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Abstract 

In the present era, human-machine collaboration is increasing each day with more 

applications of ergonomics and human factors in industrial and socio-technical environments. 

This has amplified the need for human factors while designing collaborative applications. 

Among these macro-human factors; human's mental workload (MWL), stress level, and mental 

cognitive states are vital to consider while planning system safety and risk assessment. Similarly, 

Brain-Computer Interface (BCI) provides a means of contact between the human brain and 

external devices by recognizing the person‘s intent using brain generated signals and translating 

them into external commands and is critical for patients suffering from severe motor disabilities. 

Cognitive brain signals acquired with functional near-infrared spectroscopy (fNIRS) has come 

out to be a potential non-invasive neuroimaging solution to monitor brain states for said 

purposes. Conventionally, the Machine Learning (ML) algorithms are used for the classification 

of brain states from acquired neuroimaging signals. The difficult part in the conventional ML 

classification algorithms is feature extraction, feature selection, and dimensionality reduction the 

neuroimaging data. A novel deep learning (DL) framework is proposed, which utilizes a 

convolutional neural network (CNN) and recurrent neural network (RNN) variant namely Long 

Short-Term Memory (LSTM) that solved the feature engineering challenges. However, 

bypassing the challenges of feature engineering through DL techniques comes at the cost of long 

training time, the computational complexity of the system, and the requirement for an enormous 

amount of data for training. The computational complexity of ML and DL algorithms is 

measured and the appropriate algorithms are suggested in different use cases. The symmetric 

homogenous instance-based transfer learning method is applied to CNN to solve the complex 

training time, big data requirement, and calibration time of BCI systems. 

 

Key Words: BCI, fNIRS, ML, DL, Long Short Term Memory (LSTM), Transfer Learning
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CHAPTER 1: INTRODUCTION 

The research work in this dissertation has been presented in multiple parts. The first part 

is related to the detailed analysis of Human behavior and memory activities in the brain using 

different machine learning (ML) and deep learning (DL) classification algorithms. The next part 

includes the comparison between the computational requirement of different ML and DL 

algorithms for analyzing human behavior and memory activities in the brain for a brain-machine 

interface. Further in the line, the fast and efficient heartbeat classification algorithm is presented, 

and then the novel application of mental workload in soft exoskeleton (servo motor driven) 

fNIRS-based brain-computer interface (BCI) system is discussed. Lastly, the novel symmetric 

based homogenous transfer learning is applied on fNIRS data to reduce calibration and training 

time. 

1.1  Literature Review 

Neuroergonomics is a relatively new field that focuses on the evaluation of the brain 

responses generated as a result of uncontrolled human behaviors such as physiology, feelings, 

intellect, decisions, and perceptions [1]–[4]. Passive BCI is among one of the important sub 

research topics of neuroergonomics. A passive BCI is usually designed using uncontrolled and 

subjective brain signals to translate uncontrolled user intentions into external commmads [2]. 

Among all these passive brain activities the one activity that stands out is mental-workload 

(MWL). Mental workload (MWL) is a most complex and intricate that consists of perception, 

neurophysiologic processes, (STM & LTM), and cognitive functions, neurophysiologic 

processes [5]. The reason behind irrational decision-making is MWL that further leads to safety 

hazards [6]. For instant 3.9% and 33% of the cause of traffic accidents in the United States and 

New Zealand is drowsiness that is one of the passive brain activities [7].  In the current empire of 

human-machine interaction, contemporary and innovative technology need yet more mental 

requirements for consumers and workers in order to ensure safety, protection, and profit 

maximization [8]. There are several approaches for MWL estimation; the most common or 

popular techniques are performance, subjective rating, and physiological measures. Two metrics 

that are used to track the record of a person‘s progress are 1) accuracy and, 2) reaction time is 

used by the performance rating method. On the other hand, questioners are being devised by 



3 
 

surveyors to evaluate the emotional and mental conditions of the substance used by subjective 

rating methods. To measure the MWL during the experimentation, self-reporting and thoughts of 

the subject matter are judged. Numerous kinds of research utilize tests such as the National 

Aeronautics and Space Administration's Task Load Index (NASA-TLX) in order to calculate or 

measure the cognitive load [9]. Another example of such a test is the SWAT. The subjective 

technique is the self-reporting procedure that is dependent on the judgment of the respondent, 

that again may be influenced by unfairness, low enthusiasm, lapses in understanding natural 

environment changes, and uncertainty; that is a major limitation of this method [10]. Other 

reasons include these aforementioned methods may not be able to consider the different types of 

physical efforts related to activities involving the movement of arms, feet, and other periphery 

muscles or the entire physique of a person [11]. While the physiological procedures provide a 

real-time evaluation and need a tinier sample size and higher viability to approximate stable 

cognitive mental workload states [12]. The different physiological sensors, such as fMRI, EEG, 

eye response measurement, HRV, and fNIRS are most widely used for the examination of the 

mental workload. Based on portability, low cost, and non-invasiveness, electroencephalography 

(EEG) and fNIRS are the two for the most part widely used modalities for the rehabilitation of a 

patient [13], [14]. In comparison to EEG, fNIRS has better spatial resolution while EEG has 

better temporal resolution [15]–[17]. BCI based applications are now getting popular and 

become more useful and powerful. A BCI system mainly consists of four essential components 

namely signal processing, feature extraction, classification, and command generation. Among 

these parts, Signal processing and feature extraction are the most important ones. Over the years, 

EEG was used as a default device for BCI purposes. Recently, the use of fNIRS is becoming 

popular to utilize the cognitive states of a person for BCI applications. 

The BCI provides a method of communication between the human brain and the external 

devices through signals generated from the brain without the involvement of the peripheral 

nervous system [18]. BCI is among such neurofeedback methods that can enhance the condition 

of life of patients suffering from serious motor debilities due to tetraplegia, stroke, ad other 

spinal cord injuries [19]. BCI has also applications in neuro-rehabilitation, communication and 

control, motor therapy and recovery, brain monitoring, and neuro-ergonomics [4][20][21]. The 

major non-invasive BCI modalities include fMRI, EEG, MEG, and fNIRS. Among these non-

invasive BCI modalities, EEG, and fNIRS are the foremost modalities in terms of price and 
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manageability [17][22]. EEG measures brain activity by calculating the voltage fluctuations from 

neurons' action potentials while fNIRS detects the brain activity concerning the changes in 

hemodynamic response [23][24]. 

To use BCI out of the laboratory on daily basis, BCI needs to address several challenges 

such as robust signal acquisition, extracting valuable knowledge from the acquired raw brain 

signals (either electrical or hemodynamic) for control-command generation, etc [25][26]. 

Another main problem is the requirement of recalibrating the BCI system. The recalibration 

requirement is required for every new session and subject. Usually, the calibration time for 

electroencephalography (EEG) and functional Near-Infrared spectroscopy (fNIRS) based BCI 

systems may take up to 20 minutes to 30 minutes, depending upon the situations, for each new 

session [27][28]. This is a strenuous and exhausting total of time that the subjects and patient 

have to undertake before the BCI system is completely practical again. Also, another reason for 

having a such lengthy calibration time for neuroimaging-based BCI is due to the high 

dimensionality of EEG and fNIRS signals that have a very low signal-to-noise ratio (SNR) [29]. 

To successfully classify the correct brain states, ―obtained neuroimaging signals are usually 

handled in the four stages namely: preprocessing, feature extraction, classification, and command 

generation‖ [30][31]. The extracted features from brain signals are used to train the classifier. 

The collection of neuroimaging data is very complicated and also expensive both in terms of 

time and cost that makes it very hard to develop a substantial-scale, high-quality marked dataset 

for the training of deep learning models. That results in limited trials available for training. From 

low SNR signals, it is extremely difficult to approximate probability distributions of the features, 

usually in the case of machine learning algorithms. Another important factor is the non-

stationary nature of fNIRS and EEG signals. The exact brain state depends on different reasons 

such as the mental and psychological states, concentration level, drowsiness and fatigue, 

anatomical differences between subjects, and statistical variations in the data [32][33]. The 

instrumental noise and experimental error such as changes in the impedance of the electrodes due 

to sweating may also temper the acquired brain signals [34]. All these facts combine results in 

the trained classifier performing poorly on new session data. The different studies tried to 

address these challenges by exploiting different methods and algorithms while trying to keep the 

models' accuracy in an acceptable range [28][35][36][37]. Transfer learning might be an 

encouraging method to deal with the above problem. 
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1.2  Motivation 

Mental workload (MWL) is one of the key scopes of Neuroergonomics necessary to 

consider while planning for industrial processes and systems [6]. MWL is itself a complex 

function involving multiple intra-cognitive processes at a time including the perception of the 

environment, neurophysiology of the brain, short term memory, long term memory, and different 

cognition functions happening at the time of activity. ―MWL is a key focus with the 

advancement in the field of Human-Machine Interaction (HMI) as all levels of organization from 

operators up to the top management demand greater cognition from their workers‖ [8]. Different 

researches have been carried on MWL measurement and analysis using different methods mainly 

including physiological or performance measures, and subjective rating. Subjective Workload 

Analysis (SWAT) and NASA‘s Task Load Index (TLX) used subjective rating methods to 

measure MWL involving self-reporting mechanisms and questioners from subjects. While 

performance measures include methods like the accuracy of a response and reaction time metrics 

to measure the MWL of subjects. Feelings and motivation of respondents involved at the time of 

the experiment produce biased results making these methods less reliable and more prone to 

errors and mistakes [38]. Secondly, another major drawback of these methods is they do not 

involve any physical work while assessment of MWL which is an essential requirement for 

accurate measurement [11]. 

Over the years, the most commonly followed paradigm is to detect the imagined body 

kinematics using neuro-imaging modalities and decode them using the regression model, and 

then mapped them on a social robot. Abiri et. al. [39] presented a work in which the scalp EEG 

was recorded in which the user was imagining different body kinematics while [40] has 

presented different communication types available in BCI. Ortiz et al. and Volosyak et al. [41], 

[42] have presented a review of non-invasive EEG signal processing techniques for SSVEP 

based applications, and [43] has presented a comprehensive study of different useful features in 

fNIRS-EEG based activities. Similarly, [17], [29] discussed different machine learning and deep 

learning techniques formally used in fNIRS and hybrid applications. Erkan et al. [44], has 

reported that minimum energy combination (MEC) and canonical correlation analysis (CCA) can 

be used in the detection of SSVEP signals in EEG recording but MEC is recommended for 

synchronous SSVEP stimulus. Gao. et al. [45] showed the feasibility of the SSVEP using an 

electric apparatus. The patient is introduced to different flickering lights (boxes) which flashes at 
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different rates and represents different actions against each (chosen from a menu). It is not 

necessary that the environment, where the SSVEP signals are being taken, is fully calm or it 

might possible that the person, using SSVEP, is not fully calm. Chaudhary et al. [40] have 

studied the effect of deliberately introduced perturbations while using SSVEP. Introduced 

perturbations were speaking, listening, and thinking while EEG is being recorded. Results 

showed that speaking and thinking affect the classification accuracy while listening does not 

affect much. In [46]–[48] authors recorded fNIRS recordings for measurement of emotions and 

cognitive processing from the prefrontal cortex (PFC) region. Different studies have used fNIRS 

to detect motor imagery and mental arithmetic tasks [17], [49]. Multiple types of noise are 

present in fNIRS and EEG including different artifacts as well. Xie. et al. [50] has studied the 

effect of spatiotemporal visual noise on the compensation of mental load and fatigue and [51] 

has given the inclusion of fuzzy control in this field. 

Cardiovascular disease (CD) describes the class of illnesses that include the heart 

problems such as narrowed and/or completely blocked human blood vessels [52]. Cardiovascular 

disease is frequently used interchangeably with the terms such as heart diseases or heart 

illnesses. According to the US DHHS (Department of Health and Human Services), 

cardiovascular diseases are the foremost cause of death for both men and women [53]. The 

important notes and facts released by the WHO (World Health Organization) in the year 2017 

state that an estimated 17.9 million died from cardiovascular diseases in 2016. This alone counts 

as the highest cause of death worldwide. The various obsessive symptoms of cardiovascular 

systems can be examined by heart-related signals such as heart electrical signals and heart sound 

signals. The electronic activity of the heart is measured by electrocardiographs (ECG) and sound 

signals are measured by phonocardiograms (PCG) [54]. Nevertheless, the actual and accurate 

manual assessment of ECG signals auscultation alters the skills and different personal skills of 

the physicians which are obtained from a long medical experience [55]. Traditional ML 

classification algorithms such as SVM, LDA, and k-NN rely deeply on the effectiveness and 

classifiable information of mined features also known as manual feature engineering. Although 

extracted features, representing statistical summarization of raw ECG signal, provide us with the 

satisfactory and acceptable representation of the heart electrical signal, the very recent deep 

learning-based automated feature extraction such as convolutional neural networks, etc, and 
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representation methods have end-to-end learning competence and are proficient of forecasting 

with reasonably high accuracy [54][56]. 

Transfer learning is a method that is used to enhance the accuracy of a classification 

algorithm trained from the target domain and transferring common information to the target 

domain [57]. Transfer learning is mostly used in situations when there might be a limited amount 

of training annotated data with supervised samples from the original or target domain. Transfer 

learning successfully experiments in different machine learning and deep learning applications 

such as natural language processing, image recognition, image segmentation, pose estimation, 

and video captioning. Transfer learning all in all is quite a new field for BCI and it is slowly 

gaining researchers' interest all over the globe. Transfer learning describes: ―the procedure of 

using data recorded in one task to boost performance in another, related task (for a more 

exhaustive review of the machine learning literature, see [58]), as such, long sessions of BCI 

usage present unique problems in terms of consistent classification‖ [59][18]. 

1.3  Novelty 

 I presented an extreme learning machine (ELM) based ECG classification algorithm. The 

strength of this newly proposed classifier remains in its intrinsic fast and inexpensive algorithm 

that does not require backpropagation for the training. In the next study, I applied a fairly new 

class of deep learning algorithms i.e. CNN on hemodynamic concentration changes brain signals 

acquired through the fNIRS device. The results of a convolutional neural network are compared 

with that of a machine learning algorithm (SVM). The findings suggest that the convolutional 

neural network outperformed the support vector machine with a huge margin. The four-phase 

Mental Workload (MWL) was evaluated and classified using machine learning (SVM, k-NN, 

ANN) and deep learning (CNN and LSTM) algorithms using the fNIRS dataset. Targeting the 

most affected patients of stroke, I devised two commands fNIRS based servo tendon driven 

exoskeleton hand for grasping task. The two-level of the mental workload are recorded with the 

fNIRS device at 8 Hz sampling frequency. The maximum accuracy attained is 91.31% while the 

minimum averaged accuracy is 80.15%. Targeted channels are PF1, PF2, and PFz. After 

normalizing channel readings, we used the 4
th

 order low-passed Butterworth bandpass to remove 

high-frequency artifacts due to breathing, blood pressure, and heartbeat. Then we used SVM to 

generate a command (either open or close) for a prosthetic hand. Results showed the 
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effectiveness of the used technique for those suffering from a severe level of strokes. I explored 

the feature-based transfer learning approach for the classification domain to reduce the training 

time and calibration time for the fNIRS-based BCI systems. In the first approach, we used 16 

subjects to train the CNN network, namely learned CNN network, and learn the source domain 

knowledge of the n-back dataset. Further, we split the remaining 10 subjects into two groups i.e 

control and baseline. We then train the control group with the learned CNN network and baseline 

with randomly initialized CNN network and compared their accuracies using statistical analysis. 

The results suggested that applying the proposed feature-based transfer learning algorithms could 

lead to achieving the maximum saturated accuracy 20 epochs sooner than the baseline group 

which in turn reduces the training time. The proposed transfer learning method also 

outperformed the averaged accuracy achieved using the learned CNN model over the traditional 

CNN model by 12%. In the second experiment, we proved that instance-based transfer learning 

can significantly reduce the calibration time with reasonable accuracy on the 10:90 train-test 

ratio and become saturate on the 30:70 train-test split ratio of the dataset. In the next study, 

resource and classification capabilities of machine learning (LDA, k-NN, and SVM) and deep 

learning (ANN, CNN, and LSTM) algorithms are computed on fNIRS data acquired from 26 

subjects performing mental workload activities. The theoretical computation complexities of ML 

and DL algorithms are computed and compared the practical processing time, train - test time 

complexity, and resource requirements. The finding suggests that in terms of time requirements, 

the machine learning algorithms are the fastest. Within machine learning algorithms, LDA is the 

least compute-intensive algorithm while SVM and k-NN depend on the applied kernel and 

numbers of training samples, respectively. However, the downside of machine learning 

algorithms is their accuracy and generalizability decrease with an increase in classification 

commands, in addition to the fact that they mostly rely on handcrafted feature extraction and 

require domain knowledge. Among deep learning algorithms, the time complexity of ANN and 

CNN is comparable but in terms of the accuracy alone, the ANN entirely depends upon the 

handcrafted features while CNN has impressive self-feature extraction. The recurrent neural 

network (RNN) has shown impressive accuracies as compared to the rest of the algorithms. On 

the other hand, RNNs are compute-intensive in terms of train-test time and not be feasible for 

real-time BCI applications. The RNN variant, LSTM is also analyzed in this study and concluded 

as a better choice for the offline brain signal analysis. Meanwhile, CNN offers an optimal 
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compromise between the accuracy and time requirement. Machine learning algorithms are still 

recommended for real-time applications primarily designed to work without any delay. 

1.4 Structure of Research 

The rest of the manuscript is devised as follows: Chapter 2 explains the existing theory 

and also appends the proposed theory, in Chapters 3 the viability of deep learning for BCI is 

proved as a concept and then different advanced deep learning algorithms are applied on the 

fNIRS data. Chapter 4 compares the machine learning vis-à-vis deep learning in terms of 

computation complexity for pre-processing time, training time, and test time. In chapter 5 the 

downsides of deep learning algorithms for BCI are discussed and a novel symmetric 

homogenous transfer learning framework is proposed to combat those downsides. In chapter 6 a 

soft-exoskeleton mental workload based fNIRS solution is presented for patients suffering from 

motor disabilities. In chapter 7 conclusion is drawn and different pathways for future research 

are suggested. In the end, references are given. 
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CHAPTER 2: THEORY OF RESEARCH 

 

2.1 Existing Theory 

The use of direct communication between the brain and computer machines is becoming 

popular in the realm of neuroscience. Such techniques are becoming indispensable element for 

individuals who are unable to generate mechanical control commands due to neuromuscular 

disorder, the consequence of stroke, Locked-in syndrome (LIS), spinal injuries, or Amyotrophic 

lateral sclerosis (ALS) [60][61]. Aside from the medical application, the use of brain activities as 

a means of communication spans on brain-computer interface (BCI), neurofeedback, neuro-

ergonomics, human-human, and human-machine interaction, and ultimately brain to brain 

interface fields [62][63]. The best available approach to record brain activities without carrying 

risks associated with surgery and avoiding ethical issues is with non-invasive neuroimaging 

modalities [41][64]. Non-invasive neuroimaging modalities include electroencephalography 

(EEG), functional magnetic resonance imaging (fMRI), electrooculography (EOG), 

magnetoencephalography (MEG), and functional near-infrared spectroscopy (fNIRS) [29][43]. 

Each neuroimaging modality has its pros and cons. The main factors, however, deciding 

effective use of neuroimaging modality are usually cost of the equipment, portability, and 

required spatial and temporal resolution for the problem at hand. Neuroimaging modalities may 

use together in hybrid settings to enhance accuracy, increase control command or decrease 

detection time of brain signals [65][66][67]. Among hybrid neuroimaging modalities, EEG and 

fNIRS are low cost, portable, and can be applied in non-laboratory settings. EEG measures 

voltage fluctuations in the brain due to cortical postsynaptic current variations in neurons [68]. 

Several electrodes are placed on the scalp to measure EEG signals. It has a better temporal 

resolution (≈ 0.05 s). It can measure cortical activity in milliseconds by taking thousands of brain 

snapshots, but it struggles in spatial resolution (≈ 10 mm) [69]. While fNIRS measures blood 

oxygen level-dependent (BOLD) response using near-infrared (NIR) light to construct a 

functional brain neuroimage. fNIRS, like EEG, is portable, low cost, and easier to use. It is less 

prone to electrical noises and has a better spatial resolution than EEG that is affected up to a few 

centimeters [29]. Theoretically, EEG and fNIRS should coverup each-other weaknesses and 

endow better, information-rich, and in-depth neuroimaging details. EEG and fNIRS combination 
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in hybrid mode is thought to be a significant breakthrough [4]. However, in practice, fNIRS 

measurements suffer from the inherent delay due to the nature of the hemodynamic response, 

which conduces slow command generation [70]. Also, there is a vast difference in the sampling 

rate of both devices. Different workarounds are used to compensate for the delayed fNIRS 

response. The time lag can be significantly decreased for hybrid EEG-fNIRS modalities by 

detecting initial dip (i.e., the phenomenon that HBO drops and HbR increases with neural firing) 

instead of hemodynamics [71], [72]. Another technique is to reinforce EEG data generated 

commands with fNIRS data, e.g. remove false positive alarms using fNIRS data in the 

commands that are made through EEG data. The EEG data acquisition rate is 10-100 times more 

than that of fNIRS. In hybrid settings, the most common opted practice is to downsample EEG 

readings to make them compatible with fNIRS low sampling rate. A lot of valuable information 

is also lost with the discarded data [117]. Acquired fNIRS raw signals suffered from 

instrumental, experimental, and physiological noises. Instrument noises are due to hardware and 

surrounding environment and usually in the form of high frequencies and can be removed by a 

low-pass filter. Experimental errors may be caused due to different motion artifacts such as head 

movement slippage of optodes on hairs or due to sudden light intensity change. The motion 

artifacts are removed using Wiener filtering-based methods [25], Savitzky-Golay filter [73], 

Wavelet-analysis-based methods [74], etc. 

Similarly, physiological noises (caused due to heartbeat, respiration, Mayer waves, etc.) 

are removed using different techniques in the literature. The most common of them are bandpass 

filtering, principal component analysis, independent component analysis, adaptive filtering, 

statistical parametric mapping. Removing all these noises cut a reasonable chunk of raw data, 

and cleaned data is even smaller in size than the original. Now down sampling EEG signal to 

match fNIRS pre-processed data results in huge data loss and potentially result in loss of brain 

activity information. Conventionally, statistical, and machine learning algorithms were used to 

discriminate between brain signals that were not adequately capable of learning sophisticated 

features anyway and may tolerate that discarded data. With the recent advancement in artificial 

intelligence, the application of powerful, more intelligent, and data-hungry deep learning 

algorithms is increasing. The Convolutional Neural Network (CNN) is one of the deep learning 

algorithms that have achieved the state of the art results on vision and speech recognition and got 

considerable attention within the BCI field (3, 4 papers). The strength of CNN lies in the fact that 
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it does not require handcrafted features. The feature extraction and classification are unified and 

learned jointly.  

The BCI provides a method of communication between the human brain and the external 

devices through signals generated from the brain without the involvement of the peripheral 

nervous system [18]. BCI is among such neurofeedback methods that can improve the quality of 

life of patients suffering from severe motor disabilities due to tetraplegia, stroke, ad other spinal 

cord injuries [19]. BCI has also applications in neuro-rehabilitation, communication and control, 

motor therapy and recovery, brain monitoring, and neuro-ergonomics [4][20][21]. The major 

non-invasive BCI modalities include fMRI, EEG, MEG, and fNIRS. Among these non-invasive 

BCI modalities, EEG, and fNIRS are the foremost modalities in terms of price and manageability 

[17][22]. EEG measures brain activity by calculating the voltage fluctuations from neurons' 

action potentials while fNIRS detects the brain activity concerning the changes in hemodynamic 

response [23][24]. fNIRS headset P-fNIRSSyst is used, which the patient uses on the PFC scalp, 

for the data acquisition. The P-fNIRSSyst is a continuous wave fNIRS system that consists of 12 

channels arranged in arrays like structure, integrated with 3 near-infrared sources (NIR) having a 

dual-wavelength of 760 nm and 850 nm and 8 photodetectors. The sampling rate of P-fNIRSSyst 

is 8 Hz. The fNIRS system estimates the neuronal activity of the brain by measuring 

hemodynamic concentration changes in the PFC in the form of oxygenated (HbO) and 

deoxygenated hemoglobin (HbR). The acquired brain hemodynamic concentration changes 

(ΔHbO and HbR) are then used to generate commands for BCI systems. The complete 

architecture and system structural design are shown in Figure 8. The subject with the robotic 

hand wears the fNIRS device on the scalp which is continuously measuring hemodynamic 

concentration changes in the prefrontal cortex as shown in Figure. 

Over the years, the most commonly followed paradigm is to detect the imagined body 

kinematics using neuro-imaging modalities and decode them using the regression model, and 

then mapped them on a social robot. Abiri et. al. [39] presented a work in which the scalp EEG 

was recorded in which the user was imagining different body kinematics while [40] has 

presented different communication types available in BCI. Ortiz et al. and Volosyak et al. [41], 

[42] have presented a review of non-invasive EEG signal processing techniques for SSVEP 

based applications, and [43] has presented a comprehensive study of different useful features in 

fNIRS-EEG based activities. Similarly, [17], [29] discussed different machine learning and deep 
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learning techniques formally used in fNIRS and hybrid applications. Erkan et al. [44], has 

reported that minimum energy combination (MEC) and canonical correlation analysis (CCA) can 

be used in the detection of SSVEP signals in EEG recording but MEC is recommended for 

synchronous SSVEP stimulus. Gao. et al. [45] showed the feasibility of the SSVEP using an 

electric apparatus. The patient is introduced to different flickering lights (boxes) which flashes at 

different rates and represents different actions against each (chosen from a menu). It is not 

necessary that the environment, where the SSVEP signals are being taken, is fully calm or it 

might possible that the person, using SSVEP, is not fully calm. Chaudhary et al. [40] have 

studied the effect of deliberately introduced perturbations while using SSVEP. Introduced 

perturbations were speaking, listening, and thinking while EEG is being recorded. Results 

showed that speaking and thinking affect the classification accuracy while listening does not 

affect much. In [46]–[48] authors recorded fNIRS recordings for measurement of emotions and 

cognitive processing from the prefrontal cortex (PFC) region. Different studies have used fNIRS 

to detect motor imagery and mental arithmetic tasks [17], [49]. Multiple types of noise are 

present in fNIRS and EEG including different artifacts as well. Xie. et al. [50] has studied the 

effect of spatiotemporal visual noise on the compensation of mental load and fatigue and [51] 

has given the inclusion of fuzzy control in this field. 

The results suggested that applying the proposed feature-based transfer learning algorithms 

could lead to achieving the maximum saturated accuracy 20 epochs sooner than the baseline 

group which in turn reduces the training time. The proposed transfer learning method also 

outperformed the averaged accuracy achieved using the learned CNN model over the traditional 

CNN model by 12%. In the second experiment, we proved that instance-based transfer learning 

can significantly reduce the calibration time with reasonable accuracy on the 10:90 train-test 

ratio and become saturate on the 30:70 train-test split ratio of the dataset. In the next study, 

resource and classification capabilities of machine learning (LDA, k-NN, and SVM) and deep 

learning (ANN, CNN, and LSTM) algorithms are computed on fNIRS data acquired from 26 

subjects performing mental workload activities. The theoretical computation complexities of ML 

and DL algorithms are computed and compared the practical processing time, train - test time 

complexity, and resource requirements. The finding suggests that in terms of time requirements, 

the machine learning algorithms are the fastest. Within machine learning algorithms, LDA is the 

least compute-intensive algorithm while SVM and k-NN depend on the applied kernel and 
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numbers of training samples, respectively. However, the downside of machine learning 

algorithms is their accuracy and generalizability decrease with an increase in classification 

commands, in addition to the fact that they mostly rely on handcrafted feature extraction and 

require domain knowledge. Among deep learning algorithms, the time complexity of ANN and 

CNN is comparable but in terms of the accuracy alone, the ANN entirely depends upon the 

handcrafted features while CNN has impressive self-feature extraction. The recurrent neural 

network (RNN) has shown impressive accuracies as compared to the rest of the algorithms. On 

the other hand, RNNs are compute-intensive in terms of train-test time and not be feasible for 

real-time BCI applications. The RNN variant, LSTM is also analyzed in this study and concluded 

as a better choice for the offline brain signal analysis. Meanwhile, CNN offers an optimal 

compromise between the accuracy and time requirement. Machine learning algorithms are still 

recommended for real-time applications primarily designed to work without any delay. 

2.2 Proposed Theory 

Over the years, the most commonly followed paradigm is to detect the imagined body 

kinematics using neuro-imaging modalities and decode them using the regression model, and 

then mapped them on a social robot. Abiri et. al. [39] presented a work in which the scalp EEG 

was recorded in which the user was imagining different body kinematics while [40] has 

presented different communication types available in BCI. Ortiz et al. and Volosyak et al. [41], 

[42] have presented a review of non-invasive EEG signal processing techniques for SSVEP 

based applications, and [43] has presented a comprehensive study of different useful features in 

fNIRS-EEG based activities. Similarly, [17], [29] discussed different machine learning and deep 

learning techniques formally used in fNIRS and hybrid applications. Erkan et al. [44], has 

reported that minimum energy combination (MEC) and canonical correlation analysis (CCA) can 

be used in the detection of SSVEP signals in EEG recording but MEC is recommended for 

synchronous SSVEP stimulus. Gao. et al. [45] showed the feasibility of the SSVEP using an 

electric apparatus. The patient is introduced to different flickering lights (boxes) which flashes at 

different rates and represents different actions against each (chosen from a menu). It is not 

necessary that the environment, where the SSVEP signals are being taken, is fully calm or it 

might possible that the person, using SSVEP, is not fully calm. Chaudhary et al. [40] have 

studied the effect of deliberately introduced perturbations while using SSVEP. Introduced 
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perturbations were speaking, listening, and thinking while EEG is being recorded. Results 

showed that speaking and thinking affect the classification accuracy while listening does not 

affect much. In [46]–[48] authors recorded fNIRS recordings for measurement of emotions and 

cognitive processing from the prefrontal cortex (PFC) region. Different studies have used fNIRS 

to detect motor imagery and mental arithmetic tasks [17], [49]. Multiple types of noise are 

present in fNIRS and EEG including different artifacts as well. Xie. et al. [50] has studied the 

effect of spatiotemporal visual noise on the compensation of mental load and fatigue and [51] 

has given the inclusion of fuzzy control in this field. I presented an extreme learning machine 

(ELM) based ECG classification algorithm. The strength of this newly proposed classifier 

remains in its intrinsic fast and inexpensive algorithm that does not require backpropagation for 

the training. In the next study, I applied a fairly new class of deep learning algorithms i.e. CNN 

on hemodynamic concentration changes brain signals acquired through the fNIRS device. The 

results of a convolutional neural network are compared with that of a machine learning algorithm 

(SVM). The findings suggest that the convolutional neural network outperformed the support 

vector machine with a huge margin. The four-phase Mental Workload (MWL) was evaluated and 

classified using machine learning (SVM, k-NN, ANN) and deep learning (CNN and LSTM) 

algorithms using the fNIRS dataset. Targeting the most affected patients of stroke, I devised two 

commands fNIRS based servo tendon driven exoskeleton hand for grasping task. The two-level 

of the mental workload are recorded with the fNIRS device at 8 Hz sampling frequency. The 

maximum accuracy attained is 91.31% while the minimum averaged accuracy is 80.15%. 

Targeted channels are PF1, PF2, and PFz. After normalizing channel readings, we used the 4
th

 

order low-passed Butterworth bandpass to remove high-frequency artifacts due to breathing, 

blood pressure, and heartbeat. Then we used SVM to generate a command (either open or close) 

for a prosthetic hand. Results showed the effectiveness of the used technique for those suffering 

from a severe level of strokes. I explored the feature-based transfer learning approach for the 

classification domain to reduce the training time and calibration time for the fNIRS-based BCI 

systems. In the first approach, we used 16 subjects to train the CNN network, namely learned 

CNN network, and learn the source domain knowledge of the n-back dataset. Further, we split 

the remaining 10 subjects into two groups i.e control and baseline. We then train the control 

group with the learned CNN network and baseline with randomly initialized CNN network and 

compared their accuracies using statistical analysis. The results suggested that applying the 
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proposed feature-based transfer learning algorithms could lead to achieving the maximum 

saturated accuracy 20 epochs sooner than the baseline group which in turn reduces the training 

time. The proposed transfer learning method also outperformed the averaged accuracy achieved 

using the learned CNN model over the traditional CNN model by 12%. In the second 

experiment, we proved that instance-based transfer learning can significantly reduce the 

calibration time with reasonable accuracy on the 10:90 train-test ratio and become saturate on the 

30:70 train-test split ratio of the dataset. In the next study, resource and classification capabilities 

of machine learning (LDA, k-NN, and SVM) and deep learning (ANN, CNN, and LSTM) 

algorithms are computed on fNIRS data acquired from 26 subjects performing mental workload 

activities. The theoretical computation complexities of ML and DL algorithms are computed and 

compared the practical processing time, train - test time complexity, and resource requirements. 

The finding suggests that in terms of time requirements, the machine learning algorithms are the 

fastest. Within machine learning algorithms, LDA is the least compute-intensive algorithm while 

SVM and k-NN depend on the applied kernel and numbers of training samples, respectively. 

However, the downside of machine learning algorithms is their accuracy and generalizability 

decrease with an increase in classification commands, in addition to the fact that they mostly rely 

on handcrafted feature extraction and require domain knowledge. Among deep learning 

algorithms, the time complexity of ANN and CNN is comparable but in terms of the accuracy 

alone, the ANN entirely depends upon the handcrafted features while CNN has impressive self-

feature extraction. The recurrent neural network (RNN) has shown impressive accuracies as 

compared to the rest of the algorithms. On the other hand, RNNs are compute-intensive in terms 

of train-test time and not be feasible for real-time BCI applications. The RNN variant, LSTM is 

also analyzed in this study and concluded as a better choice for the offline brain signal analysis. 

Meanwhile, CNN offers an optimal compromise between the accuracy and time requirement. 

Machine learning algorithms are still recommended for real-time applications primarily designed 

to work without any delay. 
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CHAPTER 3: ANALYSIS OF DIFFERENT BRAIN ACTIVITIES 

USING MACHINE LEARNING AND DEEP LEARNING 

The four-level MWL with varying difficulty level data is acquired using fNIRS from 

fifteen healthy subjects. The high-frequency artifacts and other physiological noises are 

eliminated using a 4th-order Butterworth low-frequency bandpass filter. The statistical 

significance of the acquired fNIRS data is verified using student p and t-test. The three 

conventional machine learning classifiers namely Support Vector Machine, k-NN, and Artificial 

Neural Networks alongside two deep learning algorithms namely Convolutional Neural Network 

and LSTM are used for four-level MWL discrimination and classification. However, the main 

contribution of this research is as follows: (1) To the best of the authors‘ knowledge, for the first 

time this study has applied LSTM on fNIRS time series data for four class MWL segregation and 

its comparison with Convolutional Neural Network. (2) Machine Learning classifiers 

outperformed by a heavy margin as compared with the DL classifiers and within the deep 

learning algorithms, the LSTM presents considerably improved classification accuracy as 

compared to Convolutional Neural Network. The used fNIRS device has 12 channels operating 

on two wavelengths of 760 nm and 850 nm with a continuous-wave (CW) system namely ―P-

fNIRSSyst‖ [117]. This device is used to measure hemodynamic concentration changes from the 

prefrontal cortex area of the brain [75]. The data acquisition rate is set to the 8 Hz (each channel 

per second), which essentially converts into 192 samples per channel. The fNIRS channel 

configuration is according to Fig. 2. The most common features that can be used for machine 

learning classifiers are explained below: 

Feature eNGINEERING 

Mean: In statistics, arithmetic mean is a single value referring to the central tendency of given 

data. It is determined by the sum of all the data points of a data over the total number of data 

points. Mathematically it is expressed as: 

   
 

 
 ∑  

 

   

 

Where x refers to the data points of a given data set from 1 to n.  
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Median: Median is another statistical number to refer to the central tendency of the data. It is 

determined by arranging the data in ascending or descending order and then finding the central 

data point. Mathematically it is expressed as: 

        
   

 
                

When the number of data points is odd. Where n refers to the number of data points. While, in 

the case when the number of data points is even, the median is: 

       
 

 
   
 

 
  

 

 
                     

Mode: In statistics, the mode of a data set is the value repeated most often.  

 

Standard deviation: Standard deviation, in statistics, is used to quantify the dispersion of data 

points within a distribution from a mean value. Mathematically it is expressed as: 

   √
 

   
 ∑          

     

Where x refers to the data points from 1 to n, n refers to the total number of data points and µ is 

the arithmetic mean of the data set. 

Variance: Variance is defined as the squared standard deviation and used to quantify the 

deviation of data points of a distribution from the mean value. Mathematically variance is 

expressed as: 

 

    
 

   
 ∑          

     

Minima: In mathematical analysis, minima refer to the smallest value of a function or 

distribution. Symbolically it is written as: 

                              

Where f: X   R if (Ɐx   X) f (  )   f (x) 

Maxima: Maxima, in mathematical analysis, is referred to as the largest value of a data point 

within a given range or distribution. Symbolically it is written as: 

                                  

Where f: X   R if (Ɐx   X) f (  )   f (x) 
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Slope: In mathematics, the slope or gradient of a line is a value referring to both the steepness 

and the direction of the line. It is the ratio of the vertical difference to the horizontal difference 

between two distinct points on a line and thus mathematically expressed as: 

   
  

  
 

Where,    and   , are the vertical difference and horizontal difference between two points on a 

line respectively. 

 

Kurtosis: In statistical analysis, kurtosis is the measure of a peak around the mean distribution. 

Mathematically it is expressed as: 

         
∑

       
 

 

 
   

  
 

Where,    are the data points of the distribution,   is the mean,   is the standard deviation of the 

distribution. While n is the sample size. 

Skewness: In statistics, skewness is the measure of the asymmetry of a distribution about its 

mean. It can be positive, negative, or undefined. Mathematically it is defined as: 

         
∑

       
 

 

 
   

  
 

 

Where,    are the data points of the distribution,   is the mean,   is the standard deviation of the 

distribution. While n is the sample size. 

 

3.1 Classification using ML algorithms 

3.1.1 Linear Discriminant Analysis 

Linear discriminant analysis (LDA), is a generalization of Fisher's linear discriminant, it is a 

method used in statistics, which finds a linear combination of those features which separates two 

or more classes of objects. It is a special case of QDA in which the Gaussians for each class are 

assumed to have the same covariance matrix, also it assumes a normal distribution of data.  ―The 

main goal of LDA is to look for a vector (V) in feature space in such a way that the two 

projected clusters of decision-Yes(Y) and decision-No (N) on V-direction can be well separated 

from one another, while small variance for both clusters is maintained. Dimensionality reduction 
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using LDA is achieved by three steps, First step includes the calculation of Between-class 

variance. The second step calculates with-class variance‖. The third step is the construction of a 

lower-dimensional space and is given as:  

 
 

3.1.2 k-nearest neighbor (k-NN) 

KNN is a non-parametric technique proposed by Thomas cover. It is widely used for 

different classification, matching, recognition and regression tasks. In classification case, a class 

label is an expected output, that label is assigned to the object depending on which is the most 

common class in its K-nearest neighbors. It has certain advantages of being simple, easily 

implementable, and robust to noisy training data, also as it is a non-parametric method so there is 

no need to build a model, make any assumptions or tune any parameters. Major disadvantages of 

using KNN classifier include its high computational cost, determination of K value, and 

slowness of Algorithm if it is subjected to a large number of examples.  

 

 

𝐷( ,  ) =  
 (   )2    Euclidean

(   )2    Euclidean Squared
(   )    Manhattan

  1 
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Figure 3-1: k-NN Classifier 

3.1.3 Support vector machines (SVM)  

 SVM is also one of the supervised machine learning algorithms that are widely used for 

classification problems as well as for regression problems and pattern recognition tasks. With a 

labeled training dataset given. ―The main goal of SVM is to find a hyperplane in an N-

dimensional space, (where N is the no. of features) that decidedly classifies data points, many 

hyperplanes can be chosen to separate the two classes of data points‖ [89]. Thus, the main 

objective of SVM is to find a plane out of all possible hyperplanes that have the maximum 

distance with the data points from both classes.  SVM works efficiently for higher-dimensional 

space problems and is also memory efficient. For a two-dimensional feature space, hyperplane is 

given by: 

           

 Where b is a scaling while the cost function is given by: 

     ∑         
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Figure 3-2: Hyperplane in 2-dimensional feature space in Support Vector Machine 

3.2 Classification using DL algorithms 

3.2.1 Artificial neural networks (ANN) 

ANNs are artificial computing systems, commonly used in machine learning and data 

mining that are inspired by biological neural networks. ANNs learn to perform a specific task 

without being programmed with specific task rules through provided training data. Training data 

is like examples of the given task needed to be performed by the ANNs. Most commonly ANNs 

are used in image recognition, where the designed network learns to differentiate between 

different images of specified classes. Training data set in this case have two to three classes with 

hundreds of images of a specified class along with the class label. Designed ANN learns the 

features from the training dataset without any prior knowledge of objects of a specific class. 

These trained networks are then used for image recognition when provided with an unknown 

dataset of objects of different classes. 

The output of a single neuron is given by: 
 

 

  
(𝑗 )

= 𝑔( (𝑗 )  ) 1 
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Figure 3-3: Model summary of Artificial Neural Network 

3.2.2 Convolutional Neural Networks (CNN)  

CNN is a multi-layered neural network with architecture to detect the complex features in 

the data. ―Unlike the traditional multi-layer perceptron architectures, CNN uses two operations 

called ‗convolution‘ and ‗pooling‘ to reduce the image into its essential features, and then uses 

those features for understanding and classification of the image‖ [117]. CNNs are made up of 

some basic building blocks. These blocks include Convolutional Layer in which a filter or kernel 

is passed over an image, Activation Layer has normally an activation function ―ReLu‖, this layer 

introduces nonlinearity that allows the network to train itself through backpropagation. Pooling 

layer down-samples and reduces the size of the matrix, it focuses on the most prominent 

information in each feature of the image. The last one is named the fully connected layer, this 

layer outputs the different probabilities associated with every label attached to the image. The 

label with the highest probability is the classification decision. CNNs are widely used in 

agriculture, self-driving vehicles, healthcare, and surveillance. 

 

𝑂      size(W, H) = 
(N-F)

stride
+ 1 1 
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Figure 3-4: Complete architecture and Model summary of Convolutional Neural Network 

3.2.3 Long Short Term Memory (LSTM) 

LSTM or Long short term memory networks are the type of Recurrent Neural Networks 

that uses some special unit in addition to the standard units. These special units include the 

―memory cell‖ that maintains information in its memory for a longer period. LSTM has feedback 

connections unlike the standard feed-forward neural networks, it can process the whole sequence 

of data i.e. speech, video, etc. LSTM is used widely in speech recognition, handwriting 

recognition, handwriting generation, Music generation, Language translation, image captioning, 

and anomaly detection in intrusion detection systems. A simple LSTM unit is made up of a cell, 

input gate, output gate, and forget gate. The cell remembers the information whereas gates 

regulate the flow of information. LSTM networks are modified forms of RNN, they remember 

the past data in memory. The logistic sigmoid function for the LSTM memory cell is given by: 
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Figure 3-5: Architecture of a Memory Cell of Long Short Term Memory Network 

 

3.4 Results 

The application of deep learning (DL) algorithms is a relatively new field for fNIRS data 

classification and many of its dimensions are yet to be explored. DL algorithms don‘t require 

manual feature engineering. Estimation and classification of  4 levels of MWL using logic, 

coding, and mental arithmetic tasks for the first time in research history on MWL makes this 

work novel from others along with the implementation of  LSTM on 4 levels of MWL -fNIRS 

data with optimum classification accuracy results. In CNN, convolutional layers automatically 

extract those features having classifiable information. CNN outperformed all ML classifiers by 

an acceptable margin. Neuroergonomics application of LSTM is novel in DL for MWL-fNIRS 

data. Table 2 summarizes the results of all participants in terms of their classification accuracies, 

precision, and recall. 
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Table 3-1: Artificial Neural Network result: accuracies, precision and recall of subjects 

 

Classification results from the LSTM classifier are represented in Table 3. Comparing the 

results of table 2 and table 3, shows that the highest accuracy achieved using CNN classifier is 

93.02 %, while the highest accuracy with LSTM classifier is 95.51%, which means that LSTM 

results in higher classification accuracy as compared to CNN. 
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Table 3-2: Classification accuracies, precision and recall achieved with selected CNN model 

 

Table 4 represents a detailed comparison of results between ANN, CNN, and LSTM in box plots. 
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Table 3-3: Classification accuracies, precision and recall achieved with proposed LSTM 

network 

 

This result of the carried research shows that LSTM is an optimum classifier for MWL 

classification using fNIRS brain signals resulting in high classification accuracies ranging 

between 74.32 -92.34%. Estimation and classification of  4 levels of MWL using logic, coding, 

and mental arithmetic tasks for the first time in research history on MWL makes this work novel 

from others along with the implementation of  LSTM on 4 levels of MWL -fNIRS data with 

optimum classification accuracy results. Estimation and classification of  4 levels of MWL using 

logic, coding, and mental arithmetic tasks for the first time in research history on MWL makes 

this work novel from others along with the implementation of  LSTM on 4 levels of MWL -

fNIRS data with optimum classification accuracy results. 
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Figure 3-6: Comparison of classification accuracies of subjects between ANN, CNN, and LSTM 
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CHAPTER 4: COMPARISON BETWEEN MACHINE LEARNING 

AND DEEP LEARNING COMPUTATIONAL RESOURCES 

In Human-Machine Interaction (HMI), Neurorobotics, Neuroscience, Rehabilitation and 

Assistive Robotics (RAR) different noninvasive measures like EEG, fMRI, PET, and fNIRS are 

being used to measure the brain activities in certain regions for further employment in Brain-

Computer Interface (BCI) and neuroergonomics[43], [65], [76][77][78]. In HMI and neuro-

ergonomics primary focus is on the relationship between the nervous system and its impact on 

human emotions, decision making, physiology, cognition, behavior, and optimizing interaction 

with intelligent machines in real-time scenarios [1][4]. RAR mainly deals with the use of brain 

signals to generate control commands and use them to operate external devices [65][18]. RAR 

enables paralyzed locked-in patients, or people suffering severe motor disabilities to 

communicate and control external controls such as robotic arms and prostheses [79][80]. 

Nowadays, the use of BCI has seen in everyday activities from controlling external devices, 

monitoring cognitive states, estimating passive brain activities (e.g. drowsiness detection), games 

theory, neuromarketing, smart environment, education, self-regulation, and security 

[81][82][83][84]. The efficient use of BCI is subjected to robust signal acquisition from the brain 

and correctly classifying these obtained signals [85]. Methods used to acquire brain signals can 

be invasive, semi-invasive, or non-invasive [4]. In an invasive method, micro-electrodes are 

placed straight into the cortex through the process of neurosurgery. These microelectrodes 

quantify the action of a single neuron. Local Field Potentials (LFPs) and intracellular potentials 

over extracellular action potentials (APs) are an example of invasive devices. In semi-invasive 

methods, electrodes are placed inside the scalp on the visible exterior of the brain. 

Electrocorticography (ECoG) is a commonly used semi-invasive device. In the non-invasive 

technique, sensors are sited on the scalp to measure the electrical or hemodynamic activity of 

neurons. There are several non-invasive techniques to study brain activities including EEG, 

fNIRS, fMRI, MEG, and PET. Non-invasive devices are most commonly used due to the fact 

they don‘t need any surgery and data could be easily acquired over a long duration of time. 

Within the non-invasive paradigm, there are certain inherent characteristics and properties 

attached to each acquisition system. PET has high temporal and spatial resolution but requires an 

injection of radioactive material. fMRI and MEG are huge and bulky machines and they are 
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fixed in a room nature limits their capabilities. fNIRS and EEG however, are lightweight easy to 

use, portable, and have the liberty of limited action especially in the case of fNIRS [17], [43]. 

Although, fNIRS and EEG struggle in temporal and spatial resolution as compared with other 

modalities being portable and wearable, and user friendly make them prevalent choice over other 

devices [86]. 

 

Figure 4-1: Experiment protocol for n-back task 

 

In the current era of human-machine collaborative working environments where Human-

Machine Interaction (HMI) is increasing each day and AI industrial environment has amplified 

the need for human factors considered while designing these collaborative setups. Among these 

important human factor considerations, neuroergonomics including analyses of human mental 

workload (MWL), stress level, and other cognitive states are vital to consider for operators‘ 

wellbeing and safety. Similarly, brain signals are becoming paramount for rehabilitation and 

assistive purposes in fields such as brain-computer interface (BCI), closed-loop neuromodulation 

for neurological disorders, etc. The fNIRS has immerged as a potential non-invasive 

neuroimaging solution to monitor brain states for said purposes. An essential part of the design 

of such a mental state assessment system is to correctly classify the acquired brain signals in a 

reasonable time. 
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Figure 4-2: Hemodynamic response (HBO) for n-back tasks 

 

Deep Learning (DL) for such classification purposes due to feature engineering and 

complex data pre-processing requirements of machine learning algorithms. Bypassing the 

challenges of feature engineering through DL techniques comes at the cost of time and 

computational complexity of the system. We utilize the fNIRS recordings and perform MWL 

classification using conventional LDA, k-NN, SVM, and DL algorithms ANN, CNN, and a 

recurrent neural network LSTM. In this study, we discussed the theoretical computational 

complexities and compared generalizability, classification accuracies, train and test time 

requirements of k-NN, SVM, ANN, CNN, and LSTM. The averaged accuracy achieved using k-

NN, SVM, ANN, CNN, and LSTM is 92.54 , 81.47, 64.80, 55.94, 58.61, and 32.13 % while 

averaged train time being 127.40, 7.57, 1.41, 0.45, 0.01, and 0.03 sec and test time being 0.603, 

0.040, 0.038, 0.039, 0.061, and 0.00032 sec, respectively. The findings suggest that ML 

algorithms are recommended for real-time BCI with low commands and focus on efficient 

computation while DL algorithms are recommended for use cases where high commands and 

accuracy are of prime importance. CNN covers the nice ground between optimal classification 

accuracy and reasonable train, test time. 
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Figure 4-3: Pre-processing time of HbO, HbR, and HbT for 0-3 sec window of LSTM, CNN, ANN, 

SVM, k-NN, and LDA 

 

4.1 Computation Complexity 

In this section, we will present theoretical grounding and benchmarks for all 

conventional, ML, DL, and RNN algorithms. The computational complexity of the model 

usually includes Time complexity and Space complexity and is often expressed using the Big O 

notation. The Big O notation defines an upper bound of an algorithm and is used to classify 

algorithms according to their run time or space requirement that increases as the input tensors 

grow [87]. 

 

Figure 4-4: Pre-processing time of HbO, HbR, and HbT for 0-5 sec window of LSTM, CNN, ANN, 

SVM, k-NN, and LDA 

 

Let N be the number of training examples, M is the features of the data, R is the number 

of iterations, d is the number of dimensions of the data and k is the number of neighbors (in case 

of k-NN). The computation complexity of k-NN is O(kNd) [35]. The time is linear for the 
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number of instances and dimensions. The k-NN algorithm is a non-parametric machine learning 

algorithm, hence it doesn't make strong assumptions about the form of the mapping function and 

learn the functional form from the training instances for later comparison with test instances. It is 

the only algorithms among the considered algorithms hence it required space complexity as well 

for the complete description and is O(Nd) [36]. In the case of LDA, there are two different 

possibilities for computational complexities that depends on the fact that if the number of 

features is greater than the training example or not. In the former case, the computational 

complexity of LDA is O(Nd
2
) while in the latter case it is O(d

3
) [35][88]. The computational 

complexity of non-linear and non-approximate SVM is O(N
2
) or O(N

3
) depending on the type of 

selected kernel while the computational complexity of approximate SVM is O(NR) [35]. 

 

Figure 4-5: Test time of HbO, HbR and HbT for 0-3 sec window of LSTM, CNN, ANN, SVM, k-NN 

and LDA 

The computation complexity of deep neural networks (ANN, CNN, and LSTM) is highly 

architecture-dependent, similar to ―Output sensitive‖ algorithms [89]. For ANN, ―let's i denotes 

the number of nodes of the input layer, j the number of nodes in the second layer, k the number 

of nodes in the third layer, and l the number of nodes in the output layer, with t training examples 

and n epochs, computational complexity is given by O(nt∗(ij+jk+kl))‖ [88]. For CNN, ―Let‘s 

assume a group of g kernels of size u×v is applied to f feature maps of dimension m×n, pm and pn 

are the amounts of zero-padding on the borders of input feature maps, while filters are applied 

with a stride of s‖. The dimensions of the output feature map in the m and n directions can be 

written as om = (m − u + 2pm) / s + 1 and on = (n − v + 2pn) / s + 1, the computational 

complexity is given by O((f ×u×v+1)×g×om ×on) [90].  
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Figure 4-6: Average Accuracy of HbO, HbR and HbT for 0-3 sec window of LSTM, CNN, ANN, SVM, 

k-NN and LDA 

 

There are different proposed complexity measure for RNN [91][92]. Generally, the 

architecture complexity of RNNs might be measured by recurrent depth or the feedforward 

depth, please read [92]. These theoretical computational complexities (both time and space), 

however, does not reflect the complete picture. Usually, the DL algorithms perform matrix 

multiplication and are massively parallelize and scaled across a huge number of distributed 

systems for training, testing, and inference. Therefore, the applied DL stats differ from 

theoretical results depending upon the used hardware (CPU, GPU, TPU, ASIC, FPGAs, etc.), 

optimizing compiler for manipulating and evaluating mathematical expressions (Tensorflow, 

Theano, Chainer, THNN, MaxNET), parallel computing platforms (CUDA, Vulkan, OpenGL, 

OpenCL) and other software and hardware nuances. This study is primarily designed to take into 

account all these ground truths and recommend the appropriate learning algorithms for a given 

problem at hand. 

4.2 Results 

The results of different classifiers along with their obtained accuracies and computation time 

for HbO, HbR, and HbT signals are presented in this section. A total of 26 participants took part 

in this study. The data acquisition and initial cleansing includes conversion of acquired light 

densities into hemodynamic response using Modified-Beer Lambert law and applying for zero-

phase low pass, 6th order Butterworth filter. These steps are mandatory and are the same for all 

of the listed algorithms, that‘s why they are not included in computation time. As discussed 

earlier, the analysis is performed for HbO, HbR, and HbT signals. Three different time windows 
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of lengths 0∼3 sec, 0∼5 sec, and 0∼10 sec with 20% overlap were used to segment the pre-

processed signals. For machine learning classifiers and ANN, after segmentation, the feature 

engineering phase begins. There are a lot of possible features that can be extracted in the 

temporal, spectral, and wavelet domain. Due to the dynamic nature of the brain signals, different 

experimental paradigms, and varying signal source locations, we have to compute the best 

performing features every time. That‘s why complex feature engineering is considered as the 

bottleneck for ML classifiers. Numerous studies have explored the feature engineering domain 

for machine learning classification. For our analysis, we have chosen signal mean and signal 

peak as features for machine learning algorithms [ ], while CNN and LSTM self-extract the 

features.  For sake of completeness, we used both HbR and HbT alongside HbO in data analysis, 

but HbO will be the major focus of discussion and comparison due to its de facto used. Last but 

not least, it turns out that there is a huge discrepancy between key evaluating parameters 

spanning up to 8 decimal digits after zero. We used a clever workaround to overcome this 

nuance and present comparison results in a much readable and easy to understand format. First, 

we present respective accuracy on the test set and computational times w.r.t to the train and test 

(having split ratio i.e. 70:30) instead of per sample results. Second, in each comparison category, 

the highest and lowest values are scaled by dividing each value by the lowest in that category 

[23].  

 

Figure 4-7: Test time of HbO, HbR and HbT for 0-5 sec window of LSTM, CNN, ANN, SVM, k-NN 

and LDA 

 

Among the classification classifiers, the pre-processing phase is different depending upon 

the fact if manual feature extraction is performed or not [86], [93]. For all ML classifiers and 

ANN, manual feature engineering is required, this elevates their pre-processing time by almost 2 
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times more than CNN and LSTM that do not require feature engineering. Pre-processing time 

has an inverse relation with window size, the smaller the window size the more samples will be 

there to calculate features from and vice versa. Figure 4(a) & (b) depict this phenomenon. The 

results prove that indeed feature engineering is a bottleneck for ML classifiers both in terms of 

domain knowledge, and computing time. The self feature extracting DL algorithms have a clear 

margin over other classifiers.  

4.3 Discussion 

The training time for all algorithms is presented in Figure 5(a) & (b) for both 0~3 and 0~5 sec 

windows, respectively. Among all of the algorithms, k-NN is the fastest because it doesn‘t 

perform any complex calculation and just stacks the training samples together according to the 

similarity measure. Next in line is LDA that takes just 4 times more time to train than k-NN. 

While the DL algorithms take subsequently very long time to train. SVM, ANN, and CNN take 

almost 90, 320, and 730 times, more time to train as compared to k-NN, respectively. LSTM 

implements backpropagation through time over multiple time instances recursively, with far 

more parameters to tune than any other algorithm. This is clearly reflected in training time as 

LSTM takes almost 18,000 times longer to train than k-NN. This difference is even more 

extreme in a 0~5 sec window where it takes more than 33,000 times more to train due to the 

tuning of the additional number of features through backpropagation in each sample. While 

remaining algorithms perform slightly better in 0~5 sec window as compared to 0~3 sec window. 

In this study, we implemented the conventionally used machine learning (LDA, k-NN, and 

SVM) and deep learning (ANN, CNN, and LSTM) algorithms on fNIRS based study on 26 

subjects performing mental workload activity.  



38 
 

 

Figure 4-8: Training time for all algorithms for (a) 0~3 & (b) 0~5 sec windows 

 

We discussed the theoretical computation complexity of all of these algorithms in terms of big O 

notation and then compared the practical processing time, train time, and test time complexity 

and requirements. The finding suggests that in terms of time requirements, the machine learning 

algorithms are the fastest. Within machine learning algorithms, LDA is the least compute-

intensive algorithm while SVM and k-NN depend on the applied kernel and numbers of training 

samples, respectively. However, as proved in literature, the downside of machine learning 

algorithms is that their accuracy and generalizability decrease with an increase in the 

classification commands, in addition to the fact that they mostly rely on handcrafted feature 

extraction and require domain knowledge. Among deep learning algorithms, the time complexity 

of ANN and CNN is comparable but in terms of the accuracy department, ANN entirely depends 

upon the handcrafted features while CNN has impressive self-feature extraction going on. The 

recurrent neural network is very new in the field and few studies are performed yet, but they 

have shown amazing accuracies as compared to the rest of the algorithms. But the catch is that 

they are so compute-intensive in terms of train and test time that they might not be feasible yet 

for the real-time BCI. The RNN variant, LSTM is tested in this study and we conclude that they 

are by far the best choice for the offline brain signal analysis. The CNN covers the sweet spot as 

of now and offers a compromise between the accuracy and time requirement. While machine 

learning algorithms are still recommended for real-time applications primarily designed to work 

without any delay.  
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CHAPTER 5: SYMMETRIC HOMOGENOUS FEATURE BASED 

TRANSFER LEARNING FOR BCI 

Brain-Computer Interface (BCI) provides a means of communication between the brain 

and external devices by recognizing the brain activities using brain generated signals and 

translating them into external commands. Recently, the use of functional near infra-red 

spectroscopy (fNIRS) has increased as the common non-invasive modality for brain activity 

detection. With higher BCI protocols more commands can be generated with good accuracy in 

less time. The recent trends show that deep learning has enhanced the performance of the BCI 

systems significantly in the following years [117]. But the inherent bottleneck for deep learning 

in the domain of BCI is the requirement of the huge amount of training data and computational 

resources for training deep networks. The collection of data is complex and expensive that makes 

it extremely difficult to build a large-scale, high-quality annotated dataset for training. Transfer 

learning might resolve the problem of insufficient training data in BCI. Transfer learning tries to 

transfer the knowledge from the source domain to the target domain by learning the different 

underlying shared patterns. In this study, we have applied symmetric homogenous instance-

based transfer learning to the convolutional neural network on fNIRS-based n-back data 

collected from 26 participants. We explored the potential application of the transfer learning 

approach for the classification domain to reduce the training time and calibration time for the 

fNIRS-based BCI systems. The results confirmed that applying the proposed feature-based 

transfer learning algorithms leads to achieving the maximum accuracy of 20 epochs sooner than 

the conventional methods. The proposed transfer learning method also outperformed the 

averaged accuracy achieved using the learned CNN model over the traditional CNN model by 

12% (report max accuracy). 
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Figure 7-1: Experiment protocol for n-back task 

 

BCI provides a method of communication between the brain and external devices through 

signals generated from the brain without the involvement of the peripheral nervous system [18]. 

BCI is among such neurofeedback methods that can improve them of patients suffering from 

severe motor disabilities due to tetraplegia, stroke, ad other spinal cord injuries [19]. BCI has 

also applications in neuro-rehabilitation, communication and control, motor therapy and 

recovery, brain monitoring, and neuro-ergonomics [4][20][21]. The major non-invasive BCI 

modalities include MMEG, FIRS, EEG, PET, SPECT and etc. Among these non-invasive BCI 

modalities, EEG and fNIRS are good for expense and handiness [17][22]. EEG measures brain 

activity by calculating the voltage fluctuations from neurons' action potentials while fNIRS 

detects the brain activity with reference to the changes in hemodynamic response [23][24]. 
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Figure 5-2: Transfer learning from source to the target domain 

 

To use BCI out of the laboratory on daily basis, BCI needs to address several challenges such as 

robust signal acquisition, extracting valuable information from unrefined brain signals for 

control-commands, etc [25][26]. Another main problem is the necessity of recalibrating the BCI 

system for every single new session and the subject. Typically, the calibration time for EEG and 

fNIRS based BCI systems might take up to 20 or 30 minutes for all new sessions [27][28]. The 

obtained results after experimentation and statistical analysis are presented in this section. For 

framework 1, the trained CNN is used for training on the control group. Figure 1 shows the 

accuracies of control group subjects with training epochs. Fig 3 shows the accuracies of baseline 

group subjects that are trained on the randomly initialized CNN network. Tables 1 and 2 

represent the accuracies of the control group and the baseline group, respectively. The network is 

trained up to 60 epochs before it starts overfitting. The exact brain state depends on factors such 

as the mental state, concentration level, psychological states, drowsiness and fatigue, anatomical 

differences between subjects, and statistical variations in the data [32][33]. The instrumental 

noise and experimental error such as changes in the electrical resistance of the probes may be 

because sweating may also temper the acquired brain signals [34]. All these facts combine 

results in the trained classifier performing poorly on new session data. The different studies tried 

to address these challenges by exploiting different methods and algorithms while keeping 

accuracy in a reasonable range [28][35][36][37]. Transfer learning might be a promising 

approach to deal with this problem. 
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Figure 5-3: Hemodynamic response (HbR) for n-back tasks 

5.1 Experiments 

The available dataset of 26 participants is divided into three subsets with an approximately 

60:20:20 ratio. The first 16 participants' data is used for training the CNN network that is 

supposed to learn the domain knowledge of the task. This trained network is then used as 

parameters with Dt. We evaluate the validity and viability of transfer learning under two different 

frameworks: 1) the transfer learning efficiently transferred the source domain knowledge to the 

target domain and required the reduced training iterations for deep learning models, 2) the 

transfer learning minimizes the need for a large amount of data required for training deep 

learning model for the target domain. We evaluate these two hypotheses by dividing the 

remaining 10 subject data into two groups having 5 participants each and named them as the 

baseline and control group. The baseline group is used for training conventional deep neural 

network models in a standard and widely adapted setting while the control group is trained on the 

pre-trained CNN model that is supposed to have domain knowledge from the first 16 

participants. For hypothesis 1, the pre-trained model is fed with the control group data and 

trained with different epochs from 10 up to 60. The same steps are repeated for the randomly 

initialized weights CNN on the baseline group data. These obtained accuracies are compared 

with the baseline group accuracies and conclusions are drawn. For hypothesis 2, the data from 

the control group participants are fed into the pre-trained model in chunks from 10% up to 70% 

and accuracies are monitored if they match with are improving are not. The available dataset of 
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26 participants is divided into three subsets with an approximately 60:20:20 ratio. The first 16 

participants' data is used for training the CNN network that is supposed to learn the domain 

knowledge of the task. This trained network is then used as parameters with Dt. We evaluate the 

validity and viability of transfer learning with two hypotheses: 1) the transfer learning minimizes 

the need for a large amount of data required for training deep learning model, 2) the transfer 

learning efficiently transferred the source domain knowledge to the target domain and required 

the extended training time for deep learning models. We evaluate these two hypotheses by 

dividing the remaining 10 subject data into two groups having 5 participants each and named as 

baseline and control group. The baseline group is used for training conventional deep neural 

network models in a standard and widely used setting while the control group is trained on the 

pre-trained CNN model that is supposed to have domain knowledge from the first 16 

participants. For hypothesis 1, the data from the control group participants are fed into the pre-

trained model in chunks from 10% up to 70% and accuracies are obtained. These obtained 

accuracies are compared with the baseline group accuracies and conclusions are drawn. 

Similarly, for hypothesis 2, the pre-trained model is fed with the control group data and trained 

with different epochs from 10 up to 100. The same steps are repeated for the randomly initialized 

weights CNN on the baseline group data.  

5.2 Transfer Learning 

This paper assumes that there are multiple simultaneous EEG and fNIRS acquired from different 

subjects, on the same and/or different tasks are available. There are many terminology 

inconsistencies throughout the literature regarding Transfer Learning, domain adaptation, and 

characterizing the transfer learning process concerning the availability of labeled and unlabeled 

data. ―We will use the following definition throughout the paper: A domain D consists of two 

essential parts, a feature space also known as latent space X and a marginal probability 

distribution (MPD) P(X), where feature vectors X = {x1 , . . . , xn}   X”. In the case of BCI, ―the 

generation of command is the classification goal and the channel readings are considered as 

features, then xi is the i
th

 feature vector (instance) corresponding to the i
th

 generated command, n 

is the number of feature vectors in X, and the X is the space of all possible feature vectors, for a 

given domain D, a task T can be defined as a label space Y, and a predictive function F<.>‖. The 

predictive function F<.> is learned from the feature instance and corresponding label pairs [xi, 
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yi] where xi   X and yi   Y. In the case of the BCI problem, ―Y is the set of labels that might be 

rest, open, close commands, yi takes on one of the command value, and f(x) is the function 

approximator that predicts the label value for the command classification x‖. From the above 

definitions, a data domain is given by D = [X, P(X)], and a task is given by T = [Y, F <.>]. 

Also, for consistency, we will represent source domain data as DS and by definition, it will be 

given by DS = [(xS1, yS1). . . , (xSn, ySn)], where xSi   XS and it is the i
th

 data point of DS and ySi   

YS is the corresponding feature label for xSi. Likewise, the target domain data can be given as DT 

where DT = [(xT1, yT1). . . , (xTn, yTn)] where xTi   XT and it is the i
th

 data point of DT and yTi,   YT 

is the corresponding class label for xTi. Now, the source task, the target task, the source predictive 

function, and the target predictive function can be represented by TS, TT, FS<.>, and FT<.>, 

respectively. 

 

Figure 5-4: Quantile-Quantile Plot 

 

The obtained results after experimentation and statistical analysis are presented in this section. 

For framework 1, the trained CNN is used for training on the control group. Figure 1 shows the 

accuracies of control group subjects with training epochs. Fig 3 shows the accuracies of baseline 

group subjects that are trained on the randomly initialized CNN network. Tables 1 and 2 

represent the accuracies of the control group and the baseline group, respectively. The network is 

trained up to 60 epochs before it starts overfitting. Whereas the condition where the source and 

target domain features Xt and Xs are not equal is called heterogeneous transfer learning as shown 

in Fig. 1. Homogenous and heterogeneous transfer learning might be called intra-domain and 

inter-domain transfer learning, respectively. In this study, we will perform homogenous transfer 

learning on fNIRS data and evaluate its performance and viability for deep learning networks. 
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Figure 5-5: Feature learning and classification in Convolutional Neural Network 

 

The statistical analysis is performed between baseline and control groups for both hypotheses by 

first confirming that the accuracies results of baseline and control group are normally distributed 

by the Shapiro-Wilk test. Based on the Shapiro Wilk test results, it is concluded that the 

statistical significance using tests such as the t-test.  

5.3 Statistical Analysis 

The statistical analysis is performed between baseline and control groups for framework 1 by 

first confirming that the accuracies results of baseline and control group are normally distributed 

by the Shapiro-Wilk test. The applied Shapiro-Wilk (SW) test is the test with the H0 hypothesis 

as data is normally distributed and H1 as data is not normally distributed. For all epoch results p-

value > α, so, we here has accepted the H0. In other words, the SW test confirms that the 

difference between the data sample and the normal distribution is not big enough to be 

statistically significant. The quantile-quantile or QQ-plot is used for a graphical illustration of the 

Shapiro-Wilk test, Fig. 4 shows the test run on the baseline group. So SW test result tells, it is 

concluded that the statistical significance using tests such as t-test, and ANOVA test could be 

used. We used the statistical analysis to compare the classification accuracy between baseline 

and control groups with different hypotheses. For framework 1 the baseline and control group 

accuracies and the p-value is greater than 0.05 and the alternative hypothesis (H1): the two 

populations are not equal, a significant difference between these accuracies and the p-value is 

less than 0.05. After analysis, the p-value comes out to be 0.000185 and the t-value to be 3.99496 

with a confidence level (α) of 95%. The result is significant with p < 0.05 so null hypothesis H0 

is rejected. 
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Figure 5-6: Percentage accuracy for control group for all series 

 

5.4 Proposed Convolutional Neural Network Model 

In this study, a convolutional neural network (CNN) was used to classify three mental workload 

classes owing to their popularity and increase in use for different studies. CNN is a deep neural 

network that may integrate one or more convolutional layers with a pooling layer, batch norm 

layer, activation layer, dense layer, and at very last an output layer. The most important layer of 

CNN i.e., the convolutional layer allows its inputs to pass through cascaded filters bank and 

performs simple convolution operations. Essentially convolution layers output feature maps 

extracted from the input as a result of convolution i.e., shifting and multiplication of input signal 

and filter. These feature maps are then used as an input to the next layer in the CNN architecture 

or as a set of definitive key features on which classification is performed in the last fully 

connected layers. The mathematical formulation of CNN layers is well explained by []. During 

the training of a CNN model, both filter bank parameters and dense layer weights are adjusted 

throughout the period so that the model precisely fits the training dataset with the least possible 

error. Successful implementation of CNN for a given dataset mainly relies on the fact that 

different data domains usually have some common key features that are shared across all of its 

elements (such as images). But this is not the case when it comes to generalization in areas with 

high inter-subject unpredictability like brain signals (EEG, fNIRS, fMRI, etc.) that differ from 

subject to subject and depend on a lot of external and internal factors. CNN models used for the 
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research were based on a feedforward CNN architecture comprising pairs of convolution and 

pooling layers. So, after initial tests on different feedforward CNN architectures, the chosen 

CNN architecture with complete parameters and structure is shown in the figure. 

 

Table 5-1: Summary of different classifiers used in literature for different modalities 

 

Reference Main category Subcategory Classifier Modality 

[26] Homogenous TL Instance-based 

transfer learning 

Bagged importance-

weighted LDA 

EEG 

[28] Homogenous TL Instance-based 

transfer learning 

Marginalized stacked 

denoising 

autoencoder  

EEG 

[32]  Instance-based Selective instance 

transfer with active 

learning  

EEG 

[33] Heterogenous TL Feature-based 

transfer learning 

C3, C4 EEG 

[34]  Feature-based  Common Spatial 

Patterns (CSP) and 

LDA 

EEG 

[24] BMI decoding Feature-based 

transfer learning 

Stationary 

subspace CSP 

(ssCSP) 

EEG 

[38] Variational 

Bayesian 

multimodal  

Feature-based 

transfer learning 

Principal component 

analysis (PCA) based 

CSP 

EEG 

[43] Homogenous TL Parameter‑ based 

transfer learning 

Extreme learning 

machine 

(ELM) 

EEG 
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[44]  Parameter‑ based 

transfer learning 

Domain adaptation 

SVM (DASVM) 

EEG 

Proposed  

method 

Homogenous TL Feature-based TL Convolutional Neural 

Network 

fNIRS 

 

5.5 Results 

The obtained results after experimentation and statistical analysis are presented in this 

section. For framework 1, the trained CNN is used for training on the control group. Figure 1 

shows the accuracies of control group subjects with training epochs. Fig 3 shows the accuracies 

of baseline group subjects that are trained on the randomly initialized CNN network. Tables 1 

and 2 represent the accuracies of the control group and the baseline group, respectively. The 

network is trained up to 60 epochs before it starts overfitting. 

 

Figure 5-7: Percentage accuracy for baseline group for all series 

In this study, we explored the feature-based transfer learning method for the classification of BCI 

commands to reduce the training and calibration time. In the first approach, we used 16 subjects 

to train the CNN network, namely learned CNN network, and learn the source domain 

knowledge of the n-back dataset. Further, we split the remaining 10 subjects into two groups i.e 

control and baseline. We then train the control group with the learned CNN network and baseline 

with randomly initialized CNN network and compared their accuracies using statistical analysis. 

The results suggested that applying the proposed feature-based transfer learning algorithms could 
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lead to achieving the maximum saturated accuracy 20 epochs sooner than the baseline group 

which in turn reduces the training time. The proposed transfer learning method also 

outperformed the averaged accuracy achieved using the learned CNN model over the traditional 

CNN model by 12%. In the second experiment, we proved that instance-based transfer learning 

can significantly reduce the calibration time with reasonable accuracy on the 10:90 train-test 

ratio and become saturate on the 30:70 train-test split ratio of the dataset. 

 

Figure 5-8: Comparison of percentage accuracies between control and baseline group for subjects 

5.6 Discussion 

The transfer learning algorithms of EEG-based BCI are based mostly on either the importance 

sampling cross-validation method [26] [27], or the instance selection method [28][29]. In [26], 

Covariance Shift adaptation or CSA is proposed, in which the target domain‘s data (other 

subjects) is weighted on the base of the importance sampling cross-validation method. After that, 

the estimation of the final prediction function is based on parts that have high weights. An 

instance selection method is proposed [28][29] on an active learning base to identify the trials, 

that were found close to few informative trials of new subjects.  The trials that were selected 

were then added to existing labeled trials of a new subject for the BCI model‘s training (final 

prediction function). In [30], the deep learning algorithms as the feature extractor in combination 

with the transfer learning is proposed to diagnose the predisposition to alcoholism. In the feature 

domain, most of the proposed algorithms of transfer learning focus on the improvement of the 

common spatial pattern (CSP) by either modifying the covariance matrix estimation method 
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[31][32], or the common spatial pattern optimization function [22][33]. For example; in [32], the 

author proposed the extension of common spatial patterns, in which instead of the discriminative 

information, the stationary information was transferred across the multiple subjects by learning a 

stationary subspace. In [34], the authors proposed the combination of deep deep-learning-based 

transfer learning along with Continuous Wavelet Transform (CWT) to solve Motor imagery (MI) 

for the Brain-Computer Interface. Ensemble learning of the classifiers [20][21] and various 

domain adaptation techniques [35][36][37] have been adopted for many existing Motor Imagery 

based. I have explored the feature-based transfer learning method for the classification of BCI 

commands to reduce the training and calibration time. In the first approach, we used 16 subjects 

to train the CNN network, namely learned CNN network, and learn the source domain 

knowledge of the n-back dataset. Further, we split the remaining 10 subjects into two groups i.e 

control and baseline. We then train the control group with the learned CNN network and baseline 

with randomly initialized CNN network and compared their accuracies using statistical analysis. 

We can achieve the maximum saturated accuracy 20 epochs sooner than the baseline group 

which in turn reduces the training time. The proposed transfer learning method also 

outperformed the averaged accuracy achieved using the learned CNN model over the traditional 

CNN model by 12%. In the second experiment, we proved that instance-based transfer learning 

can significantly reduce the calibration time with reasonable accuracy on the 10:90 train-test 

ratio and become saturate on the 30:70 train-test split ratio of the dataset.  

 

Figure 5-9: Average accuracies of control group subjects 

The main objective of Transfer learning (TL) is to produce an effective model [3][6][7] 

for the target task while tackling the problems of limited labeled training data or no data at all. I 

have explored the feature-based transfer learning method for the classification of BCI commands 

to reduce the training and calibration time. In the first approach, we used 16 subjects to train the 
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CNN network, namely learned CNN network, and learn the source domain knowledge of the n-

back dataset. Further, we split the remaining 10 subjects into two groups i.e control and baseline. 

We then train the control group with the learned CNN network and baseline with randomly 

initialized CNN network and compared their accuracies using statistical analysis. We can 

achieve the maximum saturated accuracy 20 epochs sooner than the baseline group which in turn 

reduces the training time. The proposed transfer learning method also outperformed the averaged 

accuracy achieved using the learned CNN model over the traditional CNN model by 12%. In the 

second experiment, we proved that instance-based transfer learning can significantly reduce the 

calibration time with reasonable accuracy on the 10:90 train-test ratio and become saturate on the 

30:70 train-test split ratio of the dataset. It can find some common representative features having 

same marginal distribution in both domains. The model parameter-based approach of transfer 

learning uses the source domain‘s prediction function to improve the prediction function 

(classifiers) of the target domain. 

I have explored the feature-based transfer learning method for the classification of BCI 

commands to reduce the training and calibration time. In the first approach, we used 16 subjects 

to train the CNN network, namely learned CNN network, and learn the source domain 

knowledge of the n-back dataset. Further, we split the remaining 10 subjects into two groups i.e 

control and baseline. We then train the control group with the learned CNN network and baseline 

with randomly initialized CNN network and compared their accuracies using statistical analysis. 

We can achieve the maximum saturated accuracy 20 epochs sooner than the baseline group 

which in turn reduces the training time. The proposed transfer learning method also 

outperformed the averaged accuracy achieved using the learned CNN model over the traditional 

CNN model by 12%. In the second experiment, we proved that instance-based transfer learning 

can significantly reduce the calibration time with reasonable accuracy on the 10:90 train-test 

ratio and become saturate on the 30:70 train-test split ratio of the dataset. 
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CHAPTER 6: MENTAL WORKLOAD APPLIED TO BCI 

Mental workload, a Neuroergonomics human factor, is widely used not only in the 

planning system‘s safety but also in the areas like brain-machine interface (BMI), 

neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for 

assisting hemiplegic patients while performing tasks in daily routine activities. The design and 

operation of assistive technologies require an easy interface with a brain with fewer protocols 

while trying to optimize mobility and autonomy. The possible answer to these design questions 

may lie in Neuroergonomics coupled with BMI systems. In this study, two tine human factors 

are addressed simultaneously; one by designing a lightweight (servo tendon is driven) wearable 

robotic exoskeleton hand, that is used to assist the stroke patients with an integrated brain 

interface using a mental workload (MWL) acquired with portable fNIRS system. The system 

used to generate command signals for operating wearable robotic exoskeleton hand using based 

two-state MWL signals. The fNIRS is used to record optical signals in form of a change in 

concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the prefrontal cortex 

(PFC) region of the brain. Fifteen participants participated in this study and were given grasping 

tasks. Two-state MWL signals acquired from the PFC of participants are segregated using 

support vector machines (SVM) to further utilize in operating robotic exoskeleton hands. 

Patients, being suffered from a stroke, need proper training to overcome the deprivation 

from motor movements. Multiple robotic prostheses have been developed which are giving 

assistance in daily routine activities to these hemiplegic patients. The ease of use and operation 

of these assistive technologies remains an issue and how these designed technologies will be 

giving an easy interface to affected people? The possible answer is a BCI system. In this paper, 

we have presented a lightweight servo tendon-driven wearable robotic exoskeleton hand which 

will assist the person being suffered from stroke integrated with an easy interfacing technology 

for stroke patients i.e., two commands asynchronous Steady-State Visually Evoked Potentials 

(SSVEP). We designed a monochromatic green light asynchronous SSVEP source board which 

is being used as a stimuli generator, integrated with a robotic hand. 9 Hz and 10 Hz frequencies 

have been used in two commands BCI system which are from the alpha band. Emotive Lite-

NIRS neuro imagining system is used to record fNIRS signals in form of oxy and deoxygenated 

hemoglobin. These hemodynamic signals are used to measure the fatigue of the participant with 
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time. 13 participants took part in this study, 10 right-handed and 3 left-handed mean age =21.73 

years ± SD=1.15, participated in this study, maximum accuracy achieved is 95 % and minimum 

accuracy achieved is 75 %. These results show the feasibility of two commands asynchronous 

SSVEP based servo tendon driven wearable robotic exoskeleton hand (BCI system) for 

hemiplegic patients for physical grasping tasks. 

Tetraplegia and Stroke are few among the major causes in which a person is not able to 

fully control his own muscular movements [94]. The Patients suffering from such diseases show 

uncontrolled motor movements during the early stages and in the later stages, these patients are 

unable to control their motor movements due to neuronal degeneration [43], [95]. During 

extreme stages of these diseases, a patient may completely become paralyzed and the person 

suffering may not be able to perform any daily routine tasks. In the context of injuries, the spinal 

cord and some brain injuries also contribute to motor disabilities. For such persons, there is a 

need to devise a methodology by which these patients can be rehabilitated partially if not fully 

[96]. Brain-Computer Interface (BCI) is among such methods that can provide rehabilitation and 

assistance to patients with severe motor disabilities. A BCI translates the neuronal or 

hemodynamic signals that are acquired directly from a patient‘s brain into useful machine 

commands that can be used to control devices for the assistance of motor disabled patients. 

―There are multiple devices that can be used to design a BCI system. Based on portability, low 

cost, non-invasiveness, electroencephalography (EEG) and functional near-infrared spectroscopy  

(fNIRS) are the two most widely used modalities for the rehabilitation of a patient‖ [13], [14]. In 

comparison to fNIRS, EEG has got a better temporal resolution [15], [16] therefore mostly EEG 

is used for rehabilitation purposes. BCI based application is now very powerful. The power of 

imagination can also be considered. Abiri et. al. [39] presented a work in which the scalp EEG 

was recorded in which the user was imagining different body kinematics while [40] has 

presented different communication types available in BCI. This imagined body kinematics were 

decoded using regression model and them mapped on a social robot. Steady State Visual Evoked 

Potentials (SSVEP) and P300 signals for BCI are usually generated using a visual stimulus. The 

signal acquisition time of these signals also plays a vital role in control of an external device 

using a BCI. An SSVEP-based BCI can either be synchronous or asynchronous. If it is 

synchronous, then the user must know the exact instant at which he/she has to pay attention 

towards flickering stimulus and if it is asynchronous, then the user is free from this constraint 



54 
 

[44]. Source of SSVEP, frequency, and the number of available choices in SSVEP are important 

factors that are associated with the Information Transfer Rate (ITR) of a BCI system. Wu. et al. 

[97] has presented the analysis of three different types of stimulators. The color and luminosity 

of the source of the SSVEP also matter. Floriano et al. [98] have elaborated the effect of color 

and luminous and reported that green-red color stimuli are batter in the medium frequency range 

and green-blue color stimuli are better in the high-frequency range. Diez. et al. and Li. J et al. 

[99], [100] have presented the utilization of high frequencies in SSVEP and steerability control 

of wheelchair-using human thoughts. Herrmann et al. have also studied the suitability of 

different frequencies for SSVEP [101]. According to their findings, 10 Hz, 20 Hz, 40 Hz, and 80 

Hz are those frequencies where SSVEP‘s resonance has been observed. Another study, presented 

in [102], tried to measure the suitable frequency for SSVEP. They tried to derive a relation 

between the amplitude of SSVEP as a function of frequency. Though the selection of frequency 

for SSVEP is an important thing but the harmonics consideration is also important. Muller-Putz 

et al. [103] have reported that the inclusion of three harmonics increases the classification 

accuracy in four class BCI systems. Abiri et al. [104] have presented a review of different types 

of paradigms that have been presented in different types of BCI systems. The number of 

commands also decides the number of possibilities, speed of communication, and accuracy of a 

BCI system. It is not necessary that the environment, where the SSVEP signals are being taken, 

is fully calm or it might possible that the person, using SSVEP, is not fully calm. Chaudhary et 

al. [40] have studied the effect of deliberately introduced perturbations while using SSVEP. 

Introduced perturbations were speaking, listening, and thinking while EEG is being recorded. 

Results showed that speaking and thinking affect the classification accuracy while listening does 

not affect much. 

A BCI system mainly comprises different parts, among these parts, Signal processing, 

and feature extraction are the most important ones. Ortiz et al. and Volosyak et al. [41], [42] 

have presented a review of non-invasive EEG signal processing techniques for SSVEP based 

applications, and [43] has presented a comprehensive study of different useful features in fNIRS-

EEG based activities. Multiple types of noise are present in EEG including different artifacts as 

well. Xie. et al. [50] has studied the effect of spatiotemporal visual noise on the compensation of 

mental load and fatigue and [51] has given the inclusion of fuzzy control in this field. It is 

important to have a proper mechanism along with brain signals to ensure a proper control for 
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BCI. Erkan et al. [44], has reported that minimum energy combination (MEC) and canonical 

correlation analysis (CCA) can be used in the detection of SSVEP signals in EEG recording but 

MEC is recommended for synchronous SSVEP stimulus. Gao. et al. [45] showed the feasibility 

of the SSVEP using an electric apparatus. The patient is introduced to different flickering lights 

(boxes) which flashes at different rates and represent different actions against each (chosen from 

a menu). Along with brain signals, a prober haptic/ prosthetic device is needed for the patient to 

perform daily routines. Researches mostly focus on the design of the BCI technique while 

ignoring the design parameters of the haptic device. The recorded and processed brain signals 

can drive different mobile robots which are acting as social/assistive robots ensuring that the 

person is not in a drowsiness state [2]. A comprehensive survey of these mobile robots has been 

presented in [83]. Among all mobile robots, a wheelchair is most prominent and the role of these 

mobile robots in the life of people suffering from a disability is also stated in [99], [105] in 

which different researchers have presented different types of application of SSVEP. A 

comprehensive review of different types of wheelchairs along with their driving and 

classification mechanisms is presented in [106], [107]. Zhang et al. [108] have given an 

algorithm for the detection of idle state in SSVEP based BCI applications which have also been 

used in a wheelchair. 

In this research, we present a novel fNIRS based lightweight servo tendon driven 

wearable exoskeleton hand mechanism for hemiplegic patients (performing daily routine tasks). 

Unlike previous researches, our designed wearable exoskeleton has separately controllable five 

fingers and improved accuracy. We used 12 channels fNIRS system for data acquisition 

recording [39]. The system acquired fNIRS signals and measured the two levels of mental 

workload (MWL). A total of 15 subjects participated in this study. Primarily two features from 

the hemodynamic signals namely mean and slope were extracted and employed SVM classifier, 

the maximum accuracy is 98.30%, with the average accuracy is 93.97%. The system is 

summarized in the figure below. 
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Figure 6-1: Data processing and classification system 

6.1 Experimental protocol 

The whole architecture is presented in Figure 5. The subject with the robotic hand wears 

the fNIRS device on the scalp which is continuously measuring hemodynamic concentration 

changes in the prefrontal cortex as shown in Figure 5. The subject must concentrate on mental 

math for a few seconds and then fNIRS signals will be taken from the fNIRS headset and 

processed in the benchmark study [39]. A total of 15 healthy subjects (12 male, 3 female, and all 

right-handed) have participated in this study and all of them were teenagers. 

fNIRS signal recording duration is 20 seconds and then some preprocessing has been 

done. The experiment was designed to discriminate between two MWL levels. The participants 

sit in a dimly lighted area with back seats against a 17-inch monitor and were advised to avoid 

any unnecessary physical motion. They were presented with slides to give experiment details and 
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procedures before anything else. The initial 146 seconds were a rest period to set the baseline. 

The baseline period is followed by MWL level 1 in which subjects performed mental arithmetic 

tasks for 20 seconds and 20 seconds rest periods. Targeting the most affected patients of stroke, 

we have devised two commands asynchronous SSVEP based servo tendon driven exoskeleton 

hand for grasping task. Targeting the most affected patients of stroke, we have devised two 

commands fNIRS based servo tendon driven exoskeleton hand for grasping task. The two-level 

of the mental workload are recorded with the fNIRS device at 8 Hz sampling frequency. The 

maximum accuracy achieved is 91.31% while the minimum averaged accuracy is 80.15%. 

Targeted channels are PF1, PF2, and PFz. After normalizing channel readings, we used the 4
th

 

order low-passed Butterworth bandpass. Then we used SVM to generate a command (either open 

or close) for a prosthetic hand. Results showed the effectiveness of the used technique for those 

suffering from a severe level of strokes. Accumulated Power Spectral Density (PSD) is used 

along with CCA and frequency contents of the filtered signal have been extracted. Results 

showed the validity of the used technique to those suffering from severe levels of strokes The 

same procedure is repeated for 10 trials. MWL level 1 consists of simple three number addition 

tasks such as 349 + 547, 564 + 986 etc. MWL level 1 was modeled such that it induces a 

minimal amount of MWL [109]. After 10 trials of MWL level 1, subjects are presented with 

MWL level 2 with a delay of 25 seconds. The MWL level 2 also follows the same pattern of 20 

seconds activity and 20 seconds rest with a total of 10 trials. The MWL level 2 contains 

arithmetic operations on equations and their answers (ANS) being utilized in the next calculation 

(e.g. 768 – 5, ANS x 4, ANS – 32, ANS + 912). MWL level 2 involves mental arithmetic tasks, 

short term memory, and mental math [110], [111]. The difficulty level of MWL level 2 is greater 

than that of MWL level 1 and induces more MWL. 

These processed signals are translated into two commands, i.e., ―open‖ and ―close‖ and 

then fed into the robotic hand as shown in Figure 6. The experimental settings are designed to 

differentiate into two levels of mental workload. In previous studies, mental arithmetic and 

programming tasks are also used to provoke the brain and create a certain amount of mental 

workload [112], [113] and can be used to generate discriminative signals to BMI systems. 
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Figure 6-2: Experiment protocol for practical BCI 

 

We used the P-fNIRSSyst headset for the acquisition of brain signals. Targeted channels 

are PF1, PF2, and PFz of the pre-frontal cortex region [75].  

6.2 Information Transfer Rate 

Information Transfer Rate (ITR) is an assessment metric broadly employed in BCI 

systems to estimate the amount of information in bits passed-on by the system‘s output [114]. 

This is a recognized statistic that mental tasks decreases the reliability of classification accuracy. 

ITR, first introduced in information theory, is used to quantify this reliability [115]. It is denoted 

by B and is calculated by eq (1) 

      𝑔         𝑔       (  –   )  𝑔 
   

   
     eq (2) 

Where N is  the classification tasks and P is the obtained classification accuracy. 

The temporal resolution of fNIRS usually depends on the properties of the underlying evoked 

neuronal and vascular changes. The time series plot of blood oxygenated level-dependent 

(BOLD) the nature of applied stimuli and hemodynamic response to neuronal events and is 

called hemodynamic response function (HRF). The standard HRF shows the signal peaks during 

5-8 sec after triggering neuronal events because neuronal activity increases metabolic demands 

that lead to an increase in the influx of oxygenated blood. Since the inflow of oxygenated blood 
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continues and results in more supply than demand, the HRF becomes straightened roughly after 

10 sec [4], [17]. The hrf for this study is calculated by spatially averaging across all channels and 

then temporally averaging the obtained vector from the previous step concerning the number of 

trials i.e. 10 for each MWL. A total of 16 subjects (eleven male and five female) initially 

participated, in this study with age ranging from 20 to 27 years, mean age of 23.5 years, and a 

standard deviation of 5.5 years. Medical screening is performed under the supervision of a doctor 

to assess any physical or psychological issues in the participants. Participants were given the 

details about the experiment before the experimentation. The fNIRS recording of one subject was 

more than 10% contaminated with channel noise and was excluded from further analysis. The 

remaining fifteen subjects (ten male and five female) data was analyzed.   

 

Table 6-1: Hand open, hand close and average accuracies of subjects 

 

Subjects Total 

commands of 

each category 

Open 

Success  

Close 

Success  

Hand open 

accuracy 

Hand close 

accuracy 

Average 

accuracy 

Part 1 10 8 9 80.00 90.00 85.00 

Part 2 -do- 9 8 90.00 80.00 85.00 

Part 3 -do- 9 8 90.00 80.00 85.00 

Part 4 -do- 8 7 80.00 70.00 75.00 

Part 5 -do- 9 9 90.00 90.00 90.00 

Part 6 -do- 10 9 100.00 90.00 95.00 

Part 7 -do- 8 8 80.00 80.00 80.00 

Part 8 -do- 7 9 70.00 90.00 80.00 

Part 9 -do- 8 7 80.00 70.00 75.00 

Part 10 -do- 9 8 90.00 80.00 85.00 

Part 11 -do- 8 8 80.00 80.00 80.00 

Part 12 -do- 7 9 70.00 90.00 80.00 

Part 13 -do- 9 8 90.00 80.00 85.00 

Average 10 8.38 8.23 83.84 82.30 83.07 
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The total length of the recorded signal is 4 seconds. Maximum accuracy achieved is 95% 

while the minimum accuracy achieved is 75%. PSD plots of different acquired EEG signals and, 

controlling commands, after preprocessing, signals are shown along with the corresponding 

opening and closing angles of the hand‘s MIP and DIP joints data and implementation on 

exoskeleton hand. 

Table 4-2: Subject gender, age and dominan hand details 

 

Subjects Gender Age (Years) Glasses Writing 

hand 

Part 1 Male 21 NO Right 

Part 2 -do- 22 NO -do- 

Part 3 -do- 22.5 NO -do- 

Part 4 -do- 24 NO Left 

Part 5 -do- 23 YES Right 

Part 6 -do- 22 NO -do- 

Part 7 -do- 21.5 NO -do- 

Part 8 -do- 22 NO -do- 

Part 9 -do- 20 NO Left 

Part 10 -do- 21.5 NO Right 

Part 11 Female 19.6 YES Left 

Part 12 -do- 21.4 NO Right 

Part 13 -do- 22.1 NO -do- 

   Average ***  21.73±1.15 *** *** 

 

6.3 Results 

c 
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Figure 6-3: Hemodynamic response function of MWL 1 and 2 

 

Targeting the most affected patients of stroke, we have devised two commands 

asynchronous SSVEP based servo tendon driven exoskeleton hand for grasping task. Targeting 

the most affected patients of stroke, we have devised two commands fNIRS based servo tendon 

driven exoskeleton hand for grasping task. The two-level of the mental workload are recorded 

with the fNIRS device at 8 Hz sampling frequency. The maximum accuracy achieved is 91.31% 

while the minimum averaged accuracy is 80.15%. Targeted channels are PF1, PF2, and PFz. 

After normalizing channel readings, we used the 4
th

 order low-passed Butterworth bandpass. 

Then we used SVM to generate a command (either open or close) for a prosthetic hand. Results 

showed the effectiveness of the used technique for those suffering from a severe level of strokes. 

Accumulated Power Spectral Density (PSD) is used along with CCA and frequency contents of 

the filtered signal have been extracted. Results showed the validity of the used technique to those 

suffering from severe levels of strokes. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

In the first part of this study, a detailed analysis of human behavior and memory activities 

in the brain using different machine learning (ML) and deep learning (DL) classification 

algorithms is performed. The next part includes the comparison between the computational 

requirement of different ML and DL algorithms for analyzing human behavior and memory 

activities in the brain for a brain-machine interface. Further in the line, the fast and efficient 

heartbeat classification algorithm is presented, and then the novel application of mental workload 

in soft exoskeleton (servo motor driven) fNIRS-based brain-computer interface (BCI) system is 

discussed. Lastly, the novel symmetric based homogenous transfer learning is applied on fNIRS 

data to reduce calibration and training time. Targeting the most affected patients of stroke, we 

have devised two commands mental workload based servo tendon driven exoskeleton hand for 

grasping task. Targeting the most affected patients of stroke, I have devised two commands 

fNIRS based servo tendon driven exoskeleton hand for grasping task. The results confirm the 

possibility of utilizing mental workload as an application for brain-computer interfacing. 

Previously, different studies have utilized synchronous and asynchronous SSVEP, motor and 

imagery activity to drive the exoskeleton. 

The recurrent neural network has an excellent ability of pattern recognition in sequences 

of input. But they have stability issues either due to exploding gradients or vanishing gradients. I 

used a variant of recurrent neural network that solved the exploding and vanishing gradient 

problem by using memory cells. By exploiting that variant namely Long Short Term Memory 

(LSTM), the highest classification accuracy of four class mental workload data for the brain-

computer interface is achieved. This is indeed a state of the art algorithm in the present brain-

computer interface realm. The heartbeat classification has paramount importance in detecting 

cardiovascular diseases. The ultra-low-powered classifier with state of the art accuracy is 

presented in this dissertation. The classifier is based on an extreme learning machine (ELM) 

algorithm. The ELMs do not require gradient descent and backpropagation for training. This 

makes them an excellent choice as they do not require a long time for training. Also, they have in 

order of magnitude fewer parameters than artificial neural networks and convolutional neural 

networks. 
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The comparison between the proposed extreme learning machines algorithm with another 

state of the art algorithms are presented and it turns out that, besides being fewer parameters and 

very fast training time, our method compete toe-to-toe with the other gradient descent and 

backpropagation based algorithms. Extending the same theme, in the next study, the resource 

comparison between machine learning and deep learning algorithms is performed. The deep 

learning algorithms, thanks to their auto feature extraction ability, are getting more and more 

popular these days. But this comes at the cost of longer training time, more computer resources, 

and the requirement of an ample amount of training dataset. This study was designed to evaluate 

both ml and dl algorithms in light of the above-mentioned nuances. Deep Learning (DL) for such 

classification purposes due to feature engineering and complex data pre-processing requirements 

of machine learning algorithms. 

Bypassing the challenges of feature engineering through DL techniques comes at the cost 

of time and computational complexity of the system. I utilize the neuroimaging recordings and 

perform MWL classification using conventional LDA, k-NN, SVM, and DL algorithms ANN, 

CNN, and a recurrent neural network LSTM. In this study, we discussed the theoretical 

computational complexities and compared generalizability, classification accuracies, train and 

test time requirements of k-NN, SVM, ANN, CNN, and LSTM. The averaged accuracy achieved 

using k-NN, SVM, ANN, CNN, and LSTM is 92.54, 81.47, 64.80, 55.94, 58.61, and 32.13 % 

while averaged train time being 127.40, 7.57, 1.41, 0.45, 0.01, and 0.03 sec and test time being 

0.603, 0.040, 0.038, 0.039, 0.061, and 0.00032 sec, respectively. The findings suggest that ML 

algorithms are recommended for real-time BCI with low commands and focus on efficient 

computation while DL algorithms are recommended for use cases where high commands and 

accuracy are of prime importance. CNN covers the nice ground between optimal classification 

accuracy and reasonable train, the test time. In the light of these findings, I present an alternative 

solution to solve the deep learning algorithms shortcoming. I explored the feature-based transfer 

learning method for the classification of BCI commands to reduce the training and calibration 

time. In the first approach, we used 16 subjects to train the CNN network, namely learned CNN 

network, and learn the source domain knowledge of the n-back dataset. Further, we split the 

remaining 10 subjects into two groups i.e control and baseline. We then train the control group 

with the learned CNN network and baseline with randomly initialized CNN network and 

compared their accuracies using statistical analysis. We can achieve the maximum saturated 
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accuracy 20 epochs sooner than the baseline group which in turn reduces the training time. The 

proposed transfer learning method also outperformed the averaged accuracy achieved using the 

learned CNN model over the traditional CNN model by 12%. In the second experiment, we 

proved that instance-based transfer learning can significantly reduce the calibration time with 

reasonable accuracy on the 10:90 train-test ratio and become saturate on the 30:70 train-test split 

ratio of the dataset. 

The fNIRS based BCI took substantially more time to generate commands than EEG, 

there is a lot of room to work on early activity detection. RNN based BCI is a new class of 

algorithm for brain signal classification. There is a need for a lot of experimentation for RNN 

variants, especially GRUs, having fewer parameters than LSTM, which can be one possible 

direction. There are a lot of potential applications for asymmetric homogenous transfer learning. 

Working in that direction will help researchers to mitigate nuances attached to deep learning 

algorithms. 
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