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Abstract 

        The demands for location-based services (LBS) are increasing day by day for indoor 

environments. Due to the inability of the Global Positioning System (GPS) signals to penetrate 

through surfaces like roofs, walls, and other objects in indoor environments, various alternative 

methods for user positioning have been proposed. Among them, the Wi-Fi fingerprinting approach 

has sparked significant interest in Indoor Positioning Systems (IPS) because it eliminates the need 

for line-of-sight measurements and achieves higher performance even in complex indoor 

environments. For indoor positioning, offline and online are the two phases of the fingerprinting 

method. Different authors have highlighted the problems in the offline phase as it deals with huge 

datasets and validation of the Fingerprints without pre-processing of the datasets become a 

concern. Efficient systems are important to minimize delays, complexity and the associated 

additional costs. Positioning accuracy of Wi-Fi indoor positioning systems highly depends upon 

offline databases. Therefore, development of robust Wi-Fi fingerprints is performed to improve 

the positioning results. Machine learning has been used for the model training in the offline phase 

whereas the locations are estimated in the online phase. Machine learning algorithms are a natural 

solution for winnowing through large datasets and determining the significant fragments of 

information for localization, creating precise models to predict an indoor location. Large training 

sets are important for improving results in machine learning problems. Therefore, an existing 

WLAN fingerprinting-based multi-story building location database has been used with 21049 

samples, divided into 19938 training and 1111 testing samples. The proposed model uses mean 

and median filtering as pre-processing techniques applied to the database to improve accuracy by 

reducing the effect of environmental dispersion, as well as machine learning algorithms (kNN, 

WkNN, FSkNN, and SVM) for estimating the position. The proposed SVM with median filtering 

algorithm gives a reduced mean positioning error of 0.7959m and an improved efficiency of 

92.84% as compared to all variants of the proposed method for 108703m2 area. 

        On the basis of the results of this research, it can be concluded that it is possible to use Wi-Fi 

fingerprinting for indoor positioning to obtain a state-of-the-art accuracy. 
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Chapter 1 

 

INTRODUCTION 

 

The following chapter gives the general introduction to basic indoor positioning terminologies. 

Furthermore, it involves the need for indoor positioning and the motivation for selecting this topic. 

It also gives an outline of the next chapters. 

1.1 Localization 

Finding the location of a person can be defined as localization [1]. Different systems were 

developed in ancient times for the localization and navigation of ships at sea, but some of them 

were also capable of land navigation. In modern days, tracking an object can be considered 

equivalent to that. Currently, the availability of GPS on our smartphones help us to localize our 

present location. Self localization and aided localization are the two types of localization [2]. The 

innate ability of a person to locate his current position using natural abilities like sight, sense, 

hearing, etc., is defined as self localization while making use of the electronic devices to perform 

localization for a person is known as aided localization. Aided Localization is further classified into 

outdoor and indoor localization [2]. 

 

Figure 1.1: Types of localization 

 
In the last decade, the development in the field of positioning and localization have evolved 

massively. The expansion of modern communication technologies has resulted in a widespread 
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positioning services. In outdoor environments, adequate services have been provided by GPS for 

positioning and localization. GPS works finest with Line-of-Sight (LoS), however, it is not suitable 

for indoor positioning, because the signals do not penetrate through hard surfaces and are 

attenuated and dispersed by the roof, walls, and other objects, therefore different localization 

systems for indoor environments have been proposed and developed by different researchers [1]. 

1.2 Indoor Localization 

For the past 20 years, indoor localization has gained significance which resulted in the 

development of multiple indoor positioning systems having their pros and cons for both 

commercial and research purposes. Figure 1.2 shows the taxonomy of indoor localization systems 

to differentiate between a variety of signal-based indoor positioning systems. 

 

Figure 1.2: Taxonomy of indoor localization systems 

 
In Chapter 2, the measurement methods and signal technologies used in indoor localization 

systems are thoroughly discussed. A vigorous research has been done in the field of Radio 

Frequency (RF) and multiple systems have been developed using this technology. A radio wave is 

an excellent source of information for indoor positioning as it penetrates through walls, roofs, 



3 
 

human bodies, and other objects. RF is further divided into the narrow band (RFID, Bluetooth, 

WLAN/Wi-Fi, FM) and the wideband-based technologies (UWB). 

 

Localization can be used for many purposes, such as identifying combat troops, gathering 

marketing data, monitoring endangered species, directing self-driven vehicles, robot movement, 

indoor position for firefighters, hospitals, and malls, to provide navigation aid. While others 

mandate indoor localization to create better markets for the customers, to find the exact location 

of products placed in warehouses, to automatically detect object location, to detect medical 

equipment in hospitals, to detect firefighters in a fired building, to locate police-trained dogs for 

finding explosives in buildings and to find tagged maintenance equipment. 

 

Indoor localization systems also play a key role in automatic object detection or product tracking 

based on their locations. Detecting the location of a baggage in a large indoor area, location 

detection of any product lost in a shop, equipment spread over a large factory or farm. Similarly, 

position monitoring and emergency alerts in a building engulfed by fire, keeping track of a patient's 

activity in intensive care, monitoring a suspicious person's actions, and many more. Several 

localization techniques have been developed for positioning and navigation purposes [3, 4].  

1.3 Wi-Fi Fingerprinting 

Different localization systems for indoor environments have been proposed and developed by the 

researchers with their pros and cons. The most commonly adopted method is the Fingerprinting 

method. Fingerprinting provides better precision, though the practical implementation is relatively 

arduous, however, the working is very simple or least complex as opposed to other localization 

techniques. Also, no new equipment is needed and it can be introduced using the existing 

infrastructure. 

 

The measurement of signal power from an access point (AP) to a receiver that can be sampled in 

the WLAN environment without any additional requirement can be defined as a received signal 

strength indicator (RSSI). RSSI-based fingerprint positioning method uses location-dependent 

features and the position is estimated using these features. Offline and online are the two phases 

involved in the fingerprint-based indoor positioning. During the offline step, a database is 
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developed that has fingerprints in it where RSSI values are collected from the APs at predetermined 

reference points (RPs) over a fixed time. The fingerprints stored in the database consist of the 

reference point position and every single RSSI value collected from each access point measured 

in dBm. To successfully locate a fingerprint, it is important to apply some pre-processing 

techniques on the RSSI readings because of the noise present in the environment. In the online 

phase, RSSI readings from APs at random RPs are taken by the mobile users in the form of queries. 

Their suitable location would ultimately be determined by the machine learning algorithms 

through fingerprint matching. Mean position error is attained as a result of the difference between 

the actual and predicted location of a user in motion [3]. The baseline working of the Wi-Fi 

fingerprinting method is depicted in Figure 1.3. 

 

Figure 1.3: Wi-Fi fingerprinting method 

 

1.4   Problem Statement 

 Indoor positioning systems focused on Wi-Fi fingerprinting have become very common in 

recent years. However, the precision and robustness of these systems is a challenge because of 

the Wi-Fi signal propagation. 

 In the literature, various solutions for improving the accuracy and robustness of an IPS have 

been suggested, however, they rely on equipment costs, microprocessor computing failure, 

building plan, and implementation. 

 Due to geographical uncertainty, an unexpected error in localization is caused by the 

environmental dispersion. 
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1.5   Motivation 

If there is any emergency, fire in a building, or any other such situations, the security and law 

enforcement staff need to know exactly how many people are affected and their exact locations to 

safely rescue them. The basic knowledge about the number of people in the building or a large 

number of travelers at an airport is not enough to effectively deal with such a situation. The need 

is to know the individuals' precise positions because this can be a matter of life and death. 

 

Therefore, radio systems with positioning capabilities have emerging applications in home 

defense, law enforcement, emergency response, and defense command and control. Indoor 

location and positioning systems have become very common in recent years as a result of emerging 

technologies and developments. The Internet of Things (IoT), Automation, Directions and 

Navigations, Robotics, Self-driven Vehicles, etc. All these technologies require the 

implementation of localization systems within them. 

1.6  Indoor Localization Use Cases 

Indoor localization can be deployed to the following: 

 Museums. 

 Private Homes. 

 Context Detection and Situational Awareness. 

 Medical Care. 

 Police and Firefighters. 

 Guiding of Vulnerable People. 

 Gym and Fitness Centers. 

 Environmental Monitoring. 

 

1.7    Summary of Contributions: 

The main contributions of the work in this thesis are as follows: 

 A solution has been proposed for indoor localization where mean and median filtering 

techniques are used as pre-processing techniques with machine learning algorithms (kNN, 

WkNN, FSkNN, and SVM) to enhance the localization accuracy and efficiency of an IPS. 
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 Large training sets are key for obtaining better results in machine learning problems. 

Therefore, we have used the largest database available online created by authors in [5] and 

further processed it by applying the mean and median filtering. 

 Outliers were removed from the database after the proposed pre-processing techniques and 

then the position of a mobile user was estimated by the machine learning algorithms. 

 Moreover, to validate the superior performance of the proposed solution, a comparative 

analysis was carried out where different machine learning algorithms were compared with 

one another with mean, median, and without filtering. 

 The results have shown that the proposed SVM with median filtering algorithm 

outperformed other investigated machine learning algorithms with mean and median 

filtering. 

1.8   Thesis Organization 

There are five chapters of this thesis. Chapter 1 justifies the importance, motivation, and relevance 

of the research to the national needs. Objectives and summary of contributions are also discussed. 

Chapter 2 briefly discusses the related work. Chapter 3 explains the proposed model consisting of 

pre-processing techniques and the machine learning algorithms. Chapter 4 presents simulation 

results where the investigated machine learning algorithms are compared with one another using 

different pre-processing techniques. Chapter 5 summarizes the thesis work along with future 

recommendations. 
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Chapter 2 

 

LITERATURE REVIEW  

 

An analysis of previous advances in indoor positioning has been provided in this chapter which 

covers the most popular methods and matching algorithms used for indoor positioning. 

Performance matrices are explored with a particular emphasis on fingerprinting-based localization 

algorithms. The applications of indoor positioning systems are also discussed in detail. 

2.1 Localization Methods 

The generally used localization methods for indoor positioning are as follows [2]: 

 Trilateration & Triangulation. 

 Fingerprinting. 

 Proximity. 

 Dead Reckoning. 

 
Figure 2.1: Indoor localization methods 

 

In the following subsections, each of these methods will be discussed for better understanding. 

2.1.1 Triangulation 

In triangulation, the location of a target is determined using the geometric properties of triangles. 

It has two types: 

 Lateration. 

 Angulation. 
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2.1.1.1    Lateration 

In lateration, the distance from several reference points is calculated for determining the location 

of an object. Ranges are also calculated by using this method. Time of arrival (ToA) or time 

difference of arrival (TDoA) measurement method is used for this approach and using the 

relationship that gives the distance to the signal velocity multiplied by the time traveled is used to 

calculate the distance [1] [4]. Well-known used Lateration techniques are as follows: 

 Time of Arrival (ToA). 

 Time Difference of Arrival (TDoA). 

 RSS (Received Signal Strength). 

 RToF (Roundtrip Time of Flight). 

 RSP (Received Signal Phase. 

ToA The calculation of overall signal travel time from the transmitter to the receiver is the basis 

of ToA theory. This implies that the distance between the mobile target and the unit of 

measurement is directly proportional to the propagation time. As shown in Figure 2.2, ToA must 

be calculated with at least three reference points to approximate the position of an object in 2D. 

The ToA-based positioning systems measure unidirectional time of propagation and then the 

distance between the measurement unit and the transmitting unit is evaluated. With various 

signaling methods, such as direct-sequence spread-spectrum (DSSS) or ultra-wide-band (UWB) 

measurements, ToA may be used. ToA has issues with indoor environments because it is not 

always possible to guarantee LoS and multipath fading is a natural occurrence [2] [4]. 

 

 
Figure 2.2: Time of arrival (ToA) technique 
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TDoA Rather than an absolute time of arrival, this method determines the relative position of the 

cell transmitter by comparing the times at which the signal crosses different units of measurement. 

The transmitter must be based on a hyperboloid with a continuous difference in range between two 

measurement units in order to calculate TDoA. Two transmitters at established positions and 

receiver positioned on hyperboloid may be used for a TDoA calculation. The location of the target 

can be estimated in 2D, as shown in Figure 2.3, through two or more TDoA measurements’ 

intersection. Usage of correlation method is the standard method for calculating estimates of 

TDoA. This technique does not offer the guarantee of LoS indoor connectivity [1] [4]. 

 

 
 

Figure 2.3: Time difference of arrival (TDoA) technique 

 
 

RSSI Environmental factors affect the radio transmission and the reliability of the ToA & AoA 

measuring methods is influenced by RSSI. A substitute method for calculating the distance of the 

receiver from the transmitter is based on attenuation of the signal power. This method measures 

the path loss portion of the signal which results from propagation. The discrepancy between the 

RSSI of the transmitter and the RSSI of the receiver can be translated into range approximation 

with the aid of theoretical and empirical methods, as shown in Figure 2.4, where LS1, LS2, and 

LS3 represent the path loss that is measured. Since each indoor atmosphere has its own disruption 

features, path-loss models are often specific for the site which can enhance accuracy for pre-

measured RSSI contours oriented at the receiver or multiple measurements at multiple base 

stations [1, 2]. 
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Figure 2.4: Localization based on received signal strength (RSS) 

 

 

RToF This approach tests flight time from the transmitter to the unit of measurement and from the 

unit of measurement to the transmitter. RToF approach also appears in literature as Round-Trip 

Time (RTT) and Two Way Ranging (TWR). In this way, the criterion for getting synchronized is 

not as rigorous as in the ToA measuring system. In this case, the measuring unit is a typical radar. 

The radar signal being measured is received by a target transponder and the units of measurement 

measure the full round-trip time propagation. The delay issue with the respondent must be known 

by the unit of measurement. This is not a significant concern in long or medium-range systems, 

but it must be considered in short-range systems [2] [4]. 

 
RSP To estimate the range this approach uses phase difference. It is also called the Arrival Phase 

process. Better localization results are obtained through this approach when used with ToA / TDoA 

or RSSI methods for indoor localization systems. However, the downside of this approach is the 

need of the LoS path which leads to more errors in indoor environments if not fulfilled. Ambiguous 

calculations of carrier-phase are still an issue to be solved [1] [4]. 

 

2.1.1.2   Angulation 

The orientation of an object is determined using estimated angles relative to different reference 

points in the angulation measurement method. Usually, this technique is implemented with the 

AoA approach [1]. 

 

AoA The intersection of all pairs of angle direction lines created by the circular distance between 

the base station and the mobile target can be determined in AoA to determine the position of the 

target that is chosen, as shown in Figure 2.5. At least two reference points and two measured angles 
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to obtain the target’s 2D position, are normally allowed by these methods. An antenna array or a 

directional antenna are used to calculate the AoA. It is also known as path finding [2] [4]. 

 

 
Figure 2.5: Localization based on angle of arrival (AoA) measurement 

2.1.2 Fingerprinting  

The RSSI based fingerprint positioning method uses location-dependent features and the position 

is estimated by using these features. Offline and Online are the two stages involved in the 

fingerprint-based indoor positioning as demonstrated in Figure 2.6.  

 

 

Figure 2.6: Fingerprinting workflow of training and online phase 

 

In the offline stage, a fingerprint database is developed and in the online stage, the target position 

is estimated. In a fingerprint database, the RSSI values collected from access points at 

predetermined reference points over a fixed time are stored. In this database, each fingerprint 

effectively contains the information of location and RSSI values obtained from the access points 
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around that location.  RSSI fingerprints are obtained from several APs at each RP in the offline 

process. In an indoor environment, RP is the location that needs to be monitored and the fingerprint 

is updated or inserted into the offline database at each RP. To successfully identify the fingerprint, 

it is important to apply some filtering techniques on the RSSI readings because of the noise present 

in the environment. In the online phase, the RSSI value vector at an unknown location is checked 

by the background service running on a mobile user. The most likely location of mobile users 

would ultimately be determined using the positioning algorithms through RSSI value comparison 

between the offline and online phase. Fingerprinting aims to greatly increase the precision and 

accuracy of traditional signal strength lateration techniques. While RSSI is the most common 

signal technology used for fingerprinting, there are other systems that identify audio signals or 

visual images [1] [4].  

2.1.3 Proximity 

A mobile device's location only through its existence in a special area is determined by the 

proximity approach. Details about the symbolic relative location are provided by the proximity-

based algorithms. This approach works by simply redirecting the position of an anchor. The 

proximity measuring device is simple to set up, but the precision of the process is determined by 

the placement of anchor points and the range of the signals. The localization systems based on 

proximity are generally focussed on signaling techniques such as Infrared (IR) Identification  and 

Radio Frequency defined as RFID. Physical touch detection, automatic recognition systems, and 

mobile wireless positioning systems are specific examples of proximity-based localization systems 

[2]. 

 

2.1.4  Dead Reckoning 

In dead reckoning, the location is calculated by using knowledge of the previously determined 

locations and the predicted velocities over time. One concern with the use of this method is the 

cumulative inaccuracy; thus, over time, variance in the fix position rises. A concept called 

Pedestrian Dead Reckoning (PDR) is used in the context of indoor applications suggesting that 

external sensors such as accelerometers are connected to the user's body [2] [4]. 
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Table 2.1 summarizes the various algorithms and measurement methods used for indoor 

localization in terms of certain primary output metrics. 

 

Table 2.1: Summary of different methods used in indoor localization systems 

Method Measurement 

type 

Accuracy Coverage LoS/NLoS Multipath 

effect 

Cost 

Proximity RSS Low to 

high 

Good Both No Low 

Direction AoA Medium Good LoS Yes High 

Time ToA, TDoA High Good LoS Yes High 

Fingerprinting RSS High Good Both No Medium 

Dead 

reckoning 

Acceleration, 

Velocity 

Low to 

medium 

Good NLoS Yes Low 

 

2.2     Information Source-based Indoor Localization Technologies 

Different signal techniques may be used to build indoor localization systems. Those technologies 

are described below: 

 Infrared (IR) Localization Systems. 

 Ultrasonic (US) Localization Systems. 

 Radio Frequency (RF) Localization Systems. 

 Optical Localization Systems. 

 Other Localization Systems. 

2.2.1 IR Localization Systems  

Infrared radiation (IR)-based systems use the infrared spectral field to find applications to detect 

or track objects or individuals. They are readily available on different devices, such as cell phones, 

PDAs, and TVs. IR-based device mechanism is based on the use of LOS contact between the 

transmitter and the receiver unless the environment interferes with the optical sources. Because of 

their small size and lightweight, they are beneficial but also have protection and privacy problems, 

which require high hardware with maintenance costs [1, 2].  

Active Badge System [6] is an example of an infrared-based localization system. Table 2.2 lists 

some of the indoor localization systems that use infrared technologies. 
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Table 2.2: Indoor localization systems based on IR technology 

Name Year Accuracy Coverage Principle Target illumination 

Active Badges 1999 6m Scalable Proximity Signal tranmission 

Lee and Song 2007 dm 36m2 IR camera Retro reflective 

Ambiplex 2011 20-30cm 10m AoA Natural IR radiation 

Kinect 2011 1cm 3.5m Structured light Passive 

 

2.2.2 Ultrasonic Localization Systems 

Ultrasonic positioning devices use ultrasonic waves to determine the distance between the source 

of the sound and the mobile unit. Typically, such devices have a large number of ultrasonic 

receivers, and communication between them is accomplished using IR or RF waves. ToA sound 

signal data from source to the receiver is used by these systems to estimate the distance from source 

for receivers. Devices based on ultrasound have very high accuracy. These systems allow a good 

choice of indoor location even at low cost, ease of installation, and higher precision. A downside 

of ultrasonic localization systems is that multi-path reception is always impaired and can be 

difficult to implement on a large scale [1, 2]. 

 

Active Bat [7], Cricket [8], Losnus [9], and Alloula [10] are several examples of sound-based 

indoor localization systems. These devices have applications in smart mapping, surveillance, 

wireless sensor networks (WSN) and have cm-level precision. Table 2.3 summarizes some of the 

ultrasonic based indoor localization systems. 

 

Table 2.3: Ultrasonic based indoor localization systems  

Name Year Accuracy Carrier 

Frquency 

Principle Application 

Active Bat 1997 3cm 40kHz Multilateration Smart tracking 

Cricket 2005 1-2cm 40kHz Multilateration Smart tracking 

Losnus 2010 1cm 35-65kHz Multilateration WSN 

Alloulah 2010 3cm 20-50kHz Multilateration Monitoring 

Sato 2011 4cm 40kHz Multilateration Human motion 
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2.2.3 Radio Frequency (RF) Localization Systems 

Because of the property of radio waves, localization systems based on radio frequency (RF) 

technology are now commonly used to traverse obstacles such as buildings, human beings, and 

other objects. As a result, these systems have more coverage and need fewer equipment to deploy. 

The technologies using RF localization are as follows: 

 

 RFID. 

 Bluetooth. 

 WLAN/Wi-Fi. 

 FM. 

 ZigBee. 

 UWB. 

 Hybrid [1] [4]. 

 

2.2.3.1 RFID 
 

Indoor localization solutions use radio frequency identification (RFID), which is one of the most 

advanced tools for identifying persons or objects. A basic device would consist of a reader with an 

antenna searching its surroundings for active transceivers or passive tags on a continuous basis. 

Radio signals are one way to wirelessly relay data from RFID tags to the reader. The proximity 

approach is the most common technique for localization, in which the device detects that a human 

is currently wearing the RFID tag. RSSI can also be used in applications requiring coarse-range 

localization. Using the measuring methods ToA and AoA, RFID-based localization systems have 

proven difficult to build. It is also possible to apply fingerprint implementation based on pre-

measured signal maps to localize the RFID scheme. In many applications, such as people position, 

automotive assembly industry, warehouse management, supply chain network, etc., RFID-based 

localization systems are used because the software operates without sight requirements [2] [4]. 

 

[11], [12], and the “ways4all” method created by [13] are some examples of RFID-based 

localization systems. The table 2.4 provides a summary of several RFID based localization 

systems. 
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Table 2.4: RFID based indoor localization systems  

Name Year Tag Range Accuracy Principle Application 

Dziadak 2005 2m in meters Proximity Burried asset detection 

Seco 2010 30m 1.5m RSSI, FP Person/object location 

Peng 2011 100m 1-3m RSSI + IMU Pedestrian navigation 

Kimaldi 2011 13m room-level Proximity Hospital 

Kiers 2011 11-30cm dm Proximity Navigation of blind 

 

 

2.2.3.2 ZigBee 

 
ZigBee is a popular wireless standard technology for short- and medium-range communications. 

This can be considered as a low-rate Personal Area Wireless Network (WPAN). The specification 

is intended for applications that require low power consumption and have no high throughput of 

data. Indoor environments usually have a ZigBee signal range of 20-30 m. For the measurement 

of the distance between two ZigBee nodes, RSSI is the standard term used. One downside is that 

the proposed localization system is vulnerable to interference from the other sources of signal 

because ZigBee operates in the unlicensed industrial, scientific, and medical (ISM) band, which 

would interfere with the communication of radio [2, 3]. 

 

[14] and [15] are two examples of ZigBee-based indoor localization research. Table 2.5 lists a 

number of ZigBee based localization systems. 

 

Table 2.5: Indoor localization systems based on ZigBee technology  

Name Year Calibration Accuracy Principle Application 

Tadakamadla 2006 Minimal 3m RSSI Context, LBS 

Larranaga 2010 Yes 3m RSSI WSN, tracking 

MyBodyguard 2011 No Proximity Fingerprinting Tracking 

 

 

2.2.3.3 WLAN/Wi-Fi 

 
Because of the low network expense and lack of need for LoS, it is standard practice to use a Wi-

Fi-based indoor positioning system. Without any extra modification of the hardware or software, 

any computer with Wi-Fi compatibility can be easily found. Although the measurement methods 

ToA, AoA and TDoA have different frameworks, they are commercially available and are also 
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based on the concept of measuring signal intensity received. Introducing a localization scheme 

using WLAN technology has many advantages. Many of them have readily accessible access 

points in indoor environments, no special hardware specifications, and a range of 50-100 meters, 

which makes it more attractive than Bluetooth or RFID. 

 

RADAR [16] is an example of a Wi-Fi-based localization program. It was created as a user-

friendly location and monitoring application that addresses all location and tracking problems. It 

is a comfortable indoor localization solution since it was implemented entirely in software. The 

basic idea behind RADAR was to use signal strength as a feature of receiver location and 

transmitter map. The approach to fingerprinting has an offline and an online process [2] [4]. Table 

2.6 shows a summary of several WLAN/Wi-Fi based localization systems. 

 

Table 2.6: Indoor localization systems based on WLAN/Wi-Fi technology  

Name Year Accuracy Calibration Principle Application 

Bahl 2000 5m Yes FP Offline training 

Gunther 2004 5-15m No RTT - 

Chen 2005 2-4m Yes FP & FRID Offline training 

Wong 2008 2m No AoA - 

Ekahau 2009 7m Yes FP Offline training 

Gansemer 2010 2.1m Yes FP Offline training 

Hansen 2011 4cm Yes FP Dynamic model 

 

 

2.2.3.4 Frequency Modulation (FM) 

 
FM radios are a well-established broadcasting system, and the circumstance that they are used in 

most homes and vehicles makes them a good option as FM radio transmission audio signals can 

be used for indoor navigation (and positioning). Fingerprinting (approach) methods have been 

found to be more feasible for FM radio-based positions than ToA and TDoA approaches [3, 4]. 

 

There hasn't been much work done on improving indoor-based localization using FM radio signals, 

however [17], which is based on the RSSI fingerprinting concept for an office setting, contains 

some of the applied work. Table 2.7 shows some of the FM based localization systems. 
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Table 2.7: Indoor localization systems based on FM technology  

Name Year Calibration Accuracy Principle Application 

Papliatseyeu 2009 Yes 4.5m Fingerprinting Indoor navigation 

Popleteev 2011 Yes 5m Fingerprinting Employee tracking 

Moghtadaiee 2011 Yes 3m Fingerprinting Employee tracking 

 

 

2.2.3.5 Bluetooth 

 
Bluetooth is identical to ZigBee; a Wireless Protocol Bluetooth is a patented Bluetooth Special 

Interest Group (SIG) technology. Bluetooth works at 2.4 GHz in the ISM band. The most 

significant benefit of using Bluetooth on an application is that virtually any Wi-Fi-enabled 

handheld phone, smartphone, personal digital assistant (PDA), or laptop now has a Bluetooth 

module. This technology also offers another advantage by the use of the Bluetooth protocol for 

information communication in the form of providing high security, low cost, low power, and small 

size. Each Bluetooth tag has a unique identifier that can be used to track down a Bluetooth user. 

The use of Bluetooth has one possible disadvantage in the form of latency of the Bluetooth system 

that could make it unsuitable for real-time positioning applications. This is because, with every 

location detection, the device discovery process has to be run, which in turn increases localization 

latency and power consumption [3, 4]. 

 

The Real-Time Navigational Assistance (URNA) system [18] was one of the first localization 

applications to use the Bluetooth technology standard. The goal was to allow Bluetooth-enabled 

mobile devices to share location-based information. It is based on the Proximity principle. Table 

2.8 shows some of the Bluetooth based localization systems. 

 

Table 2.8: Indoor localization systems based on Bluetooth technology  

Name Year Calibration Accuracy Principle Application 

Aalto 2004 No 20m Proximity Advertising 

Bargh 2008 Yes room-level Fingerprinting LBS 

ZONITH 2011 No room-level Proximity Employee tracking 
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2.2.3.6 Ultra-wideband 

 
UWB is a high-bandwidth, short-range radio system with strong multi-path resistance properties. 

Since other conventional wireless solutions, such as RFID and WLAN/Wi-Fi, do not have such 

high accuracy, UWB is widely used for location systems with high precision measurements (20-

30 cm). Radio wave generators and receivers capable of capturing propagated and scattered waves 

will be used in a basic UWB stimulation localization framework. UWB signals have the ability to 

travel through walls, windows, and other barriers, making them ideal for indoor environments 

where ranging is not constrained by LoS and inter-room ranging is feasible. The problem with 

UWB is that it is a costly technology that is inefficient for large-scale deployment [1-4]. [19], [20], 

and [21] all have localization systems dependent on UWB technologies. Table 2.9 shows some of 

the UWB based localization systems. 

 
 

Table 2.9: Indoor localization systems based on UWB technology 

Name Year Noise Radar or 

IR (Pulse Duration) 

Accuracy Principle Application 

Stoica 2006 IR(750ps) 4cm ToA Sensor networks 

Fischer 2010 IR(200ps) 4cm ToA, RTT Industrial 

Segura 2010 IR(2ns) 20cm TDoA Mobile robot 

Kroell 2010 Pseudo noise 4cm FP Office 

UBISENSE 2011 IR(very short) <15cm TDoA, AoA Automation 

 

 

2.2.3.7 Hybrid 
 

For finding a mobile user, hybrid localization schemes use a variety of technologies. One of the 

most important services provided by a localization system is the ability to locate a mobile user, 

and since some location solutions are primarily developed for indoor and GPS-based positioning 

systems, using an indoor and outdoor hybrid system will be extremely advantageous. This is how 

the concept of a mixed localization approach arose. Navizon, Xtify, Devicescape, and SkyHook 

are examples of hybrid localization systems that have been developed [3, 4]. 

 

2.2.4 Optical Positioning Systems 

The key sensor cameras are optical indoor positioning devices. Optical positioning devices may 

also be used in conjunction with mechanical or remote sensors. The AoA method is used 

exclusively in optical indoor localization systems that use camera-based device architectures. 
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Camera-based indoor localization systems have benefited from advancements in CCD 

technologies, processing speed, and image perception [1] [4]. 

Table 2.10 summarizes how optical localization systems can be classified based on their primary 

mode of reference. 

Table 2.10: Optical indoor localization systems  

Name Reference Coverage Accuracy Camera Positioning Camera Cost 

Hile Floor plan Scalable 30cm cam., SR 4000 900 $ 

Ido Images Scalable 30cm cam., IEEE 1394 - 

Mulloni Coded markers Scalable m-dm cam., call phone Low 

Popescu Projection 25m2 cm camera 1500 $ 

DEADALUS None m-km 0.04mm obj., Guppy F80 High 

 

2.2.5 Other Systems 

Some other systems can be used for indoor positioning which can be explicitly built devices with 

a particular application. They include: 

 Inertial Navigation Systems (INS). 

 Magnetic Localization. 

 Infrastructure Based Localization Systems [4]. 
 

In the following subsections, each of these systems will be discussed for better understanding. 

 

2.2.5.1 INS 

An INS consists of an Inertial Measurement Unit (IMU) and the main components are a processing 

unit. But it also makes use of complementary sensors to provide localization information. An INS 

is an electronic tool used to estimate location, velocity, and direction from the IMU. The standard 

IMU consists of three accelerometers, three gyroscopes, and/or one magnetometer, arranged 

orthogonally [4]. 

Table 2.11 shows the summary of INS based localization systems. 
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Table 2.11: INS based localization systems. 

Name Mounting 

body part or 

device 

Comlimentary 

Sensors 

Accuracy Local Reference IMU Sensors 

Kemppi Waist/pocket 3 Accelerometers 

& Gyroscopes 

17m Map, beacon Accelerometer 

Seitz Phone 3 Accelerometers 

& Magnetometers 

5m WLAN, RSSI Bosch, BMA150 

Kligbeil Waist 3 Accelerometers, 

Magnetometers, 

Gyroscopes & 1 

Barometer  

1-6m GPS, US, RF, CSS Accelerometer 

Jimenez Foot 3 Magnetometers 

& Gyroscopes 

1m RFID, RSSI MTI-G, Xsens 

 

2.2.5.2 Magnetic Localization 

Magnetic and electromagnetic fields are now being used to create localization technologies. 

Permanent magnets or coils of AC or DC as a source of magnetic fields can be used in these 

devices [4]. 

Table 2.12 shows some of the magnetic localization systems. 

Table 2.12: Magnet localization systems  

Name Year Coverage Accuracy Principle Application 

Haverinen 2009 280m 1mm Fingerprinting Robot localization 

InfraSurvey 2011 200m 1m AC magnetic field Caves, mines, tunnels 

Q-Track 2011 23m 50cm Near field NLoS office & industry 

Arumugam 2011 50m 20cm DC field, coils American football 

 

2.2.5.3 Infrastructure Based Localization Systems 

In addition to using current building facilities or incorporating the new technology into building 

materials, localization systems do not depend upon any of the technologies mentioned above. 

Common examples are Power Lines, Floor Tiles, and Fluorescent Lamps [3, 4]. 

Table 2.13 shows some of the infrastructure based localization systems. 
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Table 2.13: Infrastructure based localization systems 

Name Year Coverage Accuracy Principle Application 

Stuntebeck 2008 Building 1-3m Power lines Location aware homes 

SensFloor 2011 50m2 dm Floor tiles Assistance for elderly 

Nishikata 2011 Building 10cm Fluorescent lamps Robot guidance 

Weber 2011 40m 4m Leaky feeder Indoor localization 

 

Figure 2.7 shows a comparison of various indoor location systems in terms of accuracy and 

coverage. 

 
Figure 2.7: Overview of indoor technologies according to their accuracy and coverage 

 

2.3    Matching Algorithms 

 
The nearest neighbor (deterministic) and Bayesian (probabilistic) are the two most common 

matching algorithms. In the prior approach, a clear distinction between deterministic and 

probabilistic techniques is that the RSSI values are interpreted as single values, and the latter use 

distributions of probability for representation. The probabilistic methods contain more information 

about the range of the signal strength but are highly complex, while the deterministic methods are 

simple to implement and process [22]. 

 

2.3.1 Probabilistic (Bayesian) 

 
The probabilistic method is based on Bayes Theorem. The location is estimated from signal 

strength vector collected in the online phase S = (S1, S2 ..., Sk), and a set of locations X = {X1, X2, 

..., Xm}, that maximizes the conditional probability shown in eq. 2.1. 
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                                                                      P (Xi | S)                                                                   2.1 

 

According to Bayes theorem: 

                                                      P (X | S) = P (S | X) P(X) / P(S)                                              2.2 

 

The Horus system [23] is a probabilistic system, as opposed to RADAR. The radio map saves the 

histogram of the samples obtained from each AP for the signal power. The process of position 

estimation is a mixture of two techniques, i.e., a discrete estimator of space and a continuous 

estimator. 

 

2.3.2 Deterministic 

 
The deterministic matching algorithm uses deep learning, data processing, artificial neural 

networks, and other techniques to align fingerprint data in real time. Since this approach relies on 

signal intensity measurements, the accuracy of fingerprint data obtained offline has a significant 

impact [1]. 

 

2.3.3 kNN 

 
For supervised machine learning, the k-Nearest Neighbors (kNN) algorithm can be deployed to 

unravel the problems related to both classification and regression. It determines the location based 

on the distance between patterns and reference patterns present in the database. Distance can be 

calculated using a variety of methods, such as Manhattan distance or Euclidean distance. 

Depending on their reciprocal distance, it decides the best matching fingerprints and averages the 

position of the same k patterns. 

The kNN algorithm was initially used in RADAR for indoor positioning that takes k RPs with the 

least signal distance between the unspecified RSSI vector of the online user and the identified 

location databases [24, 25]. 

 

2.3.4 WkNN 

 
Weighted kNN is a modified version of kNN. Weight is calculated based on the weighting function 

which is the reciprocal of the distance between the neighbors. The choice of the hyper parameter 

k is one of the many problems that influence the kNN algorithm's efficiency.  The algorithm may 
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become more vulnerable to outliers when the value of k is very small. Too many points may be 

included in the field from other groups when k is very high. Another problem is the way to 

incorporate class names. The simplest method is for majority voting, but if the closest neighbors 

are far different from each other and the closest neighbors display the object's class more precisely, 

it could be a problem [26]. 

 

In [26], a new approach is suggested to improve the accuracy of the WkNN algorithm by 33.82 % 

by changing the weight of the neighboring reference nodes obtaining a mean position error of 0.9 

m in a relatively small indoor environment with few RPs. Junhuai Li et al. [27] proposed the 

Improved Fuzzy C-Means (IFCM) algorithm for the division of the region in the offline training 

process, and the Pearson Correlation Coefficient (PCC) based weighted k-nearest neighbor 

(WkNN) algorithm in the online positioning process, achieving a mean positioning error of 2.53 

m. However, the proposed model did not address the optimization of AP deployment approach 

based on the real environment in order to optimize fingerprint discrimination in each area. An 

improved adjacent RPs filtering system for Wi-Fi-based indoor localization. was suggested in [28]. 

To enhance their selection phase, the physical distances between the testing point and the 

neighboring RPs are used to cluster k's nearest neighbors. A mean position error of 2.6 m was 

obtained using the proposed algorithm that outperformed the standard kNN, WkNN, and TPIC 

algorithms. Moreover, no pre-processing techniques were applied in the proposed model. 

 

2.3.5 FSkNN 

 
Assigning different weights to signal variances at different RSSI rates is the basic concept behind 

FSkNN when determining the similarity between dual RSSI values. It needs to create an RSSI-

value-based FS model for comparison of similarities. For this model to run legally, it must first be 

optimized databases, depending on which simulated annealing (SA) is used to actuate the RSSI-

level-based scaling weights in the offline phase. In the online process, between an instantaneous 

RSSI vector and any reference fingerprint in the database, the effective signal distance calculation 

is performed, and afterward, the restoration of the first k RPs causing the least active signal 

distances is carried out, and the same distances are then used for the estimated area.  
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Authors suggested a feature scale k-nearest neighbor (FSkNN) algorithm in [29] to enhance 

localization accuracy when a new FS RSSI model is created, including a scaling RSSI level for 

measuring efficient signal distances between an MS signal vector and fingerprints in the radio map 

that achieve an average position error of 1.7 m. However, multipath fading was a major concern 

in their findings which can vary the RSSI values. 

 

2.3.6 SVM 

 
The Support Vector Machine (SVM) has become popular due to its favorite 

classification/regression effect, a relatively new multivariate statistical approach. A classic SVM 

is a support-vector network that can be used in supervised learning models. This model is a non-

probabilistic binary classifier that can be used to characterize the hyperplane that separates the 

classes in the training set. It gives a maximized margin. The side of the hyperplane on which a 

previously unobserved data point falls can be used to estimate its expected mark. 

 

SVM is a powerful supervised learning model that excels at dealing with high-dimensional data 

sets. It is particularly useful for addressing memory use because it promotes estimation using 

support vectors. SVM's main appeal is that a high degree of precision is guaranteed for a few 

training points. These training points are support vectors that can categorize any new data point in 

the network. SVMs are capable of multiclass classification as well as binary classification.  Non-

linear classification can also be carried out by SVMs, which can help to find the hyperplane of a 

non-linear operating input vector. For example, an input variable can be mapped into a high-

dimensional space for functionality [30]. 

 

Authors in [31] suggested a method of extraction of fingerprint features known as the Fisher score-

stacked sparse autoencoder (Fisher-SSAE) method building a hybrid localization model to prevent 

major coordinate errors of localization accredited to subregional errors of localization. A mean 

position error of 2.09 m was obtained in combination with three localization algorithms, support 

vector regression (SVR), random forest regression (RFR), and multiplayer perceptron 

classification (MPC). However, in this analysis, the moving target was not taken into account. 

 

 



26 
 

2.4    Performance Metrics of IPS 

 
IPSs use various localization techniques which are incredibly different in terms of precision, cost, 

accuracy, innovation, scalability, robustness, and safety. Low-cost IPS can be used in certain 

applications, whereas high-precision IPS may be used in others, such as medicinal tracing, 

industrial environmental control, and blind indoor positioning. Diverse performance metrics of 

IPSs are depicted in this field. 

 

2.4.1 Accuracy 

 
The term accuracy is characterized in the Joint Committee for Metrology Guides (JCGM), as the 

similarity of agreement between a calculated value and an actual value of a deliberate [32]. The 

average Euclidean distance between the measured and actual location is the precision of IPS in 

this way. The precision is an incredibly difficult area for some field analysts. Some compromises 

among accuracy and other performance metrics that be required [32], given the fact that the 

accuracy of an IPS is an essential driver for most applications.  

 

2.4.2 Coverage Area 

 
The area covered by IPS is called the area of coverage. Every IPS operates in a different range all 

of the time. The most powerful systems are those that shelter a large amount of data [33]. Inclusion 

levels can normally be three; local, scalable, and global for positioning systems. A well-defined, 

finite area is referred to as local coverage that cannot be extended as a single room or building, 

while a scalable coverage is taken as a system's capacity to expand the space by including 

equipment. Then again, for example, GPS, a device that has a worldwide region is referred to as 

global coverage. In present days, current IPSs range from 5 m to 50 m. In this way, it is difficult 

to offer a system that has a range of more than 60 m [33]. 

 

2.4.3 Availability 

 
The percentage of time the positioning service is available for use with the required precision and 

fairness is known as accessibility. As IPS Credibility is the assurance then it can be set in the IPS 

yield. Much like congestion in communications and scheduled factors, the availability may be 
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limited by irregular factors, such as daily maintenance. There are three levels of availability, i.e., 

less availability (< 95%), consistent availability (> 99%) and higher availability (> 99%) [33]. 

 

2.4.4 Scalability 

 
A positioning system can determine the location of objects around the world, within a metropolitan 

area, on campus, in a specific building, or a solitary room. Additionally, the quantity of targets 

system may be traceable with a specific number of infrastructures or may be restricted above a 

given time [34]. If the scalability scales in one of the two measurements: geology and number of 

customers, then the scalability of an IPS implies device ensures general positioning efficiency. The 

quantity of the size of clients means that there is a rise in the number of units found per geographic 

region by time. 

 

2.4.5 Cost 

 
The cost of the IPS is measured at different scales, and these measures are money, time, space, and 

energy. This is triggered at various frame stages: system installation and maintenance, network 

elements, and gadget location [35]. For the establishment and maintenance of the system, the cost 

includes the costs needed for the establishment and any costs that are necessary to save the 

functional framework, while for the procurement and preparation of components, the costs for 

infrastructure components and the location of gadgets may include expenditures, space, and energy 

to use the equipment. For example, IPSs that make use of existing facilities, such as the network, 

are more cost-effective. Some positioning systems, such as passive RFID stickers, are energy-

efficient, while others use a lot of energy. This energy can be considered as a basic asset in IPSs 

to keep away from the disruption of the facilities and have greater portability arrangements. 

 

2.4.6 Privacy 

 
People who use IPSs need to be protected, and having a clear command about how individual 

client data is gathered and used is important. The aim is to improve the privacy of consumers, for 

a particular intent, confidential tools must be implemented and held to protect information from 

intrusion, theft, and misappropriation. Regrettably, until now, the safety factor of IPSs has been 

overlooked in much of the presumed work in the area of indoor positioning [36]. 
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Chapter 3 

 

PROPOSED MODEL 

 

This chapter gives complete overview of the proposed indoor positioning model in real time 

environment. Mean and median filtering techniques are used as pre-processing techniques with 

machine learning algorithms (kNN, WkNN, FSkNN, and SVM) to enhance the localization 

accuracy. Large training sets are key for obtaining better results in machine learning problems. 

Therefore, we have used a WLAN fingerprinting-focused multi-building and multi-floor location 

database created by authors in [5] and further processed it by applying the mean and median 

filtering on the database. In the online phase, the machine learning algorithms are applied when a 

query needs to be matched with the offline database to find the best match for locating the user in 

a given area. This model helps in reducing the impact of environmental factors and minimizing 

the mean position error.  

3.1    Introduction 

RSSI localization techniques are based on calculating the signal intensity of a user to multiple 

access points located at different locations, then evaluating the distance between the user and the 

access points. Trilateration techniques may be used to measure the user's calculated location 

according to the APs' predetermined position. 

 

Traditional fingerprinting is also RSSI-based, but it simply relies on signal strength recording from 

multiple access points in range, and this information is stored in an offline database with the user 

device's established co-ordinates. That data, however, may be deterministic or probabilistic. The 

current RSSI vector is then compared to the stored database as a fingerprint by an unknown 

location, it occurs during the online phase, and the nearest match is served as the estimated user 

location.  

 

The database has been created with two android applications, CaptureLoc and ValidationLoc. Both 

applications are used as services of reference map, providing spatial details about the interiors of 
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buildings as well as the localization of training reference points [5]. The proposed model suggests 

to use mean and median filtering as pre-processing techniques with the investigated machine 

learning algorithms to enhance the efficiency of an indoor positioning system. Figure 3.1 shows 

the block diagram of the proposed model. 

 
Figure 3.1: Proposed model block diagram 

3.2    Pre-Processing Techniques 

In the following subsections, the pre-processing techniques of mean and median filtering will be 

discussed in detail and how these techniques behave to the extreme values in the datasets. 

 

3.2.1 Mean Filtering 

 

Mean filtering is one of the pre-processing techniques that is used to minimize the noise in the 

RSSI database. It plays a vital role in indoor positioning system as it takes average of the recorded 

RSSI samples thus, minimizing the effect of environmental factors. Mean filtering is applied on 

the database before the online phase where machine learning algorithms are used [1-3]. Mean 

�̅� can be defined as:  

�̅� =    
∑  𝑋𝑖   

𝑁
𝑖=1

N
                                                                                                                                                         (3.1) 

where ∑ X  is the sum of all the x values and N is the number of x values. 

Consider a case when an extreme value ‘y’ is added to the data set due to noise. Eq. (3.1) then 

becomes: 

𝑋𝑦
̅̅̅̅ =    

∑  𝑋𝑖   
𝑁−1
𝑖=1  + y

N
                                                                                                           (3.2) 

Eq. (3.2) shows that if y > 0 then, 𝑋𝑦
̅̅̅̅  > �̅�. However, if y < 0 then, 𝑋𝑦

̅̅̅̅  > �̅�. This proves that mean 

is affected when an extreme value is added to the data set. Therefore, some sort of filtering is 

required to tackle the extreme values in the data set.  
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3.1.2    Median Filtering  

Median filtering is used to remove outliers from the recorded RSSI values. By applying median 

filtering, the RSSI values on a current reference point from a particular access point are arranged 

in ascending order and median is calculated. If the total number of RSSI values is odd then the 

central value is taken as the median, however, if the number is even then median is the average of 

the two central values.  

If ‘n’ is odd, then median is given by: 

Median = 
(𝑛+1)

2
 th  term                                                                                    (3.3)                   

However, if ‘n’ is even, we have: 

Median = (( 
𝑛

2
 ) th  term + ( 

𝑛

2
 + 1) th  term) / 2                                                                             (3.4)                                                                                         

Consider two cases when an extreme value ‘y’ is added to the data set due to noise. Eq. (3.3) and 

Eq. (3.4) then becomes: 

Mediany =  
(𝑛+1)

2
 th term                                                                                                                               (3.5) 

Mediany = (( 
𝑛

2
 ) th  term + ( 

𝑛

2
 + 1) th  term) / 2                                                                                             (3.6) 

From Eq. (3.5) and Eq. (3.6), we can observe that median remains unchanged when an extreme 

value is added to the data set. The samples are arranged in either ascending or descending order 

and extreme values are never used while calculating median. Therefore, median filtering is 

immune to outliers. 

 

3.3    Machine Learning Algorithms 

 
In the following subsections, machine algorithms will be discussed in detail. The pseudo codes of 

the proposed machine learning algorithms have also been given for understanding the working of 

the proposed model. 

 
3.3.1 k-Nearest Neighbor (kNN) Algorithm 

 

The kNN algorithm is a supervised algorithm for machine learning that can solve problems with 

both classification and regression. It determines the location through the distance between patterns 

and reference patterns present in the database. A range of formulas, e.g., Manhattan distance or 
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Euclidean distance, may be used for distance measurement. Depending on their reciprocal 

distances, it decides the best matching fingerprints and averages the position of the same k patterns. 

Before that, the reference points relating to these k fingerprints are used to find the predicted 

position [25]. In order to find the difference between the RSSI vector being assessed and one of 

the fingerprints, the vectors thus serve as the main component in pattern matching algorithms. We 

can also say the similarity between the two matching objects is essential. Euclidean distance can 

be calculated according to Eq. (3.7).  

Let (RSS1, RSS2, · · ·, RSSN) represent an RSS vector reported by a mobile station (MS) for 

localization, where RSSx represents the RSS value received from the xth AP by the MS. The 

distance can be calculated as: 

dm = √∑  (𝑅𝑆𝑆𝐼 𝑚,𝑛   −  𝑟 𝑛 (𝑡))2𝑁
𝑛=1                                                                                                           (3.7) 

where the mean RSS value received at the mth RP (1 ≤ m ≤ M) and nth AP (1 ≤ n ≤ N) with M and 

N representing the total number of RPs and APs, respectively is represented by RSSIm,n. The 

fingerprint associated with the mth RP is represented by the mth row, which has known location in 

terms of coordinates. 

The pseudo code of kNN algorithm for the proposed model is shown below: 

Algorithm 1:   kNN Algorithm 

Input: 

 Pre-processed training dataset T. 

 Distance defining function D. 

 An integer k. 

Output: 

 Estimated location. 

 Mean position error. 

Steps: 

For a testing dataset X, for which we want to predict its output variable dataset Y: 

1. Calculate all the distances of this testing dataset X with the other fingerprints of the training 

dataset T.  

2. Take k fingerprints from the training dataset T close to X using the distance calculation 
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function D. 

3. Take the values of Y from the k fingerprints taken and calculate the mean of Y deductions. 

4. Return the values calculated in step 3 as the values that were predicted by kNN for testing 

dataset X. 

 

3.3.2 Weighted k-Nearest Neighbor (WkNN) Algorithm 

 

Weighted kNN is a modified version of k nearest neighbors. Weight is calculated based on the 

weighting function which is the reciprocal of the distance between the neighbors. The choice of the 

hyper parameter k is one of the many limitations that influence the kNN algorithm's efficiency.  The 

algorithm may become more vulnerable to outliers when the value of k is very small. Too many 

points may be included in the field from other groups when k is very high. Another problem is the 

way to incorporate class names. The simplest technique is for majority voting, however if the closest 

neighbors are far different from each other and the closest neighbors display the object's class more 

precisely, it could be a problem [26].  

 

Assuming that there are M RPs and N APs, the signal strength vector of ith RP is RSSi = RSSi1, 

RSSi2,…, RSSij,…., RSSiN, where i = 1, 2,…, M and j = 1, 2,…., N and the fingerprinting database is 

formed by all the vectors. Suppose RSSun = RSS1, RSS2,…,RSSj,…, RSSN is the RSSI vector measured 

from all the APs on the unknown points. The distances between RSSun and all the RSSi are calculated 

with Eq. (3.8) in order to obtain the location of this unknown point (UP), where Manhattan distance 

(or sum of absolute differences, SAD) is represented by q = 1 and Euclidean distance (or sum of 

the squared differences, SSD) is represented by q = 2 respectively. 

Di  = ( ∑ |RSS𝑁
𝑗=1 ij  -  RSSj  |

q ) 1/q  ,     i = 1,2…… M                                                                                (3.8)                    

The minimum distance of k is then chosen for the next step in all Di. An UP’s coordinate can be 

represented as:   

𝐶𝑢𝑛   =  
1

𝑘
 ∑  𝐶𝑡   

𝑘
𝑡=1                                                                                                                                        (3.9)                                                 

The coordinates of UP and the corresponding RP are respectively denoted by Cun and Ct. The WkNN 

algorithm assigns a weight according to the distance value to each coordinate. The weight Wi of the 

ith selected RP can be calculated as: 
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𝑊𝑖 =  

1

 𝐷𝑖

∑ (
1

 𝐷𝑗
)𝑘

𝑗=1

  ,   i = 1, 2…… k                                                                                                       (3.10) 

For WkNN, Eq. (3.9) is updated as: 

𝐶𝑢𝑛   =   ∑  𝑊𝑖 𝐶𝑖
𝑘
𝑖=1                                                                                                                         (3.11) 

 

For the weighted kNN, any function may be used as a kernel function whose value decreases as 

the distance increases. Inverse distance function is the simplest function used for this purpose. The 

pseudo code of WkNN algorithm for the proposed model is shown below: 

Algorithm 2:   WkNN Algorithm 

Input: 

 Pre-processed training dataset T. 

 Distance defining function D. 

 An integer k. 

Output: 

 Estimated location. 

 Mean position error. 

Steps: 

For a testing dataset X, for which we want to predict its output variable dataset Y: 

1. Calculate all the distances of this testing dataset X with the other fingerprints of the training 

dataset T.  

2. Predict the class of the query point, using distance-weighted voting. 

3. Take the values of Y from the k fingerprints taken and calculate the mean of Y deductions. 

4. Return the values calculated in step 3 as the values that were predicted by WkNN for testing 

dataset X. 

 

3.3.3   Feature Scaling Based k-Nearest Neighbor (FSkNN) Algorithm 

 

FSkNN algorithm introduces RSSI level-based scanning in order to calculate the effective signal 

difference between various signal vectors during the corresponding synchronization [25] [29]. dꞌm 
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shows the fingerprint attached to the mth
 RP and an appropriate signal distance between the online 

applications in order to measure it by: 

d'
m=√∑  (𝑅𝑆𝑆𝐼 𝑚,𝑙   −  𝑅𝑆𝑆𝐼 𝑙 )2 ∗ 𝑤(𝑅𝑆𝑆𝐼 𝑙 )

𝐿
𝑙=1                                                                                                                                         (3.12)  

Quantity of the effective RSSI distance is being shown by scaling the weight function w(.). At the 

RSSI level of RSSIl, one unit of RSSI shift is comparable and it must also be noted that its esteem 

can differ from the actual RSSI.  The effective distance of the signal is computed by Eq. (3.12) in 

such a way that the relation between the actual signal distance and the geometrical distance is 

explained in a better way. In a complex indoor environment, it is hard to provide a closed-form 

expression for w(.) In such a simulation model, the scenario is treated by dividing the entire RSSI 

plane equally into n (n ≥ 1) intervals. A single fixed value as a scaling weight for each interval is 

then calculated through precise measurements and repeated tuning.  If the value of n is equal to 1, 

the FSkNN model will be degraded to the kNN model. RSSI-value-to-scaling-weight plotting is 

therefore known as a type of a step function, such as: 

w(x) = ∑  𝑎 𝑖   𝑋 𝑖 (𝑥)𝑁
𝑖=1                                                                                                                                             (3.13)                          

where x represents the RSSI value and the scaling weight at RSSI vector (x) for actual difference 

of the signal is represented by w(x). Let Ai is the ith RSSI break 1 ≤ i ≤ n, for that Ai interval with 

αi as coefficient. The sign function xi (x) of the same interval Ai, is expressed as: 

𝑋 𝑖 (𝑥)    =  {
1 , 𝑥 ∈   𝐴 𝑖   

 0, 𝑥 ∉   𝐴 𝑖   
 ,   1 ≤ i ≤ n                                                                                                                (3.14)  

If a value of RSSI (x) lying in the interval Ai  is collected by the mobile station then, from Eq. 

(3.14), Xi (x) will be equal to one while all other values, i.e., Xi (x) having position j ≠ i, equals to 

zero. After that the accomplished outcome w(x) from Eq. (3.14) (equivalent αi) is used to measure 

the distance of effective signal in Eq. (3.13) as a scaling weight for RSSI value x.  

The pseudo code of FSkNN algorithm for the proposed model is shown below: 

Algorithm 3:   FSkNN Algorithm 

Input: 

 Pre-processed training dataset T. 

 Distance defining function D. 

 An integer k. 
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Output: 

 Estimated location. 

 Mean position error. 

Steps: 

Step 1: Offline phase 

 For all RPs on radio map, save Reference files (Rf) 

 w(.): tuning coefficient 

 Rf/2: Representation 

 C: Evaluation 

 αi: Optimization 

Step 2: Online phase 

 dm: Euclidean distance × w(Rfi) 

 D: sorting in ascending order and select “k” Rf  

 P(x,y): taking average of set k 

 

        Representation, evaluation and optimization are the three stages of FSkNN model. In 

representation, a filtered training set prepared fingerprints with known coordinates for locating a 

mobile user in an unknown location. The testing set has been used to evaluate iteratively the 

localizing efficiency of modified coefficients during various iterations. The sum of distance errors 

denoted by cost based on testing set was calculated using Eq. (3.15) for each set of coefficients 

obtained in the evaluation phase. 

Cost = ∑ √ (𝑥 𝑖   −  𝑥′
𝑖 )2 +   (𝑦 𝑖   −  𝑦′

𝑖 
)2𝑚

𝑖=1                                                                                                (3.15)                        

where m is the total no of features and xi and yi are the actual coordinates of the ith element in the 

testing set. The RPs present in the testing set were taken as anonymous locations in the evaluation 

process. Larger sum results in greater accuracy of the positioning. The optimal solution is, thus, 

obtained by using coefficients to make cost = 0. In optimization, new coefficients were searched 

by simulated annealing (SA) for obtaining better accuracy. Coefficients were changed randomly 

during each iteration. This whole process continued until the iteration number reached a pre-set 

maximum number.   
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3.3.4 Support Vector Machine (SVM) Algorithm 

 

SVM has become popular due to its classification/regression effect, a relatively new multivariate 

statistical approach. A classic support SVM is a support-vector network that can be used for 

supervised learning models. This model is a non-probabilistic binary classifier that can be used to 

characterize the hyperplane that separates the classes in the training set. The projected mark of a 

formerly overlooked data point can be evaluated by the side of the hyperplane it lands on. [30].  

SVM is a powerful supervised learning model that can effectively manage high-dimensional data 

sets [30]. The training points are support vectors that can categorize any new data point in the 

network. SVMs are capable of multiclass classification as well as binary classification. Non-linear 

classification can also be carried out by SVMs, which can help find the hyperplane of a non-linear 

operating input vector. A high-dimensional space for features may be mapped from an input 

variable.    

A linear support vector regression challenge may be designated as a restricted optimization 

problem defined as [30]. 

min w, b, ε  f (w, b, ε) = 
1

2
 wT w + C ∑ ε 𝑖 

𝑛
𝑖=1  

Subject to yi (w
T xi + b) – 1 + ε 𝑖 ≥ 0,   i = 1, 2…… n                                                               (3.16) 

where w is the standard hyperplane vector, b is the hyperplane offset control parameter, ε controls 

the width of the ε-insensitive zone, used to fit the training data. The number of support vectors 

used to create the regression function may be affected by the value of ε. The degree of precision 

is defined by the value of epsilon of the approximated function. It is completely dependent on the 

target values in the training set. We cannot predict a positive outcome if epsilon is greater than the 

range of target values. Overfitting can be expected if epsilon is zero. The use of epsilon for a 

certain precision guarantees the precision in the training set only. But we must select a marginally 

smaller epsilon to maintain a certain overall precision. Therefore, ε = 0.1 was chosen as it gives 

the best results as reported in [30]. The degree of the penalty for the violation is defined by the 

parameter C > 0. Besides, the parameter C is a hyperparameter that is chosen either by cross-

validation or by Bayesian optimization. 

Support Vector Regression (SVR) is a regression model that is unlike any other. The SVM 

algorithm is used to predict a continuous variable. Other linear regression models try to minimize 

the error between the expected and real values, while SVR attempts to match the best line under a 
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predefined or threshold error value. The pseudo code of SVM algorithm for the proposed model 

is shown below: 

Algorithm 4:   SVM Algorithm 

Input: 

 Pre-processed training dataset T. 

 Distance defining function D. 

 Parameters: Epsilon (ε), Tolerance (C). 

Output: 

 Estimated location. 

 Mean position error. 

Steps: 

1. Choose kernel: kernel type (linear, gaussian). 

2. Form Correlation matrix: �̅� 

3. Vector of values corresponding to training set: �̅� 

4. Evaluate kernel for all pairs of points in the training set and add the regularized results in the 

matrix. 

5. Model training to get contraction coefficients α = { αi } 

6. To estimate the unknown value, �̃�, for a test point �̃�, take inner product of α and the correlation 

matrix �̅�. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

Chapter 4 

 

RESULTS AND DISCUSSION 

In the previous chapter, the working of the proposed model was explained. RSSI database has been 

constructed in real time environment by physically taking readings at each reference point. This 

chapter provides the simulation results of the pre-processing techniques used with the investigated 

machine learning algorithms. 

4.1    Simulation Setup 

The system parameters for an indoor simulation environment have been listed in Table 4.1. Total 

area of the real world environment is 108703m2 along with 933 RPs and 520 APs. The RSSI values 

are the negative interger values that are measured in dBm (-100 dBm is considered as very weak 

signal while 0 dBm is an extremely good signal). It is very important to deploy access points at 

suitable positions so that the RSSI signal from every AP is received at the current RP. When no 

signal is received at the given RP then that signal is simply replaced by -100 dBm in the database. 

Each reading represents the real-world coordinates by means of three values, the longitude and 

latitude coordinates and the building floor.  

 

Table 4.1: Simulation parameters 

 

 

 

 

 

 

 

 

Parameters Values 

No. of RPs 933 

No. of APs 520 

Total sample points 21049 

Training samples 19938 

Testing samples 1111 

k in kNN 3 

k in WkNN 3 

k in FSkNN 5 

ε in SVM 0.1 

Area 108703 m2 



39 
 

Figure 4.1 shows the map of the Jaume i university (UJI) Campus where red, green, and blue refer 

to the multi-floor TI, TD, and TC buildings, respectively. A reference point is represented by the 

blue dot on the interior of a TI building. 

 

Figure 4.1: Map of UJI campus 

 

More than 20 people used 25 separate mobile devices to gather data [5]. An android application 

CaptureLoc was developed in [5] to take readings for the offline phase. All the required 

information is gathered by this application and then sent to a centralised server where it is stored 

permanently. Due to the challenge of the WLAN signal propagation [37], this phase is 

automatically repeated 10 times for every captured spot. To choose the user identifier and the 

position where the capture is taken, the user interface framework is essential. Figure 4.2 shows the 

user-device interaction. Capturing is done (red circle) on the left when the button, Send 

Fingerprint, starts the collect and send procedure. Four errors are reported on the right side as a 

result of the capturing phase when the location is not captured correctly. 

 

 

Figure 4.2: User-device interaction using CaptureLoc 

 

All of the closed spaces of the three buildings (offices, labs, and classrooms) were considered 

useful areas for collecting in order to construct the training set. Then, for any of the closed spaces 

considered, an RP is selected inside each space, as well as at least one RP outside each space (i.e., 

in corridors). The inside point is located in the middle of the closed room, while the outside point 
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is located in front of the door. One RP was chosen for each entry if there are several accesses 

(door). A graphical example of the positioning and location of the RPs has been shown in Figure 

4.3. Red points are the points within closed spaces where RPs taken outside the door are blue 

points (outside the spaces). 

 

Figure 4.3: RP positioning 

 

ValidateLoc, an android application created in [5], to further collect the validation points. 

Operation phase is performed by the application by sending the necessary information from a 

centralized server (only APs detected and RSSI levels measured) and it gets a point inside a 

building (due to its longitude, latitude, floor) from the server. The application validates the location 

from the user. If the location is correct, the Wi-Fi fingerprint will be sent to the server and is stored 

with a predicted location. The application would otherwise ask the user for the exact location and 

the information is submitted to be processed on the server side. An execution example of 

ValidateLoc is shown in Figure 4.4. The first picture displays the location and queries the user if 

the location is right. The second image tells the user of the successful entry of the fingerprint 

validation into the server. The blue point represents the expected location whereas, the position 

assigned to the fingerprint is represented by the green dot. 

 

 

Figure 4.4: ValidateLoc phase 
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4.2    Simulation Results 

The simulation results of the pre-processing techniques used with the investigated machine 

learning algorithms i-e., kNN, WkNN, FSkNN, and SVM are compared with one another. 

MATLAB software (R2016a) is used for simulation purposes. 

The standard metric for performance evaluation of IPS algorithms are localization accuracy and 

precision. Localization accuracy is defined as the mean position error diverged from actual 

location whereas distribution of positioning errors is considered as positioning precision [38]. 

The cumulative distribution function (CDF) of kNN, WkNN, FSkNN, and SVM algorithm with 

mean, median, and without filtering is shown in Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8, 

respectively. 

 
 

Figure 4.5: CDF plot of kNN algorithm with mean, median and without filtering 

 
 

Figure 4.6: CDF plot of WkNN algorithm with mean, median and without filtering 
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Figure 4.7: CDF plot of FSkNN algorithm with mean, median and without filtering 

 
 

Figure 4.8: CDF plot of SVM algorithm with mean, median and without filtering 
 

 

kNN using median filtering outperforms kNN with mean filtering and without filtering as shown 

in Figure 4.5. The mean position error obtained with median filtering is 4.2581m as compared to 

the mean position error of 5.0896m and 5.9638m with mean and without filtering, respectively. It 

is clear that median filtering when used with un-filtered kNN, the mean position error is improved 

by 28.6%. 

 

WkNN using median filtering outperforms WkNN with mean filtering and without filtering 

according to Figure 4.6. The mean position error with median filtering is 2.7604m as compared to 

the mean position error of 3.1511m and 3.7602m with mean and without filtering, respectively. It 
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is clear that median filtering when used with un-filtered WkNN, improves the mean position error 

is by 26.59%. 

 

FSkNN using median filtering outperforms FSkNN with mean filtering and without filtering 

according to Figure 4.7. The mean position error obtained with median filtering is 1.5461m as 

compared to the mean position error of 2.2361m and 2.6743m with mean and without filtering, 

respectively. It is clear that median filtering when used with un-filtered FSkNN, improves the mean 

position error by 42.19%. 

 

SVM using median filtering outperforms SVM with mean filtering and without filtering according 

to Figure 4.8. The mean position error obtained with median filtering is 0.7959m as compared to 

the mean position error of 1.1139m and 1.4791m with mean and without filtering, respectively. It 

is clear that median filtering when used with un-filtered SVM, improves the mean position error 

by 46.2%. 

 

The mean positioning error of various machine learning algorithms with and without filtering is 

shown in Table 4.2. The cumulative distribution function (CDF) of different algorithms using 

mean and median filtering as pre-processing techniques is shown in Figure 4.9 and Figure 4.10. 

Results show that when median filtering is used with the machine learning algorithms, it 

outperforms the mean and no filtering.  

Table 4.2: Mean Position Error Comparison 

Algorithms No 

Filtering 

Mean 

Filtering 

Median 

Filtering 

SVM 1.4791m 1.1139m 0.7959m 

FSkNN 2.6743m 2.2361m 1.5461m 

WkNN 3.7602m 3.1511m 2.7604m 

kNN 5.9638m 5.0896m 4.2581m 

 

Applying median filtering on kNN, WkNN, FSkNN, and SVM improves the efficiency in 

comparison with mean filtering by 16.34%, 12.4%, 30.86%, and 28.55%, respectively. From 
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Figure 4.9, it is clear that SVM with mean filtering outperforms other machine learning algorithms 

as it improves the mean position error by 78.12% in comparison with kNN.  

 
 

Figure 4.9: CDF comparison of machine learning algorithms with mean filtering 

 
 

Figure 4.10: CDF comparison of machine learning algorithms with median filtering 
 

Figure 4.10 shows that SVM with median filtering outperforms other machine learning algorithms 

as it improves the mean position error by 81.31% in comparison with kNN.  

 

Overall, the proposed SVM with median filtering algorithm gives the best results in terms of mean 

position error as it outperforms other machine learning algorithms which are using both mean and 

median filtering, as depicted in Figure 4.11. It can also be seen from the above results that machine 

learning algorithms perform better when they are used with the pre-processing techniques of mean 

and median filtering. 
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Figure 4.11: Mean position error comparison of machine learning algorithms with mean, median, 

and without filtering 

 

Determining the value of ‘k’ parameter is very important when it comes to kNN, WkNN, and 

FSkNN as it effects the accuracy of the proposed model. If smaller values of k are chosen, the 

model will learn to predict locally. However, if larger values of k are chosen then the model will 

learn to predict globally. Increasing the value of k will improve the mean position error until it 

becomes constant. The larger values of k provide more smoothing which might or might not be 

desirable [39]. 

Figure 4.12 depicts the performance of machine learning algorithms for different values of k using 

mean and median filtering.  

 
 

Figure 4.12: Performance of machine learning algorithms using mean and median filtering with 

varying k 
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It is obvious from Figure 4.12 that k=3 is a suitable choice for both kNN and WkNN algorithms. 

Moreover, for both mean and median filtering, the mean position error becomes constant when 

k>3. In case of FSkNN, the mean position error becomes constant when the value of k>5 for both 

mean and median filtering. Therefore, k=5 can be a suitable choice for FSkNN. 

 

Table 4.3 depicts the efficiencies of the investigated machine learning algorithms with mean, 

median, and without filtering. 

Table 4.3:  Efficiency Comparison 

 

 

 

 

 

 

 

 

 

Figure 4.13 shows the efficiency comparison of investigated machine learning algorithms with 

mean, median, and without filtering in terms of histograms. It is clear that machine learning 

algorithms perfrom efficiently when they are used with the pre-processing techniques. SVM with 

mean and median filtering outperforms every other machine learning algorithm with the 

efficiencies of 89.57 % and 92.84 %, respectively. 

 
 

Figure 4.13: Efficiency comparison of machine learning algorithms using mean and median 

filtering 

 

Algorithms No 

Filtering 

Mean 

Filtering 

Median 

Filtering 

SVM 86.69 % 89.57 % 92.84 % 

FSkNN 75.93 % 79.87 % 85.68 % 

WkNN 66.15 % 71.64 % 74.85 % 

kNN 54.19 % 57.25 % 61.67 % 
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From the above results and discussion, SVM algorithm outperformed all the other variants of the 

proposed model as it provided better regularization and generalization capabilities by handling 

non-linear data efficiently [30]. Similarly, median filtering gave better results as compared to mean 

filtering because it was immune to the outliers in the dataset [1-3]. Therefore, the proposed SVM 

with median filtering algorithm enhances the performance of an indoor positioning system.  
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Chapter 5 
 

CONCLUSION AND FUTURE WORK 

The simulation results of the proposed model were seen in the previous chapter. So, the outcomes 

of the proposed method and potential future work are discussed in this chapter. 

5.1   Conclusion 

An effective solution for improving the positioning accuracy and efficiency of an IPS was 

presented in this thesis work. For better outcomes in machine learning problems, large training 

sets are important. As a result, we used the largest database available online and pre-processed the 

data using mean and median filtering techniques. To increase the performance of the proposed 

model, the processed data was fed into machine learning algorithms for training. The aim of the 

study was to develop an effective indoor positioning approach that not only makes use of the 

largest database available, but also enhances an IPS's accuracy by reducing the impact of 

environmental factors. When median filtering was applied on kNN, WkNN, FSkNN, and SVM, 

the efficiency was improved in comparison with mean filtering by 16.34 %, 12.4 %, 30.86 %, and 

28.55 %, respectively. The proposed SVM with median filtering algorithm outperformed other 

investigated machine learning algorithms with mean and median filtering obtaining a mean 

position error of 0.7959 m and exceptional efficiency of 92.84 % achieving the research objective. 

5.2   Future Work 

The positioning of a mobile user can be explored in the future using reinforcement learning 

algorithms. Furthermore, the proposed approach can be extended to neural network algorithms 

such as Dynamic Nearest Neighbor and decision tree algorithms such as the Random Forest 

algorithm to reduce the effect of environmental factors. To minimize positioning errors, Spearman, 

Minkowski, Chebyshev, and Manhattan distances can be used instead of Euclidean distance with 

the existing machine learning algorithms. Much larger datasets can also be used to improve the 

overall efficiency of the proposed model. 
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