.9470. The graph of train and test 

accuracies is given in Figure 11(a). The accuracy is increasing gradually and after a certain number 

of epochs the highest accuracy is achieved and after that the graph line becomes straight. Here the 

green color shows the training accuracy and the blue line shows the test accuracy. 
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Figure 11(a): Accuracy graph 

 

The loss graphs are for ANN architecture using 4-sec window size is shown in Figure 11(b). The loss 

values are decreasing as the number f epochs are increasing and weights are updated and optimized. 

After a certain time, the loss values achieve their minimum values. 

 

 

 
Figure 11(b): Loss graph 
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 Table 4: Classification accuracies for dataset IIIa  with different window sizes        

Architecture Window Size K3 K6 L1 Average 

ANN 4s 0.961 0.941 0.946 0.947 

ANN 3s 0.933 0.921 0.929 0.927 

ANN 2s 0.920 0.911 0.915 0.915 

ANN 1s 0.85 0.82 0.840 0.830 

LSTM 4s 0.960 0.961 0.952 0.9620 

LSTM 3s 0.947 0.948 0.955 0.949 

LSTM 2s 0.921 0.920 0.929 0.925 

LSTM 1s 0.88 0.870 0.876 0.870 

 

 

4.3 Long-Short Term Memory (LSTM) Architecture Results on Data Set IIa : 

 
The Model for Long-Short Term Memory on data set IIa was trained using window sizes of  3s, 2s, 

and 1s respectively. The highest train and test accuracies were achieved while using a window of 3 

sec and the average test accuracy was 0.945%. The result of all window sizes are shown below: 

 

4.3.1 LSTM Accuracy and loss with 3sec Window: 

 

 

The average accuracy achieved using window size 3sec was 0.9450. The graph of train and test 

accuracies is given in the figure. The accuracy is increasing gradually and after a certain number of 

epochs the highest accuracy is achieved and after that the graph line becomes straight. Here the green 

color shows the training accuracy and the blue line shows the test accuracy. 
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Figure 11(a): Accuracy graph 

 

 

 

 
 

Figure 12(b): Loss graph 
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4.4 Artificial Neural Network (ANN) Results on Data Set IIa : 
 

The Model for Artificial Neural Network on data set IIIa was trained using window sizes of  3s, 2s, 

and 1s respectively. The highest train and test accuracies were achieved while using a window of 

3sec and the average test accuracy was 0.918%. The result of all window sizes are shown below: 

 

4.4.1 ANN Accuracy and Loss with 3sec Window: 

 

 

The average accuracy achieved using window size 3sec was 0.918. The graph of train and test 

accuracies is given below: 

 

 

Figure 11(a): Accuracy graph 
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Figure 13(b): Loss graph 

 

Table 4: Classification accuracies for dataset IIa  with different window sizes   
      
Architecture Window 

Size 

A1 A2 A3 A4 A5 A6 A7 A8 A9 Avg 

Accuracy 

LSTM 3s 0.947 .933 .949 .945 .946 .947 .949 .948 .947 .945 

LSTM 2s .921 .915 .923 .918 .920 .919 .923 .921 .911 .919 

LSTM 1s .845 .838 .847 .840 .843 .841 .844 .845 .838 .842 

ANN 3s .919 .916 .920 .919 .920 .9175 .922 .919 .918 .918 

ANN 2s .867 .859 .871 .865 .866 .878 .873 .876 .865 .868 

ANN 1s .828 .817 .825 .823 .824 .826 .827 .826 .819 .823 
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5.1 CONCLUSION AND DISCUSSION: 

 
In this study, we examined the classification algorithms for four EEG signals based on class motor 

imagery. The objective of the study was to analyze and evaluate the efficiency of the machine and 

the technique of deep learning models critically. To train, validate, and evaluate the deep learning 

models, two publicly accessible motor imagery data sets comprising of a total of 13 subjects and 4 

classes were used. The data sets were in the form of electrical signals, and the data was pre-processed 

before training the model. To classify the datasets, ANN algorithms were used. to test the 

performance of both the classifiers, classification accuracies have been reported. The impact of 

choosing the various size of windows is also measured. The findings indicate that increasing the size 

of the window has a better effect on the accuracy of classification. 

 

For dataset IIIa, BCI competition IIIa comparison in the table is shown according to a study. For 

accuracy results of this dataset, our proposed LSTM gives the highest performance having an 

average accuracy of 0.962. the second one, with a precision of 0.947, is given by ANN. The least 

precision algorithm with the least accuracy is LDA. BCI competition IV results for dataset IIa are 

identical to the previous dataset, with LSTM achieving the highest score with an accuracy rate of 

.9455. With an accuracy of 0.918, ANN is the second-high accuracy giving classifier, while KNN 

has the lowest average accuracy of 0.679. 

In addition to manual extraction of features, machine learning algorithms prefer to generalize 

complex data patterns, resulting in poor results when the number of classes is increased. Most 

previous studies have used standard machine learning algorithms to operate on binary groups. The 

accuracy achieved for the classification of two mental tasks was 87 percent using the traditional ML 

algorithm SVM [32]. In the same analysis, using SVM on two separate brain signals, 87.2 percent 

average accuracy was calculated. 
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Table 6. Comparison of the different machine learning algorithms with deep learning algorithms  

  on dataset IIIa, BCI competition III, and dataset IIa, BCI competition IV. 

 
Approach Year Dataset Average Accuracy 

LDA 2018 BCI IIIa 0.803 

KNN 2018 BCI IIIa 0.786 

SVM 2018 BCI IIIa 0.793 

NB 2018 BCI IIIa 0.810 

FLS 2018 BCI IIIa 0.865 

ANN (Proposed) 2020 BCI IIIa 0.947 

LSTM (Proposed) 2020 BCI IIIa 0.962 

LDA 2018 BCI IIa 0.712 

KNN 2018 BCI IIa 0.679 

SVM 2018 BCI IIa 0.712 

NB 2018 BCI IIa 0.704 

FLS 2018 BCI IIa 0.726 

ANN (Proposed) 2020 BCI IIa 0.918 

LSTM (Proposed) 2020 BCI IIa 0.945 

 

  
 

The findings have shown that in classifying the datasets, LSTM outperforms ANN. For dataset III, on 

four different window sizes, the precision results of ANN vary from 83.0 to 94.7 percent, and for 

LSTM it ranges from 87.1 to 96.2 percent for a window size from 1s to 4s. the accuracy for ANN 

ranges from 82.3 to 91.8 percent for dataset IIa, and it ranges from 84.2 to 94.5 percent for LSTM for a 

window size of 1s to 3s. 
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