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Abstract 

Electromyography (EMG) is a method for determining how muscles and the nerve cells that 

control them operate. To contract and relax the muscles, electrical signals are generated by motor 

neurons. EMG signals may be utilized to create myoelectric control systems for assistive and 

rehabilitative devices, whether they are recorded invasively or noninvasively. The performance of 

the proposed myoelectric control is compromised by a variety of parameters, such as: the channel 

count, electrode location, noise contained in the EMG data, feature selection, and classifier 

selection. The goal of this research was to investigate the impact of sophisticated signal processing 

frameworks on the intrinsic characteristics of EMG signals to enhance the signal to noise ratio of 

the recorded data. Different EMG filters based on Empirical (EMD) and Variational Mode 

Decomposition (VMD) were developed and tested to denoise EMG signals. The EMG filter was 

designed using Clear Iterative Interval Thresholding (CIIT), Iterative Interval Thresholding (IIT), 

and Interval Thresholding (IT) methods, as well as SOFT, HARD, and SCAD operators. The 

denoised signals were then transferred to Pattern Recognition algorithms based on Convolutional 

Neural Networks (CNN) and Linear Discriminant Analysis (LDA). Additionally, disjoint and 

overlap segmentation methods were used to assess the effectiveness of the optimal windowing 

configurations. For both surface and intramuscular EMG data, statistical analysis revealed Iterative 

Interval Thresholding with VMD produces the greatest SNR despite the amount of noise in the 

signal. Whereas EMD-based filters do not retain the intrinsic properties of intramuscular EMG 

signals. For both LDA and CNN, statistical analysis revealed that the optimal segment size for 

disjoint windowing is between 250ms - 300ms. For overlap segmentation, the optimal time range 

for LDA is 250ms-300ms and for CNN is 275ms-300ms. The settings suggested here may be 

utilized to create a strong and reliable MEC. 
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Chapter 1 

1.0.  Introduction 

Upper limb prostheses are used to facilitate the restoring of functionality as well as 

appearance of the missing limb. The goal is to replicate maximum functionality. The 

absence of upper limbs hampers routine activities of the affected individual and can cause 

lags for all those who encounter such individuals. Psychological wellbeing is also at risk 

of such individuals, along with physical challenges. According to estimates, it has been 

reported that in 2005 around 664,000 people in the USA had missing limbs and around 

900,000 people had smaller limb loss [1]. Moreover, these figures are expected to double 

by the year 2050 [2]. Global estimations have also reported a marked rise in amputations 

due to multiple factors such as weapon related violence, accidents, general increase in 

population, terrorist attacks, natural disasters such as earthquake and tsunamis, and certain 

diseases like diabetes and vascular problems [3]. It has been reported that 1 in 200 persons 

in USA faced an amputation related issue from the year 1988 to 1996, and on average, 

around 130,000 people had amputations in hospital per annum [4]. 

The results compiled by Yinusa et al. (1989), and Viswanathan et al. (2010) suggest that a 

significant factor for amputation in developing countries is vascular diseases which account 

for 25 to 50% of all the cases [5,6]. Another study conducted by Kerstein (1974) reported 

that vascular diseases caused 75-85% lower limb amputation cases and it was found that 

57% of infections were caused due to gangrene [7]. Data from some other studies suggests 

that 45 to 70% of amputations are done because of diabetes, and this percentage is higher 

than traumatic causes [8]. However, some researchers conducted in Finland and Denmark 

suggest that upper limb amputations occur because of trauma as well [9].  

In 2005 earthquake, Pakistan reported around 19,700 limb related injuries out of which 

78% resulted in amputations [10]. 1115 limb amputations were reported in Sindh, due to 

traffic accidents, terror attacks, agriculture, medical conditions, gun violence and 

industrialization [11]. The ratio of affected individuals among males and females was 

found to be 7 ratio 1, with males being more susceptible than females who have generally 

low ratio in mechanized work [12].  
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Prosthetics can be used to perform therapy and replace upper limb amputations by enabling 

effected individuals to perform daily life activities. The use of prosthetics has been 

common since 1940s [13]. With the recent advances in technology, the quality of 

prosthetics has become clinically viable. The frequent use of semiconductors has played 

major role in developing the technology for clinically applicable prosthetics which has in 

turn caused a rise in research and development in this field. This technology was introduced 

in Japan, USA, Canada, Sweden, and USSR in 1960s after the rise of prosthetic related 

projects [14]. Even with the increasing demand of this technology, there are certain 

limitations still in way such as embedded actuators, sensors and electronic components 

which are required to replace original limb and need to adhere to a size limitation. The 

control of prosthetics needs to replace the original functionality, which is a daunting task.  

Upper limb prostheses may be further categorized according to their functioning, namely 

passive and active prostheses. Passives comprise of the cosmetic and functional prosthesis, 

and actively make part of the body-powered and externally powered prosthesis. Cosmetic 

is used to replace the missing limb and does not provide functionality while functional can 

be used to perform some of the activities as well. Active prosthesis, on other hand, targets 

the functionality of the original limb and require a lot of energy, which is provided either 

by the human body or an external power source. In either case, the energy required can be 

extensive. These active prostheses are further classified into Electric and 

electromyographic (EMG) controlled.   

Myoelectric controlled prosthesis has been reported to be the most feasible as it allows 

movement in multiple degrees of freedom. Myoelectric controlled prosthetic limbs can be 

created using both surface and intramuscular EMG signals. We need to design a terminal 

device which is flexible, allows multiple degrees of freedom for movement and 

noninvasive, which does not require a big operation. Thresholding of the EMG signal was 

used to create these limbs, which did not allow for high accuracy and multiple degrees of 

freedom [15]. Pattern Recognition and Machine Learning based modelling techniques are 

now being used to address limitation issues, automatically finding patterns in EMG signals, 

and classifying them [16]. To design such a limb, a four-step method is being employed, 
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which includes preprocessing, segmentation, feature extraction and classification of EMG 

signals.  

To develop a myoelectric control system for the control of artificial limbs, both 

intramuscular and surface EMG signals can be utilized. The key characteristics of any such 

myoelectric control system include intuitive, noninvasive, and robust control providing 

facility of multiple degrees of freedom (DOF) [17]. Earlier, on-off, finite state machine 

(FSM), proportional and direct techniques were used for the design of upper limb 

prostheses [18]. To control the designed prostheses for limited degrees of freedom, 

conventional control techniques, and the use of amplitude for acquired signal as a threshold 

was used. Pattern recognition (PR) based schemes provide intuitive and better control with 

greater number of degrees of freedom for limb prostheses by decoding underlying patterns 

in EMG signals. Any PR-based MEC can be designed by following data acquisition, 

preprocessing, feature extraction and classification steps. 

1.1 Objectives 

The objectives of the study are: 

1. To denoise EMG signals by increasing signal to noise (SNR) ratio. 

2. To evaluate the effect of thresholding techniques and operators on the performance 

of Empirical Mode Decomposition based EMG filter. 

3. To evaluate the effect of thresholding techniques and operators on the performance 

of Variational Mode Decomposition based EMG filter. 

4. To identify the optimum segmentation technique, segment and overlap size to 

enhance the performance of myoelectric control system. 
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Chapter 2 

2 Background 
The electrical activity generated because of the contraction of the muscles is measured with 

the help of a technique called the EMG which is the acronym to Electromyography. To 

produce this electrical activity muscles must be contracted, and the signals must be 

recorded by using EMG. This electrical signal recorded is called as the electromyogram. 

Movements performed by the individuals is necessary to generate and record the EMG 

signals. 

The history of EMG started with the study carried out by the H. Piper when he investigated 

about the electromyography signals with the help of a string type galvanometer in the year 

1912 in Germany [19].  Similar studies were made by Erlanger and Gasser with an 

oscilloscope in the year 1924 [20]. Proebster in the year 1928, revolutionized the study of 

the EMG by analysing the EMG signals produced in the muscles which lacks the nerves 

supply(denervation) [21]. He is thus regarded as the pioneer of the domain now called as 

the clinical EMG. A year later i.e., in 1929, Bronk and Adrian were successful in 

developing a very potential component that is still in use to record the EMG signals [22]. 

This tool is known as CNE or concentric needle electrode. As the time passes, the scientists 

keep on adding the new and modern technologies to better study the EMG signals and 

EMG. One such step was the utilization of the computer technology.  Various kinds of 

models and simulations were carried out regarding the EMG study with the help of the 

computers. The years between 1970-1980 was the time during which the field of EMG 

made considerable progress [23]. As many research articles were published and more and 

more research findings were documented for the world [24].  A plethora of information 

about the EMG signal and within the EMG signal was made available. It helped in the 

study and flourishing of various other fields such as EMG biophysics. Furthermore, to 

design and develop new approaches and to modify the existing ones, models serves as the 

primary tool to better understand the EMG as well to train the researchers working in the 

field of EMG. One of the earliest EMG applications is the extraction of the EMG signals 

which could serve as the source of input for the power guided prostheses of the upper limb. 

It was given the name of myoelectric control. The history of myoelectric control is traced 
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back to 1940s. It made rapid progress during the years between 1960 to 1980 [25]. In the 

21st century, the design and development of the diversified powered based prostheses 

according to the recognition-based controllers by using the EMG pattern is a very notable 

and well-researched topic in the field of EMG [26]. 

One of the two types of EMG is the Needle EMG. As the name suggests, this technique 

uses the needles to record the electrical activation of the muscles. The needle EMG serves 

the function of detecting the EMG signal from the firing of the motor unit action potential 

or MUAP at the vicinity near the needle surrounding a very small area. In can thus be useful 

to gather very concentrated information from the deep as well as the superficial muscles. 

The second type is called as the surface electromyography. It works by detecting the action 

potential of the motor units from a large surface area of the muscle. It is helpful in providing 

the global details regarding the muscular contractions. sEMG is mostly performed to detect 

the MUAPs of the superficial muscles. At present the surface EMG makes use of the 

specified electrodes in the form of 2D electrode grids or a linear electrode array [27]. It is 

thus helpful in implementing the filters particularly the spatial filters as well as allows the 

in-depth analysis of various parameters of MUAPs individually. 

As the muscles are surrounded by the tissues hence, they become the source of interruption 

between the target muscle groups and electrodes while recording the EMG signals. These 

tissues have a disadvantage of masking or hiding information.  As a result of which there 

are high chances of the loss of any important information. Thus, it is quite challenging to 

interpret the signals recorded by sEMG than by the needle EMG. It should also be noted 

that the sEMG gives the users the ease to record the signals as well as it has a non-invasive 

characteristic. Hence, it is often preferred by many such as amateur operators and the non-

medical lab researchers etc. Because of this reason we can see a wide range of use of sEMG 

in variety of applications such as in the assessment of fatigue, biofeedback system and in 

the analysis of movement. This incorporation thus has become the cause of chaos due to 

lack of standard guidelines for its operation because of which the EMG signals data is 

compromised. One proof is that all those research papers which were published during the 

past 20 years have contradicting results and facts which is becoming a source of confusion 

for the other researchers at present [28]. It can thus be said that the widespread utilization 
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of surface electromyography in various applications has made it kind of unreliable due to 

the very reasons discussed above. In short, the modern-day EMG has now become very 

easy to take recordings because it is very easy for the user or any other researchers working 

in this field to mount the pair of electrodes on the targeted muscles followed by the signal 

acquisition and signal analysis. From which conclusions can be extracted based on the 

findings particularly about the EMG patterns, the modalities, its timings as well as the rate 

at which the muscle is activated. 

Present day EMG involves both the needle EMG as well as the surface EMG techniques. 

Both are the consolidated and interdependent instruments for the EMG signal processing. 

They both holds a crucial position for the investigations involving the physiological 

parameters. The needle EMG has a widespread use in the field of diagnosis. On the other 

hand, the fields such as ergonomics, analysis of motions, sport medicine, occupational 

medicine, prosthetic control devices and biofeedback mostly uses the sEMG for the major 

reason that it is harmless and allows the painless and frequent examination of the functions 

of neuromuscular system. It has also been noted that the uses and the applications of sEMG 

are mostly ignored and are not covered in the academia [29]. Hence, the major focus is on 

the use of non-invasive sEMG in the various applications. 

2.1 Fundamentals of EMG signal 
The study of EMG as stated earlier is the record of the electrical activity generated a result 

of the muscular fibres contractions. Because of the relationship between the EMG and 

torque, the EMG thus serves as an appealing to carry out the measurement of the tension 

in the muscles which is a requirement for the number of physical examinations in a person 

[30]. But the complex nature of the origin of this signal of EMG is hampering the 

development of an elaborated description to explain this relationship quantitatively. Hence 

to comprehend the difficulty level that is a barrier between the EMG and torque, it is thus 

vital to have an understanding of the origin and character of the EMG signal. 
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Figure 1. Electrical signals generated in the muscle fibres. 

The neuromuscular component is responsible of the human body's voluntary movements, 

i.e., contractions and relaxations of different body parts. A neuron generates a very tiny 

potential difference on the membrane of the muscle cell to initiate contraction. This results 

in elevation of the motor neurons and the subsequent appearance of a depolarization 

pattern. The waveform generated is then sent to the neuron's terminal end, where it is 

termed to as the Postsynaptic Neuron, or AP for shorthand. The electrical activity produced 

by the muscle fibre is shown in Figure 1. 

By transmitting nerve branches to muscular tissue in clusters called motor units, a single 

motor neuron stimulates it. Muscle fibres, which range in size from a few nerve fibres in 

tiny muscles like the hand and fingers to hundreds of motor neurons in large muscles like 

skeletal muscle, are the basic unit of contraction. Because each motor unit contains 

numerous muscle fibres that are connected to the motor neuron in various locations, the 

electrical signal generated by that unit is the sum of the membrane potentials of all the 
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muscle fibres in that unit, and that might be transition period relative to the other motor 

neurons in that unit [31]. 

 

Figure 2. Phase shifted action potentials of a muscle fibre. 

Figure 2 demonstrates this idea further. The Motor Unit Action Potential is the electrostatic 

interaction produced when all neurons in a muscle fiber contract simultaneously following 

excitation (MUAP) (MUAP). This MUAP may be captured using sensors installed on the 

scalp above the tissue. Additionally, a single action potential rarely activates a muscle. To 

maintain a stretch for a prolonged period of time, the nerve cells should be triggered 

periodically. That recurrent stimulation generates a series of MUAPs, which may have 

been regarded to as a pulse in traditional signal processing terminology [32]. These 

grouping of MUAPs is termed to as a Motor Unit Action Potential Train (MUAPT) 

(MUAPT). Emg is characterized as the convergence of numerous asynchronously firing 

MUAPTs when monitored with a surface electrode. The idea that surfaces EMG is 

generated by the superposition of visual evoked potentials is corroborated by Figure 3 [33]. 

The surface electromyography signal is usually between 5 and 10 mV in magnitude, with 

the bulk of the signal data contained between 15 and 400 Hz [34]. As a result, the EMG 

volume accounts for a large proportion of the data transmission that can be represented by 



13 

 

a Gaussian stochastic function. The intensity of a Received signals is specified as the time-

varying confidence interval of the signal and is a measure for the muscle strength exercise 

intensity. 

 

Figure 3. Superposition of MUAPs to generate EMG signals. 

Antiagonist-antagonist muscles are found in a variety of human joints. The activation of 

such a human joint often involves a large number of muscles. The muscles that control the 

movement of the arm, wrist, and hand are discussed next. The pectoral muscle is 

responsible for arm retraction. While there are additional muscles in the mammalian 

forearm, it is primarily controlled by two adjustable heights: the forearm and wrists. As a 

result, the forearm and a portion of the wrists are fundamental premise muscles [35]. The 

elbow angle and impedance may be varied at random by changing the amount of force 

exerted by these muscles. The triceps flexor digitorum muscles contract, causing the elbow 

to flex. The elbow is extended when the triceps brachii is contracted. The forearm contains 

the bulk of the tendons that lift the wrist and palm. The abductor supraspinatus radialis is 
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in charge of wrist extension and abduction. The wrist is flexed and adducted by the flexor 

digitorum ulnaris. 

2.2 EMG Characteristics 
In the signal analysis, when the electrical contractions of the muscles are recorded with the 

help of needle electromyography it can be either semi-periodic or pseudorandom [36]. To 

investigate the semi-parodic signals, we make use of the various determining variable that 

are used to describe the isolated MUAPs as well as any other waves [37]. It means that it 

is possible to observe shape, time as well as the amplitude of the signals. While the 

pseudorandom signal can be calculated by applying various models from the statistics. 

As far as the frequency of the signal is concerned it is affected by various factors. First, 

while recording the electrical activity of the muscles, the signal is also affected with the 

intramuscular electrical activity of the tissues which affects the volume conduction [38]. 

In this scenario, all the high frequency contents present in the signals undergo attenuation 

more as compared to the low frequency contents present in the signal corresponding to the 

increase in the distance of action potential generators at the site of the electrode surface. It 

has been observed that small surface and high input resistance or impedance of the active 

electrodes tend to show much finer high response in terms of frequency and vice versa 

[39]. When the electrical activity is recorded by the sEMG, the frequency components of 

such a signal are always below 500 Hz [40]. While for the single -fiber EMG electrode the 

maximum frequency is 10kHz and it is 2kHz for the CNE [41]. This knowledge of 

frequency content is beneficial in physiological studies. The analysis of frequency is 

mainly used to study the muscular fatigue with the help of sEMG mostly. However, we 

can see similar results by using the needle EMG. Moreover, for the needle EMG, the study 

of chronic neurogenic states showed deviation towards the lower frequencies and 

myopathies showed a deviation towards the high frequency components [42]. 

Next parameter is the amplitude. The amplitude of any EMG signal is dependent of the 

similar factors as that of the frequency. Most important of them are Electrode size, distance 

between the electrodes and the AP generator [43]. When a single-fibre EMG electrode is 

used to measure the amplitude of a single MUAP it comes out to be between 0.3mV and 

10 mV [44]. The strength of the fibres which are acting as the powerful electrical generators 
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do not have much effect in this case. Thus, we can state that the use of Aps amplitude for 

a single-muscle fibre cannot be used for the diagnostic criteria for the single fibre EMG. 

The use of concentric needle electrode guarantees the more promising results to record the 

amplitude of MUAP. Because in this case the distance changes are very small. Lastly, the 

dependence on the distance for the macro-EMG is much lesser compared to the former two 

thus it is safe to say that the amplitude of the macro- MUAP shows the action potential’s 

generator strength [45].  

2.3 Myoelectric Control 
To develop the power-based prostheses the surface myoelectric signals obtained from the 

surface EMG serves as a significant and efficient input system. In the technical terms, this 

application of control is known the myoelectric control. It has now become a famous 

domain due to its massive use by the people born with upper limbs congenital amputation 

or having amputated limbs due to any injury or an accident etc. This system is designed in 

such a way so that it can voluntarily control the selection as well as the regulation of the 

multi-dimensional prosthesis [46].  The concept is based on the similar voluntarily 

controlling ability of the various parameter of the myoelectrical signals obtained from the 

muscular groups or a single muscle.  A schematic representation of the necessary 

components to design such a control system is shown in Figure 4. In this diagram the motor 

control system is replaced with the feedforward pathway which is denoted a myoelectrical 

channel. 

Control signal’s source for myoelectric controllers is viable residual muscle remaining 

following amputation or available muscle in the case of a congenital limb deficiency. Given 

a large superficial muscle and a surface closely spaced bipolar electrode pair, it is possible 

to acquire myoelectric signal from this muscle alone and achieve a single muscle control 

channel [47]. Indeed, with a fine wire intramuscular bipolar electrode it is possible to 

isolate a small muscle segment and use the motor unit action potential trains as control 

signal sources. Clinically, however, this latter signal source is not practical due to the 

invasive transcutaneous nature of the electrode [48]. For surface electrodes the limitations 

of the single muscle source include the requirement for a superficial muscle, the small 

interelectrode spacing, and in the case of the congenital amputee the uncertainty of muscle 

position. 
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In contrast to the single muscle myoelectric channel referred to above, a widely spaced 

electrode pair appropriately placed on the limb will acquire signal from a muscle group. 

Such a multi-muscle control signal source is the temporal and spatial sum of the electrical 

activity of the muscles of the group. The practical limitations of achieving a single muscle 

source mean that the multi-muscle source is the more common control source. It is simply 

easier to put a widely spaced electrode pair on the limb and use all available signals, rather 

than searching for critical positions on individual muscles. It is also the case, from a control 

information point of view, that the temporal and spatial sum of the signals from muscles 

of a group has certain advantages over a single muscle [49]. This follows from the 

observation that the contribution made by each muscle of the group to the sum is a function 

of the intended limb action. Thus, the contribution pattern can be voluntarily controlled, 

and the pattern used for control purposes. 

 

Figure 4. Pattern Recognition-based myoelectric control system. 

Following are the major elements needed to design a myoelectric channel; single or a group 

of muscle, an electrode, and a conduction device to carry out the volume conduction in 

between the electrode and the pair of muscles [50]. In remaining section, the control 

information potential of a single channel and a multichannel will be presented. 
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2.4 Pattern Recognition Based Control 
To level up the order of devices to make the control of the myoelectric signal more 

efficient, there is a need to design a rather more modernized strategy that could be able to 

differentiate between the variable motion states of the targeted muscle. A pattern 

recognition-based myoelectric control system is depicted in figure 4. It could be 

accomplished by the following two approaches [51].  

1.1. Firstly, the system is desirable to be able to extract additional information regarding 

the muscular activity in its active state. To achieve this, any of the two or both ways 

could be employed. 

• To fetch the exclusive information about the targeted muscular groups the system 

must be able to use various MES channels. 

• Other is the development of the sets of features that must be able to extract the 

maximum information from the input signals and able to differentiate between the 

distinct categories of the motions. 

1.2. Lastly, a classifier must be constructed that is capable enough to make the most out 

of the extracted information. This classifier plays an important role for utilizing and 

assimilating this input information and then determine its respective origin class of 

this information.  

2.5 MES Measurement Strategies 
When using the surface myoelectric signal, the primary concern regarding the placement 

of recording electrodes is to capture as much novel information about the muscle activity 

as possible. To accomplish this, when placing electrodes on the upper limb, one is faced 

with two possibilities: 

1.1. A single bipolar channel, with the bipolar electrodes spaced widely apart. This 

technique, used by Hudgins [52], involves placing one electrode on the biceps and 

one on the triceps. This approach captures the activity of a large volume of muscle, 

all superimposed into a single gross myoelectric channel. The drawback of this 

approach is that there is no spatial discrimination in the activity of different 

muscles, and novel information from different muscles may exhibit destructive 

interference. 
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1.2. Multiple bipolar channels, with closely spaced electrode pairs. Because the pickup 

region under closely space pairs is more local, multiple channels are needed to 

capture the activity of different muscle groups. The advantages address the 

drawbacks of the single channel; spatial discrimination is now possible, and no 

destructive cancellation occurs. 

It has been shown in several studies that multiple MES, channels provide much better 

discrimination among control states than do single channels [53,54]. The nature of the 

myoelectric signal in specific has the potential to impact and guide the control signal in 

terms of its competencies. It should be noted that the research protocols designed by the 

previous scientists carried out contractive recordings of the MES or myoelectric signals in 

a constant or in other words steady state environment [55]. The output is a randomly 

generated signal most of the time when its properties were analysed statistically as 

discussed earlier. The specified patterns of neuronal firing for carrying out the contractions 

as well as the need to actively modify the recruited motor units leaves a very minimal 

temporal or the time-dependent structure for the steady-state of myoelectric signals. 

The effects of these myoelectric signals in concurrent to the active contraction initiation 

was well researched by the Hudgins and companions. The findings demonstrated a 

significant presence of the structure viewed in the waveform having the transitory nature. 

The results can be visualized in the figure 5. The figure represented the local behavioural 

patterns in conjugate to the pronation as well as the supination orientations of the forearms. 

Moreover, the elbow flexion and extension can also be seen in the figure. The data was 

collected from the muscular activity of the biceps and triceps in the arm. These muscle 

groups were mounted with the single pair of the bipolar electrodes for the recordings. The 

focus was to cover a major part of these musculoskeletal regions for the better efficiency.  

When these waves were analysed in their time-domain it showed prominent contrasts in 

the patterns under considerations. Meanwhile, the analysis of the groups of patterns which 

were obtained at a particular rate of contractions presented that their corresponding 

structures are enough to demonstrate the visual distinctive differences for varying 

contraction rates. Many other researchers also described the presence of this visible layout 

[56]. It showed a well-ordered assimilation of the neuronal units of brain called the motor 
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units. This may result from a “motter plan” located at CNS, absence of sensory feedback 

paths within such a rapid burst of activity, or a combination of both. 

 

Figure 5. Different EMG signals corresponding to different hand motions. 

The presence of determinism in the transient MES accompanying the onset of contraction 

suggests that these data should provide a powerful means of discriminating MES patterns 

corresponding to different movement types. This has been demonstrated by Hudgins et al. 

in a prosthetic control system, which will be described below, and by Farry et al., with 

application to teleoperation of a robotic hand [57,58]. 

2.6 Signal Denoising 
For any application or for an appropriate interpretation of an EMG signals for investigating 

muscle activity, the prerequisite is the acquisition of clean EMG signal. Like other 

physiological measurements, EMG recordings are contaminated with different type of 

noises i.e., Baseline Wandering (BW) or motion artifacts, White Gaussian Noise (WGN) 

and Power Line Interference (PLI). Therefore, the identification of actual and real EMG 

signal remains difficult and challenging [59].  

2.7 Segmentation 
Every peak gives the data about the original signal for various biological signals, such as 

ECG. As a result, these signals are divided into segments based on their shape. Individual 
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peak does not give enough details of PR-based MEC in the case of EMG signals. EMG 

signals are also studied throughout segments of varied time since they are non-stationary, 

meaning their statistical features fluctuate with time. A single signal segment may function 

as a query for data in a particular time slot, assisting in the prediction of the signal stream's 

overall features and attributes. A lengthier portion contains more information about the 

original signal. Increased segment length, on the other hand, causes a greater hardware 

complexity for actual PR-based MEC [60]. There is an exchange between processing speed 

and section description correctness as a consequence of this exchange. A small chunk is 

more vulnerable to volatility and bias in feature extraction, as well as noise, due to its 

shorter length. 

A segment with a length of less than 200ms is insufficient to reflect the original signal [61]. 

A segment should be larger than 200ms for better reproduction of the original signal in 

real-time MEC and offline. For seamless and real-time operation, a real-time signal 

restricts with 300ms limits so, the segment size should be less than 300ms [62]. There are 

two distinct kinds of segmentation, as shown in Figure 6. A disjoint segment's length is 

governed only by its span, while an overlapped section's length is dictated by both its 

duration and the threshold value (adjustment). The time variance sequential segments, 

known as the leap or gap, will be smaller than the lengths but greater than the MEC 

processing time. 

 

Figure 6. Different EMG segmentation techniques. 

2.8 Feature Extraction 
The most intuitive, and most widely used, feature that describes the MES has been the 

index of gross activity, which be the variance, mean absolute value, or some other similar 
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measure. Multivariate features sets have been presented and effectively employed with the 

goal of delivering additional information about the MES in each channel [63]. At first, 

limited by the available computational power of the day, the features were based on time 

domain statistics, such as variance, zero crossings, and the “length” of the waveform locus. 

With increasing computational resources came systems based on autocorrelation time 

series models, spectral measurements, and coefficients. Using the short-time high order 

spectrum analysis, wavelet and wavelet packet transforms, Fourier transform, current 

approaches attempt to utilize the temporal structure of MES patterns [64]. 

2.9 Classifiers 
The practical approaches for pattern classification that exist can be divided into three 

categories. Historically, the statistical and syntactic approaches have been the two most 

common ways [65]. The learning (or neural) technique is the third and most recently 

established type of pattern classification. Perceptrons and adaptive linear components are 

the origins of learning algorithms, which have evolved into the broad field of artificial 

neural networks. In terms of the use of classifiers in MES control systems, statistical 

classifiers were used almost exclusively until about the mid-1980s, at which point the first 

applications of artificial neural networks began to appear [66]. A variety of artificial neural 

networks architecture and learning algorithms have been investigated in the context of 

MES pattern recognition, including simple feed forward multilayer perceptrons, dynamic 

networks, and self-organizing feature maps. Recent investigations have seen the 

application of genetic algorithms and fuzzy logic classifiers [67]. If a consensus can be 

drawn from these investigations, it is that although powerful classifiers may marginally 

improve the classification of the MES, it is the feature set that is crucial to overall 

performance. 
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Chapter 3 

3 Methodology and Implementation 
3.1 Datasets: 

Surface EMG data from 30 individuals was divided into three datasets for the research. The 

National University of Science and Technology's local supervisory commission approved 

all data collection (approval number: ref# NUST/SMME-BMES/REM/00321/30012021). 

All participants completed a written permission form before to the experimental procedure. 

Ten healthy individuals (5 men and 5 females, ages 21 to 32) participated in dataset-1. 

These individuals had no prior history of musculoskeletal problems. Thalamic Lab 

developed the MYO wristband EMG sensor, which can be used to capture surface EMG 

data and is commercially accessible [68]. The MYB encompassed the extensor carpi 

ulnaris, extensor digitorum, palmary longus digitorum superficialis, extensor carpi radialis, 

and flexor Capri radialis muscles, and it was tied to the subjects' dominant wrist. The tests 

were conducted on the BioPatRec EMG platform, which is open to the public, and each 

participant was asked to perform at least eleven agile hand movements [69]. 

 

Figure 7. Detailed methodological flow chart of the proposed methodology. 

Individuals were displayed each activity before recording it using the BioPatRec interface. 

Supination, Open hand, Close hand, extend hand, Flex hand, Agree, Pointer, Fine Grip, 

Side Grip, and no-motion condition were employed in the experimental method. The data 

for each participant were gathered in a single session and put into a database. Each exercise 

lasted ten seconds, with six seconds devoted to contraction and four seconds to relaxation. 

Dataset-2 was acquired from [70] and utilized. It has a sample frequency of 2000Hz. There 

were a total of eight active hand movements. The same hand movements were recorded in 

this dataset. Figure 7 illustrates the full methodological flow chart.  
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Dataset-3 was also captured ahead of time and utilized in [71]. A widely viable myoelectric 

generator was used to acquire it. Ten people took part in the study, each having 11 active 

hand motions. The same motions were also captured in this dataset. The EMG signals were 

also routed through an analogue passband with trimmed wavelengths of 10-500Hz while 

being captured. More information about the three datasets used in this research can be 

found in Table 1. 

Table 1. Details of the different EMG datasets used in this study. 

 Dataset-I Dataset-II Dataset-III 

Subjects 12 11 7 

Movements 10 10 10 

Channels 6 6 5 

Sampling Frequency 2000 200 800 

Resolution 16 6 10 

Cycles 10 10 10 

 

3.2 Signal Denoising 

3.2.1 Empirical Mode Decomposition 

An adaptive method introduced for analysis of non-linear and non-stationary signals is 

Empirical Mode Decomposition (EMD). It is applicable for data driven local separation in 

slow and fast oscillations. Theoretically, EMD is like Fast Fourier Transform (FFT), 

however, in FFT the signal is changed to frequency spectrum from time spectrum. The 

difference between FFT and EMD is that in EMD signal remains in time domain and it is 

not assumed to be periodic and can be termed into its Intrinsic Mode function (IMF). The 

EMD can be used on different datasets and no assumptions for the data need to be made, 

whereas an IMF which is a mono-component function and obeys the following mentioned 

two criteria [71]: 

• Zero crossings and extrema needs to be same or have a difference of one. 

• At any given point, local minima envelop and mean of local maxima envelop is 

zero. 
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The above stated criteria restricts an IMF to be composed off only a single oscillation per 

cycle and each cycle is defined based on the number of zero crossings. Riding waves are 

not allowed, because they can cause negative frequencies which is a major issue in 

instantaneous frequencies-based application [72]. EMD works on basis of instantaneous 

frequency which can be defined as per application. An iterative mathematical process 

called Sifting is used in EMD to decompose any given signal into its IMF components [73]. 

Local mean is subtracted from input signal in the process of sifting. Envelopes are used to 

create local means and are therefore subsequently used for finding all the components of 

IMF. The last component found has lowest frequencies and is used to represent the overall 

trend, conversely, the first IMF contains the highest frequency components. 

3.2.2 Variational Mode Decomposition 

The Wiener filter is extended to several adaptive bands using the variational mode 

decomposition (VMD) approach. The VMD technique converts the model estimate 

problem into a variational problem and continuously updates the model and its center 

frequency [74]. Finally, the model is translated to the time domain using the inverse Fourier 

transformation. The model may be used to generate a series of models and their 

corresponding center frequencies, which can then be used to recreate the input signal. 

Furthermore, each mode is smooth after demodulation. 

It is a variational model in which the relevant bands are defined adaptively, and the 

appropriate modes are estimated concurrently, so ensuring that errors are appropriately 

balanced between them. To find an ensemble of modes that resume the input signal 

optimally, either in a least-square sense or exactly as we desire, we look for and ensemble 

of modes that are band-limited about a center frequency that is calculated on-line [75]. 

When there is noise in the input signal, our variational approach is particularly effective in 

dealing with this issue. Indeed, the close relationships between our approach and the 

Wiener filter suggest that our strategy is somewhat ideal in terms of dealing with noise. 

After complex harmonic mixing has been used to shift the Hilbert-complemented, analytic 

signal down into baseband, different model determines the bandwidth of the modes as the 

-norm parameter [76]. In the end, the optimization scheme is quick and easy: Every mode 

is upgraded in Fourier domain, and the narrow-band wiener filter correlate with mode’s 

center-frequency with the given current on the applied on the signal, all mode estimated 
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residuals and because of this calculation, the center frequency of the mode's power 

spectrum is recalculated as the mode's center-of-gravity frequency is recalculated as the 

mode's center frequency of the mode's power spectrum. 

3.3 Segmentation 
Because larger segments produce better results in PR-based MEC, colloidal segmentation 

is applicable for the employ segment lengths more than 200ms for the current real-time 

constraints and ensures smooth MEC operation. The recorded information used for the 

segmentation process in both windowing strategies to see whether windowing 

methodology, step/overlap size and window size provided accurate result of EMG signals. 

All techniques used 19 distinct window widths, with window lengths ranging from 25 - 

500ms in increments of 5ms. Comparably, nine alternative leap sizes were utilized for 

overlap windowing, ranging from 19% to 80% of the initial duration with a 10% 

improvement in overlap size width. 

3.4 Feature extraction 
Following vectorization, the next step was to retrieve useful characteristics within each 

frame that could be used to distinguish between different types of windows. EMG signals 

have a number of statistical characteristics that enable for accurate reconstruction of the 

actual input Certain slope coefficients (features) could perhaps be able to categories objects 

and may be assessed in the frequency or temporal domains. The amplitude of the signal is 

used to evaluate time domain properties. In the spectral space however, the power spectral 

density is used to approximate the same (PSD). A set of EMG data has the best possible 

class separation, resilience, and computing cost. Waveform length, cardinality, average 

exact value, neutral point, and slope sign change were all investigated in this study. Figure 

3 depicts a scatter plot of all extracted attributes for one participant from dataset-1 for three 

hand motions for which all recovered attributes were collected. 
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Figure 8. Scatter plot of utilized features extracted from EMG signals. 

3.5 Classification 
The final data set was then fed into LDA and CNN, which were utilized to categorize iEMG 

signals. The classification accuracy (CA) has been assessed in order to establish the 

classifier's overall performance. To every database, windowing technique, and frame size 

each participant's classifier was trained, validated, and assessed separately. The data from 

each individual was meant to prepare the network 70% of the time, verify the model 20% 

of the time, and test the model 10% of the time. EMG data from the publicly available 

MATLAB toolbox "BioPatRec" [77] was analyzed using LDA. The CA of each subject's 

test results was calculated and kept track of. Using ANOVA, the effect of sliding window 

and vectorization technique on iEMG signal prediction accuracy was investigated and 

shown to be significant. For the purposes of evaluating the statistical tests, likelihood 

values less than 5percent were considered significant. Several variables were compared 

using Tuckey's honest post-hoc test. 
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Chapter 4 

4 Results 
4.1 Empirical Mode Decomposition 

To illustrate and assess the effectiveness of EMD for filtering EMG data, EMG signals 

were denoised using IT, IIT, and CIIT thresholding methods. Along with the 

aforementioned thresholding method, three commonly used thresholding operators SOFT, 

HARD, and SCAD were examined. The Signals were obtained from a pre-recorded 

database; a total of 15 EMG signals were obtained from five healthy individuals. Due to 

the nonstationary and stochastic character of EMG data, denoising was conducted on EMG 

signals with varying amounts of noise. The effectiveness was quantified with respect to 

signal-to-noise ratio (SNR) pre and post signal preprocessing. 

 

Figure 9. EMG signal denoising using different thresholding techniques. 

To determine the optimal thresholding method for noise reduction from EMG signals, 

simulated noise with SNR values of 0db, 5db, 10db, and 15db was injected into the 

observed data initially. The noisy samples were then denoised utilizing thresholding 

methods from IT, IIT, and CIIT. The results indicate that all three thresholding methods 

examined substantially reduce noise in signals, regardless of their noise level. Table 2 

illustrates the performance of the thresholding methods and thresholding operators. As 
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demonstrated in table 2, the IIT thresholding approach produces a greater SNR than the IT 

and CIIT thresholding techniques at each noise level and with each thresholding operator, 

regardless of the kind of thresholding operator. 

 

Figure 10. EMG signal denoising using different thresholding operators. 

As shown in table 2, the HARD thresholding operator provides the best denoising 

outcomes for EMG signals at all denoising levels and using all thresholding techniques in 

terms of SNR. Statistical research revealed that the HARD thresholding operator beats all 

other thresholding operators tested at the 0dB. noise level (P-values 0.05). The HARD 

operator produced the highest mean SNR of 7.75 dB, while the SOFT and SCAD operators 

acquired mean SNR values of 7.35 dB and 4.04 dB, respectively. Similarly, at 5 dB, a 

quantitatively significant difference in SNR values was found between the HARD operator 

and both the SOFT and SCAD operators (P-values 0.05). The HARD operator produced 

the highest mean SNR of 11.65 dB, while the SOFT and SCAD operators generated mean 

SNR values of 10.39 dB and 7.49 dB, respectively. 

4.2 Variational Mode Decomposition 
To assess the new method's denoising impact, it is compared to the conventional EMD and 

VMD techniques. Additionally, the Signal-to-Noise Ratio (SNR) and Root Mean Square 
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Error (RMSE) are computed between the original signal and the denoising sEMG signal 

without noise interference. 

Table 2. EMG signal denoising using EMD and VMD based EMG filters. 

Surface EMG 

Before EMD_IT

_SOFT 

VMD_IT

_SOFT 

EMD_IIT

_SOFT 

VMD_IIT

_SOFT 

VMD_IIT

_HARD 

VMD_IIT

_SCAD 

0 3.2124 3.1914 3.4367 3.8504 1.7209 2.7965 

5 5.9197 8.4684 6.1618 9.1861 6.8872 8.0797 

10 8.9177 13.9920 9.1820 14.6343 12.1536 13.5778 

15 10.9532 19.3796 11.3534 19.8387 17.3852 19.0084 

Intramuscular EMG 

Before 
EMD_IT

_SOFT 

VMD_IT

_SOFT 

EMD_IIT

_SOFT 

VMD_IIT

_SOFT 

VMD_IIT

_HARD 

VMD_IIT

_SCAD 

0 1.4578 3.1088 1.5022 3.6711 1.6842 2.7286 

5 2.1905 8.2633 2.2406 8.6978 6.9245 7.9814 

10 2.5668 12.6907 2.6683 12.6627 11.6353 12.3554 

15 2.6071 15.6944 2.8577 15.0898 15.2821 15.2803 

 

As shown in the table, VMD-based EMG filters beat EMD-based filters in terms of SNR 

for both sEMG and iEMG signals. Additionally, it should be emphasized that SOFT 

thresholding operator outperforms all other thresholding operators in terms of 

performance. IIT produced the greatest SNR values for sEMG signals, regardless of the 

noise contained in the EMG signals. However, for iEMG signals, IIT results in the greatest 
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SNR values for noise levels of 0 and 5dB, whereas IT results in the maximum SNR values 

for noise levels of 10 and 15dB. 

4.3 sEMG Segmentation 
In the case of LDA with disjunct separation, the mean classification score improves 

substantially when segment length is extended from 50ms to 225ms (P-value = 0.05). From 

50ms to 250ms, the MCAs of all datasets rose by 20.18 percent, 6.25 percent, and 9.78 

percent, respectively. There has been no substantial difference in MCA fragment sizes 

between 225ms and 450ms (P=0.44) after 225ms. As only a 2.48 percent, 0.73 percent, and 

1.09 percent rise in the MCAs of all datasets, respectively, has been observed. Similarly, 

when overlap segmentation is compared to LDA, a significant rise of 17.64 percent, 6.73 

percent, and 9.69 percent in the MCA values of all datasets from 50ms to 250ms was 

observed (P-value0.05). Increase in segment length from 250ms to 450ms results in 

increases of 5.02 percent, 1.1 percent, and 0.93 percent, respectively, in the MCAs of all 

datasets (P-value=0.07). 

 

Figure 11. Classification accuracy corresponding to CNN and LDA with respect to 

different segment sizes for all the datasets using disjoint segmentation framework.  

When segment width was raised from 50 to 250 milliseconds using CNN and discontinuous 

segmentation, MCA rose by 27.16 percent, 9.87 percent, and 11.43 percent for all datasets, 

respectively (P-value0.05). However, when segment width was adjusted to 425ms, MCA 
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increased by 0.87 percent, 1.58 percent, and 2.6 percent for all datasets, respectively (P 

value=0.98). Similarly, extending the segment width from 50 to 275 milliseconds raised 

the MCA values of datasets 1, 2, and 3 by 19.37 percent, 13.66 percent, and 18.98 percent, 

respectively (P-value0.05). Alternatively, increasing the segment length from 275 to 

450ms raised MCA by 0.84, 1.31, and 1.76 percent, respectively (P-value=0.12). 

 

Figure 12. Classification accuracy corresponding to CNN and LDA with respect to 

different overlap sizes for all the datasets. 

4.4 iEMG Segmentation 
To determine the optimal window widths for disjoint and overlap windowing, 19 

alternative window sizes ranging in length from 50ms to 500ms were selected for both 

methods. It is important to note that, since overlap windowing is defined by the window 

and the step/overlap width, the MCA value of all overlap sizes is used to acquire MCA 

(MMCA) average for each given window size. The connection between CA and increasing 
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window size is shown in Figure 5 for both windowing methods on both datasets. CA rises 

as the window size of 50ms increases to 500ms. 

 

Figure 13. Classification accuracy corresponding to CNN and LDA with respect to 

different segment sizes for all the datasets of iEMG signals. 

 

Figure 14. Classification accuracy corresponding to CNN and LDA with respect to 

different overlap sizes for all the datasets of iEMG signals. 
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Table 3. MCAs for dataset-1 across varying window and overlap size. 

O.S (%) 

10 20 30 40 50 60 70 80 90 

W.S (ms) 

50 83.6 84.1 84.0 83.7 84.8 84.0 83.7 83.1 83.0 

75 86.8 86.8 86.7 86.9 85.9 85.5 86.3 88.2 86.7 

100 87.6 87.6 87.4 87.1 86.5 86.7 86.8 85.9 88.4 

125 88.4 88.5 87.6 88.4 87.4 87.6 87.7 87.5 87.7 

150 88.6 89.2 88.1 88.5 88.1 87.2 88.1 88.5 86.4 

175 89.2 89.3 89.1 89.4 87.8 89.3 88.6 88.5 88.3 

200 89.6 90.0 89.0 87.7 89.2 88.7 88.7 88.7 87.7 

225 89.8 89.3 89.6 89.2 89.1 90.7 88.2 89.0 90.5 

250 91.5 90.7 89.9 91.1 89.2 88.9 88.0 88.4 88.6 

275 90.9 89.9 89.0 91.0 89.1 90.2 90.3 90.3 88.4 

300 91.2 90.8 92.1 90.9 89.7 91.6 89.2 89.5 88.9 

325 91.3 90.6 90.4 91.1 89.6 92.3 92.0 91.2 89.8 

350 91.5 91.6 90.1 90.4 88.7 90.6 89.1 87.4 89.1 

375 91.9 90.6 90.5 91.7 90.3 90.5 89.1 89.1 89.8 

400 91.8 92.7 92.9 91.6 91.9 87.4 89.5 91.5 88.9 

425 91.7 91.2 92.9 92.4 90.3 90.0 91.3 88.9 91.1 

450 92.2 92.9 92.0 92.0 91.5 93.3 91.8 89.8 90.9 

475 92.1 92.4 92.2 91.8 92.1 90.9 89.1 88.2 91.8 

500 93.2 91.8 91.0 90.7 90.7 90.3 89.8 92.7 88.2 
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Table 4. MCAs for dataset-2 across varying window and overlap size. 

O.S (%) 

10 20 30 40 50 60 70 80 90 

W.S (ms) 

50 96.7 96.8 96.3 96.2 96.1 96.6 97.0 96.5 96.8 

75 97.8 98.1 98.0 98.4 97.7 97.6 98.2 97.7 98.1 

100 98.6 96.7 98.8 98.6 98.4 98.7 97.9 98.3 98.9 

125 99.0 99.1 99.1 98.8 99.0 99.4 99.1 99.4 99.2 

150 99.1 99.4 99.1 98.9 98.8 99.3 99.4 98.0 98.9 

175 99.4 99.5 99.2 99.2 99.5 99.2 99.0 99.2 99.5 

200 99.3 99.3 99.4 99.8 99.6 99.3 99.2 99.7 99.4 

225 99.7 99.5 99.7 99.6 100.0 98.9 99.7 100.0 99.6 

250 99.7 99.6 99.5 99.6 99.6 99.2 99.3 98.9 98.3 

275 99.5 99.7 99.2 99.6 99.2 99.6 99.2 99.6 99.5 

300 99.6 100.0 99.8 99.6 99.5 100.0 100.0 99.2 99.5 

325 99.8 99.5 99.6 99.8 99.7 99.6 100.0 100.0 100.0 

350 99.6 99.7 99.6 98.9 100.0 98.3 100.0 98.8 98.8 

375 99.5 99.6 99.6 100.0 100.0 99.2 99.5 99.5 100.0 

400 99.8 99.7 99.8 99.7 99.6 99.6 98.8 99.4 98.8 

425 99.9 99.8 99.8 99.7 98.9 99.0 99.0 100.0 98.8 

450 99.8 99.6 99.8 100.0 100.0 99.5 99.4 99.4 100.0 

475 99.4 99.6 99.7 100.0 99.6 98.8 99.5 99.4 100.0 

500 99.8 99.6 99.7 99.6 100.0 99.0 100.0 98.1 99.4 
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Figure 15. Classification accuracy for dataset-1 of iEMG signals. 

In case of datasets 1, the greatest and lowest accuracies were obtained with window sizes 

of 475ms and 50ms, respectively, with MCAs of 92.5 percent 6.16 and 83.62 percent 4.6. 

As shown in Figure 5, the MCA rises substantially from 83.62 percent 4.6 to 91.033.1 when 

the window size of 50ms is increased to 200ms. However, variation of window size 

between 200ms and 500ms causes no substantial improvement in MCA (only step width 

of 1.47 percent). Similarly, for dataset 2, the maximum and minimum MCA values were 

96.35 percent 3.3 and 99.17 percent 1.52, respectively, for 50ms and 275ms window sizes. 

MCA rises substantially when the extension of window size of 50ms, to 275ms is 

performed but subsequently does not change much in dataset 2. 

With window widths of 50ms and 450ms, the lowest and maximum of CAs are discovered 

for dataset 1, with MMCAs of 83.77 percent 0.55 and 91.82 percent 1.04. Figure 5 shows 

that altering the window widths between 50ms and 275ms has a significant impact on 

MMCA; however, beyond 275ms, there is no significant effect on MMCA. The MMCA 

with a window size of 450ms, the highest reported MMCA in dataset-1, is significantly 

different from MMCAs with window widths ranging from 50ms to 275ms, according 

to ANOVA (P-values 0.05). For window widths of 50ms and 225ms, the lowest and 
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maximum CAs were 96.550.32 and 99.640.33, respectively, for dataset 2. Furthermore, 

when the aperture size is increased from 50-225ms, the CA for dataset-2 improves 

significantly; however, no further improvement in accuracy is observed when the segment 

length increases. 

 

Figure 16. Classification accuracy for dataset-2 of iEMG signals. 
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Chapter 5 

5 Discussion and Conclusion  

The aim of this research was to determine and investigate the effectiveness of EMD in 

denoising EMG data with varying degrees of noise. Additionally, the performance of 

different thresholding methods and thresholding operators for EMD-based denoising of 

EMG signals is examined. The findings shown that utilizing EMD-based denoising 

methods, EMG signals may be filtered out and the impact of noise reduced. This research 

examines the performance of IT, IIT, and CIIT thresholding methods, as well as the SOFT, 

HARD, and SCAD thresholding operators. The IIT thresholding technique combined with 

the HARD thresholding operator produces the best denoising results for EMG signals in 

terms of SNR, but it fails to preserve the shape of the original signal and results in 

discontinuities in the denoised EMG signal, regardless of the level of noise contamination. 

While IIT with SOFT thresholding operator produces somewhat lower SNR values when 

denoising EMG signals, it effectively maintains the smoothness and features of the original 

signal. The inferred findings may be used to remove different kinds of noise from EMG 

signals while retaining the original signal's properties. 

Similarly, VMD-based different EMG filters were explored to denoise sEMG and iEMG 

signals by incorporating different thresholding techniques and operators. It has been found 

that VMD based EMG filters outperform EMD based EMG filters with respect to SNR 

values. The best results have been resulted from IIT thresholding technique and SOFT 

thresholding operator.  

The goal of this study was to find out more about if any optimal segment size limitations 

are found for the sEMG signals segmentation without any connection to the sample 

frequency used for data collection. To do this, the training and evaluation of all three 

datasets has been performed on a variety of segment sizes using both methods of 

segmentation and both classifiers. CA has been found to grow consistently as segment size 

increases. CA increases proportionately as segment size increases from 50ms to 250ms for 

each classifier and found no differences in classification accuracies when segment size is 

increased from 250-450ms for either LDA or CNN. Increases in segment length above 
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325ms have little impact on categorization output; on the contrary, they increase 

computation load to the point where it exceeds the real-time MEC delay time limit. Change 

the fragment size for discontinuous differentiation to between 250-300ms without affecting 

the delay duration to obtain the best classification accuracies for steady MEC. There was 

no significant variation in classification accuracies between segment sizes 250-450ms for 

LDA with crossover division. In the case of CNN with interchange separation, there was 

no huge discrepancy in MCA between slice sizes of 275-450ms. Because real-time MEC 

is limited to component sizes of less than 300ms, the best CA may be obtained by 

employing overlay delineation with fragment sizes well below 1ms. 

The goal of this research was to find the best compositing strategy for an iEMG-based 

monitoring, diagnosis, and recognition method The data was pre-processed to remove 

extraneous noise from the collected signals in order to do this. As seen in Figure 4, the 

filters used significantly improve classification accuracy while also reducing noise in the 

data. On two separately documented databases of iEMG signals, we examined both 

discontinuous and wraparound compositing methods, as well as different window widths. 

The impact of changing the overlap frame in the overlap compositing technique on the 

system's optimum performance has also been studied and measured. For reflectance spectra 

of EMG data and the development of a system classification accuracy suitable of 

categorising EMG signals, the length of the session should also be compatible with the 

time delay restriction in real-time function. The offline equitable distribution may be 

integrated into a device that can do real-time activities with high classification accuracy. 

Only when the window width is extended for both datasets does the classification accuracy 

improve. Statistics showed that expanding the window size from 50-200ms improves 

classification accuracy utilises it to oscillate up and down till 500ms on both datasets. On 

combined datasets, the classification accuracy increased from 89.27 to 94.83 percent when 

the window size was changed from 50-200ms. Following that, there was no discernible 

difference in categorization accuracy. 

Similarly, when the window duration is altered from 50-225ms for both iEMG recordings 

and statistically analysed, it was found that MMCA substantially rises from 90.16 to 94.56 

percent. No statistically significant change was found in MMCA with window sizes greater 
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than 225ms (P-values > 0.05). The findings indicate that the optimal window durations for 

disjoint and overlap window methods are 200–300ms and 225–300ms, respectively, 

recognizing the real-time constraint of segment length in relation to the optimal window 

size for an intramuscular EMG diagnostic, detection, and myoelectric system. The derived 

findings have been found consistent with the operating rules of actual myoelectric system. 

According to [54], the window size for a real-time control system utilized in an assistive 

and assisstive robotic device ought to be smaller than 300ms. Nonetheless, the optimal 

window widths found for both disjoint and overlap methods vary from those discovered 

for sEMG-based control systems. According to [21], the optimal window widths for 

overlap and disjoint window methods are 250ms and 300ms for an analytical system based 

on sEMG. 

5.1 Conclusion 
 The study's primary objective was to develop an optimum myoelectric control technique. 

To accomplish this, several EMG denoising methods were explored to remove noise from 

the EMG data. Two signal decomposition methods were utilized to breakdown the EMG 

signals: EMD and VMD. Denoising of the decomposed EMG signals was accomplished 

via the use of IT, IIT, and CIIT thresholding methods in conjunction with SOFT, HARD, 

and SCAD thresholding operators. The findings indicate that VMD-based EMG filters beat 

EMD-based EMG filters in terms of SNR for both sEMG and iEMG signals. Similarly, IIT 

thresholding methods outperform conventional thresholding techniques by maintaining the 

intrinsic features of the EMG signals. Additionally, it was discovered that the SOFT 

thresholding operator beats other thresholding operators in terms of resultant SNR values. 

Additionally, the research examined different segmentation or windowing methods to 

determine the optimal segment and overlap size for EMG data and it has been discovered 

that when compared to disjoint segmentation or windowing, overlap segmentation or 

windowing produces the highest classification performance outcomes. Additionally, the 

findings indicated that the performance of the MEC system improves with increasing 

segment size. However, when the overlap size is reduced, the performance degrades.  
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