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Abstract 
 

Endoplasmic reticulum (ER) dysfunction has an imperative role in numerous 

neurological disorders, including, multiple sclerosis, amyotrophic lateral sclerosis, prion 

diseases and Alzheimer's disease. In disease state, protein misfolding in the endoplasmic 

reticulum (ER) initiates a stress response, the unfolded protein response (UPR) in 

neurons due to a rise in proteotoxicity. Although there is an immense effort to explore the 

pathogenesis of ER dysfunction, unfortunately the exact mechanism is still unclear. 

Therefore as a preliminary initiative the present study was conducted to investigate one 

of the aspects of this complex molecular event. The study elucidates the molecular 

relationship between the unfolded protein response (UPR) during ER stress and 

aggregation of Amyloid beta that ultimately results in neuronal toxicity leading to 

neurodegeneration.   The experimental animals, Balb/c mice were divided into 4 groups 

(n=15, each). Dithiothreitol (DTT) was used to induce UPR following ER stress.  An 

optimum dose of DTT (75 mg/kg) was administered after every 24 hours. Histological 

examination showed a marked formation of amyloid beta plaques in the cortex and 

hippocampus sections of mice brain along with atrophied neuronal morphology, after 48 

to 72 hours of treatment. Differential proteomic analysis was carried out using SDS-

PAGE followed by ESI-QTOFMS/MS identification. The analysis revealed 10 

differentially expressed cortical and hippocampal proteins, involved in various cellular 

and metabolic pathways. The gene expression analysis performed by Real-Time PCR 

determined the transcriptional expression of Activating Transcription Factor 6 (ATF6), a 

UPR regulating protein, and Amyloid Precursor Protein (APP) isoforms (common, 695 

770). Furthermore, the immunohistochemical analysis also revealed the nuclear 

localization of ATF6 during ER stress. In conclusion, the findings of the present work 

may contributes to the existing pool of knowledge and provide a better understanding of 

complex molecular association of UPR with AB neurotoxicty that may help in further 
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elucidation of plausible aberrant molecular/signaling pathways during ER stress that may 

lead to neurodegeneration. 
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Chapter 1 

Introduction 

Neurodegeneration is a broad term encompassing the progressive loss of the structure and 

function of neurons. The disorders based on loss of neurons are termed as 

neurodegenerative disorders and include, Alzheimer’s Disorder (AD), Parkinson’s 

Disease (PD), Huntington’s, among others. AD is the most common and is the 9th leading 

cause of mortality worldwide. One of the common hallmarks of neurodegenerative 

diseases is the aggregation of misfolded proteins. In AD, it is the formation of Amyloid 

beta (A𝛽) plaques or Neurofibrillary Tangles (NFT’s). 

Stress like oxidative stress, heat shocks and environmental toxins have been implicated in 

initiating non-autonomous pathways against proteotoxicity. Proteotoxicity and 

proteostasis regulate one another inversely. Proteotoxicity causes a sharp decline in 

proteostasis and this decline causes misfolding of proteins and their aggregation. 

Proteotoxicity in turn leads to neurotoxicity and eventually neurodegeneration (Taylor et 

al., 2014). 

The mammalian brain is highly vulnerable to oxidative damage, caused by excessive 

oxygen consumption, high iron content, low anti-oxidative enzyme activities or the 

abundance of polyunsaturated fatty acids in cell membranes (Youdim, 1988; Kowzlowski 

et al., 2012; Rouault, 2013).  

In the presence of oxidative stress, free radicals surpass the capacity of the antioxidant 

defense and cause cellular dysfunction, degradation of the cell membrane and apoptosis 

(Campbell et al., 2001; Dixon and Stockwell, 2014). Protein oxidation evoked by these 

free radicals may cause protein structural and functional disruptions, and in this way are 

involved in age-related functional decline in the brain. Additionally, ROS are also 
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responsible for the formation of protein carbonyl formation by oxidizing amino acid 

residues, which cause cellular damage (Crichton et al., 2012). Oxidative stress has been 

established as a long-standing precursor of the formation of β-amyloid (Aβ) plaques in 

AD. There are two kinds of Aβ peptides; soluble and insoluble. The soluble β-amyloid 

protein is constantly being expressed in neurons and is cytoprotective in nature. 

Furthermore, it’s over expression leads to its insoluble form, Aβ plaques or aggregates, 

which cause cell cycle arrest, degeneration and cell death (Butterfield, 1997; Butterfield 

and Boyd-Kimball, 2004; Castellani et al., 2012; Greenough et al., 2013). Moreover, it 

additionally connects with SOD1 and disrupts its enzymatic action. 

The Unfolded Protein Response (UPR) is a last stage defense mechanism against 

prolonged cellular stress. It should be noted that the stress agent could be environmental 

or chemical (Wang and Kaufman, 2012).  The UPR is enacted by the aggregation of 

unfolded/misfolded proteins in the endoplasmic reticulum (ER). The UPR is a 

homeostatic reaction to alleviate ER stress through transcriptional and translational 

events that diminish the generation of secreted and membrane proteins and enhances the 

production of chaperone molecules, foldases and the other various components included 

in ERQC and ERAD pathways. These are representations of cell-surviving mechanisms. 

Moreover, in the event that they come up short, then programed cell death (PCD) may 

result (Ron and Walter, 2007). While the UPR signaling pathways have been 

fundamentally worked out in yeast and mammals, similar pathways have been recognized 

in plants in recent years (Deng et al., 2013).  

Mammalian systems have three types of UPR sensors, Inositol Requiring Endonuclease 1 

(IRE1), PKR-like ER kinase (PERK) and Activating Transcription Factor 6 (ATF6). 

These three sensors are present on the ER membrane. Initiation of these three arms of the 

UPR relies on the Binding Immunoglobulin Protein (BiP). In their inactive state, the 

luminal areas of IRE1, PERK and ATF6 are connected with BiP (Bertolotti and Ron, 

2001). When the cell encounters stress conditions, i.e. ER stress, BiP is contended far 
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from these anxiety sensors by an abundance of unfolded/misfolded proteins, bringing 

about the oligomerization of IRE1 and PERK and the translocation of ATF6 to the Golgi 

complex (Shen et al., 2002; Credle et al., 2005; Moore and Hollien, 2012).  

ATF6 in mammalian cells is a type II ER membrane protein with two domains; a bZIP 

domain that faces the cytoplasmic side of the ER membrane and a Site-1-Protease (S1P) 

recognition domain, facing the ER lumen. Undergoing ER stress, ATF6 translocates from 

ER to the Golgi helped by the ER export machinery, coat protein complex II (COPII). 

ATF6 is subjected to sequential cleavages by a soluble luminal protease, S1P, and Site-2-

Protease (S2P), which causes the cytoplasmic part of ATF6 to be released (Schindler and 

Schekman, 2009). This procedure is called regulated intramembrane proteolysis (RIP). 

The cleaved ATF6 travels into the nucleus and functions as a transcription factor (TF) 

activating the target genes expression. ATF6 initiates the UPR by directly interacting 

with the promoters of ERQC/ERAD related genes (Ye et al., 2000).  

The UPR is typically instigated in vitro by treating the model with ER stress agents, like 

tunicamycin or DTT, where tunicamycin propels ER stress by hindering the exchange of 

oligosaccharides with nascent ER proteins (Hoyer-Hansen and Jaattela, 2007). 

Dithithreitol, C4H10O2S2 (DTT) is the commonly known as Cleland's reagentis a uniquely 

powerful reducing agent and when it undergoes oxidation, it conforms into a stable six-

membered ring, with a core disulphide bond (S=S) (Cleland, 1964). DTT acts by 

disrupting the redox conditions required for the development of disulfide bridges in 

proteins.  

DTT initiates ER stress by disrupting the redox conditions required for the formation of 

disulfide bridges in proteins (Ryoo et al., 2007). It ought to be called to attention that 

while both TM and DTT bring about misfolded protein conformations amassing in the 

ER, they are essential intermediaries for the characteristic natural conditions that evoke 

the UPR in cells.  The current study proposes to observe the underlying mechanism of 
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key UPR players and toxic amyloid beta aggregation by inducing ER stress in a mouse 

model by using advance genomics and proteomics approaches.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Mechanistic representation of chemically induced ER stress leading to 

Neurodegeneration. There are environmental and chemical sources causing cellular 

proteotoxicity in the mammalian brain, which in turn leads to neurodegeneration. 
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1.1 Research Objectives 

The objectives of the study are; 

• To observe the relationship between the unfolded protein response (UPR) and Aβ 

accumulation under ER stress conditions in mice cortex and hippocampal regions. 

• To compare the ER stress levels with UPR regulating proteins in a time dependent 

manner by,  

a. Cortical and hippocampal histopathological examination using Cresyl violet, congo red 

and Haematoxylin and Eosin (H&E) staining and immunohistochemical labeling of UPR 

regulator, ATF6 in the neurons.  

b. Transcriptional analysis of genes mediating UPR and Aβ generation, that are, ATF6, 

APP common, APP 695 and APP 770 respectively. 

c. Mapping differential cortical and hippocampal brain proteome under ER stress. 
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Chapter 2 

Literature Review 

2.1 The Unfolded Protein Response (UPR) in the Endoplasmic Reticulum 

(ER) 

Neurodegenerative disorders like Alzheimer's Disease (AD), Parkinson's infection (PD), 

prion disease, Huntington's disease (HD), frontotemporal dementia (FTD), and 

amyotrophic lateral sclerosis (ALS) are portrayed by the accumulation and 

conglomeration of misfolded proteins. The aggregated proteins found in different regions 

of the brain are distinctive for each neurodegenerative disease. The foremost site of 

protein synthesis is the endoplasmic reticulum (ER), where secretory, transmembrane and 

organelle-targeted proteins are produced, comprising of nearly 30% of the proteome. A 

key component of protein quality control in the ER is the unfolded protein response 

(UPR), which is possibly the most important factor in play, if the proteostasis in the ER is 

aggravated (Scheper and Hoozemans, 2015).  

Before the UPR was discovered, it had been observed that distinctive sorts of cellular 

stress like viral transformation; inhibition of glycosylation and calcium ionophore 

treatment induced the expression of a select group of proteins. These proteins were called 

glucose-regulated proteins (GRPs) in light of their induction by glucose deprivation and 

to distinguish them from a related group of proteins that were induced by temperature 

fluctuations, the heat shock proteins (Hsp) (Subjeck and Shyy, 1986). The term UPR was 

coined in 1988, when first direct association between protein folding stress in the ER and 

the induction of GRPs, including GRP78 (BiP), was made by overexpression of mutant 

influenza hemagglutinin protein in mammalian cells (Kozutsumi et al., 1988). This stress 

response was dubbed as the unfolded protein response or UPR. Gradually, the key 

signaling protein molecules that mediate the response were identified, with most of the 

pioneering work done in yeast (Mori et al., 1992). This was followed by the identification 
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of the sensors in the ER membrane responsible for transducing the signal from the 

misfolded proteins in the ER to the nucleus (Cox et al., 1993; Maly and Papa, 2014). 

These are three trans-membrane proteins present on the membrane of the ER, namely 

Inositol Requiring Enzyme 1 (IRE1), Protein kinase R (PKR)-like endoplasmic reticulum 

kinase (PERK) and Activating Transcription Factor 6 (ATF6).  Under normal conditions, 

GRP78 or BiP binds these proteins at the ER membrane; however, under stress GRP78 

releases the proteins, which in turn activate their own signaling mechanisms (Roussel et 

al., 2013). 

2.2 The Unfolded Protein Response (UPR) Sensors 

IRE1 oligomerizes when the response is activated which brings about trans-

autophosphorylation. A primary consequence of activation of IRE1 is the unconventional 

splicing of XBP1 mRNA, bringing about the activation of the transcription factor XBP1 

(Yoshida et al., 2001; Calfon et al., 2002; Lee et al., 2002). Mammalian cells, under 

stress, the protein synthesis is inhibited by the phosphorylation of the translation 

initiation factor eIF2α, which is catalyzed by protein kinase R (PKR)- like endoplasmic 

reticulum kinase (PERK), an ER transmembrane protein (Shi et al., 1998; Harding et al., 

1999). Activating transcription factor 6 (ATF6) was the third sensor to be discovered. 

This membrane bound transcription factor is transported to the Golgi upon UPR 

activation where it is processed and released towards the nucleus (Haze et al., 1999). The 

IRE1, PERK and ATF6 pathways together comprise of an intricate network that has an 

expansive scope of transcriptional and translational targets. The UPR is closely 

associated with the proteolytic machinery of the cell. Proteins that misfold in the ER are 

sent out to the cytosol and degraded by the proteasome (Ruggiano et al., 2014). Then 

again, once the UPR is activated, autophagy increases and this turns into the major 

proteolytic system (Bernales et al., 2006; Ogata et al., 2006; Ding et al., 2007; Nijholt et 

al., 2011; Scheper et al., 2011). However, numerous mechanistic details and regulatory 

pathways are still uncovered, the core signaling factors involved in mammalian UPR had 
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been reported by 2002, as shown in figure 2.2. An important function of the UPR is its 

function as a proteostatic stress response initiated by ER dysfunction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure #2.1: The unfolded protein response. The unfolded protein response consists of three 

independent signaling pathways that work in parallel and are activated upon accumulation of 

unfolded proteins inside the ER. Each signaling pathway is defined by the different ER-resident 

transmembrane proteins that act as ER stress sensors: RNA-activated protein kinase R (PKR)-like 

ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol requiring enzyme 1 

(IRE1). Activation of the UPR leads to an overall translational block and specific activation of 

ER stress responsive genes, which will increase the protein folding capacity and decrease the 

protein-folding load in the ER. 

 

2.3 Dysfunction Of The Unfolded Protein Response (UPR)  

Unsurprisingly, the dysfunction in the UPR can give rise to disease (Scheper and 

Hoozemans, 2015). In neurodegenerative disorders UPR initiation and activation is 

associated with ER dysfunction and prompts the loss of neuronal function. It is necessary 

to be aware of the diverse appearances that the UPR has in physiology and pathology. 
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The accumulation of misfolded proteins is a typical factor in neurodegenerative diseases 

(Roussel et al., 2013). Hence, it is noteworthy that the UPR has been extensively studied 

in respect to neurodegeneration, both in vivo and in vitro models. However, it is 

becoming apparent that the role of the UPR observed in these models is not consistent 

and even paradoxical. The proposed function of the UPR concluded from these models is 

difficult to connect to the human brain under pathological conditions (Hoozemans et al., 

2005).  

2.4 The Unfolded Protein Response (UPR) And Alzheimer’s Pathology 

Alzheimer’s disease is an age-dependent neurodegenerative disease, one of the most 

common forms of dementia and the 9th leading cause of mortality. The neuropathological 

hallmark of AD is the accumulation of misfolded proteins; extracellular senile plaques of 

Aβ and intracellular aggregates of tau protein in the form of neurofibrillary tangles 

(NFTs). Hence, AD is the prime example of a protein folding disease (Taylor et al., 

2002). 

UPR specific markers are enhanced in AD brain tissue as compared to healthy brain 

tissue. GRP78 (BiP) levels are also increased in the hippocampus and cortical regions of 

the diseased brain. Moreover, other studies suggest the presence of phosphorylated PERK 

and IRE1 in AD neurons (Chang et al., 2002; Unterberger et al., 2006; Hoozemans et al., 

2009; Stutzbach et al., 2013). These markers either appear in morphologically healthy 

neurons or in the neurons containing abnormally phosphorylated tau protein. However, 

haven’t been observed in NFT containing neurons (Hoozemans et al. 2009). These 

observations indicate the involvement of the UPR in the early stages of AD. 
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2.5 Amyloid Precursor Protein (APP) and the Generation of Amyloid Beta 

Plaques (Aβ) 

APP is a 695-770 amino acid membrane-spanning glycoprotein known to expressive in 

the brain and other various tissues (Nishimoto et al., 1993). APP assumes a major role in 

neuronal synapse formation and repair (Priller et al., 2006) and is likewise included in 

cell adhesion, cell signaling and long term potentiation. APP expression is high amid 

neuronal differentiation and after neural damage (Zheng and Koo, 2006).  

APP processing results in Aβ creation that is the hallmark of neurodegeneration. The 

APP gene has 300,000 base pairs located on chromosome 21 (Preece et al., 2004). A total 

number of 18 exons can be alternatively spliced from the APP gene to produce distinctive 

isoforms (Hattori et al., 1997). The classification of APP isoforms is done on the premise 

of the absence or presence of exon 7, which encodes Kunitz type serine protease inhibitor 

(KPI) domain. APP751, APP770, APP365 and APP563 isoforms are KPI+ while 

APP695 and APP714 are KPI- isoforms (Preece et al., 2004). The numbers allude to the 

number of amino acids in each isoform. The APP isoforms having the KPI domain are 

over expressed and play an important role in AD pathology (Kitaguchi et al., 1988). 

APP770 and APP751 are plentifully expressed in astrocytes and microglia while APP695 

is expressed in neurons (Leblanc et al., 1991). Changes in the expression pattern of APP 

isoforms in the brain mimics the changes in cellular density. Neuronal loss in AD brings 

about a decline in the APP695 isoform. Moreover, inflammation causes the activation of 

astrocytes thus causing an over expression of APP770 (Kitaguchi et al., 1990). APP is 

processed by the means of two proteolytic pathways; firstly α-secretase cleaves the 

middle of the Aβ sequence, producing a smaller C-terminal section (p3) and an 

extracellular, soluble sAPPα. Secondly, generation of Aβ and a dissolvable sAPPβ also 

occurs by the amyloidogenic route sequential cleavage by β and γ secretases (Wolfe et 

al., 1999). γ-secretase can cleave at amino acid 40 or 42, 1–40 structure is typical yet 1-

42 is plenteous if there should arise an occurrence of AD. Aβ (1-42) prompts lipid 

peroxidation, DNA and protein oxidation both in vitro and in vivo (Drake et al., 2003). 
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Aβ is a small soluble aggregate, equipped with the capability of being embedded into the 

lipid membrane and to produce ROS. The disruption of cellular homeostasis is an 

unwanted consequence of lipid peroxidation, which brings about cell membrane damage, 

alterations in the activity of transport systems, ion channels, regulated cell functions and 

ultimately neurodegeneration (Varadarajan et al., 2000). 

2.6 Amyloid beta (Aβ) Toxicity 

Aβ (1-42) is damaging to the cells both in vivo and in vitro (Pike et al., 1993), it 

aggregates spontaneously to shape low atomic weight oligomers; then short, flexible 

protofibrils and long, rigid fibrils—all in dynamic equilibrium with one another (Lambert 

et al., 1998). Factors involved in the aggregation and accumulation of Aβ include: the 

presence of metal ions, such as, iron, aluminum and zinc (Mantyh et al., 1993), high 

peptide concentration, acidic pH (Burdick et al., 1992), oxidative stress (Dyrks et al., 

1992) and the presence of very specific phospholipid metabolites (Klunk et al., 1997). Aβ 

prompts apoptosis by means of DNA damage (Su et al., 1994) and alterations in the 

products of the caspase cleavage (Kitamura et al., 1998; Engidawork et al., 2001). Cell 

death mechanisms are majorly overlapping, potentially relying upon the bioenergetics 

status of the cell as well as the intensity of the stimuli. 

2.7 Chemical Induction Of The Unfolded Protein Response (UPR) 

The UPR can be induced in all cell types by various chemicals. Tunicamycin and 

thapsigargin were introduced as UPR initiating agents with respect to their modes of 

action (Hu et al., 2006). Tunicamycin inhibits N-linked glycosylation of nascent proteins 

and causes the cell cycle to arrest causing the cell to be in stress (Chan and Egan, 2005). 

On the other hand, thapsigargin, disrupts the calcium homeostasis of the cell, built up by 

the ER, by inhibiting the enzyme, Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) 

(Ding et al., 2006). Brefeldin A has also been implicated as an initiator of the UPR, as a 

calcium homoestatic inhibitor (Kitamura, 2011). Besides these chemicals, diothiothreitol 
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(DTT) has also been established as the causative agent of UPR. DTT is a laboratory 

reagent known as Cleland’s Reagent. Usually, it is used to denature proteins in 

techniques like SDS-PAGE. However, recently it has been used to induce the UPR in 

various cell lines, C. elegans and zebrafish. Dithiothreitol is a reducing agent and reduces 

the disulphide bridges by causing thiol formation between cysteine residues, which 

causes protein build up in the endoplasmic reticulum, which leads to the initiation of 

UPR (Cleland, 1964). DTT has been utilized as an ER stress inducer in numerous cell 

lines; Mouse Embryonic Fibroblasts, multiple myeloma cell line, β cell line, MIN6, rat β 

cell lines and human pancreatic β cells and plasma cells (Miyazaki et al., 1990; Asfari et 

al., 1992; Hohmeier et al., 2000; Schindler and Schekman, 2009; Chen et al., 2011; 

Schuiki et al., 2012; Gao et al., 2014). Furthermore, recently DTT has also been used to 

induce stress in a transgenic zebrafish model (Li et al., 2015).  
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Chapter 3 

Materials and Methods 

3.1 Chemical Reagents 
Reverse transcriptase (RT), Deoxynucleotide triphosphate (dNTPs) and Taq polymerase 

were acquired from Fermentas (Thermo Scientific, USA). Trizol was obtained from 

Invitrogen (USA). Dithiothreitol (DTT) and all the other chemicals were procured from 

Sigma-Aldrich, USA, unless indicated otherwise. 

3.2 Animals 
BALB/c mice were obtained from National Institute of Health (NIH) Islamabad, Pakistan 

and housed in the Laboratory Animal House of Atta-ur-Rehman School of Applied 

Biosciences (ASAB), National University of Sciences and Technology (NUST). After 

acclimatization time of two weeks, the mice were bred and kept in cages at a steady 

temperature (25±2 ºC) and regular light-dark cycles (12-12 h). The mice were provided 

with distilled water and a standard regimen comprising of 30% crude protein, 9% crude 

fat, 4% crude fiber and 10% moisture. 20 male mice (35-45 g and 10-12 weeks of age) 

were utilized in the experiments. 

3.4 Ethics Statement 
The mice were housed in the Laboratory Animal House of Atta-ur-Rehman School of 

Applied Biosciences (ASAB), National University of Science and Technology (NUST), 

under a controlled environment. All the experiments performed were in compliance with 

the rulings of the Institute of Laboratory Animal Research, Division on Earth and Life 

Sciences, National Institute of Health, USA (Guide for the Care and Use of Laboratory 

Animals: Eighth Edition, 2011). The protocol was approved from the Internal Review 

Board (IRB) of Atta-ur-Rahman School of Applied Biosciences, NUST. 
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3.5 Study Design 

The experimental animals were divided into 5 groups (n=15, each) and were provided 

with unadulterated food and water regimen. DTT was administered intraperitoneally as a 

cellular stress-inducing agent at three different time intervals. 

 

Serial 

No. 
Group Treatment 

Duration  

(Days) 

1 Control 
Normal Feed and Water 

Placebo i.p. Administration 
4 

2 Dithiothreitol Treated- 24 h 
Normal Feed and Water 

i.p. Injection of 75mg/kg dose of DTT 
1 

3 Dithiothreitol Treated- 48h 
Normal Feed and Water 

i.p. Injection of 75mg/kg dose of DTT 
2 

4 Dithiothreitol Treated- 72h 
Normal Feed and Water 

i.p. Injection of 75mg/kg dose of DTT 
3 

 

Table 3.1: Experimental design. Untreated Balb/c mice were used as the control. Other groups 

were AlCl3.6H2O, 24 h DTT treatment, 48 h DTT treatment and 72 h DTT treatment. (n=15) 

 

3.6 Histological Examination of Brain Regional Tissues 

3.6.1 Tissue Perfusion/Fixation for Histological Assessment 

Heart perfusion was performed in accordance with the protocol of (Gage et al., 2012). 

The excised brain tissue was then placed in 4% paraformaldehyde for 24h at 4˚C before 

being processed further for paraffin processing and embedding. After 24 h, the brain 

tissue was dehydrated through a series of alcohols (isopropanol), 70% (1h), 95% (1h), 
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and 100% (1h) before paraffin infiltration. The brain tissues were then placed in xylene 

(4h) and paraffin embedding was performed by keeping the tissue in molten paraffin (4h 

at 60 °C and left to solidify (4 oC) in mould (block formation) prior to cutting. 

 

3.6.2 Cresyl Violet Staining 

Tissue sections (3 µ) mounted on slides were de-paraffinized in xylene for 10 m before 

being rehydrated by 70% isopropanol (10m), and washed with dd H2O (5m). Cresyl 

violet stain was poured over the tissues sections and left for proper staining (4m). The 

sections were then washed with dd H2O and 70 % acid alcohol (2m) and later dried for 2h 

before being mounted with cover slips. The slides were visualized by inverted 

microscope (Labomed, USA) at 10X and 40 X resolutions. The images were captured by 

Pixel Pro™ image analysis software (Labomed, USA). 

 

3.6.3 Congo Red Staining 

The Congo red stain (working solution: 49.5 mL Congo Red (Stock) and 0.5 mL 1% 

NaOH)) was poured on the de-paraffinized brain sections and left for 20 minutes. The 

sections were washed with dd H2O and alkaline alcohol for 2 minutes. The sections were 

then counterstained by haemotoxylin for 30 seconds and further washed with 70% 

isopropanol for 6 minutes and then with dd H2O. After air-drying (1 h) the slides were 

mounted by cover slips and later visualized by inverted microscope (Labomed, USA) at 

40 X resolution. The images were captured by Pixel Pro™ image analysis software 

(Labomed, USA). 

 

3.6.4 Haemotoxylin and Eosin Staining (H&E) 

Standard haematoxylin-eosin staining was performed on 5 µ tissue sections. Tissue was 

de-paraffinized and incubated for 8 minutes in Mayer’s haematoxylin solution and 
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washed in water for 10 minutes. Sections were dipped in 95% ethanol and counterstained 

with eosin for 30 seconds. 

 

3.6.5 Immunohistochemical Staining 

Sagital sections (5 µ) of brain tissues were mounted on Poly Lysine coated adhesive 

slides. Following de-paraffinization, heat mediated antigen retrieval was performed by 

incubating sections for 35 minutes in sodium citrate (pH: 6). The sections were 

subsequently washed and incubated in 35% H2O2. To minimize non-specific labeling the 

sections were incubated for 10 minutes in 5% bovine serum albumin in PBS and later 

incubated overnight at 4 °C in 0.1% bovine serum albumin in PBS containing: mouse 

monoclonal antibody for ATF6 (1:100; ab11909). The sections were then washed and 

placed in 1:100 dilution of HRP conjugated anti-mouse IgG (ab97051) for 1 h at room 

temperature. The peroxidase reaction product was visualized by incubation in a solution 

containing 0.025% of 3,3′ diaminobenzidine (DAB, ab50185) for 10 minutes. Following 

haematoxylin counter staining, cover slips were mounted and sections were visualized by 

inverted microscope (Labomed, USA) at 20 X resolutions. The images were captured by 

Pixel Pro™ image analysis software (Labomed, USA). 

 

3.7 Brain Dissection and Isolation of Cortex and Hippocampus 
Mice were anesthetized and sacrificed consecutively by neck dislocation and the cortex 

and hippocampus, were dissected out and immediately frozen in the liquid nitrogen. 

These samples were stored at -80 ºC until further processing. 
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3.8 Protein Expression Studies 

3.8.1 Protein Extraction 

The entire tissue lysates were prepared by suspension in 100 µl of ice-cold lysis buffer 

(7M urea, 2M thiourea, 4% CHAPS, 10 mM Phenyl methyl sulfonyl fluoride (PMSF), 

1% Dithiothreitol (DTT)), superseded by sonication utilizing an UP400S Ultrasonic 

Processor (Hielscher Ultrasound Technology). To increase dissolubility, the homogenates 

were placed at room temperature for 1 hour and centrifuged at 14000 rpm at 4 ºC for 10 

min. The supernatant was collected and stored at -20 ºC. In order to maximize the yield, 

50 µl lysis buffer was added to the pellet and the treatment was recapitulated. The two 

suspensions were pooled and centrifuged at 14000 rpm for 90 minutes. The last 

supernatant was stored at – 80 ºC until further use. 

 

3.8.2 Protein Quantification (Bradford’s Assay) 

Serial dilutions of Bovine Serum Albumin (BSA) (1mg/1ml) were prepared with ddH2O. 

The samples were diluted with ddH2O (1:20) in duplicate. The total volume of every 

standard/example was 20 µl and 1 ml of Bradford's reagent was included, followed by a 

spin in the vortex. The samples were incubated for 10 min at room temperature. The 

absorbance of every sample was measured at 595 nm using OPTIMA 300 

spectrophotometer. A standard curve was inferred by plotting standard absorbance 

against its concentration. This curve was used to quantify the protein concentration 

against the observed absorbance.  

 

3.8.3 Protein Separation- Sodium Dodecyl Sulphate-PolyAcrylamide Gel 

Electrophoresis (SDS-PAGE) 

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was utilized 

to separate the proteins based on their molecular weight. 10% resolving gel (distilled 
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water; monomer solution; 1.5M Tris-HCl pH 8.8; 10% SDS; 10% ammonium per 

sulphate; TEMED) was prepared and poured quickly between the glass plates. 

Isopropanol was added to the top and the gel was left to polymerize for 40 minutes. This 

was followed by the preparation of 4% stacking gel (distilled water; monomer solution; 

1.5 M Tris-HCl pH 6.8; 10%SDS; 10%APS; TEMED). Stacking gel was poured on top 

of the polymerized resolving gel. The comb was immediately inserted into the gel. The 

gel was left for another 25 minutes to allow polymerization. After polymerization, the 

combs were removed and the glass plates were moved to the electrophoresis tank, which 

was loaded with 1X electrode tank buffer. Samples were prepared by the addition of 

sample diluting buffer (0.125M Tris-HCl pH 6.8; 20% Glycerol; 10% 2-

Mercaptoethanol). The samples were heated at 100ºC for 2 min and given a short spin at 

14000 rpm for 2 min. The samples were then loaded into the wells and the electrophoretic 

separation procedure was carried out at 100 millivolts for 90 min. After the run, the gel 

was put in coomassie brilliant blue staining solution (0.025%), overnight. The gel was 

destained, utilizing 10% destaining solution (75ml glacial acetic acid; distilled water; 25 

ml of 100% ethanol) until a clear background was achieved. 

 

3.9 Mass Spectrometry 
Using a 22 min linear gradient (5-35% acetronitrile vs. 0.1% formic acid, 240 ml/min), 

the peptide mixtures were concentrated on a Reversed Phase-C18 pre-column (0.15 mm 

ID x 20 mm self-packed with Reprosil-Pur 120 C18-AQ 3 µm material) and then 

separated by Reversed Phase-C18 nano-flow chromatography (0.075 mm ID x 200 mm 

Picofrit column, packed with Reprosil-Pur 120 C18-AQ 3 µm material) on an EASY 

nLC-1000 system. The eluents were analyzed using a Top10 method in Data Dependent 

Acquisition mode on a Q Exactive high resolution mass spectrometry system operated 

under Tune 2.2 using HCD fragmentation, with a Normalized Collision Energy of 25%. 

Peak lists were generated using Raw2 MSM v1.10 software (MPI for Biochemistry, 

Martinsried). 
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3.10 Gene Expression Analysis 

 

3.10.1 RNA Extraction 

RNA extraction was done by the manufacturer's protocol utilizing Tri-reagent. Upon 

dissection, the brain tissue was immediately washed with phosphate buffer saline solution 

(1X PBS) and then homogenized in 1 ml trizol, utilizing a sonicator (UP400S Hielscher 

Ultrasound Technology). The homogenized tissue was placed at room temperature for 10 

min to ensure nucleoprotein complex disassociation. 0.2 mL of chloroform was added 

and the sample tubes were shaken vigorously until the mixture turned milky and then 

were allowed to stand at room temperature for 10 min. The samples were then 

centrifuged at 12,000 rpm for 15 min at 4 ˚C. After centrifugation the upper aqueous 

phase was collected and transferred to another tube. 0.5 mL of isopropanol was added to 

the samples and then was allowed to stay at room temperature for 10 min. The samples 

were centrifuged again at 12,000 rpm for 10 min at 4 ˚C. The RNA precipitated and 

formed a pellet on the internal side of the tube. The supernatant was discarded and the 

pellets were washed with 1 ml of 75% ethanol. Furthermore, it was centrifuged at 7500 

rcf for 5 min at 4 ˚C. The final RNA sample was stored at -80 ˚C until further processing. 

 

3.10.2 Production of cDNA 

For complementary DNA (cDNA) synthesis, the extracted RNA was centrifuged at 

12000 rpm for 5 min. Pellet was permitted to dry and resuspended in 30µl of PCR water. 

RNA of all the samples (cortex and hippocampus) was run on 2% agarose gel to 

determine the quantity of RNA. RNA bands were visualized on Wealtech Dolphen Doc 

(S/N470883) Gel Documentation System. The RNA quality, as judged according to the 

ratio of 28S to 18S rRNA on the agarose gel was comparable among all samples. 
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Extracted RNA was quantified utilizing BioPhotometer Plus (Eppendorf, Germany) and 

equal quantities of RNA were utilized to reverse transcribe into cDNA. The protocol used 

for qRT-PCR reaction included, 3 µl of 10mM dNTP's, 3 µl of 5mM oligo dT, 8 µl of 5x 

RT buffer, 4 µl of 0.1M Dithiothreitol (DTT) and 2µl of MMLV-RT enzyme. Complete 

volume of the reaction mixture was made up to 40 µl by the addition of PCR water 

accordingly. 

 

3.10.3 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for cDNA 

Synthesis 
RNA extracted was quantified using BioPhotometer plus (Eppendorf, Germany) and 

equal quantity of RNA was used to reverse transcribe in to cDNA. The protocol used for 

RT-PCR reaction included 4.5 µl of 10mM dNTP’s, 4.5 µl of 5mM oligodT (heated for 5 

min at 55 °C) 12 µl of 5x RT buffer, 6µl of 0.1M Dithiothreitol (DTT) and 3µl of 

MMLV-RT enzyme. Total volume of reaction mixture was made up to 60 µl by the 

addition of PCR water accordingly. 

 

3.10.4 Gene Expression Analysis by Quantitative Real Time Polymerase Chain 

Reaction (qPCR) 

Real time PCR was performed in ABI Prism 7300 Sequence Detection System (Applied 

Biosystem, 7300) by using SYBR Green PCR Master Mix. The PCR reaction mixture 

consisted of 12.5µl of SYBR Green PCR Master Mix, 1µl of both forward and reverse 

primer specific for particular genes, 3 µl of cDNA template and then volume was made 

up to 25µl by adding DNase water. The thermocycling conditions were 50 °C for 2 min, 

95 °C for 10 min followed by 40 cycles of 30 sec at 95 °C, 1 min at 60 °C followed by 1 

min at 72 °C, and a final dissociation step. Dissociation curves and agarose gel 

electrophoresis were used to verify the quality of the PCR products. All values were 

normalized to β-actin. Values obtained from three independent experiments were 
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analyzed relative to gene expression data using the 2-∆∆CT method (Livak and Schmittgen, 

2001). The specific primer sequences of β-actin, ATF6, APP common, APP 695 and APP 

770 are listed in Table 3.2.  

 

 

 

Table 3.2: Primer Sequences used for Expression Analysis of ATF6, APP common, APP 695 

and APP 770 

 

 

 

 

 

Serial

No. 
Gene 

Forward Primer Sequence 

(5’-3’) 

Reverse Primer Sequence 

(5’-3’) 

Amplic

on  

(bp) 

1 ATF6 
TGCCTTGGGAGTCAGACC

TAT 

GCTGAGTTGAAGAACACG

AGTC 
141 

2 

APP 

Comm

on 

TGTGATCTACGAGCGCAT

GAACC 

AAGACATCGTCGGAGTAGT

TCTGC 
126 

3 
APP 

695 

GATGAGGATGTGGAGGAT

GG 
GCTGCTGTCGTGGGAACTC 149 

4 
APP 

770 

TGCTCTGAACAAGCCGAG

ACC 

CATGCAGTACTCTTCCGTG

TC 
144 

5 
Beta-

Actin 

GCCTTCCTTCTTGGGTATG

G 
CAGCTCAGTAACAGTCCGC 359 
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3.11 Image and Statistical Analysis 

Image LabTM software (Bio-RAD) was employed for gel image analysis, quantification 

and molecular weight calculation of the protein bands. The differential expression of 

proteins was calculated on the basis of relative quantity of each protein band. The data 

was statistically analyzed by One Way ANOVA. A value of p < 0.05 was considered to 

be statistically significant. The histograms for differential protein expression were 

generated with Graph Pad Prism 6. 

 

3.12 In Silico Analysis of Functional Association 
To investigate functional association network of identified differentially expressed 

proteins, their respective UniProtKB accession numbers was submitted in STRING 8.3 

database (http://string-db.org/).  
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Chapter 4 

Results 

4.1 Comparative Histological Assessment of Neurodegeneration induced by 

DTT  

The morphological changes occurred in the cortex and hippocampus after the 

administration of DTT, was assessed by Cresyl violet and congo red staining (Figure 4.1-

4.2). The cresyl violet stain showed a marked decline of Nissl bodies in DTT treated 

groups. Similarly, the congo red stain expressed the presence of Amyloid beta 

aggregates. The results showed that Dithiothreitol, a potent ER stress inducer has caused 

neurodegeneration in the cortical and hippocampal regions. It was observed that at a dose 

of 50 mg/kg, the neuronal cells underwent slight morphological changes while there was 

a drastic loss of cellular morphology with prominent neurodegeneration at a dose of 100 

mg/kg. However, at 75 mg/kg, the extent of neurodegeneration was moderate with 

significant alteration in cellular architecture. Therefore, a dose of 75 mg/kg was used as 

an optimum dose to induce ER stress. Furthermore, marked cellular degeneration was 

also seen after 72 hours of DTT administration, at a dose of 75 mg/kg in Haemotoxylin 

and Eosin (H&E) stained sections (Figure 4.3). 
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Figure 4.1: Histological assessment of DTT treated Mouse Brain sections by Cresyl Violet. 

Evaluation of the optimum dose from the different doses of DTT (Magnification: 40X).  A: 50 

mg/kg, B: 75 mg/kg, C: 100 mg/kg. 

 

 

 Figure 4.2: Histological assessment of DTT treated Mouse Brain sections by Congo Red. 

Evaluation of the optimum dose from the different doses of DTT (Magnification: 40X).  A: 50 

mg/kg, B: 75 mg/kg, C: 100 mg/kg. 
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Figure 4.3: H&E staining of Mouse Cortex and Hippocampus. A: Control, B: 24 hours DTT-

treated group, C: 48 hours DTT-treated group, D: 72 hours DTT-treated groups (Magnification: 

40X). 

 

4.1.1 Localization of activated ATF6  

In normal physiological conditions, inactive ATF6 is found in the cytoplasm bound to 

BiP on the ER membrane. The results of immunohistochemistry show the translocation 

of ATF6 from the cytoplasm to the nucleus, after its activation under ER stress 

conditions. Specifically after 48 h of treatment, when ER stress was at its peak (Figure 

4.4).  

 



Chapter 4   Results 
	  

	  
	  

26	  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Immunohistochemical Observation of ATF6 Localization. The brain sections 

were fixed and stained with anti-ATF6 antibody and DAB, respectively. ATF6 immunoreactivity 

in the brain sections of Balb/c mice in different groups. (Magnification: 40X). A: Control, B: 24 

hours DTT-treated group, C: hours DTT-treated group, D: hours DTT-treated group 
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Figure 4.5: Immunohistochemical Observation of ATF6 Localization. The brain sections 

were fixed and stained with anti-ATF6 antibody and DAB, respectively. ATF6 immunoreactivity 

in the brain sections of Balb/c mice in different groups. (Magnification: 100X). A: Control, B: 24 

hours DTT-treated group, C: hours DTT-treated group, D: hours DTT-treated group 

 

4.2 Protein Quantification 
Protein concentration of each sample was estimated by plotting the absorbance value of 

the colored reaction product on the standard curve. The intensity of the colored product is 

directly proportional to the protein content of the sample (Figure 4.5). 
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Figure 4.6: Bradford standard curve plotted for eight standard values. Concentration was 

plotted on the x-axis. Absorbance measured at 595 nm was plotted on the y-axis. This graph 

represents linear regression for eight standard points. The obtained linear regression value was 

0.98825 (R2=0.98825). 

 

4.2.1 Differential Expression Of Hippocampal And Cortical Proteins 

The total proteome profile of the cortex and hippocampus for all four groups was 

obtained by 1D gel separation (SDS-PAGE). The gel image analysis was performed 

using Image LabTM software, which revealed a total of 10 differentially expressed protein 

bands (ANOVA, p-value<0.05) in the cortex and hippocampus (Figure 4.6A and 4.6B) 

(Table 4.1). Out of these 10 proteins, 2 cortical and 3 hippocampal proteins had exhibited 

significantly increased expression after 24 h of DTT treatment. Additionally, the 

expression of these proteins significantly declined after 48 h and 72 h of treatment 

respectively. These included NADH-Ubiquinone Oxidoreductase (cortex, figure 4.7), 

ATP Synthase subunit α (cortex and hippocampus, figure 4.8A and 4.8B), Glycerol-3-

Phosphate Dehydrogenase, Fructose Bisphosphate Aldolase A and V-type Proton ATPase 
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subunit C (hippocampus, Figure 4.9-4.11). Ubiquitin-60S Ribosomal Protein L40 and 

Serum Albumin depicted a pattern of continuous decline in their expression in the cortex 

and hippocampus respectively (Figure 4.12-4.13). The expression of Neuromodulin and 

Succinate Semi Aldehyde Dehydrogenase were observed to significantly up regulate with 

the increase in the DTT dose in the cortex and hippocampus respectively. 

Calmodulin/calcium dependent kinase type II subunit α displayed an interesting pattern 

of expression in cortex, with significantly decreased expression in the first 24 h of 

treatment, however it an increase in expression was observed after 48 h, approximately to 

the expression levels found in the control group. But with the time span (72 h of DTT 

treatment) the expression level significantly declined to almost negligible level (Figure 

4.16). Functional association network generated through STRING 8.3 also revealed a 

strong interaction among the identified differentially expressed proteins (Figure 4.17). 
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Figure 4.7: Proteome Mapping of Cortical and Hippocampal proteins. The extracted proteins 

were separated on 12% resolving gel and stained with Coomassie Brilliant Blue. The gel was 

visualized on ChemiDocTM.  And analyzed by LabImage Software. 

A: Cortex: Lane 1= Protein Marker (Thermo Scientific Page RulerTM), Lane 2= Control group, 

Lane 3= 24 hours DTT treated group, Lane 4= 48 hours DTT treated group, Lane 5= 72 hours 

DTT treated group. The amount of cortical protein extract, loaded in each well was 50µg.  

B: Hippocampus: Lane 1= Protein Marker (Thermo Scientific Page RulerTM), Lane 2= Control 

group, Lane 3= 24 hours DTT treated group, Lane 4= 48 hours DTT treated group, Lane 5= 72 

hours DTT treated group. The amount of cortical protein extract, loaded in each well was 50µg. 
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Table 4.1: Differentially expressed proteins during ER stress treated with DTT in mice 

cortex and hippocampus as identified by ESI-QTOF MS/MS. Accession number and 

functional categories have been obtained by UniProt and the percent coverage refers to the 

percentage of protein sequence coverage, determined by the number of matched peptides.  

 

Accession 

Number 
Protein 

Mol. 

Wt. 

(kDa) 

Peptide 

Matches 

Percent 

Coverage 

(%) 

Functional 

Category 

Q91VD9 
NADH Ubiquinone 

Oxidoreductase 
79 18 29.70 Catalysis 

Q03265 ATP Synthase, subunit α 59.7 33 70.70 Catalysis 

Q64521 
Glycerol-3-Phosphate 

Dehydrogenase 
80.8 27 36.90 Metabolism 

P05064 
Fructose Bisphosphate 

Aldolase A 
39.3 24 53.60 Metabolism 

Q9Z1G3 
V-type Proton ATPase, 

Subunit C 
43 11 25.70 Catalysis 

P62984 
Ubiquitin-60S Ribosomal 

Protein L40 
14.7 4 24.20 

Protein 

Degradation 

P06837 Neuromodulin 23.6 3 15.40 Nerve Growth 

P07724 Serum Albumin 68 24 46.20 
Cellular 

Transport 

Q8BWF0 
Succinate Semi Aldehyde 

Dehydrogenase 
55.2 15 34.60 Catalysis 

P11798 

Calcium/ Calmodulin 

dependent kinase type II 

subunit α. 

54.1 15 38.10 Catalysis 
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Figure 4.8: Differential Protein Expression of NADH-Ubiquinone Oxidoreductase. 

Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 

hours DTT-treated group. **p<0.01. 

Figure 4.9: Differential Protein Expression of ATP Synthase, subunit α. A: Cortex and B: 

Hippocampus. Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-

treated group and 72 hours DTT-treated group. *p<0.05, **p<0.01. 
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Figure 4.10: Differential Protein Expression of Glycerol-3-Phosphate Dehydrogenase. 

Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 

hours DTT-treated group. **p<0.01. 

 

 

 

 

 

 

 

 

Figure 4.11: Differential Protein Expression of Fructose Bisphosphate Aldolase A. 

Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 

hours DTT-treated group. ***p<0.001. 
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Figure 4.12: Differential Protein Expression of V-type Proton ATPase, subunit C. 

Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 

hours DTT-treated group. **p<0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Differential Protein Expression of Ubiquitin-60S Ribosomal Protein. Expression 

detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 hours DTT-

treated group. **p<0.01. 
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Figure 4.14: Differential Protein Expression of Serum Albumin. Expression detected in 

Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 hours DTT-treated 

group. **p<0.01. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Differential Protein Expression of Neuromodulin. Expression detected in 

Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 hours DTT-treated 

group. ****p<0.0001. 
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Figure 4.16: Differential Protein Expression of Succinate Semi Aldehyde Dehydrogenase. 

Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated group and 72 

hours DTT-treated group. **p<0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Differential Protein Expression of Calmodulin/Calcium dependent Kinase type 

II, subunit α. Expression detected in Control, 24 hours DTT-treated group, 48 hours DTT-treated 

group and 72 hours DTT-treated group. *p<0.05, **p<0.01. 
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Figure 4.18: Functional association network of identified proteins in the mouse brain. A: 

protein-protein interaction network at medium confidence. B: High confidence protein-protein 

interaction network of identified proteins derived from the STRING database (http://string-

db.org). Each protein is represented as a node with edged interactions.   

A	  

B	  
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4.3 Gene Expression Analysis of Amyloid Precursor Protein (APP) Isoforms 

and Activating Transcription Factor 6 (ATF6) 

Real-Time PCR reactions were carried out to observe the relationship between ER stress 

sensor ATF6 and APP isoforms (Common, 695, 770) at the transcriptional level in DTT 

treated mRNA samples at three different time intervals (24 h, 48 h and 72 h). It was 

observed that the expression of APP common remained similar in the cortex, however, 

interestingly the expression sharply declined in the hippocampal region, with the increase 

in dose (Figure 4.18A and B). APP 695 levels in both the cortex and hippocampus 

exhibited the same pattern of expression, i.e. gradual decrease with the increase in 

dosage. The expression was observed to be up regulated significantly after 24 h of 

treatment and then gradually decreased as subsequent doses were administered (Figure 

4.19A and B). APP 695 performs a neuroprotective role in the cells of the brain and is the 

most prominent isoform to be present in the CNS. Furthermore, in both cortex and 

hippocampus, mRNA levels of APP 770 after 24 h of treatment displayed a trend of 

significant down regulation (Figure 4.20A and B). On the other hand, ATF6 mRNA 

expression slightly decreased after 24 h and then was significantly up regulated after 48 

h, where ER stress has reached its peak. Moreover, after 72 h, ATF6 levels were down 

regulated in both cortex and hippocampus (Figure 4.21A and B). ATF6 is one of the UPR 

branches, upon sensing ER stress, translocates into the nucleus and activates transcription 

of chaperone proteins for cell survival in the early stages of stress (24 h), however also 

induces apoptosis under sustained stress (72 h).     
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Figure 4.19: mRNA Expression of APP common in the Mouse Brain. A: Cortex B: 

Hippocampus. Lane 1: Control, Lane 2: 24 Hours DTT-Treated Group, Lane 3: 48 Hours DTT-

Treated group, Lane 4: 72 Hours DTT-treated Group. *p<0.05, **p<0.01. 
 

 

Figure 4.20: mRNA Expression of APP 695 in the Mouse Brain. A: Cortex B: Hippocampus. 

Lane 1: Control, Lane 2: 24 Hours DTT-Treated Group, Lane 3: 48 Hours DTT-Treated group, 

Lane 4: 72 Hours DTT-treated Group. **p<0.01. 
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Figure 4.21: mRNA Expression of APP 770 in the Mouse Brain. A: Cortex B: Hippocampus. 

Lane 1: Control, Lane 2: 24 Hours DTT-Treated Group, Lane 3: 48 Hours DTT-Treated group, 

Lane 4: 72 Hours DTT-treated Group. **p<0.01, ***p<0.001. 

 

 

 

Figure 4.22: mRNA Expression of ATF6 in the Mouse Brain. A: Cortex B: Hippocampus. 

Lane 1: Control, Lane 2: 24 Hours DTT-Treated Group, Lane 3: 48 Hours DTT-Treated group, 

Lane 4: 72 Hours DTT-treated Group. *p<0.05, **p<0.01. 
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Chapter 5 

Discussion 

The study was conducted to elucidate the complex interplay between DTT induced ER 

stress and subsequent amyloid beta proteotoxicity. Taking into consideration the 

DTTLD50, doses of 50mg/kg, 75mg/kg and 100mg/kg were tested and as reflected by 

moderate neurodegeneration with coincident alteration in cellular architecture, the 

optimal dose was found to be 75mg/kg. Histological analysis carried out using cresyl 

violet, congo red and H&E stains confirmed the deleterious effects of DTT, showing 

deteriorated neuronal architecture at the later stages (72 h) of ER stress Furthermore, 

consistent with a previous report on ATF6 translocation into the nucleus during ER stress 

localization (Roussel et al., 2013). Immunohistochemical analysis also revealed its 

nuclear localization post 48h treatment, thus indicating ER stress response initiation.  

 In an attempt to better understand the molecular mechanisms of chemically induced ER 

stress, initiation of UPR and the formulation of amyloid beta plaques, a proteomic 

approach was employed to examine the changes in the brain proteome profile  of mice 

treated with DTT at three different time intervals, 24 h, 48 h and 72 h. Using quantitative 

intensity analysis, approximately 14 protein bands were identified following gel imaging 

and band detection. Significant differences in the expression of 10 proteins were 

observed between the 24 h treatment group and the control group, the 48 h treatment 

group and control group, and the 72 h treatment group and the control group, 

respectively. From this, 10 proteins were successfully identified via the ESI-QTOF 

MS/MS experiments.. The main functions of these proteins were energy metabolism and 

transport. The functional significances, as well as the potential roles of the differentially 

expressed proteins in DTT-treated mice are discussed below. 

5.1 Energy Metabolism-Related Proteins 

 A number of proteins affected by the DTT treatment were the energy metabolism-related 
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proteins. Among these proteins, NADH ubiquinone oxidoreductase, ATP synthase 

subunit α, glycerol-3-phosphate dehydrogenase, Fructose bisphosphate aldolase A and V-

type proton ATPase subunit C were up regulated in the 24 h treated groups, however 

were found to be down regulated in the 48 h and 72 h treatment groups. In contrast, 

serum albumin was observed to down regulate as the time interval of the treatment 

increased.  

ATP is the main source of energy in vertebrate cells and can be regenerated from ADP 

when an increased energy supply is required. ATP synthase produces ATP from ADP in 

the presence of a proton gradient across the inner mitochondrial membrane, which is 

generated by electron transport complexes in the respiratory chain (Lee et al., 1990; 

Fuhrmann et al., 2013). The down-regulation of the α subunit of ATP synthase indicates a 

decline in ATP production. The down regulation of ATP production may be due to the 

protein load in the ER (Volgyi et al., 2015). Moreover, following the DTT treatment, the 

brain may switch to glycolysis as the primary resource for ATP production (Gilany et al., 

2010), resulting in a decrease in oxidative phosphorylation. Our data showed that those 

proteins involved in glucose metabolism and biological oxidation were markedly 

influenced by DTT, which suggests that there is a decreased capacity for aerobic ATP 

production during ER stress in mice brain. 

5.2 Neurotransmission-Related Proteins 

Our study showed that the expression levels of both neuromodulin and succinate semi 

aldehyde dehydrogenase increased markedly at later stages of ER stress (72 h). In 

contrast, the expression of Calmodulin/Calcium dependent kinase type II α, had 

significantly increased after 48 h of treatment and declined after 72 hours. Succinate semi 

aldehyde dehydrogenase is a negative regulator of the inhibitory neurotransmitter, GABA 

(Wang et al., 2013). The GABA neurotransmitter reduces the function of hyper activated 

neurons. Hyperactive neurons lead to emotions like fear or anxiety, which makes 

succinate semi aldehyde dehydrogenase one of the key enzymes for synaptic 
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neurotransmission (Pearl et al., 2014). Under ER stress, if the expression declines then 

GABA will not be inhibited and eventually neurotransmission between neurons will 

come to a halt. Furthermore, if succinate semi aldehyde dehydrogenase levels have been 

up regulated, inhibition of GABA will be at a great extent that will lead to sustained 

hyperactivity of neurons (Del Pino 2015).  Similarly, neuromodulin plays an important 

role in the nerve growth, development, repair and neurogenesis. Additionally, it also 

binds to calmodulin, in the absence of Ca2+ ions (Benowitz and Routtenburg, 1997). In 

ER stress conditions, neuromodulin incorporates in the ER and contributes to the ER 

protein load (Kim et al., 2006). On the other hand, calcium/calmodulin dependent kinase 

type-II alpha is a prominent kinase found in the central nervous system (CNS) and its 

function is long-term potentiation and neurotransmitter release. Moreover, ER is the 

reservoir of Ca2+ ions, which are released during neurotransmitter release (Liu and 

Murray, 2012). Under normal conditions, calmodulin binds to 4 Ca2+ ions for activation 

and furthermore, phosphorylates other kinases and proteases that help in autophagy. 

Autophagy is normally a cell survival tool, however under cellular stress, it leads to cell 

death (Ryan et al., 2014). Recent evidence points to the fact that ER stress triggers an 

efflux of Ca2+ ions into the cytoplasm, which bind to calmodulin, which becomes hyper 

activated that ultimately leads to sustained autophagy in the neuron that may lead to 

cellular apoptosis (Roe and Ren, 2013). However, the mechanisms behind 

neurotransmission dysfunction in ER stress remains to be further clarified. 

5.3 Other ER Stress- Related Proteins 

Ubiquitin- 60S ribosomal protein was also identified to be differentially expressed in our 

study. This enzyme plays a key role in the degradation of cellular proteins via the 

proteasome (Caldeira et al., 2014).  Proteins that have fulfilled their cellular functions are 

marked with ubiquitin and are degraded by the proteasome. Degradation involves the 

protein to be broken down into its comprising amino acids, which are required for the 

production of other proteins (Jung et al., 2015). During ER stress, ubiquitin binds to the 

Lys residue of the misfolded proteins and activates the Endoplasmic Reticulum 
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associated degradation (ERAD) pathway (Castrillo and Oliver, 2016). We suggest that 

the down-regulation of this protein is due to the accumulation of misfolded protein 

aggregates, which may lead to cell apoptosis. 

qRT-PCR results demonstrated a decrease in APP 770 coincident with increased ATF6 

transcriptional levels post 48h treatment. It is speculated that UPR mediated 

transcriptional activation of pro-survival genes and suppression of functionally 

inconsequential genes underlies the down regulation of APP 770 (Roussel et al., 2013). It 

is conceivable that ATF6 mediated down regulation of APP 770 is responsible for ATF6 

associated anti apoptotic response, since amyloid beta proteotoxicity is known to govern 

AD associated neurodegeneration. In the present study, the expression of neuroprotective 

APP 695 has been observed to steadily decline in all stages of ER stress, which coincides 

with pattern appeared in related work (Rohan et al., 1997; Kang et al., 1990).  

5.4 Conclusion 

There is strong evidence for activation of ER-stress-responsive pathways in a range of 

neurological disorders. What remains to be discovered is how successful will the 

strategies be that target these responses, in the treatment of neurological disorders. This 

study has revealed an insight on the basic molecular mechanism underlying the 

relationship between UPR and neurodegeneration. From this preliminary data, we can 

conclude that environmental toxicity may lead to a build up of misfolded proteins in the 

ER, which causes a temporary halt in all cellular processes. Moreover, continuous stress 

leads the ER stress sensors to activate apoptotic pathways. Interestingly, it is noted that 

during the early stages of stress (24 h), the sensor levels are high and during the late 

stages its completely minimal (72 h). Research into unfolded-protein-response signaling 

has matured to a point at which small-molecule inhibitors of its components are under 

development, which can be used as bio-markers for early onset neurological disorders 

like AD, PD or ALS. 
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Abstract 

Oxidative stress has been implicated as a triggering factor of many neurodegenerative 

disorders, including Alzheimer’s disease (AD). Aluminum (Al) is the third most 

abundant element in the Earth’s crust and is an established neurotoxicant that leads to the 

production of reactive oxygen species (ROS). Dithiothreitol (DTT) is a strong reducing 

agent and when it undergoes oxidation it converts into a very stable superoxide and 

causes the production of ROS. Furthermore, it disintegrates the disulphide bridges in 

proteins, causing them to lose their conformation and becoming denatured. Thus, DTT 

has also been implicated as an Unfolded Protein Response (UPR) initiator in the 

endoplasmic reticulum. This study has been conducted to determine whether DTT can 

cause neurodegeneration as well as initiating the Unfolded Protein Response (UPR). In 

house mice models of neurotoxicity were prepared by administering AlCl3 (600 mg/kg 

for 15 days) and DTT (50, 75 and 100 mg/kg for 3 days). After the duration of treatment, 

the mice underwent perfusion and were sacrificed respectively. The brains were collected 

and histology was performed. Histology involved the usage of Congo Red and Cresyl 

Violet stains. The control samples were compared with the samples of AlCl3 and DTT. 

Neurodegeneration was visible in both AlCl3 and DTT samples. However, the extent of 

neurodegeneration in the DTT samples (75 and 100 mg/kg) is much more than in the 

AlCl3 samples. The present study indicates that DTT has the potential of causing a higher 

extent of neurodegeneration in a much shorter duration of time. 


