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Abstract

Research in Software Defined Networks (SDN) has gained momentum in

recent years due to unique features offered by it. The adaptation of the

technology has resulted in many SDN enabled deployments. As it provides

a centralized control of a whole network. However, the centralized nature of

the SDN also makes it prone to many security threats such as denial of service

attacks, especially if the policy parameters of SDN are known to adversaries.

So that they can attack according to the discovered parameters of the net-

work. In this research work, we present how to do fingerprinting of various

SDN policy parameters such as hard and soft timeouts, OpenFlow match-

fields deployed by the SDN controller, mitigating policy for over flowing of

flow table entries and information about topology deployed in the targeted

network. An adversary can launch a carefully planned attack, especially on

the SDN data plane, if these policy parameters are discovered for the SDN

enabled network. It has been assumed that adversary has got access to one

of the end host within the SDN domain, from which is able to generate cus-

tom packets from the networking stack. Efficient algorithms are proposed

to discover these aforementioned policy parameters and the impact of know-

ing these parameters has been discussed. The results of these fingerprinting

algorithms are verified with SDN domain simulations in Mininet.
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Chapter 1

Introduction

1.1 Motivation

SDN (Software Defined Networks) provides the centralized control of whole
network. Other than the basic networking features traffic re-scheduling,
open-source and implementing QoS (Quality of Service) policies are also
major features offered by the SDN [1]. Moreover, SDN enabled networks
are getting significant research attention in the networking domain due to
programmability of the networks and other numerous rich features. In a typ-
ical SDN, control plane is decoupled from forwarding plane, providing abil-
ity to network administrators (using control plane) to program the network
features (at forwarding plane). OpenFlow, developed by Open Networking
Foundation (ONF), has become a de facto standard for communication be-
tween control and forwarding planes. Every new version of OpenFlow (1.0
to 1.5) is bringing more options to manage the SNDs more intelligently.
SDNs are getting mature, however, there are still many research challenges
to consider [2]. One of the key challenge that seek immediate attention is
its security vulnerabilities [3]. From a security perspective, there are many
attack opportunities targeting both data plane [4], [5] and control plane,
to degrade the performance of the SDN enabled network [6]. For example,
flow entries table attacks target the data plane of the SDN enabled network.
On the other hand, for instance, attacks on Link Layer Discovery Protocol
(LLDP) [7] and topology poisoning attacks aim to degrade performance of
the control plane [8].

1
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1.2 Problem Defination

This research work is aimed to discover the parameters of a SDN enabled
network. However, the purpose of gathering information is not from an
attacker perspective but in general to present a more enhanced solution in
the respective domain; fingerprinting the SDN enabled networks. Usually
when a network is deployed, there is minimal probability that the network
administrator or organization would use the default parameters. Moreover,
due to flexibility offered by SDN, it is highly likely that network is to be
configured according to the traffic density and traffic load of that particular
network. Which is also the basic problem statement, to fingerprint those
configurable parameters of the targeted SDN enabled network.

Moreover, to analyze the impact if that discovered information is known
to attacker in advance i.e., before launching an attack. As, if an attacker has
information about the targeted network, means he can find more vulnerabil-
ities, ultimately resulting in paralyzing the SDN controller more efficiently.
Furthermore, this research is not only focused on attacker’s perspective, net-
work administrators can also run the fingerprinting modules on their network
in order to enhance the security of the network. The design logic of the pro-
posed mechanism is limited to reality based condition, which includes, secure
channel between SDN controller and the SDN enabled switches and no direct
access to switches. It is assumed that attacker has access to only end host(s)
and can communicate with other hosts. Furthermore, to analyze the differ-
ence in fingerprinting when attacker has one compromised host inside the
targeted network and when he have more than one compromised end hosts
inside the targeted network.

1.3 Objectives and Research Goals

The outcome of this research is multifold, finding out timeouts set by the
controller, finding flow matching policy (header fields) while considering the
network firewall, finding the flow entries overflowing policy at switches in the
SDN network and finding information about the fat tree topology deployed
in the network. As figure 1.1 shows the taxonomy of the research goals of
this research work, to gather the information about the SDN enabled network
while having access to just an end host. This research work indirectly presents
concerns for network administrators to program the SDN network such that
adversary/attacker may find it hard to predict the policy parameters. Our
further contributions of this study are as follow:

• Using proposed mechanism/modules for fingerprinting the configurable
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Figure 1.1: Taxnomoy of SDN fingerprinting

parameters of SDN and the empirical analysis of the proposed mecha-
nism/modules

• Impact on the performance of SDN enabled network when fingerprinted
configurable parameters are known to DDoS

1.4 Thesis Organization

The work has been organized as follows. Chapter 2 covers the basic back-
ground information about the SDN and policy parameters. Chapter 3 covers
the literature review and limitation of existing SDN fingerprinting mecha-
nisms in contrast to this research work. Chapter 4 explains the detailed
methodology of proposed fingerprinting modules and their working. The re-
sults and evaluation details are discussed in the chapter 5. While the chapter
6 summarizes the work along with proposed future work.



Chapter 2

Background Information

This chapter covers a brief overview of the background knowledge related to
this thesis. Almost all related theoretical and conceptual points have been
covered. First of all, architecture of SDN has been briefly explained in section
2.1. Which is followed by an overview of OpenFlow in section 2.2. Next,
concept of Match fields and packet forwarding in SDN has been elaborated
in section 2.3. Then, section 2.4 covers the concept of timeout, associated
with match fields in SDN. And lastly, section 2.5 contains the information
about the flow tables and their limited size, in terms of accommodating flow
table entries.

2.1 Architecture of SDN

Traditional networking architecture has some serious limitation such as scala-
bility, vendor specific API, compatibility issues and much more. SDN provide
solution all of these problems [9]. SDN decouples the control plane from the
data plane. Which provide greater centralized control over the network. ALL
SDN enabled networks have these basic components:

• Controller:
Which is also referred as the ”brain” of the SDN enabled network.
Just like a brain, it handles all functions from a centralized point of
the network. Network administrators manage the data plane functions
such as forwarding of packets while having a statistical view of whole
network.

• Data plane infrastructure:
Which is also referred as the ”body” of the SDN. Just like a human

4
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body, it sends the signal to the brain (controller) and waits for the
instructions to act accordingly.

SDN infrastructure [10] has been shown in the figure 2.1. There are
API included for the network to work, which includes, Northbound APIs,
Southbound APIs, Eastbound APIs and Westbound APIs. They have been
mapped in the figure, and there brief functionality is:

• Southbound APIs is responsible for communication between con-
troller and data plane infrastructure such as L2/L3 switches. All re-
quest and response messages for forwarding and statics follows this set
of API. Some famous examples include OpenFlow [11], ForCES, PCEP,
NetConf etc. Out of which OpenFlow is the most commonly used in
academics as well as in industry because it’s completely open source,
scalable, vendor restricted free and properly documented.

• Northbound APIs is responsible for communication of application
and services running over the network with controller. It can also be
used in building cloud automation stacks, dynamically changing need
of the applications and services without inferring with network. Some
famous examples of northbound APIs include Restful, FML, frenetic
etc.

• Eastbound and Southbound APIs is responsible for communica-
tion between multiple SDN controllers. The purpose of having multi-
ple controller include fault tolerance, multiple applications running on
multiple controller, controllers from different vendors etc. Some famous
examples of eastbound and southbound API include ALTO, hyperflow
etc.

2.2 OpenFlow

Many people confuses OpenFlow with SDN. They think OpenFlow is SDN
and SDN is just OpenFlow, this is not true, OpenFlow is just the first stan-
dard in the SDN and it was initiated in 2008 at the Stanford University. In
simpler words we can say that, OpenFlow is a subset of SDN domain and
to be precise, OpenFlow is just a well-known southbound API. Since its first
version, OpenFlow is continuously in development, not only new features
are being introduced but existing infrastructure is also improved. It also
supports reverse compatibility between different versions, whenever a switch
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Figure 2.1: Architecture of SDN

and controller starts a communication, in the hand shake process they agree
to use the supported version at both ends. For example if switch supports
OpenFlow 1.0 to 1.5 but controller supports only OpenFlow 1.3, negotiations
will take place initially only and both of them will agree to use OpenFlow
1.3.

2.3 Forwarding & Match Fields in SDN

SDN packet forwarding mechanism is different from the legacy packet for-
warding mechanism. And in SDN, controller’s policy plays a vital role in
packet forwarding decisions. When a packet is transmitted in the SDN,
switch does not know how to forward the packet, this is called a ”Table
miss” event. Switch forward it to the controller by encapsulating it in Open-
Flow ”Packet-in” message, for further processing [11], [12]. Pre-defined con-
troller’s policy then decides the forwarding path and sends the ”flow-mod”
or ”packet-out” message, which contains the forwarding rule to be installed
at the switch. This installed forwarding rule, is commonly known as the flow
rule.
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When the next packet arrives which matches the flow rules already in-
stalled at the switches will be forwarded directly rather than sending it to
the controller. And RTT of such directly forwarded packet at data plane is
far less as compare to the RTT when there is no flow rule and switches ask
the controller for flow rule, as there is a processing delay at the controller and
the RTT from switch to the control. Moreover, this difference in RTT will
increase significantly if there are more than one switches installed between
the end hosts. Because, usually each switch will ask the controller to install
the flow entry. For the rest of this study, the RTT when there is no flow
entry exists is donated by RTTFE and when flow entries exists is donated by
RTTavg or RTTnormal. Figure 2.2 shows this difference in first RTT (RTTFE)
and subsequent RTTs (RTTavg) along with all involved steps. Typically, flow
rule consists of some matching criteria, life of flow rule, priority and actions
to be performed by the switch. Moreover, flow rule entries also contains the
statics information i.e. number of packets matched with the flow entry and
total byte count, as controller can ask for statics.

Host BHost A

SDN controller

1

2

3

5

4

RTTFE:
1. Host A Sends the packet

2. Packet-in to controller (Table-miss)

3. Processing at the controller (Application)

4. Switch adds the flow and forward (Flow-mod)

5. Host B receives the packet

6. Host B sends the reply

7. Packet-in to controller (Table-miss)

8. Processing at the controller (Application)

9. Switch adds the flow and forward (Flow-mod)

10. Host A receives the reply

6

7

8

9

10 14

11

12

13

RTTavg:
11. Host A sends the packet 

12. Host B receives the packet

13. Host B sends the reply

14. Host A receives the reply

2 7

11 13

Table miss event

Flow rule matched

Figure 2.2: Difference in first RTT (RTTFE) and subsequent RTTs
(RTTavg)

Match fields are increased with each new version of OpenFlow. As it
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can be seen in the table, in OpenFlow 1.0 there were 12 match fields but
in OpenFlow 1.5 match fields are increased to 44. The count in the table
also includes the experimenter match fields, typically which are not included
in the documentation of the open flow but included in the implementation
code. It also implies that OpenFlow header size has also been increased due
to the increased match fields. Although it is also not compulsory that each
OpenFlow version should increase match fields.

There are two types of match fields, pipelined match fields and header
match fields. Pipelined match fields are not linked with packet headers, the
solemnly purpose of these match fields is for pipeline processing at the switch.
While the header match fields are extracted from the different layers of in-
coming packet. Some header fields have pre-requisites, for example declaring
TCP port numbers as match fields requires declaration of IP layer protocol
as match field as well.

Moreover, increased numbers of match fields also means that more flow
entries will be installed for uniquely matching criteria for incoming packets.
For example, if a SDN controller’s policy is not considering the port numbers
of TCP header as match field, M * N TCP SYN burst will require only two
flow entries, where M is the number of unique destination ports and N is the
number of unique source ports. On the other hand if SDN controller’s policy
is considering the port numbers of TCP as match fields, it will install 2 * M
* N flow entries for M * N same TCP SYN burst. Similarly, if SDN policy
is installing flow entries for source port of TCP only, than the M * N flow
entries will be required for the same burst.

SDN also offers the features of a firewall at the controller’s policy i.e.
controller can block the internet traffic on this basis of any match field. If an
adversary knows in advance which burst are useless, adversary can eliminate
those values of match fields to attack efficiently with minimum utilization of
resources. So, the match fields are of significant importance in launching an
attack. Flow entries are stored in flow table at the switches. There are more
than one flow tables at the switches, controller defines in which table flow
should be installed, as pipelining between multiple tables is a regular matter
for SDN enabled switches. And due to limited resources each flow table is
restricted to certain number of flow entries, which a switch can accommodate.
Which means if a table is full, switch cannot accommodate any new flow until
the flow is removed, which provides a big opportunity to attack on the data
plane of SDN enabled network. And this is of particular interest in the
data centers environment with huge volume of traffic [13] resulting in drastic
degradation of the networks performance.
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2.4 Timeouts

Controller also allocate timeouts to each flow entry, by which switch knows
when to remove the flow entry. In simple words, we can say that it is the life
time of a flow entry. There are two types of timeouts, hard timeout and idle
timeout, which is also known as soft timeout. Flow will be removed when
inter arrival time between two consecutive packets equals or exceeds from
the value of idle timeout configured in the network, as it names also suggests
“idle” timeout. However, if a packet of the same flow arrives before the soft
timeout is met, it will restart. While the hard timeout is not dependent upon
the time gap between consecutive packets, it is the absolute time started since
the first packet of the relevant flow and when it equals with the value installed
by the controller, switch removes that particular flow entry. A brief working
of timeout values and their combinations has been summarized in the table
2.1. The value of each timeout can be defined anywhere in the range of 0
to 65535 seconds and a value of ‘0’ means, it is not set by the controller
i.e., flow entry will not be removed due to that particular timeouts. Which
means entry will not be deleted until control manually instruct the switch to
remove the flow entry.

Table 2.1: Flow entry timeouts

Pair Idle/soft Hard Effect
ID Timeout Timeout
A 0 0 Infinite Idle and Hard timeouts. The entry will

not be deleted until controller instructs to do so
B 0 Y Entry will be only be deleted after Y

seconds since its installation time
C X 0 Entry will be only be deleted if inter

packet gap equals X seconds
D X Y Either of timeout is fulfilled

irrespective of their priority

2.5 Limited Flow Entries

There is very limited space available for flow entries at the switches. And size
of the flow table has a huge impact on the performance of the network [14].
Typically, SDN enabled switches can only accommodate few thousand flow
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entries, an opportunity to attack on data plan. The default applications of
SDN controllers such as POX, RYU etc. do not react to table full error mes-
sages, as they rely upon timeout mechanism for removal of flow entries tables
at the switches. But there exist another mitigating strategy in which SDN
controller’s application instructs the switch to remove the flow(s) whenever
it receives the table full error message.

The selection of flows to be removed varies, such as it can be based on
network statics or on the bases of one or more match fields. In the first
approach, ignoring the table full messages, there will be significant packet
drops. Whereas in the latter approach, there will be increased load on the
controller and RTT will increase. Because in normal case of table miss event,
switch sends the packet-in and controller sends the flow rule for it and switch
forwards the packet i.e., RTTFE. But in the second case, when table full event
occurs switch sends the error message against the flow rule message, then the
controller sends the flow entries deletion message and then again sends the
flow rule. So, the RTT in this case will be higher as compare to the RTT of
normal forwarding.



Chapter 3

Literature Review

This chapter reviews the relevant state of the art researches and their com-
parison with the proposed schemes. Most of the literature focuses on the
fingerprinting SDN controllers only, to the best of our knowledge this is
the first research effort that focuses on the in-depth fingerprinting of SDN
enabled network parameters rather than just fingerprinting the controller.
Since, it is very easy to give wrong prediction of based on such techniques.
As, SDN parameters are configurable as per requirements of the network ad-
ministrators. For now, consider a simple example, default hard timeout of
POX is 30 sec while RYU has default hard timeout 0 sec. But if a network
administrator adjust POX hard timeout to 0 sec, and fingerprinting mecha-
nisms may result in wrong prediction according to such techniques, so is the
case with soft timeout. Similarly others parameters can also be manipulated
and the fingerprinting schemes won’t work or may result in wrong controller
identification.

Section 3.1 presents some SDN fingerprinting techniques based on the
timeouts. Section 3.2 enlists some famous researches on fingerprinting the
match fields of a SDN enabled network. While, section 3.3 presents tech-
niques for finding the size of flow entries table at the SDN enabled switches
and controller reactions to the table full event. And some famous SDN en-
abled network security mechanisms have been presented in section 3.4.

3.1 Timeouts

Timeout values have been discovered by [15], but under very unrealistic as-
sumption that flow entry will not be removed by hard timeout (if value exist)
when discovering the value of soft timeout, and usually both values exists for
same flow entries (Timeout values combination D in Table 2.1). Which is only

11
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possible in one case, when hard timeout does not exist i.e., hard timeout =
0, otherwise soft timeout value will not be discovered. And proposed scheme
also ignored the granularity of step size i.e., error in the discovered values of
timeouts of SDN enabled network and impact of step size on the overall cost
of the proposed scheme. Moreover, SDN controller has also been predicted on
the basses of discovered timeout values, provided that the targeted network
is using the default timeout values of SDN controllers.

Similarly, [16] also worked on fingerprinting controllers, they predicted
the controller using the timeout values. But under their default parameters,
as discussed earlier, there is very low probability that a SDN enabled network
will be using the default values of timeouts and such techniques will results
in wrong predictions. Moreover, they also ignored the hard timeout and soft
timeout combination fact during finding the values of hard and soft timeouts.
Granularity of step size in finding timeouts has also not been discussed. But
our study, not only covers all timeout combinations but also analyzes the
algorithm costs and errors associated with them. Moreover, authors in [15]
and [16] did not mentioned that different match fields can have different
timeout values and how to find them.

Authors in [17], presented the analysis and impact of soft timeout only
in the DDoS attacks, hard timeout has been neglected by the authors. And
they neither include how to find timeouts nor they cover all the combinations
of timeouts and their impact and what types of packets can consume network
resources at max depending upon the timeout values being deployed in the
SDN enabled network.

3.2 Match Fields

Network administrator can choose match fields according to the traffic of that
particular network. But as discussed in section 2.3, match fields has a huge
impact in launching a successful flow table attack on SDN enabled network.
Concept of fingerprinting match fields was initiated by S. Shin et al. [18],
but they ignored the life span of flow entries generated by those match fields
at the SDN enabled switches i.e., timeout values. Although they presented
a state of the art SDN scanner, almost all SDN fingerprinting techniques
are based on the same logic. But their technique is for basic match fields
only and now, in the latest version of OpenFlow, match fields have been
significantly increased. Furthermore, we have also fingerprinted the basic
firewall; omitting the blocked values of match fields when generating forged
packets in DDoS attacks to make attacks much more strong.

Zhang et al. [19], identified the default match fields of SDN controllers
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but the match fields varies policy to policy within the same controller. For
example, in the default policy of RYU, it considers ethernet addresses of
hosts only as the match fields but a network administrator can easily deploy
any other header field as a Match field such as TCP port numbers, TCP flags
etc. Moreover, they have used the UDP packets for evaluation of their work
and ignored the time synchronization error in analyzing the results. Firewall
feature of SDN controller was completely ignored by the aforementioned an-
alyzed studies. T. Alharbi et al. [20] analyzed the impact of variations in
DoS attacks targeted on SDN enabled network. But they have also assumed
that the target SDN enabled network is running the default application of
match fields (simple learning switch). Moreover, relation between timeouts of
match fields and their impact under DoS conditions has not been discussed.

3.3 Flow Table

Using the information about timeouts and match fields of a SDN enabled net-
work, Zhou. et al [21] predicted the numbers of flow entries at the switches.
They have assumed that, flow generated by the hosts can completely take
hold of flow entries table of SDN enabled switches. But in a commercial
network there will be already thousands of entries installed for on-going com-
munication. It’s highly likely that on the bases of soft timeout, those flow
entries will never be removed. As, each packet of the same flow refreshes the
life of the flow entries. Let’s assume the switches have the capacity of 2000
flow entries, after generating 650 packets (1300 flow entries) host may assume
that switch capacity for handling flow entries is 1300 only. They assumed
that on the table full event, old entries will be deleted and new entries will
be installed for their new flows. But, flow entries to be removed (in-order to
free the space for new packets) can also varies. For example, what if SDN
controller is removing the newly generated flow entries only or dumping the
whole table at the table full message received by the switch?

Consider an example, when host has generated 650 packets and due ta-
ble full event occurs due to any other host and controller dumps the whole
flow table at switch in such cases host will predict the switch capacity for
handling flow entries more than 2000. But our study is focused only on the
reaction of controller to the table full event and how it will affect the SDN
enabled network under DDoS condition. Moreover, default applications dont
have flow replacement policy i.e., removing already installed flow entries for
entertaining the new arriving packets. The default applications of SDN con-
trollers simply ignores the request until the flow is removed automatically
(on the bases of timeouts). Authors in [17], presented the table full under
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the default behavior of controllers, in which packet drop occurs. And to the
best of our knowledge, our research work is the first empirical analysis study
that considers both, default behavior as well as flow replacement policy at
table full event.

3.4 Network Security & SDN

SDN enabled networks are prone to DDoS attacks. Objective of such attacks
is to destabilize the SDN controller [22] by consuming the networks resources
such as processing at the controller, blown flow tables at the switches and
throughput of the network. However, this is not the only case. SDN can
also be used for network security purposes. Although such discussion is
beyond the scope of this research work. But as brief future direction has
been proposed, which is the future direction of this research work.



Chapter 4

Methodology
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SDN enabled 
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Figure 4.1: One compromised host under adversary’s access

The objective of this research is to fingerprint the SDN controller’s policy
parameters deployed in a network. This chapter covers thorough explana-
tion and design logic of algorithms to achieve the desired goals. Design logic
considers two scenarios when we have only one compromised host inside the
network and when we have two compromised hosts. In section 4.1, timeout
fingerprinting schemes have been proposed and explained in detail. While,
section 4.2 discuss the design logic of finding match fields modules. More-
over, detecting OpenFlow version and verifying timeouts for all match fields

15
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are also discussed in the same section. Next, fingerprinting of controller’s
reaction to table full event has been discussed in section 4.3. And lastly,
section 4.4 discuss the design logic of end to end topology discovery; from an
attacker perspective.

SDN enabled 

switch
SDN enabled 

switch

Host B Host C Host DHost A
Compromised

Host

SDN controller

Compromised

Host

Figure 4.2: Two compromised host under adversary’s access

4.1 Timeouts

Timeouts is the life of a flow entry and has been explained in section 2.4. A
series of algorithms has been designed and implemented, to investigate the
timeouts values deployed in a SDN enabled network. The design logic of
finding timeout values is based on ICMP (Internet Control Message Proto-
col) pings. Algorithm 4.1 has two main functions, finding the value of first
timeout and nature of first algorithm i.e., hard timeout or soft timeout. Al-
gorithm 4.1 will return value of one type of timeout only, the next objective
is to find the value of remaining timeout.

Depending upon the output of Algorithm 4.1, the control is branched out
to two algorithms. If first timeout found was hard timeout, then control is
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transferred to Algorithm 4.2 for finding soft timeout. Similarly, control is
transferred to Algorithm 4.3 for finding value hard timeout, if Algorithm 4.1
finds the soft timeout. This transfer of control has been highlighted in figure
4.3. It is worth mentioning that, ICMP ping with same header fields will
be transmitted in this module. As changing values of header fields of ICMP
might enforce the new flow installation, such as ICMP code and ICMP type
can also be a match field in a SDN enabled network. Initial pings in this
mechanism also confirms the SDN functionality, if it is enabled or not, as
the RTT of first ping will be significantly higher than the RTT of subsequent
pings, which has been thoroughly discussed in section 2.3.

Start

Part A - Finding first timeout 

Part B – Hard or Soft?

Part C – Finding soft 

timeout 

Part D – Finding soft 

timeout 

End End

Algorithm 4.2 Algorithm 4.3

Algorithm 4.1

Figure 4.3: Branching between algorithms for finding timeouts

Now design logic of each algorithm is explained. Let’s assume that an ad-
versary has a compromised host (Host A) under his control in SDN domain.
It is further assumed that there exist no pre-installed flow entry for commu-
nication, host A sends a ping to host B and notes the current time as T0.
This first ping will install flow entries at all hops between host A and host B.
The RTT of this first ping is noted as TFE. Now host A sends ‘n’ consecutive
pings, to compute the standard deviation (σ) and average RTT (Tavg), for the
implementation purpose number of pings in this function has been limited
to 10 but choosing the number of pings for this function can vary. Using the
value of standard deviation and mean, threshold Tthresh = RTTavg+4∗σ (Line



18

5 in Algorithm 4.1) has been computed. Design logic assumes that when-
ever any RTT value crosses Tthresh, a new flow entry has been installed and
RTT of the respective ping is increased due to inclusion of switch-controller
communication for flow installation. Other than that all pings are traversing
through data plane only as flow entry already exists between the end hosts.

nthping = (n− 1) × Tstep (4.1)

Now value of first timeout will be explored. From now on all pings will
be gapped at Tsleep and Tstep will be added in it at each ping (Tsleep = Tsleep
+ Tstep). Initially Tsleep and Tstep have value of 0 ms and 100 ms respectively.
This process of adding Tstep in Tsleep will continue unless untilRTTping exceeds
Tthresh i.e., when a new flow entry will be installed. So, as the number of
pings increases the time gap between consecutive pings will also increase
(Lines 7 11, Algorithm 4.1). As Tstep is being added to Tsleep on each ping.
For example, host will send a ping, then sleeps for 100 ms before sending the
second ping and then sleep for 200 ms before sending the third ping. The
time gap between nth and nth−1 ping can be calculated by the equation 4.1,
this equation is valid only if Tsleep is set initially to 0 ms. If Tsleep is intially
set to any other value, then it should also be incorporated with it i.e., it
should also be added to the answer of equation 4.1.

Total elapsed time since the first ping, equals the sum of all gaps between
the subsequent pings. Whenever a new flow entry is installed i.e., RTTping
exceeds Tthresh, its infer that the previous flow entry has been expunged due
to timeout. Now host will note the current system time T1 and current
value of sleep time Tsleep. As the first timeout has been occurred but it
is still unknown that the flow entry was removed due to soft timeout or
hard timeout. If the flow entry is expunged due to hard timeout, then hard
timeout equals the total elapsed time (T1 − T0). Or if the flow is removed
due to soft timeout, it is inferred that the Tsleep is the soft timeout of the
network since it is the sleep time (waiting) between the last two consecutive
pings. Now the host needs to find the nature of the first timeout, host will
sleep for Tsleep and then sends a ping again. If the RTTping of this test ping
exceeds the Tthresh, it means that flow expiry was due to soft timeout and
it declares Tsoft equal to the Tsleep i.e., value of last sleep time. If the value
of RTTping found to be less than the Tthresh, this infers that previous flow
entry was removed not because of soft timeout but it was removed due to
the hard timeout and it declares Thard = T1−T0, as by the definition of hard
timeout it equals the total elapsed time. Moreover, if the flow was removed
due to soft timeout, the value of timeout has confirmation level of 2, as it
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Figure 4.4: Flowchart - Finding first timeout and its nature

was expired in the initial stage and then in the verification stage as well.
Algorithm 4.1 thus returns the value of first timeout and disclose its nature
as well, as shown in flowchart (Figure 4.4).

Note that for hard timeout, the discovered value would be not accurate
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Algorithm 4.1 Find first timeout and its nature

1: Note current system time as T0
2: Send the first ping to install the flow entry
3: Calculate RTT as RTTFE

4: Send n pings to calculate average RTT (RTTavg) and the standard devi-
ation σ

5: Calculate Tthresh = RTTavg + 4 ∗ σ
6: Set Tsleep = 0 and Tstep = 100ms
7: Tsleep = Tsleep + Tstep
8: Sleep for Tsleep
9: Send a ping and calculate the RTT (RTTping)

10: if (RTTping < Tthresh) then
11: Go to 7
12: else
13: Note the current system time as T1 and last sleep time Tsleep
14: end if
15: Sleep for Tsleep
16: Send a ping and calculate the RTT (RTTping)
17: if (RTTping > Tthresh ) then
18: Idle timeout Tsoft = Tsleep
19: else
20: Hard timeout Thard = T1 − T0
21: Note current system time as T2
22: while (T2 − T1) < (0.8 * Thard) do
23: Note current system time as T2
24: Sleep for Tsleep
25: Send a ping
26: end while
27: while (RTTping < Tthresh ) do
28: Send a ping and calculate RTTping
29: Sleep for Tstep
30: end while
31: Hard timeout Thard = Current time −T1
32: end if

because of error in estimation ranging in the difference of the last two con-
secutive pings (Tsleep). The hard time out may have occurred anywhere in
the duration of the last Tsleep. We now try to reduce the error in estimation
by pinging at a granular rate than Tsleep. The host knows the value of hard
timeout with error (Thard) and that Tsleep is not the soft time out as flow
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entry was not expunged after sleeping for Tsleep (Line 17, Algorithm 4.1).
Host will send the pings gapped at Tsleep for the 80% of Thard (Lines 22 -
25, Algorithm 4.1) and after that it will start sending continuous pings after
every Tstep (Lines 27 - 28, Algorithm 4.1) i.e., very small value as compared
to the Tsleep, in order to reduce the estimation error. Pings will be sent until
a flow entry expiry event occurs (Line 27, Algorithm 4.1). The hard timeout
is now calculated as Thard = Currenttime− T1 that is not dependent on the
ratio between sums of all pings and actual value deployed in the network.
Algorithm 4.1 thus returns the value of first timeout and ascertains its nature
as well.

The proposed technique is trailed by two other algorithms. If hard time-
out Thard has been discovered in Algorithm 4.1 then control is transferred to
Algorithm 4.2, as it is intended to discover the estimation of soft timeout
Tsoft. If soft timeout Tsoft has been found in Algorithm 4.1 then control is
transferred to Algorithm 4.3 as it is intended to discover the estimation of
hard timeout Thard. After Algorithm 4.1, control is transferred to only one
of these algorithms.

Let’s assume Algorithm 4.1 has found the value of hard timeout and now
the objective is to discover the soft timeout, which is the design goal of
Algorithm 4.2. Now the design logic of Algorithm 4.2 is explained, as shown
in flowchart (Figure 4.5). First of all, host will remove the previously installed
flows i.e., by sleeping for Thard. Now, host sends a ping to install a fresh flow
entry and notes the current system time as T0. In this Algorithm, 50 ms has
been used as the value of Tstep. Now, host begins figuring of RTTping utilizing
Tstep additions in sleep time to build the time gap between progressive pings
as in Algorithm 4.1. Initial value of Tsleep is imported from the algorithm
4.1 rather than starting it from the value of 0, because soft timeout has not
been found till that value, so to make the design efficient, previous value of
Tsleep is used. Whereas, the purpose of changing the value of step size is to
obtain the more fine grained results. But, the criteria for checking for flow
entry has been expunged or not remains the same i.e., Tthresh is also imported
from algorithm 4.1. Now, RTT of test pings (RTTping) are compared with
Tthresh to detect whether the flow entry has been expunged or not. If the flow
has not been expunged i.e., RTTping remains less than the Tthresh, process
of increasing the value of Tsleep will repeat (Line 5 in Algorithm 4.2), until
the value of Tsleep exceeds from the value of Thard and then Algorithm 4.2
terminates by declaring that no value of Tsoft has been set (Lines 6-9 of
Algorithm 4.2) i.e., the value of soft timeout is set as 0 (Combination B). In
case RTTping exceeds the Tthresh indicating that the flow has been expunged,
the current system time as T1 and calculate the total elapsed time (T1 − T0
) since the flow was originally installed in line No 4 of Algorithm 4.2 and we



22

noted the system time in variable T0. If this total elapsed time is equal or
more than the Thard, the flow has actually been expired due to the hard time
out not due to the soft timeout.

T0: System current time

Tsleep = Tsleep + Tstep

TestPing

Time out

Telapsed Thard

Sleep (Thard)

Telapsed = T1 – T0

T1: System current time

END

Sleep (Tsleep)

Tsleep Thard

Tsoft = Tsleep

END

Tsoft = 0

No

Yes

Yes

No

No

Yes

TestPing

Figure 4.5: Flowchart - Finding hard timeout given hard timeout (Thard)

Flow entry expiry due to hard timeout, such event is occurred because
design logic is incrementally testing for soft timeout. Consider a network
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Algorithm 4.2 Find idle timeout given hard timeout (Thard)

1: Sleep for Thard
2: Initialize T0 = Current system time and Tstep = 50ms
3: Use Tsleep and Tthresh from Algorithm 4.1
4: Send a ping to install the flow
5: Tsleep = Tsleep + Tstep
6: if Tsleep ≥ Thard then
7: Idle/soft timeout Tsoft = 0
8: Terminate
9: end if

10: Sleep for Tsleep
11: Send a ping and calculate RTT (RTTping)
12: if (RTTping < Tthresh) then
13: Go to 5
14: else
15: T1 = Current system time
16: if (T1 − T0) ≥ Thard then
17: T0 = T1
18: Go to 5
19: else
20: Idle timeout Tsoft = Tsleep
21: end if
22: end if

where hard timeout is set as 30 seconds, soft timeout is set as 15 seconds
and value of Tsleep imported from Algorithm 4.1 is 3 seconds. In Algorithm
4.2, using 50 ms as value of Tstep, host sends the first ping and then sleep
for 3.05 seconds (Tsleep = Tsleep + Tstep) before sending the next ping and
then sleep for 3.10 seconds and then wait for 3.15 seconds before sending the
third ping and so on. After sending the second ping (testing for soft timeout
for 3.10 seconds), total elapsed time would be 6.15 seconds since T0. In the
same fashion, after sending the third ping (testing for soft timeout for 3.15
seconds), total elapsed time would be 9.2 seconds since T0. This relationship
is expressed in the form of Equation 4.2, which returns the total elapsed
time at nth ping where Tsleepinit represents the initial sleep time, imported
from Algorithm 4.1. Within 10 pings, the total elapsed time Telapsed will be
approximately 32.75 seconds. At the 11th ping Tsleep is 3.55 seconds that is
still less than the actual value of Tsoft i.e., 15 seconds.
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TElapsed =
n∑

i=1

(Tsleepinit
+ (i) × Tstep) (4.2)

However, a new flow will be installed by this 11th ping as the previous
flow entry was removed due to total elapsed time being greater than Thard
(32.75 seconds > 30 seconds). In such a case, the reference time of flow
installation is changed and proceed with the last probed value of soft time
out (lines 16-18 in Algorithm 4.2). In the next round, value of Tsleep is used
from the last round, so at each new round sleep time (gap between consec-
utive packets) is higher i.e., in the second round initial value of Tsleep will
be 3.6 seconds. Otherwise it will become an infinity loop if initial value is
same in each round. Moreover, as the number of rounds increases Tsleep will
approach to the value of soft timeout or declare it as zero if it exceeds from
hard timeout. Finally, the algorithm will terminate when the Tsoft, if set is
found. Number of rounds i.e., how many times hard timeout will occur be-
fore soft timeout is found, can be calculated by the dividing the total elapsed
time since the first ping by the actual value of hard timeout i.e., Equation 4.3.

Numberofrounds =
TElapsed

Thard
(4.3)

Now consider the second case where Algorithm 4.1 has discovered the
value of soft timeout and control will be transferred to Algorithm 4.3. In
Algorithm 4.3 (Flowchart in figure 4.6), first of all, previous existing flow
entry should expire i.e., host A will sleep for Tsoft. There is no need of Tstep
in this part, as the pings are equally gapped from each other. Although
value of Tsleep is imported from Algorithm 4.1, but as it equals the value of
soft timeout so a new value of sleep time is required, 75% of Tsoft has been
proposed to avoid the removal of flow entry during probing because of soft
timeout. This number is selected because marginally it is a good ratio to
avoid uninstallation of flow entry without sending too many packets at lower
value. Host A sends test pings and calculate RTTping to check for flow entry
expiry.

Value of Tthresh is imported from Algorithm 4.1 for comparing of RTTping
of these test pings. After each ping, current system time T1 is noted and total
elapsed time (T1 − T0) is checked. Lines 9 - 11 in Algorithm 4.3 specifies the
threshold of the range we are interested to probe (10 times the value of Tsoft)
for hard timeout. A ratio of 10 covers almost all default combination of
SDN controller’s timeouts and practically implementing ration higher than
this is also not feasible. If hard timeout is found within this range, total
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Figure 4.6: Flowchart - Finding the hard timeout given the soft timeout
(Tsoft)

elapsed time (current time - T0) since the first ping will be the value of hard
timeout, otherwise it declares the hard timeout equal to 0. In the worst case,
when hard timeout is 0, the total run time will be almost 14 times of the



26

Algorithm 4.3 Find the hard timeout given the idle timeout (Tsoft)

1: Sleep for Tsoft
2: T0 = Current system time
3: Use Tthresh from Algorithm 4.1
4: Tsleep = 0.75 * Tsoft
5: Sleep for Tsleep
6: Send a ping and calculate RTTping
7: if (RTTping < Tthresh) then
8: T1 = Current system time
9: if (T1 − T0) ≥ (10 ∗ Tsoft) then

10: Hard timeout Thard = 0
11: Terminate
12: else
13: Go to 5
14: end if
15: else
16: Hard timeout Thard = Current system time −T0
17: Note current system time as T2
18: while (T2 − T1) ¡ (0.8 * Thard) do
19: Note current system time as T2
20: Sleep for Tsleep
21: Send a ping
22: end while
23: while (RTTping < Tthresh ) do
24: Send a ping and calculate RTTping
25: Sleep for Tstep
26: end while
27: Hard timeout Thard = Current time −T2
28: end if

Tsoft. Otherwise, it depends on the actual configured value of hard timeout.
The impact of timeouts has been analyzed in Chapter 5, along with the
granularity of step size and its impact on the error and total cost. Moreover,
error in the discovered value of hard timeout has been reduced (Lines 18 - 26,
Algorithm 4.3) by the similar mechanism as in Algorithm 4.1 i.e., sending
pings with gap of Tsleep for 80% of detected Thard and then sending pings
gapped equally by the Tstep.
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4.2 Match Fields

The goal of this module is to detect the match fields implemented by the
SDN controller’s policy and firewall elements associated with the detected
match fields. The controller allows/blocks installation of a flow based on
certain match fields or even particular values of those match fields. The
concept of match fields has been explained in section 2.3. The design goal
of this module is to find out the match fields for flow entries and which of
legal values of those detected match fields are blocked for transmission by
the SDN controller. In simpler words, firstly, proposed scheme detects the
match fields, whose manipulation yields new flow entries at the switches in
the network. And if a certain header field is a match field then checking
for declared legal values under firewall policy of the controller deployed in
the network. For now, consider a simple example, it might be possible that
a SDN controllers policy is considering TCP port number as a match field
but controller has blocked all incoming traffic of HTTP port (TCP port #
80) or SSH port (TCP port # 22), then sending forged packets using such
value of match fields or launching DDoS attacks of those values of match
fields is totally useless. This information would come very handy when an
adversary is trying to consume the maximum resources of the SDN network
by installing as much flows as possible for producing DDoS scenario. The
adversary can use compromised host(s) to fingerprint the SDN enabled net-
work to determine the allowed/blocked match fields to update information
about the implemented firewall policy. For efficiency and effectiveness rea-
sons, adversary can ignore the blocked match field values while launching an
attack.

It is worth mentioning that, limited information can be gathered about
fingerprinting SDN when there is only one compromised host under the ad-
versary’s access (Figure. 4.1) in the network. For example, it is hard to
determine if a particular flow or packet is blocked due to the controller pol-
icy (Firewall feature) or by the receiving host firewall. However, this situation
improves when an adversary has access to two compromised hosts under con-
trol (Figure. 4.2), in such a scenario it can be assured that receiving host has
not blocked any port or any flow at its firewall. So, whatsoever is dropped
is due to the controller firewall functionality.

The actual process of fingerprinting the match fields is quite straight
forward. The host will pick a match field and forge a packet using a random
legal value of that match field. Now, host will wait and check weather a
new flow has been installed for this forged packet or not. Checking for new
flow installation is based on comparison of difference in RTT i.e., RTT of
test packets RTTtest greater than Tthresh as explained in timeout (Section.
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Figure 4.7: Flowchart - Match fields fingerprinting

4.1) module. Based on the difference in RTT, it is inferred that a new flow
has been installed for this match field or not. If the packet is dropped for a
value of match field, the algorithm will check for another legal value of that
particular match field and note that value of match field for dropped packet.
This is followed by choosing another legal value for the same match field
(keeping all other fields as unmodified) for further analysis. For example, at
transport layer, if first match field used is TCP port # 88, then in the next
packet it can try TCP port # 80 (Flow chart in Fig. 4.7). The adversary may
check for all legal values of a particular match field against which he wants
to launch a DDoS attack. Now the question arises for how many values,
an adversary should check firewall policy? And the answer is as many as
he desires, the design logic of this module will check firewall policy for all
match fields and all declared values in which the adversary is interested.
Checking for firewall policy is also not compulsory, he may just check for
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match fields only using one packet. RTT for each match field depend upon
that particular header field communication behavior. For example RTT of
ICMP is calculated on the bases of reply sent by the host. Similarly, in case
of TCP, if the targeted host is listening on a port than SYN + ACK will be
received in the response of a SYN packet, RST + ACK will be received in
the response of a SYN if the other host is not listening on that particular
port and RST will be received in the response of a ACK packet. However, no
response will be received if a TCP is blocked either by the host firewall or by
the network policy and this situation improves when attacker has two hosts
under control inside the network. Note that nested matching is also possible.
TCP flag field is a common example for such a scenario where TCP flag is
treated as a separate match field along with TCP port numbers. Scapy [23]
has been used for the testing and implementation of this module. Moreover,
this module has been tested on the commonly used match fields such as IP
addresses, Protocol types, MAC addresses, transport layer protocols (TCP
& UDP), Transport layer port numbers (TCP port numbers and UDP port
numbers), TCP flags, ICMP, ICMP types and ToS (Type of Service).

Moreover, some other useful information can also be obtained about the
network using the detected match fields, such as OpenFlow version deployed
in the SDN enabled network. Moreover, an algorithm has also been proposed
to verify timeouts values efficiently for each detcted match fields. Now, both
of these feature are briefly explained below:

4.2.1 OpenFlow Version

OpenFlow has become a de facto standard southbound API which provides
access to administrators for managing network devices. In its initial version
i.e., Openflow 1.0 there were only 12 match fields available. However, with
the emergence of SDN and network applications, the latest available version
(Openflow 1.5) has almost 44 match fields. Further development of its next
version is in process and is yet available to ONF (Open Networking Foun-
dation) members only. There are match fields which exist in all versions of
Openflow e.g. TCP ports, Ethernet addresses, IP addresses, to name a few.
However, existence of enhanced fields varies from one version to another. For
instance, MPLS to provide QoS was not part of Openflow1.0, but has been
incorporated in later versions. Though existence of protocol specific fields
eases network application developers and administrators, however, this incurs
redundancy and increases size of header of the Openflow packet, thereby in-
creased demand of network bandwidth. With these considerations, a single
space in match fields has been reserved for mutually exclusive protocols. For
example, considering transport layer, from TCP, UDP and SCTP, only one
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is used at a time for a flow. In this case, same match fields are used, without
considering the protocol being used. Where evolved 44 match fields provide a
lot of flexibility for network applications, however, these also impose a threat
to a SDN. For example, generally speaking, If maximum number of 44 match
fields are being used, one might need least effort to overflow the switch flow
table entries by launching an attack with various protocols and there unique
header values (ports, addresses etc.). Moreover, on the basis match fields,
OpenFlow version can also be predicted but not fully ensured of exact ver-
sion, provided if a unique match field is being found. For example MPLS BoS
was introduced as a Match field in OpenFlow 1.3, but it was also supported
by all latter versions. So if a network has implemented MPLS BoS means
network has implemented OpenFlow 1.3 or latter version. If an adversary
has information about the deployed OpenFlow version, he may also predict
features of that network which have been introduced for first time such as
security features, unique messages (between switch and controller), etc.

4.2.2 Variation in Timeouts

A SDN controller might allocate different timeouts to different match fields,
which means different types of flow entries (match fields) may have different
life in flow tables of switches. This can be dependent upon the traffic charac-
teristic of that particular SDN enabled network. As SDN offers dynamicity
and flexibility. An adversary may be interested in a particular match field
such as TCP port numbers only. But, as it is not ensured that a network
administrator has deployed same timeouts for all types of traffic. The de-
sign goal of this module is to investigate timeouts of a particular match field
efficiently, using the values of initial found values of timeouts, rather than
running whole module of timeouts again.

As the basic timeouts, investigated on the base of ICMP pings are known.
The design logic of this module (Flowchart shown in figure 4.8) first check for
those values, if they are applicable on the match field under consideration or
not. First of all, host will choose a match field, forge the packet using legal
value of match field and sends toward the targeted host to install the flow
entry by noting the current time of system. Firstly, host will check for hard
timeout value i.e., by sending equally gapped packets and checking for flow
entry expiry by comparing RTT of test packets (RTTtest) with Tthresh at the
known timeout value from ICMP pings. If hard timeout has not been found
for ICMP pings then this step will simply get ignored and control will be
transferred to next step. In either case, the next step is to match the soft
timeout, host will investigate that if soft timeout of ICMP is also applicable
on the target match field or not. Next, host decides if the goal of this module
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Figure 4.8: Flowchart - Detecting timeouts for multiple match fields

has been achieved or not i.e., if both timeout values of the targeted match
field are same as of known timeout values of not. If the values are same, the
module terminates. But if any of value is not matched than the respective
algorithm from the timeout section will be called for the targeted match
field. Means, if hard timeout is matched but soft timeout is different than
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the control transfers to Algorithm 4.2 and if soft timeout is matched but hard
timeout is different than the control transfers to Algorithm 4.3. And if both of
timeouts dont match with the known values than the control is transferred
to Algorithm 4.1, which will compute the timeout for the targeted match
field from scratch. It is worth mentioning that matching means, initial found
values of timeouts should also holds their respective actions on the targeted
match field. But if flow expiry has not been occurred at the respective time
or no initial value is found for timeout i.e., value of 0, than it is considered
as a matched value, hosts needs to investigate it. For example, consider a
network where ICMP is configured at 30 seconds and 0 seconds for soft and
hard timeout respectively. But TCP, in the same network is configured at 30
seconds and 60 seconds respectively. Host will not check for hard timeout,
as it is set 0; value returned by the ICMP timeout module. Host matches
the value of soft timeout and then computes the hard timeout by calling
Algorithm 4.3.

Running this module on each match field is not compulsory at all. If an
attacker wants to launch an attack using less match fields, it will be helpful to
him. Or he may choose wrong packet generation rates or number of hosts for
an attack based on wrong timeouts. So he may need to verify the timeouts
for the desired match field(s), if required.

4.3 Mitigating Over Flowing Tables

SDN enabled switches can support only few thousand flow entries at max-
imum, as elaborated in section 2.5. Typically, SDN enabled switches sup-
ports both software flow tables as well as hardware flow tables. Hardware
flow tables process at higher speed but on the other hand, they can accom-
modate only limited numbers of flow entries. Whereas processing speed of
software flow table is much lower; degraded by up to two orders. Software
flow entries tables are managed in SDRAM (Static Dynamic Random Ac-
cess Memory) whereas hardware flow entries tables are maintained in either
BCAM (Binary Content-Addressable Memory) or TCAM (Ternary Content-
Addressable Memory). As switches can accommodate only limited number
of flow entries, which further reduces the performance [24] of the network
because additional messages exchange are involved between the switches and
the SDN controller to remove the already installed flow entries and then in-
stalling the new entries. The design objective of this module is to fingerprint
the controller mitigation policy for full table event in SDN enabled network.
And how the implemented mitigation policy effects the network under DDoS
scenario.
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The design logic assumes that host has already fingerprinted the values
of timeouts and valid match fields implemented in the SDN enabled network.
Fingerprinting the match fields helps the host to forge an effective burst of
packets, from which each packet will enforce the controller to install a new
flow entry. And fingerprinting the timeouts of the SDN enabled network,
helps the host to determine the type of burst needed in order to overflow the
flow entries tables efficiently.

The first step of the proposed mechanism requires to fill the flow entries
at the bottleneck switch toward the target host in the network. And to full
the flow table, host needs a burst of packets which enforce the controller to
install the distinct flow entries for each packet, as host has the information of
the deployed match fields. It is worth mentioning that if a host has checked
the firewall module of the values of match fields, those values of match fields
should be ignored while generating the traffic burst. But host should also
consider the impact of deployed timeouts on the packet burst.

If Tsoft is not defined in the network, host does not have to repeat the
values of match fields in forged packets in order to hold the flow entries table.
On the other hand, if Tsoft is defined in the network, than host needs to forge
packets at a high rate and needs to repeat the values of match fields in order
to generate as much flow entries as possible before the switch start removing
flows through soft timeout mechanism. Means, auto flow expiry due to soft
timeout should be avoided, especially when the value of soft timeout is too
much low. However, if Thard is defined in the network then host needs not to
repeat the values of match fields at all, as by the definition of hard timeout
flow entries will be removed at Thard. But the most ideal situation for an
attacker will be the network where both of timeouts are not defined (Case A
in Table 2.1). At this stage, when flow table is full, host begins fingerprinting
of mitigating policy for full flow table event.

There are two mitigating strategies for overflowing tables at the switches.
The default applications of SDN controllers do not react to table full error
messages sent by the switches, as they rely upon timeouts mechanism for
auto expiry of flow entries. But there exist another mitigating strategy for
overflowing tables in which switch removes the flow entries when instructed
by the SDN controller, upon receiving the table full error message by the
respective switches. But the question arises, on what bases controller selects
the victim flow entries i.e., which have to be removed? Well, the selection of
flow entries to be removed varies, such as it can be based on traffic statics
gathered by the SDN controller or on the bases of one or more match fields.

In the first approach (no response on receiving the table full error mes-
sage), there will be significant packet drops, as shown in figure 4.9. Whereas
in the latter approach (flow replacement policy on receiving the table full
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error message), there will be increased load on the SDN controller which
results in increased RTT of forged packets sent by the host, but there will
be no packet drops. Normally in case of table miss event, switch sends the
packet-in to the controller and then controller sends the flow rule in flow-
mod message for the respective packet and switch forwards the packet i.e.,
RTTFE. On the other hand, when table full event occurs at the switch, it
sends the error message (table full error, flow entry not installed) against the
flow rule message rather than installing the flow entry at the switch, then
the controller sends the flow entries deletion message to the switch and then
resends the flow rule. Which means there are three extra messages involves
in this event which also results in increased RTT, represented by RTTreinstall.
This has been elaborated briefly in the figure 4.10 with all involved steps in
it. So, in normal mode (flow table not full), RTT will be RTTFE for every
packet which generates a new flow entry. Where as in case of full flow table,
either the packet gets dropped or RTT increases to RTTreinstall.

When the host detects the table full event has been occurred i.e., first
packet is dropped or the RTT increases to RTTreinstall. The host notes the
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elapsed time (Telapsed) since the first forged packet of the burst and multipli-
cation of it with packet generation rate Ratepacket (burst rate) can be used to
estimate the number of ow entries i.e., how many distinct flow entries have
been generated by the burst in the flow entries tables. But this number can-
not be inferred as the total number of flow entries accommodatable at the
switch. In fact, exact number of flow entries accommodatable at switches are
unpredictable because in the commercial SDN network there will be already
hundreds of flow entries installed at the switches for ongoing packets trans-
missions between the multiple hosts. It gets worst, if the SDN network has
hard timeout set as 0, which means already installed flow entries will not be
expunged as the soft timeout renews the flow entry life at each packet arrival
of the same flow. But still using the proposed scheme, it can be observed
how SDN enabled network will behave under DDoS attack at flow table en-
tries. However, this module focuses on analyzing the impact of full tables
under the DDoS condition only, criteria for deletion of already installed flows
varies from policy to policy such as on the base of a match field or any other
predefined policy is beyond the scope of this research.
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4.4 Topology Discovery

If an attacker have the information about the topology of the network, it helps
him to launch much strong and mature attacks on the targeted network.
In case of SDN enabled network, best case will be targeting a host with
maximum hops in the network, so that SDN controller will have to install flow
entries again and respond to table full error messages when flow entries table
full event occurs at each hop in the network. Even in the normal mood, there
is significant difference in RTT, when a flow entry already exists (RTTavg) as
compared to when a controller installs a flow entry (RTTFE). This will also
happens at each hop between the end hosts inside the network, which further
increases the difference in RTTs. The design goal of this module is to predict
the network topology, by using the trend in difference of RTTs. But there
are multiple topologies, used by the commercial networks but design logic of
this module considers fat-tree topology topology only. Basic fat tree topology
has been shown in figure 4.11. Fat tree topology is the most commonly used
topology in data center networks, as it provides many redundant links [25]. It
consists of three layers, edge layer, aggregation layer and core layer. Switches
in the edge layer are known as edge layer switches or ToR (Top of Rack)
switches. ToR switch allows the communication between the hosts of a same
rack and connects them to upper layer of the topology i.e., aggregation layer
switches. No two ToR switches can communicate directly with each other,
there should be at least one aggregation layer switch, which connects two ToR
switches and also connects to the upper layer i.e., core layer switch. Similarly,
no two aggregation layer switches can communicate directly with each other,
there should be a core layer switch, which connects at least two aggregation
layer switches. Interconnected ToR switches using one aggregation layer
switch only i.e., without involving core layer forms a pod, as highlighted in
dotted squares in figure. 4.11

The design logic of this module requires that an adversary should know
the IP addresses of hosts inside the SDN enabled network in advance or can
find them by using network scanning applications i.e., ARP scan function of
Scapy or any other network scanning application. Then host can ping them
and using the retrieved information, hosts inside the target network can be
sorted into in-rack, in-pod and inter pod categories. In-rack communica-
tion involves only one switch whereas in-pod communication involves three
switches and inter pod communication involves five switches. Similarly, their
respective RTTs will have an increasing trend as the packets are traversing
one, three and five switches respectively. Although this trend is not linear
in nature but still enough to categorize the hosts. Especially when a new
flow entry has been installed for each packet, as RTTavg is a smaller number
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there is less trend in variation whereas RTTFE is a bigger number, which
makes it easier to decide. Moreover, incase if flow replacement policy (table
full scenario) is being implemented by the controller, probability of catego-
rizing hosts in the target network further increases, as RTTreinstall can help
to retrieve further confirmation about the hosts. However, if controller is not
using flow replacement policy than RTTFE is the only best option.



Chapter 5

Results & Discussion

This chapter contains the discussion on the results of proposed techniques
in chapter 4. Respective plots of the designed modules and respective sim-
ulation environment has been explained briefly. Section 5.1 summarizes the
system specification on which experiments had been performed for the eval-
uation. Section 5.2 discusses the granularity of the step size for investigat-
ing the timeout values. Next, section 5.3 elaborates the impact of different
values of timeouts under the DDoS scenarios and section 5.4 discusses the
controller reaction to the table full event and when it can easily degrade the
performance of the SDN enabled network. Lastly, discussion on the topology
discovery experiments have been summarized in the section 5.5.

5.1 System Specification

The experiments for the evaluation of the proposed techniques are performed
on system with the specification given in Table 5.1.

The machine was running Linux as operating system, with Mininet [26] as
an emulator installed on it. Mininet was used to run emulated network where
each node (Controller, switches and end hosts) of the network is provided as
a VM (Virtual Machine) with individual Linux kernel. Moreover, it also
allows configurable link parameters such as bandwidth. Python, interpreted
high-level programming language, was used to write simple ICMP ping script
using the default libraries available in Linux kernel, which returns the RTT
for the pings. RYU [28] was used as SDN controller. Scapy API is used
to write python scripts for packet forging (for determining match fields and
mitigating policy for overflowing tables) purpose such as forging packets with
different TCP port numbers, TCP flags, ToS (IP layer header) etc. These
python scripts also return the respective RTT of forged packets and response

38
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Table 5.1: System specification

Name Specification
CPU Intel Core (TM) i5-7200 CPU 2.7 GHz
RAM 8 GB - DDR4 2133 MHz
GPU 2 GB - GeForce 920 MX
OS Ubuntu 16.04.03 LTS

Emulator Mininet 2.3.0d1 [26]
Packet Forger Scapy [23]

Packet Analyzer Wireshark [27]

sent by the targeted host to analyze the flow installation time and firewall
function i.e., if any value of match field is blocked. The output of the scripts
has also been cross checked by the Wireshark [27], packet analyzer tool.

5.2 Granularity of Step Size

In Algorithm 4.1 and 4.2, proposed in section 4.1 for finding timeout values
of the SDN enabled network, selection of step size Tstep has a huge impact
on the performance of the proposed timeout’s fingerprinting mechanism, as
it defines the fashion for time gap between the continuous probing packets.
For example, in algorithm 4.1, if Tstep is chosen as 50 msec than the time
gap between 10th and 11th ping will be 500 msec, calculated using equation
4.1 and total elapsed time will be 2750 msec (using equation 4.2). Whereas,
if Tstep is chosen as 200 msec than the time gap between 10th and 11th ping
will be 2000 msec, then total elapsed time will be 11 seconds. So, choosing
Tstep effects the time gap between nth and nth−1 ping as well as total elapsed
time (total time for fingerprinting the timeouts of targeted network).

Conclusively, the step size (Tstep) is directly proportional to overall run-
ning cost (number of rounds) of timeout algorithms and inversely propor-
tional to the error in the values of timeouts. But this is not the case in this
mechanism, error in timeout is also dependent upon actual values of time-
outs. For example, consider a network is using Tidle as 10 seconds and Thard
30 seconds with Algorithm 4.1. If we use step size as 100 msec in Algorithm
4.1, within 25 increments the total elapsed time will be 32.5 seconds and the
last sleep will be 2.5 seconds. Now the flow entry will be expunged by the
controller due to hard timeout and host will detect an error of approximately
2.5 seconds (lines 1-20 in Algorithm1). Comparing this with the case when
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we choose step size of 125 msec in Algorithm 4.1, within 22 increments the
total elapsed time will be 31.625 seconds and the last sleep will be 2.75 sec-
onds resulting in an error of approximately 1.625 seconds. Figure 5.1 show
this relationship between step size and the error in estimation where the er-
ror is fluctuating depending on the values of hard timeout and step size. We
thus have to introduce additional processing (lines 21-31 in Algorithm 4.1) to
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reduce this estimation error resulting in the error shown in Figure 5.2 where
the step size of 250 ms is producing error within 1 sec. For the evaluation,
topology with one compromised host (Figure 4.1) under the adversary’s con-
trol has been considered, and also cross verified when the adversary have two
compromised hosts (Figure 4.2) under his control. In this module, design
logic is based on RTT (Sender side), so the number of compromised hosts in
the SDN enabled network does not matter. Choosing Tstep depends on the
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purpose of the fingerprinting i.e., for DDoS attacks or security analyzing by
the network administrator.

Once the value of hard time out is found through Algorithm 4.1, this
value is used again in Algorithm 4.2 to find the Tidle. The fingerprinting
mechanism also induces error in estimation of idle timeout as shown in figure
5.3 where the estimation error for idle time out values using Tstep of 100 msec
is about 200 msec (2%) that increases to 750 msec for step size of 250 msec
(7.5%). Similarly, Tstep also effects the number of rounds in Algorithm 4.2,
if initial value of Tsleep is 3 seconds and Tstep is 50 msec then there will be
almost 72 rounds i.e., Flow removal due to hard timeout before soft timeout
is discovered. Similarly, Tstep is 200 msec then there will be almost 18 rounds.
These evaluations are based on the associated equation 4.3, which have been
verified by the simulations as shown in graph 5.4, which shows that the
reduction in number of loops becomes almost at beyond step size of 100 ms.
That’s why, the value of 100 msec for Tstep is selected for Algorithm 4.1.

5.3 Timeout Estimations

Proposed algorithms for discovery of timeouts have been checked for esti-
mation error. In these experiments, each instance is the average of five
simulations with the step size set as 100ms. Figure 5.5 shows the difference
between actual and discovered timeout values using the Algorithm 4.1, for
the case when only Thard is set in the targeted network. X-axis of the plot
represents the different trials numbers whereas different timeout values and
Y-axis shows their respective discovered values along with the percenatge
age difference. Algorithm 4.1 show low estimation error when discovering
the hard time out values with the error getting amortized with higher values
of hard timeout. Figure 5.6 shows the error in estimation of soft timeout
when this timeout value is discovered by Algorithm 4.1 (Combination C in
Table 1, hard time out is set as 0). The experiment was conducted with
soft timeout values ranging between 10 sec to 40 sec. The results show the
maximum average estimation error of about 3.4 percent for the case when
idle time out is being estimated by Algorithm 4.1 for actual timeout value of
10 seconds.

The combination D listed in Table 1, where both hard and idle timeout
values are being used in the policy can be discovered using Algorithm 4.1
followed by Algorithm 4.2 or Algorithm 4.3. The actual sequence of algo-
rithms depends on the ratio between the two timeout values and the Tstep.
For example, let’s consider a scenario where the idle timeout is set as 6 sec-
onds and hard timeout is set as 40 seconds and the step size is 100 ms. In
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this case, a flow entry will be expunged within 28 pings because total elapsed
time would be 40.6 seconds, resulting in the discovery of the hard time out
value first.
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Algorithm 4.1 will be followed by Algorithm 4.2 for discovery of soft
timeout. Whereas, if we change the step size to 750ms than after 8 pings,
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a flow entry will be expunged because of idle timeout and at that instance
total elapsed time would be 27 seconds. So, Algorithm 4.1 will be followed
by Algorithm 4.3 for discovery of soft timeout, if that value exists.
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Given the normal ranges for the step size, idle and hard timeouts, it is
thus more likely that hard timeout will discovered first by Algorithm 4.1
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rather than the idle timeout. We have considered both combinations of
these algorithms and have plotted the estimation error percentage in Figure
5.7 and 5.8 .When Algorithm1 is followed by the Algorithm2, the value of
hard timeout was set as 60 seconds and the idle timeout values were changed
between 10 to 40 seconds. For the case when Algorithm 4.1 is followed by the
Algorithm 4.3, the value of idle timeout was 6 seconds and in this case only,
Tstep was set at 750 ms whereas in all remaining experiments Tstep was set at
100 ms. For these set of experiments, the maximum average estimation error
was 2.8 percent for the case when actual idle timeout is 10 seconds, hard
timeout is 60 seconds with step size of 100ms, resulting in the combination
Algorithm 4.1 followed by Algorithm 4.2.

5.4 Controller Reaction to Full Tables

Each of mitigating policies for table full event in SDN enabled network have
their own pros and cons. In the case where controller is not taking any action
only one part of the network will be compromised. Because controller is not
taking any action on the table miss entry and that packet will not be for-
warded to next switch while the other switches will be working fine. Whereas
in flow reinstallation policy, controller’s resources will be highly utilized al-
though there will be no packet drops but it affects the performance of the
whole network as the RTT of all messages will increase, due to extra mes-
sages involved in each new flow installation, especially if it involves multiple
switches between the end hosts. Moreover, different timeout combination
have their own impact on the network because of difference in the working of
hard and soft timeouts. So, adversary should choose packet burst according
to match fields and timeout values deployed in the targeted network. As the
adversary has fingerprinted the timeout values, so the adversary knows better
when to repeat the match field values in the attack burst. Same burst will
have different impact under different combinations of timeouts. Even same
burst will have different percentage of dropped packets and total completion
time under the same timeout combination but different timeout values.

5.4.1 Packet Drop Policy

As discussed earlier, when controller is not taking any action on the table
full message generated by the switch, all incoming packet will be dropped
unless some of the flow entries are expired by timeout mechanism. Which
means, packet drops will increase if flows has greater life, as shown in figure
?? and overall burst completion time will also increase because as in our
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reference implementation, Scapy waits for timeout of a packet before gener-
ating the next one, this trend was shown in figure ??. One instance of these
experiments has been explained in detail, when hard timeout of controller
was discovered as 60 seconds. Scapy packet generation rate in normal mode,
when switch was able to accommodate all incoming flow entries, was around
75 flow entries per second. As switch table size was reduced to accommodate
1024 flow entries only, within 13.65 seconds of the experiment simulation
time, flow table was full and table full messages were generated in response
to the new incoming packets. Now, packet drops is observed until 60 seconds,
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Figure 5.9: Plot - Packet drops at hard timeout = 60 seconds

after that switch started expunging old flow entries and new flow entries were
entertained again for almost 14 seconds i.e., until the table was full again and
at 74.49 seconds again packet drop started. First packet drop interval lasted
for almost 46 seconds and 183 packets were dropped, which was expected to
be around this number because RTO in Scapy was set at 250 ms. This re-
peated fashion of packet drop in relation to hard timeout of controller (Hard
timeout = Drop interval + Time taken to full the table) i.e., Drop interval
of 45 seconds, was observed for the whole experiment and almost 25% of
the packets from the total burst of 10000 packets were dropped during this
experiment, which took 866.689 seconds in total to complete (Figure 5.9).
However, when RTO was reduced to 25 ms, around 70% of packets results in
dropped because during the drop interval host is not waiting so long for the
reply, but in this scenario overall burst completion time remains the same as
of a normal flow due to reduced RTO.
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5.4.2 Flow Replacement Policy
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Figure 5.10: Plot - RTTs of in-rack communication
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Figure 5.11: Plot - RTTs of in-pod communication
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Figure 5.12: Plot - RTTs of inter-pod communication
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For the evaluation of this module i.e., controller reaction to table full
event, fat tree topology has been deployed in the Mininet, one switch for
in-rack communication, three switches for in-pod communication and five
switches for the inter-pod communication. And flow table at the switches
in the network was reduced, to observe the flow replacement policy. If SDN
controller is using the default action on table full event then flow table size
is of no use. Because such networks will not return the RTTreinstall and
adversary has to relay on RTTFE.

Moreover, in these experiments, TCP SYN burst is generated in which two
consecutive packets contains a new value of TCP port, first packet enforce the
SDN controller to install a new flow entry due to table miss event and second
packet is used to observe the RTT when packet passess through the data
plane directly. The normal RTT (RTTavg), flow installation RTT (RTTFE)
and flow replacement RTT (RTTreinstall) is shown in figures 5.10, 5.11 and
5.12 for one, three and five switches respectively. Moreover, in these graphs
RTTFE and RTTavg also reflects the match fields testing i.e., when a new flow
entry is being installed for each forged packet (RTTFE) and when copy of
the same packet passes through the data plane (RTTavg). These experiments
have been carried out using hundred packets of each type (RTTavg, RTTFE

and RTTreinstall) in each category (in-rack, in-pod and inter-pod).

5.5 Topology Discovery

As discussed earlier, if an adversary fingerprints the information about the
topology of the targeted network, he can launched a more mature attack.
A fat tree topology has been implemented in the Mininet and it has been
observed that sending forged packets to inter-pod targeted host results in
seven times increased RTTFE as compared to in-rack targeted host (Figure
5.13).

Best case scenario for an attacker will be the over flowed tables at the
switches in the targeted network and sending forged packets to inter-pod tar-
geted host, then RTTreinstalled will be almost twelve times of RTTFE (Figure
5.14). Conclusively, adversary should target the host, which involves maxi-
mum number of hops. And generating packets with unique values of match
fields, further increases the probability of a successful attack on SDN enabled
network. The behavior discussed above is observed when tables are not full
i.e., RTTavg and RTTFE and RTTreinstall when tables were full, provided that
controller has implemented the flow replacement policy.

However, situation will be different if controller has implemented the
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Figure 5.13: Plot - Variation in RTTFE
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Figure 5.14: Plot - Variation in RTTreinstall

packet drop policy in response to table full event. In that case, hosts can be
sorted on the base of difference in RTTFE only. Moreover, if table is flow
entries table is full at any switch between the hosts, more experiments needs
to be performed in order to achieve the design goal of this module.

Moreover, the latency at data plane (RTTavg) is ambiguous to be used as
sorting crietria of hosts into in-rack, in-pod and inter-pod groups. Although
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Figure 5.15: Plot - Variation in RTTavg

there is difference in RTTs when a packet is transmitted through one switch,
three switches and five switches respectively. But almost 8% randomness has
been observed which do not follow the trend and might yield wrong answers,
as shown in figure 5.15. A long experiment i.e., hundreds of packets should
be transmitted to different hosts and using probabilistic distribution, hosts
can be categorized.



Chapter 6

Conclusion & Future Work

Lastly, this chapter concludes the presented research work. In which, section
6.1 covers the future directions and some other research challenges that need
to be addressed and section 6.2 presents the conclusion of this research work.

6.1 Future Work

From security perspective of SDN, there are many things which need to be
taken care of. More enhanced policies are required, for example implementa-
tion of dynamic parameters rather than fixed parameters. Means, a network
should change timeout values with respect to the traffic load and vacant space
in the flow entries table. Similarly, if the flow entries table is full, controller
should reduce the number of implemented match fields. So that more and
more incoming packets match with a single flow entry.

From fingerprinting perspective, there are some research challenges that
need to be addressed. For instance, predicting the victim selection of flow
entries in flow replacement policy, can be interesting topic i.e., which flow
entries are being expunged by the controller (oldest or on the bases of a
particular match field or protocol). Furthermore, machine learning is an
emerging domain, implementation of machine learning for security analyzing
of SDN enabled network can be a good future direction.

This research work is assuming that a SDN enabled network is using a
single SDN controller. However, multiple SDN controller can be deployed
as per requirement and design of the network. For example, a separate
controller/agent can be synchronized with the main SDN controller for traffic
engineering or security applications (firewall).
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6.2 Conclusion

In this research work, various techniques have been proposed for finger-
printing the SDN enabled networks. This work revolves around SDN fin-
gerprint techniques like parameters (timeout values, flow rule match fields),
controller’s reaction on event when switch’s flow table is full and lastly es-
timating the number of hops involved in host-to-host communication, the
topology discovery in the targeted network. It is worth mentioning that
all proposed techniques merely use end host(s) only, thereby relaxing as-
sumption that network devices (switches, routers) can be in control of an
attacker. With the help of different simulation experiments, it has been
showed that how parameters like timeouts can be measured and match fields
can be guessed and eventually exploited for DDoS alike attacks. Moreover,
we also revealed that, if an adversary using proposed techniques, knows SDN
parameters (timeouts, match fields, topology) in advance, network is more
prone to attacks; thereby creating alarming situation for the network admin-
istrators and obviously, fortunate situation from an attacker’s perspective.
Furthermore, possible future direction has been given for both directions i.e.,
the need of enhanced SDN policies, to improve the security and performance
of the SDN enabled networks and for more enhanced fingerprinting using
machine learning based techniques.
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