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Abstract 

Brain is the most important organ in human body. The effects of brain impairment are wide 

ranging and includes cognition, fatigue, sleep issues, headaches, dizziness, impaired self-

awareness, clinical depression, attention and concentration problems, epilepsy, struggling in 

making decisions and many more. Brain rehabilitation via noninvasive techniques such as 

tDCS helps patients relearn functions and improvement in cognition, lost as a result of a brain 

impairment. Transcranial direct current stimulation (tDCS) is one such noninvasive, safe and 

convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other 

aspects of brain disorders. The efficacy of tDCS in estimation of brain cognitive state 

improvement using changes in small electrical brain voltages recorded by 

Electroencephalogram (EEG) of 10 subjects is assessed by applying Event related De 

synchronization (ERDs) to Motor Imagery Period (MIP) and Rest Period (RP) of pre 

stimulation and post stimulation data and features extraction technique such as common 

spatial pattern (CSP).The results suggest a decrease of contralateral ERDs oscillatory activity 

related to an event as per the hypothesis in anodal post stimulation than pre stimulation across 

all channels for six subjects. Further Linear Discrimination Analysis (LDA) a machine 

learning model applied on CSP and ERDs proved that the classification accuracy between 

Motor imagery period (MIP) and Rest period (RP) after the stimulation therapy is higher than 

the Pre stimulation Motor Imagery period (MIP) and Rest period (RP). 

Keywords: tDCS Transcranial Direct Current Stimulations, EEG Electroencephalogram, 

ERD Event related Desynchronization, CSP Common Spatial Pattern, MIP Motor Imagery 

Period, RP Rest Period, LDA Linear Discriminant Analysis 
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CHAPTER 1: INTRODUCTION 

According to World Health Organization (WHO) Major mental disorders in Pakistan are 

depression (6%), schizophrenia (1.5%) and epilepsy (1-2%). Depression affects more than 

350 million of ages, in all communities [1]. It has significantly contributed to the global 

burden of disease and is one of the major contributor to a high suicide rate. Mental health 

problems in developing countries like Pakistan, have in the last few decades reached an 

appalling level (David DB,2000 Gadit AAM,2005) and are linked to both the current 

violence in society (Khalily TM ,2011 Khalily MT., 2010) and disruption in its social 

structure (Gadit AAM,1999).The health care treatment system‟s response to these problems 

is Worse in developing countries, the number of psychiatrists and psychiatric beds per head 

of population is much smaller and the treatment is expensive Fundamentally, there is no 

established model for mental health care in most developing countries and the majority of 

psychiatric patients thus seek treatment from non-professional healers using psycho [1]. 

Brain is the most important organ in human body. The physical effects of brain injury are 

wide ranging and includes cognition, fatigue, sleep issues, headaches, dizziness, domestic 

violence, Impaired self-awareness, self-centeredness, impulsive behavior, anger, clinical 

Depression, personality, behavior, attention and concentration problems, sensory and 

perceptual problems, epilepsy, motivation and initiation (adynamia), difficulty with making 

decisions, perseveration (repetition), panic attacks and hearing problems. Brain rehabilitation 

helps patients relearn functions lost as a result of a brain injury. Transcranial direct current 

stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in 

neurological rehabilitation, treatment, and other aspects of brain disorders [2]. We aimed to 

evaluate the effects of tDCS on estimation of brain cognitive state improvement using 

changes in small electrical brain voltages recorded by Electroencephalogram (EEG) and 

applying Event related De synchronization data analysis technique and features extraction 

technique such as common spatial pattern (CSP) over the recorded brain imaging data. 

1.1  Aims and Objectives: 

The aims and objectives of this work are  

• Design of Therapy 

• Collecting pre and post tDCS simulation EEG data. 



2 

 

• Data preprocessing and artifact removal. 

• Estimate cognitive improvement from Data. 

1.2  Research Methodology: 

The study will be split into the following major objectives to achieve the goal of this 

research:  

1.2.1  Literature Review 

This review will discuss the combination of already existing different noninvasive brain 

stimulation therapy approaches and noninvasive brain recording techniques used for the 

rehabilitation of brain disorder patients for this research. Testing methods and other 

requirements will also be researched and discussed in this review. 

1.2.2   Dataset and Methodology: 

In methodology, there will be a discussion about the two data set used in this research one 

which is the recorded data set in the lab as a part of research and the other online available 

dataset. Data preprocessing of bot data set and preprocessing results are also explained in this 

section 

1.2.3  • Results: 

In the result section, results of the different classification techniques used in this research is 

presented. 

1.2.4  • Conclusion: 

In the end, there will be conclusions regarding this research and future works. 
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CHAPTER 2: LITERATURE REVIEW 

2.1  Understanding the EEG and tDCS 

In this study efficacy of tDCS therapy is analyzed on the brain signal acquired through EEG 

brain imaging. Therefore, it is essential to understand EEG signals and the stimulation 

therapy.  

2.1.1  Electroencephalograph (EEG) 

There are different ways in which for capturing the brain‟s activity [3]: electrooculography 

(EOG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and function 

near-infrared spectroscopy (fNIRS) are the most recent one.  

Electroencephalography is the neurophysiological measurement of electrical activity in the 

brain as recorded by electrodes placed on the scalp or, in special cases, subdural or in the 

cerebral cortex. The resulting traces are known as an electroencephalogram (EEG) and 

represent a summation of post-synaptic potentials from a large number of neurons. [4] 

The use of EEG in neuroscience research delivers a number of benefits. EEG is non-invasive 

in nature, ease of use, portable and cheap for the research subject. Furthermore, the need to 

restrict the subject„s movements is clearly lower than in other fields of neuroscience such as 

functional magnetic resonance imaging (fMRI). A further benefit is that many EEG 

applications record spontaneous brain activity, which means that the subject does not need to 

be able to cooperate with the researcher (as is necessary, for instance, during behavioral 

testing in neuropsychology) [4] .EEGs have a high temporal resolution compared with 

techniques such as fMRI and PET and are capable of detecting changes in electrical activity 

in the brain on a time scale in the millisecond region which means the detection of 

hemodynamic brain response, spatial resolution is higher than the detection of neural 

stimulus-response in EEG [5], [6] 

In conventional scalp EEG, the recording is obtained by applying electrodes to the scalp 

using a conductive gel or paste, usually after preparing the scalp area by light abrasion to 

reduce electrode-scalp impedance. Many systems typically use electrodes which are each 

attached to an individual wire. Some systems use caps in which electrodes are embedded. 

This latter method is particularly common when high-density arrays of electrodes are 

required. 
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In addition to internal artifacts such as those produced by blinking, there are many artifacts 

which originate from outside the patient. Following are the types of artifacts present in an 

EEG signal. 

2.1.1.1  Motion Artifacts  

Movement by the patient generates huge artifacts. Different motion artifacts occur in the form 

of peaks and changes in baseline in data the major reason is due to muscle movements that 

can occur during the recording of signals and due to improper scalp attachment, they should 

be removed because if they are too many, the entire data is rejected. In situations where they 

cannot be ignored, for example, where the dataset is limited, small, or where recordings from 

subjects cannot be prevented. The best solution is to remove those artifacts and restore the 

signal. Different approaches are used to remove motion artifacts, like recording additional 

data on the subject‟s movement using referenced channels. [5], [6] and [7].  

2.1.1.2  Instrumental Artifacts 

Spikes can originate from a momentary change in impedance at a given electrode. Using 

basic low-pass filtering methods, instrumental noise is a random noise that can be removed. 

After data conversion to the frequency domain, a method such as Moving Average and 

cutting off higher frequencies are used. The sensitivity of these methods needs to be manually 

determined to avoid data distortion [5],[8].  

2.1.1.3   Physiological Artifacts 

Sweating or changes in temperature may cause electrode drifts so when coping with noise 

sources for physiological use, potentials of skin‟s outer layer, and ionic features it is 

important to regard the capacity of sweat glands also.  The solution to handle this problem is 

to reduce the skin potential and improve the signal to noise ratio, by using abrasive cream on 

the skin. [8] and [9].  

2.1.1.4  Eye Blink Artifacts 

The large amplitude deflection in frontal region is Eye Blink Artifacts, these are maximal at 

FP1 and FP2 because eye balls are closer to frontal region. [10] 

Power line noise can be removed using a notch filter. For removing the noise from the raw 

dataset band pass filter can be used. The lower cut-off frequency used in this dataset is 0.5 Hz 

and a higher cut-off frequency at 100 Hz.   
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2.1.2  Transcranial Direct Current Stimulation (tDCS) 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique 

that consists of applying a constant, low electric current between electrodes over the scalp in 

order to modulate synaptic activity [11]. Anodal stimulation, considered an excitatory 

stimulation, has been shown to lead to the depolarization of the resting membrane potential, 

reducing the threshold required for neuronal firing and increasing neuronal excitability [12]. 

On the other hand, cathodal or inhibitory stimulation, has led to hyperpolarization of the 

resting membrane potential and decreased neuronal excitability [13]. tDCS is a form of neuro 

stimulation that modulates the membrane potential of neurons in the cerebral cortex by a low-

intensity direct current (1-2 mA). The electrical current is applied directly to the scalp at the 

targeted brain area (i.e., primary motor cortex, prefrontal dorsolateral, etc.) through sponge 

electrodes soaked with saline solution or rubber electrodes with conductive gel. It is a low-

cost technique, with easy application and practically no adverse effects [14]. 

tDCS is a low-cost technique with minimal adverse effects and easy application. It has also 

been proposed that the effects of tDCS are network-activity dependent, requiring active 

neurons to modulate upon [15].  It is a safe method for treating various therapeutic option for 

various conditions, such as neuropsychiatric disorders pain syndromes rehabilitation and a 

tool for modulating cortical activity. Based on the ability of tDCS to modulate synaptic 

transmission, researchers have investigated whether tDCS can improve mood and cognitive 

symptoms. Results from clinical trials administering tDCS have demonstrated improved 

working memory performance and enhanced episodic memory in a variety of populations, 

including Parkinson‟s disease [16], patients with depression and healthy individuals.  

There have been a handful of studies that have investigated the effects of tDCS on cognitive 

performance [17]. Studies have shown that repeated sessions of tDCS significantly improved 

global cognition in mild Alzheimer disease (AD) patients. In addition, working memory, 

recall, and frequently recognition memory has improved following single and repeated 

sessions of tDCS in mild AD [17]. Based on recent interest in the activity-dependent model, 

which suggests that tDCS effects may be greater when applied to active neurons [17], studies 

have begun to investigate the use of combining other cognitive enhancing interventions with 

tDCS to prime neurons of interest. In healthy adults, tDCS applied during a cognitive task 

resulted in greater improvement in working memory performance compared to when tDCS 

was applied at rest and when sham tDCS was applied during the task [13]. In the AD 
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population, there have been only a few studies that have investigated combination therapies 

with tDCS, and all of them have used cognitive training to enhance cognitive skills through 

repetitive tasks or activities related to memory, attention, or other cognitive functions [17]. A 

small number of studies have reported that tDCS with cognitive training was associated with 

greater improvements on the digit span and trained and untrained picture-naming tasks, 

compared to sham tDCS with cognitive training [10]. tDCS has also been previously used in 

numerous studies involving older, frail patients with no serious adverse events noted [14]. In 

a review of 117 tDCS studies, commonly reported side-effects included itching, tingling, 

headache, discomfort, and a burning sensation. The prevalence of those side-effects was not 

significantly different between active and sham groups. 

2.2  EEG and tDCS for Brain Rehabilitation 

A review is presented on the past work where the tDCS therapy is used for brain 

rehabilitation in conjunction with different brain imaging techniques such as EEG and 

functional near infrared spectroscopy (FNIRS). 

Over the years different studies have proved the efficacy of tDCS in reducing depressive 

symptoms and improving cognitive functioning of depressed patients .The 

neurophysiological mechanisms involved in the antidepressant effects of tDCS remain 

incompletely understood [10] Powell studied the neuro modulatory effects of tDCS on 

cortical activity for the treatment of mood disorders using EEG and he reveals an asymmetry 

in EEG frontal alpha activity, i.e. lower alpha power in the right hemisphere compared to the 

left in subjects having depression [10]. He further used EEG to study the modulatory effect of 

tDCS on changes in cortical activity in subjects with mood disorders.  

Wozniak-Kwasniewska [18] showed that EEG oscillatory activity was significantly different 

for depressed patients that responded to repetitive transcranial magnetic stimulation (rTMS) 

therapy compared to non-responders, suggesting that baseline EEG has predictive value for 

brain stimulation treatment outcomes.  

Alaa M. Al-Kaysia, [19] investigate the feasibility of identifying major depressive disorder 

(MDD) patients that respond to tDCS treatment based on resting-state 

electroencephalography (EEG) recorded prior to treatment commencing and machine 

learning techniques. Their findings demonstrate the feasibility to identify patients that will 

respond to tDCS treatment [13].  
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In this study, we sought to identify features of EEG recorded at baseline, during the course of 

stimulation and after the completion of stimulation therapy to analyze the efficacy of tDCS 

therapy. In this study we used Event related De synchronization (ERDs) to predict the 

improvement in amplitude and cognition following tDCS treatment based on spectral power 

of EEG. We further used Common spatial pattern (CSP) to analyze the strength of EEG 

signals after stimulation therapy with before the therapy. 
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CHAPTER 3: METHODOLOGY 

This chapter explains the general experimental design for brain-cognitive state improvement 

estimation using tDCS and EEG measurement and the datasets used in this work. Two 

datasets are used in this work, Dataset one is recorded in the lab using our own experimental 

design and setup. Dataset two used is open access data recorded by Department of 

Electrical, Electronic and Information Engineering (DEI), University of Bologna, Cesena, 

Italy and is available online at Dryad Digital Repository. Raw EEG data can be accessed 

from the Dryad Digital Repository at:  

https://doi.org/10.5061/dryad.3m8j0. 

3.1  Proposed Scheme 

A scheme is proposed in this study for which data is collected. For each of the collected data 

set used it is first group into two pre stimulation data and post stimulation data then 

preprocessed, ICA is applied to remove artifact and at the end after pattern recognition 

techniques Classification algorithms are applied to them and their accuracies are compared. 

 

  

           Figure  3-1: Proposed Scheme 

3.2  Data Collection 

In this study two datasets are collected. Dataset 1 is recorded in the lab whereas dataset 2 

used is open-source data. The results of classification accuracies are compared by applying 

the technique on both datasets and cognitive state improvement is estimated. 

https://doi.org/10.5061/dryad.3m8j0
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3.2.1  Dataset 1 Experimental Paradigm 

The study is performed in lab with subject sitting in front of shared screen, wearing EEG 

open BCI headset, Brain driver tDCS device set to his head at the start of the session. The 

signals from the EEG head sets were recorded in the laptop via Bluetooth while open BCI 

software running on the laptop during the study. For each subject during the experimental 

session video is recorded via the webcam of the screen and also through external android 

camera. Figure 3.1 and 3.2 shows experimental setup and recording of subject. 

 Total of 10 healthy volunteers all male participated in the study, aged between 24 and 35 

medians 27. All participants signed a written form to participate in the study. The study was 

conformed and conducted according to NUST Ethics committee, During the study blood 

pressure and temperature of the participant were monitored and recorded in the table 3-

1.During the whole study and after completion none of the participant show signs of 

discomfort such as headache and pinching. 

Table  3-1: Participants of the study 

Sr No Subject Name 

Before 

Experiment BP 

After 

Experiment BP 

Temp 

F Age 

1 Kalim Ullah 79/120 94/130 98.5 35 

2 Abdul Basit 80/120 90/118 98.7 27 

3 Talha Rashid 76/123 76/117 98.3 26 

4 

Manzoor 

Ahmed 79/127 79/133 98.6 27 

5 

Ahmad 

Zubair 74/114 78/108 98.1 26 

6 Abdul Haseeb 76/123 75/126 99.2 24 

7 Areej Khan 63/106 63/106 98.9 33 

8 Asghar Ali 77/120 73/114 98.2 33 

9 

Naveed 

Hussain 78/131 76/124 98.4 26 

10 

Mudassar 

Ayub 80/132 83/131 98.9 29 
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All Participants received Anodal stimulation for total of 300 seconds with Anode placed 

over Cz and cathode at Cp1. tDCS was delivered through The Brain Driver tDCS v 2.1 and 

the intensity of stimulation was set to 2 mA. 

EEG Signals are recorded with Open BCI Ultracortex Mark IV EEG headset.  The 

Ultracortex Mark IV is capable of sampling up to 16 channels of EEG from up to 

35 different 10-20 locations. In the current study we use 16 channels at sampling frequency 

of 128 Hz. EEG channels for recording were placed in both right and left hemisphere. Table 

3-2 shows the montage, channel number and channel name of different EEG channels used 

 

 

Table  3-2: Recording Montage. 

Channel 

number on 

montage 

Channel 

Name 

1 Fp1 

2 Fp2 

9 F7 

11 F3 

12 F4 

10 F8 

13 T3 

3 C3 

4 C4 

14 T4 

5 T5 

15 P3 

16 P4 

6 T6 

7 O1 

8 O2 
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EEG signals are recorded for total of 9 minutes for each subject in 3 equal intervals. Interval 

1 is 3 minutes EEG recording before tDCS stimulation.  Interval 2 is 3 minutes during 

stimulation and interval 3 is 3 minutes recording after tDCS stimulation. All 3 intervals are 

recorded in one go without any delay between them. 

Further each interval is divided into Motor Imagery (MI) Task period and Rest Period or 

Non MI period. During each 300 Seconds of recording interval there are five Rest periods of 

approximately 20 seconds and five Motor Imagery periods of 40 Seconds. The distribution 

of these tasks in each session is random. When white screen is presented to the subjects 

Motor Imagery period time starts during which subjects are instructed to perform Motor 

imagery tasks in their mind such as limb motion, running on the screen, playing soccer, 

arms movement and walking etc. while during the rest period when white screen is removed 

from the LED screen Rest period starts during which subjects are instructed to relax their 

mind without thinking about any activity which involves motion. Table 3-1 to 3-3 shows 

distribution of MI and Rest period tasks for one of the subject for all three intervals 

 

 

    Figure  3-2: Recording Setup 
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. 

 

 

    Figure  3-3: Subject Recording during Experimental Setup 

Table  3-3: Pre-Stimulation Motor Imagery Period (MIP) & Rest Period (RP) 

Interval Name Interval Start 

Time 

Interval End Time Interval Duration 

(s) 

Pre-Stimulation '13:33:50' '13:39:00' 310 

Pre MIP/RP  No Start Time End Time Duration 

Pre MIP 1 '13:34:02' '13:35:00' 58 

Pre RP 1 '13:35:01' '13:35:20' 19 

Pre MI P 2 '13:35:21' '13:36:00' 39 

Pre RP 2 '13:36:01' '13:36:19' 18 

Pre MIP 3 '13:36:20', '13:37:00' 40 

Pre RP 3 '13:37:01' '13:37:19' 18 

Pre MIP 4 '13:37:20' '13:38:00' 40 
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Pre RP 4 '13:38:01' '13:38:14' 13 

Pre MIP 5 '13:38:15' '13:38:51' 36 

Pre RP 5 '13:38:52' '13:39:00' 8 

 

In video Pre MI time start at „13:33:50' but in text file recording stats at '13:33:26' so it is 

required to verify in code when data is taken in code 

 

Table  3-4: During Stimulation Motor Imagery Period (MIP) & Rest Period (RP) 

Interval Name Interval Start 

Time 

Interval End Time Interval Duration 

During 

Stimulation 

'13:39:01' '13:44:00' 299 

During MIP/RP  

No 

Start Time End Time Duration 

During MIP 1 '13:39:20' '13:40:00' 40 

During RP 1 '13:40:01' '13:40:19' 18 

During MIP 2 '13:40:20' '13:41:00' 40 

During RP 2 '13:41:01' '13:41:19' 18 

During MIP 3 '13:41:20' '13:42:00' 40 

During RP 3 '13:42:01' '13:42:20' 19 

During MIP 4 '13:42:21' '13:43:00' 39 

During RP 4 '13:43:01' '13:43:14' 13 

During MI P5 13:43:15' '13:43:52' 37 

During RP 5 '13:43:53' '13:44:00' 7 

 

Table  3-5: Post Stimulation Motor Imagery Period (MIP) & Rest Period (RP) 
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Interval Name Interval Start 

Time 

Interval End Time Interval Duration 

Post Stimulation '13:44:01' '13:49:01' 300 

Post MIP/RP  No Start Time End Time Duration 

Post MIP 1 '13:44:20' '13:45:00' 40 

Post RP 1 '13:45:01' '13:45:19' 18 

Post MI P 2 '13:45:20' '13:46:00' 40 

Post RP 2 '13:46:01' '13:46:19' 18 

Post MI P 3 '13:46:20' '13:47:01' 41 

Post RP 3 '13:47:02' '13:47:19' 17 

Post MI P 4 '13:47:20' '13:47:59' 39 

Post RP 4 '13:48:00' '13:48:14' 14 

Post MI P 5 '13:48:15' '13:48:50' 35 

Post RP 5 '13:48:51' '13:49:01' 10 

 

 

Motor imaginary tasks are performed randomly during each interval. Its mapping to the 

dataset (recorded EEG text file with one column as timestamp) will be performed through 

the recorded video. 

3.2.2  Dataset 2 Experimental Paradigm 

The dataset used is published at DRYAD directory and is contributed by Mondini, Valeria, 

Mangia, Anna Lisa and Cappello, Angelo from University of Bologna [2] 

The dataset is organized such that the EEG data collected from the twenty healthy 

volunteers participating in the study are firstly grouped according to the type of stimulation 

they received (anodal or cathodal stimulation) [2]. 
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Inside each stimulation folder, data are grouped according to the subject (S01, S02… to 

S10).For each subject, data are grouped according to the experimental day (day 1 and day2), 

one corresponding to real and one to sham stimulation. 

Each day was composed by 15 runs of BCI operation [2] with feedback (neurofeedback01 to 

neurofeedback15). Runs 01-05 correspond to the condition “before”, runs 06-10 to the 

condition “during” and runs 11-15 to the condition “after” stimulation. The dataset also 

includes the calibration runs (calibration01, calibration02…), collected at the beginning of 

the first experimental day 1. 

 

 

     Figure  3-4:Experimental Setup 

Each “neurofeedback” or “calibration” folder finally contains a “.txt file”, which includes: 

• EEG raw data collected in the corresponding run from the 12 EEG electrodes used in 

the study 

• Reference signal from right ear lobe 

• Additional column indicating the trial condition (rest, ready, motor imagery…) 

Data are collected with sampling frequency of Fs=128Hz and are stored in the “.txt” files as 

arrays, where rows are samples and columns are channels. The first 12 columns contain the 

12 EEG channels, in the following order: 

[Fcz  Fc2  Fc4  Fc6  Cz  C2  C4  C6  Cpz  Cp2  Cp4  Cp6] 

Recording is done with the ground electrode in Pz. The 13th column contains the reference 

signal from right ear lobe. The 14th column contains the information on the trial condition, 

notably: 
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• “0” _ for samples in the “rest” period before the warning tone (lasting 2s). 

• “1” _ for samples in the “ready” period after the warning sound and before 

motor imagery (lasting 1s). 

• “2” _ for samples in the “motor imagery” period (4s during calibration, or up 

to 8s during neuro feedback). 

• “3” _ for samples in the “rest” period concluding the trial (lasting 5s). 

 

   

3.3  Data Preprocessing: 

For dataset 1 each subject file has 15 sessions of recording n1 to n5 represents pre 

stimulation data n6 to n10 is during stimulation data whereas n11 to n15 session files are for 

post stimulation data. Raw anodal data is first read with all 14 channels included. Runs 6 to 

10 which are the EEG data recording during the tDCS stimulations are excluded in the read 

raw data. The data is read as numpy array with shape ( number of runs, number of channels, 

number of EEG samples in each run).Sampling frequency is 128 Hz and FIR filter is applied 

with lower pass band edge 8 Hz and higher pass band edge of 22 Hz .Channel 13 which 

contains reference signal from the right ear lobe 

3.3.1  Data Labeling 

Raw data is recorded using Open BCI setup as text file with total of 22 columns. Column 1 

to 16 contains the raw EEG recorded signals data, columns 17 to 19 records the 

accelerometer data while column 20 and 21 records the time stamp data the first one records 

the standard time that appears on the computer while the later column records the absolute 

time of computer (CPU) clock respectively. Two columns are added at the end to label the 

events in the data. Column 22 is added with header stim where 0 in the column represents 

data recorded before the tDCS stimulation is applied to the subject, 1 shows data recorded 

while stimulation is applied to the subject and 2 labels the data after the stimulation ends. 

The last column added to the data with header MI has two values 0 and 1. Number 0 where 

appears in the data shows that the data is recorded while the subject is at Relax and shows 

Rest Period (RP), 1 in this column represents the subject is performing Motor Imagery 

Period (MIP) task while the data is being recorded. 
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3.3.2  Intra Correlation 

There are total of 3 segments in the data,Pre stimulation, during stimulation and Post 

stimulation. Further each of the segment contains two tasks that is instructed to each subject 

to perform, Motor Imagery Period (MIP) Task and Rest Period/Non MI (RP) period tasks. 

Linear correlation among these different tasks period in each segment is performed through 

df.corr() function in python. As the correlation requires data frame so data frame from the 

initial data is generated using pd.DataFrame()  function. 

       For each of the MI Task period we select total of 10 seconds of patch of data with 5 

second delay from the Interval Start time of that particular MI Task Period to settle any 

transition in the data if so e.g. Pre MI 1 task period will start from '13:34:07' instead of 

'13:34:02' and will last up to '13:34:17'. We take 5 MI task periods in a correlation Matrix. 

Similarly, for Rest periods tasks we set a delay of 3 seconds from the time where the 

corresponding prior MIP period ends that is prior MIP Interval End time so RP1 stars at   

'13:35:03‟ and last for '13:35:13'   total of 10 seconds and these settings of MIP and RP 

Tasks holds true for all 3 data segments periods Pre, during and Post. 

Total of 5 MIP tasks and 4 corresponding RP tasks are used to calculate the intra correlation 

matrix of order 9*9. The correlation coefficient value of 0 in the correlation matrix 

represents no relation of row variable with the column variable for that particular cell where 

Correlation coefficient value of 1 represents high correlation. The correlation of a variable 

with itself is 1. For that reason, all the diagonal values are 1.00.  Below is the intra 

correlation matrix of Motor Imagery Period (MIP) tasks and Rest Period (RP) tasks of Pre 

stimulation time Segment. 

Table  3-6: Pre stimulation time MI and RP Intra Correlation Matrix 

             MIP1    MIP2       MIP3        MIP4        MIP5           RP1           RP2  

MIP1  1.000000  0.971274  0.924716  0.843433  0.944520  0.283616  0.141596    

MIP2  0.971274  1.000000  0.973997  0.917610  0.762981  0.191188  0.082747    

MIP3  0.924716  0.973997  1.000000  0.964014  0.848487  0.169095  0.091957    

MIP4  0.843433  0.917610  0.964014  1.000000  0.935816  0.196109  0.137582    

MIP5  0.944520  0.762981  0.848487  0.935816  1.000000  0.147425  0.193461    

RP1   0.283616  0.191188  0.169095  0.196109  0.147425  1.000000  0.980007    

RP2   0.141596  0.082747  0.091957  0.137582  0.193461  0.980007  1.000000    
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RP3   0.090278  0.153307  0.176535  0.180192  0.174317  0.923153  0.960869    

RP4  0.115201  0.103414  0.187447  0.153663  0.088663  0.791279  0.836247    

 

             RP3          RP4   

MIP 1  0.090278   0.115201   

MIP 2  0.153307   0.103414   

MIP 3  0.176535   0.187447   

MIP 4  0.180192   0.153663   

MIP  5  0.174317   0.088663   

RP1   0.923153      0.791279   

RP2   0.960869      0.836247   

RP3   1.000000     0.904568   

RP4   0.904568      1.000000   

 

   Table  3-7: Post stimulation time MI and RP Intra Correlation Matrix  

 

            MIP1       MIP2      MIP3        MIP4      MIP5       RP1          RP2                                                                 

MIP1  1.000000  0.707674  0.816236  0.800155 -0.807727  0.199718  0.172314    

MIP2  0.707674  1.000000  0.810242  0.862333  0.877322  0.116695  0.181079    

MIP3  0.816236  0.810242  1.000000  0.890088  0.799490  0.169125  0.112501    

MIP4  -0.800155  0.862333  0.890088  1.000000  0.968643  0.307999  0.807234    

MIP5  -0.807727 0.877322  0.799490  0.968643  1.000000  0.128477  0.173318    

RP1   0.199718  0.116695  0.169125  0.307999  0.128477  1.000000  0.696833    

RP2   0.172314  0.181079  0.112501  0.807234  0.173318  0.696833  1.000000    

RP3   0.005949  0.146368  0.139793  0.181639  0.133164  0.833837  0.847200    

RP4  -0.179609  0.231322  0.011913  0.148858  0.155096  0.868145  0.731096    

 

             RP3         RP4               

MIP1  0.005949 -0.179609   

MIP2  0.146368  0.231322   

MIP3  0.139793  0.011913   
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MIP4  0.181639  0.148858   

MIP5  0.133164  0.155096   

RP1   0.833837  0.868145   

RP2  0.847200  0.731096   

RP3  1.000000  0.901991   

RP4  0.901991  1.000000   

 

 

3.3.3  Data Standardization 

Standardization transforms data to have a mean of zero and a standard deviation of 1. Data 

is standardized using the below formula. This standardization is called a Z-score. 

 

where x is the data point 

μ is the data mean 

σ is standard deviation  

The idea is to allow different data sets to be comparable. Once you compute the mean, you 

then want to see how the data varies about the mean. The purpose of subtracting the mean 

from a dataset is to obtain a dataset whose mean is zero. Dividing by the standard deviation 

lets you compare the data distribution with a normal distribution. 

 

3.4  Data Filter 

The original shape of data is (116933, 22) the data is first converted to numpy array and 16 

channels of interest that contains EEG data are selected and their transpose is taken such 

that the data shape becomes (16, 116933). To apply filter and observe PSD, raw object is 

created using mne.io.RawArray() in python, this function  takes data array as parameter and 

info as attribute. The attribute info contains information such as channel names, channel 

types and sampling frequency (128 Hz). Raw object data is then filter using Band Pass Filter 

with lower cut-off frequency (ƒL) of 1 Hz and higher cut-off frequency (fH) of 40 Hz. 
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3.4.1  ICA 

Independent Component Analysis (ICA) tries to maximize independence by finding linear 

transformation of feature space (observed data variables) to a new feature space 

(hidden/source data variables) such that each of the new individual features are statistically 

mutually independent i.e. the new features mutual information is zero, whereas the mutual 

information of all new features in original feature space is as high as possible. ICA 

reconstruct data by predicting latent/source features from observable features and vice versa. 

ICA defines a generative model for the observed multivariate data, which is typically given 

as a large database of samples. In the model, the data variables are assumed to be linear 

mixtures of some unknown latent variables, and the mixing system is also unknown. The 

latent variables are assumed Non Gaussian and mutually independent, and they are called 

the independent components of the observed data. These independent components, also 

called sources or factors, can be found by ICA. 

Typical examples are mixtures of simultaneous speech signals that have been picked up by 

several microphones, brain waves recorded by multiple sensors, interfering radio signals 

arriving at a mobile phone, or parallel time series obtained from some industrial process. 

Many EEG signals including biological artifacts reflect non-Gaussian processes. MNE-

Python supports identifying artifacts and latent components using temporal ICA. MNE-

Python implements the mne.preprocessing.ICA () class that facilitates applying ICA to 

EEG data. There are 16 recorded channels for EEG data so we use 16 components for ICA. 

Figure 3.5 shows all the ICA components with heat maps, segmented ERP and spectrum 
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ICA 12 

 

ICA 13 

 

ICA 14 

 

ICA 15 

 

Figure  3-5: ICA components with heat maps, segmented ERP and spectrum 

3.4.2  ICA components Rejection 

Bad data segments can be excluded from the model fitting by reject parameter. Raw data is 

clean by removing ICA components that shows bad data segments such as sudden drift in 

amplitude, spikes etc. while manually observing the ICA components. Data is cleaned by 

excluding the ICA components 1, 3, 6 and 11 from the data. 
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Figure 3.6 shows signal before and after cleaning the data through ICA. 

 

 

                       Figure  3-6: The signal before and after cleaning the data through ICA 

   

 

 

 

 

3.5  Event Related Potential (ERP)/Event Related Desynchronization 

(ERD)  

ERP is the electrical potentials (Voltages) that are related to specific events. After observing 

the raw EEG there isn't very consistence response following each stimulus. This is because 

brain is doing millions of other things in addition to processing the little stimulus. To pullout 

the brain response to the stimulus a simple procedure is used called Signal Averaging. First 

we grab the period of EEG following each stimulus this is called segmenting the EEG. Each 

segment is called Epoch. 
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                      Figure  3-7: EEG signal with stimulus onset 

Now we can take all EEG Epochs and line them up in time. The epoch length depends on 

the nature of specific experiment, but usually it‟s between 10 milliseconds to 2000 

milliseconds. To pullout the brains consistent response to some type of event we can simply 

average across the epochs for that event type. When we average across enough epochs any 

activity that is consistent from trial to trial remains in the average, and any random noise 

simply averages out. This gives us an averaged ERP waveform. Whereas Event-related DE 

synchronization (ERD) is the phasic relative power decrease of a certain frequency band 

occurring in relation to stimulation. ERD are negative values relative to the baseline. The 

value of “2” for samples in the EEG data in column 14 of data set represents motor imagery 

“MI” period which is up to 8s induration of neuro feedback runs.  

EEG segment of 0 to 8 Seconds from the prepare cue was then extracted to perform offline 

ERD analysis. Following method was used to compute the ERD strength values [20] for all 

channels in pair of 4 during a single run.  

 Band pass filtering of 8 to 22 Hz on the EEG time segment - 3 to 8 seconds relative to 

prepare cue for all trials.  

 Squaring the band pass-filtered samples to obtain power samples. 

 Average power samples across all trials. Compute power of baseline from average on 

time segment -3 to 0 seconds. 

 Compute ERD/ERS strength values of channel j on time segment 0 to 8 seconds  

using   the following equation: 

                                      

where A j(t) is the averaged power sample of time sample t of  channel j  and R j is the 

averaged power of baseline of   channel j . 
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 Compute the ERD strength value from the sum of the negative values for time  

samples t from 0 to 8 seconds of channel j using the following equation: 

                                       

The ERD/ERS value was calculated by averaging the absolute power according to different 

range of frequency bands. The outcome ERD plots were drew from −3 to 8 s total of 11 

seconds. The baseline period was from −3 to 0 s. The frequency bands of interest were alpha 

band (8–12 Hz), low beta band (13–20) overall 8 to 24 Hz. The maximum and minimum 

value of event related power in the ERD plots are set to 1.5 and -1 respectively.  

There is no delay between when the brain activity happens and when the voltage is picked 

up by our scalp electrodes, so a voltage at 293 ms reflects brain activity that happened 

exactly at 293 ms. ERP allows to see the flow of information through the brain millisecond 

by millisecond. 

 

 

3.6  Common Spatial Patterns (CSP) 

The common spatial patterns (CSP) algorithm is a feature extraction method that uses 

spatial filters to maximize the discriminability of two classes.  

The method of common spatial patterns (CSP) designs spatial filters in such a way that the 

variances in the filtered time series data are optimal (in the least squares sense) for 

discrimination. CSP is denoted by 

                                     S = W
T 

E         or      s(t) = W
T 

e(t), 

                       Where W is spatial filter matrix, S is filtered signal matrix. 

 

  For CSP we first calculate the covariance of each Pre stimulation and post stimulation trial 

and return their average then using the averages and whitening matrix and CSP 

transformation matrix is calculated. This transformation matrix also called mixing matrix is 
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finally applied to each trial of pre stimulation and post stimulation such that there is an 

increase in variance of pre MI classes and post MI classes for each subject. 

3.7  Linear Discriminant Analysis (LDA) 

There are classification algorithms limited to only binary classification such as Logistic 

regression. If the number of classes increases or the classes are not well separated than LDA 

is preferred technique for classification 

This technique is used for dimensionality reduction and classification. It provides classes 

separation by drawing a decision region between different classes. LDA uses the 

information from features to create a new axis and projects the data on to the new axis in 

such a way 

• Maximizing the distance between the means of all classes 

• Minimizing the variance between each category.  

Figure 3.8 shows the different steps used in LDA classification 

  

                                                                     

            Figure  3-8: LDA classification 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1  Results of Data labeling accuracy of Pre stimulation and Post 

stimulation   data 

Different models were trained to analyze the accuracy of output labels. Label 0 represents 

data before stimulation and label 1 represents data after stimulation. Data of all 10 subjects 

with all stimulation runs (total of 15 runs for each subject) were first concatenated and then 

passed to the different models for training and cross validation and results were analyzed on 

testing data. 

Table  4-1: Summary of input data for Simple label Classification 

Number of observation Rows 1200 

Number of features Columns (Predictors): 3279 

Response Variable (Labe Column):  3280 nth 

Response Classes (0,1):  2 

Data Set Size:  31MB 

Validation:   Hold out validation with 25% held out 

 

Table  4-2: Summary of different models used for classification. 

Model Prediction 

speed (obs/sec) 

Training Time 

(secs) 

Accuracy 

Complex Tree 970 7.1527 69.0 

Medium Tree 480 5.0076 61.7 

Simple Tree 980 4.7398 63 

Quadratic 

Discriminant 

1000 5.3959 57.3 
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Logistic 

Regression 

1100 6.6296 63.7 

Linear SVM 1000 5.5885 63.7 

Quadratic SVM 660 6.4391 73.3 

Cubic SVM 1100 7.1355 79.7 

Fine Gaussian 

SVM 

740 6.3886 62 

Medium 

Gaussian SVM 

890 5.6114 55.7 

Coarse 

Gaussian SVM 

1000 5.4842 54.7 

Fine KNN 1000 5.4466 79.7 

Medium KNN 610 5.2785 67.0 

Coarse KNN 750 4.8398 57.7 

Cosine KNN 890 4.8576 72.7 

Cubic KNN 680 4.6173 66.3 

Weighted KNN 950 4.8103 76.0 

Boosted Trees 660 7.4947 71.3 

Bagged Trees 990 6.167 76.3 

Subspace 

Discriminant 

480 6.6346 58.3 

Subspace KNN 830 6.256 65.7 

RUSBoosted 

Trees 

580 6.7401 61.7 
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Table 4-3 represents 2 models having classification accuracy better than rest of the models 

used for classification 

Table  4-3: Classification Accuracy of Cubic and Fine KNN models 

Model Classification Accuracy % 

Cubic SVM 79.7 

Fine KNN 79.7 

 

Figure 4.1 shows Scatter plots, figure 4.2 represents confusion matrix, figure 4.3 True 

Positive and Negative Rate and figure 4.4 shows Positive Predictive Values and False 

discovery rates for Cubic SVM  model used for simple label classification of the data. 

 

 Figure  4-1: Scatter Plots of Cubic SVM model 
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Figure  4-2: Confusion Matrix of Cubic SVM model 

 

 Figure  4-3: True Positive and Negative Rate of Cubic SVM model 
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Figure  4-4: Positive Predictive Values and False discovery rates of Cubic SVM model 

 

4.2  Common Spatial Pattern (CSP) 

Common Spatial Pattern (CSP) of pre stimulation and post stimulation runs were plotted for 

all subjects using python. Following results are drawn from the analysis. 

 In CSP we increased the inter variance in pre and post classes of MI epochs  

 It is observed by comparison that amplitude of post stimulation MI is higher than pre 

stimulation MI in both datasets across all subjects. 

Figure 4.5 shows CSP of MI for pre stimulation and post stimulation of subject 2 in dataset 1. 
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     Figure  4-5: CSP of pre stimulation and post stimulation  

Figure 4.6 shows CSP of MI for pre stimulation and post stimulation of subject 2 in dataset 2. 

 

     Figure  4-6: CSP of pre stimulation and post stimulation 
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4.2.1  Subject 10 CSP 

Figure 4.7 shows CSP of MI for pre stimulation and post stimulation of subject 10 in 

dataset  

 

     Figure  4-7: CSP of pre stimulation and post stimulation. 

Figure 4.8 shows CSP of MI for pre stimulation and post stimulation of subject 9 in dataset 2. 

 

  Figure  4-8: CSP of pre stimulation and post stimulation 

 

Figure 4.9 shows CSP of MI for pre stimulation and post stimulation of subject 3 in dataset 1. 
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   Figure  4-9: CSP of pre stimulation and post stimulation 

Figure 4.10 shows CSP of MI for pre stimulation and post stimulation of subject 3 in dataset 

2

 

  Figure  4-10: CSP of pre stimulation and post stimulation. 

4.3  Event Related De synchronization (ERD) 

ERDs for all subjects with different channel combination are plotted. The results suggest that 

the decrease of oscillatory activity related to an event in post stimulation ERDs are better that 

pre stimulation ERDS as hypothesized for all subjects across all channels however the range 

of frequency varies, in which amplitude is increased in subjects from 8 Hz to 24 Hz.  

The results further suggest contralateral ERDs are reduced during anodal stimulation in post 

stimulation class than pre stimulation class for seven subjects 
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4.3.1  ERDs Channels CZ, C2, C4, C6 

4.3.1.1  Subject 2 

Figure 4.11 and 4.12 shows pre stimulation and post stimulation ERDs for subject 2. 

 

                  Figure  4-11: Pre stimulation ERD for subject 2 

 

                    Figure  4-12: Post stimulation ERD for subject 2 

 

4.3.1.2  Subject 9  

Figure 4.13 and figure 4.14 shows pre stimulation and post stimulation ERDs for subject 9. 
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                  Figure  4-13: Pre stimulation ERD for subject 9 

 

 

 

 

 

 

                 Figure  4-14: Post stimulation ERD for subject 9 

 

4.3.1.3  Subject 4  

Figure 4.15 and figure 4.16 shows pre stimulation and post stimulation ERDs for subject 4. 
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                     Figure  4-15: Pre stimulation ERD for subject 4 

 

 

 

 

 

 

                  Figure  4-16: Post stimulation ERD for subject 4 

 

4.3.1.4  Subject 7  

Figure 4.17 and 4.18 shows pre stimulation and post stimulation ERDs for subject 7. 
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                  Figure  4-17: Pre stimulation ERD for subject 7 

 

 

 

 

 

 

                  Figure  4-18: Post stimulation ERD for subject 7 

 

4.3.1.5  Subject 10  

Figure 4.19 and figure 4.20 shows pre stimulation and post stimulation ERDs for subject 10. 
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                   Figure  4-19: Pre stimulation ERD for subject 10 

 

 

 

 

 

 

 

                   Figure  4-20: Post stimulation ERD for subject 10 
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4.3.2   Channels FCZ, FC2, FC4, FC6 

4.3.2.1  Subject 1 ERDs 

Figure 4.21 and figure 4.22 shows pre stimulation and post stimulation ERDs for subject 1. 

 

                    Figure  4-21: Pre stimulation ERD for subject 1 

 

 

 

                  Figure  4-22: Post stimulation ERD for subject 1 

 

4.3.2.2  Subject 3  

Figure 4.213and figure 4.24 shows pre stimulation and post stimulation ERDs for subject 3. 
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                   Figure  4-23: Pre stimulation ERD for subject 3. 

  

 

 

 

 

 

 

                    Figure  4-24: Post stimulation ERD for subject 3. 

 

 

4.3.2.3  Subject 9  

Figure 4.25 and figure 4.26 shows pre stimulation and post stimulation ERDs for subject 9. 
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                   Figure  4-25: Pre stimulation ERD for subject 9 

 

 

 

 

 

                   Figure  4-26: Post stimulation ERD for subject 9 

 

4.3.2.4  Subject 7  

Figure 4.27 and figure 4.28 shows pre stimulation and post stimulation ERDs for subject 7. 
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                     Figure  4-27: Pre stimulation ERD for subject 7 

 

 

 

 

 

 

                    Figure  4-28: Post stimulation ERD for subject 7 

 

4.3.2.5  Subject 10  

Figure 4.29 and figure 4.30 shows pre stimulation and post stimulation ERDs for subject 10. 
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                    Figure  4-29: Pre stimulation ERD for subject 10 

 

 

 

 

 

 

                  Figure  4-30: Post stimulation ERD for subject 10 

 

 

4.4  Linear Discriminant Analysis (LDA) Classification 

The results are further validated by Linear Discriminant Analysis (LDA) a machine learning 

classification model on CSP and ERDS of pre and post stimulation data. Table 4-4 shows 

LDA motor imagery classification accuracies on CSP for dataset 2 
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Table  4-4: LDA Motor Imagery Detection Accuracy dataset 2 

Subject Pre Stimulation MI 

Accuracy 

Post Stimulation MI 

Accuracy 

S1+ 0.825 0.901 

S2+ 0.834 0.883 

S3 0.892 0.88 

S4+ 0.81 0.883 

S5+ 0.861 0.893 

S6 0.866 0.855 

S7+ 0.88 0.943 

S8 0.874 0.830 

S9+ 0.803 0.882 

S10+ 0.890 0.961 

 

It is observed in dataset 2 that classification of Motor imagery period (MIP) and rest period 

(RP) after the stimulation therapy is higher in seven subjects out of ten compare to the 

detection of (MIP) and rest period (RP) of pre stimulation data.  
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Figure 4.31 to 4.34 compares Pre and post MI classification accuracies of subjects on dataset 

 

            Figure  4-31: Subject 2 MI Classification Accuracy 

  

            Figure  4-32: Subject 1 MI Classification Accuracy 
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            Figure  4-33: Subject 9 MI Classification Accuracy 

 

             Figure  4-34: Subject 4 MI Classification Accuracy 
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                  Figure  4-35: MI classification comparison on CSP  

Table 4-5 shows LDA motor imagery classification accuracies on CSP for dataset 1 

Table  4-5: LDA Motor Imagery Detection Accuracy dataset 1 

Subject Pre Stimulation MI 

Accuracy 

Post Stimulation MI 

Accuracy 

S1+ 0.801 0.837 

S2+ 0.766 0.839 

S3 0.840 0.821 

S4 0.800 0.782 

S5+ 0.791 0.842 

S6 0.805 0.733 

S7+ 0.82 0.87 

S8 0.87 0.84 

S9+ 0.74 0.79 

S10+ 0.83 0.85 

 



51 

 

Similarly for dataset 1 classification of Motor imagery period (MIP) and rest period (RP) 

after the stimulation therapy is higher in six subjects out of ten compared to the detection of 

(MIP) and rest period (RP) of pre stimulation data. 

Figure 4.36 to 4.38 compares Pre and post MI classification accuracies of subjects on dataset.  

   

 Figure  4-36: Subject 1 MI Classification Accuracy 

 

  

                Figure  4-37: Subject 9 MI Classification Accuracy 
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                  Figure  4-38:  MI classification comparison on CSP 
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CHAPTER 5: CONCLUSIN AND FUTURE WORK 

5.1  Conclusion 

This study proposes a method of classifying Motor Imagery Period (MIP) and Rest Period 

(RP) in the Electroencephalogram (EEG) recorded signals based on Common Spatial 

Patterns (CSP) and Event Related De synchronization ERD. Further Linear Discriminant 

Analysis (LDA) classification is applied to these patterns on two datasets. Dataset 2 is online 

available dataset and dataset 1 is recorded in the lab for the study. 

Following are the conclusion of this study: 

 The findings have shown that detection of Motor imagery in comparison with rest 

period in the whole EEG recorded  signal improves after the stimulation therapy, 

which  is  indication of cognitive state improvement 

 ERD and CSP features are used and validated by LDA classifier. 

 Higher Post MI classification accuracy is estimated in 7 and 5 subject using  Dataset 2 

and 1 respectively out of 10 subjects 

 Noninvasive therapy such as tDCS has shown affective changes in the cognitive 

improvement and is estimated by dataset I and II. 

. 

5.2  Future Work 

The finding of this study can be extended to analyze similar results using different 

techniques other than CSP, ERD and LDA. The recorded dataset can further be analyzed 

using statistical analysis techniques such as t test. The recording session for each subject and 

number of subjects can be increased with different Electrodes montages. 

The study can then be further extended by varying the intensity of direct current stimulation 

and electrodes placement to find the efficacy of the noninvasive therapy for different settings 

and the results be compared. 
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APPENDIX 1 ERD 

 

import mne 

import numpy as np 

import matplotlib as mp 

import pandas as pd 

from mne import Epochs, pick_types, events_from_annotations 

from mne.channels import read_layout 

from mne.preprocessing import ICA 

import matplotlib.pyplot as plt 

from mne.time_frequency import tfr_multitaper 

from mne.stats import permutation_cluster_1samp_test as pcluster_test 

from mne.viz.utils import center_cmap 

from mne.io import concatenate_raws 

 

import os 

import glob 

 

frame=pd.DataFrame() 

dataarray=np.zeros([10,14,15000])# i changed this value from 15000 

df=pd.DataFrame() 

basepath='S05/day2' 

iter=0 

for trail in os.listdir(os.path.join(basepath)): 

    for file in  os.listdir(os.path.join(basepath,trail)): 
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        if(trail[:-2]=='neurofeedback' and (int(trail[-2:])<=5 or int(trail[-2:])>=11)): 

            df=pd.read_csv(os.path.join(basepath,trail,file),sep='\t',header=None) 

            df=df.T 

            print(basepath,trail,file) 

            print(df.shape) 

            data=df.values; 

            dataarray[iter,:,:]=data[:,0:15000] #  i changed this value 15000 

            iter+=1 

dataarray.shape 

dataarray[:,:13,:]=dataarray[:,:13,:]/1000000 

data=dataarray 

[ntrail,nchann,nsamp]=data.shape 

 

 

sampling_freq = 128  # in Hertz 

ch_names =['F4', 'F8', 'C4', 'T4', 'Cz', 'C2', 'T6', 'C6', 'CPz', 'CP2', 'CP4', 'CP6','A1','STI 001'] 

#ch_names = ['FCz', 'FC2', 'FC4', 'FC6', 'Cz', 'C2', 'C4', 'C6', 'CPz', 'CP2', 'CP4', 

'CP6','A1','STI 001'] 

ch_types = ['eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg','eeg','stim'] 

 

info = mne.create_info(ch_names=ch_names, sfreq=sampling_freq, ch_types=ch_types) 

 

raw= mne.io.RawArray(data[6,:,:], info)#**change this value one by one, Save Figure 3 

ONLY for Pre MI 0 to 4, for Post MI,5 t0 9 

raw.filter(l_freq=3, h_freq=40) #filter the fraw data from 8 to 22 hertz 

raw.set_montage('standard_1020') 

raw.plot(); 
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#raw = concatenate_raws([mne.io.RawArray(data[f,:,:], info) for f in range(0,ntrail)]) 

#    raw=mne.io.concatenate_raws([raw, mne.io.RawArray(data[1,:,:], info)]) 

 

# ica = mne.preprocessing.ICA(n_components=13, random_state=97, max_iter=800) 

# ica.fit(raw) 

# ica.plot_sources(raw, show_scrollbars=True); 

# ica.plot_components(title='compnents',cmap='jet') 

 

# ica.plot_properties(raw, picks=[0,1,2,3,4,5,6,7,8, 9,10,11]) 

 

# print(raw.info) 

# #raw.filter(l_freq=12, h_freq=22) 

# # raw.set 

                              

events = mne.find_events(raw, 'STI 001') 

print(events) 

 

raw.info['bads'] += [ 'A1'] 

picks = mne.pick_types(raw.info, eeg=True, stim=False,exclude='bads') 

picks = mne.pick_channels(raw.info["ch_names"], ['F4', 'F8','C4', 'T4',]) 

tmin, tmax = -3, 8  # define epochs around events (in s) 

 event_ids = {'ready': 1, 'MI': 2, 'postrest': 3}  # map event IDs to tasks 

reject= dict(  eeg=150e-6  )     # 150 µV 

epochs = mne.Epochs(raw, events, event_ids, tmin - 0.5, tmax + 0.5, 

                    picks=picks,baseline=None, preload=True) 
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# ica = mne.preprocessing.ICA(n_components=12, random_state=97, max_iter=800) 

# ica.fit(epochs) 

# ica.plot_sources(epochs, show_scrollbars=True); 

# ica.plot_components(title='compnents',cmap='jet') 

 

 

 

freqs = np.arange(8, 24, 1)  # frequencies from 2-35Hz 

n_cycles = freqs  # use constant t/f resolution 

vmin, vmax = -1, 1.5  # set min and max ERDS values in plot 

baseline = [-3, 0]  # baseline interval (in s) 

cmap = center_cmap(plt.cm.RdBu, vmin, vmax)  # zero maps to white 

kwargs = dict(n_permutations=100, step_down_p=0.05, seed=1, 

              buffer_size=None, out_type='mask')  # for cluster test 

 

# Run TF decomposition overall epochs 

tfr = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, 

                     use_fft=True, return_itc=False, average=False, 

                     decim=2) 

tfr.crop(tmin, tmax) 

tfr.apply_baseline(baseline, mode="percent") 

for event in event_ids: 

    # select desired epochs for visualization 

    tfr_ev = tfr[event] 
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    fig, axes = plt.subplots(1,5,figsize=(12, 4), gridspec_kw={"width_ratios": [10, 10, 10,10 

,1]}) 

       

    for ch, ax in enumerate(axes[:-1]):  # for each channel 

        # positive clusters 

        _, c1, p1, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=1, **kwargs) 

        # negative clusters 

        _, c2, p2, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=-1, 

                                     **kwargs) 

 

        # note that we keep clusters with p <= 0.05 from the combined clusters 

        # of two independent tests; in this example, we do not correct for 

        # these two comparisons 

        c = np.stack(c1 + c2, axis=2)  # combined clusters 

        p = np.concatenate((p1, p2))  # combined p-values 

        mask = c[..., p <= 0.05].any(axis=-1) 

 

        # plot TFR (ERDS map with masking) 

        tfr_ev.average().plot([ch], vmin=vmin, vmax=vmax, cmap=(cmap, False), 

                              axes=ax, colorbar=False, show=False, mask=mask, 

                              mask_style="mask") 

 

        ax.set_title(epochs.ch_names[ch], fontsize=10) 

        ax.axvline(0, linewidth=1, color="black", linestyle=":")  # event 

        if ch != 0: 

            ax.set_ylabel("") 
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            ax.set_yticklabels("") 

    fig.colorbar(axes[0].images[-1], cax=axes[-1]) 

    fig.suptitle("ERDS ({})".format(event)) 

    fig.show() 

 APPENDIX II CSP 

 

import mne 

import numpy as np 

#import matplotlib as mp 

import pandas as pd 

from mne import Epochs, pick_types, events_from_annotations 

from mne.channels import read_layout 

from mne.preprocessing import ICA 

from mne.io import concatenate_raws 

import matplotlib.pyplot as plt 

from matplotlib import mlab 

 

import os 

import glob 

frame=pd.DataFrame() 

dataarray=np.zeros([10,14,15000])# i changed this value from 15000 

df=pd.DataFrame() 

basepath='S01/day2' 

iter=0 

for trail in os.listdir(os.path.join(basepath)): 

    for file in  os.listdir(os.path.join(basepath,trail)): 
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        if(trail[:-2]=='neurofeedback' and (int(trail[-2:])<=5 or int(trail[-2:])>=11)): 

            df=pd.read_csv(os.path.join(basepath,trail,file),sep='\t',header=None) 

            df=df.T 

            print(basepath,trail,file) 

            print(df.shape) 

            data=df.values; 

            dataarray[iter,:,:]=data[:,0:15000] #  i changed this value 15000 

            iter+=1 

dataarray.shape 

eegdata=dataarray 

cols=['Fcz', 'Fc2', 'Fc4', 'Fc6', 'Cz', 'C2', 'C4', 'C6', 'Cpz', 'Cp2', 'Cp4', 'Cp6','Cz','stim'] 

eegdata[:,:13,:]=eegdata[:,:13,:]/1000000 

#df=pd.DataFrame(data=data.T,,columns=cols) 

#print(eegdata[1,2,:20]) 

#datastack=np.reshape(data,(10*14,18000)) 

 

 

 

sampling_freq = 128  # in Hertz 

Fs=sampling_freq 

[ntrail,nchann,nsamp]=eegdata.shape 

%matplotlib  

sampling_freq = 128  # in Hertz 

ch_names = ['FCz', 'FC2', 'FC4', 'FC6', 'Cz', 'C2', 'C4', 'C6', 'CPz', 'CP2', 'CP4', 'CP6','A1','STI 

001'] 

ch_types = ['eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg','eeg','stim'] 
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info = mne.create_info(ch_names=ch_names, sfreq=sampling_freq, ch_types=ch_types); 

#for trail in range(0,ntrail): 

raw= mne.io.RawArray(eegdata[0,:,:], info)  # reading neurofeddback 2 which correspond to 

prestim 3 n3 

raw.set_montage("standard_1020") 

#raw.set_eeg_reference(['Cz']) 

raw.filter(l_freq=8, h_freq=22) #filter the fraw data from 8 to 22 hertz 

#raw.plot_psd(fmax=50);  #plot psd of 

start, stop = raw.time_as_index([100, 115])  # 100 s to 115 s data segment 

data, times = raw[:, start:stop] 

 

#plt.plot(raw.get_data()[0]) 

 

 

 

 

#data, times = raw[2:20:3, start:stop]  # access underlying data 

#plotraw.get_data()[0] 

raw.plot(); #plot raw data pre 

reject= dict(  eeg=150e-6  )     # 150 µV 

                      

event_id = {'ready': 1, 'MI': 2, 'postrest': 3} 

 

events = mne.find_events(raw, 'STI 001'); 

#fig = mne.viz.plot_events(events, event_id=id, 

sfreq=raw.info['sfreq'],first_samp=raw.first_samp) 
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raw.info['bads'] += [ 'A1'] 

picks = mne.pick_types(raw.info, eeg=True, stim=False,exclude='bads') 

epochs = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,  picks=picks, 

reject=reject) 

oneepoch=epochs['MI'].get_data() 

#print(epochs) 

 

#epochs['MI'].plot_psd(fmin=2, fmax=30) 

#epochs.plot_psd_topomap(ch_type='eeg', normalize=True); 

epochs['MI'].plot_psd_topomap(ch_type='eeg', normalize=True); 

 

 

evoked = epochs['MI'].average() 

#print(evoked) 

#evoked.plot(time_unit='s') 

 

 

 

 

 

#post MI data 

info = mne.create_info(ch_names=ch_names, sfreq=sampling_freq, ch_types=ch_types); 

#for trail in range(0,ntrail): 

raw= mne.io.RawArray(eegdata[6,:,:], info)  # reading neurofeddback 8 which correspon to 

poststim nf 14 n14 

raw.set_montage("standard_1020") 
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#raw.set_eeg_reference(['Cz']) 

raw.filter(l_freq=8, h_freq=22) 

#raw.plot_psd(fmax=50); 

start, stop = raw.time_as_index([100, 115])  # 100 s to 115 s data segment 

data, times = raw[:, start:stop] 

 

plt.plot(raw.get_data()[0]) 

 

 

 

 

#data, times = raw[2:20:3, start:stop]  # access underlying data 

#plotraw.get_data()[0] 

raw.plot();  # print raw data post 

reject= dict(  eeg=150e-6  )     # 150 µV 

                      

event_id = {'ready': 1, 'MI': 2, 'postrest': 3} 

 

events = mne.find_events(raw, 'STI 001'); 

##fig = mne.viz.plot_events(events, event_id=event_id, 

sfreq=raw.info['sfreq'],first_samp=raw.first_samp) 

 

raw.info['bads'] += [ 'A1'] 

picks = mne.pick_types(raw.info, eeg=True, stim=False,exclude='bads') 

epochs = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,  picks=picks, 

reject=reject) 

epochs['MI'].plot_psd_topomap(ch_type='eeg', normalize=True); 
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twoepoch=epochs['MI'].get_data() 

 

#TIME FREQUENCEY ANAYLSIS 

# n_cycles = 2  # number of cycles in Morlet wavelet 

# freqs = np.arange(7, 30, 3)  # frequencies of interest 

# from mne.time_frequency import tfr_morlet  # noqa 

# power, itc = tfr_morlet(epochs['MI'], freqs=freqs, n_cycles=n_cycles,return_itc=True, 

decim=3, n_jobs=1) 

# power.plot([power.ch_names.index('FC2')]); #TF graph for FC2 

print(oneepoch.shape) 

print(twoepoch.shape) 

print(min([oneepoch.shape[0],twoepoch.shape[0]])) 

 

minev=min([oneepoch.shape[0],twoepoch.shape[0]]) 

 

[ev,ch,sp]=oneepoch.shape; 

preMI=np.zeros([ch,sp,ev]) 

#print(ev,ch,sp) 

collectev=np.zeros([ev,sp]) 

for channel in range(0,ch): 

    for evt in range(0,ev): 

        collectev[evt,:]=oneepoch[evt,channel,:] 

    preMI[channel,:,:]=collectev[:,:].T 

     

#print(preMI.shape) 
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preMIre=preMI[:,:,0:minev] 

#print(preMIre.shape) 

 

[ev,ch,sp]=twoepoch.shape; 

postMI=np.zeros([ch,sp,ev]) 

#print(ev,ch,sp) 

collectev=np.zeros([ev,sp]) 

for channel in range(0,ch): 

    for evt in range(0,ev): 

        collectev[evt,:]=twoepoch[evt,channel,:] 

    postMI[channel,:,:]=collectev[:,:].T 

postMIre=postMI[:,:,0:minev]     

print(postMIre.shape) 

print(preMIre.shape) 

def psd(trials): 

    ''' 

    Calculates for each trial the Power Spectral Density (PSD). 

     

    Parameters 

    ---------- 

    trials : 3d-array (channels x samples x trials) 

        The EEG signal 

     

    Returns 

    ------- 

    trial_PSD : 3d-array (channels x PSD x trials) 
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        the PSD for each trial.   

    freqs : list of floats 

        Yhe frequencies for which the PSD was computed (useful for plotting later) 

    ''' 

     

    [nchannels,nsamples,ntrials] = trials.shape 

   

    trials_PSD = np.zeros((nchannels, 46, ntrials)) 

 

    # Iterate over trials and channels 

    for trial in range(ntrials): 

        for ch in range(nchannels): 

            # Calculate the PSD 

            (PSD, freqs) = mlab.psd(trials[ch,:,trial], NFFT=int(nsamples), Fs=Fs) 

            trials_PSD[ch, :, trial] = PSD.ravel() 

                 

    return trials_PSD, freqs 

cl_lab=['pre', 'post'] 

cl1 = cl_lab[0] 

cl2 = cl_lab[1] 

trials={} 

trials[cl1]=preMIre 

trials[cl2]=postMIre 
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psd_r, freqs = psd(trials[cl1]) 

psd_f, freqs = psd(trials[cl2]) 

print(psd_f.shape) 

print(freqs.shape) 

trials_PSD = {cl1: psd_f} 

#print(trials_PSD.keys()) 

print(nchann) 

plt.figure('pre') 

for chan in range(0,nchann-2): 

    plt.plot(np.mean(psd_r[chan,:,:] ,axis=1)) 

plt.figure('post') 

for chan in range(0,nchann-2): 

    plt.plot(np.mean(psd_f[chan,:,:] ,axis=1)) 

def plot_psd(trials_PSD, freqs, chan_ind, chan_lab=None, maxy=None): 

    ''' 

    Plots PSD data calculated with psd(). 

     

    Parameters 

    ---------- 

    trials : 3d-array 

        The PSD data, as returned by psd() 

    freqs : list of floats 

        The frequencies for which the PSD is defined, as returned by psd()  

    chan_ind : list of integers 

        The indices of the channels to plot 

    chan_lab : list of strings 
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        (optional) List of names for each channel 

    maxy : float 

        (optional) Limit the y-axis to this value 

    ''' 

    plt.figure(figsize=(12,5)) 

     

    nchans = len(chan_ind) 

     

    # Maximum of 3 plots per row 

    nrows = np.ceil(nchans / 3) 

    ncols = min(3, nchans) 

     

    # Enumerate over the channels 

    for i,ch in enumerate(chan_ind): 

        # Figure out which subplot to draw to 

        plt.subplot(nrows,ncols,i+1) 

     

        # Plot the PSD for each class 

        for cl in trials.keys(): 

            plt.plot(freqs, np.mean(trials_PSD[cl][ch,:,:], axis=1), label=cl,linewidth=5) 

     

        # All plot decoration below... 

         

        plt.xlim(1,30) 

         

        if maxy != None: 
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            plt.ylim(0,maxy) 

     

        plt.grid() 

     

        plt.xlabel('Frequency (Hz)') 

         

        if chan_lab == None: 

            plt.title('Channel %d' % (ch+1)) 

        else: 

            plt.title(chan_lab[i]) 

 

        plt.legend() 

         

    plt.tight_layout() 

 

from numpy import linalg 

 

def cov(trials): 

    ''' Calculate the covariance for each trial and return their average ''' 

    [nchannels, nsamples, ntrials] = preMIre.shape 

    covs = [ trials[:,:,i].dot(trials[:,:,i].T) / nsamples for i in range(ntrials) ] 

    return np.mean(covs, axis=0) 

 

def whitening(sigma): 

    ''' Calculate a whitening matrix for covariance matrix sigma. ''' 

    U, l, _ = linalg.svd(sigma) 
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    return U.dot( np.diag(l ** -0.5) ) 

 

def csp(trials_r, trials_f): 

    ''' 

    Calculate the CSP transformation matrix W. 

    arguments: 

        trials_r - Array (channels x samples x trials) containing right hand movement trials 

        trials_f - Array (channels x samples x trials) containing foot movement trials 

    returns: 

        Mixing matrix W 

    ''' 

    cov_r = cov(trials_r) 

    cov_f = cov(trials_f) 

    P = whitening(cov_r + cov_f) 

    B, _, _ = linalg.svd( P.T.dot(cov_f).dot(P) ) 

    W = P.dot(B) 

    return W 

 

def apply_mix(W, trials): 

    ''' Apply a mixing matrix to each trial (basically multiply W with the EEG signal matrix)''' 

    [nchannels, nsamples, ntrials] = preMIre.shape 

    trials_csp = np.zeros((nchannels, nsamples, ntrials)) 

    for i in range(ntrials): 

        trials_csp[:,:,i] = W.T.dot(trials[:,:,i]) 

    return trials_csp 

W = csp(preMIre, postMI) 
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trials_csp = {cl1: apply_mix(W, trials[cl1]), 

              cl2: apply_mix(W, trials[cl2])} 

 

psd_r, freqs = psd(trials_csp[cl1]) 

psd_f, freqs = psd(trials_csp[cl2]) 

trials_PSD = {cl1: psd_r, cl2: psd_f} 

 

plot_psd(trials_PSD, freqs, [0,11,-1], chan_lab=['CSP of MI', 'middle component', 'last 

component'], maxy=0. 
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