
Real-time approach for the effect of arm position using 

Fitts’ Law

  

 

Author 

Jamil Ahmad 

Registration Number 

00000203418 

Supervisor: Dr. Asim Waris 

Co-Supervisor: Dr. Omer Gillani 

Department of Biomedical Engineering and Sciences 

School of Mechanical & Manufacturing Engineering 

National University of Sciences and Technology 

H-12, Islamabad, Pakistan 

March, 2021 

  



Real-time approach for the effect of arm position using Fitts’ Law  

Author 

Jamil Ahmad 

Registration Number 

00000203418 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science in 

Biomedical Engineering 

 

Supervisor: Dr. Asim Waris 

Co-Supervisor: Dr. Omer Gillani 

 

Thesis Supervisor’s Signature: ________________________________ 

Department of Biomedical Engineering and Sciences 

School of Mechanical & Manufacturing Engineering 

National University of Sciences and Technology 

H-12, Islamabad, Pakistan 

March, 2021 

 



National University of Sciences and Technology 

MASTER THESIS WORK 

 

We hereby recommend that the dissertation prepared under our supervision by Jamil Ahmad 

Registration No. 00000203418 titled “Real-time approach for the effect of arm position using 

Fitts’ Law” be accepted in partial fulfillment of the requirements for the award of MS 

Biomedical Engineering degree with Grade (___)  

Examination Committee Members 

 

1.  Name: Dr. Omer Gillani Signature: _______________ 

2.  Name: Dr. Umar Ansari Signature: _______________ 

3.  Name: Dr. Mohsin Jamil 

 

Signature:_______________ 

          Supervisor’s name: Dr. Asim Waris 

 

          Co-supervisor’s name:  

Signature: _______________ 

 

Signature: _______________ 

Date: ___________________ 

 

 

_______________________   

Head of Department   

 

________________ 

Date 

COUNTERSIGNED  

 

 

Date: _______________ 

 

____________________ 

Dean/Principal 

FORM TH-4 



 

Thesis Acceptance Certificate 

 

It is certified that final copy of MS thesis written by Jamil Ahmad Registration No. 00000203418 

of SMME has been vetted by undersigned, found complete in all aspects as per NUST 

Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as partial 

fulfillment for the award of MS degree. It is further certified that necessary amendments as 

pointed out by GEC members of the scholar have also been incorporated in the said dissertation.  

 

Signature with stamp:  ______________________ 

                                                             Name of the supervisor: Dr. Asim Waris 

                                                                                                  Date: __________________ 

 

 

Signature of HOD with stamp: __________________ 

Date: __________________ 

 

 

 

Countersigned by 

                                                                                Dean/Principal 

                                                                                                          Signature: ________________ 

      Date: ____________________ 

  



Declaration 

 

I certify that this research work titled “Real-time approach for the effect of arm position using 

Fitts’ Law” is my own work. The work has not presented elsewhere for assessment. The material 

that used from other sources in this work has been properly acknowledged and referenced.  

 

_________________ 

Signature of Student 

Jamil Ahmad 

00000203418  

 

 

 

 

 

 

 

 

 

 

 

 

 



Plagiarism Certificate (Turnitin Report) 

 

This thesis has been checked for plagiarism. Turnitin report endorsed by supervisor is attached at 

the end of this report. 

 

_________________ 

Signature of Student 

                                                                                                                           Jamil Ahmad 

Registration Number 

                                                                                                                           00000203418 

 

___________________ 

Signature of Supervisor 

                                                                                                                      Dr. Asim Waris 

 

 

 

 

 

 

 

 

 



Copyright Statement 

 

 Copyright in text of this thesis rests with the student author. Copies (by any process) either 

in full, or of extracts, may be made only in accordance with instruction given by the 

author and lodged in the Library of NUST School of Mechanical & Manufacturing 

Engineering (SMME). Details may be obtained by the Librarian. This page must form part 

of any such copies made. Further copies (by any process) may not be made without the 

permission (in writing) of the author.  

 The ownership of nay intellectual property rights which may be described in this thesis is 

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior 

agreement to the contrary, and may not be made available for use by third parties without 

the written permission of the SMME, which will prescribe the terms and conditions of any 

such agreement.  

 Further information on the conditions under which disclosures and exploitation may take 

place is available from the Library of NUST School of Mechanical & Manufacturing 

Engineering, Islamabad  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements 

 

I am grateful to my parents for supporting me to pursue my higher studies. I thank my teachers 

who helped me along this tough journey and guided me towards my best. I thank Dr.Asim Waris 

for supporting me and helping me in understanding many critical topics regarding my research 

study. His dedication towards me will always be the best part of my life. 

 

I thank my friends who helped me during my research study especially Younas Khan, Mazhar 

Shehzad, Tufail Ahmad, Junaid Yousafzai, Mubashir Khan, Muhammad Asif, Farooq Saeed, 

Khizer Jan, Malik Naveed, Jibran Ishtiaq, Hashim Khan, Kamran Mangi, Ammad Din, Hassan 

Ashraf, Fazeel Ghafoor and Afaq ahmad. I thank my elder brother Shakeel Ahmad for believing 

in me and having faith in me. I thank Sehrish Raja for helping me during my thesis. 

 

The journey of my masters would have been impossible without the help of my famil, my 

teachers and my friends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Contents 

  

List of Figures ............................................................................................................................................. 11 

List of Tables ............................................................................................................................................... 12 

Abstract ....................................................................................................................................................... 13 

1 Introduction ........................................................................................................................................ 14 

1.1 Motivation ................................................................................................................................... 14 

1.2 Different Types of Amputation ................................................................................................. 14 

1.2.1 Transtibial Amputation ..................................................................................................... 14 

1.2.2 Transfemoral Amputation ................................................................................................. 15 

1.2.3 Transradial Amputation .................................................................................................... 16 

1.2.4 Transhumeral Amputation ................................................................................................ 16 

1.3 Different Prosthetic Devices....................................................................................................... 17 

1.4 Literature Review ....................................................................................................................... 18 

1.5 Conventional Myoelectric Control Strategies .......................................................................... 18 

1.5.1 On/Off Myoelectric Control ............................................................................................... 18 

1.5.2 Proportional Myoelectric Control ..................................................................................... 19 

1.5.3 Direct Myoelectric Control ................................................................................................ 19 

1.5.4 Finite State Machine ........................................................................................................... 19 

1.5.5 Pattern Recognition Control .............................................................................................. 19 

1.6 Improtance of Pattern Recognition based Myoelectric Control ............................................ 20 

1.7 Significance of Pattern Recognition based MECs ................................................................... 21 

1.8 Objectives .................................................................................................................................... 23 

2 Multiple Arm Position Effect Problem and Different Methods ..................................................... 24 

2.1 Arm Position Effect and Offline Analysis ................................................................................ 24 

2.2 Variability between Offline and Real-Time Analysis .............................................................. 25 

2.3 Different Types of Real-Time Analysis ..................................................................................... 26 

2.4 Fits’ Law and Performance Parameters ................................................................................... 27 

2.5 Research Gap .............................................................................................................................. 28 

3 Methodology ........................................................................................................................................ 29 



3.1 Subjects ........................................................................................................................................ 29 

3.2 Data Collection ............................................................................................................................ 29 

3.3 Motions and Positions ................................................................................................................ 30 

3.4 Signal Processing, Classifier and Features ............................................................................... 31 

3.5 Real-time Analysis Methodology ............................................................................................... 32 

3.5.1 Graphical User Interface ................................................................................................... 32 

3.5.2 Fits’ Law and Performance Parameters ........................................................................... 33 

3.5.3 Experimental Procedure .................................................................................................... 34 

3.5.4 Training and Testing Schemes .......................................................................................... 35 

3.6 Offline Analysis Methodology ................................................................................................... 35 

3.7 Statistical analysis ....................................................................................................................... 36 

4 Results and Discussions ...................................................................................................................... 38 

4.1 Real-time Analysis ...................................................................................................................... 38 

4.1.1 Real-time Analysis (Healthy) ............................................................................................. 38 

4.1.2 Real-time Analysis (Amputees) ......................................................................................... 40 

4.2 Offline analysis ............................................................................................................................ 42 

4.2.1 Within Group Results (Healthy) ....................................................................................... 42 

4.2.2 Within Group Results (Amputees) .................................................................................... 43 

4.2.3 Between Group Results (Healthy) ..................................................................................... 43 

4.2.4 Between Group Results (Amputees) ................................................................................. 44 

4.3 Discussion .................................................................................................................................... 45 

5 Conclusion ........................................................................................................................................... 48 

5.1 Future Recommendations .......................................................................................................... 48 

6 References ........................................................................................................................................... 49 

 

  



List of Figures 

 

Figure 1-1: Transtibial Amputation .............................................................................................................. 15 

Figure 1-2: Transfemoral Amputation .......................................................................................................... 15 

Figure 1-3: Transradial Amputation ............................................................................................................. 16 

Figure 1-4: Transhumeral Amputation ......................................................................................................... 16 

Figure 1-5: Body Powered Prosthetic Arm .................................................................................................. 17 

Figure 1-6: Electric Powered Prosthetic Arm ............................................................................................... 18 

Figure 1-7: Flowchart of Different myoelectric control schemes ................................................................. 20 

Figure 3-1: Raw EMG signals recorded for open hand motion using Myo armband. .................................. 30 

Figure 3-2: Myo armband for Data Recording ............................................................................................. 30 

Figure 3-3: Graphical representation of 5 motions and 3 positions. ............................................................. 31 

Figure 3-4: Graphical User Interface for recording data at different positions ............................................ 33 

Figure 3-5: Fitt’s Test for Different Hand Motions and Positions ............................................................... 35 

Figure 3-6: Offline Analysis Graphical Map ................................................................................................ 36 

Figure 4-1: Completion rates (%) for different training schemes (Healthy) ................................................ 39 

Figure 4-2: Overshoot (%) at different training and testing schemes (Healthy)........................................... 39 

Figure 4-3: Path efficiency (%) at different training and testing schemes (Healthy) ................................... 40 

Figure 4-4: Throughput (bits/sec) at different training and testing schemes (Healthy) ................................ 40 

Figure 4-5: Completion rates (%) for different training schemes (Amputee)............................................... 41 

Figure 4-6: Overshoot (%) at different training and testing schemes (Amputee) ......................................... 41 

Figure 4-7:  Path efficiency (%) at different training and testing schemes (Amputee) ................................ 42 

Figure 4-8:  Throughput (bits/sec) at different training and testing schemes (Amputee) ............................. 42 

Figure 4-9: Classification accuracies for different training and testing schemes (Healthy) ......................... 44 

Figure 4-10: Classification accuracies for different training and testing schemes (Amputee) ..................... 45 

 

 

  



List of Tables 

 

Table 1: Index of difficulties and their corresponding Distances and Widths .............................................. 33 

Table 2: Notations for Multiple Training and Testing Scenarios ................................................................. 35 

 

  



Abstract 

Electromyography is a method or technique that is utilized to evaluate or record the electrical 

activity of muscles. These recorded signals can reveal some notable observations that can be used 

to enhance myo electric-based prosthetic devices. The prosthetic devices that are commonly 

available have changed the lives of people significantly with upper limb amputation. However, 

currently available devices are calibrated in a single position, which gives rise to problems that 

can affect these devices accuracy and efficiency. The “limb position effect” is a prominent 

problem in prosthetic devices. The recognition of limb positions and motions plays a vital role in 

both healthcare and engineering. But as mentioned earlier, most of these devices are calibrated in 

a single position, leading to a faulty performance at other positions. This study aimed to find out 

the effect of limb position in real time using Fits’ law and compare the real time outcomes with 

the offline analysis. Twelve healthy subjects and two trans-radial amputees were studied. Four 

motions, such as closed hand, open hand, hand flexion, hand extension along with resting 

position, have been recorded. 

Four performance metrics, overshoot, completion rate, throughput, and path efficiency were 

observed in real time. During group analysis for healthy and amputees, higher completion rates 

were observed while training and testing in the same position. Whereas between groups testing 

yielded in lower completion rates as compared to within group testing. Offline analysis was 

performed using ANN classifier with one layer and fifteen neurons. Six features were extracted 

namely; slope sign change, zero crossing, willision amplitude, waveform length, cardinality and 

mean absolute value. Similar training and testing scenarios were assessed during offline analysis 

as well; within group and between groups training and testing. Offline analysis yielded in high 

classification accuracies during within group testing and lower classification accuracies during 

between group testing. The results of real time and offline were compared to find the variability 

between these two approaches. This comparison revealed some notable observations, revealing 

that real-time analysis are necessary as the two observations were different.  The outcome of this 

study suggests that in an attempt to minimize the effect of arm position, the device should be 

calibrated in multiple positions. 

  



Chapter 1 

1 Introduction 

1.1 Motivation 

Human beings are bestowed with many natural capabilities, due to which they are able to perform 

many daily life activities. However, if someone is missing even a single part of their body, there 

daily life activities are effected greatly e.g. limb amputation. If a person is missing any part of 

their body, his life is affected in many ways, e.g., lack of confidence, lack of working capability, 

lack of mental satisfaction, etc. But gladly, the current advancement in technology has filled up 

most of the loopholes capable of effecting human lives, such as prosthetic limbs. The prosthesis is 

an electronic device that works as an extension to the missing part of the human body. These 

prostheses can help normalize human lives by performing most of the activities that a normal 

human limb can perform. These electronic gadgets are helpful in many ways, but still, they are 

lagging in performing some activities. Researchers are currently working on the performance 

parameters of prostheses by implementing different techniques and methods. Many clinical 

problems have been solved in this current era by implementing different engineering techniques, 

especially in prostheses. The close link between clinical problems and engineering techniques 

implementation has led to many great inventions. Hence, this study is directed towards improving 

lives of people with limb amputation by suggesting a method to enhance the currently available 

prosthetic devices [1]. 

1.2 Different Types of Amputation 

There are many types of amputation but the four main types are as follow: 

1.2.1 Transtibial Amputation 

This is a type of amputation which occurs below the knee as depicted in the picture below: 



 

Figure  1-1: Transtibial Amputation 

 

1.2.2 Transfemoral Amputation 
This is a type of amputation which occurs above the knee as depicted in the picture below: 

 

Figure  1-2: Transfemoral Amputation 

 



1.2.3 Transradial Amputation 
This is a type of amputation which occurs below the elbow as depicted in the picture below: 

 

Figure  1-3: Transradial Amputation 

 

1.2.4 Transhumeral Amputation 
This is a type of amputation which occurs above the elbow as depicted in the picture below: 

 

Figure  1-4: Transhumeral Amputation 



1.3 Different Prosthetic Devices 

In this current era, many prosthetic devices are available that used worldwide by many people for 

performing their daily life activities. These prosthetic devices are mainly divided in to two major 

categories: Body powered prostheses and Electric powered prostheses. Figure 1-1 and 1-2 shows 

body powered and electric powered prostheses respectively. Many people use the body powered 

prostheses for two main reasons: cheap price and easy repairing. These devices are not able to 

perform a diverse range of motions. They utilize different parts of human body to operate. Body 

powered prostheses are tough and they can be used in rugged environment and are really excellent 

for completing specific tasks. The electric powered prostheses are a much better option and 

replacement to body power prostheses because they can perform more motions. These devices are 

also called myoelectric prosthetic devices because they operate on electric signals (generated by 

muscles). Myoelectric prostheses remain expensive and is better suited for people who want to 

have a natural-appearing replacement for the lost limb. The currently manufactured prostheses 

have changed people's lives by helping them conduct many activities, which in return helped 

restore their lost confidence and motivation. Mostly, people are satisfied with their prosthetic 

implants, but these prostheses can still not work as efficiently as a healthy human limb. 

 

Figure  1-5: Body Powered Prosthetic Arm 



 

Figure  1-6: Electric Powered Prosthetic Arm 

1.4 Literature Review 

1.5 Conventional Myoelectric Control Strategies 

There are many types of control strategies that are being implemented in myoelectric prosthetic 

devices, such as: 

 On/off myoelectric control 

 Proportional myoelectric control 

 Direct myoelectric control 

 Finite state machine control 

 Pattern recognition based myoelectric control 

1.5.1 “On/Off” Myoelectric Control 

During on or off control the amplitude of  EMG signal is measured and then compared with a 

certain threshold. If the value is above a certain threshold, it will turn on the motor and vice versa. 

This control scheme operates for two-degree of freedom. Also, the prosthetic device is operated at 

a constant speed which is not dependent upon the strength of the EMG signals. This type of 

control scheme is good where simple hand motions are required without involving complex 

motions for example simple hand rotation in clockwise and anti-clock wise direction [2]. 



1.5.2 Proportional Myoelectric Control 

During proportional myoelectric control, the amplitude of the EMG signal is measured which is 

mapped against a single mechanical output. This mechanical output can be position, velocity, 

force etc. The input voltage of the motor is modified with respect to the output of motor 

controller. The voltage feeded to motor is proportional to the strength of the EMG signals. Such 

control schemes are applicable for general hand motions which donot require multiple degrees of 

freedom [3, 4]. 

1.5.3 Direct Myoelectric Control 

The direct myoelectric control works similar to the proportional myoelectric control but with a 

slight difference. It involves the implementation of multiple sensors where the output of each 

sensor is mapped against an individual function corresponding to mechanical ouput. Similarly to 

proportional myoelectric control, the input voltage of the motor is modified with respect to the 

ouput of motor controller. As direct myoelectric control involves multiple sensors, the controlling 

of individual finger movements is achieveable. But this is a difficult objective as there is always 

crosstalk between the EMG signals. This task can be achieved by involving intramuscular EMG 

[5]. 

1.5.4 Finite State Machine 

In finite state machine, the hand positions are pre-defined as states and the change in these states 

is also pre-defined. These type of control schemes are implemented where a fixed number of 

positions are required and no complex positions are involved. Postures involving multiple degree 

of freedom cannot be achieved with FSM control [6, 7].  

1.5.5 Pattern Recognition Control 

During pattern recognition the EMG signals are segmented and then features are extracted from 

these EMG signals. The extracted features are classified to operate the motor control. Multiple 

degrees of freedoms can be achieved with pattern recognition control scheme. 



 

Figure  1-7: Flowchart of Different myoelectric control schemes 

 

1.6 Improtance of Pattern Recognition based Myoelectric Control 

Pattern recognition based controls are better and efficient than other myoelectric control 

strategies. The conventional myoelectric controls were successful in providing a limited number 

of degrees of freedoms. The pattern recognition overcome this shortcoming by controlling 

multiple degrees of freedoms by recognizing specific patterns in EMG signals. This implies that 

with the help pattern recognition we are able to perform various types of hand motions such as 

open hand, close hand, wrist flexion, wrist extension, pronation, supination, chuck grip, extended 

index and many other hand motions which we cannot achieve with conventional myoelectric 

controls [8]. 



1.7 Significance of Pattern Recognition based MECs 

The electromyography signal reflects the electrical potential field produced by the depolarization 

of the surface muscle-fiber membrane known as sarcolemma. The use of invasive or non-invasive 

electrodes located at a certain distance from the source requires detecting these EMG signals. A 

so-called volume conductor acts as the tissue separating the source and recording electrodes. The 

volume conductor's properties largely define the detected signals' characteristics in terms of the 

frequency content and the distance within which the signal can no longer be detected. An invasive 

technique for monitoring muscle function from inside the muscle is intramuscular EMG. Usually, 

a monopolar or concentric needle electrode is implanted through the skin into the muscle tissue to 

conduct intramuscular EMG. The needle is then moved to several relaxed muscle locations to 

measure both contraction and relaxation activity. Surface EMG measures muscle behavior from 

the surface of the skin above the muscle. The injection of electrodes directly into the muscle 

enables the detection of electrical potentials very close to the source, due to which the impact of 

the volume conductor is lower. Surface EMG may only include a small assessment of muscle 

function. Surface/non-invasive EMG can be reported either by a pair of electrodes or by a group 

of multiple electrodes. More than one electrode is required because the EMG recordings show the 

potential difference (voltage difference) between two different electrodes. Barriers of this strategy 

include the fact that surface electrode recordings are confined to superficial muscles and are 

affected by the depth of the subcutaneous tissue at the recording position, which can differ greatly 

depending on the patient's weight accurately distinguish between adjacent muscle discharges. The 

EMG signal is the building block unit of myoelectric-based prosthetic devices and is fed as an 

input to these devices [9, 10].  

The advancement in medical and engineering is progressing rapidly with each coming day. To 

derive meaningful and significant information from EMG signals, several different techniques 

have been developed. This information is mostly used in upgrading and enhancing myoelectric 

prosthetic devices. The technique that many research groups have used is commonly known as 

Pattern recognition (PR) technique. PR is the process of identifying patterns by using different 

machine learning techniques. Multiple methods based on PR have been investigated to enhance 

myoelectric-based prosthetic devices' performance and working capability. Park et al. proposed 

an EMG pattern recognition system to recognize different motion controls for prosthetic arm 

control through evidence acquisition with multiple parameters. A series of evidence accumulation 



procedures have indicated that the proposed approach effectively recognized the target motion 

with several incomplete parameters. And the test of separability has shown that ACV is better for 

the recognition of EMG patterns than for the other parameters. Furthermore, the recognition 

system's error rate has resulted in the proposed methodology of recognition better and more 

efficient than the other EMG pattern recognition methods. The proposed strategy to EMG pattern 

recognition emphasizes producing relatively accurate results with less computation time using the 

extracted feature parameters and very little subject training, which appears to be beneficial over 

other techniques requiring considerable training and time. Further work is suggested to find the 

optimal functional parameters to be used as inputs to the EMG pattern classifier and develop the 

decision algorithm for more effective pattern recognition systems with the accumulated data [11]. 

Christodoulos et al. stated that an important source of information for diagnosing neuromuscular 

disorders is the structures, design, and firing rates of the motor unit action potentials (MUAPs) in 

electromyographic (EMG) signals. To obtain this data from the muscle signals that is recorded at 

low-moderate force levels, it’s required to: i) define the EMG signal of  “MUAP”, (ii) classify 

MUAPs (iii) decompose MUAP waveforms. Two different pattern recognition approaches were 

explained for the identification of MUAP, i) an unsupervised learning-based artificial neural 

network (ANN) technique, the tweaked version of the self-organizing feature map (SOFM) 

technique and the technique of learning vector quantization (LVQ), and ii) a Euclidean distance-

based statistical pattern recognition process. For the ANN model, the prediction accuracy was 

97.6%, and the statistical method was 95.3%. A cross-correlation technique for the organization 

of the MUAP and a blend of Euclidean distance and area measurements were used for the 

decomposition of the superimposed waveforms to classify the decomposed waveforms. The 

decomposition protocol performance rate was 90% [12]. 

The manufacturing companies are introducing different types and designs of myoelectric 

prosthetic devices. But the characterization of hand motions performed via prostheses is studied 

in a fixed location. This is a huge drawback of these prostheses because a normal human hand can 

generate different EMG signals at other positions. Due to the change in EMG signals, PR-based 

myoelectric control devices' performance is affected significantly. 



1.8 Objectives 

This study was mainly focused on developing new method for the currently available myoelectric 

prosthetic devices to improve its efficiency and working performance. Many problems can affect 

the working capability of myoelectric prosthetic devices. However, the problem addressed in this 

study was to solve the limb position effect in myoelectric prostheses in real-time. The limb 

posture effect can greatly reduce the performance of prosthetic devices. This problem was 

addressed due to the fact that mostly prosthetic devices that are being currently used by people are 

calibrated in a single posture. The disadvantage of calibrating a prostheses in a single posture is 

that it will not perform efficiently at multiple angles (positions). And secondly, no research group 

has solved this problem in real-time environment.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

2 Multiple Arm Position Effect Problem and Different Methods 

2.1 Arm Position Effect and Offline Analysis 

As mentioned earlier, performing hand motions in multiple postures produce different EMG 

signals. The accuracy of PR techniques is greatly influenced due to performing motions in 

multiple postures. There is a lot of evidence to prove this phenomenon that shifting limb posture 

and performing various types of motions in these postures can adversely affect the classification 

accuracy. Jiang et al. investigated arm posture's effect on the efficiency of a simultaneous and 

proportional myoelectric control system on both trans-radial amputees and healthy subjects. The 

authors found that changing arm posture negatively affects the algorithm's efficiency for both 

groups of subjects, but that this effect is less prominent in amputee subjects than in able-bodied 

subjects. It was proposed that the effect of arm posture on myoelectric control could not be 

inferred from the effects on healthy subjects and should be studied specifically in amputee 

subjects [13]. Muraki et al. measured the pressure on the supraspinatus, the infraspinatus, and the 

posterior portion of the deltoid in the healthy cadaveric shoulders in each posture to assess the 

most suitable contracting posture for each muscle. It was suggested that the findings of this study 

could overcome uncertainty about stretching practices and be extended to the correct stretching of 

weak shoulder muscles to treat and prevent injury to the shoulder of athletes [14]. Zuckerman et 

al. determined the influence of arm posture and capsular discharge on the restoration of rotator 

cuffs. Artificial faults were made in the rotator cuff to include either the supraspinatus (small) or 

both supraspinatus and infraspinatus (large). Faults were restored in a normal fashion, with the 

shoulder abducted 30 degrees at the glenohumeral joint. Strain gauges were positioned on the 

lateral cortex of higher tuberosity and measurements were reported in 36 separate configurations 

of abduction, flexion/extension and medial/lateral rotation. Observations were collected before 

and after the release of the capsule. With small tears, stress in the repair increased dramatically 

with movements from 30 degrees to 15 degrees of abduction, but was minutely influenced by 

changes in flexion or rotation. Capsular release greatly decreased the force at 0 degrees and 15 

degrees abduction. In case of broad tears, abduction of 30 degrees or more with lateral rotation 

and extension consistently provided the lowest values. Capsular release led in 30% less force at 0 



degree abduction [15]. Mourad et al. confirmed the important effect of arm posture on 

auscultative blood pressure. Such an impact occurs in sitting and standing poses as well as in an 

oscilometric system. Moreover, it is now clear that the higher the BP, the greater the error created, 

especially in the measurement of SBP. Considering the current focus on diagnosis and treatment 

of systolic hypertension, the possibility for false readings should pose problems. The Indirect 

calculation of BP is vulnerable to multiple errors due to poor procedure and even the presence of 

back support while sitting can affect BP. However, the marked impact of the placement of the 

arm on BP was relatively overlooked, presumably because the agreed position of the heart level is 

vague and subject to misinterpretation. Even a relatively insignificant downward arm motion with 

a borderline or high BP in a patient could profoundly affect diagnosis and care [16]. 

2.2 Variability between Offline and Real-Time Analysis 

It has been proved by many studies that real-time tests and offline tests do not result in similar 

results. This is a very important fact in the field of PR based myoelectric control as most of them 

are solely based upon the outcomes of offline tests. Savur et al. proposed a Real-Time Sign 

Language recognition method using the Electromyography surface system (sEMG). For this 

purpose, for all twenty-six movements of the American Sign Language, the sEMG data was 

obtained from the right forearm subject. Raw sEMG data has been filtered, extracted, and graded. 

For multi-class grouping, Support Vector Machine (SVM) with one vs. all method was 

introduced. The offline test resulted in a 91 % classification precision and 82.3 % accuracy of the 

real-time system classification output. This system's results have shown that the SEMG signal can 

be used for real-time SLR systems [17]. Parajuli et al. presented a brief introduction to EMG-PR 

techniques and explores the work done on real-time myo-activated prostheses based on pattern 

recognition control over the years. Some of the important methods needed to enhance EMG-PR's 

current real-time applications for hand prosthesis have been addressed through available 

literature. Although smart pattern recognition control methods have been well studied for many 

degrees of freedom for hand prosthesis, their real-time functionality is still complicated by a range 

of factors. The normal neuromuscular control of the prosthesis should be proportionate and many 

degrees of freedom should be investigated.  Nevertheless, while reviewing existing literature, they 

find that EMG is used for most real-time prostheses, i.e. multiple channels that influence different 

residual muscles to create other synchronous control signals. Owing to the proximity of the 

muscles/electrodes, etc., the question is much greater than a single degree of independence. For 



real-time scenarios in the future, this should be well studied. [18]. Sattar et al. presented a 

feedback control of the prosthetic arm. This helps people who, based on electromyography 

(EMG) signals, deal with trans-humeral amputation. Collected signals are used to generate a 

control order for elbow joint movements.  These will mask the weakening of the proximal radio-

ulnary articulation of the forearm joint by the ulna-humeral joint and wrist pronation flexion-

extension motion. The Myo armband was used to receive an EMG signal from the muscles of the 

biceps and tricepsThe data collection and classification of the target motion was aided by 

integrating simulations with real-time monitoring of EMG signals from selected muscles. With 

ten competent people, the accuracy of both offline and online classification was checked by 

experiments.The offline training was conducted using Artificial Neural Networks with an 

accuracy of 94%. Support Vector Machine was used for real-time analysis with an accuracy of 

85%. Raspberry Pi was utilized for high-speed and versatile processing as it provides high 

functionality. Five control commands were also obtained to control device motions, including 

elbow extension and flexion, wrist pronation and supination along with rest condition. Feedback 

control of 2 degrees of freedom prosthetic arm was modeled and applied using the PID control 

algorithm [19]. The investigations of the studies mentioned above revealed a very important point 

in the field of myoelectric control. This breakthrough gave rise to conducting real-time tests along 

with offline tests.  

2.3 Different Types of Real-Time Analysis 

Different research groups performed several studies to evaluate different types of real-time tests. 

Mostly, the researchers tend to use two types of real-time tests. The one is called Fitts’ test, and 

the second is called Target achieving control. Both of these tests are capable of conducting the 

real-time analysis. Rasool et al. presented a novel approach that uses task-specific muscle 

synergies and state-space expression of neural signals to solve the difficult challenge of 

myoelectric control of lower arm prostheses. The suggested structure provides details on muscle 

arrangements, e.g., muscles behaving synergistically or in agonist/antagonist combinations, using 

the concept of muscle synergies. The synergistic activation coefficients are established as the 

latent machine state and are calculated using a constrained Kalman filter. These task-dependent 

coordinated activation coefficients are calculated in real-time from electromyogram (EMG) data 

and are used to differentiate between different tasks. Task distinction was assisted by a post-

processing algorithm that utilizes post-processing probabilities. The suggested method was 



efficient and computationally intensive, resulting in a conclusion with higher classification 

accuracy. The algorithm's real-time efficiency and reliability were analyzed by using the Targeted 

Performance Control (TAC) test. 

The suggested methodology surpassed typical machine learning algorithms for both single-and 

multi-degree-of-freedom (DOF) activities in offline classification accuracy and real-time 

reliability [20]. Zhuang et al. proposed electromyography (EMG)-based admittance controller 

(EAC) to enhance the human-robot coordination, particularly in comparison to that accomplished 

by the use of a torque-sensing-based admittance controller (TAC). Computations and 

experiments have been performed to explore the performance of the EAC and the TAC. The 

simulation results demonstrated that the postponement between the human's voluntary torque and 

the exoskeleton robot's assistive torque noticeably deteriorated the human-robot cooperation 

movement's performance when the TAC was implemented. The experimental outcomes showed 

that the jerk value, the interaction torque, and the EMG level of the tibialis anterior acquired with 

the EAC were considerably lower than those reported with the TAC. Particularly in comparison to 

the TAC, the EAC has a benefit in enhancing the movement of human-robot coordination. The 

EAC can prevent delays between the human voluntary torque and the exoskeleton robot's assistive 

torque [21].  

2.4 Fits’ Law and Performance Parameters 

As mentioned earlier in the literature that researchers have used different types of real-time tests. 

However, Fitts’ test is used preferred by many research groups because it is less challenging and 

easy to perform as compared to other real-time tests, e.g. TAC test. Belya et al. conducted 

a detailed relation of EMG-based and FMG-based systems using both regression and 

classification controllers. Two-degree-of-freedom Fitts' law style virtual target acquisition activity 

relying on both FMG and EMG classification and regression control systems has been used. The 

performance was assessed based on the conventional Fitts law testing of metrics throughput, path 

efficiency, and average speed, number of timeouts, overshoot, stopping distance, and 

simultaneity. The FMG-based prediction system performed better than the EMG-based prediction 

system for both throughput and path efficiency. Likewise, FMG-based regression significantly 

performed better than EMG-based regression in throughput and path efficiency.  They concluded 

that FMG-based schemes outperformed EMG-based schemes despite which controller was 

utilized [22]. A non-invasive electromyography (EMG) signal-based computer interface and a 



Fittspsila law-based performance appraisal system were identified by Choi et al. To obtain the 

intentions of the participants, the signals of the EMG produced by voluntary wrist movements 

were received from four locations in the lower arm, and six groups of wrist movements were 

distinguished by the implementation of an artificial neural network. To maneuver the mouse using 

the advanced platform, press buttons and write text on the screen. The research rig was designed 

to assess five participants with intact limbs tested the developed platform and the mouse. 

Compared with the industrial non-invasive brain signal interface's reliability, the built machine 

interface and mouse performance were measured. The results indicate that the built interface was 

smarter than the commercial interface but less adequate than the computer mouse. Though other 

problems remain fixed, the established EMG interface can naturally and intuitively help people 

with motor disabilities access computers and Internet situations [23]. Ameri et al. validated the 

CNN regression model's functionality for the first time, using an online Fitts Law Style Test with 

both individual and simultaneous wrist movements. The outcomes were compared to the support 

vector-based regression system with a group of commonly used extracted features. Despite these 

excellent features' proven efficiency, the CNN-based system surpassed throughput for support 

vector machine (SVM) due to increased regression accuracy, particularly with high EMG 

amplitudes. These findings suggest that the CNN model can retrieve the underlying motor control 

information from EMG signals during single and multiple degree-of-freedom (DoF) activities. 

The benefit of CNN's regression over CNN's (previously studied) classification is that it enables 

independent and simultaneous control of movements [24]. Many other research groups have 

efficiently implemented Fitts’ law for EMG-based control systems [25-27]. 

 

2.5 Research Gap 

The studies mentioned above regarding the limb position effect are mainly related to research 

studies performed on pre-recorded data. As mentioned earlier, we cannot rely on offline tests, and 

real-time tests should also be performed. Many researchers have solved the problem of the limb 

position effect by suggesting different techniques and methods. However, all these techniques and 

methods solely rely on offline tests and not real-time tests. The main purpose of conducting this 

study was to see the limb position effect in the currently available PR-based myoelectric 

prosthetic devices in real-time environment. This was a crucial research gap as no study has been 



conducted in the past regarding this. The novelty of this work was the observation of the 

outcomes of real-time analysis regarding limb position effect. 

Chapter 3 

3 Methodology 

3.1 Subjects 

Healthy (12) and amputated (2) subjects were recruited to record data and real-time tests. Each 

subject was consulted and requested to experiment, and all healthy subjects and amputees 

voluntarily participated. However, the amputated subjects were consulted in their desired 

location. Due to the COVID-19, it was difficult to recruit many amputees in the study. All 

subjects were given a written agreement to conduct this experiment.  

3.2 Data Collection 

Myo is a lightweight elastic armband made up of a series of electrodes that track electrical activity 

in the forearm's muscle to relay movements you make through Bluetooth with your hand to a 

connected computer. It is quick enough to synchronize with the armband with a USB dongle that 

plugs into the laptop. The number of electrodes in Myo armband is eight, which are surface 

electrodes. The sampling frequency of myo armband is fixed at 200 Hz [28, 29]. Figure 3-1 

illustrates raw data collected through 8 channels and Figure 3-2 illustrating myo armband for 

movement recording. 

 



 

Figure  3-1: Raw EMG signals recorded for open hand motion using Myo armband. 

 

Figure  3-2: Myo armband for Data Recording  

 

3.3 Motions and Positions 

The motions that were recorded from every subject using myo armband were Hand Open, Hand 

Close, Hand Extension and Hand Flexion and rest motion (No Motion). Each and every subject 



recorded these motions in three different postures (0⁰ , 45⁰  and 90⁰ ) as shown in Figure 3-4. 

The contraction time for each motion was six seconds which were then followed by rest time of 

six seconds. Each subject performed a total of ten sessions. Each session consisted of recording 

each of the above mentioned motion. The time break between two consecutive sessions was set to 

twelve seconds. 

 

 

Figure  3-3: Graphical representation of 5 motions and 3 positions. 

 

3.4 Signal Processing, Classifier and Features 

As mentioned earlier that motions were recorded for a duration of six seconds. These motions 

were segmented by clipping the starting one second of the motion and the last second of the 

motion to remove any redundant content. There are two major types of segmentation techniques: 

disjoint windowing and overlapping window. During disjoint windowing no content from the 

previous segment is added into the next segment. Whereas during the overlapping window, a 

small portion of the last segment is added into the next segment. In this experiment, the 

overlapping window was used, having a size of 200ms and an overlap of 50ms. Many classifiers 

could have been used during this experiment. 



Artificial neural networks were implemented during this experiment as it has been proved by 

many studies that ANN outperforms other classifiers like LDA, SVM etc. Whether real-time or 

offline, in both scenarios, ANN was implemented to avoid biases between these two techniques' 

results. As we know that human brain consists of neurons that processes information in the form of 

electric signals. Artificial Neural Network (ANN) is a classifier that works similarly to the human 

brain and is used to develop algorithms that can be used to model complex patterns and prediction 

problems. ANN consists of three layers: input layer, hidden layer and output layer. Each layer 

consists of neurons that are connected with each other. During the implementation of ANN the 

complete data is divided into three sets namely: training set, validation set and testing set. The 

ANN architecture used in this experiment consists of one hidden layer with fifteen neurons. Signal 

features extraction is an important part of machine learning. The extracted features help understand 

the ANN architecture to distinguish between different types of signals generated for different types 

of motions. The features that were extracted in this study were: zero crossing, mean absolute value, 

slope sign changes, waveform length, willison amplitude and cardinality [30, 31]. 

3.5 Real-time Analysis Methodology 

3.5.1 Graphical User Interface 

Figure 3-6 shows a Graphical User Interface (GUI) which was used in order to record data for 

motions from subjects. The interface of GUI was user-friendly and every motion was prompted 

on the GUI that the subjects have to perform. All the possible motions were shown on the right 

side of GUI which can be seen in the Figure 3-6. However, only four motions were recorded and 

tested in real-time. A protocol was designed for recording of motions in various positions. 

According to the designed protocol, each and every subject was instructed about the environment 

of GUI and were made familiar with all the motions that they were asked to perform in the 

experiment. 



 

Figure  3-4: Graphical User Interface for recording data at different positions 

3.5.2 Fits’ Law and Performance Parameters 

Fits’ law states that the index of difficulty is a function of the distance to the target divided by the 

target's size. The formula through which different index of difficulties was calculated is given 

below: 

                         
 

 
    

 Four performance metrics were assessed to quantify real-time system performance: completion 

rate, path efficiency, overshoot, and throughput. The completion rate describes the overall success 

rate of the system within the allowed period. Path efficiency represents the quality of control by 

checking how efficiently the subject has achieved the target in selecting the best path. Overshoot 

describes the ability to stop on a target. This shows the subjects ability to stop on the target 

efficiently for 1-s before leaving the target. Throughput is defined mathematically as the ratio 

between the ID and the time of movement (MT), which is the time taken (in seconds) to achieve 

the goal. It is a measure of the amount of knowledge that the subject can communicate to the 

mission from a specific command source. Table 1: Index of difficulties and their corresponding 

Distances and Widths 



Distance Width ID 

50 5 3.46 

50 10 2.59 

50 20 1.81 

100 5 4.39 

100 10 3.46 

100 20 2.59 

 

3.5.3 Experimental Procedure 

Figure 3-5 shows the real-time environment where Fitt’s law was implemented for various 

training and testing scenarios. The figure shows position of all the possible targets with their 

respective IDs. These targets were prompted one at a time and subjects were ask to achieve these 

targets by moving a cursor from center point. These targets were picked randomly after every 

trial. The overall time allocated to complete a trial was fifteen seconds and the subjects were 

asked to keep the cursor at the target position for at least one second after hitting the target. If, 

within the time slot, the subjects did not meet the target, the trial was declared unfinished and the 

cursor was reset back to the origin, ready to begin the next trial. Different target sizes show 

different index of difficulties as shown in Table 1. Each motion was tested six times with varying 

IDs. The Fitt’s law was implemented in various limb positions. 



 

Figure  3-5: Fitt’s Test for Different Hand Motions and Positions 

 

3.5.4 Training and Testing Schemes 

Multiple real-time training and testing schemes were followed to check the effect of multiple 

positions on performance metrics. The Table 2 below shows multiple training and testing schemes 

for real-time analysis. 

Table 2: Notations for Multiple Training and Testing Scenarios 

 Testing 0° Testing 45° Testing 90° 

Training 0°    ⁰     ⁰     ⁰ 

Training 45°    ⁰     ⁰     ⁰ 

Training 90°    ⁰     ⁰     ⁰ 

 

3.6 Offline Analysis Methodology 

After the successful experimentation of real-time test using Fitt’s law, the offline tests were 

performed on pre-recorded data. ANN classifier with one hidden layer and fifteen neurons was 

used as mentioned earlier in the manuscript. The same set of features were implemented as well. 



However, K-fold cross validation was used during training and testing of classifier in same 

positions. During K-fold the data is split into small chunks. Usually the number of active motions 

is the number of K-fold. In this experiment we investigated four active motions, so four-fold cross 

validation was implemented to avoid over-fitting. Over-fitting occurs when the model learns too 

much from training data and isn't able to generalize the underlying information. When this 

happens, the model is able to describe training data very accurately but loses precision on every 

dataset it has not been trained on. Figure 3-6 shows the graphical representation of offline 

analysis. 

 

 

Figure  3-6: Offline Analysis Graphical Map 

3.7 Statistical analysis 

A one-way repeated measures ANOVA test was implemented to see the effect of different 

training and testing scenarios on real-time and offline tests. The one-way rmANOVA is used 

to determine whether there are any statistically significant differences between the means of 

independent groups. During rmANOVA test, different parameters like F-value, P-value and 



degree of freedom were assessed. All the P-values that were less 0.05 were considered significant. 

All significant tests were followed by Tukey honest significant different posthoc test. 

 

 

 

 

 

 

 

 

 

 

Chapter 4 



4 Results and Discussions 

The experiment performed was divided into two sections for the better understanding of each 

protocol. In order to further simplify the understanding of this research the results have been into 

two sections:  Real-Time analysis and Offline analysis. 

4.1 Real-time Analysis 

4.1.1 Real-time Analysis (Healthy) 

In a within-group analysis for real-time, completion rate, overshoot and throughput showed no 

significant difference (p-value ˃ 0.05) for ZT0⁰  - FT45⁰ , ZT0⁰  - NT90⁰  and FT45⁰  - NT90⁰ , 

however, for path efficiency, one-way rmANOVA revealed that FT45⁰  was performing 

significantly better than ZT0⁰  (p-value ≤ 0.01) also, NT90⁰  was performing markedly better 

than ZT0⁰  (p-value ≤ 0.01). A significant difference was observed between groups analysis for 

completion rate, where ZT0⁰  was performing significantly better (p-value ≤ 0.01) than ZT90⁰ . 

Similarly, FT45⁰  was performing significantly better than (p-value ≤ 0.005) FT0⁰  and (p-value 

≤ 0.03) FT90⁰  as shown in Figure 4-1. For overshoot, one-way rmANOVA revealed that NT45⁰  

was resulting in significantly lower (p-value ≤ 0.03) overshoot than NT0⁰ , whereas no significant 

difference was observed for other training and testing groups as depicted in Figure 4-2. Similarly, 

for path efficiency, ZT45⁰  was performing significantly better (p-value ≤ 0.03) than ZT0⁰ . Also, 

FT45⁰  was out performing FT90⁰  by a significant difference (p-value ≤ 0.04) as shown in 

Figure 4-3. The last observed performance metric was throughput, where no significant difference 

was observed for any training and testing scenario as shown in Figure 4-4. 



 

Figure  4-1: Completion rates (%) for different training schemes (Healthy) 

 

 

Figure  4-2: Overshoot (%) at different training and testing schemes (Healthy) 
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Figure  4-3: Path efficiency (%) at different training and testing schemes (Healthy) 

 

 

Figure  4-4: Throughput (bits/sec) at different training and testing schemes (Healthy) 

 

4.1.2 Real-time Analysis (Amputees) 

Within-group analysis in real-time for amputees, one-way rmANOVA showed no significant 

difference (p-value ˃ 0.05) for completion rate, overshoot, path efficiency, and throughput for ZT0⁰  

- FT45⁰ , ZT0⁰  - NT90⁰  and FT45⁰  - NT90⁰ . A significant difference was observed for 

completion rate during group analysis, where ZT0⁰  was performing significantly better than (p-
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value ≤ 0.04) ZT45⁰  and (p-value ≤ 0.01) ZT90⁰  as depicted in Table 4-5. At the same time, no 

significant difference was observed for other groups while keeping the completion rate. The other 

performance metrics, overshoot, path efficiency, and throughput, showed no significant difference 

for any training and testing scenario shown in Table 4-6, 4-7, and 4-8. 

 

 

Figure  4-5: Completion rates (%) for different training schemes (Amputee) 

 

 

Figure  4-6: Overshoot (%) at different training and testing schemes (Amputee) 
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Figure  4-7:  Path efficiency (%) at different training and testing schemes (Amputee) 

 

 

Figure  4-8:  Throughput (bits/sec) at different training and testing schemes (Amputee) 

 

4.2 Offline analysis 
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data from 0°, the system's overall classification accuracy was 99.3%, with a classification error of 

0.7%. Similarly, when training and testing were done for 45°, the overall accuracy was 99%, with 

1% error. A similar trend was seen for training and testing at 90°. The overall accuracy for the 90° 

train-test was 97.9%, with misclassification of 2.1%. One-way rmANOVA showed no significant 

difference between ZT0⁰  and FT45⁰  (p-value ≥ 0.74). However, a significant difference (p-

value < 0.05) was observed for ZT0⁰  and NT90⁰ . Similarly, one-way rmANOVA also revealed 

a significant difference (p-value < 0.05) for FT45⁰  and NT90⁰ . The offline analysis was 

showing better results than their corresponding real-time completion rates. The results are shown 

in Figure 4-9. 

4.2.2 Within Group Results (Amputees) 

While observing within-group analysis for amputees, the same 4-fold cross-validation method 

was implemented to avoid overfitting and obtain accurate and precise classification accuracy. 

When the system was trained with data for 0⁰  and tested with the data from 0⁰  degree, the 

classification accuracy was 95.8% with a misclassification error of 4.2%. Similarly, when training 

and testing were done at 45⁰ , the classification accuracy was 93.7%, with 6.3%. The final 

position for training and testing was 90⁰ , which yielded 92.5% accuracy with an error of 7.5%. 

One-way rmANOVA revealed no significant difference (p-value > 0.05) during within-group 

analysis. Figure 4-10 shows the overall results for within-group classification accuracies for 

amputees. 

4.2.3 Between Group Results (Healthy) 

For training and testing in different positions, the classification accuracies dropped by a huge 

margin. I was training the classifier with data from 0⁰  and testing at 45⁰  and 90⁰  yielded 

accuracies of 64.4% and 54.2% with misclassification of 35.6% and 45.8% respectively. Similarly 

the system was trained with data from 45⁰  and later tested with data from 0⁰  and 90⁰ . The 

resulting accuracies were 63.8% and 70.6%, with a classification error of 36.2% and 29.4%, 

respectively. After training the classifier with data from 90⁰  and testing with data from 0⁰  and 

45⁰ , the system yielded accuracies of 53.5% and 64.5%, with misclassification of 46.5% and 

34.5%. One-way rmANOVA revealed that ZT0⁰  was performing significantly better (p-value ≤ 

0.05) than ZT45⁰  and ZT90⁰ . Also, FT45⁰  was performing significantly better than FT0⁰  and 

FT90⁰ . Similarly, NT90⁰  was performing significantly better than NT0⁰  and NT45⁰ . The 

results are shown in the Figure 4-9 below. 



 

 

Figure  4-9: Classification accuracies for different training and testing schemes (Healthy) 
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misclassification of 37.9% and 56.8%, respectively. Similarly, when the classifier was trained with 

data from 45⁰  and tested with 0⁰  and 90⁰ , the reported classification accuracy was 70% and 41% 

with a classification error of 30% and 59%, respectively. Finally, when the system was trained with 

data from 90⁰  and tested with data from 0⁰  and 45⁰ , accuracy was 44.8% and 33.9%, with 

misclassification accuracy of 55.2% and 66.1%, respectively. The classification accuracies for 

between-groups analysis are shown in Figure 4-10. During one-way rmANOVA test, no significant 

difference (p-value > 0.05) was observed for any possible training and testing scenario.  
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Figure  4-10: Classification accuracies for different training and testing schemes (Amputee) 

 

4.3 Discussion 

Like other bioelectric signals, SEMG offers a systematically added advantage for evaluating the 

organ that produces it. Information on skeletal muscle activation has many forms. It is useful in 

many areas, varying from orthopedics and neurorehabilitation to fitness and exercise movement 

analysis, from aging to gnathology, obstetrics to occupational medicine, and space medicine. 

Much of the relevant research on SEMG involves technical issues and proof of concepts, mainly 

on healthy subjects. There are few research trials in large patient populations and case studies and 

case-series in tiny amounts. This doesn't mean that the methods developed do not have practical 

significance or do not address clinical reasoning. Instead, it implies that there is a significant gap 

in the application of methods to the clinical setting. 

In this study, sEMG was used to solve an important loophole in PR-based myoelectric prosthetic 

devices. Previous studies addressed this problem but all these studies suggested a solution based 

solely on offline classification accuracies. However, in the research, a solution for the limb 

position effect was proposed based on real-time tests and offline tests. Furthermore, a 
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scenarios. The completion rates were relatively high for ZT0⁰ , FT45⁰  and NT90⁰  than ZT45⁰ , 

ZT90⁰ , FT0⁰ , FT90⁰ , NT0⁰  and NT45⁰ . Similarly, when assessing completion rate for 

amputees, the completion rates were higher for ZT0⁰ , FT45⁰  and NT90⁰  than ZT45⁰ , ZT90⁰ , 

FT0⁰ , FT90⁰ , NT0⁰  and NT45⁰ . However, the completion rates observed for amputees were 

lower as compared to healthy subjects. Observing other performance metrics like overshoot, path 

efficiency and throughput for healthy subjects, it is clear from the result section that no major 

difference was observed between them for different training and testing schemes. However, 

compared with the results of amputees, the observed overshoot for amputees was higher than the 

overshoot of healthy subjects. Similarly, the path efficiencies for healthy subjects were higher as 

compared to observed for amputees. The least affected performance metric was throughput where 

no major difference was observed for both amputees and healthy subjects. 

After the successful performance of real-time tests, offline tests were performed to verify different 

training and testing schemes' outcomes. While performing offline analysis, it was concluded that 

low classification errors were observed when training and testing of classifier was done in same 

position. However, the classification errors increased when training and testing of classifier was 

done in different positions. The classification errors for training and testing in the same position 

were lower than their corresponding completion rates error. But the classification errors for 

training and testing in different positions were higher as compared to the corresponding 

completion rates error. Similarly for amputees, the offline analysis were conducted as well. 

However, classification errors for amputees were higher in the same position and different 

positions scenarios than healthy subjects. 

The outcomes of real-time test and offline tests were compared and it was concluded that the 

results differ in both cases which further satisfies the previous research studies where it was 

mentioned that we cannot rely solely on offline analysis. This study's significance is huge as it 

will bring a great impact on the currently available PR-based myoelectric prosthetic devices.  

The findings of this study are an important breakthrough in the field of prostheses. As mentioned 

earlier that manufacturing companies are making prostheses that are calibrated and set in a single 

position. This study has proven that calibrating a prosthetic device in a single posture is not 

enough. The prostheses should be calibrated in multiple postures. This will help the amputees 

perform motions and activities that require prosthetic movement in various angles. This research 



study can be further improved by increasing the number of recruits, increasing the number of 

motions performed, and increasing limb positions. These are some major points that can help 

develop an ideal prosthetic device that will be more close to a healthy human hand in terms of 

working and performance. As we know that the psychological impact of amputation on life is as 

severe as physical challenges. Body image, self-esteem and quality of life can be significantly 

reduced as a result of amputation. The increased use of better myoelectric prosthetic devices is 

associated with high levels of employment, increased quality of life, decrease in the phantom limb 

pain and general levels of psychiatric symptoms. 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

5 Conclusion 

This study aimed to implement Fits’ law to evaluate the variability of different training and 

testing schemes in the same position and different positions. The findings of this study showed 

that completion rates and classification accuracies of five motions are affected by arm positions. 

This means that the prosthetic limb should not be calibrated in a specific position. Calibrating the 

prosthetic in a specific position will result in bad performance in other positions. Therefore, to 

overcome this hurdle, it is highly recommended to calibrate the prosthetics in different positions. 

Calibrating the prosthetic devices in different positions will significantly increase performance at 

all positions, thus overcoming the limb position effect more efficiently. 

5.1 Future Recommendations 

This study has highlited some of the important issues that are being faced in PR based 

myoelectric prostheses. This study has further proven some of the previous research studies which 

clearly indicates that real-time tests are necessary along with offline testing. Also, we cannot rely 

on the outcomes of healthy subjects only. Amputees are necessary in every study as their results 

are greatly different from healthy subjects. Any prosthetic device whether its for transradial, 

transhumeral, tranfemoral or transtibial, we had to include amputees along with healthy subjects. 

All the studies that have been performed only on pre-recorded data must be performed in real-

time as well. This is because the offline analysis hasn’t corresponded to real-time analysis. In 

future, other problems associated with PR based myoelectric controls must be addressed in real-

time as well. 
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