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Abstract 

Process industry has been one of the most energy consuming sector. In order to reduce 

energy consumption, efficient energy process is vital. Heat exchanger is one of the 

abundantly used equipment in process industry. Plate fin heat exchanger mostly used in 

process industries also got substantial share of research for realization it’s optimum design 

and operation. The studies have been focused on maximizing the heat transfer rate and 

minimizing the pressure drop [Yidan Songa et al., 2015], minimize the total volume, CO2 

emissions and cost [Lixia Kanga., 2015], optimizing shape of fins of the plate and fins 

heat exchanger [Chunbao Liu et al., 2017]. In this study, a plate and fin heat exchanger 

model of a gas furnace of a tile factory was modeled in Aspen Exchanger Design & Rating 

(EDR) environment. The EDR was linked with an excel sheet and MATLAB to transform 

the model from a steady state to a dynamic mode. Several hundred scenarios were 

generated by inserting artificial uncertainty in the steady-state values of the process 

conditions such as inlet hot temperature, inlet cold temperature, and fouling resistance. 

Then Genetic Algorithm (GA) was applied to derive the optimum combination of the inlet 

flow rate of the hot and cold streams keeping minimization of the outlet temperature of 

the hot stream as the objective function. The datasets comprised of optimum operating 

conditions and their corresponding output were used to develop an Artificial Neural 

Networks (ANN), model. The ANN model was also used as a surrogate in SOBOL and 

Fourier amplitude sensitivity testing (FAST) based sensitivity analysis framework to find 

hierarchy in the input variables in terms of their impact on the model output. 

Keywords: Plate Fin Heat Exchanger, Genetic Algorithm. Aspen EDR, Artificial Neural 

Network, Sensitivity Analysis 
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Chapter 1 

Introduction 

1.1 Overview 

The consistent depletion of worldwide energy resources because of increased 

consumption by mankind has led to a decrease in natural energy resources, for example, 

flammable gas, oil and coal. It is anything but difficult to do a basic calculation and 

conjecture that worldwide non-renewable energy resources will be depleted within the 

following 50 years, if the current pace of consumption of these resources’ proceeds. The 

question is 'by what means should the world react to take care of this significant issue of 

depletion of energy resources? The response to this question lies in the development of 

alternative energy resources, which are renewable and decrease of consumption of the as 

of now utilized energy resources. Process industry has been one of the most energy 

consuming sector. To decrease energy consumption, efficient energy process is vital. Heat 

exchanger is one of the most bountiful utilized gear in process industry. For energy 

efficient design of heat exchanger, the concept of exergy is getting attention of researchers 

because of its advantages on conventional energy analysis methods.  

1.2 Plate fin heat exchanger 

Plate fin heat exchangers are generally utilized in warming, heating, cooling applications, 

food, corrective, and synthetic cycles. The plate and fin type heat exchanger is broadly 

perceived today as the most practical and efficient type of heat exchanger available. Plate 

and fin heat Exchanger is a compact type of the heat exchanger (HE) that is usually used 

in most of chemical industries, power plants, and petroleum industries. In this type of HE 

thin extended surfaces are called as fins and they are used utilized to have higher surface 

area for heat exchange [1]. Most common types of fins include pin fins, curvy, louver, off-

set strip and perforated fins [2]. Whereas the most reliable fins are off-set strip fins due to 

their high heat transfer productivity, high reliability and high compactness, this is why 

these are used in frameworks of airplanes, cars and HVACs [3]. In addition, there is an 
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overall higher heat transfer performance of offset strip fins compared to plane fins. 

Moreover, the off-set strip fin offers good durability and are more reliable than louvre fins 

[4]. Plate fin heat exchanger mostly used in process industries also got substantial share 

of research for realization it’s optimum design and operation. The studies have been 

focused on maximizing the heat transfer rate and minimizing the pressure drop [5] , 

minimize the total volume, CO2 emissions and cost, optimizing shape of fins of the plate 

and fins heat exchanger [6]. Energy efficiency in particular got significant attention of the 

researcher. 

Owing to the ever-growing need of PFHE in industrial uses so every consumer is keen on 

its most optimum operation whereas this goal can be accomplished with various 

methodologies. The efficiency of heat exchanger is highly dependent on the temperature 

of cold and hot fluid at the inlet. Whereas the temperature at inlet depends upon the 

flowrate of associated fluid stream such as temperature can be controlled by controlling 

fluid flowrate. By reducing flowrate, the pressure drop increases thus requires higher 

pumping power, so a reasonable tradeoff is required. 

In the present studies a structured neural network model is presented which is based on 

the simulated data of the genetic algorithm to locate the top-notch optimized process 

condition.  

Current study highlights the importance of heat exchangers design parameters and 

operating variables under uncertain conditions. Thermal modeling and optimal operating 

variables of plate fin heat exchanger under uncertain process conditions are presented. 

Aspen EDR was used to simulate and model the heat exchanger. Inlet hot stream flow rate 

and inlet cold stream flowrate were considered as two operating variables. Genetic 

Algorithm was applied to obtain the optimum operating variables in order to achieve 

maximum effectiveness with the help of MATLAB gaoptimset function.  By optimizing 

the objective function via the single-objective optimization approach, the optimum values 

of inlet hot stream flowrate and inlet cold stream flowrate were obtained under uncertain 

process conditions, representing the best solutions obtained from 20 iterations in GA. The 

random data was generated using MATLAB function Randi in order to create 

uncertainties in the process. Uncertainty in Inlet hot stream temperature, Inlet cold stream 
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temperature and fouling resistance were considered. As these three variables are not in 

control of the process and uncertainty is caused from ambient air and from the flue gases. 

Now in order to overcome these uncertainties, inlet flowrates of both fluids are optimized 

to achieve higher effectiveness value. At different uncertain condition Genetic Algorithm 

was applied to get optimum inlet flowrates for a greater effectiveness. Around 200 cases 

were generated randomly with 5% uncertainty in all the three variables (Inlet Hot 

temperature, Inlet Cold temperature, Fouling resistance). The sensitivity analysis for 

optimum operating variables with change in specific variables during operation, for 

example, inlet hot stream temperature, inlet cold stream temperature and fouling 

resistance was also performed, and the outcomes are accounted for. As an easy route for 

picking the system optimal operating variables the relationships between two operating 

variables and other non-controllable operation variables with worthy exactness were 

presented using artificial neural network (ANN). There was observed to be significant 

improvements in heat exchanger performance as well as overall efficiency of the system. 

With the improved parameters and operating variables, the exergy of the system was also 

improved to the acceptable or desirable range. Data was generated by the interfacing of 

Aspen EDR, MATLAB and Excel were established for optimization of certain input 

variables. This study will provide a plate form for using optimization methods in real time 

operation. 

1.3 Objectives 

The objectives of the present study are given below: 

• PFHE thermal modeling in Aspen Exchanger design and rating environment.  

• Applying optimization technique for plate and fin type heat exchanger with 

maximization of outlet cold stream temperature as an objective and the input variables 

inlet hot stream temperature and cold stream inlet flowrate as an input to be optimized 

utilizing GA. 

• Choosing the fin characteristics, for example, height, pitch, off-set length just as the 

heat exchanger geometry. 

• Considering different operating variables and parameter i-e Inlet hot stream 

temperature, Inlet Cold stream temperature and fouling resistance with 200 random 
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cases to obtain optimum hot inlet flowrate and cold inlet flowrate for maximum cold 

stream out temperature so that maximum heat transfer takes place and effectiveness is 

increased. 

1.4 Justification of the research 

▪ To advance heat exchanger efficiency 

▪ To Enable the optimized solution under uncertain conditions 

▪ Genetic Algorithm is applied for optimization of operating variables to overcome 

uncertainty  

▪ Artificial Neural Network helps improve in performance of heat exchangers and 

prediction of optimized input operating variables 

▪ User defined input was provided for optimization using the Aspen-Excel- MATLAB. 

1.5 Thesis Outline 

The thesis work based on the simulation model of the Plate and Fin type Heat Exchanger 

for a gas furnace used in tile factory.   

Initially, a plate and fin type heat exchanger were designed for a gas furnace in a tile 

factory in Exchanger Design & Rating in Aspen environment. The EDR was linked with 

excel sheet and MATLAB to transform the model from steady state to a dynamic mode. 

Two hundred scenarios were generated by inserting artificial uncertainty in the steady 

state values of the process conditions such as Inlet Hot temperature, Inlet Cold 

temperature, Fouling resistance. The GA was then applied to derive optimum combination 

of inlet flowrate of the cold and hot streams and achieve high effectiveness value of the 

HE. Then, ANN model was developed by using the inlets flowrates as its output variables 

and the other process conditions as its input variables. The ANN could predict optimum 

inlets flowrates of the streams for high energy efficient operation. The ANN was then used 

as a surrogate model in Sobol and FAST (Fast Order Sensitivity Test) based sensitivity 

analysis framework to find hierarchy in the input variables in terms of their impact on the 

effectiveness value. The use of ANN as predictive model and as a surrogate model   
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• A brief outline of current work is explained in Chapter-1  

• Literature survey is documented in chapter -2. 

• The fundamentals of model development and proposed methodology is discussed in Chapter 

-3. 

• Optimized Results, ANN prediction, Sensitivity analysis and discussion are presented in 

chapter 4. 
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Chapter 2 

Literature Review 

The consistent consumption of worldwide energy resources because of expanded 

utilization by humankind has added to the extreme issue of depleting all accessible 

nonrenewable energy resources, for example, petroleum gas, oil and coal. It is easy to do 

a simple calculation and forecast that worldwide non-renewable energy resources will be 

depleted inside the following 50 years, if the current pace of utilization of these resources’ 

proceeds. The question is 'in what manner should the world react to take care of this 

significant issue of consumption of energy resources? The answer to this question lies in 

the development of alternative energy resources, which are renewable, decrease of 

utilization of the presently utilized energy resources which can be acquired by making the 

processes more energy efficient. Process industry has been one of the most energy 

consumption sector. To lessen energy utilization, efficient energy process is essential. 

Heat exchanger is one of the most plentiful utilized hardware in process industry. For 

energy efficient design of heat exchanger, the idea of exergy is getting consideration of 

researchers because of its advantage on conventional energy analysis methods.  

The compact heat exchangers optimization using genetic algorithm is carried out by G.N. 

Xie. This is another case of the literature review that has been directed in the ongoing past. 

In this research plate and fin compact heat exchanger (CHE) has been optimized. The 

structural size of CHE has been optimized by means of the genetic algorithm (GA). The 

minimum volume and cost of CHE has been taken as the objective function of GA. The 

three molded parameters are fluctuated for the optimization and geometries of the fin were 

steady or fixed. The results clarify that the pressure drop of optimized CHE gives 

practically 30% lower volume and practically 15% lower annual cost.[7]  

Genetic algorithms have picked up significance throughout the years because of their high 

potential and capacity to fathom complex optimization issues and issues. A ton of 

researches directed in the past has taken assistance from GA. In Igor R. de S. Victorino's 

research GA was actualized for the optimization of activity parameters in the cyclic 
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alcohol production industry. GA was utilized here to guarantee maximum production with 

operational improvements in the system, for example, lower operational temperature and 

diminished catalyst. This is another optimization application of the GA with results 

preferring the favored performance.[8]  

A lot of researches that have been led in the past are legitimately corresponding with our 

research in any case, our research is more compact since we are using ANN and genetic 

algorithm for optimization and performance and then user defined input dependent on the 

sensitivity analysis has been given through excel-Aspen-MATLAB. 

H Najafi (et al. 2010) did a multi objective optimization by means of the genetic algorithm. 

The objective was to decide the minimized pressure drop with the maximized heat 

transfer. A central angle was additionally featured regarding how the objective functions 

are superfluous and subsequently no single solution could legitimize the two objectives. 

In this manner, multi-objective research is led, and results are presented in the Pareto front 

style where the user can choose the ideal outcome dependent on the project limits and 

application. A sensitivity analysis has been led to dissect the impacts of multiple various 

parameters. MATLAB has been utilized for demonstrating the multi objective 

optimization of GA. [9]  

The particle swarm optimization (PSO) methodology was utilized by RV Rao (et al. 2010) 

for the optimization of PFHE. The objective functions incorporate the minimization of 

volume and space alongside the minimized total cost. In any case, every one of these 

parameters are individually treated with any correlation with one another. For 

optimization heat exchanger length, fin recurrence, number of layers of fin, spear length, 

fin height and thickness have been remembered for this research. The results got from the 

PSO are contrasted and that of results acquired from the GA. Two optimization models 

are investigated for accuracy and effectiveness of the algorithm. The results show some 

genuine improvement in the system and the correlation between the PSO and GA clarifies 

the accuracy of these results [10]. Air heating unit is one of the main chunks in paddy 

drying to guarantee the efficacy of a drying process. Likewise, an optimized air heating 

unit doesn't just guarantee a decent paddy quality, yet additionally spare more for the 

operating cost. J Janaun's (et. al 2016) study decided the appropriate and fine 
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specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, 

Aspen HYSYS was utilized to acquire the minimum flow rate of hot water required [11]. 

2.1 Research Gap 

In the previous studies, A multi-objective optimization technique is utilized to take full 

advantage of the heat transfer rate and to lessen the pressure drop in shell and tube heat 

exchanger [12]. To minimize the total volume just as the total annual cost of a compact 

heat exchanger three shape parameters were considered as concluding variables [13]. 

Genetic algorithm is applied to improve essential energy saving, annual total cost saving, 

and carbon dioxide emission decrease [14]. To optimize the design parameters of a heat 

exchanger with rectangular fins Taguchi experimental-design method was utilized [15]. 

To minimize the total yearly cost of air-cooled heat exchangers global sensitivity analysis 

is utilized and to estimate the optimum geometric parameters of micro-channels in micro-

heat exchangers is gotten by expanding the heat transfer rate and limiting the pressure 

drop as two objective functions [16], [17]. The optimum design parameters of plate fin 

heat exchanger proposed by Sepehr Sanaye *, Hassan Hajabdollahi for a particular case 

study were  considered for modeling of PFHE [18].  

In the recent past, serrated plate fin heat exchanger started utilizing particle swarm 

optimization technique, with then help of genetic algorithm, to improve the plate fin heat 

exchanger design [19]. Then again in 2011, another research on the CFD simulation with 

the help of Neural Network Model was conducted to amount the j and f factor of NNM 

[20]. The results explained that NNM is accurate between 1.3% and 1% which is higher 

compared to different models (having the accuracy between 3.8% and 8.2%) for dissecting 

a similar information of CFD simulation. Be that as it may, for an exact reaction neural 

network must be provided with very much defined factors. Similarly, in 2011, a research 

proposed that in offset strips fins blockage ratio of j and f factor was 20% more prominent 

with j being the Prandtl number [21]. This research recommended that optimized offset 

strip fin had improved j and f factor (by 24%) compared to non-optimized fins. In order 

to, comprehend the uniform distribution in PFHE, a research focused on the hydro 

dynamics of single-phase flow determining the modern correlations of f-factor [20]. These 

new correlation lotions were in alignment with the results obtained from the CFD 
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simulations emphasizing on the uniform distribution in the compact heat exchangers. In 

another similar research from the same author in 2011, single-phase phase CFD 

simulations measured the pressure drop of offset strip fin heat exchangers, it helped great 

degree in understanding the experimental and mathematical differences and predictions 

of contact factors. In addition to that, the research demonstrated that two phase flow relies 

on the superficial velocities of gas and liquid based on the design. These multi objective 

problems are providing solutions to the industrial sector [22]–[25]. The creators too 

recommended the function of ambiguous logic applications in industrial domains [26].  

Alternate optimization techniques were observed by Yosefi and Mohammadi in 2012 

using the ICA algorithm with seven optimized variables helping reduce the cost and 

weight [19]. In 2013, a research emphasized on the optimization of heights, angles and 

intervals of heat exchangers in terms of design parameters to improve the efficiency. 

In 2014, a research was conducted where heat transfer and flow rate characteristics of 

offset strip fin, experimental and numerical value of Reynolds Number ranging from 500-

5000. The outcome highlighted that the fin length and pitch were reliable factors for 

compact heat exchangers. In the same year, a research focused on the seven channel types 

of PFHE and it was observed the individual heat transfer from curly, off-set strip, pin, 

perforated, louvered, plain channel and vortex generator. A similar request followed for 

the most extreme capacity to diminish the surface zone of the PFHE in contrast with the 

plain one. Alongside the accumulated data above we accentuation on other literature with 

respect to ANFIS.  PFHE model helps predict the heat transfer and pressure drop based 

on neuro-fizzy inference system. Average Nusselt number and dimensionless pressure 

indicated great concurrence with the work accessible by Tahseen Ahmad 2013 another in 

ANFIS identified with thermal work.  In another research two logics were  such as 

(Adaptive Neuro-Fuzzy Inference System-based control) and ANN based towards the 

customization of temperature control system [22].  

The research work by Sepehr Sanaye mostly correlates with the research that I am 

directing. A great deal of researches have been directed in the past with respect to the 

thermal demonstrating and design of compact heat exchangers. His work underlines on 

the six parameters of the heat exchangers, for example, fin height, fin offset length, fin 
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pitch, cold stream flow length, hot stream flow length and no flow length. e-NTU method 

was utilized to decide the pressure drop and effectiveness of heat exchanger. Using the 

ANN, a correlation was shaped between the six parameters and the two objectives. Fast 

and elitist non-dominated sorting genetic algorithm was executed to alter the cost and 

effectiveness. The results are presented as Pareto optimal solutions where a user defined 

input is accommodated the optimization [18]. 
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Chapter 3 

Model Development 

3.1 Modeling methods  

3.1.1 Aspen EDR Model 

The Aspen Exchanger Design & Rating (EDR) software includes a number of programs 

for the designs like mechanical, thermal, drawings and price assessment for heat 

exchangers and pressure vessels. 

3.1.2 Plate Fin Heat Exchanger  

Aspen Plate Fin is part of Aspen Exchanger Design and Rating (EDR). 

Plate-fin heat exchangers are most viable for multiple processing plans in the industry and 

other gas separation processes. High thermal effectiveness can lead to multiple savings 

and even the capital cost with the help of this technology. In Plate-fin exchangers single 

exchanger can handle multiple streams hence leading to high thermal integration. This 

helps with the minimization the energy usage, plant layout and construction of modular. 

Theta material used for heat exchanger construction is to be light weight, efficient heat 

transfer capacity and low temperature operating conditions. Aspen Plate Fin Exchanger 

draws on AspenTech’s deep heritage and leading technology in order to assist with the 

efficient and precise modelling.  

In a plate and fin type exchanger, the process streams pass between metal plates which are 

held together by corrugations (fins) which provide extended surfaces and also enhance the 

heat transfer coefficient. The edges of the plates are sealed by side bars. The material of 

construction is typically aluminum but stainless steel and nickel alloy units are well 

established in the aircraft industry are now entering the process industry. 

Features  

• Aspen HYSYS Run-time integration  
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• Geometry specification is layer-based 

• Calculation modes comprises of, stream-by-stream simulation, design and layer-by-layer 

simulation 

• Range of 20 process streams 

• Co-current and counter-current flow with any complexity of exchanger inlet and outlet 

geometry 

• Both pass cross flow (simple and multi) 

• kettle type core shell 

• Single-phase and two-phase calculations 

• Flow maldistribution check 

• Vertical or horizontal alignment 

• Plain, wavy, serrated, perforated and hard way fins 

• Exchanger, distributor, header, and nozzle pressure drop calculations 

Thermal Outputs  

• Exchanger performance summary  

• Diagram and graphs of exchanger temperature  

• All process streams having temperature as well as vapor quality contour 

• Very precise and compact information on pressure drop 

• Program recorded data of performance of fin 

• Metal temperature calculations  

• Thermal conduction 

• Analytical based graphical results for all temperatures 
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3.1.3 Genetic Algorithm (GA) 

Genetic Algorithms (GA) is a type of evolutionary algorithms that imitates the process of 

biological evolution. First developed by John Holland in early 1970s [27], GA is based on 

the concepts of natural selection and genetic inheritance. Genetic algorithms are domain 

independent and can be applied to several problems in many fields. Many researchers have 

used GA’s to evaluate the solution of difficult problems whose objective functions lack 

the properties of continuity, differentiability, etc.  [7]  [13] [14]. 

GA encodes potential solutions into data structures that are similar to chromosomes and 

maintains a population of such chromosomes during searches [28]. It requires an objective 

function that assign a scalar payoff (or reward) to any particular solution. GA looks 

forward to authentic solutions once they develop proper scheme and evaluation function. 

It proceeds with creating an initial population of certain number of strings or 

chromosomes, called the population size. Next step is to evaluate each solution in the 

initial population by payoff function. Better solutions are awarded high payoffs while rest 

of the solutions are awarded a lower payoff. Next generation is then generated by 

employing genetic operators like mutation, crossover etc. on these evaluations. This 

procedure is repeated unless an optimal solution(s) is (are) found or maximum number of 

iterations or population is reached or relative difference between solutions is less than a 

certain limit. Schematics of GA are shown in Figure 3-1. Brief description of components 

of GA are given below: 

 

1. Representation: Genetic algorithm needs the solutions or individual in a population to 

be represented in the form of chromosomes. Structure of a problem and the type of 

genetic operators that will be used depends upon the representation scheme used. 

Specific alphabets are used to develop a sequence of gene that make up the 

chromosome. Binary digits (0 and 1) and real value numbers can constitute these 

specific alphabets. It has been shown that chromosomes encoded using real value 

numbers results in more efficient GAs and produce better solutions [29]. 

2. Selection Function: Successive generations in GA are generated by selection of 

individuals from a previous generation. Selection is based on the concept that every 

individual has a chance or probability of being selected once or more than once, based 
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on their fitness value, for reproduction in the next generation. Roulette wheel selection, 

scaling techniques, tournament, elitist models and ranking methods are some of the 

selection schemes. Assignment of probability of selection to individuals is a common 

step in all of these schemes. There are various methods for this assignment like roulette 

wheel, linear ranking and geometric ranking [30]. 

3. Genetic Operators: Search mechanism opted by GA are provided by genetic operators. 

Genetic operators create new solutions in the population by applying operations on 

existing solutions. Crossover and mutation are two basic genetic operators which are 

widely used. Both are analogues to their counter parts in actual genetic processes. 

Crossing overtake two individual chromosomes and transfer portion of these 

chromosomes between the both to produce two new chromosomes. While in mutation 

a single chromosome is altered at a single location to produce a new chromosome. 

Usage of both operators depends upon the type of the representation scheme used for 

chromosomes. Types of these operators for both binary and real value chromosomes 

are given in Table 3.2. 

4. Initialization or Initial population: GA needs an initial population to start the procedure 

for finding the best solution. Initial population can be produced by generating random 

solutions inside the upper and lower bound of the variables. Another method is to seed 

the initial population with already established best solutions to improve the existing 

solutions. The remainder of the population can be randomly generated solutions. 

5. Termination GA operations are terminated once a termination criterion is met. The 

termination criterion can be anyone or combination of the followings; (a) Number of 

generations reaches a specified maximum value. (b) Population converges to a single 

solution. (c) Difference among solutions becomes smaller than a specified threshold. 

(d) Best solution doesn’t improve over a specified number of generations. (e) 

Evaluation values reaches some acceptable threshold. 

6. Evaluation or Objective Functions Many different forms of evaluation functions can 

be used to determine the fitness of each solution produced during the search. These 

functions are independent of GA and should meet the requirement that they could 

easily figure out the growth in a set. In this research, GA was used to optimize 2 

operation variables i-e hot stream inlet flow rate and cold stream flow rate. As in online 
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applications the changes made into the operational parameters should not be large so 

the lower and upper bounds of parameter search space was selected to be 5% above 

and below of the non-optimized parameters. Optimization was terminated when 

relative difference among solutions become smaller than 1 × 10−4. Objective function 

was developed using artificial neural networks discussed in the next section. 

Table 3.1 Chromosomes 

Chromosome 1 1101100100110110 

Chromosome 2 1101111000011110 

 

Table 3.2 Crossover 

Chromosome 1  11011 | 00100110110 

Chromosome 2 11011 | 11000011110 

Offspring 1 11011 | 11000011110 

Offspring 2 11011 | 00100110110 

 

Table 3.3 Mutation 

Original offspring 1 1101111000011110 

Original offspring 2 1101100100110110 

Mutated offspring 1 1100111000011110 

Mutated offspring 2  1101101100110100 
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Figure 3-1 Schematic diagram of GA 

 

3.1.4 Artificial Neural Network  

3.1.4.1 Employment of Neural Network Model 

The primary reason of the development of the model is to formulate an efficiently working 

neural network. Based on the Levenberg–Marquardt propagation training algorithm the 

network simply acts as a feed structure applied introduced by (Eq. (3.1)). Neural network 

technology is primarily associated with the MATLAB models. Unsubscribe sigmoid 

transfer function is actuated, all neurons: 

log sin  (𝑥) =
𝑥

1−𝑒−𝑥
              (3.1) 
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Where x is the input signal. The learning set comprised of 200 instances of the plate-fin 

heat exchanger.  

The Network has an input layer, a hidden layer with 5 neurons and output layer produces 

results. The structure of the simplified network given in Figure 3-2. 

 

Figure 3-2 Structure of Simplified network. 

 

The data set has been customized based on the network weights and validation and testing 

data sets which helps adds up to the performance of the network. The regression analysis 

provides the data on network performance introduced in Results segment Figure 4-6. 

Network performance appears to be acceptable accuracy. Improving the parameters is a 

major issue based on the systematic changes to process the data is prepared to outline. The 

network builds up its least difficult structure.  
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Figure 3-3 ANN Accuracy. 

This Plate and Fin Type Heat Exchanger (PFHE) based on the ANN network enactment 

could be gotten from the input data. At the end of the day, the outlet and intlet temperature 

and the temperature contrast and both cold and hot sides of the ribs geometries could be 

determined based on the efficient mass flow rate. Experimental data is restricted by the 

designers in order to figure out the efficiency of Plate and fin heat exchanger ANN 

approach which is highly advantageous. This heat transfer and flow qualities can 

communicate through the mathematical assessment that are extremely perplexing wonder, 

which doesn't need a comprehension of ANN approach. 

3.1.5 Sensitivity Analysis  

The necessity of quantitative and qualitatively understanding of intricate process systems 

intensifies the use of models to predict sensitivity for certain inputs and outputs. The 

peculiar mechanism of these models allows for a thorough representation of the 

underlying network of process outputs and also their response to certain inputs. Sensitivity 

analysis (SA) predicts the influence on output by any input or set of inputs. It provides 

much information about the input variable which triggers much of variation into the model 

output [45]. SA application can be summarized as  

a) Input and output relationship understanding. 
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b) Recognizing the imperative and significant model parameters that drive model outputs 

and 

c) Managing prospect experimentation. 

The results of sensitivity analysis help researchers to more focused on the most sensitive 

and acute parameter that govern model output. Figure 3-4 depicts the steps to follow for 

data gathering, setting up model, sensitivity analysis and qualification. 

Generally, there are two main types of sensitivity analysis which are (i) Local sensitivity 

analysis and (ii) Global sensitivity analysis. 

Local SA determines any variations in the output of a model only with respect to single 

model input. The input variable only changes one at a time with very low increment like 

0.1% and the effect of this individual variable on output is calculated by local sensitivity 

indices. In this analysis, only one variable is responsible for the output also any interaction 

or relation between input parameters cannot be taken into consideration. So, to overcome 

this problem global sensitivity analysis is used.   

Global SA  In the global sensitivity analysis all of the input variables are varied at a time 

over whole parameter space, which allows estimating the involvement of each variable 

and any interaction/relation between them to the model outputs. Input variables have 

normally wide varieties of variables like temperature, pressure, flow rate, concentration 

or density. So, this is kind of an advanced approach to determine which process stream 

having certain behavior constitutes the maximum impact on outputs. 
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Figure 3-4 Steps for sensitivity analysis and model development 

It involves the three-dimensional study of complexity on design, position and process 

model level. There are other approaches to evaluate multiple model simulation models, 

reverse parameter modelling methods and sampling-based methods by can uncertainty 

methods. The main accuracy of study is focused on the SOBOL test methodology and the 

Fourier Amplitude Accuracy Scale (FAST). Both SOBOL and FAST methods are based 

on variance decomposition techniques to provide a quantitative contribution of input 

variables to the output variables. The main difference between SOBOL and FAST is the 

algorithm based on the integration of indices a Monte Carlo integration is used in the 

SOBOL while the sinusoidal function is used in the FAST method [46]. 
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3.1.5.1 SOBOL Sensitivity Analysis 

SOBOL check is a variance-based analysis that is named by Ilya M.Sobol, as a SOBOL 

tool or SOBOL map. SOBOL in a probabilistic context used to determine the effect of the 

individual input or series of data on the overall model output variance in computational 

modelling[33]. The input variables are evaluated for sensitivity analysis, so they will 

collectively measure their impact on output. SOBOL doesn’t identify what causes the 

input variability it just identifies the impact on the model output.  SOBOL SA has some 

features listed as follows. 

• No supposition(s) between model input and output parameters. 

• Evaluation of input parametric variation and interactions between them over the entire 

space. 

• High computation intensity is the main shortcoming. 

So, to understand how input variables interact each other to have final output the SOBOL 

indices can be calculated. For a model y = f(x), where y is output linked by a function f to 

a set of p input factor x= (x1, x2, · · · , xp). D is the variance, f(x) is the random variable 

and fo is the mean. 

 
𝑓o = ∫ 𝑓(𝑥)𝑑𝑥    (3.2) 

 

 D=∫ 𝑓(𝑥)
2

𝑑𝑥 − 𝑓𝑜2                (3.3) 

SOBOL method depends on the disintegration of D into commitments from effects of 

single boundaries, consolidated effect of boundaries and this is done by decaying f(x). 

 
𝑓(𝑥) = 𝑓𝑜 + ∑ 𝑓(𝑥𝑖)

𝑝

𝑖=1

+ ∑ 𝑓𝑖, 𝑗(𝑥𝑖, 𝑥𝑗) + ⋯ + 𝑓1, … 𝑝(𝑥𝑖 … 𝑥𝑝)

1≤𝑖<𝑗≤𝑝

 

(3.4) 
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The decomposition terms are then created as below. 

 
𝑓𝑖(𝑥𝑖) = ∫ 𝑓(𝑥) ∏ 𝑑𝑥𝑘 − 𝑓𝑜

𝑘≠𝑖

 

 

(3.5) 

The illustration of f(x) variance analysis is based on fulfilment of condition. 

 
∫ 𝑓𝑖1, … … , 𝑖𝑝(𝑥𝑖1, … … , 𝑥𝑖𝑝)𝑑𝑥𝑘 = 0 𝑓𝑜𝑟 𝑘 = 𝑖1, … , 𝑖𝑝. 

 

(3.6) 

Now by squares on both sides of equation f(x) and integration, we get. 

 

𝐷 = ∑ 𝐷𝑖 +  ∑ 𝐷𝑖𝑗 +  ∑ 𝐷𝑖𝑗𝑙 + ⋯ + 𝐷1,2, … , 𝑘

𝑖<𝑗<𝑙𝑖<𝑗

𝑘

𝑖=1

 

 

(3.7) 

Where Di1,…,ip = ∫f2
i1,…,ip (xi1,…,ip)dxi1,…,xip is a variance of  , termed as partial variance 

matching to that subgroup of parameters. SOBOL indices can then be deduced as, 

 

𝐷 = ∑ 𝐷𝑖 +  ∑ 𝐷𝑖𝑗 +  ∑ 𝐷𝑖𝑗𝑙 + ⋯ + 𝐷1,2, … , 𝑘

𝑖<𝑗<𝑙𝑖<𝑗

𝑘

𝑖=1

 

 

(3.8) 

Sensitive indices can be then obtained from the above-mentioned equation by dividing it 

with D. So, Si shows the partial variance with the total variance and indices should sum 

up to 1. 

 

1 = ∑ 𝑆𝑖 +  ∑ 𝑆𝑖𝑗 +  ∑ 𝑆𝑖𝑗𝑙 + ⋯ + 𝑆1,2, … , 𝑘

𝑖<𝑗<𝑙𝑖<𝑗

𝑘

𝑖=1

 

 

(3.9) 
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3.1.5.2 Fourier Amplitude Sensitivity Analysis (FAST)  

Fourier Amplitude Sensitivity Analysis (FAST) has been applied successfully in many 

modelling and non-linear problems, here it is an additional technique used in the present 

study for sensitivity analysis [34]. The main idea of employing FAST is to convert n-

dimensional integral of f(x) into one-dimensional integral. 

In Fourier series, the function is expressed like. 

 
𝑓(𝑥) = ∑ ∑ … ∑ 𝐶𝑘1.𝑘2…..𝑘𝑛𝑒𝑗2𝜋(𝑘1𝑥1+𝑘2𝑥2+⋯+𝑘𝑛𝑥𝑛)

∞

𝑘𝑛=−∞

∞

𝑘2=−∞

∞

𝑘1=−∞

 

 

(3.10) 

With 

 
𝐶𝑘,𝑘2……𝑘𝑛 = ∫ 𝑓(𝑥)𝑒−𝑗2𝜋(𝑘1𝑥1+𝑘2𝑥2+⋯+𝑘𝑛𝑥𝑛)

𝐼𝑛

 

 

(3.11) 

By considering the ANOVA disintegration [35], the component  can be stated as Fourier 

series by taking into the account the elements in above equation f(x) with  the only non-

null indices (i.e ki1….Kip).  

In that approach the resulted in invariance in the sums of modules of Fourier Coefficients.  

 
𝑣𝑎𝑟[𝑓𝑖1…..𝑖𝑝] = ∑ … .

∞

𝑘𝑖1=−∞

∑ |𝐶𝑘𝑖1…..𝑘𝑖𝑝|

∞

𝑘𝑖𝑝=−∞

 

 

(3.12) 

As recommended by Satelli et al. (1999) a new independent variable "s" is introduced to 

quantify multi-dimensional integration into single-dimensional integral [36]. 

 
𝑥𝑖(𝑠) =

1

2
arcsin(sin(𝜔𝑖𝑠)) 

 

(3.13) 

Where set  is linear independent frequencies. 

The output variance of first-order function the ones depending only on input factor xi. 
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 𝐸[𝑦|𝑥𝑖] = ∑ 𝐶𝑘𝑖

𝑖

 

 

(3.14) 

 

 

And coefficient can be calculated as  

 

𝐶𝑘𝑖 =
1

2𝜋
∫ 𝑓(𝑠)𝑒−𝑗2𝜋𝑘𝑖𝜔𝑖𝑠𝑑𝑠

𝜋

−𝜋

 

 

(3.15) 

 

3.2 Proposed Methodology  

The current study is based on realizing energy efficient operation of a plate and fin type 

heat exchanger through Genetic Algorithm (GA) assisted by an Artificial Neural 

Networks (ANN) model. Initially, a plate and fin type HE was designed for a gas furnace 

in a tile factory in Exchanger Design & Rating in Aspen environment. The EDR was 

linked with excel sheet and MATLAB to transform the model from steady state to a 

dynamic mode. Two hundred scenarios were generated by inserting artificial uncertainty 

in the steady state values of the process conditions such as Inlet Hot temperature, Inlet 

Cold temperature, Fouling resistance. The GA was then applied to derive optimum 

combination of inlet flowrate of the hot and cold streams and achieve high exergy 

efficiency of the heat exchanger. Then, ANN model was developed by using the inlets 

flowrates as its output variables and the other process conditions as its input variables. 

The ANN was capable of predicting optimum inlets flowrates of the streams for high 

energy efficient operation. The ANN was then used as a surrogate model in SOBOL and 

Fast Order Sensitivity Test (FAST) sensitivity analysis to find hierarchy in the input 

variables in terms of their impact on the effectiveness of the heat exchanger.  
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3.2.1 Process Data  

3.2.1.1 Case Study  

The Plate and Fin type HE optimum operating parameters were acquired for a gas furnace 

in a tile factory. Furnace temperature is around 106.85 C in starting stages and around 

926.85 C in the end stages. The gas (hot stream) leaves from center phases of furnace with 

mass flowrate of 1.45 kg/s and goes through the HE at 346.85 C. The outside air (cold 

stream) with mass flow rate of 1.35 kg/s goes through the exchanger at 41.85 C. Schematic 

diagram of the furnace including the examined HE are shown in Figure 3.5 and Figure 

3.6. The PF HE metal was from stainless steel with thermal conductivity kw = 18 W/m K. 

Operating conditions and the cost function steady qualities are recorded in Table 3-4. The 

thermo-physical properties of air, for example, viscosity, specific heat and Prandtl number 

were considered as temperature dependent. 

Table 3.4 The operating conditions of the PFHE (input data for the model) 

Hot stream inlet flowrate (kg/s) 1.450 

Cold stream inlet flowrate (kg/s) 1.350 

Hot Inlet temperature (C) 346.85 

Cold Inlet temperature (C) 41.85 

Pressure (Inlet hot side) (kPa)  180.0 

Pressure (Inlet cold side) (kPa) 120.0 
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Figure 3-5 Plate and fin type heat exchanger with a tile furnace 

 

Figure 3-6 Crossflow Plate Fin Heat Exchanger 
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3.2.2 Aspen EDR Model  

Simple crossflow heat exchanger was designed in Aspen with stream by stream 

simulation. Two number of streams and two number of layer types are used. The input 

data and heat exchanger design parameters are considered of a heat exchanger designed 

for tiles furnace [18]. Flue gases from tiles furnace is used as hot stream to heat up the 

ambient air in order to increase the efficiency of tiles furnace. The optimum design 

parameters proposed by Sepehr Sanaye [18] are considered for modeling of heat 

exchanger. The heat exchanger diagram and the flow direction specified in Aspen EDR is 

shown in Figure 4-1 and the snapshot of Aspen EDR is also shown in this figure. Fin 

thickness is 0.1mm. The input operation data and optimum design parameters are shown 

in Table 4-1 and Table 4-2.  

 

Figure 3-7 ASPEN EDR 

3.2.3 Genetic Algorithm for optimization 

A genetic algorithm (GA) is a technique for resolving equally forced and unrestrained 

optimization difficulties dependent on a natural choice measure that mirrors biological 

evolution. The algorithm over and over changes a population of individual solutions. At 

each progression, the GA haphazardly chooses characters from the current population and 
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utilizations them as parentages to deliver the children for the future. Over successive 

generations, the population "evolves" toward an optimal solution.  

3.2.4 Genetic Algorithm MATLAB 

Three important types of guidelines are used by genetic algorithm for each step to produce 

the subsequent generation from present population. 

• First Selection rules select the individuals, called parents, that add to the population at 

the next generation. 

• Then Crossover rules combine two parents to form children for the next generation. 

• And finally, Mutation rules apply random changes to individual parents to form 

children. 

The genetic algorithm contrasts from a classical, derivative-based, optimization algorithm 

in two primary ways as summed up in the accompanying table. 

Classical Algorithm Genetic Algorithm 

Generates a single point at each iteration. The sequence 

of points approaches an optimal solution. 

Generates a population of points at each iteration. The 

best point in the population approaches an optimal 

solution. 

Selects the next point in the sequence by a deterministic 

computation. 

Selects the next population by computation which uses 

random number generators. 

 

In this work MATLAB was used for optimization using gaoptimset function in MATLAB. 

This MATLAB function with no output or input arguments displays a complete list of 

parameters with their valid values. 
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3.2.5 GAOPTIMSET 

 

Figure 3-8 GA MATLAB function 

3.2.6 Interfacing of Aspen EDR-Excel-MATLAB 

The Aspen EDR was linked with excel sheet and MATLAB to transform the model from 

steady state to a dynamic mode. Plate fin heat exchanger was modelled in Aspen EDR. 

The proposed modelling framework is shown in Figure 3-9. 200 data sets are generated 

through inserting variations in steady-state values of process variables by the interfacing 

of Aspen EDR, Excel and MATLAB for creating the possible scenarios of streams 

condition and their resulting output. List of two process inputs which are inlet flow rate 

of hot and cold stream. Generated data is used to provide optimum input variables through 

genetic algorithm.  

 

Figure 3-9 Simplified Block Diagram of PFHE Optimization Model 
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3.2.7 Data Generation  

The random data was generated using MATLAB function Randi in order to create 

uncertainties in the process. Uncertainty in Inlet hot stream temperature, Inlet cold stream 

temperature and fouling resistance were considered. As these three variables are not in 

control of the process and uncertainty is caused from ambient air and from the flue gases. 

Now in order to overcome these uncertainties we are using inlet flowrates of both fluids 

to achieve higher effectiveness value. So, at different uncertain condition Genetic 

Algorithm was applied to get optimum inlet flowrates for a greater effectiveness. Around 

200 cases were generated randomly with 5 percent uncertainty in all the three variables 

(Inlet temperature Hot, Inlet temperature Cold, Fouling resistance). 

3.2.8 ANN Model Simulation 

Artificial neural network was trained using the data obtained after GA optimization which 

gives optimum values of two input operating variables (Inlet flowrate of hot stream, Inlet 

flowrate of cold stream) at uncertain conditions. In the beginning ANN model was feeded 

with three input variables i-e Inlet hot stream temperature, Inlet cold stream temperature 

and fouling resistance. After the simulation of ANN the outputs that were displayed by 

the network are, Inlet hot stream flowrate and inlet cold stream flowrate. The ANN was 

capable of predicting optimum inlets flowrates of the streams for high energy efficient 

operation. 200 cases were generated in order to obtain optimum operating variables at 

each case for maximum effectiveness.  

3.2.9 ANN Model Validation Vs Genetic Algorithm 

The predicted and targeted output values of model based effectiveness of PFHE is plotted 

against test samples. Regression plot shows the accuracy of ANN predicted and targeted 

output values. The graphs obtained are shown in results section.  

3.2.10  Sensitivity Analysis 

The ANN was used as a surrogate model in Sobol and FAST (Fast Order Sensitivity Test) 

based sensitivity analysis framework to find hierarchy in the input variables in terms of 

their impact on the energy efficiency of the heat exchanger. The use of ANN as predictive 

model and as a surrogate model. The ANN predicted values were validated by applying it 

on first 20 cases and the results were compared with the results obtained from GA and in 
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Straight run conditions. The input variables for ANN are Inlet hot temperature, Inlet cold 

temperature, Fouling resistance while the output variables are the flowrates. Then for 

validation of the output variables i-e inlet flowrates predicted to be optimum by the ANN 

was done in order to observe and compare the results i-e Cold out temperature and 

effectiveness of the heat exchanger under uncertain conditions. 
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Chapter 4 

Results and Discussion 

The Table 4-1 shows operating conditions of the PFHE (input data for model). Table 4-2 

shows the optimum design parameters. Table 4-3 shows the simulation results obtained 

from Aspen EDR using the input data mentioned in Table 4-1 Error! Reference source 

not found. and Table 4-2. Analysis of the EDR Model  

This section covers the results by Aspen EDR Modelling and simulation. Simple 

crossflow heat exchanger is designed in Aspen with stream by stream simulation. Two 

number of streams and two number of layer types are used. The input data and heat 

exchanger design parameters are considered of a heat exchanger designed for tiles furnace 

[18]. Flue gases from tiles furnace is used as hot stream to heat up the ambient air in order 

to increase the efficiency of tiles furnace. The optimum design parameters are considered 

for modeling of heat exchanger. The heat exchanger diagram and the flow direction 

specified in Aspen EDR is shown in Figure 4-1. Fin thickness is 0.1mm. The input 

operation data and optimum design parameters are as follow. 

 

Table 4.1 The operating conditions of the PFHE (input data for the model) 

Inlet flow rate (hot stream) (kg/s) 1.45 

Inlet flow rate (cold stream) (kg/s) 1.35 

Inlet temperature Hot (C) 346.85 

Inlet temperature Cold (C) 41.85 

Pressure (Inlet Hot side) (kPa)  180 

Pressure (Inlet Cold side) (kPa) 120 
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Table 4.2 PFHE optimum design parameters 

Fin Frequency (#/mm) 0.2 

Height of Fin (mm) 3.0 

Length of Fin (mm) 3.0 

Flow length of Hot stream (m) 0.30 

Flow length of Cold stream (m) 0.99 

No-flow length (m) 0.293 

 

 

Figure 4-1 PFHE Diagram in Aspen EDR 
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Table 4.3 Thermal Performance of PFHE (Results from Aspen EDR) 

Main stream number Stream 1 Stream 2 

Stream name Hot Stream Cold Stream 

Flow direction End A to B (down) Crossflow 

Total mass flow rate kg/s 1.5 1.26 

Heat load kW -251 251 

Heat load per layer kW -9 8.7 

Inlet temperature C 316 53 

Outlet temperature C 206.9 248.74 

Inlet quality(vapor mass fraction) - 1 1 

Outlet quality(vapor mass fraction) - 1 1 

Inlet specific enthalpy kJ/kg 771.7 11.2 

Outlet specific enthalpy kJ/kg 604.4 210.4 

Fouling resistance m2*K/W 0.00101 0.00101 

Minimum [T-Twall] C 9.47 16.44 

Mean [T-Twall] C 34.54 -66.52 

Mean heat transfer coefficient W/(m2*K) 409.5 200.1 

Mean fin efficiency - 0.77 0.86 

Solution method 
 

Standard Standard 

Heat load as fraction of maximum - 0.7399 0.7399 

Theoretical maximum heat load kW -339.2 339.2 

 

In Table 4-4 the results obtained from Aspen EDR after running the simulation are given.   
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Initial results at Straight run conditions are shown in Error! Reference source not 

found.. At constant flow rates in different cases the results obtained are also shown in this 

table.  

Table 4.4 Straight run Input Condition simulation results 

S.No 
Hot Inlet 

Temp 

Cold 

Inlet 

Temp 

Fouling 

Resistance 

Hot Outlet 

Temp 

Hot Inlet 

Flowrate 

Cold Inlet 

Flowrate 
Effectiveness 

Case 1 346.85 41.85 0 277.66 1.45 1.35 0.773 

Case 2 347 35 0.00121 253.04 1.45 1.35 0.699 

Case 3 346 38 0.00119 253.55 1.45 1.35 0.699 

Case 4 344 45 0.00116 254.58 1.45 1.35 0.701 

Case 5 345 38 0.00121 252.85 1.45 1.35 0.699 

Case 6 353 35 0.0031 228.99 1.45 1.35 0.610 

Case 7 359 39 0.0014 259.56 1.45 1.35 0.689 

Case 8 349 35 0.00104 257.36 1.45 1.35 0.708 

Case 9 350 42 0.00129 256.08 1.45 1.35 0.695 

Case 10 359 36 0.00101 264.59 1.45 1.35 0.708 

Case 11 359 37 0.00101 265.64 1.45 1.35 0.710 

Case 12 354 41 0.00117 260.86 1.45 1.35 0.702 

Case 13 359 45 0.00126 264.09 1.45 1.35 0.698 

Case 14 356 35 0.00121 259.49 1.45 1.35 0.699 

Case 15 349 43 0.00106 259.73 1.45 1.35 0.708 

Case 16 354 41 0.00111 261.72 1.45 1.35 0.705 

Case 17 347 45 0.00114 257.67 1.45 1.35 0.704 

Case 18 348 30 0.00129 257.38 1.45 1.35 0.715 

Case 19 354 35 0.00105 260.71 1.45 1.35 0.708 

Case 20 352 40 0.00126 249.83 1.45 1.35 0.673 

 

4.1 Optimization through Genetic Algorithm  

Single objective maximization Genetic algorithm was applied using MATLAB 

gaoptimset function. The input variables to be optimized are inlet flowrate of hot and cold 

stream while the objective to be maximized is outlet cold stream temperature. By increase 
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in outlet cold stream temperature effectiveness of plate and fin type heat exchanger is 

increased. The upper and lower bounds of input variables are 1.45+0.1,1.35+0.1 and 1.45-

0.1,1.35-0.1 respectively. The population size is 10 with 1 set of generation and 20 

iterations.  

The optimum input variables i-e hot stream inlet flowrate and cold stream inlet flowrate 

are obtained from Genetic algorithm for each 200 cases. First 20 cases are shown in Table 

4-5 and the results i-e outlet cold stream temperature and effectiveness obtained at each 

case are shown. Table 4-6 shows increase in effectiveness after applying GA as compared 

to the Straight run initial inputs.  

Table 4.5 Genetic Algorithm Results 

S.No 
Hot Inlet 

Temp 

Cold Inlet 

Temp 

Fouling 

Resistance 

Cold Outlet 

Temp 

Hot Inlet 

flowrate 

Cold Inlet 

flowrate 
Effectiveness 

Case 1 346.85 41.85 0 288.02 1.52 1.26 0.81 

Case 2 347 35 0.00121 257.71 1.41 1.27 0.71 

Case 3 346 38 0.00119 259.69 1.48 1.29 0.72 

Case 4 344 45 0.00116 262.86 1.54 1.3 0.73 

Case 5 345 38 0.00121 256.48 1.41 1.28 0.71 

Case 6 353 35 0.0031 238.98 1.52 1.26 0.64 

Case 7 359 39 0.0014 269.75 1.51 1.26 0.72 

Case 8 349 35 0.00104 267.9 1.52 1.26 0.74 

Case 9 350 42 0.00129 259.63 1.44 1.3 0.69 

Case 10 359 36 0.00101 271.5 1.51 1.31 0.73 

Case 11 359 37 0.00101 278.6 1.55 1.25 0.75 

Case 12 354 41 0.00117 267.5 1.53 1.31 0.72 

Case 13 359 45 0.00126 274.4 1.54 1.27 0.73 

Case 14 356 35 0.00121 263.8 1.49 1.32 0.71 

Case 15 349 43 0.00106 270 1.52 1.26 0.74 

Case 16 354 41 0.00111 266.5 1.41 1.27 0.72 

Case 17 347 45 0.00114 263.72 1.48 1.29 0.72 

Case 18 348 30 0.00129 258.6 1.54 1.3 0.72 

Case 19 354 35 0.00105 267 1.55 1.33 0.73 

Case 20 352 40 0.00126 268.3 1.51 1.25 0.73 
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Table 4.6 Comparison of Effectiveness before and after Genetic Algorithm optimization 

Case. No 
Straight run 

Condition 
GA Results  

1 0.77 0.81 

2 0.7 0.71 

3 0.7 0.72 

4 0.7 0.73 

5 0.7 0.71 

6 0.61 0.64 

7 0.69 0.72 

8 0.71 0.74 

9 0.69 0.69 

10 0.71 0.73 

11 0.71 0.75 

12 0.7 0.72 

13 0.7 0.73 

14 0.7 0.71 

15 0.71 0.74 

16 0.71 0.72 

17 0.7 0.72 

18 0.71 0.72 

19 0.71 0.73 

20 0.68 0.73 

 

4.2 Prediction through Artificial Neural Network  

The simplified structure of ANN obtained from MATLAB with three input values, 5 

hidden layers and 2 output layers is shown in Figure 4-2. ANN predicted input values are 

then used in simulation and the results obtained are shown in Table 4.7. The performance 

comparison of Straight run conditions, GA results and ANN results are shown in Table 

4.8. The change in outlet cold stream temperature before and after applying GA and ANN 

is shown in Figure 4.3, change in hot stream outlet temperature is shown in Figure 4.4 and 

the overall performance is plotted in Figure 4.5. The regression analysis is giving the 
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information on network performance presented in Figure 4.6. Network performance seems 

good accuracy. 

 

Figure 4-2 ANN Structure 

Table 4.7 ANN Results 

S.No 
Hot Inlet 

Temp 

Cold Inlet 

Temp 

Fouling 

Resistance 

Cold Outlet 

Temp 

Hot Inlet 

Flowrate 

Cold Inlet 

Flowrate 
Effectiveness 

Case 1 346.85 41.85 0 283.78 1.478 1.286 0.89 

Case 2 347 35 0.00121 263.02 1.513 1.262 0.73 

Case 3 346 38 0.00119 262.17 1.503 1.272 0.73 

Case 4 344 45 0.00116 263.58 1.505 1.272 0.73 

Case 5 345 38 0.00121 261.3 1.503 1.271 0.73 

Case 6 353 35 0.0031 237.44 1.503 1.273 0.64 

Case 7 359 39 0.0014 268.47 1.504 1.273 0.72 

Case 8 349 35 0.00104 266.2 1.509 1.270 0.74 

Case 9 350 42 0.00129 264.68 1.507 1.270 0.72 

Case 10 359 36 0.00101 273.63 1.503 1.273 0.74 

Case 11 359 37 0.00101 274.68 1.495 1.270 0.74 

Case 12 354 41 0.00117 269.48 1.501 1.275 0.73 

Case 13 359 45 0.00126 272.29 1.494 1.270 0.72 

Case 14 356 35 0.00121 268.45 1.499 1.273 0.73 

Case 15 349 43 0.00106 268.37 1.502 1.273 0.74 

Case 16 354 41 0.00111 270.47 1.499 1.274 0.73 

Case 17 347 45 0.00114 265.74 1.489 1.270 0.73 

Case 18 348 30 0.00129 259 1.495 1.274 0.72 

Case 19 354 35 0.00105 269.72 1.499 1.275 0.74 

Case 20 352 40 0.00126 264.94 1.494 1.279 0.72 
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Table 4.8 Comparison of developed model at Straight run condition, optimized data and ANN 

predicted data 

Case. No 
Straight run 

Condition 
GA Results  ANN Results 

1 0.77 0.81 0.89 

2 0.7 0.71 0.73 

3 0.7 0.72 0.73 

4 0.7 0.73 0.73 

5 0.7 0.71 0.73 

6 0.61 0.64 0.64 

7 0.69 0.72 0.72 

8 0.71 0.74 0.74 

9 0.69 0.69 0.72 

10 0.71 0.73 0.74 

11 0.71 0.75 0.74 

12 0.7 0.72 0.73 

13 0.7 0.73 0.72 

14 0.7 0.71 0.73 

15 0.71 0.74 0.74 

16 0.71 0.72 0.73 

17 0.7 0.72 0.73 

18 0.71 0.72 0.72 

19 0.71 0.73 0.74 

20 0.68 0.73 0.72 
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Figure 4-3 Cold Stream Outlet Temp (Comparison Graph) 

 

Figure 4-4 Hot Stream Outlet Temp (Comparison Graph) 
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Figure 4-5 Overall Performance Comparison Graph 

4.3 ANN Accuracy Vs Genetic Algorithm  

The predicted and targeted output values of model-based effectiveness of PFHE is plotted 

against test samples. The Figure 4.6 shows Target and Prediction Accuracy of Hot Stream 

Inlet flowrate and Cold Stream Inlet flowrate. 

 

Figure 4-6 ANN Regression Plot 
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4.4 Sensitivity Analysis 

A set of sequences have been established in MATLAB for computing sensitivity indices 

by SOBOL and FAST as already mentioned in section 3.1.5. This is done by generic user-

defined model and given the name GSAT (Global Sensitivity Analysis Toolbox). SO, in 

MATLAB environment the logical flow, as given in Figure 4.7, to analyze the sensitivity 

analysis is to create this new project under name of (Pro_Create). Then, by using function 

of (Pro_AddInput) every new variable with its characteristics must be added.  

Create a Project

Pro_Create

Add Input to the project 

and define its distributions

Pro_AddInput

Set the Model f(x)

Pro_SetModel

Initialize the Analysis

GSA_Init

Make the Analysis

GSA_GetSy

 

Figure 4-7 Steps to proceed for sensitivity analysis through GSAT 

Sensitivity indices of SOBOL and FAST are shown in Figure 4.8 and Figure 4.9 for Hot 

Inlet Flowrate and Cold Inlet Flowrate respectively. The most sensitive variables for Hot 

Inlet Flowrate is Hot Inlet Temperature while for Cold Inlet Flowrate according to FAST 

indices both Hot and Cold Inlet temperature are more sensitive.   
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Figure 4-8 SOBOL sensitivity indices of Hot and Cold Inlet Flowrate 

 

 

Figure 4-9 FAST sensitivity indices of Hot and Cold Inlet Flowrate 
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Conclusion 

In this study Plate and Fin type heat exchanger was designed in Aspen EDR environment. 

The model was converted from steady state to dynamic by interfacing of Aspen, Excel 

and MATLAB. An Aspen EDR based model of Plate fin heat exchanger used in tiles 

factory was developed. The methodology used for optimization purpose is proposed in 

this study in order to achieve maximum effectiveness during operation under uncertain 

condition. 200 random cases were generated in order to create artificial uncertainty in Hot 

inlet stream temperature, Cold inlet stream temperature and Fouling resistance. Single 

objective GA was applied on each case to obtain maximum effectiveness (Outlet cold 

stream temperature) using 2 input variables (Inlet Hot Stream flowrate, Inlet Cold Stream 

flowrate). During the literature review it was found that the inlet flowrate of both streams 

are more effective towards heat exchanger performance.  The heat exchanger performance 

is increased after applying GA. The data comprised of 200 samples was used to develop 

ANN model. The predicted output variables are inlet flowrate of both hot and cold 

streams. The predicated output variables seem good accuracy. Sensitivity Analysis was 

performed through the results obtained and it was found that Fouling resistance and Inlet 

hot stream temperature are the most sensitive variables.  
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