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Abstract

This research work presents an energy harvesting model in which the transmitter

harvests energy from the surrounding environment and stores it in an imper-

fect battery. Inevitably, this harvested energy has two kinds of extra consump-

tion: battery storage losses and circuit power consumption. Towards this end,

a single-user channel model is considered to determine the optimum power allo-

cation policies for static and fading channels. The objective is to maximize the

average throughput of an energy harvesting wireless transmission system within

a finite time fraction during which transmission occurs. The throughput max-

imization problem is formulated with joint constraints viz., finite sized battery,

circuit power consumption and limited amount of transmit power and solved us-

ing convex optimization techniques. Specifically, Lagrange multiplier method and

Karush-Kuhn-Tucker (KKT) conditions are used to solve the proposed optimiza-

tion problem. An optimum offline power allocation policy is proposed and an

algorithm is provided to find optimum thresholds for power allocation. Moreover,

an online power allocation policy is derived and an algorithm is provided with

harvested energy available causally at the transmitter. For online algorithm, we

consider adaptive thresholds that varies with storage efficiency and value of epoch.

Simulation results show that the proposed offline and online algorithms have out-

performed the earlier work focused on considering energy storage losses for energy

harvesting wireless transmission systems.

Keywords: Energy harvesting, green communication, optimum power allocation,

energy storage losses.
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Chapter 1

Introduction

Due to tremendous increase in energy utilization by wireless transmission systems,

the research interests in green communication has increased significantly [1]. To-

wards this end, two methods are used to attain green communication: energy

efficiency and energy harvesting. Energy efficiency refers to the optimized use of

energy for data transmission [2, 3]. On the other hand, energy harvesting is the

extraction of energy from ambient environments, such as solar energy, thermal

energy, tidal energy and wind energy [4, 5]. This energy’s hunt is focused on ob-

taining clean energy from the surrounding energy resources. The energy can be

harvested from multiple renewable energy resources, referred to as hybrid energy

harvesting [6]. Energy harvesting is not only limited to wireless sensor networks

with energy harvesting sensor nodes but can be extended to cellular networks with

base stations powered by hybrid renewable energy resources [7, 8].

1.1 Energy Harvesting

With advancement in new technologies and proliferation of physical devices, the

energy requirement has increased significantly. Most of these devices are powered

by batteries that need to be replaced after some time. However, their replace-

ment in various remote applications is not feasible. To deal with the battery

replacement issues, energy harvesting (EH) from the ambient environment is a
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Chapter 1: Introduction

Figure 1.1: Renewable energy sources for harvesting clean energy form ambient envi-

ronment.

better alternative to increase the lifetime of an energy harvesting transmitting

node [11, 12]. There are two types of energy resources i.e., non-renewable and

renewable [13]. Non-renewable energy resources include oil, coal and natural gas.

These resources are limited in extent and will be exhausted in the near future.

While renewable energy resources include wind, solar and water etc., which are

not limited and readily available for use. These resources are clean and environ-

ment friendly. However, the renewable energy resources are not as efficient as the

non-renewable ones. Fig. 1.1 illustrates different renewable energy resources for

harvesting clean energy from ambient environment. Research communities in the

field of communication believe that these renewable resources are useful for future

wireless transmission systems.

There are several key benefits of using energy harvesting [14, 15] techniques as com-

pared to the traditional wireless communication systems. These benefits include

self-sustainability, low carbon emissions and easy implementation. Therefore, en-

ergy harvesting wireless communication networks have been studied extensively

in the literature [16–20]. Other benefits include the increased life expectancy of

energy harvesting devices, environment friendly as compared to the traditional

non-renewable energy resources, reliability, and low cost in some applications such

2



Chapter 1: Introduction

as wireless sensor networks. Contrary to these benefits, the deployment of en-

ergy harvesting transmission systems is expensive. Although these systems are

environment friendly, but some of the energy resources i.e., bio energy has some

adverse effects on the environment. There are various challenges regarding energy

harvesting transmission systems that need to be addressed.

1.2 Related Work

As compared to the traditional wireless communication systems with abundant

supply of energy [9], the energy available to the energy harvesting transmission

systems is limited and time-varying [32]. Moreover, the energy consumption is

always lower than or equal to the energy harvested from the environment, because

energy is stored in storage devices with limited capacity. This leads to energy

leakage, energy overflow and energy storage losses. Considering solar energy har-

vesting, there is a constraint on the size of solar panel and number of batteries

attached with it [7, 10]. Additionally, there are battery leakage currents and short-

falls due to inefficiency of energy storage devices [21, 22]. The repetitive charging

and discharging of batteries is another factor that adversely effects the performance

of energy harvesting transmission systems [23]. Efficient energy scheduling is the

performance metric for an energy harvesting transmission system [24–27]. There

are two types of energy scheduling techniques: offline and online. Former is based

on the non-causal knowledge of harvested energy at the transmitter whereas later

is based on causal knowledge of harvested energy. Moreover channel and battery

states information are also considered for offline energy scheduling [28]. Huang et.

al. [29] investigated the optimum power allocation policies for a fading channel.

A global optimum offline power allocation algorithm is proposed. The objective

was to minimize the outage probability. Similar to the offline algorithm, an online

power allocation algorithm is derived and solved through dynamic programming.

In [30], power allocation policies are studied to minimize the outage probabil-

ity under finite battery storge constraint. Sum-rate maximization problem with

constrained utility function is proposed for wireless senor networks. An intuitive

3



Chapter 1: Introduction

algorithm solution is presented considering complex nature of constrained utility

maximization problems [31]. For sum-rate maximization, an optimal offline power

allocation algorithm is proposed for broadcast channels under battery storage and

permissible transmit power constraints. The optimization problem is formulated

by considering random data arrivals and harvested energy [35]. For online energy

scheduling , the power allocation policies are modeled as Markov Decision Pro-

cess (MDP). A throughput maximization problem is modeled as an MDP for an

energy harvesting transmission system [33]. It is constrained by maximum power

permissible for transmission. In comparison, the offline power allocation policies

outperforms the online policies [34].

Energy harvesting wireless transmission systems bring new constraints on har-

vested energy for optimal power allocation [36–41]. Additional constraints include

quality of service, delay in data transmission and varying channel states for a

fading channel [42–45]. In [46], an optimization problem is formulated to mini-

mize data transmission time under energy causality constraint. An offline power

allocation solution is presented to solve the optimization problem. Tutuncuoglu

et. al. [47] formulated an optimization problem to maximize the throughput un-

der finite battery size and energy causality constraints. Two related optimization

problems are solved: maximizing short term throughput and minimizing trans-

mission completion time. For a single-user communication channel, the optimal

transmission policies are derived to balance the data queue and minimize informa-

tion transmission delay [48]. Water-filling algorithms are used to model the energy

flow in fading channels. An algorithm with directional water-level thresholds is

developed for energy flow in fading channels [49, 50], where direction of the energy

(water) flow is towards right. It means that the energy cannot be used before it is

harvested. In [51], two water-filling algorithms are proposed: geometric water fill-

ing (GWF) algorithm and recursively geometric water-filling (RGWF) algorithm.

Former is based on sum power constraint and later is based on energy causality

constraint. The energy scheduling policies are not limited to single-user channels

but have been extended to broadcast channels [52–54], multiple access channels

[55], interference channels [56] and two-hop relay channels [57–63]. In bidirectional

4



Chapter 1: Introduction

water-filling for multiple access channels [68–70], the users transfer energy to one

another by mutual energy cooperation on a two-way multiple access channel. All

these studies are based on a common assumption i.e., the energy is not lost during

storage or retrieval.

There are many different manifestations of the energy loss i.e., imperfections due

to charging/discharging, energy leakage, degradation of battery’s size [71, 72] and

circuit power consumption [64–67]. Such imperfections also effects duty-cycling

in energy harvesting wireless transmission systems [73, 74]. In [75], the authors

formulated throughput maximization problem under two types of battery imper-

fections i.e., energy leakage with time and degradation of battery due to repetitive

charging and discharging. However, these imperfections are long term effects of

energy storage on energy harvesting transmission systems. A throughput maxi-

mization problem is formulated with circuit power consumption constraint for a

fading channel [76]. Both energy and spectrum harvesting are considered to de-

velop optimal power allocation algorithm. In [77], the authors formulated through-

put maximization problem under circuit power consumption constraint for both

static and fading channels. Orhan et. al. [78] proposed an optimization problem

with three objectives: throughput maximization, energy maximization for deliv-

ering all data packets and reduction of transmission completion time. Offline and

online algorithms are developed for optimal power allocation. Loss due to energy

storage/retrieval is considered for static and fading channels with single and multi-

ple users [79]. A double-threshold power allocation policy is proposed considering

limited battery storage constraint.

1.3 Research Gaps

The capability of harvesting the energy from ambient environment imposes new

constraints on the communication. The first constraint is that the energy retrieved

from the battery during a time fraction is less than the energy stored at that time.

The second constraint is that the energy cannot be used before it is harvested.
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The third constraint contradicts the assumption that storage devices have infinite

capacity. Furthermore, the harvested energy is limited and random in nature,

which makes it critical to allocate transmit power effectively. Power allocation

for wireless transmission systems with energy harvesting transmitters has been

studied widely in the literature but there is room for improvement. The optimum

power allocation policies with energy storage losses and joint constraints i.e., finite

battery size, circuit power consumption and finite transmit power are not studied

to the best of our knowledge.

1.4 Contributions

The investigations in this research work are providing the following contributions

to fill in the aforementioned research gaps.

1) The optimization problem is formulated as an average throughput maxi-

mization within a finite time fraction under energy storage losses and joint

constraints i.e., finite sized battery, circuit power consumption and limited

amount of transmit power.

2) An offline algorithm is proposed for optimum power allocation for both static

and fading channels.

3) A low-complexity online algorithm with adaptive energy storage and re-

trieval thresholds is proposed for both static and fading channels.

6



Chapter 2

System Model and Proposed

Methodology

2.1 System Model

The system model of a wireless transmission system with energy harvesting trans-

mitter is shown in Fig. 2.1. Assuming that the data transmission has a fi-

nite communication session of T epochs, each with slot length t = 1s. Let

Hi = ξi − ςi + %i − εi represents the amount of harvested energy available for

transmission in epoch i, where ξi represents harvested energy in epoch i, ςi rep-

resents the stored energy in epoch i, %i represents energy retrieved from battery

in epoch i and εi is the circuit energy consumption in epoch i. Here εi = εΘi,

where ε is the circuit power consumption and Θi (0 < Θi ≤ 1) is the finite time

fraction during which transmission occurs. At the beginning of each epoch i, the

transmitter harvests ξi units of energy. It retrieves %i units of energy from the

battery and stores ςi units for future use. We represent pi as the transmit power

available for data transmission in epoch i. The transmit power pi is defined as

follows.

pi = Hi

Θi

(2.1.1)

Considering the battery storage efficiency Γ (0 ≤ Γ ≤ 1). If energy is not stored

or retrieved from the battery in an epoch, then there are no energy storage losses,

7



Chapter 2: System Model and Proposed Methodology

Figure 2.1: Single-user wireless transmission system with energy harvesting transmit-

ter over an Additive White Gaussian Noise (AWGN) channel.

otherwise only Γςi units are stored in the battery and (1− Γ)ςi units are lost due

to storage inefficiency.

2.1.1 Constraints

The energy retrieved from the battery in an epoch i is less than the energy stored

in that epoch. This constraint is referred to as energy causality constraint. Let

Bi is the amount of energy available in epoch i and is written as follows

Bi =
i∑

j=1
(Γςj − %j) ≥ 0, i = 1, ..., T . (2.1.2)

The size of energy storage batteries is not infinite. The amount of energy greater

than the size of battery is lost and cannot be stored, resulting in energy overflow.

It is sub-optimal to ignore these energy overflows [47, 79]. This constraint is

termed as no-energy-overflow constraint and can be written as

Bi =
i∑

j=1
(Γςj − %j) ≤ ξmax, i = 1, ..., T . (2.1.3)

where ξmax is the maximum amount of energy that can be stored in the battery.

Let Pmax be the maximum amount of power that can be used by transmitter for

8
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data transmission. The optimum transmission policy is constrained by a limited

amount of power and this constraint can be written as

pi = ξi − ςi + %i − εi ≤ Pmax, i = 1, ..., T . (2.1.4)

2.1.2 Objective Function

The instantaneous transmission rate of AWGN channel for an epoch i, channel

fading coefficient gi and transmit power pi is given by

R(pi) = 1
2 log(1 + gipi), i = 1, ..., T (2.1.5)

We aim to maximize average throughput within a finite time fraction during which

transmission occurs. The objective function Ravg is written as follows

Ravg = 1
T

T∑
i=1

ΘiR(pi) (2.1.6)

2.2 Offline Energy Scheduling Policy for a Static

Channel

In this section, the optimal offline energy scheduling policy for a static channel is

proposed. For a static channel, the channel state is same throughout the duration

of data transmission i.e., gi = g, i = 1, ..., T . We first formulate the optimization

problem with infinite sized battery and transmit power available for data trans-

mission. After that the optimization problem constrained by finite battery size

and limited amount of transmit power is formulated and optimal power allocation

policies are derived.

2.2.1 Throughput maximization with infinite sized battery

and transmit power

The average throughput maximization problem for an energy harvesting wireless

transmission system shown in Fig. 2.1, with infinite sized battery and transmit

9



Chapter 2: System Model and Proposed Methodology

power is written as

P1 : max
(ςi,%i,Θi)

Ravg (2.2.1)

subject to
C1 : Bi ≥ 0, i = 1, ..., T .

C2 : pi = ξi − ςi + %i − εi ≥ 0, i = 1, ..., T .

C3 : ςi ≥ 0, i = 1, ..., T .

C4 : %i ≥ 0, i = 1, ..., T .

C5 : 0 < Θi ≤ 1, i = 1, ..., T .

(2.2.2)

where C1 and C2 correspond to non-negativity of stored energy and transmit

power, respectively. The amount of energy stored or retrieved from the battery

cannot be negative, as enforced by constraints C3 and C4, respectively. Constraint

C5 shows the time fraction during which transmission occurs in epoch i. The

optimal power allocation policy satisfies ςi%i = 0 i.e., energy cannot be stored and

retrieved from the battery at the same time [79].

The objective function of P1 is concave in p and all constraints are linear. There-

fore, P1 is a convex optimization problem and is solved by Lagrangian method.

Moreover, the KKT conditions are necessary and sufficient for finding optimal

solution. The Lagrangian function of P1 is

L =
T∑
i=1

(
Ravg + ζi

( i∑
j=1

(Γςj − %j)
)

+ ϑi(ξi − ςi + %i − εi)

+ δiςi + ωi%i + ϕiΘi +$i(1−Θi)
) (2.2.3)

where ζi, ϑi, δi, ωi, ϕi, $i, i = 1, ..., T are non-negative Lagrange multipliers. By

taking derivative of (2.2.3) with respect to ςi, %i,Θi, we find KKT conditions for

optimality.

Γ
T∑
j=i

ζj −
g

1 + gpi
− ϑi + δi = 0, i = 1, ..., T (2.2.4)

g

1 + gpi
−
T∑
j=i

ζj + ϑi + ωi = 0, i = 1, ..., T (2.2.5)

R(pi)−
g(pi + ε)
2(1 + gpi)

− εϑi + ϕi −$i = 0, i = 1, ..., T (2.2.6)

10
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The complementary slackness conditions are

ζi
( i∑
j=1

(Γςj − %j)
)

= 0, i = 1, ..., T (2.2.7)

ϑi(ξi − ςi + %i − εi) = 0, i = 1, ..., T (2.2.8)

δiςi = 0, ωi%i = 0, i = 1, ..., T (2.2.9)

ϕiΘi = 0, $i(1−Θi) = 0, i = 1, ..., T (2.2.10)

The optimal value of transmit power pi is derived from (2.2.4) and (2.2.5) as

pi = 1
Γ∑Tj=i ζj − ϑi + δi

− 1
g
, i = 1, ..., T

pi = 1∑T
j=i ζj − ϑi − ωi

− 1
g
, i = 1, ..., T

(2.2.11)

Rearranging (2.2.6) as

R(pi) = g(pi + ε)
2(1 + gpi)

+ εϑi − ϕi +$i, i = 1, ..., T (2.2.12)

First we analyze (2.2.11), the optimal solution cannot be obtained through water-

filling algorithm due to energy storage losses [79]. We define two thresholds: energy

storage threshold χςi and retrieval threshold χ%i. When pi > 0, then to satisfy

(2.2.8), we get ϑi = 0. When energy is stored in the battery i.e., ςi > 0 then to

satisfy (2.2.9), we get δi = 0. The transmit power pi in (2.2.11) (first equality)

becomes equal to χςi. Similarly, when energy is retrieved from the battery i.e.,

%i > 0 then to satisfy (2.2.9), we get ωi = 0. The transmit power pi in (2.2.11)

(second equality) becomes equal to χ%i. The optimal transmit power is limited to

these two thresholds i.e., χ%i ≤ pi ≤ χςi.

χςi = 1
Γ∑Tj=i ζj −

1
g

(2.2.13)

χ%i = 1∑T
j=i ζj

− 1
g

(2.2.14)

The storage threshold should be greater than or equal to the retrieval threshold

i.e., χςi ≥ χ%i. These two thresholds have the following relationship.

1 + gχ%i
1 + gχςi

= Γ, i = 1, ..., T (2.2.15)

11
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Following the above analysis, when ςi > 0 and %i = 0, the optimal transmit power

from (2.2.11) (first equality) is equal to the storage threshold i.e., pi = χςi. When

%i > 0 and ςi = 0, the optimal transmit power from (2.2.11) is equal to the

retrieval threshold i.e., pi = χ%i. The optimal transmission policy is based on

aforementioned storage and retrieval thresholds and is written as follows

pi = min(max(χ%i, [ξi/Θi − ε]+), [χςi]+) (2.2.16)

ςi = [ξi/Θi − ε− pi]+, %i = [pi − (ξi/Θi − ε)]+ (2.2.17)

For an epoch i, the problem P1 can be rewritten as

P2 : max
(ςi,%i,Θi)

ΘiR(pi) (2.2.18)

subject to C1− C5.

where Θi = ξi

pi+ε . By taking derivative of (2.2.18) with respect to Θi, we get

R(pi) = g(pi + ε)
2(1 + gpi)

(2.2.19)

For transmit power pi > 0, to satisfy (2.2.8), we get ϑi = 0 and for Θi (0 < Θi ≤ 1),

to satisfy (2.2.10) we get ϕi = 0, $i = 0. Therefore, (2.2.12) becomes similar to

(2.2.19). Suppose χ0 is the optimal solution of P2, we determine χ0 from circuit

power consumption ε and channel fading coefficient g. The optimal transmission

policy for P2 is expressed as

pi = max(pi, χ0) (2.2.20)

Θi = ξi − ςi + %i
pi + ε

(2.2.21)

Theorem 1: The optimal power allocation policy for P1 depends on three thresh-

olds: χςi, χ%i and χ0.

Proof: We consider three cases i.e., χ0 > χςi, χ%i ≤ χ0 ≤ χςi and χ0 < χ%i, and

prove each case separately.

1) When χ0 > χςi, then pi = χ0. If ξi − ε > χ0 then ςi = ξi − ε − χ0, %i = 0

and Θi = ξi−ςi
χ0+ε = 1. If χ%i ≤ ξi − ε ≤ χ0 then ςi = 0, %i = 0 and Θi = ξi

χ0+ε . If

ξi − ε < χ%i then ςi = 0, %i = min(Bi−1, χ%i − (ξi − ε)) and Θi = ξi+%i

χ0+ε .

12
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2) When χ%i ≤ χ0 ≤ χςi. If ξi − ε > χςi then pi = χςi, ςi = ξi − ε− χςi, %i = 0 and

Θi = ξi−ςi
χςi+ε = 1. If χ%i ≤ ξi − ε ≤ χςi then pi = max(χ0, ξi − ε), ςi = 0, %i = 0 and

Θi = ξi

pi+ε . If ξi − ε < χ%i then pi = χ0, ςi = 0, %i = min(Bi−1, pi − (ξi − ε)) and

Θi = ξi+%i

pi+ε .

3) When χ0 < χ%i, the optimal power allocation policy is similar to the double-

threshold policy, and optimal solution can be found by (2.2.16).

From the above analysis, we conclude that the optimal power allocation policy is

based on three thresholds, which are non-decreasing until value of Bi = 0, and

battery should deplete at the last epoch of a finite communication session [79].

We propose an algorithm to find optimal thresholds.

Algorithm 1: Calculate χ0 from channel fading coefficient g and circuit power con-

sumption ε. Start from an epoch j = 1, find the largest value of storage threshold

χs by doing a linear search, then using (2.2.15) find the value of retrieval threshold

χr, that makes the power allocation policy in (2.2.16) and (2.2.17) feasible. Now

find the smallest epoch k such that k > j, for which the value of Bi = 0. Assign the

optimal thresholds to epochs i = j, ..., k. Repeat the above process until k < T .

Finally, compare the values of χ0 with χςi and χ%i, adjust the values of pi, ςi, %i,Θi

and calculate Bi . The optimal power in the last time epoch is calculated from

pT = max(χ0, ξT − ε+ BT −1) (2.2.22)

ΘT = ξT + BT −1

pT + ε
(2.2.23)

2.2.2 Throughput maximization constrained by finite sized

battery and transmit power

In practical scenarios, the size of battery and transmit power is finite. We extend

our optimization problem P1 with additional constraints i.e., no-energy-overflow

and finite transmit power. The battery size is ξmax and maximum power permis-

sible for transmission is Pmax. The average throughput maximization problem is

expressed as

P3 : max
(ςi,%i,Θi)

Ravg (2.2.24)
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subject to
C1− C5

C6 : Bi ≤ ξmax, i = 1, ..., T .

C7 : pi = ξi − ςi + %i − εi ≤ Pmax, i = 1, ..., T .

(2.2.25)

The Lagrangian function of P3 is

L =
T∑
i=1

(
Ravg + ζi

( i∑
j=1

(Γςj − %j)
)

+ γi(ξmax −
i∑

j=1
(Γςj − %j))

+ ϑi(ξi − ςi + %i − εi) + ψi(Pmax − (ξi − ςi + %i − εi)) + δiςi

+ ωi%i + ϕiΘi +$i(1−Θi)
)

(2.2.26)

where γi and ψi are non-negative Lagrange multipliers. Taking derivative of

(2.2.26) with respect to ςi, %i and Θi, we get

Γ
T∑
j=i

(ζj − γj)−
g

1 + gpi
− ϑi + ψi + δi = 0, i = 1, ..., T (2.2.27)

g

1 + gpi
−
T∑
j=i

(ζj − γj) + ϑi − ψi + ωi = 0, i = 1, ..., T (2.2.28)

R(pi)−
g(pi + ε)
2(1 + gpi)

+ (−ϑi + ψi)ε+ ϕi −$i = 0, i = 1, ..., T (2.2.29)

The complementary slackness conditions corresponding to γi and ψi are

γi(ξmax −
i∑

j=1
(Γςj − %j)) = 0, i = 1, ..., T (2.2.30)

ψi(Pmax − (ξi − ςi + %i − εi)) = 0, i = 1, ..., T (2.2.31)

These conditions together with conditions in (2.2.7), (2.2.8), (2.2.9) and (2.2.10)

are the complementary slackness conditions for P3. The optimal value of transmit

power pi is written as

pi = 1
Γ∑Tj=i(ζj − γj)− ϑi + ψi + δi

− 1
g
, i = 1, ..., T

pi = 1∑T
j=i(ζj − γj)− ϑi + ψi − ωi

− 1
g
, i = 1, ..., T

(2.2.32)

Rearranging (2.2.29) as

R(pi) = g(pi + ε)
2(1 + gpi)

− (−ϑi + ψi)ε− ϕi +$i,

i = 1, ..., T
(2.2.33)
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With the addition of two new Lagrange multipliers γi and ψi, the new thresholds

are

χςi = 1
Γ∑Tj=i(ζj − γj) −

1
g

(2.2.34)

χ%i = 1∑T
j=i(ζj − γj)

− 1
g

(2.2.35)

Analyzing (2.2.32), when 0 < pi < Pmax then to satisfy (2.2.8) and (2.2.31), we

get ϑi = 0, ψi = 0. When energy is stored in the battery, ςi > 0 and to satisfy

(2.2.9) we get δi = 0. Similarly, for the case of energy retrieval, %i > 0 and we

get ωi = 0 to satisfy (2.2.9). Now analyzing (2.2.33), when 0 < Θi ≤ 1, then

to satisfy (2.2.10), we get ϕi = 0, $i = 0 and solution of (2.2.33) is obtained

similar to (2.2.19). The value of new thresholds does not change until the battery

reaches its maximum capacity or is depleted [79]. We propose an algorithm to

find optimal power allocation policy with no-energy-overflow and finite transmit

power constraints.

Algorithm 2: Calculate χ0 from channel fading coefficient g and circuit power

consumption ε. Start from an epoch j = 1, find the largest value of storage

threshold 0 ≤ χς ≤ Pmax by doing a linear search, then using (2.2.15) find the

value of retrieval threshold χ%, that makes the power allocation policy in (2.2.16)

and (2.2.17) feasible. Now find the smallest epoch k such that k > j, for which the

value of Bi = 0 or Bi = ξmax . Assign the optimal thresholds to epochs i = j, ..., k.

Repeat the above process until k < T . Finally, compare the values of χ0 with χςi
and χ%i, adjust the values of pi, ςi, %i,Θi and calculate Bi.

2.3 Offline Energy Scheduling Policy for a Fad-

ing Channel

For fading channels, the channel fading coefficient gi is constant during an epoch i,

but varies from one epoch to another. The transmitter has non-causal knowledge

of channel fading coefficients gi, i = 1, ..., T .
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2.3.1 Throughput maximization with infinite sized battery

and transmit power

The average throughput maximization problem for a fading channel with infinite

sized battery and transmit power is expressed as

P4 : max
(ςi,%i,Θi)

1
T

T∑
i=1

ΘiR(pi, gi) (2.3.1)

subject to
C8 : Bi ≥ 0, i = 1, ..., T .

C9 : pi = ξi − ςi + %i − εi ≥ 0, i = 1, ..., T .

C10 : ςi ≥ 0, i = 1, ..., T .

C11 : %i ≥ 0, i = 1, ..., T .

C12 : 0 < Θi ≤ 1, i = 1, ..., T .

(2.3.2)

The KKT conditions for optimality are

Γ
T∑
j=i

ζj −
gi

1 + gipi
− ϑi + δi = 0, i = 1, ..., T (2.3.3)

gi
1 + gipi

−
T∑
j=i

ζj + ϑi + ωi = 0, i = 1, ..., T (2.3.4)

R(pi)−
gi(pi + ε)
2(1 + gipi)

− εϑi + ϕi −$i = 0, i = 1, ..., T (2.3.5)

The complementary slackness conditions are same as for P1. We define two water-

level thresholds: κςi and κ%i for energy storage and retrieval, respectively. For a

fading channel, these thresholds can be written as

κςi = 1
Γ∑Tj=i ζj , κ%i = 1∑T

j=i ζj
, i = 1, ..., T (2.3.6)

These water-level thresholds have the following relationship

κ%i = Γκςi, i = 1, ..., T (2.3.7)

The optimal power allocation policy is expressed as

pi = min(max(κ%i − 1/gi, [ξi/Θi − ε]+), [κςi − 1/gi]+) (2.3.8)
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ςi = [ξi/Θi − ε− pi]+, %i = [pi − (ξi/Θi − ε)]+ (2.3.9)

The analysis of (2.3.5) is similar to the static channel case. The value of χ0

changes during each time slot due to varying channel states gi. The optimal

power allocation policy is expressed as

pi = max(pi, χ0(gi)) (2.3.10)

Θi = ξi − ςi + %i
pi + ε

(2.3.11)

We can find the optimal water-level thresholds from Algorithm 1 by replacing the

power allocation policy in (2.2.16) and (2.2.17) with (2.3.8) and (2.3.9), respec-

tively. The χςi and χ%i are replaced with κςi and κ%i, respectively.

2.3.2 Throughput maximization constrained by finite sized

battery and transmit power

The average throughput maximization problem for a fading channel with finite

sized battery and limited amount of transmit power is expressed as

P5 : max
(ςi,%i,Θi)

1
T

T∑
i=1

ΘiR(pi, gi) (2.3.12)

subject to
C8− C12

C13 : Bi ≤ ξmax, i = 1, ..., T .

C14 : pi = ξi − ςi + %i − εi ≤ Pmax, i = 1, ..., T .

(2.3.13)

The KKT conditions for optimality are

Γ
T∑
j=i

(ζj − γj)−
gi

1 + gipi
− ϑi + ψi + δi = 0,

i = 1, ..., T
(2.3.14)

gi
1 + gipi

−
T∑
j=i

(ζj − γj) + ϑi − ψi + ωi = 0,

i = 1, ..., T
(2.3.15)
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R(pi)−
gi(pi + ε)
2(1 + gipi)

+ (−ϑi + ψi)ε+ ϕi −$i = 0,

i = 1, ..., T
(2.3.16)

The complementary slackness conditions are similar to P3. We define new water-

level thresholds for a fading channel with finite sized battery and limited amount

of transmit power constraints.

κςi = 1
Γ∑Tj=i(ζj − γj) , κ%i = 1∑T

j=i(ζj − γj)
,

i = 1, ..., T
(2.3.17)

These thresholds have following relationship

κ%i = Γκςi, i = 1, ..., T (2.3.18)

With new water-level thresholds, the optimal power allocation policy is expressed

as

pi = min(max(κ%i − 1/gi, [ξi/Θi − ε]+), [κςi − 1/gi]+) (2.3.19)

ςi = [ξi/Θi − ε− p+
i , %i = [pi − (ξi/Θi − ε)]+ (2.3.20)

We can find optimal water-level thresholds from Algorithm 2 by replacing the

power allocation policy in (2.2.16) and (2.2.17) with (2.3.19) and (2.3.20), respec-

tively. The χςi and χ%i are replaced with κςi and κ%i, respectively.

2.4 Online Energy Scheduling Policies

For offline power allocation policy, the information about harvested energy is

known prior to the start of communication session. This approach is used in

application where harvested energy can be controlled or predicted [80]. In this

section, we propose energy scheduling policies for static and fading channels, that

require causal knowledge of the harvested energy.

2.4.1 Static Channel

For static channel, we consider an online double-threshold policy [79] with constant

energy storage and retrieval thresholds i.e., χςi = χς and χ%i = χ%, i = 1, ..., T .
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The energy storage threshold is predicted as follows

Γ
∫ ∞
χς

(e− χς)fξ(e)de−
∫ χ%

0
(χ% − e)fξ(e)de = 0 (2.4.1)

where fξ(ξ) is the stationary probability distribution with Markovian harvested

energy ξi. When storage efficiency Γ = 0, (2.4.1) ensures that no energy is stored

i.e., pi = ξi − εi, which is optimal in this case.

The fixed thresholds are not feasible for all epochs. We propose an adaptive energy

storage threshold. The value of this threshold varies with storage efficiency Γ and

value of epoch i. The new threshold is written as

χςi = χς(Γ, i) (2.4.2)

With this threshold the energy harvesting transmitter will not store energy when

storage efficiency is small or the communication session is about to end. The value

of retrieval threshold χ%i is calculated from (2.2.15). The optimal online power

allocation policy is expressed as

pi =



max(χ0, χςi), ξi − ε > χςi

max(χ0, ξi − ε), χ%i ≤ ξi − ε ≤ χςi

max(χ0, ξi + min(%i,Bi−1)), ξi − ε < χ%i

i = 1, ..., T

(2.4.3)

Θi = ξi − ςi + min(%i,Bi−1)
pi + ε

, i = 1, ..., T (2.4.4)

2.4.2 Fading Channel

For fading channel, the value of channel fading coefficient gi varies with time. The

energy storage threshold is predicted as follows [79]

∫ ∫ ∞
0

e− [κς − 1
g

]+
+

−
[
κ% −

1
g
− e

]+
fξ,G(e, g)dedg = 0 (2.4.5)

where fξ,G(ξ,G) is the joint stationary probability distribution of Markovian har-

vested energy ξi and channel fading coefficients gi. The new adaptive water-level
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storage threshold is written as

κςi = κς(Γ, i) (2.4.6)

The energy storage threshold is written as

χςi = κςi −
1
gi

(2.4.7)

The water-level retrieval threshold is calculated from (2.3.7). The optimal online

power allocation policy is expressed as

pi =



max(χ0(gi), χςi), ξi − ε > χςi

max(χ0(gi), ξi − ε), χ%i ≤ ξi − ε ≤ χςi

max(χ0(gi), ξi + min(%i,Bi−1)), ξi − ε < χ%i

i = 1, ..., T

(2.4.8)

Θi = ξi − ςi + min(%i,Bi−1)
pi + ε

, i = 1, ..., T (2.4.9)
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Results

3.1 Results & Discussion

This section provides a detailed discussion of the simulation results. All the simu-

lations are done in MATLAB 2019b for a finite session of T = 10 epochs, with each

epoch of length t = 1s. We consider an AWGN channel with noise spectral den-

sity N0 = 10−19W/Hz. The bandwidth is 1MHz and path loss is PL(dB) = −100

[79]. The energy harvesting transmitter in Fig. 2.1 has a finite sized battery i.e.,

ξmax = 10mJ and maximum power permissible for transmission is Pmax = 20mW.

The circuit power consumption is ε = 5mW.

Referring to Fig. 3.1, it shows the variation of throughput with storage efficiency

for a static channel. The clean energy is harvested in an independent and identi-

cally distributed (i.i.d.) manner, following a uniform random distribution in the

range [5,20] mJ. When storage efficiency is below 50%, the proposed offline and

online policies are not storing any energy, which is optimal in this case due to large

energy storage losses. Overall, the proposed policies outperforms the earlier work

[79] on energy storage losses. Fig. 3.2 shows the variation of throughput with stor-

age efficiency for a static channel when clean energy is harvested as random bursts

of energy, generating energy values uniformly in range [5,20] mJ. The energy har-

vesting process is modelled as a Markov Decision Process (MDP) i.e., the amount

of harvested energy remains constant with a probability of 0.5, and generates a
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Figure 3.1: Throughput variations of a static channel with non-decreasing storage ef-

ficiency and i.i.d. energy arrivals. The harvested energy values are gener-

ated uniformly in range [5,20] mJ.

Figure 3.2: Throughput variations of a static channel with non-decreasing storage ef-

ficiency and Markov (bursty) energy arrivals. The harvested energy values

are generated uniformly in range [5,20] mJ.

new value with same probability. The proposed policies adapt to storage efficiency

values greater than 50%. Similarly simulations are also done for a time-varying

channel, following an exponential distribution. The variations of throughput with

storage efficiency are shown in Fig. 3.3 & 3.4, respectively. Referring to Fig. 3.3,

the proposed power allocation policies behave as non-storage policies when storage

efficiency is less than 20% to reduce the affect of energy storage losses. Similar
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Figure 3.3: Throughput variations of a fading channel with non-decreasing storage

efficiency and i.i.d. energy arrivals. The harvested energy values are gen-

erated uniformly in range [5,20] mJ.

Figure 3.4: Throughput variations of a fading channel with non-decreasing storage ef-

ficiency and Markov (bursty) energy arrivals. The harvested energy values

are generated uniformly in range [5,20] mJ.

to the static channels case, it outperforms the double-threshold policy. In Fig.

3.4, there is a performance improvement for random energy arrivals and varying

channel states. It shows the adaptive capability of the proposed offline and online

policies, respectively.

To analyze the performance of proposed power allocation policies for random en-
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Figure 3.5: Throughput variations of a fading channel with non-decreasing storage ef-

ficiency and Markov (random walk) energy arrivals. The harvested energy

values are generated uniformly in range [5,20] mJ.

Figure 3.6: Throughput variations of a fading channel with non-decreasing storage

efficiency and i.i.d. energy arrivals. The harvested energy values are gen-

erated uniformly in range [5,15] mJ.

ergy arrivals, we modelled the energy arrival process as Markov random-walk.

The harvested energy performs a random walk uniformly in range [5,20] mJ. It

increases/decreases the amount of harvested energy by 1 with a probability of

0.6 and remains constant with a probability of 0.4. The variations of throughput

with storage efficiency for a fading channel are shown in Fig. 3.5. The proposed

policies outperforms the double-threshold policies. We also change the dynamic
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Figure 3.7: Throughput variations of a fading channel with non-decreasing storage ef-

ficiency and Markov (bursty) energy arrivals. The harvested energy values

are generated uniformly in range [5,15] mJ.

Figure 3.8: Throughput variations of a fading channel with non-decreasing storage ef-

ficiency and Markov (random walk) energy arrivals. The harvested energy

values are generated uniformly in range [5,15] mJ.

range of harvested energy to highlight the performance of proposed methodology.

The simulations are done for a fading channel and harvested energy is generated

randomly in range [5,15] mJ. These results are shown in Fig. 3.6, 3.7 & 3.8.

Now, we consider the storage efficiency in between 60 − 70% to analyze the per-

formance of all power allocation policies discussed in this paper. Simulations are
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Figure 3.9: Throughput variations of a static channel with harvested energy values

and i.i.d. energy arrivals. Storage efficiency is 60−70% and the harvested

energy values are generated uniformly in range [5,20] mJ.

Figure 3.10: Throughput variations of a fading channel with harvested energy values

and i.i.d. energy arrivals. Storage efficiency is 60−70% and the harvested

energy values are generated uniformly in range [5,20] mJ.

done for both static and fading channels and energy is harvested in an i.i.d. man-

ner, following a uniform random distribution in range [5,20] mJ. The variations of

throughput with storage efficiency are shown in Fig. 3.9 & 3.10, respectively. Gen-

erally, the performance of all power allocation policies is improved, with proposed

policies outperforming the double-threshold policies.
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Conclusion

Green communication has attracted the research community by utilizing renew-

able energy resources for data transmission. In this paper, we present an energy

harvesting wireless transmission system considering energy storage losses com-

prehensively. These energy storage losses arise due to imperfect energy storage

devices. In this regard, we consider a single-user static and fading channels model

to determine the power allocation policies. First, the optimal offline power allo-

cation problem is formulated and solved by using convex optimization techniques

i.e., Lagrangian method and KKT conditions for static and fading channels. The

optimization problem considered energy storage losses and joint constraints such

as finite battery size, circuit power consumption and finite power permissible for

transmission. An offline algorithm is proposed to find optimal offline power alloca-

tion policy. Results show the performance improvement of proposed offline policy.

Secondly, the online power allocation problem is formulated for both static and

fading channels. An online algorithm with causal knowledge of harvested energy

is proposed. It considers storage efficiency and value of time slot for finding op-

timum power allocation thresholds. The proposed online policy outperforms the

online double-threshold policy. In future, the energy storage losses due to battery

imperfections can be further combined with other types of imperfections i.e., bat-

tery degradation and energy leakage with time. Moreover, other communication

overheads can be considered, that will lead to practical implementation of energy

harvesting wireless transmission systems.
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