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Abstract 

Objective. In this thesis, a novel methodology for better hemodynamic response 

detection, has been developed using multimodal brain-computer interface (BCI). Methodology 

Used. A novel classifier has been developed for achieving better classification accuracy using 

two modalities. An integrated EEG-fNIRS based Vector phase analysis (VPA) has been 

conducted. An online available dataset assembled at the Technische Universität Berlin; 

comprising of simultaneous fNIRS and EEG signals of 26 physically and mentally fit persons 

during n-back tasks has been used for this research. Instrumental and physiological noise 

removal has been done using preprocessing techniques followed by detection of activity in both 

modalities individually.  VPA, with resting state threshold circle, is used for detection of 

hemodynamic response in functional near-infrared spectroscopy (fNIRS) data whereas phase 

plots for electroencephalography (EEG) signals have been constructed using Hilbert Transform 

to detect the activity in each trial. Multiple threshold circles are drawn in the vector plane, where 

each circle is drawn after task completion in each trial of EEG signal. Finally, both processes are 

integrated in one vector phase plot to get combined detection of hemodynamic response for 

activity. Main Results. Results of this study illustrates that the combined EEG-fNIRS VPA yields 

considerably higher average classification accuracy, that is 91.35%, as compared to other 

techniques that are Convolutional neural network (CNN), Support vector machine(SVM) and 

VPA (with dual threshold circles) with classification accuracies 89%, 82% and 86% respectively. 

Significance. Outcomes of this research demonstrate that improved classification performance 

can be feasibly achieved using multimodal VPA for EEG-fNIRS hybrid data.  

 

Key Words: EEG-fNIRS Hybrid BCI, Vector Phase Analysis, Hemodynamic response detection
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CHAPTER 1: INTRODUCTION 

The research work presented in this dissertation is based on hybrid brain computer 

interface (BCI) systems. Classification accuracy of the system has been improved by designing a 

novel classifier based on vector phase analysis (VPA). EEG and fNIRS signals have been used 

for this purpose. Activity detection has been done using EEG signals individually at first. Then 

an integrated EEG-fNIRS-based VPA is designed to improve the accuracy of hemodynamic 

response detection. 

1.1 Brain computer interface: 

Brain–Computer Interface (BCI) is a pathway between computer and brain that permits the 

control of a computer application by brain activity. (Vidaurre, C., & Blankertz, B., 2010). The 

main purpose of BCI is to equip the physically impaired people, especially with motor 

disabilities, with the facility to communicate with the help of their brain signals. (Nicolas-

. BCI helps the user to develop an interface between their 

brain and peripheral devices without any kind of physical movement (Allison, B. et al.,2010). 

Various assistive rehabilitative devices have been controlled using different types of BCI 

systems, for instance electroencephalography (EEG) (AL-Quraishi et al. 2018, Beyrouthy, T., 

2016), electromyography (EMG) (Naseer. N. et al., 2018, D. Farina et al.,2014), 

electrocorticography (ECoG)  and functional near-infrared 

spectroscopy (fNIRS)  etc. There are two main 

categories of BCI systems depending upon the part of body from where the signal is being 

recorded. First is direct BCI, in case the signal is recoded directly from the brain, and the second 

is indirect BCI, in case the signal is collected from the nervous system or the peripheral muscles. 

Further categories of BCI system used to assess the brain signal, are invasive, semi-invasive and 

non-invasive. Invasive BCIs e.g. targeted muscle reinnervation and implanted microelectrode 

array give better signal strength but the disadvantages of these BCI systems are in monitoring of 

localized brain activity, surgical process involvement, and build-up of scar tissue. In semi-

invasive BCI system, ECog is employed to acquire brain signals after electrodes are implanted 

beneath the skull. Whereas, in non-invasive BCIs such as EEG, functional magnetic resonance 

imaging (fMRI) and fNIRS, data is acquired without any surgery or implantation using wearable 



2 
 

devices. Due to the advantages of non-invasive BCIs that they are portable and no implantation 

is required, they preferred over the other types of BCI systems, despite the fact that signal 

recorded using non-invasive BCIs are of low strength in comparison to semi-invasive and 

invasive BCIs. (Nazeer et al., 2020) 

A BCI system consists of five phases: i) acquisition of brain signals, ii) preprocessing, iii) feature 

extraction, iv) classification, and v) application interface (Naseer and Hong, 2015). In the first step 

signals from brain are acquired by using suitable modality for brain imaging. Secondly using 

preprocessing, instrumental and physiological noises are removed by filtering and de-trending. 

Various methods can be applied for extraction of features in third step. Keeping in mind the number 

of channels, data size and quantity of trials, appropriate type of features can be selected. By the usage 

of appropriate classification algorithm, signals are predominantly decoded in fourth step. To control 

external devices, the signals after classification are sent to the controlling entity, for generating 

controlling commands in the final step. (Nazeer et al., 2020) 

1.1.1 Hybrid BCI: 

In this research, we intend to use hybrid BCI. A hybrid BCI system is usually comprised of two 

BCIs. It can also be composed of at least one BCI and another system. It can also have one brain 

signal and a non-brain signal as its input. A hybrid system can operate sequentially or 

simultaneously. In case of parallel functioning the inputs are processed at the same time whereas 

in sequential operation first input serves as a “Brain switch”. A hybrid BCI is expected to 

achieve better performance and classification accuracy than other conventional systems. 

(Pfurtscheller,G. et al., 2010) 

EEG and fNIRS are two of the major non-invasive BCIs. EEG is a signal formed by the field 

potential generated as a result of collective and synchronous action of neurons. As a non-

invasive BCI, voltage fluctuations can be recorded using electrodes placed along the scalp. 

(Blinowska, K. and  Durka, P. 2006). 

fNIRS is one of the emerging BCIs which records the brain activity as blood oxygen level 

changes. Near-infrared-range light with wavelength 650~1000 nm is used to estimate the 

deoxygenated hemoglobin (HbR) and oxygenated hemoglobin (HbO) concentration changes 

(Villringer, A. et al., 1993) 

https://www.frontiersin.org/articles/10.3389/fnhum.2014.00244/full#B37
https://www.frontiersin.org/articles/10.3389/fnhum.2015.00003/full#B115
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Both have their own strengths and draw backs. For example, EEG possesses good temporal 

resolution (~0.05s) whereas fNIRS’s temporal resolution (~1s) is just moderate. Furthermore, 

EEG provides poor spatial resolution (~10mm) while fNIRS offers good spatial resolution 

(~5mm).  

1.2 Previous Work: 

Vector phase analysis (VPA) displays the trajectory formed as a result of deoxy-hemoglobin 

(ΔHbR) and oxy-hemoglobin (ΔHbO) changes .Magnitude and angle 

are calculated using ΔHbO and ΔHbR, which are used to construct a two-dimensional vector 

plane . This plane is split up into 8 phases for the classification of 

hemodynamic response . A threshold circle is plotted on the vector plane to detect 

the brain activity  This method has already been used for neuronal 

activation detection , initial dip detection in hemodynamic response 

S. 

, reduction of delay in initial dip detection , 

oxygen level detection in prefrontal cortex (Sano, M. et al., 2013) and determining the brain 

region of interest for BCI . Table 1-1 shows the 

literature review and previous work done related to this research. 

VPA, with dual threshold circles, has been used for the early hemodynamic response detection 

using EEG. The second threshold circle has been drawn using ΔHbO and ΔHbR magnitudes 

during the time span when a noticeable EEG activity has been sensed. During this time window 

highest EEG power has been used as a criterion to select the corresponding HbO and HbR 

magnitudes, which are then further used to determine the magnitude of second circle. The 

accuracy reported with this technique is 86% (Khan. M. J. et al., 2018). The average 

classification accuracies on multimodal (n-back test) dataset using SVM, and CNN are reported 

to be 82% and 87-89% respectively (Saadati et al., 2020, Asgher et al., 2020, Saadati et al., 

2020). Average classification accuracy for event related potential (ERP) analysis has turned out 

to be 76.5±8% (Shin, J. et al., 2018).  

 

 

Table 1.1: Literature Review 
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1.3 Problem Statement: 

➢ For BCI systems, it is very important to have an accurate and less complex architecture to 

control a device with enhanced accuracy and real-time control. 

➢ Integrating EEG with fNIRS resolves the accuracy problem, however, the time 

forcommand generation is significantly increased because of the inherent delay in fNIRS 

signal. 

➢ There is a need for development of a hybrid EEG-fNIRS architecture that can enhance 

the accuracy along with minimal command generation time for better performance for 

control of devices. 

 

1.4 Approach Used: 

In this research, we propose a novel modified multimodal VPA methodology for the detection of 

activity in hemodynamic response. For the presented methodology, we have used hybrid BCI 
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(EEG-fNIRS) data for n-back test. Complete data has been preprocessed using conventional 

ways to make it noise free. Initially, both the modalities have been dealt with individually. 

Hilbert transform has been applied to EEG signals to get the required magnitude and phase 

values for the construction of polar plots for all the trials. Activity detection is made possible 

using these polar plots. Similarly, VPA has been applied to fNIRS signals for the construction of 

vector-based phase plot for hemodynamic response detection with resting state threshold circle 

as a detection criterion. Finally, an integrated multimodal VPA has been designed with multiple 

threshold circles, based on the activity completion of each EEG signal trial, to achieve better 

detection of hemodynamic response. Workflow for this research is shown in Figure 1.1 

 

 

 

 

 

Figure 1.1: Workflow for this research 

1.5 Objectives: 

The objectives for this research are as under: 

• Detection of activity in EEG signals using Hilbert Transform 

• Detection of activity in hemodynamic response using EEG based circles on Vector phase 

plot made using fNIRS signals 

• Calculation of combined accuracy using both modalities 

1.6 Thesis Overview: 

In this thesis, flow of work has been defined such as Chapter 2 contains the theory of all the 

methods used to design this classifier. It includes all the theoretical concepts for understanding 

the proposed scheme. Chapter 3 consists of the approach that has been used to achieve our 

objectives. It also includes the details of experimental paradigm and the algorithm developed to 

design the classifier. Chapter 4 contains the step wise results acquired for the complete 
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methodology Chapter 5 includes the discussion for this proposed scheme, Chapter 6 contains the 

conclusion of the thesis and Chapter 7 explains the future work briefly. 
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CHAPTER 2: THEORY 

2.1 Hilbert Transform: 

In this research, we have used Hilbert Transform (HT) for the calculation of the imaginary 

component of EEG signals along with their phases and magnitudes. Polar plot construction for 

each trial of each series of all EEG signals would then be achieved for the detection of activity.  

For an EEG signal x(t), the imaginary component y(t) can be calculated using HT (Clercq, W. et 

al. 2003) as follows: 

𝑯[𝒙(𝒕)] = 𝒚(𝒕) =
𝟏

𝝅
∫

𝒙(𝝉)

𝒕−𝝉
𝒅𝝉

∞

−∞
            (1) 

Then the analytical signal corresponding to x(t), can be stated as: 

𝒛(𝒕) = 𝒙(𝒕) + 𝒊𝒚(𝒕) = 𝒂(𝒕)𝒆𝒊𝜽(𝒕)          (2) 

where y(t) and x(t) are complex conjugates of each other and the magnitude a(t) and phase θ(t) 

are defined as 

       𝒂(𝒕) = (𝒙𝟐 + 𝒚𝟐)
𝟏

𝟐⁄            (3) 

      and 

       𝜽(𝒕) = 𝒕𝒂𝒏−𝟏 𝒚(𝒕)

𝒙(𝒕)
           (4) 

Outcomes of HT are used to construct the polar plots of EEG signal trials for the indication of 

activity. We calculate the mean values, for both (x and y) coordinates using the complete 

trajectory in the phase plot, as meanx and meany respectively. In this research we have set the 

criterion that if meanx is greater than 0 then it would be considered as the occurrence of activity 

(more explanation in the next section with results).  

2.2 Vector-Phase Analysis: 

Vector-phase analysis is a technique which can be used to detect the hemodynamic response by 

using just the two components, HbO and HbR, of fNIRS signals (Khan, M. J. et al., 2018). In this 

method there is a vector plane which is basically based on two orthogonal axes with HbO values 

at x-axis and HbR values at y-axis. This plane is split up into 8 phases (Yoshino & Kato, 

 by getting two more axes in the plane. 

When the HbO and HbR plane is rotated counterclockwise by 45˚, the other two axes, i.e. COE 

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00479/full#B68
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00479/full#B68
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(cerebral oxygen exchange) and HBT (total hemoglobin), come into existence. ∆HBT and ∆COE 

can be defined as: 

∆𝑯𝑩𝑻 =  
∆𝑯𝒃𝑶+ ∆𝑯𝒃𝑹

√𝟐
            (5) 

∆𝑪𝑶𝑬 =  
∆𝑯𝒃𝑹− ∆𝑯𝒃𝑶

√𝟐
            (6) 

Phase and magnitude of a vector v = (∆HbR, ∆HbO) expressed in this vector-plane are computed 

as follows: 

|𝒗| =  √∆𝑯𝒃𝑶𝟐 + ∆𝑯𝒃𝑹𝟐            (7) 

∠𝒗 =  𝒕𝒂𝒏−𝟏 (
∆𝑯𝒃𝑹

∆𝑯𝒃𝑶
) = 𝒕𝒂𝒏−𝟏 (

∆𝑪𝑶𝑬

∆𝑯𝑩𝑻
) + 𝟒𝟓°         (8) 

The eight phases of this vector plane are as shown in Figure 2.1 

A threshold circle is drawn based on the maximum value of rest period in a signal. If the 

trajectory of ∆HbO and ∆HbR crosses this threshold circle, then this indicates the presence of 

activity. Magnitude values less than this threshold circle are counted as resting state (Hong and

 Initial dip and hemodynamic response can be detected 

in these eight phases. Phase (1-5) are there for initial dip detection whereas, phase(6-8) are there 

for the detection of hemodynamic signal(Hong and Zafar, 2018).  

 

   

     

  

 

 

 

 

 

Figure 2.1: Vector phase plot configuration displaying 8 phases. Black dotted circle is the 

threshold circle for the detection of activity. 
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https://www.frontiersin.org/articles/10.3389/fnhum.2018.00479/full#B23
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2.3 Ideal Hemodynamic Response Function (HRF): 

For this novel technique we have used two gamma functions to construct the ideal trajectory of 

∆HbO and ∆HbR (Khan, M. J. et al., 2018) as shown in Figure 2.2. Convolution of a canonical 

 (i.e. H(k)) with the stimulus S(k) is called designed 

. The cHRF is constructed using the linear combination 

: 

                                         (9) 

where α1  represents the amplitude, ϕi and τi (i = 1, 2) are for the tuning of scale and shape, 

respectively. α2  represents the ratio of the response to undershoot.  

The dHRF can be mathematically stated as follows: 

𝑑𝐻𝑅𝐹(𝑘) =  ∑ 𝐻(𝑛)𝑆(𝑘 − 𝑛)𝑘−1
𝑛=0          (10) 

Where S(k) is an impulse stimulus for each trial indicating rest and activity as  

                                     (11) 

       

 

Figure 2.2: cHRF plotted using Two Gamma Function 
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CHAPTER 3:  PROPOSED METHODOLOGY 

3.1  Experimental Setup: 

3.1.1  Subjects/Participants: 

An open-source dataset has been used for this research. Data has been collected at Technische 

Universität Berlin. Twenty-six subjects, with average age of almost 26.1±3.5 years, who 

participated in this data collection, were healthy right-handed people. 9 of them were males and 

17 were females. None of them possessed any mental, neuronal, or brain-related disorder.  A 

written consent was given by all the participants after informing them about the complete 

experimental procedure. (Shin, J. et al., 2018). 

3.1.2  Experimental paradigm: 

Each participant was provided with an armchair to sit in front of a 24’’ LCD display. Distance 

among the person’s eyes and the display screen was 1.2m.  The right armrest had numeric 

keypad buttons (number 7 and 8) attached with it. All persons were directed to see the display 

screen and try to abstain from moving their body. This experiment comprised of three types of 

tasks (n-back tasks, discrimination/selection response tasks and word generation tasks) with three 

sessions each. For this study we have used n-back task dataset (Shin, J. et al., 2018). 

3.1.3  Dataset: n-back: 

This dataset of n-back test was comprised of three sessions for every subject as shown in Figure 

3.1, where every session had nine series of three types i.e. 0-,2- and 3-back tasks, in a 

counterbalanced order. Every series consisted of 2sec instruction time, displaying the kind of 

series (0-,2- and 3-back), followed by a 40sec time for task, 1s time for “STOP” word and a 

20sec rest period. Hence, each series was composed of total 63sec.  
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A short beep of 250ms was used to signify the person about the starting and end of every task 

duration. A cross was shown on the screen for the rest duration. Every task duration consisted of 

twenty trials, each of 2s. In every trial, a random digit was displayed on the screen for 0.5s and 

then a cross was displayed for 1.5s. For 0-back test, participants pressed either number 7 button 

for a ‘target’ digit or number 8 button for a ‘non-target’ digit. In case of 2- and 3- back tasks, 

participants were instructed to select the ‘target’ button, number 7,  if presently shown digit was 

same as the 2 or 3 preceding digits respectively, otherwise the ‘non-target’ button, number 8. For 

each type of n-back task, total 180 trials were carried out (3 session X 3 series X 20 trials) (Shin, 

J. et al., 2018). 

 

Figure 3.1: Experimental Paradigm for n-back task. Total 3 sessions were conducted with 9 

series each and each series was comprised of initial 2s of instruction about the kind of task(0-

,2- and 3-back), 40s time for task, 1s of “STOP” word shown and 20s of rest. Task period had 

20 trials in it and each trial of total 2s consisted of 0.5s of digit display and 1.5s of fixation 

cross display. 
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3.2  Acquisition and Processing of Data: 

3.2.1  Data acquisition and channel configuration: 

EEG and fNIRS signals were acquired in parallel. EEG data was acquired at the sampling 

frequency of 200Hz with the help of multichannel BrainAmp EEG amplifier (Brain Products 

GmbH, Gilching, Germany). According to international 10-5 system, thirty electrodes were 

attached to a flexible fabric cap (EASYCAP GmbH, Herrsching am Ammersee, Germany) as 

shown in Figure 2 (AFF5h, AFF6h, AFz, Fp1, Fp2, F1, F2, FC1, FC2, FC5, FC6, Cz, C3, C4, 

CP1, CP2, CP5, CP6, T7, T8, O1, O2, Pz, P3, P4, P7, P8, POz, TP9 (reference) & TP10 

(ground)). Electrooculogram (EOG) was also measured using EEG amplifier. EOG was also 

acquired, at the same sampling frequency as EEG, with the help of 2 vertical and 2 horizontal 

electrodes. Out of all these channels seven frontal channels (Fp1, Fp2, F1, F2, AFF5h, AFF6h, 

AFz) were used for this study. We have chosen the frontal channels because n-back task is a 

cognitive task and its activity signals were expected to appear in the frontal cortex (Shin, J. et al., 

2018).  

fNIRS data was acquired at the sampling frequency of 10Hz with a NIRScout (NIRx 

Medizintechnik GmbH, Berlin, Germany). 16 sources and 16 detectors were attached at frontal 

(16 channels around AF3, AF4, AF7, AF8 and AFz), parietal (4 channels each around P3 and 

P4), motor (4 channels each around C3 and C4), and occipital (4 channels around POz) regions. 

An adjoining source-detector pair sets up an fNIRS channel. Configuration of a total of 36 

channels was formed. The fNIRS channels were configured according to international 10-5 

system around AF1, AF2, AF7, AF8, AF5h, AF6h, AFpz, AFp3, AFp4, AFp7, AFp8, AFFz, 

AFF3h, AFF4h, AFF5h, AFF6, C3h, C4h, C5h, C6h, CCP3, CCP4, CPP3, CPP4, FCC3, FCC4, 

PPOz, PPO3, PPO4, P3h, P4h, P5h, P6h, PO1, PO2, and POOz as shown in Figure 3.2. For this 

configuration, the distance among source and detector was set to 30mm for every channel. Figure 

3.2 displays the channel configuration for EEG and fNIRS (Shin, J. et al., 2018).  
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Figure 3.2: Channel configuration of EEG and fNIRS. Yellow circles denote the EEG channels 

whereas red circles denote the fNIRS channels (Shin, J. et al., 2018). 

 

Twelve frontal channels (i.e.AF1, AF2, AFF5, AFF6, AFFz, AFpz, AFp3, AFp4, AF5h, AF6h, 

AFF3h, AFF4h) were used for this study based on the activity signal appearance in their 

hemodynamic response, as can be seen clearly from their VPA diagrams for all types of tasks(0-

,2- and 3-back) in Figure 3.3.  
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Figure 3.3: VPA Plots for fNIRS frontal channels for all 3 tasks (0-, 2- and 3-back tasks). The 

selected channel are the ones encaptured by dotted line boxes. (Channels 1(AF7), 2(AFF5), 

3(AFp7), 4(AF5h), Channels 5(AFp3), 6(AFF3h), 7(AF1), 8(AFFz), Channels 9(AFpz), 

10(AF2), 11(AFp4), 20(AFF4h), Channels 21(AF6h), 22(AFF6), 23(AFp8), 24(AF8)). 

 

3.2.2  Data processing: 

Before using the data for any technique, we have preprocessed the data to get the best possible 

results. For EEG data, initially all the signals were normalized using min-max normalization. 

Since the fundamental frequencies for this data were lying in the alpha(8-13Hz) and theta (4-

8Hz) bands, so, with an intention to remove the noise and to remain within the interested 

frequency bands, a band pass filter (5th order, Butterworth filter) of 0.1-15Hz was applied to this 

data to achieve the optimum outcomes. As the Figure 3.4 shows that the results of activity and 

rest simultaneous phase plots, using Hilbert transform, were distinguishable when this range has 

been used. Similarly, fNIRS data was also normalized in the beginning using min-max 

normalization. As the data was already in the form of  HbO and HbR concentration changes 

(∆HbO and ∆HbR), so there was no need to apply Beer-Lambert law. After that, a low pass filter 

(cut off frequency 0.2Hz, 6th order, Butterworth filter) followed by a high pass filter (cutoff 

frequency 0.01Hz) was applied to the data to achieve signal within frequency range of 0.01-

0.2Hz as the fundamental frequencies for this data were present in this band. The intention 

Channel 23 

Channel 24 
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behind applying these filters to fNIRS data was also to remove the instrumental and 

physiological noise present in the data. 

 

     

 

 

 

 

 

 

 

 

Figure 3.4: Simultaneous phase plots of rest and activity signal using Hilbert Transform 

3.3  Modified multimodal (EEG-fNIRS) vector-based phase analysis: 

In this study, we have proposed a modified form of vector-based phase analysis. For this study 

we have used just HbO and HbR to keep it simple. According to our proposed method we have 

drawn the threshold circle for task detection at the mean value of the resting period based on the 

reason that if an activity occurs than its magnitude should exceed this mean value at least. We 

can claim this based on the ideal HbO and HbR signals as shown in Figure 3.5. As it can be 

clearly observed in Figure 3.5, that when the activity starts to occur the value of HbO increases 

rapidly making the overall magnitude considerably greater than the mean value of baseline. We 

can use this mean value threshold circle for the detection of presence of activity in a series as can 

be seen in Figure 3.2. 

So, the threshold circle’s radius can be calculated as  

 

      𝒓 = 𝐦𝐞𝐚𝐧 (√∆𝑯𝒃𝑶𝟐 + ∆𝑯𝒃𝑹𝟐)        (12) 

 

In this design, we have proposed a vector phase diagram based on both EEG and fNIRS activity 

detection. So, for that purpose we draw a circle for each trial activity completion in EEG signal. 

0.1-15 Hz 6-14 Hz 1-15 Hz 
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As the activity can be detected earlier in EEG signal than fNIRS signal (Khan, M. J. et al., 2018), 

it has been deduced that if we draw a circle for the detected activity completion in each trial of 

EEG signal then ∆HbO and ∆HbR trajectory is expected to cross that circle if the activity is also 

detected in fNIRS signal. We have proposed that if fNIRS signal trajectory crosses the EEG-

based circle of a trial then the activity will be considered as detected in hemodynamic response, 

for that trial, too. There are 20 trials in each series of EEG signal as can be observed in Figure 

3.1. EEG-based circle, for each trial, is drawn in a way that when ith trial activity (i =1,2,3,…20) 

is completed at time ti, then values of HbO and HbR at ti are used to calculate the magnitude |pi| 

of the circle. So, circle magnitude |pi| for ith trial can be calculated as 

  |𝒑𝒊| = √(𝑯𝒃𝑶|𝒕𝒊
)𝟐 + (𝑯𝒃𝑹|𝒕𝒊

)𝟐         (13) 

Now if the activity for any trail is detected through phase plot of EEG signal or modified VPA 

then it is considered as the presence of activity. The flowchart for the proposed methodology is 

shown in Figure 3.6. The proposed scheme can be depicted using ideal signals for both EEG and 

fNIRS as shown in Figure 3.7. 

 
Figure 3.5: Ideal HbO/HbR signals constructed using two gamma functions 
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Figure 3.6: Flow diagram for the proposed scheme 

 

3.3.1  Ideal trajectory for modified multimodal VPA: 

For this experiment there were 20 trials for each series, so we convolved 20 impulses with ideal 

cHRF. Then it was used to construct the modified VPA as mentioned in a previous section. This 

approach for ideal trajectory has been depicted in Figure 3.7. 
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(a). After Convolution 

 
(b) 

          

Figure 3.7: Ideal trajectory for modified VPA. (a) Ideal cHRF convolved with 20 impulses to 

form dHRF depicting 20 trials. (b) Ideal trajectory of HbO and HbR for modified VPA crossing 

all 20 circles one by one. 

 

Vector 

Phase 

Analysis 
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CHAPTER 4: RESULTS 

4.1  Hilbert Transform for activity detection in EEG signals: 

In this novel methodology, data from selected channels of subject 1 was initially normalized and 

filtered to retain data only in 0.1-15Hz frequency range as shown in Figure 4.1 and 4.2 

respectively. Frequency spectrum for all the signals is shown in Figure 4.3. Then data from all 

channels was averaged out to construct one average signal. After that, HT is used to first 

calculate the imaginary component of average signal using equation (1) as shown in Figure 4.4. 

 
Figure 4.1: Selected EEG channels for subject 1 normalized using min-max normalization 

 
Figure 4.2: Original and filtered signals of selected EEG channels for subject 1 simultaneously 

plotted 
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Figure 4.3: PSD of filtered EEG channels’ signals 

 

          

Figure 4.4: HT (Equation (1)) used to construct the imaginary component of average EEG 

signal. 

 

For the 1st series of session 1, which is a 3-back task, 20 trials were averaged out and the activity 

portion was detected as shown in Figure 4.5. Then phase plot for the average activity signal was 

constructed and compared with the phase plot of rest signal. It can be clearly seen from the 

simultaneous phase plot of activity and rest in Figure 4.5, that the activity is contained in the 

right side of the plane indicating the x-coordinate of its center value as greater than 0.This proves 

Hilbert 

Transform 
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our claim for the criterion of activity detection in EEG signal that meanx should be greater than 0 

(as mentioned in the previous section). 

 

(a)           (b) 

         
 

 

 

(d)       (c) 

                
Figure 4.5: Construction of phase plots for average activity signal of 20 trials and rest signals  

(a) Twenty trials for series 1 of session 1 for subject 1 (b) Average activity signal of 20 trials (c) 

Phase plot of average activity signal (d) Simultaneous phase plot for rest and activity. 

Next, we have implemented the same scheme for all the trials of series 1 as shown in Figure 4.6. 

Here too we can see that the trajectories for all trials are contained on the right side of the plane 

with meanx > 0, indicating the presence of activity.   

 

 

 

Average 
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Figure 4.6: Construction of phase plots for 20 trials individually (a) Selection of activity portion 

in 20 trials for 1st series of 1st session for subject 1. (b) Phase plots for 20 trials using HT. 

(a) 

(b) 
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4.2  Modified VPA for hemodynamic response detection: 

fNIRS signals of all selected channels, for every subject, are preprocessed and then averaged to 

get an average signal. Figure 4.7 displays the normalized HbO and HbR signals for selected 

fNIRS channels, using min-max normalization. Figure 4.8 displays the filtered HbO and HbR 

signals for selected channels. Figure 4.9 shows the averaged signal. Figure 4.10 shows the 

frequency spectrum of the average signal. As mentioned in the previous section the conventional 

VPA plots were constructed, for series 1 of 1st session for Subject 1, with threshold circle having 

radius r, calculated using equation (9), at the mean value of resting state as depicted in Figure 

4.11(a). After that EEG-based circles were constructed for 20 trials with radii calculated using 

equation (10). As can be observed in Figure 4.11(b), the occurrence of activity is indicated when 

the HbO and HbR trajectory crosses that trial circle. When the color of trajectory turns green 

from red, it indicates that its magnitude is lesser than |pi|, whereas when the trajectory color turns 

red from green it shows that its magnitude is greater than  |pi|, indicating the presence of activity. 

If the activity is either detected in EEG phase plot or in hemodynamic response, it considered as 

the occurrence of activity.  

 

Figure 4.7:  Normalized HbO and HbR signals of selected channels for subject 1 
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Figure 4.8: Filtered HbO and HbR signals of selected channels for subject 1 

 

Figure 4.9: Average HbO and HbR signals, of the selected channels for subject 1, 

simultaneously plotted 



27 
 

 

Figure 4.10: Frequency spectrum of the average signal shown in Figure 4.9 

 

  
(a) (b) 

Figure 4.11: Vector phase diagrams for series 1 of session 1 for subject 1 (a) ∆HbO and ∆HbR 

trajectory for 1st series of 1st session for subject 1 signal with threshold circle at mean of resting 

state. (b) EEG-based circles for 20 trials are drawn. Trajectory color turning green from red 

indicates it magnitude lesser than |pi|, whereas trajectory color turning red from green shows that 

its magnitude is greater than |pi|, indicating the detection of activity in hemodynamic response. 
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4.3  Brain maps: 

For depicting the channels’ activation, we have constructed the brain maps. For this purpose, we 

have shown 5 brain maps of each series (0-, 2- and 3-back tasks) for 2 subjects as shown in 

Figure 4.12. For the construction of VPA with multiple circles for each fNIRS channel, we have 

chosen EEG channel closest to that particular fNIRS channel. As we are working on the frontal 

region of the brain, so we have selected 7 frontal EEG channels. EEG channels selected 

corresponding to fNIRS channels are reported in Table 4.1. We have calculated the difference of 

radii of 4 trials (i.e. trial no. 5,10,15,20) and rest period circles, with the radius of baseline circle 

individually. Using these differences, brain maps have been constructed. This method can be 

mathematically stated as: 

     𝑳𝒊𝒋  =  𝒂𝒃𝒔(|𝒑𝒊,𝒋| − |𝒑𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆,𝒋|)         (14) 

where Lij is the difference of trial i circle radius with baseline circle radius for each channel j. For 

now, we have taken i = 5, 10, 15 & 20 for constructing 4 maps and the 5th map is constructed 

based on the difference of rest period circle radius with baseline circle radius as stated below:  

𝑳𝒓𝒆𝒔𝒕,𝒋  =  𝒂𝒃𝒔(|𝒑𝒓𝒆𝒔𝒕,𝒋|  − | 𝒑𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆,𝒋|)                                    (15) 

Five maps are constructed for all three types of series (0-, 2- and 3-back tasks) as shown in 

Figure 4.12. Presence of red color shows the highest level of activation at a brain region. 

 

Table 4.1: EEG channels selected corresponding to fNIRS channels for the construction of brain 

maps 
fNIRS channel No EEG channel selected corresponding to fNIRS channel 

1(AF7) 2(AFF5h) 

2(AFF5) 2(AFF5h) 

3(AFp7) 1(Fp1) 

4(AF5h) 2(AFF5h) 

5(AFp3) 1(Fp1) 

6(AFF3h) 4(F1) 

7(AF1) 3(AFz) 

8(AFFz) 3(AFz) 

9(AFpz) 3(AFz) 

10(AF2) 3(AFz) 

11(AFp4) 19(F2) 

20(AFF4h) 17(Fp2) 

21(AF6h) 18(AFF6h) 

22(AFF6) 18(AFF6h) 

23(AFp8) 19(F2) 

24(AF8) 18(AFF6h) 
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(a). 

  

  

 
(b). 
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(d). 
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(e).  

  

  

 
(f). 
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Figure 4.12: Brain Maps a) 0-back test for subject 1, b) 2-back test for subject 1, c) 3-back test 

for subject 1, d) 0-back test for subject 9, e) 2-back test for subject 9, f) 3-back test for subject 9. 

 

4.4  Average classification accuracy: 

After using this novel classifier for all the series of 3 sessions for all subjects, we have calculated 

the classification accuracies for every series. For each subject’s signal all types of tasks (0-, 2- 

and 3- back) were performed 9 times each. So, classification accuracies for 0-back task, 2-back 

task and 3-back task are reported in Table 4.2, Table 4.3, and Table 4.4, respectively. The overall 

accuracy for this novel classifier, i.e. 91.35% is reported in Table 4.5. 
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Table 4.2: Classification accuracies for 0-back task using modified multimodal VPA 

Subjects 
Session 1(0-back)  

Accuracies (%) 

Session 2(0-back) 

Accuracies (%) 

Session 3(0-back) 

Accuracies (%) 

Average 

Accuracy 

(%)  
Subject 1 100 100 100 85 75 90 95 100 90 92.78  

Subject 2 90 90 75 90 75 90 90 85 95 86.67  

Subject 3 80 70 75 85 85 85 90 85 95 83.33  

Subject 4 75 65 75 80 75 75 75 55 65 71.11  

Subject 5 100 90 90 90 95 100 80 80 90 90.56  

Subject 6 90 85 90 85 85 70 85 90 90 85.56  

Subject 7 90 90 75 90 90 100 90 90 75 87.78  

Subject 8 95 95 95 95 100 95 90 95 95 95  

Subject 9 100 100 95 95 95 100 100 100 95 97.78  

Subject 10 80 80 75 80 75 65 80 90 80 78.33  

Subject 11 75 85 100 90 90 95 100 95 80 90  

Subject 12 90 65 90 100 70 85 95 90 90 86.11  

Subject 13 95 95 95 100 95 95 95 90 90 94.44  

Subject 14 95 95 65 80 75 95 80 80 85 83.33  

Subject 15 95 100 95 90 95 100 90 100 85 94.44  

Subject 16 95 95 100 95 100 95 100 100 95 97.22  

Subject 17 100 100 100 90 95 95 95 100 100 97.22  

Subject 18 95 85 90 80 80 90 90 80 75 85  

Subject 19 100 100 90 100 100 100 100 100 95 98.33  

Subject 20 95 95 95 95 85 90 85 100 80 91.11  

Subject 21 100 95 90 100 100 100 100 100 100 98.33  

Subject 22 85 90 85 95 80 75 85 85 95 86.11  

Subject 23 90 100 95 95 70 95 100 90 95 92.22  

Subject 24 85 85 90 75 95 80 85 80 80 83.89  

Subject 25 95 100 100 100 100 100 100 100 100 99.44  

Subject 26 80 95 100 95 80 100 90 100 85 91.67  
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Table 4.3: Classification accuracies for 2-back task using modified multimodal VPA 

 

Subjects 
Session 1(2-back) 

Accuracies (%) 

Session 2(2-back) 

Accuracies (%) 

Session 3(2-back) 

Accuracies (%) 

Average 

Accuracy 

(%) 
 

Subject 1 100 100 95 95 100 100 100 100 100 98.89  

Subject 2 100 100 100 100 100 100 100 100 95 99.44  

Subject 3 85 90 100 95 95 95 100 100 100 95.56  

Subject 4 75 70 70 75 85 60 70 80 80 73.89  

Subject 5 95 95 95 100 90 90 100 90 80 92.78  

Subject 6 85 95 95 95 95 95 100 100 100 95.56  

Subject 7 95 100 100 100 95 100 100 100 100 98.89  

Subject 8 100 100 100 100 95 100 85 100 100 97.78  

Subject 9 90 100 100 90 100 100 100 95 100 97.22  

Subject 10 40 65 75 45 65 50 55 70 75 60  

Subject 11 75 85 80 70 85 85 90 90 90 83.33  

Subject 12 100 95 100 100 85 90 100 90 95 95  

Subject 13 95 100 100 100 90 95 90 100 90 95.56  

Subject 14 90 100 95 100 95 100 100 100 100 97.78  

Subject 15 100 95 90 95 95 95 95 95 100 95.56  

Subject 16 95 100 100 100 100 100 100 100 100 99.44  

Subject 17 90 90 95 85 85 100 90 80 100 90.56  

Subject 18 90 90 90 75 95 85 80 75 90 85.56  

Subject 19 90 100 90 95 100 100 100 90 100 96.11  

Subject 20 90 95 100 85 100 100 80 95 95 93.33  

Subject 21 100 100 95 100 100 100 100 100 100 99.44  

Subject 22 100 80 95 90 90 100 100 100 100 95  

Subject 23 100 100 95 95 100 100 95 100 100 98.33  

Subject 24 80 80 85 75 90 80 70 95 80 81.67  

Subject 25 100 95 100 100 100 100 95 100 95 98.33  

Subject 26 90 85 75 90 85 75 75 70 85 81.11  

 

 

 

 

 



36 
 

 

Table 4.4: Classification accuracies for 3-back task using modified multimodal VPA 

 

Subjects 
Session 1(3-back) 

Accuracies (%) 

Session 2(3-back) 

Accuracies (%) 

Session 3(3-back) 

Accuracies (%) 

Average           

Accuracy 

(%) 
 

Subject 1 95 100 100 85 100 95 100 100 100 97.22  

Subject 2 95 100 100 95 100 100 100 100 100 98.89  

Subject 3 80 100 100 100 95 95 95 100 100 96.11  

Subject 4 85 80 80 90 75 90 80 75 70 80.56  

Subject 5 95 100 95 95 95 100 80 85 90 92.78  

Subject 6 70 95 85 80 85 95 95 95 100 88.89  

Subject 7 100 100 100 100 100 100 100 100 100 100  

Subject 8 100 100 100 100 100 95 100 100 100 99.44  

Subject 9 100 100 100 100 100 100 95 95 95 98.33  

Subject 10 60 65 45 65 60 60 40 55 60 56.67  

Subject 11 90 85 75 90 95 70 90 80 90 85  

Subject 12 100 90 85 80 85 90 75 95 90 87.78  

Subject 13 95 95 100 95 100 100 100 85 100 96.67  

Subject 14 100 95 100 100 100 95 100 100 100 98.89  

Subject 15 95 100 90 100 90 100 100 100 95 96.67  

Subject 16 95 100 100 95 100 100 95 95 100 97.78  

Subject 17 100 90 90 95 85 100 80 100 95 92.78  

Subject 18 75 90 80 90 80 95 80 85 80 83.89  

Subject 19 100 95 100 100 100 100 100 100 100 99.44  

Subject 20 85 90 95 90 90 85 95 100 100 92.22  

Subject 21 100 100 100 100 100 95 100 100 100 99.44  

Subject 22 90 95 95 100 95 100 95 100 95 96.11  

Subject 23 95 95 95 100 100 100 95 100 100 97.78  

Subject 24 80 65 80 85 70 80 85 80 75 77.78  

Subject 25 100 100 100 95 100 95 100 100 100 98.89  

Subject 26 75 85 65 75 80 85 95 90 80 81.11  
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Table 4.5: Average Classification accuracies for 0-, 2- and 3-back tasks using modified 

multimodal VPA are reported and the overall average classification accuracy of the classifier is 

reported to be 91.35%. 

 

Subjects 

Average 

Accuracies 

0-back (%) 

Average 

Accuracies 

2-back (%) 

Average 

Accuracies 

3-back (%) 

Overall 

Average 

Accuracy (%)  

 
Subject 1 92.78 98.89 97.22 96.3  

Subject 2 86.67 99.44 98.89 95  

Subject 3 83.33 95.56 96.11 91.67  

Subject 4 71.11 73.89 80.56 75.19  

Subject 5 90.56 92.78 92.78 92.04  

Subject 6 85.56 95.56 88.89 90  

Subject 7 87.78 98.89 100 95.56  

Subject 8 95 97.78 99.44 97.41  

Subject 9 97.78 97.22 98.33 97.78  

Subject 10 78.33 60 56.67 65  

Subject 11 90 83.33 85 86.11  

Subject 12 86.11 95 87.78 89.63  

Subject 13 94.44 95.56 96.67 95.56  

Subject 14 83.33 97.78 98.89 93.33  

Subject 15 94.44 95.56 96.67 95.56  

Subject 16 97.22 99.44 97.78 98.15  

Subject 17 97.22 90.56 92.78 93.52  

Subject 18 85 85.56 83.89 84.81  

Subject 19 98.33 96.11 99.44 97.96  

Subject 20 91.11 93.33 92.22 92.22  

Subject 21 98.33 99.44 99.44 99.07  

Subject 22 86.11 95 96.11 92.41  

Subject 23 92.22 98.33 97.78 96.11  

Subject 24 83.89 81.67 77.78 81.11  

Subject 25 99.44 98.33 98.89 98.89  

Subject 26 91.67 81.11 81.11 84.63 

Complete Average Classification Accuracy 91.35% 

 

 

Using this novel methodology, we have achieved relatively higher average classification 

accuracy than other reported techniques used for this dataset and VPA with dual threshold 
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circles. As it can be clearly seen from Figure 4.13, that accuracy of our classifier, i.e. 91.35%, 

surpassed the average accuracies of VPA with dual circles (Khan, M. J. et al., 2018), SVM, CNN 

(Saadati et al., 2020, Asgher, Umer et al., 2020), and ERP analysis (Shin, J. et al.2018) that are 

86%, 82%, 89% and 76% respectively.   

 

Figure 4.13: Bar chart displaying the comparison of average classification accuracies of 

different techniques used for multimodal data set (Shin, J et al. 2018) and VPA with dual 

threshold circles. 
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CHAPTER 5: DISCUSSION 

Many researches have been carried out up till now for the purpose of improving the classification 

accuracy using hybrid BCI  We 

have used an open-source simultaneous EEG-fNIRS dataset integrated at Technische Universität 

Berlin (Shin, J. et al., 2018). n-back data for fNIRS and EEG has been used to design our novel 

classifier. Work has been done on this dataset previously to enhance the performance accuracy. 

Techniques such as SVM and CNN have been implemented on n-back data and their accuracies 

are reported to be 82% and 89% respectively    

 We have used VPA for designing our classifier, but in a modified form. An approach 

using VPA has already been implemented using dual threshold circles, where the first circle is 

the conventional resting state threshold circle, and the second circle is EEG-based circle drawn at 

the highest power of EEG activity window. Classification accuracy using this technique was 

reported to be 86% (Khan, M. J. et al., 2018). With the intention to further improve the 

classification accuracy of the dataset used, we have proposed a design where modified 

multimodal VPA with multiple EEG-based circles has been implemented. To the best of authors’ 

knowledge, this novel classifier has been able to achieve relatively higher average classification 

accuracy, i.e. 91.35%, as reported in Figure 4.13.  

One of the advantages of this proposed classifier is that it uses VPA for channel selection of 

fNIRS signals. After rejecting the inactive channels, we are averaging the selected channels’ 

signals for each subject. Therefore, inactive channels are not contributing to reduction of signal 

activation, hence improving the performance making it more accurate to detect the activity in 

hemodynamic response. 

Another advantage of this methodology is that it uses HT in a different way to construct phase 

plots of EEG signal trials to indicate the occurrence of activity, which is an easy and feasible 

method. Detection of activity in EEG separately, further enhances the performance of our 

classifier by increasing the average classification accuracy. 

Another benefit of this classifier is that it does not require any training like other conventional 

machine learning and deep learning classifiers, because it is a trajectory-based approach with 

EEG trials- based multiple circles. 
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For this research, a considerably larger dataset (Shin, J et al.,2018) of 26 people have been used 

to design this classifier as compared to dataset of 3 people used for VPA with dual threshold 

circles (Khan, M. J. et al. 2018) This further strengthen the validation of the average 

classification accuracy achieved using our classifier. 

In this study we have also highlighted the channels activation using brain maps constructed in a 

relatively different way than other conventional ways like t-score (Khan, M. J. et al. 2018) and z-

score (Matsuda, H. et al., 2007) etc. We have constructed trial wise brain maps to show the 

presence of activity in different regions of brain at different stages. Our brain maps are 

constructed based on the difference of magnitudes of different trials’ circles with the magnitude 

of baseline circle in vector phase diagram. 
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CHAPTER 6: CONCLUSION 

In this study, we have proposed a novel methodology for enhancing average classification 

accuracy using hybrid BCI (EEG-fNIRS). For this research, we have used a hybrid (EEG-fNIRS) 

dataset for n-back tasks, collected at Technische Universität Berlin. Hilbert transform was used 

to construct phase plots for activity detection in EEG trials. A modified multimodal VPA has 

been designed with multiple threshold circles, drawn at the completion time of each trial activity 

in EEG signals, using HbO and HbR magnitudes. If the ∆HbO and∆ HbR trajectory crosses the 

EEG-activity-based threshold circle in the time span of each trial, then activity is considered as 

detected. Thus, a modified multimodal (EEG-fNIRS) VPA has been used as a classifier to get the 

combined accuracy for the detection of activity. The collective accuracy achieved using this 

novel classifier was 91.35%, relatively higher than other conventional classifiers i.e. SVM and 

CNN. This research is a step forward in improving the classification accuracy of state-of-the-art 

hybrid EEG-fNIRS BCI systems.  
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CHAPTER 7: FUTURE WORK 

A limitation in this research is that activity in a time span is considered as detected if its 

occurrence is indicated in either EEG signal or multimodal VPA trajectory. A false positive 

detection can result in some false detection of activity. To further improve the classifier, research 

can be carried out to overcome this short coming. 

In our proposed methodology simple preprocessing techniques have been used such as low pass, 

band pass and high pass filters. Presence of artifacts is still possible in the signals and can affect 

the resting state circle of vector phase diagram. So, to further improve the performance of this 

technique advanced preprocessing techniques and artifact rejection algorithms are desirable. 

Moreover, in this research a comparison between gender-based accuracy has not been conducted, 

so this investigation can also be carried out to indicate whether the accuracy gets affected by 

gender or not.  
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APPENDIX A 

MATLAB Code of VPA for Ideal HRF signal: 

load('cnt_nback.mat') 
y1=cnt_nback.x; 
[m,n]=size(y1); 

  
load('cnt_nback_fnirs.mat') 
O=cnt_nback.oxy.x; 
D=cnt_nback.deoxy.x; 
[m1,n1]=size(O); 

  
%% 
%Markers display EEG 
close all 
fs=200; 
x=y1(:,1); 
t=(1:m)/fs; 
load('mrk_nback.mat'); 
ti=mrk_nback.time; 
tim=ones(1,length(ti)); 
for i=1:length(ti) 
    tim(i)=ti(i)/1000; 
end 
plot(t,x,'b'); 
xlim([0 max(t)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('EEG','FontSize',12,'FontName','Times'); 
hold on; 
for i=1:567 
    k=tim(i); 
    line([k k],[-1000 2000],'Color','red'); 
end 
figure; 
samples=ones(1,length(tim)); 
for i=1:length(tim) 
    samples(i)=tim(i)*fs; 
end 
plot(x); 
xlim([0 length(x)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('EEG','FontSize',12,'FontName','Times'); 
hold on; 
for i=1:567 
    k=samples(i); 
    line([k k],[-1000 2000],'Color','red'); 
end 
hold off 
figure; 

  
%Markers display fnirs 
fs1=10; 
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x2=O(:,1); 
t1=(1:m1)/fs1; 
load('mrk_nback_fnirs.mat'); 
ti1=mrk_nback.time; 
tim1=ones(1,length(ti1)); 
for i=1:length(ti1) 
    tim1(i)=ti1(i)/1000; 
end 
plot(t1,x2,'b'); 
xlim([0 max(t1)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('time(s)','FontSize',12,'FontName','Times'); 
ylabel('EEG','FontSize',12,'FontName','Times'); 
hold on; 
for i=1:27 
    k=tim1(i); 
    line([k k],[-0.1 0.1],'Color','red'); 
end 
hold off; 
figure; 
samples1=ones(1,length(tim1)); 
for i=1:length(tim1) 
    samples1(i)=tim1(i)*fs1; 
end 
plot(x2); 
xlim([0 length(x2)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('no of samples','FontSize',12,'FontName','Times'); 
ylabel('Magniude','FontSize',12,'FontName','Times'); 
hold on; 
for i=1:27 
    k=samples1(i); 
    line([k k],[-0.1 0.1],'Color','red'); 
end 
hold off; 

  
%% 
%impulse 
imp=zeros(1,69.5*fs1); 
m2=length(imp); 
imp(1,3*fs1)=1; 
for i=1:19 
imp(1,fs1*(3+(i*2)))=1; 
end 
t2=(1:m2)/fs1; 
plot(t2,imp); 
title('20 Impulses','FontSize',12,'FontName','Times');  
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times');  

  

  
constants=[10 -3.6 6.6 15 0.8 1]; 
hrf=twogamma(constants,t2); 
figure; 

  
% convolution 
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res=conv(hrf,imp); 
plot(t2,res(1,1:length(hrf))); 
title('HRF convolved with impulses','FontSize',12,'FontName','Times');  
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
figure 
% normalizing hbo 
mi=min(res); 
ma=max(res); 
for j=1:length(res) 
res(j)=res(j)/ma; 
end 

  
plot(t2,res(1,1:length(t2))); 

  
hold on; 

  
%Construction of HbR 
resR=(1/4)*(-res); 
resR=[zeros(1,5) resR]; 
plot(t2,resR(1,1:length(hrf))); 
title('Ideal HbO/HbR','FontSize',12,'FontName','Times');  
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
figure 
legend('HbO','HbR'); 
legend boxoff; 
hold off; 

  
%%  
close all 
%threshold circles 
R=ones(1,20); 
for i=1:20 
   R(1,i)= (res(1,(2+(2*i))*fs1)^2 + resR(1,(2+(2*i))*fs1)^2)^(1/2); 
end 

  
%% 
%plotting VPA 
% u = VideoWriter('Ideal.avi'); 
% open(u); 
xL=[-1.5,1.5]; 
yL=[-1.5,1.5]; 
line([0,0],yL); 
line(xL,[0,0]); 
hold on; 
x=[-1.5,1.5]; 
y=x; 
grid ON 
plot(x, y); 
hold on; 
plot(x,-y); 
title('VPA(ideal)','FontSize',12,'FontName','Times');  
xlabel('HbR','FontSize',12,'FontName','Times'); 
ylabel('HbO','FontSize',12,'FontName','Times'); 
% frame = getframe(gcf); 
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% writeVideo(u,frame); 
for i=1:20 
    hold on; 
    circle([0,0],R(i),'color','black'); 
%     frame = getframe(gcf); 
%     writeVideo(u,frame); 
end 
hold on; 
% plot(res,resR(1,1:length(res))); 
curve1=animatedline('Color','r'); 

  
for i=1:length(res) 
    addpoints(curve1,res(1,i),resR(1,i)); 
    drawnow; 
%     frame = getframe(gcf); 
%     writeVideo(u,frame); 
end 

  
% close(u) 
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APPENDIX B 

MATLAB code for Hilbert Transform for EEG signals and multimodal VPA: 

clc 
clear all; 
close all; 
load('cnt_nback.mat') 
y1=cnt_nback.x; 
[m,n]=size(y1); 
%% 
% %Normalization 
eeg=normalize(y1); 
% Plotting Channels 
s=[1 2 3 4 17 18 19]; 
for l=1:length(s) 
    subplot(3,3,l); 
    plot(eeg(:,s(l))); 
    title(sprintf('Channel %d',s(l)),'FontSize',12,'FontName','Times');  
    xlabel('No of Samples','FontSize',12,'FontName','Times'); 
    ylabel('Magnitude','FontSize',12,'FontName','Times'); 
end 
%% 
sig=zeros(6,m); 

  
for v=1:length(s) 
% close all;  
 fs = 200;                                % sample frequency (Hz)                    

% 10 second span time vector 
%Frequency spectrum of unfiltered signals 
% signal=eeg(:,s(v)); 
% [f,power]=Freq_spectrum(signal,fs); 
% subplot(3,3,v); 
% plot(f,power,'r') 
% xlim([4 15]); 
% title(sprintf('Spectrum Channel %d',s(v)),'FontSize',12,'FontName','Times') 
% xlabel('Frequency','FontSize',12,'FontName','Times') 
% ylabel('Power','FontSize',12,'FontName','Times') 
%  
% % figure; 
[b,a]=butter(5,[0.1*2/fs 15*2/fs], 'bandpass'); 
xfilter=filtfilt(b,a,eeg(:,s(v))); 
subplot(3,3,v); 
plot(eeg(:,s(v))); 
title(sprintf('Channel %d',s(v)),'FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold on 
plot(xfilter); 
% % legend('Original signal','filtered signal'); 
% % legend boxoff; 
%  
% % figure; 
%Frequency spectrum of filtered signal 
% signal=xfilter; 
% [f,power]=Freq_spectrum(signal,fs); 
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% subplot(3,3,v); 
% plot(f,power,'r') 
% xlim([4 15]); 
% title(sprintf('Spectrum Channel %d',s(v)),'FontSize',12,'FontName','Times') 
% xlabel('Frequency','FontSize',12,'FontName','Times') 
% ylabel('Power','FontSize',12,'FontName','Times') 

  
sig(v,:)=xfilter; 
end 
%% 
close all 
eegsignal=mean(sig); 
plot(eegsignal); 
xlim([0 length(eegsignal)]) 
title('Average Signal','FontSize',12,'FontName','Times') 
xlabel('No of Samples','FontSize',12,'FontName','Times') 
ylabel('Magnitude','FontSize',12,'FontName','Times') 
%% 
% Frequency Spectrum of Avg EEG Signal 
signal=eegsignal; 
[f,power]=Freq_spectrum(signal,fs); 
plot(f,power,'r') 
xlim([4 15]); 
title('Frequency Spectrum','FontSize',12,'FontName','Times') 
xlabel('Frequency','FontSize',12,'FontName','Times') 
ylabel('Power','FontSize',12,'FontName','Times') 
%% 
%Markers display EEG 
close all 
load('mrk_nback.mat'); 
ti=mrk_nback.time; 
samples=disp_markers(eegsignal,ti,fs); 
%% 
%Hilbert Transform 
close all; 
t=(1:m)/fs; 
plot(t,eegsignal); 
title('Real and imaginary components of EEG 

signal','FontSize',12,'FontName','Times'); 
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('EEG(t)','FontSize',12,'FontName','Times'); 
hold on; 
z=hilbert(eegsignal); 
w=imag(z); 
plot(t,w); 
legend('Real','imaginary'); 
legend boxoff; 
hold off 

  
figure; 
plot(eegsignal(1,samples(4):samples(5)),w(1,samples(4):samples(5)),'LineWidth

',2); 
hold on; 
plot(eegsignal(1,samples(6):samples(7)),w(1,samples(6):samples(7)),'LineWidth

',2); 
title('Task(for two 2s windows','FontSize',12,'FontName','Times'); 
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xlabel('Real(eeg)','FontSize',12,'FontName','Times') 
ylabel('Imaginary(eeg)','FontSize',12,'FontName','Times') 
sno=[2 21;23 42;44 63; 65 84;86 105;107 126;128 147;149 168;170 189;191 

210;212 231;233 252;254 273;275 294;296 315;317 336;338 357;359 378; 380 

399;401 420;422 441;443 462;464 483;485 504;506 525;527 546;548 567]; 

  
%% 
No=12; 
close all; 
plot(eegsignal); 
title('filtered eeg signal','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 

  
g=zeros(20,400); 
h=zeros(1,400); 
figure; 

  
for i=sno(No,1):sno(No,2) 
    h=eegsignal(1,samples(i):samples(i)+399); 
    g(i-1,:)=eegsignal(1,samples(i):samples(i)+399); 
    plot(g(i-1,:), 'LineWidth',2); 
    hold on; 
end 
title('Activity  (20 trials)','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold off 
figure; 
avgsignal=mean(g); 
plot(avgsignal); 
title('Activity(Avg signal)','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
figure; 
time=(1:length(avgsignal))/fs; 
plot(time,avgsignal); 
title('Activity(Avg signal)','FontSize',12,'FontName','Times'); 
xlabel('time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 

  
%% 
close all; 
a11=avgsignal; 
mi1=min(a11); 
ma1=max(a11); 
%  
j1=1; 

  
if (a11(1:5)>-1) 
    diff=0; 
else 
    diff=-3; 
end 
while(a11(j1)<=diff) 
    pa=j1; 
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    j1=j1+1; 
    if(j1==length(a11)) 
        pa=length(a11); 
    end 
    if(j1>5) 
        diff=a11(j1)-a11(j1-5); 
    end 
end 
p1a=pa-30; 
bt=p1a/fs; 
% plot(a11); 
% hold on 
% line([p1a p1a],[mi1 ma1],'Color','red'); 

  
% figure; 

  

  
[pks1,locs1]=findpeaks(a11); 
findpeaks(a11); 
% figure; 
    for i=1:length(pks1) 
        if (pks1(i)>0) 
            loc1=locs1(i); 
        end 
    end    
lo=loc1; 

  
j=1; 

  
if (a11(1:5)>-1) 
    diff=0; 
else 
    diff=-3; 
end 
while(a11(j)<=diff) 
    pb=j; 
    j=j+1; 
    if(j==length(a11)) 
        pb=length(a11); 
    end 
    if(j>5) 
        diff=a11(j)-a11(j-5); 
    end 
end 

  
p1b=pb; 
b1b=a11(1,1:p1b); 
avgb=mean(b1b); 
maximumb=max(b1b); 
while(a11(lo)>=maximumb) 
    lo=lo+1; 
end 

  
if (lo>(length(a11)-30)) 
    sub=length(a11)-lo; 
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    h1b=lo+sub; 
else 
    h1b=lo+30; 
end 

  
ta11=(1:length(a11))/fs; 
pt=h1b/fs; 
plot(ta11,a11,'b'); 
hold on 
line([pt pt],[mi1 ma1],'Color','red'); 
hold on 
line([bt bt],[mi1 ma1],'Color','red'); 
title('Average Signal','FontSize',12,'FontName','Times'); 
xlabel('Time','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
siga=avgsignal(1,p1a:h1b); 

  
%% 
% Task 
close all 
avghilbert=hilbert(siga); 
avgimagi=imag(avghilbert); 
plot(siga,avgimagi); 
hold on 
plot(mean(siga), mean(avgimagi), 'k*', 'MarkerSize', 20) 
hold on; 
line([0 0],[min(avgimagi) max(avgimagi)],'LineStyle','--'); 
hold on; 
line([min(siga) max(siga)],[0 0],'LineStyle','--'); 
hold off; 
title('Real Vs Imaginary of Avg Activity 

signal','FontSize',12,'FontName','Times'); 
xlabel('Real','FontSize',12,'FontName','Times'); 
ylabel('Imaginary','FontSize',12,'FontName','Times'); 
%% 
close all 
mm=length(siga); 
e=ones(1,mm); 
u=ones(8,mm); 
nn=mm-1; 
figure; 
for i=1:8 
    e=eegsignal(1,samples((21*i)+1)-nn:samples((21*i)+1)); 
    u(i,:)=eegsignal(1,samples((21*i)+1)-nn:samples((21*i)+1)); 
    plot(u(i,:), 'LineWidth',2); 
    hold on; 
end 
xlim([0 mm]) 
title('Rest 1s(8 windows)','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold off 
figure; 
avgrest=mean(u); 
plot(avgrest); 
xlim([0 mm]) 
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title('Rest(Avg signal)','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
figure; 
time=(1:length(avgrest))/fs; 
plot(time,avgrest); 
xlim([0 max(time)]) 
title('Rest(Avg signal)','FontSize',12,'FontName','Times'); 
xlabel('time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
figure; 
avghilb=hilbert(avgrest); 
avgimag=imag(avghilb); 
plot(avgrest,avgimag); 
title('Real Vs Imaginary of Rest signal','FontSize',12,'FontName','Times'); 
xlabel('Real','FontSize',12,'FontName','Times'); 
ylabel('Imaginary','FontSize',12,'FontName','Times'); 
hold on; 
plot(siga ,avgimagi,'r','LineWidth',2); 
hold on; 
line([0 0],[-0.01 0.01],'LineStyle','--'); 
hold on; 
line([-0.01 0.01],[0 0],'LineStyle','--'); 
hold off; 
legend('Rest','Activity'); 
legend boxoff; 
%% 
% %% 
close all; 
%Time values for Threshold Circles  
btimes=zeros(1,20); 
bsamples=zeros(1,20); 
locd=zeros(1,20); 
sa=sno(No,1)-1; 
for z=sno(No,1):sno(No,2) 
a1=eegsignal(1,samples(z):samples(z)+399); 
[pks,locs]=findpeaks(a1); 
%     subplot(4,5,z-ss); 
%     findpeaks(a1); 
    for i=1:length(pks) 
        if (pks(i)>0.02) 
            locd(z-sa)=locs(i); 
        end 
    end    

  
lo=locd(z-sa); 

  
if(lo>0) 
mi=min(a1); 
ma=max(a1); 
%  
j=1; 
if (a1(1:5)>-1) 
    diff=0; 
else 
    diff=-3; 



53 
 

end 
while(a1(j)<=0.01) 
    p=j; 
    j=j+1; 
    if(j>5) 
        diff=a1(j)-a1(j-5); 
    end 
end 

  
p1=p-15; 
bsamples(z-sa)=p1; 
btimes(z-sa)=p1/fs; 
subplot(4,5,z-sa); 
plot(a1); 
hold on 
line([p1 p1],[mi ma],'Color','red'); 
end 
end 

  
%% 
%finding peaks 
close all; 
loc=zeros(1,20); 
psamples=zeros(1,20); 
h1=zeros(1,20); 
times=zeros(1,20); 
ss=sno(No,1)-1; 
for z=sno(No,1):sno(No,2) 
    a1=eegsignal(1,samples(z):samples(z)+399); 
    [pks,locs]=findpeaks(a1); 
%     subplot(4,5,z-ss); 
%     findpeaks(a1); 
    for i=1:length(pks) 
        if (pks(i)>0.02) 
            loc(z-ss)=locs(i); 
        end 
    end    

  
lo=loc(z-ss); 

  

if(lo>0) 
mi=min(a1); 
ma=max(a1); 

  
j=1; 
diff=-1; 
while(a1(j)<=diff) 
    p=j; 
    j=j+1; 
    if(j>10) 
        diff=a1(j)-a1(j-10); 
    end 
end 

  
p1=p; 
b1=a1(1,1:p1); 
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avg=mean(b1); 
maximum=max(b1); 
while(a1(lo)>=maximum) 
    lo=lo+1; 
    if(lo>length(a11)) 
        lo=length(a11); 
        break; 
    end 
end 

  

  
if (lo>(length(a11)-30)) 
    sub1=length(a11)-lo; 
    h1(z-ss)=lo+sub1; 
else 
    h1(z-ss)=lo+30; 
end 

  
psamples(z-ss)=h1(z-ss); 
ta1=(1:length(a1))/fs; 
% subplot(4,5,z-1); 
% plot(a1,'b'); 
% hold on 
% line([h(z-1) h(z-1)],[mi ma],'Color','red'); 
% title(sprintf('Trial %d',z-1),'FontSize',12,'FontName','Times'); 
% xlabel('No of Samples','FontSize',12,'FontName','Times'); 
% ylabel('Magnitude','FontSize',12,'FontName','Times'); 

  
times(z-ss)=h1(z-ss)/fs; 
subplot(4,5,z-ss); 
plot(ta1,a1,'b'); 
hold on 
line([times(z-ss) times(z-ss)],[mi ma],'Color','red'); 
hold on 
line([btimes(z-ss) btimes(z-ss)],[mi ma],'Color','red'); 
title(sprintf('Trial %d',z-ss),'FontSize',12,'FontName','Times'); 
xlabel('Time','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 

  
end 

  
end 
    %% 
    close all; 
centers=zeros(20,2); 
ff=sno(No,1)-1; 
for k1=1:20 
    

tsignals=eegsignal(1,samples(k1+ff)+bsamples(k1):samples(k1+ff)+psamples(k1))

; 
    diff3=psamples(k1)-bsamples(k1); 
    if(diff3>50) 
    htsignals=imag(hilbert(tsignals)); 
    subplot(4,5,k1); 
%     plot(tsignals); 
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    title(sprintf('Trial %d',k1),'FontSize',12,'FontName','Times'); 
    xlabel('Real','FontSize',12,'FontName','Times'); 
    ylabel('Imaginary','FontSize',12,'FontName','Times'); 

     
    plot(tsignals,htsignals); 

  
    hold on 
    mx=mean(tsignals); 
    my=mean(htsignals); 
    centers(k1,1)=mx; 
    centers(k1,2)=my; 
    plot(mx,my, 'r*', 'MarkerSize', 5) 
    end 
end 
  eegcounter=0; 
  eegcount=zeros(1,20); 
  for i=1:20 
      if(centers(i,1)>0) 
          eegcounter=eegcounter+1; 
          eegcount(i)=1; 
      else 
          eegcount(i)=0; 
      end 
  end 
%% 
close all; 
%FNIRS_VPA 
load('cnt_nback_fnirs.mat') 
O=cnt_nback.oxy.x; 
D=cnt_nback.deoxy.x; 
[m1,n1]=size(O); 

  
%Normalization 
Oxy=normalize(O); 
Dxy=normalize(D); 

  
for j=1:n1 
   subplot(6,6,j);  
   plot(Oxy(:,j)); 
   hold on; 
   plot(Dxy(:,j)); 
   xlim([0 length(Oxy(:,j))]); 
   title(sprintf('Channel %d',j),'FontSize',12,'FontName','Times');  
end 
%% 
sig1=zeros(12,m1); 
sig2=zeros(12,m1); 
s1=[2 4 5 6 7 8 9 10 11 20 21 22]; 
for v=1:12 
% close all; 
fs1 = 10;            % Sampling frequency                     
T = 1/fs1;             % Sampling period        
L = m;             % Length of signal 
X=Oxy(:,s1(v)); 
Z=Dxy(:,s1(v)); 
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t=(1:length(X))/fs1; 
subplot(4,3,v); 
% plot(t,X); 
% hold on; 
% plot(t,Z); 
% xlim([0 max(t)]) 
% title(sprintf('HbO/HbR Channel %d',s1(v)),'FontSize',12,'FontName','Times') 
% xlabel('Time','FontSize',12,'FontName','Times') 
% ylabel('HbO(t)/HbR(t)','FontSize',12,'FontName','Times') 
% legend('Oxy','Deoxy'); 
% legend boxoff; 

  
% figure;                               % sample frequency (Hz)                     

% 10 second span time vector 
% signal=X; 
% [f1,power1]=Freq_spectrum(signal,fs1); 
% signal1=Z; 
% [f2,power2]=Freq_spectrum(signal1,fs1); 
% plot(f1,power1,'r') 
% hold on; 
% plot(f2,power2,'b') 
% xlim([0.05 0.5]); 
% title(sprintf('Spectrum Channel 

%d',s1(v)),'FontSize',12,'FontName','Times') 
% xlabel('Frequency','FontSize',12,'FontName','Times') 
% ylabel('Power','FontSize',12,'FontName','Times') 
% legend('HbO spectrum','HbR Spectrum'); 
% legend boxoff; 

  
fc=0.2; 
[b,a]=butter(6,fc/(fs1/2)); 
xfilter1=filtfilt(b,a,X); 
xfilter2=filtfilt(b,a,Z); 
% % %high pass filter 
hpFilt = designfilt('highpassfir','StopbandFrequency',0.005, ... 
         'PassbandFrequency',0.01,'PassbandRipple',0.5, ... 
         'StopbandAttenuation',65,'DesignMethod','kaiserwin'); 
% fvtool(hpFilt) 
xfilter11=filtfilt(hpFilt,xfilter1); 
xfilter22=filtfilt(hpFilt,xfilter2); 
plot(xfilter11); 
title(sprintf('Oxy/Deoxy Channel 

%d',s1(v)),'FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold on 
plot(xfilter22); 
xlim([0 length(xfilter11)]) 

  
sig1(v,:)=xfilter11; 
sig2(v,:)=xfilter22; 
end 
%% 
close all 
oxysig=mean(sig1); 
dxysig=mean(sig2); 
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plot(oxysig); 
hold on; 
plot(dxysig); 
xlim([0 length(oxysig)]) 
title('HbO/HbR Average Signal','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
legend('HbO','HbR'); 
legend boxoff; 
%% 
%spectrums after filter 
close all 
fs1 = 10;                                % sample frequency (Hz)                     

% 10 second span time vector 
signal=oxysig; 
[f3,power3]=Freq_spectrum(signal,fs1); 
signal1=dxysig; 
[f4,power4]=Freq_spectrum(signal1,fs1); 
plot(f3,power3,'r') 
hold on; 
plot(f4,power4,'b') 
xlim([0 0.5]); 
title('Frequency Spectrum','FontSize',12,'FontName','Times') 
xlabel('Frequency','FontSize',12,'FontName','Times') 
ylabel('Power','FontSize',12,'FontName','Times') 
legend('HbO spectrum','HbR Spectrum'); 
legend boxoff; 

  
%% 
%Markers display fnirs 
close all 
load('mrk_nback_fnirs.mat'); 
ti1=mrk_nback.time; 
samples1=disp_markers(oxysig,ti1,fs1); 
hold on; 
plot(dxysig,'m'); 
%% 
%Calculating Mag and Theta 
p=ones(m1,1); 
th=ones(m1,1); 

  
for i=1:m1 
    p(i,1)=(((oxysig(1,i))^2)+((dxysig(1,i))^2))^0.5; 
    th(i,1)=atan(dxysig(1,i)/oxysig(1,i)); 
end 

  
prest=p(samples1(2)-200:samples1(2),1); 
R=mean(prest); 
%% 
%  
%plotting 
ggg=No; 
close all 
plot(oxysig(1,samples1(ggg):samples1(ggg)+44*fs1)) 
hold on  
plot(dxysig(1,samples1(ggg):samples1(ggg)+44*fs1)); 
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xlim([0 44*fs1]); 
title('Session 1 series 1','FontSize',12,'FontName','Times') 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
legend('HbO','HbR'); 
legend boxoff; 
figure; 
% for j=1:9 
% subplot(3,4,j); 
xL=[-1,1]; 
yL=[-1,1]; 
line([0,0],yL); 
line(xL,[0,0]); 
hold on; 
x=[-1,1]; 
y=x; 
grid ON 
plot(x, y); 
hold on; 
plot(x,-y); 
hold on; 
% 

plot(oxysig(1,samples1(j):samples1(j)+42*fs1),dxysig(1,samples1(j):samples1(j

)+42*fs1),'r') 
plot(oxysig(1,samples1(ggg):samples1(ggg)+44*fs1),dxysig(1,samples1(ggg):samp

les1(ggg)+44*fs1),'r','LineWidth',2) 
xlim([-0.15 0.15]); 
ylim([-0.15 0.15]); 
hold on; 
circle([0,0],R,'color','green','LineWidth',2); 
title(sprintf('Session one series %d',1),'FontSize',12,'FontName','Times') 
xlabel('HbR','FontSize',12,'FontName','Times'); 
ylabel('HbO','FontSize',12,'FontName','Times'); 
% end 

  
gime=zeros(1,20); 
gime(1)=times(1); 
for k=2:20 
    gime(k)=gime(k-1)+times(k); 
end 
gamples=gime*fs1; 
tamples=zeros(1,20); 
p2=zeros(1,20); 
R1=zeros(1,20); 

  
for h=1:20 
    hold on; 
    tamples(h)=samples1(ggg)+gamples(h); 
    p2(h)=int64(tamples(h)); 
    R1(h)=(((oxysig(1,p2(h)))^2)+((dxysig(1,p2(h)))^2))^0.5; 
    circle([0,0],R1(h),'color','black'); 
end 
hold off; 

  
%% 
close all; 
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xL=[-0.1,0.1]; 
yL=[-0.1,0.1]; 
line([0,0],yL); 
line(xL,[0,0]); 
hold on; 
x=[-0.1,0.1]; 
y=x; 
grid ON 
plot(x, y); 
hold on; 
plot(x,-y); 
hold on; 
title('Real Vs Imaginary plot of fNIRS 

activity','FontSize',12,'FontName','Times'); 
xlabel('Real','FontSize',12,'FontName','Times'); 
ylabel('Imaginary','FontSize',12,'FontName','Times'); 

  
circle([0,0],R,'color','green','LineWidth',2); 

  
hold on; 

  
x=1; 
hh=1; 
l=int64(samples1(ggg)); 
for i=l:l+(44*fs1) 
    if(i>l+10 && rem(i,20)==0 && x<21) 
        circle([0,0],R1(x),'color','black'); 
        hold on; 
        x=x+1; 
    if(x==21) 
        x=20; 
    end 
    end 

     
    if (p(i,1)>R1(x) ) 
          c = 'r*'; 
          kk(hh)=1; 
          hh=hh+1; 
    else 
        c='g*'; 
        kk(hh)=0; 
        hh=hh+1; 
    end 

     
    plot(oxysig(1,i),dxysig(1,i),c); 
%    pause(0.08); 
    hold on; 

     
end 
fnirscount=zeros(1,20); 

  

         

  
for g=1:21 
    o2=20*(g+1); 
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    o1=o2-20; 
    if (mean(kk(o1:o2))==1) 
        fnirscount(g+1)=0; 
    elseif ( mean(kk(o1:o2))>0 && mean(kk(o1:o2))<1) 
        for ee=1:20 
            if (kk(o1+ee-1)==0 && kk(o1+ee)==1) 
                fnirscount(g+1)=1; 
                break;  
%             else 
%                fnirscount(g)=0; 
            end 

                 
        end 
    else 
        fnirscount(g+1)=0; 
    end 
end 

  
counter =0; 
for i=1:20 
 if(fnirscount(i)==1)  
        counter=counter+1; 
 end 
end 
%% 
counter1 =0; 
j=1; 
for i=2:420 
 if(kk(i-1)==0 && kk(i)==1)  
        counter1=counter1+1; 
        sd(j)=i; 
        j=j+1; 
 end 
end 
fnirscount1=zeros(1,20); 
for i=1:length(sd) 
   ki=sd/20; 
   fi=floor(ki); 
   fnirscount1(fi+1)=1; 
end 

  
counter2 =0; 
for i=1:20 
 if(fnirscount1(i)==1)  
        counter2=counter2+1; 
 end 
end 

  
%% 
wa=0; 
for u=1:20 
if(fnirscount1(u)==1 || eegcount(u)==1) 
    wa=wa+1; 
end 
end 
eegcounter 
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counter2 
accuracy=(wa/20)*100 

 

MATLAB Functions: 
Two Gamma Function 
function [twogammafunction] = twogamma(array, time) 

  
hrf1= array(1).*((time.^(array(3)-1) .* array(5).^array(3) .* exp(-

array(5)*time))./gamma(array(3))); 

  
hrf2= (array(2).*((time.^(array(4)-1) .* array(6).^array(4) .* exp(-array(6) 

* time))./(gamma(array(4))))); 

  
hrf=hrf1+hrf2; 
twogammafunction = hrf; 
figure;plot(twogammafunction) 
hold on; 
time=1:350; 
hb = plot(time/15.625,zeros(1,350),'k--'); 
title('cHRF using Two Gamma Function','FontSize', 12,'FontName','Times'); 
xlabel('No of Samples','FontSize', 12,'FontName','Times'); 
ylabel('Magnitude','FontSize', 12,'FontName','Times'); 

  
end 

 

Normalization Function 
function [ eeg ] = normalize(y1) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  
%Normalization 
[m,n]=size(y1); 
mini=ones(1,n); 
maxi=ones(1,n); 

  
for k=1:n 
    mini(k)=min(y1(:,k)); 
    maxi(k)=max(y1(:,k)); 
end 
eeg=ones(m,n); 
for j=1:n 
    for i=1:m 
        eeg(i,j)=(y1(i,j)-mini(j))/(maxi(j)-mini(j)); 
    end 
end 
end 

 
Function for Frequency Spectrum 
function [f,power ] = Freq_spectrum( signal,fs ) 
%UNTITLED4 Summary of this function goes here 
%   Detailed explanation goes here 

y = fft(signal); 
n = length(signal);          % number of samples 
f = (0:n-1)*(fs/n);     % frequency range 
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power = abs(y).^2/n;  
end 

 

Function to display Markers     
function [samples] = disp_markers(signal,ti,fs) 
%UNTITLED6 Summary of this function goes here 
%   Detailed explanation goes here 
m=length(signal); 
t=(1:m)/fs; 
tim=ones(1,length(ti)); 
for i=1:length(ti) 
    tim(i)=ti(i)/1000; 
end 
plot(t,signal,'b'); 
xlim([0 max(t)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('Time(s)','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold on; 
ma=max(signal); 
mi=min(signal); 
for i=1:length(ti) 
    k=tim(i); 
    line([k k],[mi ma],'Color','red'); 
end 
figure; 
samples=ones(1,length(tim)); 
for i=1:length(tim) 
    samples(i)=tim(i)*fs; 
end 
plot(signal); 
xlim([0 length(signal)]); 
title('Markers','FontSize',12,'FontName','Times'); 
xlabel('No of samples','FontSize',12,'FontName','Times'); 
ylabel('Magnitude','FontSize',12,'FontName','Times'); 
hold on; 
for i=1:length(ti) 
    k=samples(i); 
    line([k k],[mi ma],'Color','red'); 
end 

  
end 
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APPENDIX C 

MATLAB code for Brain Map Construction: 

clc 
% clear all; 
close all 
% x=load('BM.mat'); 
s=zeros(1,16); 
j=1; 
for i=3:3:48 
s(j)=BM(i,5); 
j=j+1; 
end 
 Map=[ 0 s(3) 0 s(5) 0 s(9) 0 s(11) 0 s(15) 0; 
       s(1) 0 s(4) 0 s(7) 0 s(10) 0 s(13) 0 s(16); 
       0 s(2) 0 s(6) 0 s(8) 0 s(12) 0 s(14) 0]; 
Map(2,2)=(s(1)+s(2)+s(3)+s(4))/4; 
Map(2,4)=(s(4)+s(5)+s(6)+s(7))/4; 
Map(2,6)=(s(7)+s(8)+s(9)+s(10))/4; 
Map(2,8)=(s(10)+s(11)+s(12)+s(13))/4; 
Map(2,10)=(s(13)+s(14)+s(15)+s(16))/4; 
Map(1,1)=(s(1)+s(3)+Map(2,2))/3; 
Map(3,1)=(s(1)+s(2)+Map(2,2))/3; 
Map(1,11)=(s(15)+s(16)+Map(2,10))/3; 
Map(3,11)=(s(16)+s(14)+Map(2,10))/3; 
Map(1,3)=(s(3)+s(4)+s(5)+Map(2,2))/4; 
Map(1,5)=(s(5)+s(7)+s(9)+Map(2,4))/4; 
Map(1,7)=(s(9)+s(10)+s(11)+Map(2,6))/4; 
Map(1,9)=(s(11)+s(13)+s(15)+Map(2,8))/3; 
Map(3,3)=(s(2)+s(4)+s(6)+Map(2,2))/4; 
Map(3,5)=(s(6)+s(7)+s(8)+Map(2,4))/4; 
Map(3,7)=(s(8)+s(10)+s(12)+Map(2,6))/4; 
Map(3,9)=(s(12)+s(13)+s(14)+Map(2,8))/4; 
mini=min(min(BM)); 
maxi=max(max(BM)); 
colormap jet 
caxis([mini maxi]); 
Tnew = imresize(Map,3,'bilinear'); 
s1=pcolor(Tnew); 
s1.FaceColor='interp'; 
colorbar; 
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