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ABSTRACT 

Android is a leading mobile Operating System (OS), and its market share is increasing 

drastically. Every Android device has a built-in service called Play Store for application 

distribution and updates. A malicious application distributed through the Google play 

store may create a privacy breach. In order to protect end-users, an in-depth security 

mechanism, namely Google Play Protect, has been deployed in the Google Play Store 

to safeguard Android devices from malicious applications. In this work, we have 

investigated the malicious application detection capabilities of the Google Play Protect 

by employing a novel attack based on incremental malicious updates, which 

circumvents the security afforded by Play Protect. Therefore, a seemingly benign 

application called Voice Search is designed and deployed on Play Store. The Voice 

Search application exploits Google Play Store permissions and bypasses users' privacy 

through malicious updates. After malicious updates are installed, the application 

collects the required data such as device details, location, contact information and 

exfiltrates it to the attacker's server. Results show that Google Play Protect is vulnerable 

to malicious incremental update attacks.
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C h a p t e r  1  

INTRODUCTION 

 

1.1 Introduction 

Android operating system (Android OS) is one of the most popular platforms to be used 

for mobile computing devices. More than 86.70% of the worldwide mobile device users 

rely on Android as their primary operating system [1]. The primary source of all software 

for the Android platform is Google's Play Store. Google's Play Store acts as the software 

distribution and update management system for all devices that are running the Android 

OS. The play store provides an install and update mechanism for its users.  A malicious 

software distributed using the Android Play Store can affect millions of users [2] [3]. 

Therefore, Google has deployed an in-depth strategy for rooting out any malicious 

software that is uploaded to its distribution servers. Google uses Play protect to maintain 

Android security and perform in-depth analysis by thoroughly checking android 

applications. Play protect a multi-tiered protection system that is specifically designed to 

keep Android devices safe. Google Play Protect scans for malware, blocks malicious links, 

and performs heuristic analysis to maintain a safe user experience. Google Play protect 

also performs routine analysis of installed applications [4].  

This research aims to perform an analysis of tools and techniques relevant to 

methodologies adopted by Play protect. This study aims to identify possible techniques 

that can circumvent the security afforded by Play protect.  

 

1.2 Problem Statement 

Being the popular platform that Android is, it is very important that the tools and 

techniques to secure the platform be thoroughly and critically examined. A huge number 

of android devices are targeted by malware in the wild. Most android users are not aware 

of these kinds of threats. This study will examine such techniques and provide possible 

breach on google play store that is considered secure by most Android users.  

Google claims that Android users are secure if they install official updates from Google 

Play Store and Enable Google Play Protect services on their mobile devices. This claim 

needs to be evaluated with experimentation that either these official stores are really secure 

from malware attacks or not. 
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1.3 Research Objective 

The main objectives of the thesis are: 

1. Perform an analysis of tools and techniques relevant to methodologies 

adopted for maintaining Android security.  

2. Propose a technique that can circumvent the security afforded by Play 

protect.  

3. Demonstrating a possible breach of Play Protect security mechanisms using 

incremental malicious updates. 

 

1.4 Scope of Research 

The thesis's focus is to conduct a critical analysis of existing Android malware detection 

tools and techniques. We have evaluated their capabilities against this advanced malware 

propagated in the form of malicious periodic updates. A technique is introduced to bypass 

the android malware detection system deployed by Google Play Store. 

The research applies to global Android users, researchers, and antivirus companies. This 

research can be used to enhance the security and performance of smart antivirus solutions 

to make them capable of catching advanced malware threats. Android users can know the 

Android Play Store's security flaws, and they will be careful while installing Android 

applications and their updates on their devices. 

 

 

1.5 Significance of Research 

Security and confidentiality is a basic need for every individual. The use of smartphones 

cannot be ceased due to communication dependency. Therefore, to maintain the secure use 

of Android phones, we need to educate people by creating awareness among all Android 

users to be careful while installing an Android application. Furthermore, Android users 

can maintain a check and balance for pre-installed Android applications maintain a secure 

credibility check before installing any application from the Google Play store. Periodic 

updates can be created in particularly launched to steal PII (Personally identifiable 

information). This work will express the bigger picture of Android that can establish 

security on the individual level, national level, and selected sensitive organizations. The 

key significance highlights are listed below: 
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• The security and performance of smart antivirus solutions can be increased by 

implementing security measures against these types of threats. 

• Android users will get to know these security flaws and will be careful while 

installing Android applications on their devices. 

• People worldwide would be able to know malicious updates, and they can prevent 

them through legal action. 

1.6 Research Methodology 

Our research methodology aims to develop a malicious application to circumvent Google 

Play Protect security checks. During our literature review, we have found that Google Play 

Protect is capable enough to detect/identify and block an application that tries to install 

Over the Air (OTA) updates. But, there is a possibility to evade and bypass Play Protect 

security mechanisms. This can be done if an application is spread and updated using a 

trusted application distribution platform like Google Play Store. 

 

According to the Google Android security report released in 2018, applications installed 

from the Google Play Store are eight times more secure than applications installed from 

other application distribution platforms. It is due to the in-depth analysis of the application 

that Google performs. When an application is submitted to the Google Console, then 

Google starts the review process. This review procedure generally takes a period of 1 hour 

to 3 days to approve an application. When an application qualifies against the developer 

distribution agreement, and no policy violation is found, the application is made public on 

the Play Store.  

 

1.7 Thesis Outline 

The thesis is structured as follows: 

• Chapter 2 focuses on a Literature review of Android permission, treats, and 

malware detection techniques. Furthermore, it covers past efforts and significant 

contributions. 

 

• Chapter 3 outlines different malware detection tools that are publicly available and 

used to secure Android devices.  
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• Chapter 4 proposes our core methodology that is developed to bypass the Google 

Play Protect security mechanism using incremental malicious updates. It also 

covers the structure of our voice search application. 

 

• Chapter 5 covers evaluation and demonstration of Play protect breach using 

incremental malicious updates followed by data breaches performed. 

 

 

• Chapter 6 has conclusion and feature directions. 
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C h a p t e r  2  

LITERATURE REVIEW 

We do not assume that readers have prior knowledge of Android fundamentals. The 

background section covers brief concepts of the Android platform for ease of their 

understanding like permissions, vulnerabilities, and security threats. Furthermore, we 

discussed past efforts, proposed models, and several attacks that are considered helpful in 

maintaining Android security. For a better understanding of the reader, we also added some 

attacks that were organized by large groups of the hacker community to steal user 

information. 

 

2.1 Introduction 

There is undoubtedly no end to the significance of cell phones in our daily lives and 

activities. In the past few years, the use of Android phones has risen exponentially. As per 

Google Play report, Android has more than 2 billion active devices all around the world 

[5]. It is the most popular platform among all kinds of cellphone devices. The global 

distribution of the Android OS makes it a superlative target for cybercriminals. Therefore, 

various types of malware are developed to target Android devices. They get installed in 

Android devices through different means and steal users' data like device details, contacts, 

messages, call logs, user location, images, and linked accounts [6]. 

 

Figure 1: Application Distribution Platforms. 
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There are several well-known application distribution platforms through which 

applications can be installed on Android devices. Fig. 1 gives a brief overview of Android 

Application distribution platforms along with an active user base. The analytics show that 

Google Play Store and Amazon Application store are the most widespread. Google Play 

Store is on the top due to end-user saturation and the presence of hybrid applications 

designed at industrial standards [7]. 

  

Google introduced several security procedures to protect Android users from malicious 

applications. They announced Google Play Store as a default application distribution and 

update managing system for the Android-based devices [8]. Google has developed an 

exhaustive skill set to detect any malicious application uploaded on their distribution 

servers. Earlier, Google was using Bouncer to keep the Play Store secure from malicious 

applications. This was used to detect, classify, and block malicious applications. The 

Bouncer classified malware as spyware, trojan, adware, backdoor, and downloaders [9].   

 

Google Bouncer was replaced with Google Play Protect services in 2017. It is a built-in 

mechanism that is used to identify potentially harmful applications (PHA) [10]. Play 

Protect is a multi-tiered malware detection system that performs routine scans for rooting 

out suspicious applications on an Android device. It is also responsible for performing 

heuristic malware analysis, including but not limited to monitoring network activity, 

malicious links, background services, and applications startups. In our paper, we have 

analyzed the security aspects of Play Protect by uploading our application to the Play Store. 

 

2.2 Android Background 

We do not assume that readers have prior knowledge of Android fundamentals. For ease 

of their understanding, the background section covers brief concepts of the Android 

platform like permissions, vulnerabilities, and security threats. Furthermore, we discussed 

past efforts, proposed models, and several attacks that are considered helpful in 

maintaining Android security. For a better understanding of the reader, we also added some 

attacks that were organized by large groups of the hacker community to steal user 

information. 

 

2.2.1  Android permissions 

According to the latest release of Android OS (Android Marshmallow 6.0 - API 23), dated  
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October 03 2017, every installed application needs to declare all required permission in its 

manifest.xml file using the "uses-permission" tag. Hence, an application provider cannot 

use any permission without giving a custom dialog prompt [11].  An overview of 

permission dialogue can be seen in Fig. 2. 

 

Figure 2: Android permission dialogues. 

There is still a need to define why various permissions are required for an application. 

Several algorithms are proposed to classify malware by analyzing the Android permissions 

model, such as Amandroid, and SPARTA (Static Program Analysis for  Reliable Trusted 

Apps) [12]. According to these models, all Android permissions can be classified into 

normal, signature, dangerous, and special permissions. [11] 

2.2.1.1 Android normal permissions 

There is no need to create a run time prompt for normal permissions as they are 

automatically allowed to the application without interference. Android examines the list 

of permissions in the manifest.xml file and allows normal permissions on runtime 

automatically. Android normal permissions are categorized as access network state, 

Bluetooth, access location, install application shortcuts, and kill background processes/ 

activities. 



 13 

 

2.2.1.2 Android signature permissions 

These permissions require a runtime prompt to request permissions from the user. 

Sometimes, a developer needs to explain the purpose of asking for this permission. These 

permissions pop up when an application starts for the first time. These signature 

permissions are not allowed automatically. Android ensures that digital certificates are 

being used to access and define these permissions by an application. These permissions 

include various services such as bind VPN (Virtual Private Network) service, text services, 

voice interaction, telecom connections, manage documents, and request install packages. 

 

2.2.1.3 Android dangerous permissions 

This category includes a list of permissions that can potentially affect device operations. 

These permissions are related to the user's privacy and security. An Android application 

can not use these permissions until the user explicitly grants it. A runtime prompt is 

compulsory to ask for dangerous permissions. These permissions include read/ write 

contacts, messages, logs, calendar, external storage,  record audio, and answer/ call phone. 

 

2.2.1.4 Android special permissions 

Special permissions are mostly defined by OEMs (Original Equipment Manufacturer) or 

mobile distribution platforms to restrict access for a, particularly commanding operation.  

All special permissions have their implementation mechanisms and need to create 

permission dialogue. These include write settings and generate a system alert window. 

 

 

 

2.2.2  Android vulnerabilities 

Android OS has evolved tremendously over a period of time. In the last few years, plenty 

of security improvement is introduced to Android devices. In this research, a survey has 

been conducted that covers publicly published Android vulnerabilities that were identified 

and patched in a timely manner. Fig. 3 gives a detailed graphical representation of the 

number of vulnerabilities reported every year [13]. The year 2017 is considered the most 

vulnerable year because Android was targeted with massive attacks. Upon close 

examination of the bar graph, it can be identified that a total of 843 vulnerabilities were 

identified in that year.   
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Figure 3: Android vulnerabilities identified by year. 

Fig. 4 gives a detailed graphical representation of different types of vulnerabilities 

published across different Android versions like DOS (Denial-of-Service), code execution, 

the device bypasses, memory corruption, potential information gain, buffer overflow, SQL 

injection (Structured Query Language), directory traversal, and XSS (cross-site scripting). 

Upon close examination of the bar graph, it can be identified that the two most occurring 

vulnerabilities are code execution and buffer overflow. 

 
Figure 4: Android vulnerabilities identified by type. 
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2.2.3  Android Security Threats 

Android is the most targeted platform for attackers due to its popularity. A vast number of 

Android devices are attacked every day.  

 

During the research, it is noticed that Android is targeted with multiple security threats 

over time. These threats affected multiple Android devices and caused data loss for 

numerous users. These threats can be classified into the following categories. Fig. 5 gives 

a brief overview of android security threats followed by detailed definations. [14] [15] 

 

 

Figure 5: Classification of Android malware. 

1. Adware: It is a piece of code that displays advertisements. Its service runs in the 

background and creates a popup window to display ads and sell fake products.  

2. Trojan: It is a malicious application that hides its identity and misleads users by 

pretending something like legitimate software using a valid icon and title. 

3. Backdoor: It is a covert way to bypass normal authentication in a device. Backdoor 

can be created by a compromised application or an unauthorized person to perform 

an illegal remote activity. Furthermore, a backdoor can be used to establish a 

communication channel. It allows attackers to perform malicious activities like 

sniffing, activity monitoring, call logs, and SMS backups. A backdoor can also be 

used to steal PII [9].  

4. Spyware: It is an application that steals personally identifiable information, 

contacts, messages, call logs, and device details. Subsequently, these applications 

send the stolen information to their command and control servers. 
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5. Click fraud: Hackers are paid when a user clicks on an advertisement, and they 

create fake clicks by overlaying buttons, images, and test layouts over 

advertisements. Click Fraud leads to more clicks and increased revenue. 

6. Smishing/ SMS fraud: Targeted victims receive messages that contain website 

links. Clicking on these links directs them to the desired page for malware 

installation. 

7. Logic bombs: It is a piece of code that is intently added in a software solution to 

start malicious functionality when some specific condition meets. Some successful 

experiments are conducted to exploit Android permission models using logic 

bombs [16]. 

8. IRC-bots: Attacker infects multiple Android devices to create IRC (Internet-relay 

chatbot). In this attack, at first, a group of machines is infected to get their control. 

Subsequently, these machines are used remotely through the Internet Relay Chat 

channel to launch DOS-like attacks against desired targeted platforms. 

9. Money-mulling/ Financial fraud: These are targeted attacks in which fake bank 

applications are propagated to gain banking details. Furthermore, valid dumps and 

inactive accounts are filtered and compromised. They used for money transfer and 

receiving for money laundering purposes and illegal payments. 

10. Pharming: It is used to generate/ manipulate traffic to a specified website. An 

application is propagated that overwrites the host file, overrules the original DNS. 

This leads to a targeted website and generates fake traffic. 

11. Ransomware: It is malicious software that infects device to encrypt data, displays 

a message to users, and demands money to restore data access. Ransomware gets 

installed by fake websites and misleading links. 

12. SMS worms: These are malicious applications that propagate themselves. Worms 

can spread by sharing links with saved contacts on the device. Sometimes worms 

are used to create targeted attacks on the specific word's presence in the contact 

list.  

13. Rogue ware: These are fake software solutions that pose as anti-malware 

applications. They generate a popup message that warns the user that their device 

is infected and that the virus can be removed after installing their software. This 

phenomenon leads to a rogue ware installation that leads to information stealing. 

14. Keyloggers: Android keylogger applications are propagated to steal keystrokes. 

They record keys when the user types something and copy anything on the device. 
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2.2.4  Android Malware Detection Techniques 

Android malware is hard to detect, and it is due to the inherited issues native to android 

operating (OS) systems and mobile devices. This includes permission issues in android OS 

and low computational resources of the mobile platform. This makes comprehensive 

malware analysis on mobile devices extremely difficult. We have to perform analysis on 

both mobile and dedicated servers to maintain accurate detection mechanisms for Android-

based malware. All Android malware detection techniques use similar steps to perform 

malware analysis on an Android application, their entire method is the same. Still, the way 

of doing it and their implementation method can vary. On the most abstract level, we can 

categories Android malware detection in three major steps, as shown in Fig. 6. 

 

Figure 6: Android malware detection techniques 

All malware detection techniques work on the same principles for malware detection. First 

of all, an Android Package Kit (APK) is identified and analyzed using any malware 

detection technique, and in the end, the report is generated. There exist multiple Android 

malware detection techniques depending on our requirements. There exist some 

predefined and well-known methodologies that we are going to discuss. We can broadly 

classify Android malware detection mechanisms into three major categories that are static 

analysis, dynamic analysis, and hybrid analysis. This is shown in Fig. 7. 

 

2.2.4.1   Static Analysis 

Static analysis technique detects the malicious applications without running a malicious 

file[17]. Static analysis can give various types of malware information, including function 

information, opcode sequence, Control Flow Graphs (CFG) [18], malware signatures, 

Android permissions, Dalvik bytecode, etc. All this information can be used to make a 

dataset, and therefore, different artificial intelligence (AI) techniques can be applied to that 

dataset. There are a lot of static analysis variants that exist. They perform malware analysis 
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by selecting custom features like a combination of signature-base-detection and CFG's. 

There exist some other approaches that use deobfuscation and machine learning techniques 

to perform static malware analysis. The latest static malware analysis uses a combination 

of different techniques for malware classification and detection. 

2.2.4.2  Dynamic Analysis 

Dynamic analysis is performed on Android applications by running a malicious sample in 

virtually designed environments like virtual machines and mobile emulators. Dynamic 

analysis is used to detect malicious behavior through different detection mechanisms based 

on features like runtime behavior, system calls, device traces, registry changes, 

Application Programming Interface (API) calls, system calls, memory writes, instruction 

traces, monitoring network traffic, API call logs, etc. There exist different malware 

detection techniques based on selective features like fine-grained models that use system 

calls to analyze Android malware behavior. Machine learning algorithms are trained using 

custom datasets to perform dynamic malware analysis. API calls, runtime behavior, 

network traffic, and other key features are extracted to build a sequential model of required 

malware and classified based on training data set. The dynamic analysis technique is 

considered a more accurate detection technique than static analysis because it can detect 

runtime code execution and monitor real-time activity in parallel to network traffic 

monitoring. Table. 1 gives a quick overview of Android static and dynamic analysis. 

 

Table 1: Static vs. dynamic analysis 

Category  Static Analysis Dynamic Analysis 

Analysis Perform analysis without running 

malware samples. 

Perform analysis by running 

malware samples. 

Methodology Source code is extracted from 

APK file with the help of reverse 

engineering tools like Dex2Jar or 

APK tool etc. 

Runtime analysis is performed by 

checking system calls, execution 

paths, dynamic privacy leaks, power 

consumptions, and network traffic. 

Chosen 

parameters 

The analysis is performed based 

on permissions, suspicious 

patterns, and system API calls, 

etc. 

The analysis is performed based on 

Runtime analysis, behavior patterns, 

and system dynamic code loading, 

etc. 
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Nature of 

approaches 

Most static approaches are 

signature-based approaches. 

Most dynamic approaches are 

behavior-based approaches. 

Pros Simple and easy to implement, 

which require fewer resources 

and computational ost. 

Analyzing runtime behavior creates 

network overhead and increases 

computational cost and requires 

high-end resources to implement. 

Cons This technique is not effective 

against obfuscated and today's 

state of the art malware. 

This can counter obfuscated and 

today's malware due to runtime 

analysis techniques. 

 

2.2.4.3  Hybrid Analysis 

The hybrid malware analysis technique combines key aspects of both static and dynamic 

malware detection mechanisms. This uses a combined analysis technique that checks the 

malware sample based on selected features of static analysis and dynamic analysis. This 

includes but is not limited to signature-based-detection, intent base detection, API calls, 

system calls, runtime behavior, device traces, functional calls, classes names, services 

created, broadcast incited, opcode sequence, CFG's, malware signatures, Android 

permissions, Dalvik bytecode patterns, device traces, registry changes, memory writes, 

instruction traces, etc. The process of hybrid analysis is not limited to this. It is a 

customizable technique that provides flexibility to make a feature set of your own choice 

based on requirements and perform analysis with higher accuracy and less false positive 

rate. There are many standards-based on custom hybrid analysis techniques to counter state 

of the art Android malware. Fig. 7 gives a quick overview of hybrid analysis. 

 

Figure 7: Classification of Android malware using multiple Android malware analysis techniques. 
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2.3 Related Work 

 

Due to our work's novelty, we found a comparatively less quantity of associated literature 

in our domain. However, several authors have nominated different aspects of Android 

device security like creation, propagation, and malware detection among Android devices. 

Recent studies explain the state of the art techniques that are used to secure Android users 

from malware attacks. The related work is provided in the ensuing paragraphs. 

 

Google Play Protect uses multiple types of time complexity algorithms for spam detection. 

It classifies applications into different categories based on their functionality and performs 

routine checkups to detect all installed applications' suspicious activities. Furthermore, a 

rule-based filtering mechanism is used to enhance the detection algorithm's throughput 

[19]. Consequently, the research is conducted to check the frequency of the updates of 

published applications [20]. In this research, the authors have proposed a bi-weekly Play 

Store application updates mechanism effective against application visibility and helps to 

attain more users on the Play Store. The proposed method helps create a new application 

and release its updates in a timely manner to get more visibility and installs in the Google 

Play Store.  

 

Several papers are presented to detect and classify new and repackaged malware designed 

to infect Android devices. In this research [21], the author has described the working 

principle of Android malware. He used state of the art forensic tools to visualize the 

behavior and working model of Android Malware. Multiple aspects are envisioned, such 

as malware propagation, working principle, and activity flow. Similarly, broad research 

on repackaged malware is presented here [22]. In this research, the authors have described 

a functional model to detect repackaged malware. This research briefly explains how a 

code is injected into an existing application by exploiting the actual behavior and how they 

are made undetectable. These kinds of malware are hard to detect, and their proposed 

technique is a useful contribution. Similar to malware detection, malware classification is 

considered vital to see the efficiency of malware detection tools. In Springer publication 

[23], the authors have researched existing Android malware classification and 

categorization techniques. They proposed a model based on modus operandi and existing 

malware vendor reports to classify the state of the malware.  
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More and more Android scholars are working to ensure Android safety and assessing the 

strengths of existing detection tools for quality assurance. In this regard, the author has 

demonstrated how to bypass automated malware analysis systems in the book [24]. he 

bypasses antivirus solutions, Android sandboxes, and Google Bouncer by proposing a tool 

called Sand-Finger. This is a relatively old study, but it covers the essential aspects of 

bypassing techniques. The author explained a quick pathway to bypass Android malware 

detection tools. This study is not directly applicable to new malware detection tools as they 

are more vigorous and efficient. The baseline for massive Android threats is efficient 

malware propagation. Detailed research has been conducted on malware propagation 

mechanisms here [8]. In this article, the study has been conducted on possible malware 

propagation among Android devices. Researchers analyzed propagation techniques and 

explored the spread capabilities of multiple malware in a targeted environment. The author 

analyzed multiple malware behavior and introduced three different malware propagation 

states: susceptible, Latent, and breaking state. The proposed model calculates the malware 

propagation's threshold based on these three states.   

 

Efficient malware detection is compulsory for the safety of Android users. Accordingly, 

different authors have proposed diverse detection models. In chapter [25], the researchers 

have designed a set of rules to evaluate an Android application. They perform a detailed 

study on the malware scanning process and briefly described malware detection 

mechanisms. They designed evaluation phases and a set of rules to consider while 

analyzing an Android application. Their primary focus is to protect Android users from 

attacks by using both static and dynamic analysis. They introduced a ranking system for 

applications based on trustworthiness, patterns, and the Android permission model.  

 

In IEEE/ACM International Conference 2019 [26], the authors have proposed a malware 

detection approach based on network analysis. The analysis is performed by analyzing 

network activity. Authors collected Android applications from the Google Play Store and 

analyzed their internet usage and network connectivity. Their core detection model is 

based on Android permissions, intent actions, signatures, discriminative APIs, and pattern 

recognition. Similarly, a functional malware detection mechanism is presented in Elsevier 

journal [9]. The researchers have introduced a hierarchical embedding approach for the 

detection of callback-based APIs and are named as Callback2Vec. The offered solution is 

based on application behavior and information losses.  Moreover, the proposed solution is 
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helpful for the detection of downstream Android applications that use callbacks as a 

standard API that is used in some malware.  

 

The authors have conducted a large-scale empirical case study on Google Play Store in the 

book [27]. They describe Google Play Store policy violations that lead to application 

termination. Google has developed a set of policies that apply to all Android application 

developers. It is a basic necessity for Play Store developers to comply with these policies 

if they want to publish an Android application to the Play Store. Furthermore, if a 

developer violates a policy, then its application is removed by the Play Store. Some severe 

violations lead to account termination as well.  

   

All of these works are comprehensive efforts to ensure Android malware detection 

mechanism, propagation techniques, classification/ categorization based on their behavior, 

repackaging of existing malware,  and an efficient malware scanning process. Although 

this work is a great motivation in research, however, none of these studies evaluate Google 

Play Protect services against custom-designed malware updates. In contrast, our research 

work analyses Google Play Protect detection mechanism and demonstrates a malicious 

bypass. 
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C h a p t e r  3  

ANDROID MALWARE DETECTION TOOLS  

 

3.1 Introduction 

This section contains a detailed analysis of already existing malware detection tools. It 

includes a comprehensive survey for preexisting tools freely available in the Android 

market. As with the passage of time, new detection tools have been introduced to counter 

the latest malware threats. In this paper, we have analyzed all the primary Android 

malware detection tools discovered in the period of 2014 to 2019. All the tools are 

thoroughly described along with their advantages and drawbacks. They are classified on 

the basis of factors like accuracy rate, false-positive rate, and training dataset used for 

algorithm training. 

 

3.1.1 RoughDroid 

RoughDroid [28] is a comprehensive hybrid malware analysis tool that was introduced in 

2018. This tool is based on features extraction and machine learning algorithms. The 

author has classified all selection features in such a way that ten features set has been 

introduced. That feature sets are FS1, FS2, FS3, … FS10. These feature sets are classified 

into two major groups. One is a set of an XML file that contains 7 feature sets, and the 

second is based on DEX file that includes 3 feature sets. The algorithm is trained in such 

a manner to identify malicious applications based on these feature sets. This technique 

purely focuses on Hardware components, software components, Android permissions, 

application components, application activities, intent filters, application services, API 

calls, and behavior analysis in the DEX file. RoughDroid is trained under Deribit dataset 

and succeeds with a higher accuracy rate of 95.6% and false positive rate of 1% but, the 

underlying "Deribit dataset" is old and has been used 100's of times, and it does not include 

advanced malware families and the latest threats of smart device like Agent-Smith Android 

malware, Copycat malware, SpyDealer malware, GhostCtrl malware, Marcher malware, 

Dvmap malware. RoughDroid was evaluated using different datasets like the Drebin 

dataset and 179 distinct families of malware. After thorough analysis, the applications are 

categorized as malware applications, adware applications, and benign applications. 
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3.1.3 Drebin 

Drebin [29] is a lightweight static analysis tool that was introduced in 2014. This tool is 

capable of identifying malicious Android applications on the Android phone directly. It 

uses a joint vector space to extract maximum features of an Android application for the 

purpose of malware detection with an accuracy rate of 94% and 1% false positive. The 

detection process takes an average of 10 seconds. The entire detection process consists of 

8 vectors and performs analysis on vector bases. Drebin is capable of detecting malicious 

applications on the smartphone by analyzing its malicious activity and constructs a 

comprehensive vector space by analyzing different application features. First of all, static 

analysis is performed on an Android application in which its hardware components, 

application Components, filtered intents, requested permissions, restricted Application 

Program Interface (API) calls, permissions used, suspicious API calls, and network 

addresses are analyzed and mapped against a vector space. This vector space is further 

used for learning-based detection and categorizes malware as benign or malicious. 

 

3.1.4 AppFA   

A comprehensive tool [26] was introduced in the period of 2018. It is based on a novel 

dynamic approach for the detection of malicious Android applications on the network. It's 

lightweight and is a very efficient framework that uses an efficient algorithm to cluster the 

network traffic of the application. There is no need to install a specific program on an 

Android device or for system modification. This tool is capable of handling encrypted 

traffic while carrying our analysis online and uses a constrained clustering technique to 

classify network traffic of an Android application. This tool uses an efficient algorithm to 

get and check network traffic. This technique is originally implemented on a public dataset 

and Google play store  applications with an accuracy rate of 90%, and a false-positive rate 

is less than 0.4%. 

 

3.1.5 DroidDector 

DroidDector [30] is a comprehensive hybrid analysis tool that was introduced in the period 

of 2016. It uses deep learning techniques and performs static and dynamic analysis in 

parallel based on 192 feature sets for higher accuracy. This is an online deep learning base 

detection engine that uses a feature set for detection containing required permissions and 

sensitive API calls. It classifies Android applications and categorizes them based on listed 

permissions. DroidDector can broadly be classified feature sets into three categories, 
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which are required permissions, sensitive APIs, and dynamic behaviors of an Android 

application. DroidDector is trained under a dataset of 21760 applications collected from 

Android stores. This tool performs in-depth analysis with an accuracy rate of 96.76% and 

a false positive rate of 0.9%. 

 

3.1.6 TinyDroid  

TinyDroid [31] is a lightweight tool that was introduced in 2018. This is implemented 

using static analysis and use machine learning. First of all, an APK is decompiled, and the 

opcode sequence is extracted and classified depending upon application features. then that 

application is decompiled, and the opcode is extracted. Furthermore, these opcodes are 

used in combination with N-Gram to predict an application as malicious or benign. 

TinyDroid is efficient and fast as compared to other antivirus applications. Under the 

testing of 4000 application samples, it gives an accuracy rate of 98.6% and a false-positive 

rate of 1.4%.  

 

3.1.7 DynaLog  

DynaLog [32] is a dynamic analysis malware detection tool that was introduced in 2016. 

It uses a wide variety of dynamic features to classify any Android application into benign 

or malicious applications. This framework is built on some preexisting open-source tools 

like a mobile sandbox and its detection mechanism, including mass analysis, application 

characterization along with API calls, and performance of critical events in an application. 

This technique is analyzed in 1940 application samples containing both benign and 

malicious applications. DynaLog is designed in such a manner that it can analyze multiple 

malicious applications at the same time. The entire detection process is composed of five 

major components. First of all, an application is launched in an emulator, and its logs are 

extracted to perform further analysis. In the end, an emulator-based analysis sandbox is 

used to classify Android applications as benign or malicious. DynaLog gives an accuracy 

rate of 93.29% under the discussed dataset. 

 

3.1.8 ICCDetector 

ICCDetector [33] is a static analysis malware detection tool that was introduced in the 

period of 2016. This tool is trained with 17290 malicious and benign applications that are 

collected from different Android markets and include other open source applications too. 

ICCDetector is capable of analyzing malware on the basis of self-defined ICC 
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characteristics and ICC patterns of applications. All these patterns are obtained by 

analyzing an Android application on the basis of app components, intents, intent filters, 

required permission, etc. This tool is capable of analyzing all types of malicious 

applications, and all these applications are roughly classified into five major categories, 

which are server connector, system monitor, advertiser, effective launcher, and telephony 

abuser. ICCDetector set a benchmark for an accuracy rate of 97.4% with a false positive 

rate of 0.67%. 

 

3.1.9 CASSANDRA  

CASSANDRA [17] is a static analysis tool that was published in 2017. This tool extracts 

features from an Android application and uses an online learning mechanism to flag an 

application as malicious or benign. The used methodology can be subdivided into four 

major modules as static analysis, features extraction & representations, online learning, 

machine learning-based malware detection. It uses contextual inter-procedural control 

flow graphs to gather contextual and structural information from a malicious application. 

This graph-based technique makes CASSANDRA more scalable and helps to achieve an 

accuracy rate of 99.23% over the analysis of 87000 applications. CASSANDRA is trained 

under 87000 applications collected from different application stores. 

 

3.1.10 MADAM  

MADAM [2] is a hybrid analysis tool that was published in 2019. This tool uses key 

features of both static and dynamic analysis and performs detection only on rooted devices. 

This is a host-based multilevel framework that classifies on the basis of system calls, user 

activities and develops a behavioral pattern for unauthorized kernel-level activities for 

identification. MADAM is trained with three different types of data sets, which are 

Genome, virus share database and Contagio-Mobile dataset. It uses behavior base Android 

malware detection and detects if an application misbehaves. Moreover, it has the ability to 

remove the malicious application in Android and stops its further prorogation. This tool 

uses a signature base and anomaly-based detection mechanism to give an accuracy rate of 

96.9% that is tested over 9804 applications.  

 

3.1.11 APK Auditor  

A static analysis tool [34] was introduced in the period of 2015. This is capable of 

performing permission-based malware analysis to classify targeted applications as 
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malicious or benign. APK Auditor is based on three components, which are the Android 

client module that is installed in an Android device, signatures database, and a server that 

is responsible for communication between the module and database. The tool analyzes 

applications on the basis of Android permissions, receivers, and services to classify them 

as benign or malicious. The model is tested with 8762 Android applications from different 

Android stores and has an accuracy rate of 88% with a false-positive of 0.925%. 

 

3.1.12 MalDozer  

MalDozer [35] is a dynamic analysis tool introduced in the period 2018. It performs 

dynamic analysis on the basis of API calls by using deep learning algorithms. This is a 

comprehensive framework having the capability to deploy on servers, mobile phones, and 

Internet Of Things IoT devices. First of all DEX file is extracted from the APK file, and 

further assembly is extracted by the DEX file. Furthermore, API method calls are extracted 

from assembly and used for the development of a Tensorflow artificial neural network. 

The framework is trained with 38000 benign and 33000 malware samples from these open 

source datasets: Malgenome, Drebin, Virusshare samples, and Contagio Minidump. This 

framework gives an accuracy rate of 96%-99% with a false positive rate of 0.06%-2% as 

the training dataset is of 71000 applications. 

 

3.1.13 AndroDialysis  

AndroDialysis [36] is a static analysis malware detection tool introduced in the period of 

2017. It performs static analysis on the basis of implicit and explicit intents created in an 

Android application. The framework is trained with 7406 applications, among which 1846 

is benign, and 5560 are malware from different datasets like ProfileDroid and Drebin 

dataset. This is not a perfect solution because it's very easy to evade and can be misled 

under trained dataset. Moreover, this approach is tested under the given dataset, which 

gives an accuracy rate of 91% and a false positive rate of 4.4% 

 

3.1.14 Apposcopy  

Apposcopy is a static analysis based tool that was introduced in the period of 2014. It 

performs static analysis on the basis of Android application signatures to identify specific 

malware families. Along with signature base detection, it uses "Inter-Component-Call-

Graph" for efficient malware detection. This framework is purely based on signature-based 

detection that is inefficient and is easy to evade by the latest malware families. First of all, 
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an APK is decompiled, and permissions are extracted from the Android manifest file. A 

total of 1027 malware samples were collected from the Malware Genome project, and the 

Accuracy rate for detection was 90%, and the false positive rate is 2%. 

 

3.1.15 M0Droid  

M0Droid is a static analysis tool introduced in the period of 2015. It performs static 

analysis based on Android signatures and application behavior. This approach is 

lightweight and is based on two components; a client agent, which is installed on an 

Android application, and a server analyzer. To perform analysis, they work in parallel to 

identify malicious applications. M0Droid is analyzed with a Genome dataset and achieved 

a detection rate of 60.16% and a false positive rate of 39.43%. This technique is not up-to-

date and cannot be further used for malware detection. The accuracy rate of this tool is 

very low due to the poor implementation of signature-based techniques. 

 

3.1.16 SeqDroid  

SeqDroid [37] is a hybrid analysis tool that was introduced in the period of 2019. It uses 

Recurrent Neural Networks and Stacked Convolutional to detect obfuscated Android 

malware. This technique is robust, lightweight, and has the latest detection technologies 

for the detection of obfuscated and runtime dynamic creation of strings and package 

names. This dataset is tested under 2,000,000 malware samples from VirusTotal, along 

with benign applications are 888,620. Results were classified on the basis of 5 different 

tier based methodologies as Ngram, RNN, Ngram-PA, RNN_PA, CNN_RNN_PA, and 

SeqDroid attained up to 95% accuracy rate, and false positive is 0.001%. 

 

3.1.17 DroidEvolver  

DroidEvolver [38] is a static analysis tool that was introduced in the period of 2019. It 

evolves itself with machine learning without a user's continuous evolvement. The 

framework updates itself and its dataset from online learning techniques. This tool is truly 

helpful in the detection of code obfuscation, and the entire detection is based on API calls. 

DroidEvolver is evaluated under 33,294 benign and 34,722 malicious applications and 

attained an accuracy rate of 95.27%, along with a false positive rate of 0.48%.  

 

3.1.18 HinDroid  
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HinDroid is a static analysis tool introduced in the period of 2017. It detects malicious 

Android applications using API calls along with structured Heterogeneous Information 

Network (HIN). They claim that this is a novel approach that has been used for the first 

time for malware detection in which analysis is performed by HIN on extracted API calls. 

This framework is trained under the malware dataset obtained from Comodo Cloud 

Security Center (CCSC). Dataset is trained under 32,334 applications, among which 

16,118 are benign applications, and 16,216 are malicious applications. android has an 

accuracy rate of 98.60% and a false positive rate of 4%. \\\\ Android malware can further 

be classified on the basis of their approaches and the way of their classification in Android 

malware categories. 

A comprehensive survey is performed on preexisting tools that are freely available in the 

Android market. All the tools are thoroughly described along with their advantages and 

drawbacks. Table .2 explains the classification on the basis of factors like accuracy rate, 

false-positive rate, and training dataset used for algorithm training. 

• AR: Accuracy Rate (%) 

• FP: False Positive Rate (%) 

Table 2: Different malware detection tools. 

Name Approa

ch 

year Description Advantages Discussion Data set AC FP 

Drebi

n [29] 

Static 

analysis 

2014 Use a joint vector 

space to extract 

maximum features 

like API calls, use 

permissions, 

network addressed, 

hardware and 

software 

components 

The detection 

process takes an 

average of 10s 

A static approach 

without Runtime 

code linking 

detection feature 

129013 

GooglePlay 

Store, Chinese 

Markets, 

Russian 

Markets, 

Genome Project 

94 1 

APK 

Audit

or 

[34] 

Static 

analysis 

2015 Use permission-

based malware 

analysis to classify 

targeted applications 

and has three 

components as the 

client, server, and 

signatures database 

The tool analyzes 

application 

permissions, 

receivers, and 

services to 

classify them as 

benign or 

malicious, not just 

signatures. 

Obfuscated 

malware with 

code words can 

bypass this 

detection 

mechanism. 

That's why it has 

a low accuracy 

rate 

8762 

Application 

stores 

88 0.9

2 

Droid

Decto

r [30] 

Hybrid 

analysis 

2016 Use deep learning 

on listed 

permissions in the 

manifest file and 

sensitive API calls 

and other 192 

feature sets with 

Dataset is trained 

using Deep 

learning on both 

API calls and 

permissions 

Less effective 

and can be 

fooled by the 

latest malware 

families 

21760 

Google Play 

Store, Contagio 

Community, 

Genome Project 

96.

76 

0.9 
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deep learning 

algorithms 

ICCD

etecto

r [33] 

Static 

analysis 

2016 Analyze app 

component, Intents, 

Intent filters, and 

required permission 

Malware is 

analyzed based on 

ICC 

characteristics and 

ICC patterns of 

applications. 

Unable to detect 

malicious code 

loading on run 

time. 

17290 

Application 

store, 

opensource 

APK 

97.

4 

0.6

7 

CAS

SAN

DRA 

[6] 

Static 

analysis 

2017 use online learning 

based on contextual 

Inter-procedural 

control flow graphs 

to gather contextual 

and structural 

information 

Graph-based 

technology makes 

it fast and efferent 

with a higher 

accuracy rate. 

Advance 

malware with 

runtime and 

dynamic 

malicious code 

linking can 

easily evade this. 

87000 

Application 

store, 

opensource 

APK 

99.

23 

0.8

6 

Roug

hDroi

d [28] 

Hybrid 

analysis 

2018 Extract 10 Features 

extraction and apply 

machine learning 

Perform Fast and 

comprehensive 

analysis based on 

ten features that 

make malware 

evading almost 

impossible. 

Deribit dataset" 

is old, and it 

doesn't include 

advanced 

malware families 

Deribit dataset 95.

6 

1 

Tiny

Droid 

[31] 

Static 

analysis 

2018 Use Opcodes in 

combination with N-

Gram to predict as 

malware and benign 

Efficient, 

lightweight, and 

fast due to the use 

of the machine 

learning technique 

Small training 

dataset, this can 

be modified and 

retrained with 

new malware 

samples 

4000 

Application 

store, 

opensource 

APK 

98.

6 

1.4 

MAD

AM 

[2] 

Hybrid 

analysis 

2018 a host-based 

multilevel 

framework that 

classifies based on 

system calls, users 

activities and 

develops behavioral 

patterns for 

unauthorized kernel-

level activities for 

identification 

The model is 

trained under 

great datasets and 

achieved a higher 

accuracy rate that 

makes it worthy 

for the latest 

malware 

Only rooted 

devices are 

eligible for 

analysis, and the 

latest malware 

can execute 

malicious 

payloads 

Genome, Virus 

share database, 

Contagio-

Mobile dataset 

96.

9 

0.5 

– 

1.1 

MalD

ozer 

[35] 

Dynami

c 

analysis 

2018 A comprehensive 

framework based on 

API calls and 

methods along with 

deep learning 

algorithms and 

trained with 

multiple datasets to 

gain a higher 

accuracy rate 

 

 

This is not limited 

to android phones, 

but the framework 

is capable of 

deploying on 

servers, mobiles 

phones, and IoT 

devices 

Tensorflow 

artificial neural 

network needs 

more 

computational 

cost and 

expensive to 

deploy 

71000 

Malgenome, 

Drebin, 

Virusshare, 

Contagio 

Minidump 

96 - 

99 

0.0

6 – 

2 

 

 

SeqD

roid 

[37] 

Hybrid 

analysis 

2019 Use Recurrent 

Neural Networks 

and Using Stacked 

Convolutional to 

detect obfuscated 

Android malware 

and trained under 

great data set of up 

to 2 million 

Its robust, 

lightweight 

and has the latest 

detection 

technologies for 

detection 

of obfuscated and 

runtime 

Ngram, RNN, 

Ngram-PA, RNN 

PA, CNN RNN 

PA are hard to 

implement and 

increase 

computational 

cost 

2888620 

VirusTotal 

95 0.0

01 
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applications dynamic creation 

of strings and 

package names. 

Droid

Evolv

er 

[38] 

Static 

Analysi

s 

2019 Online learning-

based detection of 

code obfuscation 

and detection is 

based on API calls. 

Evolve itself with 

machine 

learning without 

user's continuous 

evolvement 

Only static based 

API based 

approach is not 

so capable of 

countering 

today's threats 

68016 Open 

source 

95.

27 

0,4

8 

SDA

C 

[39] 

Static 

Analysi

s 

2020 The API call 

sequence is 

extracted, and a 

Neural Network is 

used to assign API 

to vector space and 

API clusters. 

The feature set is 

adaptive and able 

to adapt new 

features in 

runtime that make 

it detect new and 

advanced 

malware. 

The training data 

set is old and 

might not 

contain advanced 

malware samples 

that make it a 

week. 

Open source 

app 

2011 - 2016 

98.

1 

0.1 

– 

1.9 

DL-

Droid 

[40] 

Dynami

c  

Analysi

s 

2020 Works based on 

stateful input 

generation and use 

different stateless 

approaches for code 

coverage. 

A good approach 

that gives a 

feature to 

combine static 

analysis with 

dynamic to get up 

to 99.6% accuracy 

rate. 

Not able to 

counter today's 

obfuscated 

malware and 

very limited 

dataset used for 

training. 

30,000 

Open source 

apps 

97.

8 

0.1 

– 

2.2 
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C h a p t e r  4  

PROPOSED TECHNIQUE TO BYPASS SECURITY 

AFFORDED BY GOOGLE PLAY PROTECT 

 

4.1 Introduction 

Our methodology aims to develop a malicious application to circumvent Google Play 

Protect security checks. During our literature review, we have found that Google Play 

Protect is capable enough to detect/identify and block an application that tries to install 

Over the Air (OTA) updates. But, there is a possibility to evade and bypass Play Protect 

security mechanisms. This can be done if an application is spread and updated using a 

trusted application distribution platform like Google Play Store. 

 

According to the Google Android security report released in 2018, applications installed 

from the Google Play Store are eight times more secure than applications installed from 

other application distribution platforms. It is due to the in-depth analysis of the application 

that is performed by Google. When an application is submitted to the Google Console, 

then Google starts the review process. This review procedure generally takes a period of 1 

hour to 3 days to approve an application. When an application qualifies against the 

developer distribution agreement, and no policy violation is found, then the application is 

made public on the Play Store. 

 

4.2 Voice Search Application - Design and Architecture 

 

The high-level architecture of the Voice Search application is shown in Fig.~\ref{fig5}, 

detailing the connectivity of the application developer, Play Store, and the end-user. It is 

a sequence diagram that provides an overview of the proposed methodology. The sequence 

is as follow:  

1. An application named "Voice Search" is developed and uploaded on the Google 

Play Store. It allows users to perform various actions through voice commands. 

This application allows the following type of voice commands to a user: 

i. Call someone by speaking their name. 

ii. What is the current weather? 
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iii. Latest news articles. 

iv. The shortest way to California. 

 Due to its attractive functionality, in a very short period of time, it is sported 12,782 types 

of Android devices and is made available in 151 countries. Fig.~\ref{fig6} shows our 

application published on the Google Play Store.  

 

Figure 8: Proposed methodology to bypass Google Play Protect. 

 
Figure 9: Malicious application published on Google Play Store. 
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2. An early version called V1.1 is a legitimate application that performs publicly announced 

functionality. This version was submitted to Google Console on October 31, 2020. Google 

took seven days to review and accepted the application as legitimate on November 6, 

2020. Since then, the Google Play Store has made the application publicly available. 

3. After some days, a second version for Voice Search was developed and named V1.2. In 

this version, we started or malicious functionality by adding analytics, event logs, activity 

tracking, demographics, and user location.  This update was submitted to Google Console 

on November 16, 2020, and was accepted on November 17, 2020. Google took just one 

day to review our update and made it public on Google Play Store.  

4. Subsequently, a third version, V1.3, was developed. This was an entirely malicious update 

that was capable of exploiting android permissions. It was collecting device contacts, 

version, API level, manufacture, and model details. This version was capable of creating 

a reverse connection on Firebase storage to store data against each user's entity. All this 

data was collected when the user was performing its first voice action. This version was 

submitted to Google Console on December 26, 2020, and was accepted on December 27, 

2020. Google took just one day to review our update thoroughly, and this malicious 

version was made public on Google Play Store. 

 
Figure 10: Google Play Protect scanning process. 
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The experiments conducted show that the Google Play Store performs an in-depth analysis 

that takes more days when an application is initially published on the Play Store, while it 

takes less time to review when an update is created to an existing application. We analyzed 

with different experiments that it is difficult to upload a fully malicious application, but 

the same could be done in multiple updates.  

 

We downloaded this application on multiple Android devices to test against Google Play 

Protect, but Play Protect was unable to detect our malicious application. Although Play 

Protect performs a routine analysis on installed applications in the device and checks 

against the potentially harmful activity but still, it was not able to detect this kind of attack. 

Fig.~\ref{fig11} shows a device screenshot in which Google Play Protect scanned all 

applications, including our malicious one, but it was not able to detect our application. 
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C h a p t e r  5  

EVALUATION AND DEMONSTRATION OF PLAY 

PROTECT BREACH USING INCREMENTAL MALICIOUS 

UPDATES 

 

5.1 Introduction 

Our evaluation is based on the accuracy and effectiveness of the presented work. The 

proposed methodology provided an effective way to propagate a malicious application 

using a most trusted platform like Google Play Store. The effectiveness of the proposed 

methodology is measured and evaluated by launching and performing a malicious attack 

through the Google Play Store. This means that any kind of benign application can be 

created and published, and an application developer can exploit and make it malicious at 

later stages. This proves that, If this kind of attack is launched in multiple applications, 

then it will cause massive distribution in global users and will be hard to stop it. 

 

5.2 Effectiveness 

We created three versions for the Android application and published them on Google Play 

Store in a timely manner.  Table. 3 contains application publication details against their 

version number. The table has three columns: 

1. Version: This column contains the application version that contains major 

increments. 

2. Processing time: This column explains the number of days that Google took for 

evaluation before making a version live on Google Play Store. 

3. Functionality: This column contains application functionality that was introduced 

in a specific version. 

Table 3: Application publication workflow. 

Version Processing Time  Functionality 

V 1.1 7 Days 

Submission: 31-10-2020 

Acceptance: 6-11-2020 

- Benign App. 

- App permissions. 

- 12,782 devices. 
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- 151 countries. 

- Support API 16 – 30. 

V1.2 1 Days 

Submission: 16-11-2020 

Acceptance: 17-11-2020 

- Added analytics. 

- Event logs. 

- Activity tracking. 

- Demographics. 

- Userbase location. 

- Affinity audience. 

V 1.3 1 Days 

Submission: 26-12-2020 

Acceptance: 27-12-2020 

- Permission exploit. 

- Firebase data backup. 

- Contacts backup. 

- Device details. 

- Data is backup on voice 

actions. 

 

5.2.1 Application detection across scanners 

After a successful demonstration to bypass the Google Play Store detection mechanism, 

we test the "Voice Search" application across different anti-malware solutions. We 

analyzed the APK file of our application across multiple antiviruses solutions using 

Virustotal. These are application details collected after its thorough analysis across 

different antivirus and anti-malware platforms. A complete scan report is available here 

[41] and a quick overview of the detailed scanning report is visible in Fig. 11. 
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Figure 11: Application detection across virustotal. 

Moreover, the "Voice Search" application was tested against malware solutions such as 

the Cuckoo sandbox and Anyrun malware sandbox. The application was undetectable; 

application details of the designed "Voice Search" is included below for further analysis: 

 

• MD5: 96a4a3fd70f627155133bec58b3f1d23 

• Vhash: 6b3340a01f08d92e7d05c44f2ac42a77 

• SHA: 092f13d3c2915d3efc6139b9bf2bba1dbab5ca26 

• SHA-256: 

1bb5004c249e9175e3190b3299d33921s5600ae77441a28c3afe278b903a0c285 

• Common Name: Android APK 

• The organization hosted: Google Inc, Mountain View (California), US 

• Certificate Issuer: C:US, CN:Android, L:Mountain View, O:Google Inc., 

ST:California, OU:Android 

• Virus Total Submission: 2020-12-28  12:50:52 

 

5.3 Accuracy 

This section explains the user's data that has been collected throughout our experiment. 

We organized the collected in a particular order for better understanding. All the collected 

data is stored in Firebase servers. Firebase is a store platform launched by Google [42]. It 

is considered the most trusted platform for analytics and back-end services.  
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The data collection phase was simple when a new user installs our application first time 

from the Google Play Store and opens it, and then this functionality was executed: 

1. User entry was created in Firebase with a unique key. 

2. User contacts, device details, location, and demographics were uploaded to the 

selected destination. 

3. The device's current date-time was logged, and the device was marked successful 

in avoiding feature repetitions. 

Afterward, this data was safely stored and in a particular order. The collected data was 

organized into two sections, i.e., Firebase Bulks and Analytics data. 

 

5.3.1 Firebase Bulks 

This contains data bulk details stored in a Firebase server. Fig. 12 shows data stored in 

Firebase against every user's random key. 

1. MPZa7B5ywvX2lP-Yx1w: This entity contains a Firebase unique key for individual 

devices. 

2. Manufacturer: It contains the name of the mobile company that is the manufacturer of 

devices, e.g., Samsung, Nokia, Huawei. 

3. Model: This entity contains device model details, e.g., Galaxy S3, Nokia 2.2. 

4. Android version: This entity contains Android version numbers like Android 10, 9, 8.  

5. API level: It contains an integer value for a specific API. 

6. Date and time: This entity contains a local timestamp at the time of data uploading. 

7. Info: This entity contains a string that has device contacts locally stored in the system. 

8. Demographics: This shows the overall statistical view for the gender and age group of 

the audience that installed this application. 

9. Location: These are statistics for countries/ regions in which the application is installed.  

10. Activity: This is a graphical representation for users who installed the application every 

day. 

11. Affinity Audience: These statistics give a detailed report about application users based 

on their interests, lifestyle, habits, passion, and online activities. 
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Figure 12: Firebase data storage. 

5.3.2 Analytics Data 

 

The Analytics data contains a graphical representation of Android users. Fig.~\ref{fig8} 

graphically displays the geolocation of users that has installed the application. As the 

image shows, most of the audience is coming from India, Russia, and the United States. 

These graphs change in a timely manner when new users are acquired from different 

locations. 
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Figure 13: Users' location data collected by voice search application. 

Fig.~\ref{fig9} contains a graphical representation of the targeted audience based on their 

ages. All users are classified into age groups. The minimum age group we targeted in our 

application is 18 years. We do not allow under 18 users to install our application. 

Application users are largely classified into two major age groups, i.e., the 18-24 years 

group and the 25-34 years group. We also have broadly classified our total audience into 

groups based on their gender, and we got 55.2% males and 44.8% females. 

 
Figure 14: Users' age group and gender collected by voice search application. 
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Fig.~\ref{fig10} gives a brief overview of our affinity audiences. It categorizes users into 

their respected categories base on past activities, interests, and hobbies. The Firebase 

analytics algorithm keeps track of their daily activities and assigns an affinity group based 

on their recent behavior. The major categories are news, politics, media, entertainment, 

shoppers, sports, fitness, technology, traveling, vehicles and transportation. These group 

categorization leads to custom advertisements and can be used to generate more sales. 

 
Figure 15: Users' data relevant to their interests, lifestyle, habits, passion, and online activities collected by voice 

search application. 

After installing the application and collecting desired data from devices without getting 

noticed by Play Protect, it can be concluded that such attacks are hard to detect. Attackers 

can attach this malicious piece of code to the popular Android application. Then he/ she 

can further propagate these applications to a targeted audience using a messaging service. 
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C h a p t e r  6  

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

Google promises its users to provide secure and authentic applications if they install from 

the Google Play Store and enable Google Play Protect services on their devices. These 

services are available on all the latest Android devices by default. In our research, We 

performed auditing/evaluation of Google Play protect. We experimented and designed a 

multi-step model and successfully bypassed Google malicious application detection 

mechanisms by incremental malicious updates. In this regard, two policies of the Google 

policy center have been violated and breached during our experiment, i.e. (1). Privacy, 

deception, and system abuse. (2) Malware policy. These policies ensure that Android users 

are provided with safe and secure applications through Play Store [43]. 

 

This experiment has demonstrated a possible breach that can circumvent the security 

afforded by Google. Although Play Protect was introduced back in 2017 and it is still 

inefficient for the detection of malicious applications, particularly when periodic updates 

are released to exploit the Android permission model. If this kind of malware is released 

in public, then data bulks can be generated in a couple of days and can be used to exploit 

individual users and entire organizations. To block such attacks, a thorough analysis of 

updates is recommended. As seen in Table: 3 that Google Play Store took seven days to 

scan the application, which was published for the first time but less than one day to scan 

its update. To block such kinds of attacks, it is compulsory to perform an in-depth analysis 

of every update, not just the initial application submission. 

 

6.2 Future work 

This research invites Android researchers and developers to investigate and counter 

modern security breaches. Users can use this research for a better understanding of 

available free applications in online markets against different vulnerabilities. This research 

can further be used to investigate other application distribution platforms and operating 

systems like the IOS Apple store and Windows app stores. 
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