

EVASION OF GOOGLE PLAY PROTECT

SECURITY MECHANISMS THROUGH

INCREMENTAL MALICIOUS

UPDATES

By

Zia Muhammad

A thesis submitted to the faculty of Information Security Department, Military

College of Signals, National University of Sciences and Technology, Rawalpindi in

partial fulfillment of the requirements for the degree of MS in Information Security

Feb 2021

CERTIFICATE

This is to certify that Zia Muhammad, Student of MSIS-17 Course Reg.No:

00000276735, has completed his MS Thesis title "Evasion of Google Play Protect

security mechanisms through incremental malicious updates" under my

supervision. I have reviewed his final thesis copy and am satisfied with his work.

Signature: ______________________________

Supervisor Name: Dr. Muhammad Faisal Amjad

Dated: _________________________________

Signature (HOD): ________________________

Dated: _________________________________

Signature (Dean/Principal): ________________

Dated: _________________________________

ABSTRACT

Android is a leading mobile Operating System (OS), and its market share is increasing

drastically. Every Android device has a built-in service called Play Store for application

distribution and updates. A malicious application distributed through the Google play

store may create a privacy breach. In order to protect end-users, an in-depth security

mechanism, namely Google Play Protect, has been deployed in the Google Play Store

to safeguard Android devices from malicious applications. In this work, we have

investigated the malicious application detection capabilities of the Google Play Protect

by employing a novel attack based on incremental malicious updates, which

circumvents the security afforded by Play Protect. Therefore, a seemingly benign

application called Voice Search is designed and deployed on Play Store. The Voice

Search application exploits Google Play Store permissions and bypasses users' privacy

through malicious updates. After malicious updates are installed, the application

collects the required data such as device details, location, contact information and

exfiltrates it to the attacker's server. Results show that Google Play Protect is vulnerable

to malicious incremental update attacks.

 1

ACKNOWLEDGMENTS

I am thankful to the Almighty God who gave me the power and zeal to carry out this

research, and I am grateful to Him for His grace and benevolence.

I would like to convey my gratitude to my supervisor, Dr. Muhammad Faisal Amjad, and

my committee members, Dr. Haider Abbas, and Col Syed Amer Ahsan Gilani, for their

supervision and constant support. Throughout the experimental and thesis works, their

invaluable support of insightful comments and feedback is a valuable contribution to the

accomplishment of this research.

I'm really grateful to my parents. They always stood by my hopes and dreams and were a

great source of inspiration for me. I would like to thank them for all their care, affection,

and encouragement during my work.

 2

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS .. 1

TABLE OF CONTENTS ... 2

LIST OF FIGURES .. 4

LIST OF TABLES .. 4

ACRONYMS ... 5

INTRODUCTION .. 6

1.1 Introduction .. 6

1.2 Problem Statement .. 6

1.3 Research Objective .. 7

1.4 Scope of Research .. 7

1.5 Significance of Research .. 7

1.6 Research Methodology .. 8

1.7 Thesis Outline ... 8

LITERATURE REVIEW .. 10

2.1 Introduction .. 10

2.2 Android Background ... 11

2.2.1 Android permissions .. 11

2.2.1.1 Android normal permissions .. 12

2.2.1.2 Android signature permissions ... 13

2.2.1.3 Android dangerous permissions ... 13

2.2.1.4 Android special permissions ... 13

2.2.2 Android vulnerabilities.. 13

2.2.3 Android Security Threats ... 15

2.2.4 Android Malware Detection Techniques ... 17

2.3 Related Work ... 20

ANDROID MALWARE DETECTION TOOLS ... 23

3.1 Introduction .. 23

PROPOSED TECHNIQUE TO BYPASS SECURITY AFFORDED BY GOOGLE PLAY

PROTECT ... 32

4.1 Introduction .. 32

4.2 Voice Search Application - Design and Architecture ... 32

 3

EVALUATION AND DEMONSTRATION OF PLAY PROTECT BREACH USING

INCREMENTAL MALICIOUS UPDATES .. 36

5.1 Introduction .. 36

5.2 Effectiveness ... 36

5.2.1 Application detection across scanners ... 37

5.3 Accuracy ... 38

5.3.1 Firebase Bulks .. 39

5.3.2 Analytics Data .. 40

CONCLUSION AND FUTURE WORK .. 43

6.1 Conclusion .. 43

6.2 Future work .. 43

BIBLIOGRAPHY ... 44

 4

LIST OF FIGURES

FIGURE 1: APPLICATION DISTRIBUTION PLATFORMS. .. 10

FIGURE 2: ANDROID PERMISSION DIALOGUES. ... 12

FIGURE 3: ANDROID VULNERABILITIES IDENTIFIED BY YEAR. .. 14

FIGURE 4: ANDROID VULNERABILITIES IDENTIFIED BY TYPE. .. 14

FIGURE 5: CLASSIFICATION OF ANDROID MALWARES. .. 15

FIGURE 6: ANDROID MALWARE DETECTION TECHNIQUES ... 17

FIGURE 7: CLASSIFICATION OF ANDROID MALWARE USING MULTIPLE ANDROID

MALWARE ANALYSIS TECHNIQUES. .. 19

FIGURE 8: PROPOSED METHODOLOGY TO BYPASS GOOGLE PLAY PROTECT. 33

FIGURE 9: MALICIOUS APPLICATION PUBLISHED ON GOOGLE PLAY STORE. 33

FIGURE 10: GOOGLE PLAY PROTECT SCANNING PROCESS. ... 34

FIGURE 11: APPLICATION DETECTION ACROSS VIRUSTOTAL. .. 38

FIGURE 12: FIREBASE DATA STORAGE. ... 40

FIGURE 13: USERS' LOCATION DATA COLLECTED BY VOICE SEARCH APPLICATION........... 41

FIGURE 14: USERS' AGE GROUP AND GENDER COLLECTED BY VOICE SEARCH

APPLICATION. ... 41

FIGURE 15: USERS' DATA RELEVANT TO THEIR INTERESTS, LIFESTYLE, HABITS, PASSION,

AND ONLINE ACTIVITIES COLLECTED BY VOICE SEARCH APPLICATION. 42

LIST OF TABLES

TABLE 1: STATIC VS DYNAMIC ANALYSIS ... 18

TABLE 2: DIFFERENT MALWARE DETECTION TOOLS. ... 29

TABLE 3: APPLICATION PUBLICATION WORKFLOW. ... 36

 5

ACRONYMS

OS Operating System

APT Advanced Persistent Threat

GPP Google Play Protect

PII Personally Identifiable Information

AMTs Android Antimalware Tools

OTA Over the Air

PHA Potentially Harmful Applications

SPARTA Static Program Analysis for Reliable Trusted Apps

VPN Virtual Private Network

OEMs Original Equipment Manufacturer

DOS Denial of Service

SQL Structured Query Language

XSS Cross-Site Scripting

IRC Internet-relay Chatbot

CFG Control Flow Graphs

API Application Programming Interface

HIN Heterogeneous Information Network

CCSC Comodo Cloud Security Center

 6

C h a p t e r 1

INTRODUCTION

1.1 Introduction

Android operating system (Android OS) is one of the most popular platforms to be used

for mobile computing devices. More than 86.70% of the worldwide mobile device users

rely on Android as their primary operating system [1]. The primary source of all software

for the Android platform is Google's Play Store. Google's Play Store acts as the software

distribution and update management system for all devices that are running the Android

OS. The play store provides an install and update mechanism for its users. A malicious

software distributed using the Android Play Store can affect millions of users [2] [3].

Therefore, Google has deployed an in-depth strategy for rooting out any malicious

software that is uploaded to its distribution servers. Google uses Play protect to maintain

Android security and perform in-depth analysis by thoroughly checking android

applications. Play protect a multi-tiered protection system that is specifically designed to

keep Android devices safe. Google Play Protect scans for malware, blocks malicious links,

and performs heuristic analysis to maintain a safe user experience. Google Play protect

also performs routine analysis of installed applications [4].

This research aims to perform an analysis of tools and techniques relevant to

methodologies adopted by Play protect. This study aims to identify possible techniques

that can circumvent the security afforded by Play protect.

1.2 Problem Statement

Being the popular platform that Android is, it is very important that the tools and

techniques to secure the platform be thoroughly and critically examined. A huge number

of android devices are targeted by malware in the wild. Most android users are not aware

of these kinds of threats. This study will examine such techniques and provide possible

breach on google play store that is considered secure by most Android users.

Google claims that Android users are secure if they install official updates from Google

Play Store and Enable Google Play Protect services on their mobile devices. This claim

needs to be evaluated with experimentation that either these official stores are really secure

from malware attacks or not.

 7

1.3 Research Objective

The main objectives of the thesis are:

1. Perform an analysis of tools and techniques relevant to methodologies

adopted for maintaining Android security.

2. Propose a technique that can circumvent the security afforded by Play

protect.

3. Demonstrating a possible breach of Play Protect security mechanisms using

incremental malicious updates.

1.4 Scope of Research

The thesis's focus is to conduct a critical analysis of existing Android malware detection

tools and techniques. We have evaluated their capabilities against this advanced malware

propagated in the form of malicious periodic updates. A technique is introduced to bypass

the android malware detection system deployed by Google Play Store.

The research applies to global Android users, researchers, and antivirus companies. This

research can be used to enhance the security and performance of smart antivirus solutions

to make them capable of catching advanced malware threats. Android users can know the

Android Play Store's security flaws, and they will be careful while installing Android

applications and their updates on their devices.

1.5 Significance of Research

Security and confidentiality is a basic need for every individual. The use of smartphones

cannot be ceased due to communication dependency. Therefore, to maintain the secure use

of Android phones, we need to educate people by creating awareness among all Android

users to be careful while installing an Android application. Furthermore, Android users

can maintain a check and balance for pre-installed Android applications maintain a secure

credibility check before installing any application from the Google Play store. Periodic

updates can be created in particularly launched to steal PII (Personally identifiable

information). This work will express the bigger picture of Android that can establish

security on the individual level, national level, and selected sensitive organizations. The

key significance highlights are listed below:

 8

• The security and performance of smart antivirus solutions can be increased by

implementing security measures against these types of threats.

• Android users will get to know these security flaws and will be careful while

installing Android applications on their devices.

• People worldwide would be able to know malicious updates, and they can prevent

them through legal action.

1.6 Research Methodology

Our research methodology aims to develop a malicious application to circumvent Google

Play Protect security checks. During our literature review, we have found that Google Play

Protect is capable enough to detect/identify and block an application that tries to install

Over the Air (OTA) updates. But, there is a possibility to evade and bypass Play Protect

security mechanisms. This can be done if an application is spread and updated using a

trusted application distribution platform like Google Play Store.

According to the Google Android security report released in 2018, applications installed

from the Google Play Store are eight times more secure than applications installed from

other application distribution platforms. It is due to the in-depth analysis of the application

that Google performs. When an application is submitted to the Google Console, then

Google starts the review process. This review procedure generally takes a period of 1 hour

to 3 days to approve an application. When an application qualifies against the developer

distribution agreement, and no policy violation is found, the application is made public on

the Play Store.

1.7 Thesis Outline

The thesis is structured as follows:

• Chapter 2 focuses on a Literature review of Android permission, treats, and

malware detection techniques. Furthermore, it covers past efforts and significant

contributions.

• Chapter 3 outlines different malware detection tools that are publicly available and

used to secure Android devices.

 9

• Chapter 4 proposes our core methodology that is developed to bypass the Google

Play Protect security mechanism using incremental malicious updates. It also

covers the structure of our voice search application.

• Chapter 5 covers evaluation and demonstration of Play protect breach using

incremental malicious updates followed by data breaches performed.

• Chapter 6 has conclusion and feature directions.

 10

C h a p t e r 2

LITERATURE REVIEW

We do not assume that readers have prior knowledge of Android fundamentals. The

background section covers brief concepts of the Android platform for ease of their

understanding like permissions, vulnerabilities, and security threats. Furthermore, we

discussed past efforts, proposed models, and several attacks that are considered helpful in

maintaining Android security. For a better understanding of the reader, we also added some

attacks that were organized by large groups of the hacker community to steal user

information.

2.1 Introduction

There is undoubtedly no end to the significance of cell phones in our daily lives and

activities. In the past few years, the use of Android phones has risen exponentially. As per

Google Play report, Android has more than 2 billion active devices all around the world

[5]. It is the most popular platform among all kinds of cellphone devices. The global

distribution of the Android OS makes it a superlative target for cybercriminals. Therefore,

various types of malware are developed to target Android devices. They get installed in

Android devices through different means and steal users' data like device details, contacts,

messages, call logs, user location, images, and linked accounts [6].

Figure 1: Application Distribution Platforms.

 11

There are several well-known application distribution platforms through which

applications can be installed on Android devices. Fig. 1 gives a brief overview of Android

Application distribution platforms along with an active user base. The analytics show that

Google Play Store and Amazon Application store are the most widespread. Google Play

Store is on the top due to end-user saturation and the presence of hybrid applications

designed at industrial standards [7].

Google introduced several security procedures to protect Android users from malicious

applications. They announced Google Play Store as a default application distribution and

update managing system for the Android-based devices [8]. Google has developed an

exhaustive skill set to detect any malicious application uploaded on their distribution

servers. Earlier, Google was using Bouncer to keep the Play Store secure from malicious

applications. This was used to detect, classify, and block malicious applications. The

Bouncer classified malware as spyware, trojan, adware, backdoor, and downloaders [9].

Google Bouncer was replaced with Google Play Protect services in 2017. It is a built-in

mechanism that is used to identify potentially harmful applications (PHA) [10]. Play

Protect is a multi-tiered malware detection system that performs routine scans for rooting

out suspicious applications on an Android device. It is also responsible for performing

heuristic malware analysis, including but not limited to monitoring network activity,

malicious links, background services, and applications startups. In our paper, we have

analyzed the security aspects of Play Protect by uploading our application to the Play Store.

2.2 Android Background

We do not assume that readers have prior knowledge of Android fundamentals. For ease

of their understanding, the background section covers brief concepts of the Android

platform like permissions, vulnerabilities, and security threats. Furthermore, we discussed

past efforts, proposed models, and several attacks that are considered helpful in

maintaining Android security. For a better understanding of the reader, we also added some

attacks that were organized by large groups of the hacker community to steal user

information.

2.2.1 Android permissions

According to the latest release of Android OS (Android Marshmallow 6.0 - API 23), dated

 12

October 03 2017, every installed application needs to declare all required permission in its

manifest.xml file using the "uses-permission" tag. Hence, an application provider cannot

use any permission without giving a custom dialog prompt [11]. An overview of

permission dialogue can be seen in Fig. 2.

Figure 2: Android permission dialogues.

There is still a need to define why various permissions are required for an application.

Several algorithms are proposed to classify malware by analyzing the Android permissions

model, such as Amandroid, and SPARTA (Static Program Analysis for Reliable Trusted

Apps) [12]. According to these models, all Android permissions can be classified into

normal, signature, dangerous, and special permissions. [11]

2.2.1.1 Android normal permissions

There is no need to create a run time prompt for normal permissions as they are

automatically allowed to the application without interference. Android examines the list

of permissions in the manifest.xml file and allows normal permissions on runtime

automatically. Android normal permissions are categorized as access network state,

Bluetooth, access location, install application shortcuts, and kill background processes/

activities.

 13

2.2.1.2 Android signature permissions

These permissions require a runtime prompt to request permissions from the user.

Sometimes, a developer needs to explain the purpose of asking for this permission. These

permissions pop up when an application starts for the first time. These signature

permissions are not allowed automatically. Android ensures that digital certificates are

being used to access and define these permissions by an application. These permissions

include various services such as bind VPN (Virtual Private Network) service, text services,

voice interaction, telecom connections, manage documents, and request install packages.

2.2.1.3 Android dangerous permissions

This category includes a list of permissions that can potentially affect device operations.

These permissions are related to the user's privacy and security. An Android application

can not use these permissions until the user explicitly grants it. A runtime prompt is

compulsory to ask for dangerous permissions. These permissions include read/ write

contacts, messages, logs, calendar, external storage, record audio, and answer/ call phone.

2.2.1.4 Android special permissions

Special permissions are mostly defined by OEMs (Original Equipment Manufacturer) or

mobile distribution platforms to restrict access for a, particularly commanding operation.

All special permissions have their implementation mechanisms and need to create

permission dialogue. These include write settings and generate a system alert window.

2.2.2 Android vulnerabilities

Android OS has evolved tremendously over a period of time. In the last few years, plenty

of security improvement is introduced to Android devices. In this research, a survey has

been conducted that covers publicly published Android vulnerabilities that were identified

and patched in a timely manner. Fig. 3 gives a detailed graphical representation of the

number of vulnerabilities reported every year [13]. The year 2017 is considered the most

vulnerable year because Android was targeted with massive attacks. Upon close

examination of the bar graph, it can be identified that a total of 843 vulnerabilities were

identified in that year.

 14

Figure 3: Android vulnerabilities identified by year.

Fig. 4 gives a detailed graphical representation of different types of vulnerabilities

published across different Android versions like DOS (Denial-of-Service), code execution,

the device bypasses, memory corruption, potential information gain, buffer overflow, SQL

injection (Structured Query Language), directory traversal, and XSS (cross-site scripting).

Upon close examination of the bar graph, it can be identified that the two most occurring

vulnerabilities are code execution and buffer overflow.

Figure 4: Android vulnerabilities identified by type.

 15

2.2.3 Android Security Threats

Android is the most targeted platform for attackers due to its popularity. A vast number of

Android devices are attacked every day.

During the research, it is noticed that Android is targeted with multiple security threats

over time. These threats affected multiple Android devices and caused data loss for

numerous users. These threats can be classified into the following categories. Fig. 5 gives

a brief overview of android security threats followed by detailed definations. [14] [15]

Figure 5: Classification of Android malware.

1. Adware: It is a piece of code that displays advertisements. Its service runs in the

background and creates a popup window to display ads and sell fake products.

2. Trojan: It is a malicious application that hides its identity and misleads users by

pretending something like legitimate software using a valid icon and title.

3. Backdoor: It is a covert way to bypass normal authentication in a device. Backdoor

can be created by a compromised application or an unauthorized person to perform

an illegal remote activity. Furthermore, a backdoor can be used to establish a

communication channel. It allows attackers to perform malicious activities like

sniffing, activity monitoring, call logs, and SMS backups. A backdoor can also be

used to steal PII [9].

4. Spyware: It is an application that steals personally identifiable information,

contacts, messages, call logs, and device details. Subsequently, these applications

send the stolen information to their command and control servers.

 16

5. Click fraud: Hackers are paid when a user clicks on an advertisement, and they

create fake clicks by overlaying buttons, images, and test layouts over

advertisements. Click Fraud leads to more clicks and increased revenue.

6. Smishing/ SMS fraud: Targeted victims receive messages that contain website

links. Clicking on these links directs them to the desired page for malware

installation.

7. Logic bombs: It is a piece of code that is intently added in a software solution to

start malicious functionality when some specific condition meets. Some successful

experiments are conducted to exploit Android permission models using logic

bombs [16].

8. IRC-bots: Attacker infects multiple Android devices to create IRC (Internet-relay

chatbot). In this attack, at first, a group of machines is infected to get their control.

Subsequently, these machines are used remotely through the Internet Relay Chat

channel to launch DOS-like attacks against desired targeted platforms.

9. Money-mulling/ Financial fraud: These are targeted attacks in which fake bank

applications are propagated to gain banking details. Furthermore, valid dumps and

inactive accounts are filtered and compromised. They used for money transfer and

receiving for money laundering purposes and illegal payments.

10. Pharming: It is used to generate/ manipulate traffic to a specified website. An

application is propagated that overwrites the host file, overrules the original DNS.

This leads to a targeted website and generates fake traffic.

11. Ransomware: It is malicious software that infects device to encrypt data, displays

a message to users, and demands money to restore data access. Ransomware gets

installed by fake websites and misleading links.

12. SMS worms: These are malicious applications that propagate themselves. Worms

can spread by sharing links with saved contacts on the device. Sometimes worms

are used to create targeted attacks on the specific word's presence in the contact

list.

13. Rogue ware: These are fake software solutions that pose as anti-malware

applications. They generate a popup message that warns the user that their device

is infected and that the virus can be removed after installing their software. This

phenomenon leads to a rogue ware installation that leads to information stealing.

14. Keyloggers: Android keylogger applications are propagated to steal keystrokes.

They record keys when the user types something and copy anything on the device.

 17

2.2.4 Android Malware Detection Techniques

Android malware is hard to detect, and it is due to the inherited issues native to android

operating (OS) systems and mobile devices. This includes permission issues in android OS

and low computational resources of the mobile platform. This makes comprehensive

malware analysis on mobile devices extremely difficult. We have to perform analysis on

both mobile and dedicated servers to maintain accurate detection mechanisms for Android-

based malware. All Android malware detection techniques use similar steps to perform

malware analysis on an Android application, their entire method is the same. Still, the way

of doing it and their implementation method can vary. On the most abstract level, we can

categories Android malware detection in three major steps, as shown in Fig. 6.

Figure 6: Android malware detection techniques

All malware detection techniques work on the same principles for malware detection. First

of all, an Android Package Kit (APK) is identified and analyzed using any malware

detection technique, and in the end, the report is generated. There exist multiple Android

malware detection techniques depending on our requirements. There exist some

predefined and well-known methodologies that we are going to discuss. We can broadly

classify Android malware detection mechanisms into three major categories that are static

analysis, dynamic analysis, and hybrid analysis. This is shown in Fig. 7.

2.2.4.1 Static Analysis

Static analysis technique detects the malicious applications without running a malicious

file[17]. Static analysis can give various types of malware information, including function

information, opcode sequence, Control Flow Graphs (CFG) [18], malware signatures,

Android permissions, Dalvik bytecode, etc. All this information can be used to make a

dataset, and therefore, different artificial intelligence (AI) techniques can be applied to that

dataset. There are a lot of static analysis variants that exist. They perform malware analysis

 18

by selecting custom features like a combination of signature-base-detection and CFG's.

There exist some other approaches that use deobfuscation and machine learning techniques

to perform static malware analysis. The latest static malware analysis uses a combination

of different techniques for malware classification and detection.

2.2.4.2 Dynamic Analysis

Dynamic analysis is performed on Android applications by running a malicious sample in

virtually designed environments like virtual machines and mobile emulators. Dynamic

analysis is used to detect malicious behavior through different detection mechanisms based

on features like runtime behavior, system calls, device traces, registry changes,

Application Programming Interface (API) calls, system calls, memory writes, instruction

traces, monitoring network traffic, API call logs, etc. There exist different malware

detection techniques based on selective features like fine-grained models that use system

calls to analyze Android malware behavior. Machine learning algorithms are trained using

custom datasets to perform dynamic malware analysis. API calls, runtime behavior,

network traffic, and other key features are extracted to build a sequential model of required

malware and classified based on training data set. The dynamic analysis technique is

considered a more accurate detection technique than static analysis because it can detect

runtime code execution and monitor real-time activity in parallel to network traffic

monitoring. Table. 1 gives a quick overview of Android static and dynamic analysis.

Table 1: Static vs. dynamic analysis

Category Static Analysis Dynamic Analysis

Analysis Perform analysis without running

malware samples.

Perform analysis by running

malware samples.

Methodology Source code is extracted from

APK file with the help of reverse

engineering tools like Dex2Jar or

APK tool etc.

Runtime analysis is performed by

checking system calls, execution

paths, dynamic privacy leaks, power

consumptions, and network traffic.

Chosen

parameters

The analysis is performed based

on permissions, suspicious

patterns, and system API calls,

etc.

The analysis is performed based on

Runtime analysis, behavior patterns,

and system dynamic code loading,

etc.

 19

Nature of

approaches

Most static approaches are

signature-based approaches.

Most dynamic approaches are

behavior-based approaches.

Pros Simple and easy to implement,

which require fewer resources

and computational ost.

Analyzing runtime behavior creates

network overhead and increases

computational cost and requires

high-end resources to implement.

Cons This technique is not effective

against obfuscated and today's

state of the art malware.

This can counter obfuscated and

today's malware due to runtime

analysis techniques.

2.2.4.3 Hybrid Analysis

The hybrid malware analysis technique combines key aspects of both static and dynamic

malware detection mechanisms. This uses a combined analysis technique that checks the

malware sample based on selected features of static analysis and dynamic analysis. This

includes but is not limited to signature-based-detection, intent base detection, API calls,

system calls, runtime behavior, device traces, functional calls, classes names, services

created, broadcast incited, opcode sequence, CFG's, malware signatures, Android

permissions, Dalvik bytecode patterns, device traces, registry changes, memory writes,

instruction traces, etc. The process of hybrid analysis is not limited to this. It is a

customizable technique that provides flexibility to make a feature set of your own choice

based on requirements and perform analysis with higher accuracy and less false positive

rate. There are many standards-based on custom hybrid analysis techniques to counter state

of the art Android malware. Fig. 7 gives a quick overview of hybrid analysis.

Figure 7: Classification of Android malware using multiple Android malware analysis techniques.

 20

2.3 Related Work

Due to our work's novelty, we found a comparatively less quantity of associated literature

in our domain. However, several authors have nominated different aspects of Android

device security like creation, propagation, and malware detection among Android devices.

Recent studies explain the state of the art techniques that are used to secure Android users

from malware attacks. The related work is provided in the ensuing paragraphs.

Google Play Protect uses multiple types of time complexity algorithms for spam detection.

It classifies applications into different categories based on their functionality and performs

routine checkups to detect all installed applications' suspicious activities. Furthermore, a

rule-based filtering mechanism is used to enhance the detection algorithm's throughput

[19]. Consequently, the research is conducted to check the frequency of the updates of

published applications [20]. In this research, the authors have proposed a bi-weekly Play

Store application updates mechanism effective against application visibility and helps to

attain more users on the Play Store. The proposed method helps create a new application

and release its updates in a timely manner to get more visibility and installs in the Google

Play Store.

Several papers are presented to detect and classify new and repackaged malware designed

to infect Android devices. In this research [21], the author has described the working

principle of Android malware. He used state of the art forensic tools to visualize the

behavior and working model of Android Malware. Multiple aspects are envisioned, such

as malware propagation, working principle, and activity flow. Similarly, broad research

on repackaged malware is presented here [22]. In this research, the authors have described

a functional model to detect repackaged malware. This research briefly explains how a

code is injected into an existing application by exploiting the actual behavior and how they

are made undetectable. These kinds of malware are hard to detect, and their proposed

technique is a useful contribution. Similar to malware detection, malware classification is

considered vital to see the efficiency of malware detection tools. In Springer publication

[23], the authors have researched existing Android malware classification and

categorization techniques. They proposed a model based on modus operandi and existing

malware vendor reports to classify the state of the malware.

 21

More and more Android scholars are working to ensure Android safety and assessing the

strengths of existing detection tools for quality assurance. In this regard, the author has

demonstrated how to bypass automated malware analysis systems in the book [24]. he

bypasses antivirus solutions, Android sandboxes, and Google Bouncer by proposing a tool

called Sand-Finger. This is a relatively old study, but it covers the essential aspects of

bypassing techniques. The author explained a quick pathway to bypass Android malware

detection tools. This study is not directly applicable to new malware detection tools as they

are more vigorous and efficient. The baseline for massive Android threats is efficient

malware propagation. Detailed research has been conducted on malware propagation

mechanisms here [8]. In this article, the study has been conducted on possible malware

propagation among Android devices. Researchers analyzed propagation techniques and

explored the spread capabilities of multiple malware in a targeted environment. The author

analyzed multiple malware behavior and introduced three different malware propagation

states: susceptible, Latent, and breaking state. The proposed model calculates the malware

propagation's threshold based on these three states.

Efficient malware detection is compulsory for the safety of Android users. Accordingly,

different authors have proposed diverse detection models. In chapter [25], the researchers

have designed a set of rules to evaluate an Android application. They perform a detailed

study on the malware scanning process and briefly described malware detection

mechanisms. They designed evaluation phases and a set of rules to consider while

analyzing an Android application. Their primary focus is to protect Android users from

attacks by using both static and dynamic analysis. They introduced a ranking system for

applications based on trustworthiness, patterns, and the Android permission model.

In IEEE/ACM International Conference 2019 [26], the authors have proposed a malware

detection approach based on network analysis. The analysis is performed by analyzing

network activity. Authors collected Android applications from the Google Play Store and

analyzed their internet usage and network connectivity. Their core detection model is

based on Android permissions, intent actions, signatures, discriminative APIs, and pattern

recognition. Similarly, a functional malware detection mechanism is presented in Elsevier

journal [9]. The researchers have introduced a hierarchical embedding approach for the

detection of callback-based APIs and are named as Callback2Vec. The offered solution is

based on application behavior and information losses. Moreover, the proposed solution is

 22

helpful for the detection of downstream Android applications that use callbacks as a

standard API that is used in some malware.

The authors have conducted a large-scale empirical case study on Google Play Store in the

book [27]. They describe Google Play Store policy violations that lead to application

termination. Google has developed a set of policies that apply to all Android application

developers. It is a basic necessity for Play Store developers to comply with these policies

if they want to publish an Android application to the Play Store. Furthermore, if a

developer violates a policy, then its application is removed by the Play Store. Some severe

violations lead to account termination as well.

All of these works are comprehensive efforts to ensure Android malware detection

mechanism, propagation techniques, classification/ categorization based on their behavior,

repackaging of existing malware, and an efficient malware scanning process. Although

this work is a great motivation in research, however, none of these studies evaluate Google

Play Protect services against custom-designed malware updates. In contrast, our research

work analyses Google Play Protect detection mechanism and demonstrates a malicious

bypass.

 23

C h a p t e r 3

ANDROID MALWARE DETECTION TOOLS

3.1 Introduction

This section contains a detailed analysis of already existing malware detection tools. It

includes a comprehensive survey for preexisting tools freely available in the Android

market. As with the passage of time, new detection tools have been introduced to counter

the latest malware threats. In this paper, we have analyzed all the primary Android

malware detection tools discovered in the period of 2014 to 2019. All the tools are

thoroughly described along with their advantages and drawbacks. They are classified on

the basis of factors like accuracy rate, false-positive rate, and training dataset used for

algorithm training.

3.1.1 RoughDroid

RoughDroid [28] is a comprehensive hybrid malware analysis tool that was introduced in

2018. This tool is based on features extraction and machine learning algorithms. The

author has classified all selection features in such a way that ten features set has been

introduced. That feature sets are FS1, FS2, FS3, … FS10. These feature sets are classified

into two major groups. One is a set of an XML file that contains 7 feature sets, and the

second is based on DEX file that includes 3 feature sets. The algorithm is trained in such

a manner to identify malicious applications based on these feature sets. This technique

purely focuses on Hardware components, software components, Android permissions,

application components, application activities, intent filters, application services, API

calls, and behavior analysis in the DEX file. RoughDroid is trained under Deribit dataset

and succeeds with a higher accuracy rate of 95.6% and false positive rate of 1% but, the

underlying "Deribit dataset" is old and has been used 100's of times, and it does not include

advanced malware families and the latest threats of smart device like Agent-Smith Android

malware, Copycat malware, SpyDealer malware, GhostCtrl malware, Marcher malware,

Dvmap malware. RoughDroid was evaluated using different datasets like the Drebin

dataset and 179 distinct families of malware. After thorough analysis, the applications are

categorized as malware applications, adware applications, and benign applications.

 24

3.1.3 Drebin

Drebin [29] is a lightweight static analysis tool that was introduced in 2014. This tool is

capable of identifying malicious Android applications on the Android phone directly. It

uses a joint vector space to extract maximum features of an Android application for the

purpose of malware detection with an accuracy rate of 94% and 1% false positive. The

detection process takes an average of 10 seconds. The entire detection process consists of

8 vectors and performs analysis on vector bases. Drebin is capable of detecting malicious

applications on the smartphone by analyzing its malicious activity and constructs a

comprehensive vector space by analyzing different application features. First of all, static

analysis is performed on an Android application in which its hardware components,

application Components, filtered intents, requested permissions, restricted Application

Program Interface (API) calls, permissions used, suspicious API calls, and network

addresses are analyzed and mapped against a vector space. This vector space is further

used for learning-based detection and categorizes malware as benign or malicious.

3.1.4 AppFA

A comprehensive tool [26] was introduced in the period of 2018. It is based on a novel

dynamic approach for the detection of malicious Android applications on the network. It's

lightweight and is a very efficient framework that uses an efficient algorithm to cluster the

network traffic of the application. There is no need to install a specific program on an

Android device or for system modification. This tool is capable of handling encrypted

traffic while carrying our analysis online and uses a constrained clustering technique to

classify network traffic of an Android application. This tool uses an efficient algorithm to

get and check network traffic. This technique is originally implemented on a public dataset

and Google play store applications with an accuracy rate of 90%, and a false-positive rate

is less than 0.4%.

3.1.5 DroidDector

DroidDector [30] is a comprehensive hybrid analysis tool that was introduced in the period

of 2016. It uses deep learning techniques and performs static and dynamic analysis in

parallel based on 192 feature sets for higher accuracy. This is an online deep learning base

detection engine that uses a feature set for detection containing required permissions and

sensitive API calls. It classifies Android applications and categorizes them based on listed

permissions. DroidDector can broadly be classified feature sets into three categories,

 25

which are required permissions, sensitive APIs, and dynamic behaviors of an Android

application. DroidDector is trained under a dataset of 21760 applications collected from

Android stores. This tool performs in-depth analysis with an accuracy rate of 96.76% and

a false positive rate of 0.9%.

3.1.6 TinyDroid

TinyDroid [31] is a lightweight tool that was introduced in 2018. This is implemented

using static analysis and use machine learning. First of all, an APK is decompiled, and the

opcode sequence is extracted and classified depending upon application features. then that

application is decompiled, and the opcode is extracted. Furthermore, these opcodes are

used in combination with N-Gram to predict an application as malicious or benign.

TinyDroid is efficient and fast as compared to other antivirus applications. Under the

testing of 4000 application samples, it gives an accuracy rate of 98.6% and a false-positive

rate of 1.4%.

3.1.7 DynaLog

DynaLog [32] is a dynamic analysis malware detection tool that was introduced in 2016.

It uses a wide variety of dynamic features to classify any Android application into benign

or malicious applications. This framework is built on some preexisting open-source tools

like a mobile sandbox and its detection mechanism, including mass analysis, application

characterization along with API calls, and performance of critical events in an application.

This technique is analyzed in 1940 application samples containing both benign and

malicious applications. DynaLog is designed in such a manner that it can analyze multiple

malicious applications at the same time. The entire detection process is composed of five

major components. First of all, an application is launched in an emulator, and its logs are

extracted to perform further analysis. In the end, an emulator-based analysis sandbox is

used to classify Android applications as benign or malicious. DynaLog gives an accuracy

rate of 93.29% under the discussed dataset.

3.1.8 ICCDetector

ICCDetector [33] is a static analysis malware detection tool that was introduced in the

period of 2016. This tool is trained with 17290 malicious and benign applications that are

collected from different Android markets and include other open source applications too.

ICCDetector is capable of analyzing malware on the basis of self-defined ICC

 26

characteristics and ICC patterns of applications. All these patterns are obtained by

analyzing an Android application on the basis of app components, intents, intent filters,

required permission, etc. This tool is capable of analyzing all types of malicious

applications, and all these applications are roughly classified into five major categories,

which are server connector, system monitor, advertiser, effective launcher, and telephony

abuser. ICCDetector set a benchmark for an accuracy rate of 97.4% with a false positive

rate of 0.67%.

3.1.9 CASSANDRA

CASSANDRA [17] is a static analysis tool that was published in 2017. This tool extracts

features from an Android application and uses an online learning mechanism to flag an

application as malicious or benign. The used methodology can be subdivided into four

major modules as static analysis, features extraction & representations, online learning,

machine learning-based malware detection. It uses contextual inter-procedural control

flow graphs to gather contextual and structural information from a malicious application.

This graph-based technique makes CASSANDRA more scalable and helps to achieve an

accuracy rate of 99.23% over the analysis of 87000 applications. CASSANDRA is trained

under 87000 applications collected from different application stores.

3.1.10 MADAM

MADAM [2] is a hybrid analysis tool that was published in 2019. This tool uses key

features of both static and dynamic analysis and performs detection only on rooted devices.

This is a host-based multilevel framework that classifies on the basis of system calls, user

activities and develops a behavioral pattern for unauthorized kernel-level activities for

identification. MADAM is trained with three different types of data sets, which are

Genome, virus share database and Contagio-Mobile dataset. It uses behavior base Android

malware detection and detects if an application misbehaves. Moreover, it has the ability to

remove the malicious application in Android and stops its further prorogation. This tool

uses a signature base and anomaly-based detection mechanism to give an accuracy rate of

96.9% that is tested over 9804 applications.

3.1.11 APK Auditor

A static analysis tool [34] was introduced in the period of 2015. This is capable of

performing permission-based malware analysis to classify targeted applications as

 27

malicious or benign. APK Auditor is based on three components, which are the Android

client module that is installed in an Android device, signatures database, and a server that

is responsible for communication between the module and database. The tool analyzes

applications on the basis of Android permissions, receivers, and services to classify them

as benign or malicious. The model is tested with 8762 Android applications from different

Android stores and has an accuracy rate of 88% with a false-positive of 0.925%.

3.1.12 MalDozer

MalDozer [35] is a dynamic analysis tool introduced in the period 2018. It performs

dynamic analysis on the basis of API calls by using deep learning algorithms. This is a

comprehensive framework having the capability to deploy on servers, mobile phones, and

Internet Of Things IoT devices. First of all DEX file is extracted from the APK file, and

further assembly is extracted by the DEX file. Furthermore, API method calls are extracted

from assembly and used for the development of a Tensorflow artificial neural network.

The framework is trained with 38000 benign and 33000 malware samples from these open

source datasets: Malgenome, Drebin, Virusshare samples, and Contagio Minidump. This

framework gives an accuracy rate of 96%-99% with a false positive rate of 0.06%-2% as

the training dataset is of 71000 applications.

3.1.13 AndroDialysis

AndroDialysis [36] is a static analysis malware detection tool introduced in the period of

2017. It performs static analysis on the basis of implicit and explicit intents created in an

Android application. The framework is trained with 7406 applications, among which 1846

is benign, and 5560 are malware from different datasets like ProfileDroid and Drebin

dataset. This is not a perfect solution because it's very easy to evade and can be misled

under trained dataset. Moreover, this approach is tested under the given dataset, which

gives an accuracy rate of 91% and a false positive rate of 4.4%

3.1.14 Apposcopy

Apposcopy is a static analysis based tool that was introduced in the period of 2014. It

performs static analysis on the basis of Android application signatures to identify specific

malware families. Along with signature base detection, it uses "Inter-Component-Call-

Graph" for efficient malware detection. This framework is purely based on signature-based

detection that is inefficient and is easy to evade by the latest malware families. First of all,

 28

an APK is decompiled, and permissions are extracted from the Android manifest file. A

total of 1027 malware samples were collected from the Malware Genome project, and the

Accuracy rate for detection was 90%, and the false positive rate is 2%.

3.1.15 M0Droid

M0Droid is a static analysis tool introduced in the period of 2015. It performs static

analysis based on Android signatures and application behavior. This approach is

lightweight and is based on two components; a client agent, which is installed on an

Android application, and a server analyzer. To perform analysis, they work in parallel to

identify malicious applications. M0Droid is analyzed with a Genome dataset and achieved

a detection rate of 60.16% and a false positive rate of 39.43%. This technique is not up-to-

date and cannot be further used for malware detection. The accuracy rate of this tool is

very low due to the poor implementation of signature-based techniques.

3.1.16 SeqDroid

SeqDroid [37] is a hybrid analysis tool that was introduced in the period of 2019. It uses

Recurrent Neural Networks and Stacked Convolutional to detect obfuscated Android

malware. This technique is robust, lightweight, and has the latest detection technologies

for the detection of obfuscated and runtime dynamic creation of strings and package

names. This dataset is tested under 2,000,000 malware samples from VirusTotal, along

with benign applications are 888,620. Results were classified on the basis of 5 different

tier based methodologies as Ngram, RNN, Ngram-PA, RNN_PA, CNN_RNN_PA, and

SeqDroid attained up to 95% accuracy rate, and false positive is 0.001%.

3.1.17 DroidEvolver

DroidEvolver [38] is a static analysis tool that was introduced in the period of 2019. It

evolves itself with machine learning without a user's continuous evolvement. The

framework updates itself and its dataset from online learning techniques. This tool is truly

helpful in the detection of code obfuscation, and the entire detection is based on API calls.

DroidEvolver is evaluated under 33,294 benign and 34,722 malicious applications and

attained an accuracy rate of 95.27%, along with a false positive rate of 0.48%.

3.1.18 HinDroid

 29

HinDroid is a static analysis tool introduced in the period of 2017. It detects malicious

Android applications using API calls along with structured Heterogeneous Information

Network (HIN). They claim that this is a novel approach that has been used for the first

time for malware detection in which analysis is performed by HIN on extracted API calls.

This framework is trained under the malware dataset obtained from Comodo Cloud

Security Center (CCSC). Dataset is trained under 32,334 applications, among which

16,118 are benign applications, and 16,216 are malicious applications. android has an

accuracy rate of 98.60% and a false positive rate of 4%. \\\\ Android malware can further

be classified on the basis of their approaches and the way of their classification in Android

malware categories.

A comprehensive survey is performed on preexisting tools that are freely available in the

Android market. All the tools are thoroughly described along with their advantages and

drawbacks. Table .2 explains the classification on the basis of factors like accuracy rate,

false-positive rate, and training dataset used for algorithm training.

• AR: Accuracy Rate (%)

• FP: False Positive Rate (%)

Table 2: Different malware detection tools.

Name Approa

ch

year Description Advantages Discussion Data set AC FP

Drebi

n [29]

Static

analysis

2014 Use a joint vector

space to extract

maximum features

like API calls, use

permissions,

network addressed,

hardware and

software

components

The detection

process takes an

average of 10s

A static approach

without Runtime

code linking

detection feature

129013

GooglePlay

Store, Chinese

Markets,

Russian

Markets,

Genome Project

94 1

APK

Audit

or

[34]

Static

analysis

2015 Use permission-

based malware

analysis to classify

targeted applications

and has three

components as the

client, server, and

signatures database

The tool analyzes

application

permissions,

receivers, and

services to

classify them as

benign or

malicious, not just

signatures.

Obfuscated

malware with

code words can

bypass this

detection

mechanism.

That's why it has

a low accuracy

rate

8762

Application

stores

88 0.9

2

Droid

Decto

r [30]

Hybrid

analysis

2016 Use deep learning

on listed

permissions in the

manifest file and

sensitive API calls

and other 192

feature sets with

Dataset is trained

using Deep

learning on both

API calls and

permissions

Less effective

and can be

fooled by the

latest malware

families

21760

Google Play

Store, Contagio

Community,

Genome Project

96.

76

0.9

 30

deep learning

algorithms

ICCD

etecto

r [33]

Static

analysis

2016 Analyze app

component, Intents,

Intent filters, and

required permission

Malware is

analyzed based on

ICC

characteristics and

ICC patterns of

applications.

Unable to detect

malicious code

loading on run

time.

17290

Application

store,

opensource

APK

97.

4

0.6

7

CAS

SAN

DRA

[6]

Static

analysis

2017 use online learning

based on contextual

Inter-procedural

control flow graphs

to gather contextual

and structural

information

Graph-based

technology makes

it fast and efferent

with a higher

accuracy rate.

Advance

malware with

runtime and

dynamic

malicious code

linking can

easily evade this.

87000

Application

store,

opensource

APK

99.

23

0.8

6

Roug

hDroi

d [28]

Hybrid

analysis

2018 Extract 10 Features

extraction and apply

machine learning

Perform Fast and

comprehensive

analysis based on

ten features that

make malware

evading almost

impossible.

Deribit dataset"

is old, and it

doesn't include

advanced

malware families

Deribit dataset 95.

6

1

Tiny

Droid

[31]

Static

analysis

2018 Use Opcodes in

combination with N-

Gram to predict as

malware and benign

Efficient,

lightweight, and

fast due to the use

of the machine

learning technique

Small training

dataset, this can

be modified and

retrained with

new malware

samples

4000

Application

store,

opensource

APK

98.

6

1.4

MAD

AM

[2]

Hybrid

analysis

2018 a host-based

multilevel

framework that

classifies based on

system calls, users

activities and

develops behavioral

patterns for

unauthorized kernel-

level activities for

identification

The model is

trained under

great datasets and

achieved a higher

accuracy rate that

makes it worthy

for the latest

malware

Only rooted

devices are

eligible for

analysis, and the

latest malware

can execute

malicious

payloads

Genome, Virus

share database,

Contagio-

Mobile dataset

96.

9

0.5

–

1.1

MalD

ozer

[35]

Dynami

c

analysis

2018 A comprehensive

framework based on

API calls and

methods along with

deep learning

algorithms and

trained with

multiple datasets to

gain a higher

accuracy rate

This is not limited

to android phones,

but the framework

is capable of

deploying on

servers, mobiles

phones, and IoT

devices

Tensorflow

artificial neural

network needs

more

computational

cost and

expensive to

deploy

71000

Malgenome,

Drebin,

Virusshare,

Contagio

Minidump

96 -

99

0.0

6 –

2

SeqD

roid

[37]

Hybrid

analysis

2019 Use Recurrent

Neural Networks

and Using Stacked

Convolutional to

detect obfuscated

Android malware

and trained under

great data set of up

to 2 million

Its robust,

lightweight

and has the latest

detection

technologies for

detection

of obfuscated and

runtime

Ngram, RNN,

Ngram-PA, RNN

PA, CNN RNN

PA are hard to

implement and

increase

computational

cost

2888620

VirusTotal

95 0.0

01

 31

applications dynamic creation

of strings and

package names.

Droid

Evolv

er

[38]

Static

Analysi

s

2019 Online learning-

based detection of

code obfuscation

and detection is

based on API calls.

Evolve itself with

machine

learning without

user's continuous

evolvement

Only static based

API based

approach is not

so capable of

countering

today's threats

68016 Open

source

95.

27

0,4

8

SDA

C

[39]

Static

Analysi

s

2020 The API call

sequence is

extracted, and a

Neural Network is

used to assign API

to vector space and

API clusters.

The feature set is

adaptive and able

to adapt new

features in

runtime that make

it detect new and

advanced

malware.

The training data

set is old and

might not

contain advanced

malware samples

that make it a

week.

Open source

app

2011 - 2016

98.

1

0.1

–

1.9

DL-

Droid

[40]

Dynami

c

Analysi

s

2020 Works based on

stateful input

generation and use

different stateless

approaches for code

coverage.

A good approach

that gives a

feature to

combine static

analysis with

dynamic to get up

to 99.6% accuracy

rate.

Not able to

counter today's

obfuscated

malware and

very limited

dataset used for

training.

30,000

Open source

apps

97.

8

0.1

–

2.2

 32

C h a p t e r 4

PROPOSED TECHNIQUE TO BYPASS SECURITY

AFFORDED BY GOOGLE PLAY PROTECT

4.1 Introduction

Our methodology aims to develop a malicious application to circumvent Google Play

Protect security checks. During our literature review, we have found that Google Play

Protect is capable enough to detect/identify and block an application that tries to install

Over the Air (OTA) updates. But, there is a possibility to evade and bypass Play Protect

security mechanisms. This can be done if an application is spread and updated using a

trusted application distribution platform like Google Play Store.

According to the Google Android security report released in 2018, applications installed

from the Google Play Store are eight times more secure than applications installed from

other application distribution platforms. It is due to the in-depth analysis of the application

that is performed by Google. When an application is submitted to the Google Console,

then Google starts the review process. This review procedure generally takes a period of 1

hour to 3 days to approve an application. When an application qualifies against the

developer distribution agreement, and no policy violation is found, then the application is

made public on the Play Store.

4.2 Voice Search Application - Design and Architecture

The high-level architecture of the Voice Search application is shown in Fig.~\ref{fig5},

detailing the connectivity of the application developer, Play Store, and the end-user. It is

a sequence diagram that provides an overview of the proposed methodology. The sequence

is as follow:

1. An application named "Voice Search" is developed and uploaded on the Google

Play Store. It allows users to perform various actions through voice commands.

This application allows the following type of voice commands to a user:

i. Call someone by speaking their name.

ii. What is the current weather?

 33

iii. Latest news articles.

iv. The shortest way to California.

 Due to its attractive functionality, in a very short period of time, it is sported 12,782 types

of Android devices and is made available in 151 countries. Fig.~\ref{fig6} shows our

application published on the Google Play Store.

Figure 8: Proposed methodology to bypass Google Play Protect.

Figure 9: Malicious application published on Google Play Store.

 34

2. An early version called V1.1 is a legitimate application that performs publicly announced

functionality. This version was submitted to Google Console on October 31, 2020. Google

took seven days to review and accepted the application as legitimate on November 6,

2020. Since then, the Google Play Store has made the application publicly available.

3. After some days, a second version for Voice Search was developed and named V1.2. In

this version, we started or malicious functionality by adding analytics, event logs, activity

tracking, demographics, and user location. This update was submitted to Google Console

on November 16, 2020, and was accepted on November 17, 2020. Google took just one

day to review our update and made it public on Google Play Store.

4. Subsequently, a third version, V1.3, was developed. This was an entirely malicious update

that was capable of exploiting android permissions. It was collecting device contacts,

version, API level, manufacture, and model details. This version was capable of creating

a reverse connection on Firebase storage to store data against each user's entity. All this

data was collected when the user was performing its first voice action. This version was

submitted to Google Console on December 26, 2020, and was accepted on December 27,

2020. Google took just one day to review our update thoroughly, and this malicious

version was made public on Google Play Store.

Figure 10: Google Play Protect scanning process.

 35

The experiments conducted show that the Google Play Store performs an in-depth analysis

that takes more days when an application is initially published on the Play Store, while it

takes less time to review when an update is created to an existing application. We analyzed

with different experiments that it is difficult to upload a fully malicious application, but

the same could be done in multiple updates.

We downloaded this application on multiple Android devices to test against Google Play

Protect, but Play Protect was unable to detect our malicious application. Although Play

Protect performs a routine analysis on installed applications in the device and checks

against the potentially harmful activity but still, it was not able to detect this kind of attack.

Fig.~\ref{fig11} shows a device screenshot in which Google Play Protect scanned all

applications, including our malicious one, but it was not able to detect our application.

 36

C h a p t e r 5

EVALUATION AND DEMONSTRATION OF PLAY

PROTECT BREACH USING INCREMENTAL MALICIOUS

UPDATES

5.1 Introduction

Our evaluation is based on the accuracy and effectiveness of the presented work. The

proposed methodology provided an effective way to propagate a malicious application

using a most trusted platform like Google Play Store. The effectiveness of the proposed

methodology is measured and evaluated by launching and performing a malicious attack

through the Google Play Store. This means that any kind of benign application can be

created and published, and an application developer can exploit and make it malicious at

later stages. This proves that, If this kind of attack is launched in multiple applications,

then it will cause massive distribution in global users and will be hard to stop it.

5.2 Effectiveness

We created three versions for the Android application and published them on Google Play

Store in a timely manner. Table. 3 contains application publication details against their

version number. The table has three columns:

1. Version: This column contains the application version that contains major

increments.

2. Processing time: This column explains the number of days that Google took for

evaluation before making a version live on Google Play Store.

3. Functionality: This column contains application functionality that was introduced

in a specific version.

Table 3: Application publication workflow.

Version Processing Time Functionality

V 1.1 7 Days

Submission: 31-10-2020

Acceptance: 6-11-2020

- Benign App.

- App permissions.

- 12,782 devices.

 37

- 151 countries.

- Support API 16 – 30.

V1.2 1 Days

Submission: 16-11-2020

Acceptance: 17-11-2020

- Added analytics.

- Event logs.

- Activity tracking.

- Demographics.

- Userbase location.

- Affinity audience.

V 1.3 1 Days

Submission: 26-12-2020

Acceptance: 27-12-2020

- Permission exploit.

- Firebase data backup.

- Contacts backup.

- Device details.

- Data is backup on voice

actions.

5.2.1 Application detection across scanners

After a successful demonstration to bypass the Google Play Store detection mechanism,

we test the "Voice Search" application across different anti-malware solutions. We

analyzed the APK file of our application across multiple antiviruses solutions using

Virustotal. These are application details collected after its thorough analysis across

different antivirus and anti-malware platforms. A complete scan report is available here

[41] and a quick overview of the detailed scanning report is visible in Fig. 11.

 38

Figure 11: Application detection across virustotal.

Moreover, the "Voice Search" application was tested against malware solutions such as

the Cuckoo sandbox and Anyrun malware sandbox. The application was undetectable;

application details of the designed "Voice Search" is included below for further analysis:

• MD5: 96a4a3fd70f627155133bec58b3f1d23

• Vhash: 6b3340a01f08d92e7d05c44f2ac42a77

• SHA: 092f13d3c2915d3efc6139b9bf2bba1dbab5ca26

• SHA-256:

1bb5004c249e9175e3190b3299d33921s5600ae77441a28c3afe278b903a0c285

• Common Name: Android APK

• The organization hosted: Google Inc, Mountain View (California), US

• Certificate Issuer: C:US, CN:Android, L:Mountain View, O:Google Inc.,

ST:California, OU:Android

• Virus Total Submission: 2020-12-28 12:50:52

5.3 Accuracy

This section explains the user's data that has been collected throughout our experiment.

We organized the collected in a particular order for better understanding. All the collected

data is stored in Firebase servers. Firebase is a store platform launched by Google [42]. It

is considered the most trusted platform for analytics and back-end services.

 39

The data collection phase was simple when a new user installs our application first time

from the Google Play Store and opens it, and then this functionality was executed:

1. User entry was created in Firebase with a unique key.

2. User contacts, device details, location, and demographics were uploaded to the

selected destination.

3. The device's current date-time was logged, and the device was marked successful

in avoiding feature repetitions.

Afterward, this data was safely stored and in a particular order. The collected data was

organized into two sections, i.e., Firebase Bulks and Analytics data.

5.3.1 Firebase Bulks

This contains data bulk details stored in a Firebase server. Fig. 12 shows data stored in

Firebase against every user's random key.

1. MPZa7B5ywvX2lP-Yx1w: This entity contains a Firebase unique key for individual

devices.

2. Manufacturer: It contains the name of the mobile company that is the manufacturer of

devices, e.g., Samsung, Nokia, Huawei.

3. Model: This entity contains device model details, e.g., Galaxy S3, Nokia 2.2.

4. Android version: This entity contains Android version numbers like Android 10, 9, 8.

5. API level: It contains an integer value for a specific API.

6. Date and time: This entity contains a local timestamp at the time of data uploading.

7. Info: This entity contains a string that has device contacts locally stored in the system.

8. Demographics: This shows the overall statistical view for the gender and age group of

the audience that installed this application.

9. Location: These are statistics for countries/ regions in which the application is installed.

10. Activity: This is a graphical representation for users who installed the application every

day.

11. Affinity Audience: These statistics give a detailed report about application users based

on their interests, lifestyle, habits, passion, and online activities.

 40

Figure 12: Firebase data storage.

5.3.2 Analytics Data

The Analytics data contains a graphical representation of Android users. Fig.~\ref{fig8}

graphically displays the geolocation of users that has installed the application. As the

image shows, most of the audience is coming from India, Russia, and the United States.

These graphs change in a timely manner when new users are acquired from different

locations.

 41

Figure 13: Users' location data collected by voice search application.

Fig.~\ref{fig9} contains a graphical representation of the targeted audience based on their

ages. All users are classified into age groups. The minimum age group we targeted in our

application is 18 years. We do not allow under 18 users to install our application.

Application users are largely classified into two major age groups, i.e., the 18-24 years

group and the 25-34 years group. We also have broadly classified our total audience into

groups based on their gender, and we got 55.2% males and 44.8% females.

Figure 14: Users' age group and gender collected by voice search application.

 42

Fig.~\ref{fig10} gives a brief overview of our affinity audiences. It categorizes users into

their respected categories base on past activities, interests, and hobbies. The Firebase

analytics algorithm keeps track of their daily activities and assigns an affinity group based

on their recent behavior. The major categories are news, politics, media, entertainment,

shoppers, sports, fitness, technology, traveling, vehicles and transportation. These group

categorization leads to custom advertisements and can be used to generate more sales.

Figure 15: Users' data relevant to their interests, lifestyle, habits, passion, and online activities collected by voice

search application.

After installing the application and collecting desired data from devices without getting

noticed by Play Protect, it can be concluded that such attacks are hard to detect. Attackers

can attach this malicious piece of code to the popular Android application. Then he/ she

can further propagate these applications to a targeted audience using a messaging service.

 43

C h a p t e r 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Google promises its users to provide secure and authentic applications if they install from

the Google Play Store and enable Google Play Protect services on their devices. These

services are available on all the latest Android devices by default. In our research, We

performed auditing/evaluation of Google Play protect. We experimented and designed a

multi-step model and successfully bypassed Google malicious application detection

mechanisms by incremental malicious updates. In this regard, two policies of the Google

policy center have been violated and breached during our experiment, i.e. (1). Privacy,

deception, and system abuse. (2) Malware policy. These policies ensure that Android users

are provided with safe and secure applications through Play Store [43].

This experiment has demonstrated a possible breach that can circumvent the security

afforded by Google. Although Play Protect was introduced back in 2017 and it is still

inefficient for the detection of malicious applications, particularly when periodic updates

are released to exploit the Android permission model. If this kind of malware is released

in public, then data bulks can be generated in a couple of days and can be used to exploit

individual users and entire organizations. To block such attacks, a thorough analysis of

updates is recommended. As seen in Table: 3 that Google Play Store took seven days to

scan the application, which was published for the first time but less than one day to scan

its update. To block such kinds of attacks, it is compulsory to perform an in-depth analysis

of every update, not just the initial application submission.

6.2 Future work

This research invites Android researchers and developers to investigate and counter

modern security breaches. Users can use this research for a better understanding of

available free applications in online markets against different vulnerabilities. This research

can further be used to investigate other application distribution platforms and operating

systems like the IOS Apple store and Windows app stores.

 44

BIBLIOGRAPHY

[1] R. Riasat, M. Sakeena, C. Wang, A. H. Sadiq, and Y. Wang, “A Survey on Android

Malware Detection Techniques,” DEStech Trans. Comput. Sci. Eng., no. wcne, Jan.

2017, doi: 10.12783/dtcse/wcne2016/5088.

[2] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and

Efficient Behavior-based Android Malware Detection and Prevention,” IEEE

Trans. Dependable Secure Comput., vol. 15, no. 1, pp. 83–97, Jan. 2018, doi:

10.1109/TDSC.2016.2536605.

[3] “CRAZY Android vs iOS Market Share Discoveries in 2020,” Tech Jobs, Nov. 15,

2019. https://leftronic.com/android-vs-ios-market-share/ (accessed Dec. 01, 2020).

[4] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,” in The

2014 ACM international conference on Measurement and modeling of computer

systems - SIGMETRICS ’14, Austin, Texas, USA, 2014, pp. 221–233, doi:

10.1145/2591971.2592003.

[5] “App Stores List (2020) - Business of Apps.”

https://www.businessofapps.com/guide/app-stores-list/ (accessed Feb. 11, 2021).

[6] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-aware, Adaptive

and Scalable Android Malware Detection through Online Learning (extended

version),” ArXiv170600947 Cs, Jul. 2017, Accessed: Sep. 14, 2020. [Online].

Available: http://arxiv.org/abs/1706.00947.

[7] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “End Users’ Perception of

Hybrid Mobile Apps in the Google Play Store,” in 2015 IEEE International

Conference on Mobile Services, New York City, NY, USA, Jun. 2015, pp. 25–32,

doi: 10.1109/MobServ.2015.14.

[8] I. Almomani and M. Alenezi, “Android Application Security Scanning Process,” in

Telecommunication Systems - Principles and Applications of Wireless-Optical

Technologies, I. A. Alimi, P. P. Monteiro, and A. L. Teixeira, Eds. IntechOpen,

2019.

[9] C. Guo, J. Zhu, X. Yan, and Y. Li, “Security Threats Caused by Public Event

Callback in Android Application,” J. Phys. Conf. Ser., vol. 1453, p. 012127, Jan.

2020, doi: 10.1088/1742-6596/1453/1/012127.

[10] “Potentially Harmful Applications (PHAs) | Play Protect,” Google Developers.

https://developers.google.com/android/play-protect/potentially-harmful-applications

(accessed Dec. 01, 2020).

[11] “Permissions on Android,” Android Developers.

https://developer.android.com/guide/topics/permissions/overview (accessed Nov.

27, 2020).

[12] A. Mahindru and P. Singh, “Dynamic Permissions based Android Malware

Detection using Machine Learning Techniques,” in Proceedings of the 10th

Innovations in Software Engineering Conference, Jaipur India, Feb. 2017, pp. 202–

210, doi: 10.1145/3021460.3021485.

[13] “Google Android : CVE security vulnerabilities, versions and detailed reports.”

https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

(accessed Dec. 01, 2020).

[14] “Vulnerabilities and threats in mobile applications, 2019.”

https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-

and-vulnerabilities-2019/ (accessed Dec. 01, 2020).

[15] “Top 7 Mobile Security Threats in 2020 | Kaspersky.”

https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-

 45

threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-

store (accessed Dec. 01, 2020).

[16] R. P. Medina, E. B. Neundorfer, R. Chouchane, and A. Perez, “PRAST: Using

Logic Bombs to Exploit the Android Permission Model and a Module Based

Solution,” in 2018 13th International Conference on Malicious and Unwanted

Software (MALWARE), Nantucket, MA, USA, Oct. 2018, pp. 1–8, doi:

10.1109/MALWARE.2018.8659369.

[17] H. Kang, J. Jang, A. Mohaisen, and H. K. Kim, “Detecting and Classifying Android

Malware Using Static Analysis along with Creator Information,” Int. J. Distrib.

Sens. Netw., vol. 11, no. 6, p. 479174, Jun. 2015, doi: 10.1155/2015/479174.

[18] T. Li, M. Xu, X. Deng, and L. Shen, “Accelerate CTU Partition to Real Time for

HEVC Encoding With Complexity Control,” IEEE Trans. Image Process., vol. 29,

pp. 7482–7496, 2020, doi: 10.1109/TIP.2020.3003730.

[19] T. Xia, “A Constant Time Complexity Spam Detection Algorithm for Boosting

Throughput on Rule-Based Filtering Systems,” IEEE Access, vol. 8, pp. 82653–

82661, 2020, doi: 10.1109/ACCESS.2020.2991328.

[20] S. McIlroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study of frequently-

updated mobile apps in the Google play store,” Empir. Softw. Eng., vol. 21, no. 3,

pp. 1346–1370, Jun. 2016, doi: 10.1007/s10664-015-9388-2.

[21] K. Allix, Q. Jerome, T. F. Bissyande, J. Klein, R. State, and Y. L. Traon, “A

Forensic Analysis of Android Malware -- How is Malware Written and How it

Could Be Detected?,” in 2014 IEEE 38th Annual Computer Software and

Applications Conference, Vasteras, Sweden, Jul. 2014, pp. 384–393, doi:

10.1109/COMPSAC.2014.61.

[22] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “‘Andromaly’: a

behavioral malware detection framework for android devices,” J. Intell. Inf. Syst.,

vol. 38, no. 1, pp. 161–190, Feb. 2012, doi: 10.1007/s10844-010-0148-x.

[23] D. Maier, T. Muller, and M. Protsenko, “Divide-and-Conquer: Why Android

Malware Cannot Be Stopped,” in 2014 Ninth International Conference on

Availability, Reliability and Security, Fribourg, Switzerland, Sep. 2014, pp. 30–39,

doi: 10.1109/ARES.2014.12.

[24] A. Scurtu, “Learning to predict whether an app will be kept or removed from the

Play Store by Google,” bachelor, 2020.

[25] I. Almomani and M. Alenezi, “Android Application Security Scanning Process,” in

Telecommunication Systems - Principles and Applications of Wireless-Optical

Technologies, I. A. Alimi, P. P. Monteiro, and A. L. Teixeira, Eds. IntechOpen,

2019.

[26] G. He, B. Xu, and H. Zhu, “AppFA: A Novel Approach to Detect Malicious

Android Applications on the Network,” Secur. Commun. Netw., vol. 2018, pp. 1–

15, Apr. 2018, doi: 10.1155/2018/2854728.

[27] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are Android apps removed from

Google Play?: a large-scale empirical study,” in Proceedings of the 15th

International Conference on Mining Software Repositories - MSR ’18, Gothenburg,

Sweden, 2018, pp. 231–242, doi: 10.1145/3196398.3196412.

[28] K. Riad and L. Ke, “RoughDroid: Operative Scheme for Functional Android

Malware Detection,” Secur. Commun. Netw., vol. 2018, pp. 1–10, Sep. 2018, doi:

10.1155/2018/8087303.

[29] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin:

Effective and Explainable Detection of Android Malware in Your Pocket,”

 46

presented at the Network and Distributed System Security Symposium, San Diego,

CA, 2014, doi: 10.14722/ndss.2014.23247.

[30] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and

detection using deep learning,” Tsinghua Sci. Technol., vol. 21, no. 1, pp. 114–123,

Feb. 2016, doi: 10.1109/TST.2016.7399288.

[31] T. Chen, Q. Mao, Y. Yang, M. Lv, and J. Zhu, “TinyDroid: A Lightweight and

Efficient Model for Android Malware Detection and Classification,” Mob. Inf.

Syst., vol. 2018, pp. 1–9, Oct. 2018, doi: 10.1155/2018/4157156.

[32] “Dynalog: an automated dynamic analysis framework for characterizing android

applications,” in 2016 International Conference On Cyber Security And Protection

Of Digital Services (Cyber Security), London, United Kingdom, Jun. 2016, pp. 1–8,

doi: 10.1109/CyberSecPODS.2016.7502337.

[33] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based Malware Detection on

Android,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1252–1264, Jun.

2016, doi: 10.1109/TIFS.2016.2523912.

[34] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-based Android

malware detection system,” Digit. Investig., vol. 13, pp. 1–14, Jun. 2015, doi:

10.1016/j.diin.2015.01.001.

[35] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic

framework for android malware detection using deep learning,” Digit. Investig.,

vol. 24, pp. S48–S59, Mar. 2018, doi: 10.1016/j.diin.2018.01.007.

[36] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan, “Studying the

dialogue between users and developers of free apps in the google play store,” in

Proceedings of the 40th International Conference on Software Engineering,

Gothenburg Sweden, May 2018, pp. 164–164, doi: 10.1145/3180155.3182523.

[37] W. Y. Lee, J. Saxe, and R. Harang, “SeqDroid: Obfuscated Android Malware

Detection Using Stacked Convolutional and Recurrent Neural Networks,” in Deep

Learning Applications for Cyber Security, M. Alazab and M. Tang, Eds. Cham:

Springer International Publishing, 2019, pp. 197–210.

[38] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “DroidEvolver: Self-Evolving Android

Malware Detection System,” in 2019 IEEE European Symposium on Security and

Privacy (EuroS&P), Stockholm, Sweden, Jun. 2019, pp. 47–62, doi:

10.1109/EuroSP.2019.00014.

[39] J. Xu, Y. Li, R. Deng, and K. Xu, “SDAC: A Slow-Aging Solution for Android

Malware Detection Using Semantic Distance Based API Clustering,” IEEE Trans.

Dependable Secure Comput., pp. 1–1, 2020, doi: 10.1109/TDSC.2020.3005088.

[40] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based

android malware detection using real devices,” Comput. Secur., vol. 89, p. 101663,

Feb. 2020, doi: 10.1016/j.cose.2019.101663.

[41] “VirusTotal.”

https://www.virustotal.com/gui/file/1bb5004c249e9175e3190b3299d339215600ae7

7441a28c3afe278b903a0c285/detection (accessed Dec. 28, 2020).

[42] “Firebase.” https://firebase.google.com/ (accessed Feb. 11, 2021).

[43] “Developer Policy Center.” https://play.google.com/about/developer-content-

policy/ (accessed Dec. 28, 2020).

