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ABSTRACT 

In this book, an almost new approach to modern thermodynamics has been 
applied. One or more useful qualitative discussion statements have been 
extracted from each equation. These and other important statements were 
numbered and their titles were situated in an index entitled “Helal and 
Others’ statements, definitions and rules.” This ensures very quick obtain-
ing of the required (for discussing and solving problems) statements, rules, 
definitions, equations, and their theoretical base that much eases reader’s 
qualitative discussions and calculations. Almost all ideal gas closed  
system thermodynamic topics are either discussed in depth or deeply  
abbreviated. The topics discussed in depth are either new original ones or 
valuable classical ones that increase reader’s ability for better understand-
ing but are overlooked or deeply abbreviated in modern thermodynamic 
books. In both cases, they are significantly improved. The main five new 
ideas that are discussed in depth in this book are: (1) The ideal gas  
polytropic process for Cv = f(T) and its analysis (Chapter 6, Part I), (2) The 
theoretical realization of reversible gas state change processes (§ 5-10), 
(3) Helal cycle (§s 7-5-2), (4) Helal graphical method for comparing and 
discussing power cycles (§ 7-5-4), and (5) the imperfection in the classical 
proof of Carnot’s efficiency (theorem) and its exclusion (Chapter 7, final 
section). The deeply abbreviated topics are rigorously discussed in depth 
in the majority of modern thermodynamic books. To dissipate any misun-
derstanding, the equations and statements that can be misunderstood are 
followed by explanatory sentences (see equation 1-38 and the paragraph 
following it). 

KEYWORDS 

absolutely reversible cycle; Carnot; Carnot’s efficiency; closed thermody-
namic system; cycle’s ability for heat regeneration; the equivalent  
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thermodynamic cycles; Ericsson and Dual cycles; Helal air standard cycle; 
Helal method; heat regeneration; ideal gas property tables; the imperfec-
tion in the classical proof of Carnot’s efficiency (theorem) and its exclu-
sion; a new, polytropic ideal gas state change process; polytropic state 
change process; the regeneratability condition; reversible cycle recogniz-
ing thermodynamic properties; second law of thermodynamics; Stirling 
cycle; the theoretical realization of reversible gas state change processes; 
thermal efficiency. 
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PREFACE

This book Graphical Thermodynamics and Ideal Gas Power Cycles is 
based on author’s book in Arabic “Technical Thermodynamics, Volume 1, 
Third Edition, Second Revision, Published in 2006 by Damascus Univer-
sity Press-Damascus University in Damascus-Syrian Arab Republic.” We 
will refer to this book as the base book. 

The base book discusses in depth many topics including the following 
five original topics in addition to a number of traditional topics that are 
useful for better understanding thermodynamics and that are rarely met in 
modern thermodynamics: 

1. The analysis of the ideal gas polytropic process for Cv = f (T ):  
A new analysis making possible executing exact solutions of the 
polytropic process problems by using the already existing ideal gas 
property tables. 

2. The theoretical realization of reversible gas state change processes: 
This topic consists of two parts: (1) the first part is traditional, but 
it was not successfully explained, and it does not exist in modern 
books. This part enables better understanding of concepts relating 
to equilibrium and reversibility. (2) The second part is new and 
original. It enables best understanding of concepts relating to equi-
librium, reversibility, irreversibility, ability for heat regeneration, 
and so on. 

3. Helal graphical method for comparing heat engine cycles. This 
method is more flexible and inclusive than the previous methods. 
It allows to examine qualitatively the influence of cycle’s charac-
teristics (r, rp, and rc) on the thermal efficiency of the dual cycle 
and enables additionally better understanding of T_s diagram. 

4. Helal cycle (a new common case ideal gas ideal thermodynamic 
cycle): Five of its seven special case cycles have counterparts in 
reality. These are the Carnot, Otto, Brayton, Stirling, and Ericsson 
cycles. 
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5. Detecting and excluding the imperfection in the classical proof of 
Carnot’s efficiency (theorem): The classical proof of the Carnot  
efficiency (theorem) is imperfect. It did not prove that the arbitrary 
reversible cycle used in the proof represents all ever possible  
engine cycles. 

 
In the base book and especially in its new original topics, an almost 

new approach was applied. One or more statements, which are useful for 
qualitative discussions, were extracted from each equation. These state-
ments were numbered as rules or definitions, and their titles were situated 
in a special index entitled “Helal definitions and rules.” This ensured the 
quick finding of the required (for discussing and solving problems) rules, 
definitions, equations, and their theoretical base. The reduction in the  
required time and efforts to find the necessary tools for discussing and 
solving problems comforts the readers and eases their efforts. In this book: 

 
1. The new approach that is partially applied in the base book is ap-

plied in the whole book. One or more statements, which are useful 
for qualitative discussions, were extracted from each equation. 
These and other important statements were numbered as rules or 
definitions, and their titles were situated in a special index entitled 
“Helal and Others’ statements, definitions, and rules.” This will  
ensure the very quick finding of the required (for discussing and 
solving problems) statements, rules, definitions, equations, and 
their theoretical base. The reduction in the required time and  
efforts to find the necessary tools for discussing and solving prob-
lems comforts the readers and eases their efforts. According to my 
experience, it will be much easier to the reader to use the rules  
instead of relations in qualitative discussions. Readers will benefit 
from the following: (1) Helal and others’ statements, definitions, 
and rules, which will be included in the appendix, (2) the new  
topics, and (3) some traditional topics that are unusually explained. 

2. Almost all ideal gas closed system thermodynamic topics are  
either discussed in depth or deeply abbreviated. (1) The topics dis-
cussed in depth are either new original ones that are based on the 
base book or valuable classical ones that increase reader’s ability 
for better understanding but are overlooked or deeply abbreviated 
in modern thermodynamic books. And in both cases, they are  
significantly/gregariously improved. (2) The deeply abbreviated 
topics are significantly/gregariously discussed in depth in the ma-
jority of modern thermodynamic books. The following main new 
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ideas that were discussed in the base book are discussed here in 
depth: (1) the analysis of the ideal gas polytropic process for  
Cv = f(T), (2) the theoretical realization of reversible gas state 
change processes, (3) Helal graphical method for comparing heat 
engines’ cycles, (4) Helal cycle, and (5) detecting and excluding 
the imperfection in the classical proof of Carnot’s efficiency  
(theorem). 

3. The equation editor was used for writing equations and some other 
symbols. This forced the author to change some symbols by oth-
ers. For example: 
 
• The short dash (-) does not exist in the equation editor and the 

trail to write (1 foot-pound force = 1 ft-lbf) gave 
(1 1 ).− = −foot pound force ft lbf  Therefore, the short dash 

that appeared as minus sign was replaced by the multiplying 
sign (·) and the former equation appeared as 
(1 1 ),⋅ = ⋅foot pound force ft lbf  which is much logical and 

never be wrongly understood. The ft·lbf is a perfect abbrevia-
tion for the foot-pound force because it shows (see Equation 
1-25) that this unit is the product of multiplying one foot (ft) 
by one pound force (lbf). Thus, in this book (see Equations 1-19 
and 1-25), the sign ( ⋅ ) is used as (1) a multiplying sign and 
(2) a connection in the abbreviations of compound units' 
names. 

• To uniform the abbreviations of all compound units through-
out this book, the usage of (·) sign as mentioned above is also 
applied on SI units. 
 

4. The following six signs are used as multiplication (×, *, ⋅) and di-
vision (÷, /, & –) signs: 
 
• Two signs (× and ⋅) are mostly used as multiplication signs. 

The first sign (×) is used only between a symbol and a digit 
“number” (see Equation 1-14), while the other one (⋅) is used 
between words or between symbols (see Equation 1-12). An-
other example is the Newton meter that is usually abbreviated 
as Nm. It is abbreviated here as N·m. The Newton meter is the 
product of multiplying one Newton by one meter (see the last 
side of Equation 1-25). 

• Three signs (÷, /, and –) can be used for division. The first two 
ones provide that each of the numerator and denominator must 



xxiv • PREFACE 

 

be either simple or included between one or more types of 
brackets. No requirements are needed when using the third 
sign and when it is used in units no space or brackets (see 
Equations B and 1-37), but they usually occupy more place. 
(They are higher and shorter than the former ones, the thing 
which is absent in the former equations.) 
 

5. To dissipate any misunderstanding, the equations and statements 
that can be misunderstood are followed by explanatory sentences 
(see Equation 1-38 and the paragraph following it). 

6. If a multi-subfigures’ figure is mainly used within a paragraph, we, at 
the beginning of the paragraph, remind that in this paragraph this fig-
ure is the main reference and then we refer to its subfigures directly. 

7. It has been practiced in many references to differentiate between 
dimensions (or their numerical values) and their units by any  
type of brackets such as [ ] 1.8 [ ],= ⋅T R T K  separating by a space 
such as 1.8 ,= ⋅T R T K  or skipping the temperature symbol  

such as 1.8 .= ⋅R K  We mostly use the separation by a space  
(see Equation 1-8). 

8. The equations in this book are of three categories: (1) Equations to 
which you never need to refer to (they are unnumbered), (2) equa-
tions, which are locally (in a particular paragraph or example) used 
and are unexpected to be referred to in other parts of the book or 
outside it (their numbers do not denote to the paragraph or chapter 
numbers), and (3) equations to be referred to anytime. With ignoring 
the existence of the unnumbered and locally numbered equations, 
the equations of each chapter are sequentially numbered (the number 
of each equation of this category is composed of chapter’s number 
followed by the sequential number of the equation within the chapter 
“e.g., the numbers of the equations of the first chapter of this book 
starting from the first numbered equations upto paragraph (1-2) are 
(A, B, B1, C, D and D) that belong to example (1-1) and its notes 
followed by equations (1-1 through 1-8, 1-8a, 1-8b, 1-8c, 1-9 
through 1-17, 1-17a, 1-18 through  1-30, 1-30a, 1-31, 1-32, 1-33, (A, 
B, C, A', B', C', D), that belong to paragraph (1-1-11) and example 
(1-2). To refer to a locally numbered equation we need to denote 
each of its number and the number of the paragraph or example to 
which it belongs. For example, (see equation B of § 1-1-11). 
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NOMENCLATURE

Symbol Name Unit 

a Acceleration m/s2 
A Area, the heat equivalent of work m2 

Ar The relative atomic mass (atomic 
weight)  

– 

B Barometric or absolute pressure Pa = N/m2 
C Heat capacity, tabulated in Table 

3-4 function 
kJ/K 

c, Mc or ,c c' Specific heat, molar specific heat, 
volumetric specific heat 

kJ/(kg K), 
kJ/(kmol K), 

kJ/(m3 K) 

pc , Mcp or ,pc  

'
pc  

Constant-pressure specific heats  
(mass, kilomolar and volumetric) 

kJ/(kg K), 
kJ/(kmol K), 

kJ/(m3 K) 

vc , Mcv or 
vc , 

'
vc  

Constant-volume specific heats 
(mass and kilomolar and volu-
metric)  

kJ/(kg K), 
kJ/(kmol K), 

kJ/(m3 K) 

0 0andv pc c  Zero-pressure (ideal-gas) con-
stant-volume and constant-
pressure specific heats 

kJ/(kg K) 

cn Polytropic-process specific heat kJ/(kg K) 
ct Constant-temperature specific heat  
C The mean squared speed of the 

straight movement of the mole-
cules 

m/s2 

Da Dalton—the unified atomic mass 
unit  

 

F Force N 
G Weight N 
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Symbol Name Unit 

g, ng , kg  Gravitational acceleration, normal 
gravitational acceleration, mass 
portion  

m/s2, m/s2, --- 

H, h, Mh, or h  Enthalpy (total, specific, kilomo-
lar/per kilomole)  

kJ, kJ/kg, 
kJ/kmol 

E, e, Me, or ē Energy (total, specific, kilomo-
lar/per kilomole) 

J, J/(kg, J/\mol 
or J/m3) 

, ,KE ke ke  Kinetic energy (total, specific, 
kilomolar)  

J, J/(kg, J/\mol 
or J/m3) 

K The number of kilomoles of the 
total quantity, Kelvin 

kmole−1 

k Specific heat ratio (isentropic ex-

ponent) ( / )=
p v

k c c ; Boltz-

mann constant 

No unit; N/m2 

M, m The mass (molar, total) kg/kmol, kg 

Mr The relative molar mass - 
Mu The molar mass constant g/mol, 

kg/kmol 
mm The molecular mass  Da 

NA Avogadro's number/constant  Mole−1 

n  Polytropic exponent; normal con-
ditions 

 

p Pressure (absolute pressure) Pa = N/m2 
pabs, pg Absolute pressure, gage pressure N/m2 

,kp  ,mixp  pv Partial pressure, mixture’s pres-
sure, VACUUM pressure 

N/m2 

Q, q, (ǭ or q ) Transferred heat (total, specific, 
kilomolar) 

kJ, kJ/kg, and 
kJ/kmol 

Mr (M.W. or 
F.W.) 

The relative molar mass (molecu-
lar weight or formula weight)  

 

MR or R  or 

Ru, R 

Universal gas constant, gas con-
stant 

kJ/kg K, 
kJ/kmol K 

r, cr , kr  and 

pr   
The compression ratio, the com-
pression ratio, the volumetric 
portion, and the pressure ratio 
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Symbol Name Unit 

S, s, Ms Specific entropy (total, specific, 
kilomolar) 

kJ/K, kJ/(kg K) 

sv, sp, s° Standard entropies (tabular entro-
py temperature functions ) 

kJ/(kg K) 

T, t absolute temperature, nonabsolute 
temperature 

K, °C 

U, u, Mu or ū Internal energy (total, specific, 
kilomolar) 

J, J/kg 

V, v, Mv or ῡ Volume (total, specific, and kilo-
molar)  

m3, m3/kg, 
m3/kmol 

υ  Velocity   
W, w, Mw Work, specific work J, J/(kg, J/\mol 

or J/m3) 
Wb, wb Boundary work (total, specific) J, J/(kg, J/\mol 

or J/m3) 

kz  The molar portion   

δ  The inexact differential sign  

ϕ  Heat portion spent to change the 
internal energy of gas in the  
polytropic process 

 

γ Specific weight  N/m3 

ρ Density kg/m3 

σ  The regeneration ratio (or the  
regenerator effectiveness “ε”)

εσ == max/ RR QQ   

 

ω  Angular speed/velocity 1/s 

θθθ ,',  The lower heating value (specific 
per unit mass, volumetric per 
unit volume, kilomolar per 
kmole) 

MJ/kg, MJ/m3, 
MJ/kmole 

, ' ,θ θ θ
oo o
LL L

 The lower heating value “opera-
tive mass” (per unit mass, per 
unit volume, per kmole) 

MJ/kg, MJ/m3, 
MJ/kmole 

η
t
 Thermal efficiency  
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SUBSCRIPTS 

Avg—Average 
Ct—Carnot cycle 
ig—ideal gas 
k—partial 
mix—mixture 
n—normal 
rg—real gas 
tot—total 

ABBREVIATIONS 

AR cycle—Absolutely reversible cycle 
CP—The constant part 
cycleDPPE—Divided into pure processes exclusively 
HTS—Heat transfer surface 
ID or r—Intermolecular distance 
IF—Intermolecular force 
IPE—Intermolecular potential energy 
DPPEcycle—Divided into pure processes exclusively 
KS—Known/fixed state 
MC—Master/configuration curve 
MKE—Molecular kinetic (thermal) energy 
MR—mini heat reservoir 
NPIGP—New-polytropic ideal gas state change process 
NTP—Normal temperature and pressure also known as normal 
conditions 
RC—Reversible thermodynamic cycle 
RDCCs—Reversible differential Carnot cycles 
SHC—The specific heat capacity 
SNP—Same number points 
STH—The specific transferred heat 
TDTs—Temperature-dependent terms 
TIT—Temperature-independent (constant) term 
WF—Working fluid 



 

CHAPTER 1 

BASIC CONCEPTS AND 

DEFINITIONS 

1.1 UNIT SYSTEMS 

1.1.1 INTRODUCTION 

In physics, we deal with so-called dimensions. According to Others’ Defi-
nitions (ODs): 

 

OD1-1: A dimension (physical characteristic), such as length, time, or 
mass, has certain measurement units that are related to each other in 
one way or another. The expression of a dimension must include its 
numerical and unit parts. Therefore, we can say 

• this pencil is about 15 centimeters (cm) or 6 inches (in.) length, 
15 6 ,≈ ≈L cm in.  or 

• the length of this pencil in centimeters is about 15 and in inches 
about 6 

cm in.L L [cm] 15 or L L [in.] 6.= ≈ = ≈  

The first (direct) expression is most common, but the second (indi-
rect) expression is used especially in temperature conversions. 

Some of dimensions’ units (a unit for each dimension) are represented 
in the unit system and belong to the unit system, whereas others do not. 
 

Note number 1-1 (Nt1-1): The expressions as used above are nonalgebraic 
ones because they include two equality signs each. They are equations 
with double equal signs. To ease referring to similar to them equations, the 
following terms are used in this book (1) the side of the equation for each 
of equation’s expression that bordered by one or two equality sign(s),  
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(2) the multi equal-sign/side equation “abbreviation multi equation or 
simply equation” for the whole equation and (3) the kth side of the equa-
tion for the side No k, where k is side’s sequential number from the left. 
The extreme sides keep additionally their traditional names (left and right 
sides). Thus, if the total number of equation’s sides is n, we can refer to its 
left side as equation’s first or left side and to its right side as equation’s 
right, last, or nth side. 

Table 1.1. Standard prefixes in SI and technical units 

Prefix and its 
abbreviation 

Multiple Prefix and its 
abbreviation 

Multiple 

Tera (T) 1012 Deci (d) 10−1 
Giga (G) 109 Centi (c) 10−2 
Mega (M) 106 Milli (m) 10−3 
Kilo (k) 103 Micro (μ) 10−6 
Hecto (h) 102 Nano (n) 10−9 

Deka (da) 10 Pico (p) 10−12 

1.1.2 THE INTERNATIONAL SYSTEM OF UNITS 

It is also known as metric SI (from Le Système International d’ Unités) 
and is the unit system that agreed to be applied all over the world. SI is the 
system that is used in this book. Its dimensions are classified into two 
groups: (1) the primary (fundamental) dimensions and (2) the secondary 
dimensions. It is most important to know the units of the primary dimen-
sions because, as we shall see later, any secondary unit can be derived 
from the primary ones, but we cannot name and symbolize it. The current 
fundamental units of the metric SI are meter (m) for length (l), kilogram 
(kg) for mass (m), second (s) for time (t), ampere (A) for electric current, 
the kelvin (K) for temperature (T), candela (cd) for luminous intensity 
(amount of light), and mole (mol) for the amount of matter. The multiples 
and divisors of SI units form the major part of the units that do not  
belong to it (they are outside it or relative to it). 

The metric SI is simple and logical because the relationship between 
any of SI units and its standard multiples (or divisibles) is a decimal (see 
Table 1-1). 

To simplify extracting notes and rules at the end of §1.1, the follow-

ing unit conversions are explained in detail. Let us first solve and discuss 
the following example. 
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Example 1-1 

Calculate the uniform velocity (in two different units “SI and another 
unit”) of an object that displaced for 5 hectometers (hm) during  
2 minutes. Determine also the conversion factor between these two units. 

Solution 

The uniform velocity (υ ) equation is  

 υ = Δ = Δ( ) / /X t X t  (A) 

Where ΔX is the displacement and t is the elapsed time. 
 

1) Substituting the given values in Equation (A) and considering Table 
1-1, we obtain 

 

X 5 hm 5 hm 5 hm hm
2.5

t 2 min 2 min 2 min min

5 100 m 500 m m
4.1667

2 60 s 120 s s

Δ ⋅υ = = = = =
⋅

⋅ ⋅ ⋅= = ≈
⋅ ⋅ ⋅

 (B)
 

Or 2.5 hm/ min 4.1667 m/s.υ = ≈  (B1) 

2) From the second and third sides of Equation (B1), we obtain the 
conversion factor between hm/min and m/s 

 ≈1  / 1.667  /hm min m s  (C) 

The extracted from Example (1-1) notes (Nt) and rules (OR) or (HR) 
are stated below have been provided in the following. 

 
Nt1-1A: The unit hm/min is not practiced and does not belong to any 
of existing unit systems. 
Nt1-2: The unit m/s belongs to each of the metric SI and to the intro-
duced later technical system of units. 
Nt1-3: During calculations, we dealt with the given dimensions as if a 
multiplication sign (·) existed between (1) the numerical and unit parts 
of each dimension and (2) the base unit and its prefix (see Equation B). 
These signs always exist, but they are not visualized. If we denote  
dimension A by A and its numerical and unit parts by AN and AU,  
respectively, then we can write 

 N UA A A= ⋅  (D) 



4 • GRAPHICAL THERMODYNAMICS 

Applying Equation (D) in Equation (A), we obtain 

 N U N U N UX X / (t t )υ ⋅ υ = Δ ⋅ Δ ⋅  (E) 

This equation can be considered as the product of the following two 
functions 

 N N NX / tυ = Δ  and U U UX / tυ = Δ  (1-1) 

These functions/equations can be considered as the result of substitut-
ing each dimension, in Equation (A), by its (1) numerical part to produce 
the first equation and (2) unit part to produce the second equation and can 
be read as follows. 

 

OR1-1: All equations, which are valid for calculating (not converting) 
a certain dimension (Y), are also valid for determining each of its unit 
(YU) and its numerical (YN) parts. Simply substitute each dimension’s 
symbol (e.g., Y) by its unit symbol (e.g., YU) and you obtain, from the 
dimension’s equation, the equation for determining the dimension’s 
unit. Also, to obtain the equation for determining dimension’s (Y) nu-
merical part, substitute each dimension’s symbol, in dimension’s equa-
tion, by the symbol of the dimension’s numerical part (e.g., If Equation 
A is dimension υ ’s determining equation, then the first part of Equa-

tion 1-1 can be used for determining dimensionυ ’s numerical part Nυ  

and the second part of Equation 1-1 can be used for determining dimen-

sionυ ’s unit part U .υ ). 
 

This leads to the following rules. 
OR1-2: To calculate a dimension, when one knows in advance its unit 
(e.g., the calculating equation is appropriate for the system of units) 
and when one is sure that the equation one applies is correct, one is 
requested to substitute each given dimension’s symbol by its numerical 
value and it will not be wrong if the mentioned symbol is substituted by 
the whole dimension’s value. In the case of not substituting the units 
from the beginning, the answer’s unit must be added as soon as the an-
swer’s numerical calculation is fulfilled (see Equation D of Nt1-3). 
OR1-3: To derive (calculate) the unit (AU) of a dimension (A), (1)  
select an equation or more of those, which are appropriate for calcu-
lating this dimension, and (2) replace in any of the selected equations 
(the simplest one), each dimension’s symbol by its unit (in this case di-
mension A’s symbol is replaced by AU). Such calculated AU value is the  
derived dimension’s (A) unit. 



BASIC CONCEPTS AND DEFINITIONS • 5 

OR1-4: If the dimensions used in calculating a dimension are ex-
pressed in units that belong (not relatives; see the bolded text in §1.1.2) 
to a certain unit system (SI or technical), then the unit of the calculated 
dimension belongs to the same certain unit system. Starting from the 
seventh side of Equation (B), the given dimensions (ΔX and t) were  
expressed in SI primary units (m and s) and the unit of calculated  
velocity (see the last sides of Equations B and B1) was expressed in the 
SI secondary unit (m/s). 
OR1-5: Inducing a multiplication sign (· or ×) between the two  
(numerical and unit) parts of a dimension and also after the prefix of 
the unit symbol (see Equation B) is not practiced, but it is not wrong. 
OR1-6: If two neighboring sub (simple) units of a compound unit are 
not interconnected by any algebraic sign (+, –, “÷ or /,” multiplication 
sign), then it is allowed to interconnect these neighboring subunits with 
a multiplication sign (· or ×). 

1.1.2.1 Deriving some secondary units from the primary ones 

In this book, as we till now got acquainted with only the metric SI units, 
we shall derive some secondary SI units. This derivation (see OR1-1) re-
quires applying any valid equation for calculating the dimension that is 
related to the required unit. Therefore, we shall use the simplest equations 
in these derivations: 
 

1) To derive the acceleration unit, we chose the constant acceleration 
equation: υ= Δa ( ) / t,  where υΔ  represents the velocity change 

and t the elapsed time. According to this equation and OR1-3, the 
SI acceleration unit is the result of dividing the SI velocity unit 
(m/s) by the SI time unit (s). Thus, the SI acceleration unit is 

= ÷ = × = 21
( / ) / / .

m m
m s s s m s

s s s
 

2) Similar to the acceleration unit, the SI force (F) unit can be found 
from the other SI units (the mass “m” unit “kg” and acceleration 
(a) unit “m/s2”) by applying Newton’s second law 

 = ⋅F m a  (1-2) 

Thus, 

2 2SI force unit SI mass unit (kg) SI acceleration unit (m/s ) kg m/s= × = ⋅  
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This unit 2(kg m/s )⋅  is named the newton (N) after Sir Isaac Newton 

(1642–1727).1 

1.1.3 THE U.S. CUSTOMARY SYSTEM (ALSO KNOWN AS THE 
ENGLISH SYSTEM) 

It is the second unit system that is used commonly in the United States 
today. 

The developed from English units U.S. customary system was in use 
in the British Empire before American independence. Consequently, most 
U.S. units are virtually identical to the British imperial units. Several dif-
ferences exist between the two systems. 

 
The majority of U.S. customary units were redefined in terms of 
meters and kilograms with the Mendenhall Order of 1893 and, in 
practice, many years before. These definitions were refined by the 
international yard and pound agreement of 1959. The United 
States primarily uses customary units in its commercial activities, 
whereas science, medicine, government, and many sectors of indus-
try use metric units.2 

 

In the English system, the length is measured by yards (yd), the force 
by pound-force (lbf), and the time by seconds (s). The multiple of the yard 
is miles (mi), and its divisible are the feet (ft) and the inches (in.), where 

 
= = = 

= = = 

1 mi 5280 yd, 1 in. 1" 25.4 mm,

1 yd 3 ft 36 in. 0.9144 meters
 (1-3) 

The divisible of the pound (lb) is the ounce (oz), where 1 lb 16 oz=  

The English system has no apparent systematic numerical base,  
and various units in this system are related to each other arbitrarily  
(12 in. = 1 ft, 1 mile = 5,280 ft, 4 qt = 1gal, etc.), which makes it con-
fusing and difficult to learn. The United States is the only industrialized 
country that has not yet fully converted to the metric system.3 

1.1.4 THE TECHNICAL UNIT SYSTEM 

Before 1960 (the date of producing the SI by the General Conference of 
Weights and Measures), the technical unit system was in common use. It 
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was based on three fundamental quantities: meters (m) for length, kilo-
gram-force (kgf) or kiloponds (kp, from Latin pounds meaning weight)4 
for force, and seconds (s) for time. It was prevalent in some countries, 
such as France, the former Soviet Union, and Germany. Similar to the 
metric SI, the relationship between any of the technical system units and 
its standard multiples (or divisibles) is a decimal. This eased and acceler-

ated the transformation of countries that used the technical system to the 
metric system. 

Although the technical system of units is already not in common use, 
we may encounter valuable old books that used this system and can be our 
favorite references it we can effectively use them. For such occasions, we 
need some brief knowledge about the conversion factors between the main 
units of the previously stated three unit systems. 

1.1.5 FORCE AND MASS MAIN UNITS’ CONVERSIONS 

By definition 

= = ≈1pound-mass 1 lbm 0.45359237 kg 0.454 kg  (1-4) 

 = = ≈1 pound-force 1 lbf 0.45359237 kgf 0.454 kgf  (1-5) 

1 kgf 1 kp 9.80665 N 9.807 N

1 N 1 kgf 9.80665 0.102 kgf

= = ≈ 
= ≈ or

 (1-6) 

From these equations, we obtain the exact value of the conversion 
factor between the newton “N” and the kgf (CFNK), 

 CFNK 9.80665 N / kgf=  (1-7) 

On the other hand, the exact value of the nominal (or standard) gravi-
tational acceleration of the earth ( ),ng which is the gravitational accelera-

tion at sea level and 45° latitude, is5 

 
2 2 2

ng 9.80665 m/s 32.174 ft/s 9.807 m/s= ≈ ≈  (1-8) 

Thus, the two different quantities CFNK and ng  have the same  

numerical value. 
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1.1.6 WEIGHT OF A BODY 

The weight of a body (G) can be found from Newton’s second law (see 
Equation 1-2) 

 G m g N (m g / 9.80665) kp= ⋅ = ⋅  (1-8a) 

where g is the local gravitational acceleration6 that depends on the 
geographical location and altitude, m the mass measured by weighbridg-
es,A and 9.80665 N/kp the CFNK. 

 

A. Weighbridges eliminate the effect of the local gravitational  
acceleration on the measurement result, since each of the stand-
ard weight and the object to be weighed are affected by the same 
local gravitational acceleration. This fits the concept of mass that 
is independent of the geographical location and altitude7. 

 

For approximate calculations of body’s weight on earth and its  
surrounding atmosphere up to 10 km above sea level, and with a 0.6% 
tolerance, g in Equation (1-8a) can be replaced by gn and Equation (1-8a) 
becomes 

 G kp m kg≅  (1-8b) 

For English units, this equation becomes 

 G lbf m lbm≅  (1-8c) 

1.1.7 PRESSURE UNITS 

In all unit systems, the pressure (p) is a secondary dimension. As the pres-
sure is defined as the force (F) acting normally on a unit of area (A) or  
p = F/A, the pressure unit is the result of dividing the force unit by the area 
unit, which is the squared length unit. The pressure unit in the metric SI is 
the newton per square meter (N/m2) and is named the Pascal (Pa). As this 
unit is too small for practical use, its multiple (the bar, 1 bar = 105 Pa) is 
used instead. Thus, 

 5 2 5 5 2 2 21 bar 10 N / m 10 Pa 10 N / (10 cm) 1 daN / cm= = = =  (1-9) 

The pressure unit in the technical system is the kiloponds (or kgf) per 
square meter (kp/m2) or (kgf/m2). As this unit is too small for practical 
use, its multiple (the technical atmosphere “at”) is used instead. Thus, 
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 4 2 4 2 2 21at 10 kp / m 10 kp / (10 cm) 1 kp / cm= = =  (1-10) 

The pressure unit in the English system is the pounds (lbf) per square 
inch [lbf/in.2 (see Nt1-6) or psi]. It is the pressure resulting from a force of 
1 pound-force applied normally to an area of 1 square inch. Thus, 

 
≈ ≈


≈ ≈ 

21 lbf 4.448 N, 1psi 6895 N/m ,

1atm 14.696 psi 14.7 psi
 (1-11) 

Today, pressure gauges are scaled in bars (bar), technical atmospheres 
(at), and pounds per square inch (psi). 

The pressure (p) applied by a liquid column, with height (H) and den-
sity (ρ), is calculated by 

 p H g= ⋅ρ⋅  (1-12) 

The liquid density is temperature dependent, ρ = f(t), and the gravita-
tional acceleration is geographical location dependent. Therefore, the fluid 
column height corresponding to a pressure is a function of the fluid type, 
temperature, and geographical location. This means that,  

When the pressure is expressed by units (mmH2O or cmH2O or 
mmHg = Torr, etc.), it implies 

=

=

= = ρ = ρ =

ρ = ρ =

o

o
2 2

2 3
n Hg Hg(t 0 C)

3
H O H O(t 4 C)

g g 9.80665 m/s , 13,595.1 kg/m

And       1000 kg/m
 

1.1.8 OTHERS’ DEFINITIONS 

OD1-2: The standard atmosphere (atm) is an international reference 
pressure defined as 1,01,325 Pa. It is the mean atmospheric pressure at 
sea level and at 0°C. First, it was named as the physical atmosphere 
and later the normal pressure. 
OD1-2A: The normal temperature and pressure (NTP), also known as 
normal conditions, is the normal temperature (abbreviation NT and 

Symbol Tn) 
o

nT 273.15 K 0 C,= =  and the normal pressure, which is 

also known as the standard atmosphere. 

 

o
n

o
2

p 1 atm 760 Torr 760 mm Hg [0 C]

10.33256 m H O [4 C] 101,325 (kPa)

= = =

= =  (1-13) 
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Earlier the normal conditions represented the standard ambient tem-
perature and pressure (SATP), but today, they are discontinued and we are 
supposed to avoid using them. However, many valuable traditional refer-
ences are not renewed and are still in use. Therefore, we shall continue 
using these terms in parallel with the new terms. 

The existing SATP temperatures today are o o15 C 268.15K 59 F,= =  
o o20 C 293.15K 68 F,= =  and o o25 C 298.15K 77 F.= =  We shall refer to 

the last temperature as the new normal temperature (symbol Tnn). Thus, 
= = =o o

nnT 25 C 298.15K 77 F.  

1.1.9 ENERGY UNITS 

As we will see later (see the first law of thermodynamics), the thermal, 
mechanical, electrical, and other energies are different forms of energy. 
This means that work, mechanical energy, thermal energy, and other ener-
gies must be measured by the same units, and therefore, let us derive the 
units of work in the three unit systems using the equation of the work (W) 
done by a constant force (F) on a point that moves a displacement (s) in 
the direction of the force, W = F·s. According to OR1-1 and §1.1.2.1, the 
work unit = the force unit × the displacement (length) unit. This means 
that the work units in the three systems are (1) the newton-meter that was 
named later (joule) in the SI system, (2) the kilopond-meter “kp-m or 
kp·m” (the kilogram-force-meter “kgf-m or kgf·m”) in the technical sys-
tem, and (3) the foot-pound force (ft-lbf or ft·lbf) in the English system. 

The joule is defined by the equation 

 
2 2 21 1 1 1 1 ( / ) 1 /J N m N m kg m s m kg m s= × = ⋅ = ⋅ ⋅ = ⋅  (1-14) 

The units of heat energy used in the technical and English systems are 
renewed. The new (international) calorie (cal) is defined as 

 1 cal 4.1868 J=  (1-15) 

Today’s British thermal unit (Btu) equals 

 1 Btu 1.055056 kJ 0.2522 kcal= =  (1-16) 

The numerical relationship between the calorie and the kilopond (the 
mechanical equivalent of heat “J”) was found experimentally by Joule. It 
assigns the quantity of work in kp·m (kgf·m) that can be done at the  
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expense of the disappearance of 1 kcal of heat, which can be calculated 
from Equations (1-6), (1-11), and (1-12) 

 
= = ⋅ = ⋅ ⋅
= ⋅

1 cal 4.1868 J 4.1868 N m 4.1868 (1 kgf / 9.80665) m

0.426935 kgf m  (1-17) 

or            1 426.935 427kcal kgf m kgf m= ⋅ ≈ ⋅  (1-17a) 

Relation (1-17a) allows determining the value of the mechanical 
equivalent of heat J and its reverse value A 

 

⋅ ⋅ = ≈ 

= ≈
⋅ ⋅ 

kp m kp m
J 426.935 427

kcal kcal
1 kcal 1 kcal

and A
426.953 kp m 427 kp m

 (1-18) 

One of English units of work is the foot-pound force (ft-lbf or ft·lbf): 

 ⋅ = × = =1 ft lbf 1 ft 1 lbf 0.001285 Btu 1.3558 J  (1-19) 

Other units of energy (work) can be extracted from power units. As 
power (P) is defined as the amount of energy generated per unit time, the 
power unit is energy-unit/time-unit; thus, the SI power unit (J/s) is named 
watt (W). This means that 

 1 W 1 J / s=  (1-20) 

This unit and the power units of the English system (ft-lbf/s) and the 
technical system (kp·m/s) are small and their multiples. 

 
- The kilowatt (kW):  

 1 kW 1 (1000) W 1000 W= ⋅ =  (1-21) 

- The horse power (hp): 

 1 hp 1 (550) ft lbf / s 550 ft lbf / s= ⋅ ⋅ = ⋅  (1-22) 

- The French chevaux (ch) or the metric horsepower (hp“M”)8: 

 1 hp(M) 1 ch 1 (75) kp m / s 75 kp m / s= = ⋅ ⋅ = ⋅  (1-23) 
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These units interrelate as follows. 

 

( ) = = ⋅ = × ⋅

= ≈

1 hp M 1 ch 75 kp m / s 75 9.80665 N m / s

735.49875 W 735.5 W  (1-24) 

 

1 hp 550 ft lbf / s 550 in. lbf / s 550 12 in. lbf / s

6600 in. lbf / s 6600 0.0254 m 0.4536 kp / s

76.04 kp m / s 76.04 / 75 ch 1.0139 735.49875 W

745.7 W 746 W 746 N m / s

= ⋅ = ⋅ = ⋅ × ⋅
= ⋅ = ⋅ ×
= ⋅ = = ×
≅ ≅ ≅ ⋅  (1-25) 

From Equations (1-24) and (1-25), we conclude that 

 
= ≅ = 

= 

1 ch 1 hp(M) 1 hp; 1hp 1.0139 ch

and 1 ch (1 /1.0139) hp = 0.9863 hp
 (1-26) 

The small difference between the metric and the English horse pow-
ers causes nonrecognition between them. 

As the work equals the product of power and time, the following  
energy units are in common use: 

• The kilowatt-hour (kW-h or kW·h), which is the work produced by 
an engine of 1 kW power during 1 hour:  

 1 kW h 1 [kJ / s] 3600 s 3600 kJ⋅ = × =  (1-27) 

• The metric horsepower-hour (hp“M”-h), which is the work pro-
duced by an engine of 1 hp(M) power during 1 hour: 

 

⋅ = ⋅ = ⋅ ×
=

1 hp(M) h 1 ch h 75 [kp m/s] 3600 s

270000 kp.m  (1-28) 

• The horsepower-hour (hp·h), which is the work produced by an  
engine of 1 hp power during 1 hour: 

 1 hp h 0.7068 [Btu / s] 3600 s 2544.48 Btu⋅ = × =  (1-29) 

1.1.10 TEMPERATURE UNITS 

The following definitions are necessary to understand this paragraph. 
 
OD1-3: The absolute zero is the lowest conceivable temperature. 
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OD1-3A: The temperature of the ice point is defined as the tempera-
ture of a mixture of ice and water that is in equilibrium with saturated 
air at a pressure of 1 atm (see OD1-2 and Equation 1-13). 
OD1-3B: The temperature of the steam point is the temperature of  
water and steam, which are in equilibrium at a pressure of 1 atm. 
OD1-3C: The triple point of water is the state in which the solid, liq-
uid, and vapor phases of water exist together in equilibrium. This point 
is assigned the value of 0.01°C. On the Celsius scale, the steam point is 
experimentally found to be 100.00°C. 
 

Four temperature scales are still in common use today: (1) The 
Celsius scale (unit degree Celsius “°C”), (2) The Fahrenheit scale 
(unit degree Fahrenheit “F”), (3) The Kelvin scale (unit kelvin “K”), 
and (4) The Rankine scale (unit rankine “R”). 

The Celsius scale was formerly called the centigrade scale, but it 
is now designated the Celsius scale9 and its symbol includes the degree 
symbol since the letter C alone denotes Coulomb, the unit of electrical 
charge in the SI system of units.10 

Table 1.2. Comparison of temperature scales 

Temperature symbol and its unit  
abbreviation 

Temperature 
 

 
Reference point

o[ ]T F  [ ]T R  o[ ]T C  [ ]T K  

212 671.67 100 373.15 Water boiling at 1 atm (see 
OD1-3B) or the steam point  

  0.01 273.16 Water triple point (see OD1-3C) 

32 491.67 0 273.15 Water freezing at 1 atm or the 
ice point (see OD1-3A) 

0 459.67   The zero Fahrenheit (T0F) 

−459.67 0 −273.15 0 The absolute zero (AZ) 

 
OD1-3D: Temperature scales whose zeros coincide with the absolute 
zero are absolute temperature scales, and those whose zeros do not  
coincide with the absolute zero are relative temperature scales. There-
fore (see Table 1-2), The Kelvin and Rankine scales are absolute tem-
perature scales, while the Celsius and Fahrenheit scales are relative 
temperature scales. Today’s temperature scales and former absolute 
ones (see OD1-3D) are symbolized as T, while the former symbol of 
relative temperature scales was t. Therefore, both symbols are used in 
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this book, which includes many old tables and diagrams. This means 
that in addition to existing temperature relations used in other modern 
thermodynamic books, the following relations are used. °C 

 

Δ = Δ = − = − = Δ


Δ = Δ = − = − = Δ 
= = = = 

2 1 2 1

2 1 2 1

T K T C (T T ) C (t t ) C t C;

T R T F (T T ) F (t t ) F t F;

dT K dT C dt C And dT R dT F dt F

   

 

 (1-30) 

The values of some reference temperatures in several units are listed 
in Table 1-2. 

Although the relations between the four scales are well known, they 
can be derived from Table 1-2 because of the constancy of the magnitude 
of the degree of each scale that insures the linearity of these relations. 

Using the data of Table 1-2, we can obtain many relations for temper-
ature conversions from one scale to another. The temperatures of these 
relations are expressed indirectly (see OD1-1), and we represent from 
them the following main ones: 

1)  
= + 


= − 

o

o

T [K] T [ C] 273.15

or T [ C] T [K] 273.15
 (1-30a) 

This is read as the temperature in kelvins equals the sum of the 

temperature in degrees Celsius and 273.15. Thus, if 
oT 50 C=  then 

oT [ C] 50=  and = + =T [K] 50 273.15 323.15,  so T 323.15 K.=  

2) = ⋅ = ⋅T [R] 1.8 T [K] or T [K] (5 / 9) T [R]  (1-31) 

For T 323.15 K:T [R] 1.8 323.15 581.67 T 581.67R.= = ⋅ = =or  

3)  
= + 

= − 

T [R] T [F] 459.67

or T [F] T [R] 459.67
 (1-32) 

=
= − = − = =

For [ ] 581.67 :

T [F] T [R] 459.67 581.67 459.67 122 so T 122 F.

T R
 

Any set of three equations those obtained/selected from the three 
pairs of Equations (1-30A) through (1-32) each is enough to (1) execute 
any temperature conversion from any of the previously represented tem-
perature scales to another and (2) obtain other calculating equations such as 
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= ⋅ − = × + 


= = 

o o

o

T C (5 / 9) (T F 32), T F 1.8 T C 32,

1 K 1 C 1 deg and 1 R=1F
 (1-33) 

The underlined equations in the last three items are some of the direct 
expressions of temperature or temperature difference (see OD1-1). They 
can be read as follows: The temperature equals 50 degrees Celsius, 
323.15 kelvins, 323.15 kelvins, 581.67 rankines, and 122 degrees Fahren-
heit. The total result of the calculations of the previous three items is 

o50 C 323.15 K 581.67 R 122 F= = =  
 

Nt1-4: The deg or degree symbol in Equation (1-33) was used for the unit 
of the temperature difference between each of Kelvin and Celsius scales. 
Nt1-5: No distance exists between the abbreviations of the prefix and the 
unit to which it belongs. 
Nt1-6: The pound-force, pound-mass, pound-mole, and kilogram-force 
are fundamental units; therefore, their abbreviations are lbf, lbm, lbmole, 
and kgf, respectively. 
Nt1-7: The recent abbreviation of inch is (in.) not (in). 
Nt1-8: Assuming that a multiplication sign between the numerical part of 
a dimension and its unit eases unit conversions. The reader can apply this 
point to understand the operations (procedures and processes) in Equa-
tions (1-17), (1-27), (1-28), and (1-29). 
Nt1-9: One of the purposes of the former equations was showing the be-
ginners in detail how to deal with unit converting. In practice, calculating 
dimensions is much simpler, especially when the answer is required in SI 
units (or in their standard multiples or divisibles). 

 

Let us explain the methods of solving problems in practice through 
the following paragraph and example. 

1.1.11 ABOUT DIMENSIONS’ UNITS IN THE CALCULATING 
EQUATIONS 

Today, two types of calculating equations are in common use (1) the 
free of conversion factors equations. They consist of only dimensions’  
symbols and no information about dimensions’ units exist in these equations 
or in accompanying them captions/legends. And (2) Equations with con-
version factor(s), those include dimensions’ symbols and are equipped 
with information about dimensions’ units, which exist either in the equa-
tions themselves or in accompanying them captions/legends. For example,  
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The equation for calculating the shaft power (P) can be written as any 
of the following three equations: 

 Power = torque × angular speed (A)11 

 
⋅ ×= torque (lbf ft)  angular speed(rpm)

Power(hp)
5252

 (B) 

 Horsepower = Torque × RPM / 5252 (C)12 

Where torque in (lbf · ft)  
These unusual for thermodynamics and many other branches of sci-

ence equations can be rewritten in the usual form as: 

 P T ω= ×  (A') 

Where T is the torque and ɷ is the angular velocity  

 ( ) ( )T lbf ft n(rpm)
P hp

5252

− ×
=  (B') 

Where T is the torque and n is the rotational speed. Or 

 T n
P  hp

5252

×=  (C') 

Where T is the torque in lbf-ft and N is the rotational speed in rpm. 
The free of conversion factors equations (see Equations A and A') are 

mostly used and can be used with all systems of units. Once the user has 
chosen the system of units to be used with a particular free of conversion 
factors equation, all its dimensions’ units are considered belonging to this 
particular chosen system. 

Equations B, C, B' and C' above represent the versions of writing the 
equation with a conversion factor. The user of such equations is obliged to 
use dimension’s units as provided in each equation and its explanation 
(caption/legend). 

Example 1-2 

Using the ideal gas equation of state (p · V = m · R ·T), calculate the 
volume (V) of a mass (m = 3 kg) of air that exists at a pressure p=1 
bar and temperature T = 350 K. The gas constant for air is R = 287 
J/kg-K. 
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Solution 

Let us firstly note that (1) this equation is free of conversion factors, (2) 
the units of its given dimensions are either metric SI ones (m = 3 kg,  
T = 350 K, and R = 287 J/kg-K), or multiples of the same metric SI 
units (p = 1 bar), and (3) the only un given dimension is the required 
one (V). This means that although the given equation can be used with 
any system of units, the less time consuming solution of this example 
will be when we chose using the metric SI system of units in solving 
this example. Therefore, we rewrite the given equation in the form 
V m R T / p= ⋅ ⋅  that is appropriate for calculating the required vol-

ume, substitute in it the values of all given dimensions in metric SI 
units, and perform the calculations: 

 

5

5

3

2

m R T 3 kg 287 J 350 K
p V m R T V

p kg K 10 Pa

3 287 J 350 J
3.0135

Pa10 Pa
N m

3.0135 3.0135 m
N m−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ = ⋅ ⋅  = =
⋅ ⋅ ⋅

⋅ ⋅ ⋅= =
⋅

⋅= =
⋅

 (D) 

Since we know in advance that the unit of the calculated volume will 
be (m3), we do not need to apply and deal with the unit parts of the dimen-
sions in the Intermediate sides of equation D. Therefore, calculating air 
volume in this example will be limited in calculating the numerical part of 
air volume, and equation D become, 

5 3p V m R T V m R T / p 3 287 350 /10 3.0135 m⋅ = ⋅ ⋅  = ⋅ ⋅ = ⋅ ⋅ =  (E) 

1.2 CALCULATIONS AND DISCUSSIONS IN 
THERMODYNAMICS 

All three ways of calculations and discussions (the graphical, the analytical, 
and the tabular) are used in thermodynamics. The analytical way gives high 
accuracy and is usually used everywhere where other ways cannot be used. 

The graphical way is simple for understanding and discussions, but it 
is not that accurate; therefore, it is mostly used in discussions and in those 
circumstances where high accuracy is not required. However, using large-
scale diagrams in calculations is acceptable for thermodynamic accuracy. 

The tabular way is used (1) when a high accuracy is required, while 
the analytical solution is almost not available or time-consuming, and (2) 
for approximate calculations in some circumstances. 
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Before starting the analysis, let us introduce some important defini-
tions and notes. 

 

OD1-4: A plane curve is a curve that lies in a single plane. A plane 
curve may be closed or open.13 
OR1-7: Two neighboring points of a plane y = f(x) curve cannot have 
the same two coordinates. This means that very neighboring points  
(1 and 2) of a plane y = f(x) curve can have (1) x2–x1 = dx = 0 and y2–y1 
= dy ≠ 0, (2) x2–x1 = dx ≠ 0, and y2–y1 = dy = 0, or 3) x2–x1 = dx ≠ 0 
and y2–y1 = dy ≠ 0. For these three conditions, the distance between 

the two points (1 and 2) is 2 2
1_ 2 ( ) ( ) 0.L dx dx= + ≠  If the two points 

are characterized by 0 0,x y or dx dyΔ Δ= = = =  then the exact  

distance between them is zero and they are congruent (not neighbors). 
Defining two very neighboring points (1 and 2) of a curve by x2 – x1 = 
dx = 0 and y2 – y1 = dy ≠ 0 means that the slope of the curve at point 1 
is ±∞ . 
OD1-4A: An equation has two sides (left and right) that are separated 
by an equal sign. 
Helal Definition 1-1 (HD1-1): A dual-side equation (abbreviation 
equation) consists of two sides (left and right) that are separated by an 
equal sign. 
HD1-2: A multiside equation consists of more than two sides that are 
separated by equal signs. 
HD1-3: A single-equation curve is the curve that can be expressed/defined 
by a single equation. A multiequation curve is the curve that cannot be ex-
pressed by a single equation. It requires more than one equation (a set of 
equations) to be expressed. Refracted curves (see curve 1a–2a–3a–4a–5a in 
Figure 1.1) are invariably multiequation curves. 
OD1-5: A smooth curve is a continuous curve (no gaps or discontinui-
ties) with no corners (no abrupt changes in the slope such as a point 
that you would get from the intersection of two lines).14 The continuous 
plane line (1–2–3–4, Figure 1.1a) is a smooth curve. It consists of 
three-plane smooth curves, which are (1) line 1–2 (a part of an ellipse 
that is expressed by f1(x)), (2) straight line 2–3 that is expressed by 
f2(x), and (3) line 3–4 (a part of another ellipse that is expressed by 
f3(x)). Line (2–3) is the common tangent of ellipses f1(x) and f3(x) at 
points 2 and 3. This means that to define an n-equation smooth curve, 
its two extreme points should be given in addition to its (n – 1) points, 
which interconnect its single-equation curves. Curve 1b–2b–3b–4b–5b 
in Figure 1.1 is also a multiequation smooth curve. 
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Figure 1.1. Multiequation curves 

OD1-6: A plane closed curve is a curve with no endpoints and com-
pletely encloses an area.15 In other words, it is the curve in which the 
start (st, 1 or I) and end (ed, 2 or II) points coincide. 
OD1-7: A plane simple closed curve is a connected curve that does 
not cross itself and ends at the same point where it begins (e.g., circles, 
ellipses, and polygons). Note that despite the name “curve,” a simple 
closed curve does not actually have to curve.16 Curve (1'-b-2') in Figure 
1.2 is a simple closed curve. 

 

Figure 1.1a. A smooth triequation curve 

OD1-8: The directional curve is the one that has a direction. It has a 
start (st, 1 or I) and an end (ed, 2 or II) point, and unless the curve is 
closed, the start and end points are enough to determine its direction. 
This means that (1) the direction of the closed curve should be defined 
through other means such as at least two additional points (3, 4, …) or 
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through arrows, (2) calculations belonging to the whole closed curve 
must start from the curve’s start point (if it does not exist, then the cal-
culator adds it), passing successively through all additional curve’s 
points (3, 4, …), and ending exactly at the curve’s end point, which is 
the same start point. If the start and end points of a plane simple closed 
curve are not congruent, then the curve is more than plane simple 
closed curve (see the following new definition). 
ND1-2: The more than simple closed curve (1"-c-2", Figure 1.2) is the 
curve that is composed of two parts: (1) the first part (1"-c-1") is a sim-
ple closed curve and (2) the second part (1"-2") is an additional open 
curve that coincides/superposes with the beginning of the first part. 
Therefore, the calculations result for the more than simple closed curve 
will be the algebraic sum of that for the closed curve and that for the 
additional curve. The only difference in the view between the simple 
closed curve and the more than simple closed curve is that the start and 
end points of the simple closed curve are congruent, whereas they are 
not for the more than simple closed curve. 

 

Figure 1.2. The open smooth curve (1-a-2), closed (1'-b-2'), and more  
than closed (1"-c-2") simple curves. 

Nt1-10: The order of numbering a curve’s points is mostly sequential 
because it allows writing multiterm equations in the abbreviated form 
(see Equation 1-64). 
OD1-9: A planimeter is a mechanical integrating instrument for measur-
ing the area of an irregular plane figure, such as the area under a curve, 
by moving a point attached to an arm around the perimeter of the figure.17 

1.2.1 CALCULATING THE AREA UNDER A PLANE CURVE 

Thermodynamic equations such as 
2 2

1 1

dt ds,
t s

t s
q C T= ⋅ = ⋅   

2

1

d
t

t
w p v= ⋅ , 

and 
2

1

dx
x

x
W F= ⋅  are similar to 
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2

1

dx
x

x
A y= ⋅  (1-34) 

This equation (see Figure 1.3) is used in calculating the area (A1-2-2'-1'-1) 
under curve (1–2) governed by equation ( )y f x= . For x-increasing or  

x-decreasing curves, this area is bordered by the curve (1–2) itself, its  
x-projection (1'–2'), x1-constant, and x2-constant lines. Rectangle (b–c–2'–
1'–b) shares with curved leg right-angled trapezoid (1–2–2'–1'–1) each of 
the side/base/width (1'–2') and area, and has the average height: 

 avg 1 2 2' 1' 1 2 1/ ( )y A x x− − − −= −  (1-35) 

 

Figure 1.3. A schematic for calculating the area under a curve 

In this equation, the symbol of the average height of the area under a 
curve is abbreviated to yavg, and it could be abbreviated sometimes to y, 
because it is multiplied by (x2 – x1), which defines the x-limits of the area 
to which the average height belongs. In Figure 1.3, the average heights 
appear alone (they are not multiplied by Δt); therefore, their symbols must 
be denoted additionally by the x-limits of the area to which each average 

height belongs (the symbols can be 
2

1

avg

x

x

y  or 
2

1
avg

x

x
y  and so on). 

Also, area (1–2–2'–1'–1) can be calculated as the difference between 
areas (a–2–2'–0–a) and (a–1–1'–0–a). This and Equations (1-34) and  
(1-35) lead to 

 

2 1

2

1

x x

under 1 2 1 2 2' 1' 1 a 2 2' 0 a a 1 1' 0 a 0 0

x

avg 2 1 avg 2 avg 1x

A A A A y dx y dx

y dx y (x x ) y (x 0) y (x 0)

− − − − − − − − − − − − −= = − = ⋅ − ⋅

= ⋅ = ⋅ − = ⋅ − − ⋅ −

 
  (1-36) 
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Nt1-11: Function ( )y f x=  is represented schematically in Figure 1.3. 

This means that we can use this representation in discussing and explain-
ing several items, but we cannot use it in calculations. To use the graph in 
calculations, it should be created in scale and the user must take this scale 
into consideration. 
Nt1-12: It is unnecessary for point a to be located on y-axis, where  
xa = 0, but it is much important to keep its position on curve (1–2) or its 
extent throughout a full calculation. 

Nt1-13: The three avgy  in Equation (1-36) are not the same. The first be-

longs to the x1_x2 limits, the second to xa_x2 limits, and the third to xa_x1 
limits. 
Nt1-14: The expression y dx⋅  (symbol δA) is the inexact differential of 

area A because unless the function y f (x)=  is defined (graphically, ana-

lytically, or tabular) integral, 
2

1

A y dx
x

x
= ⋅  cannot be calculated. Symbol-

izing the expression y dx⋅  by dA (instead of δA) is not rigorous (it does 

not remind the reader that the differential is inexact), but is not wrong, 
because it does not lead to any errors in the calculation. 

 
Equation (1-34) assumes that (1) area A is sliced by an extremely 

large number of x-constant lines into extremely large number of right-
angled trapezoidal slices of dx width, where the upper borders/legs of 
these trapezoids are differential straight lines, and (2) the original calculat-
ing equation for the differential of area “δA” (see Figure 1.3) is 
dA 0.5[(y dy) y] dx y dx 0.5(dy dx) y dx.= + + ⋅ = ⋅ + ⋅ = ⋅  In this equation, 
the second term ( dy dx / 2⋅ ) of the third side, which is the product of two 

differential terms, is much less than the first term ( ),y dx⋅  and therefore it 

was ignored. 
The equation for calculating the area under the straight line 2a_3a  

(the area of a no-differential right-angled trapezoidal slice cut by two  
x-constant lines x2a and x3a with upper straight-line border, 2a_3a, see  
Figure 1.1) is 

 

− − − − − − − − − − −

− − − − − − −

= −
= +

2a 3a 3a ' 2a ' 2a 2a d 3a ' 2a ' 2a 2a d 3a 2a

c 3a 3a ' 2a ' c 2a 3a c 2a

A A A

A A  (1-37) 

Here, it is not allowed to ignore any of the equal triangle areas 

2 3 2 2 3 2anda d a a a a c aA A− − − − − −  because each of them is not too small com-

pared with the rectangle to/from which it is added/subtracted. 
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Nt1-15: (1) Line 1_2 in Figure 1.3 is monotony x-increasing because the 
x-projection (dx) of any of its differential parts is positive (dx > 0), while 
(2) line (I_II) that coincides with line (1_2) is monotony  
x-decreasing because the x-projection (dx) of any of its differential parts is 
negative (dx < 0). In addition, the special case directional y = f(x) curve 
can be (3) a constant-x straight line (dx 0)=  if all its points are de-

scribed by dx 0,=  (4) a constant-y straight line (dy 0)=  if all its points 

are described by dy 0= , (5) a gradual x-increasing curve (dx 0)≥  if it 

consists of at least one x-increasing curve and one x-constant line or point 
and does not include any x-decreasing line, (6) a gradual x-decreasing 
curve (dx 0)≤  if it consists of at least one x-decreasing line and one  

x-constant line or point and does not include any x-increasing line, (7) an 
x-increasing curve (dx 0)≥  if it does not contain/include any differential 

curve that is described by dx 0< , and (8) an x-decreasing curve (dx 0)≤  

if it does not contain/include any differential curve that is described  
by dx 0> . 

It is clear from the previous paragraph that the x-increasing curve 
(dx 0)≥  is a common case for both the monotony and the gradual  

x-increasing curves, and the x-decreasing curve (dx 0)≤  is a common 

case for both the monotony and the gradual x-decreasing curves. 
 
ND1-4: The pure positive/negative area is the area, which does not  
include any negative/positive subareas. Therefore: 

For positive (y), the area under (1') the monotony x-increasing curve 
(dx 0)>  is called absolutely pure positive area ( 0),Aδ >  (2') the  

monotony x-decreasing curve (dx 0)<  is called absolutely pure negative 

area ( 0),Aδ <  (3') the constant-x straight line (dx 0)=  equals zero  

because 0 0A yδ = ⋅ =  and the definite integral of zero equals zero 
2

1
( 0 0),A = =  (4') y = 0 straight line equals zero (δA = ydx = 0 · dx = 0 

 A = 0), (5') the gradual x-increasing curve (dx 0)≥  is pure positive 

area ( 0),Aδ ≥  (6') the gradual x-decreasing curve (dx 0)≤  is pure nega-

tive area ( 0),Aδ <  (7') the x-increasing curve (dx 0)≥  is pure positive 

area ( 0),Aδ ≥  and (8') the x-decreasing curve (dx 0)≤  is pure negative 

area ( 0)Aδ ≤ . 

 
For negative (y), the names of the previous curves must be inverted. 
Taking into consideration items (3') and (4'), we conclude the  

following. 
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NR1-1: Areas under zero-y and constant-x straight lines are zero ones, 
and therefore, they do not affect areas’ calculations under curve y = f(x). 
NR1-2: The sum of the absolutely pure positive/negative areas under a 
y = f(x) curve exactly equals the sum of the pure positive/negative areas 
under the same curve. Therefore, we shall refer to both (the absolutely 
pure and pure) positive/negative areas as the pure positive/negative areas 
under a y = f(x) curve. 
 
Let us introduce the following HDs. 
 
HD1-4: The pure area is the area under the y = f (x) curve that is de-
scribed by any of the following two conditions throughout: (1) 
( dx 0)A yδ = ⋅ ≥  or (2) ( dx 0)A yδ = ⋅ ≤ . Its upper boarder is the pure 

area’s curve. The pure area is a right-angled trapezoid that is based (by 
its right-angled leg) on the x-axis. Its other leg (mostly curved and/or 
not-right-angled) is the pure area’s curve. Areas A1-2-2'-1'-1 and A1-1'-2'-2-1 in 
Figure 1.3 are pure positive and negative ones, respectively. 
HD1-5: A ( )y f x=  curve that is characterized by ⋅ ≥ 0y dx  is called 

the pure (homogenous) positive area’s curve. The condition ⋅ ≥ 0y dx  

abbreviates the two pairs of conditions: (1) ≥ ≥( 0 and 0)y dx  and (2) 

≤ ≤( 0 and 0)y dx  those can be expressed additionally as the algebra-

ic signs of “y” and “dx” are identical through the pure positive area’s 
curve. Also, the area under a pure positive area’s curve is characterized 
by δ = ⋅ ≥dx 0A y  and is called the pure positive area. Pure positive 

area’s curves do not include any (differential/integral) curve’s slices, 
characterized by δ = ⋅ ≤dx 0A y  and/or δ = ⋅ <A y dx 0.  Pure positive 

areas do not include any negative (differential/integral) area’s slices. 
HD1-6: A curve that is characterized by ⋅ ≤ 0y dx  is called the pure 

(homogenous) negative area’s curve. The condition ⋅ ≤( 0)y dx  abbre-

viates the two pairs of conditions: (3) ≥ ≤( 0 and 0)y dx  and (4) 

≤ ≥( 0 and 0).y dx  These two pairs of conditions can be expressed 

additionally as the algebraic signs “ 0≥  or 0≤ ” of “y” and “dx” are, 
for the pure negative area’s curve, opposite to each other. Also, the  
area under a pure negative area’s curve is characterized by 

dx 0A yδ = ⋅ ≤  and is called the pure negative area. Pure negative  

area’s curves do not include any positive (differential/integral) curve’s 
slices, characterized by dx 0A yδ = ⋅ ≥ and/or δ = ⋅ >A y dx 0.  Pure 

negative areas do not include any positive (differential/integral) area’s 
slices. 
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Nt1-16: Thermodynamics is much interest-
ed in three kinds of areas under curves (the 
total, pure positive, and pure negative; see 
HD1-5 and HD1-6). Therefore, thermody-
namic analysis requires dealing with these 
areas as algebraic values. This means that 
NR1-1 and NR1-2 are much useful in dis-
cussing and determining these three kinds 
of areas under curves. The three relations 
previously described > <( 0, 0,dx dx

=and 0)dx  are usually reduced (in ther-

modynamics) into two inequality–equality 
relations ( 0Aδ ≥  and 0)Aδ ≤ , and we 

shall refer to the signs used in them as the 
inequality–equality signs. 
HD1-7: For a particular plane curve y = 
f(x), Curve’s characteristic points are the 
points those are vital/important for its full 
analysis.  Such analysis includes curve’s 
creation and all related to it calculations 
and discussions. 

The full set of Curve’s characteristic 
points can be divided into the following 
sub-sets: 
 
1) points at which the curve starts, ends, or changes its mathematical 

expression (equation). These points can be additionally expressed/ 
defined as “the points that limit the validity of the relations charac-
terizing the curve and/or its parts”. For a continuous monoequation 
curve (see Figure 1.2 “elliptical curve 1-a-2”), these points are two 
(points 1 and 2), whereas for the triequation smooth curve 1-2-3-4 
(see Figure 1.1a) these points are four (1, 2, 3, and 4) and for the 
miltiequation continuous refracted curve 1a-2a-3a-4a-5a (see Figure 
1.1) these points are at least four (1a, 2a, 3a, and 5a) since we are 
not sure about the required number of equations to describe its two 
curves (1a-2a and 3a-4a-5a). 

2) Points those ease dealing-with (expressing, creating, calculating 
and discussing) the curve under study. These points are basic for 
the curve although they may not lie on it (e.g., circle’s center does 
not lie on circular curve’s line, but it with another circle’s point al-
lows creating the circle, whereas we need three circle’s points to  
 

Figure 1.4. A schematic 
for determining the areas 
under curves 
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create the same circle. Also the simplest expression of a circle is 
that written for the case when its centre superposes with/on the 
origin of Cartesian coordinates).  

3) Points at which property sign inversions occur/may-occurA on some 
properties of the curve such as curve’s tangentB and of the related to 
the curve properties such as the area under it. 
 

A. May-occur (instead of occur) eases the discussions for de-
termining some characteristic points on the expense of in-
creasing their number 

B. The tangents of the curve at both sides of the refraction point 
are not the same slope. 

 
The sign inversion of the differential A ydxδ =  of the area (A) 

under the smooth curve y f (x)=  proceeds smoothly. Therefore, 

the necessary and insufficient condition for such inversion is 
δ = =A ydx 0,  which can be replaced by any of the conditions 
y 0, dx 0= =  and y dx 0= = . This means that: “any point of Curve 

y = f(x) that comply with any of the conditions ydx 0, y 0, dx 0= = =  

and y dx 0= =  can be Curve’s sign inversion point/straight-line-

segment if the algebraic signs of dA at both sides of this 
point/straight-line-segment are opposite (dA at one side is negative 
whereas at the other side is positive)”. 

The above means that “the calculating equation for the area 
under a curve’s =y f (x)  point/differential-part is δ =A ydx.  For 

the points at which curve’s tangent is either x = const line (dx=0) or 
x-axis (y=0) δ =A ydx  equals zero”. 

Curve’s characteristic points at which the differential of the 
area under the curve =y f (x)  equals zero ( δ = =A ydx 0 ) and in-

verts its sign are (1) curve’s intersecting points with x-axis (y = o), 
at which dx does not invert its sign (see Figures 1.4 “point 4” and 
1-5 “points 10 and 12”, where dx before, at, and after the men-
tioned points is positive. See also Figure 1.5 “points 15 and 17”, 
where dx before, at, and after the mentioned points is negative). (2) 
Not lying-on/belonging-to x-axis (y = o), curve’s points, at which 
dx inverts its sine (see Figure 1.4 “points 5, 6, 7, 8 and 11”, at 
which dx=0 and inverts its algebraic sine whereas y ≠ o). 

Curve’s points at which the differential of the area under  
the curve =y f (x)  equals zero ( δ = =A ydx 0 ) and inverts its sign 

(see Figure 1.5 “points 1, 3, 5, and 7”, at which dx=0 and inverts its 
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algebraic sine whereas y = o) do not belong to Curve’s characteris-
tic points. At points 1, 3, 5, and 7, each of dx and y inverts its alge-
braic sign, therefore, the product ydx at each of the mentioned 
points δ = =A ydx 0  does not invert its algebraic sine. 

 

Figure 1.5. Curve’s points 1, 3, 5, 7, 10, 12, 17, and 15 are specified by both  
(y = o) and (dx = o) 

 
Nt1-17: If the complete curve (1–2, I–II, or st – ed, see Figure 1.4, 
where the numbers of the points are different from one subfigure A, B, 
and C to another) or its components suffer from heterogeneity in the 
sign of y and/or dx, then it is preferable to divide it (curve 1–2, I–II, or 
st–ed) into partial curves. The start and end points of the partial curves 
in the three illustrations in Figure 1.4 curves are (1) the intersection 
points of the curve with x-axis (point 4 y4 = 0), (2) points 3, 5, 6, 7, 8, 
and 11, where dx = 0, and (3) the start and end points (1, 2, I, II, st, and 
ed) of the complete curve. Each of these partial curves belongs to one 
of the following four categories: 
 
A. The first category curves comply with the conditions 

≥ ≥( 0 and 0)y dx . These curves are located on and over x-axis 

( 0)y ≥  and are x-increasing ( ≥ 0dx , see Nt1-15, item 7). To this 

category belong partial curves (4–5), (6–7), (8–11), and their parts 
B. The second category curves comply with the conditions 

≤ ≤( 0 and 0)y dx . These curves are located on and under x-axis 

( 0)y ≤  and are x-decreasing ( ≤ 0,dx  see Nt1-15, item 8). To this 

category belong partial curve (1–3) and its parts. 
C. The third category curves comply with the conditions 

≥ ≤( 0 and dx 0).y  These curves are located on and over x-axis 

)0( ≥y  and are x-decreasing ≤( 0).dx  To this category belong 
partial curves (5–2), (I–6), (7–II), (st–8), (11–ed), and their parts. 

D. The fourth category curves comply with the conditions 
≤ ≥( 0 and 0).y dx  These curves are located on and under x-axis 

( 0)y ≤  and are x-increasing ≥( 0).dx  To this category belong 

partial curve (3–4) and its parts. 
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The first and second categories’ curves are pure positive area’s 
curves (see HD1-5), whereas the third and fourth categories’ curves are 
pure negative area’s curves (see HD1-6). 

Nt1-18: Equality signs in the “y” and “dx” relations mentioned previ-
ously mean that each of lines y = 0 and constx =  can belong to any 

category of curves. 
Nt1-19: Curve categories A and C lie in the upper part of the diagram, 
while categories B and D lie in the lower part of the diagram. Catego-
ries A and C, which are characterized by ( 0),y ≥  are the most com-

mon in thermodynamic calculations. 
Nt1-20: Curve categories A and B are characterized by 
( dx 0),A yδ = ⋅ ≥  which means that areas (1–3–3'–1'–1, 4–5–5'–4, 6–

7–7'–6'–6, 8–9–10–11–11'–8'–8, 8–9–st–-8'–8, 9–10–ed'–st'–9, and 10–
11–11'–ed'–10) under curves (1–3, 4–5, 6–7, 8–9–10–11, 8–9, 9–10, 
and 10–11) are pure positive areas (see HD1-5). On the other hand, 
curve categories C and D are characterized by δ = ⋅ ≤ 0A y dx , which 

means that areas (3–4–3'–3, 5–2–2'–5'–5, I–6–6'–I'–I, 7–II–II'–7'–7, st–
8–8'–st–-st, and 11–ed–ed'–11'–11) under curves (3–4, 5–2, I–6, 7–II, 
st–8, and 11–ed) are pure negative areas (see HD1-6). Actually, areas 
(1–3–3'–1'–1 and 3–4–3'–3) are over curves (1–3 and 3–4) not under 
them. 
Nt1-21: Calculations of areas under a straight line segment are the 
simplest because its start and end points are enough to fully character-
ize the line. 

Below some relations and rules for a straight line segment (st_ed), 
whose some arbitrarily chosen no-extreme points are sequentially 
numbered (2, 3,…, i+1,…, n–1 and n), where i is integer number that 
can be 1, n–1 or any integer number between them, whereas n–1 is the 
number of the parts of the straight line segment (st_ed) that partitioned 
by/with (n–2) arbitrarily chosen no-extreme points (such numbering 
makes st stands for point1 and n for ed): 

ed st i 1 iIf x x 0 x x 0, dx 0+− =  − = =  (1-38) 

ed st i 1 iIf x x 0 x x 0, dx 0 and vice versa+− >  − > >  (1-39) 

+> >  > > > 



ed st i 1 iIf y 0 and y 0 y 0, y 0 & y 0

and vice versa
 (1-40) 
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+> =  > ≥ ≥ 



ed st i 1 iIf y 0 & y 0 y 0, y 0 & y 0

and vice versa
 (1-41) 

> < < > 
− 

ed st ed stIf y 0 & y 0 or y 0 & y 0,

then the straight line segment intersects axis.x
 (1-42) 

OR1-8: The slope of any (integral or differential) part of a straight line 
equals its own slope:  

 ed sti 1 i

i 1 i ed st

y yy y

x x x x
+

+

−−
=

− −
 (1-43) 

which can be positive, negative, null, or ±∞ . Here (ed) stands for the 
end point of the straight line and (st) for its start point. Also (i+1) 
stands for the end point of the straight line’s part and (i) for its start 
point. 
OR1-9: If the algebraic x-value of an imaginary point that moves 
along a straight line starting from its start point to its end one (1) in-
creases, then the line is called x-increasing (dx > 0) straight line and 
(2) decreases, then the line is called x-decreasing (dx < 0). This rule is 
also applicable for y-axis and leads to the following. 
OR1-10: For straight lines, Point with x = 0 cannot lie between two 
points with positive x-values or with negative ones, but it surely lies  
between a point with positive (x) and another with negative (x). This 
rule is also applicable for y-axis and leads to the following. 
OR1-11: If yst and yed are not zero and both are either positive or negative, 
then straight line segment (st_ed) does not intersect x-axis ( ysegment ≠ 0; see 
Equation 1-40), but for opposite signs of yst and yed, the straight line 
segment surely intersects x-axis (see Equation 1-42). This rule is also 
applicable for y-axis. 

As mentioned previously, calculations of areas under a linear par-
tial line are the simplest. Let us have a look at straight line’s illustration 
on y_x plane (or on the coordinates of start and end points of a straight 
line segment) and determine its characteristics: (1) is it x-increasing (xed 
> xst), x-decreasing (xed < xst), or constant-x? (2) Whether its dx_sign is 
the same as ( ) _ ,ed stx x sign−  and (3) whether the straight line segment 

intersects x-axis (yst and yed have different/opposite signs) or not, and if 
not, (4) does it coincide/superpose with x-axis (if both yst and yed are 
equal to zero) or contacts it in one point (if only one of yst and yed 
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equals zero). If you decide to continue, apply the following equation 
for pure straight line segments that may touch, but do not intersect  
x-axis 

 under (st _ ed) streight line ed st ed stA (y y ) (x x ) / 2= + ⋅ −  (1-44) 

For lines those intersect x-axis, you first need to determine the  
abscissa (xy=0) of the intersection point between the line under consid-
eration and x-axis, and then apply the equation 

 
= =⋅ − ⋅ −

= +ed ed y 0 st y 0 st

under (st_ed) streight line

y (x x ) y (x x )
A

2 2
 (1-45) 

where items in baskets are the areas under the parts of the straight line 
that are located above and below the x-axis. These areas are pure ones. 
One of them is pure positive and the other is pure negative; therefore, 
when we need to deal with pure areas, this area must be divided into 
two positive and negative pure areas. 
 
Nt1-22: We shall refer to the expression type ≥Z 0  as the pure posi-
tive Z-function and to ≤Z 0  as the pure negative Z-function, where Z 

is a variable or a function. Also we shall refer to the set of expressions 
type (1) ≥1Z 0,  ≥2Z 0,  ≥3Z 0,  etc. as the pure positive Zi-functions, 

(2) ≤1Z 0,  ≤2Z 0,  ≤3Z 0,  etc. as the pure negative Zi-functions, and 

(3) ≥1Z 0,  ≤2Z 0,  ≥3Z 0,  ≥4Z 0,  ≤5Z 0,  etc. as the pure  

Zi-functions, where index i is a positive integer number and Zi is a var-
iable or a function.  
 

Using HD1-5 and HD1-6, the relations (1-49 through 1-55), and 
the available data concerning the coordinates of the extreme points (st 
and ed) of a straight line, we obtain the following new and other au-
thors’ rules: 

 
NR1-3: If the algebraic signs of −[ , , ( )]ed st ed sty y and x x -functions 

are identical, then the area under the straight line segment (st_ed) is 
pure positive (see HD1-5). Also, the area under the straight line seg-
ment (i_i+1) will be pure positive when 1 1[ , , ( )]i i i iy y and x x+ + −  have 

identical algebraic signs. 

NR1-4: If the algebraic signs of ( edy  and sty ) are identical, while the 

algebraic sign of the difference ( )ed dtx x−  is opposite to their sign, then 
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the area under the straight line segment (st_ed) is pure negative (see 
HD1-6). Also, the area under the straight line segment (i_i+1) will be 
pure negative when the algebraic signs of ( 1iy +  and iy ) are identical, 

while the sign of 1( )i ix x+ −  is opposite to their sign. 

NR1-5: If the algebraic signs of ( edy  and sty ) are opposite to each 

other, then the area under the straight line segment (st_ed) is not pure. 
It consists of two parts (a pure positive part and a pure negative one; 
see HD1-5 and HD1-6). Also, the area under the straight line segment  
(i_i+1) will not be pure when the algebraic signs of ( 1iy +  and iy ) are 

opposite to each other. 
NR1-6: If ( 0ed sty y= = ), then the area under the straight line segment 

(st_ed) is null (see Equation 1-44). Also, if ( 1 0i iy y+ = = ), then the ar-

ea under the straight line segment (i_i+1) is null. As any curve can be 
divided into partial parts, which are defined by ( dx 0)A yδ = ⋅ ≥  

and/or ( dx 0)A yδ = ⋅ ≤  each, then the area under the total curve 

(Atot) will be calculated using the equation 

 1tot
n
i iA A==   (1-46) 

where Ai is the algebraic value of the area under curve’s partial 
part number (i) and n the total number of curve's partial parts. 

Let us determine the areas under curves (1–2, I–II, and st–ed, in  
Figure 1.4): 

From Nt1-19, we obtain Aunder 6 7under 6 7 7' 6' 6 0,A A
− − − − −= >  

6underI
A

−

6 6' 'I I IA − − − −= 0,<  and 
7under 7 ' 7' 7 0

II II IIA A
− − − − −= < . Therefore: 

 

6 7 6 7

7 II 7 II

I 6 I 6

under 6 7 7 ' 6 ' 6 under 6 7 7' 6 ' 6

under 7 II II ' 7 ' 7 under 7 II II ' 7 ' 7

under I 6 6 ' I ' I under I 6 6 ' I ' I

A A A A

A A A A

A A A A

− −

− −

− −

− − − − − − − −

− − − − − − − −

− − − − − − − −

= = =

= = − = − 

= = − = − 

 (1-47) 

It is obvious from Figure 1.4 that curve ( 6 7 )− − −I II  consists of 

the three curves ( 6), (6 7),I − −  and (7 )II−  exclusively; therefore, 

taking into consideration Equation (1-47), we obtain 

 

− − − − − −

− − − − − − − − − − − −

= + +

= − + −
6 7 II I 6 6 7 7 IIunder under under under

I 6 6 ' I ' I 6 7 7 ' 6 ' 6 7 II II ' 7 ' 7

A A A A

A A A

I

 (1-48) 
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It is clear from subfigure 1.4(B) that the absolute value of area 
(6 7 7 ' 6 ' 6)− − − −  is much bigger than the sum of the absolute values 

of the two areas ( 6 6 ' ' )− − − −I I I and (7 ' 7 ' 7),− − − −II II  which 

leads to conclude that the right side of Equation (1-48) is positive and 

equals 6 7 ' ' ,I II II I IA − − − − − −  and therefore, Equation (1-48) becomes 

 

I 6 7 IIunder I 6 7 II II ' I ' I I 6 6 ' I ' I

6 7 7 ' 6 ' 6 7 II II ' 7 ' 7

I 6 7 II II ' I ' I 6 7 7 ' 6 ' 6

I 6 6 ' I ' I 7 II II ' 7 ' 7

A A A

                      A A

                A A

                      A A 0

− − − − − − − − − − − − −

− − − − − − − −

− − − − − − − − − −

− − − − − − − −

= = − +

+ −

= = +
+ + >  (1-49) 

Similarly, we obtain for the other curves in subfigure 1.4(A) the 
following equations 

− − − − − − − − − − − − −= − = >
1 3 4under 1 3 3' 1' 1 3 4 3' 3 1 3 4 1' 1A A A A 0  (1-50) 

− − − − − − − − − − − − − − − −= − = >
4 a 5 2under 4 a 5 5' 4 5 2 2' 5' 5 4 5 2 2' 4A A A A 0a  (1-51) 

− − − − − − − − − − − − − − − − − −= + = >
1 2under 1 3 4 1' 1 4 a 5 2 2' 4 1 3 4 a 5 2 2' 1' 1A A A A 0  (1-52) 

And, for subfigure 1.4(C): 

st-8-9-10-11-ed-ed ' -st ' -st st-8-8' -st ' -st 8-8-st ' -8' -8 9-10-ed ' -st ' -9

10-11-11' -ed ' -10 11-ed-ed ' -11' -11

st-8-9-st 9-10-ed ' -st ' -9 10-11-ed-10

st-8-9-st 9-10-ed ' -st ' -9 10-11-ed-10

A (A A ) A

(A A )

A A A

A A A

= + + +

+ +

= + +

= − + −  (1-53) 

Nt1-22A: The first and third/fourth sides of Equation (1-53) insure that 
in the contrary with the areas under curves (1–2) and (I–II), the area 
under curve ( 8 9 10 11 )− − − − −st ed  in the same Figure 1.4 does not 

consist of only one closed area, but it consists of a train of three closed 
areas (the positive 9 10 ' ' 9ed stA − − − −  and the negative 8 9st stA − − −  and 

10 11 10 ,edA )− − −  each two of which are (as train wagons) interconnected 

to each other by one point. This is because the plane closed curve that 
surrounds this whole area is not simple (it intersects/crosses itself;  
see OD1-7). 
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Nt1-23: The start and end points of a closed curve coincide and accord-
ingly their x-constant lines coincide, reducing the area between them to 
zero, and the area under the curve reduces to the area inside it. 
OR1-12: The area under a plane simple closed curve equals that sur-
rounded by it area. 
NR1-7: The area under a more than plane simple closed curve equals 
the sum of the area surrounded by the first closed part and that located 
under its second open part (see ND1-2). 
Nt1-24: Each of the previously discussed no-chain areas under curves 
(whether it complies with any of (δA = y · dx ≤ 0) or (δA = y · dx ≥ 0) 
conditions or not) and also each area that is a component (ring) of a 
chain area under a curve have a fixed closed directional perimeter, the 
direction of which is resulted from the direction of the curve that bor-
ders it and can be clockwise or anticlockwise. If an imaginary point 
moves along the perimeter of the area under the curve so that its mo-
tion along the bordering curve coincides with the curve’s direction, 
then its circulation along the area’s perimeter can be either clockwise 
or anticlockwise. All previously discussed positive areas under curves 
(whether they were partial or not) have perimeters with clockwise di-
rection, and all previously discussed negative ones have perimeters 
with anticlockwise direction. 
NR1-8: The area under a curve or under a part of it is positive (not 
pure positive) if its perimeter has a clockwise direction, else it is a 
negative one. 
 
From Equations (1-49) and (1-53), we conclude the following. 
 
NR1-9: The algebraic sum of areas under neighboring curves is a 
new-closed area/new-chain-of-closed areas ' 'st ed ed st stA − − − −  (“st” stands 

for the curve’s start point “1, I, or st” and “ed” stands for its end point 
“2, II, or ed”) that is bordered by (1) the total curve (st–ed) that results 
from interconnecting these neighboring curves, (2) the x = constant 
line sector that connects the end point (ed) of the total curve with its  
x-projection (ed'), (3) the straight-line sector that interconnects the  
x-projections of the end and start points (ed' and st') of the total curve, 
and (4) the x = constant line sector that connects the start point (st) of 
the total curve with its x-projection (st'). 

The way of calculating areas under curves (the graphical, analyti-
cal, and tabular) depends usually on the available data. 
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Figure 1.6. 1) Transforming the no 
compact graph into a compact one. 2) 
Approximating the unnumbered, smooth, 
and dotted curve by a numbered refracted 
line that consists of continuous straight 
line segments. 

1.2.1.1 Graphical calculation of the area under y = f(x) curve 

For this paragraph: 1) we shall number the projections of curves’ points on 
the coordinate axes with/by their own numbers subscripted with/by the 
label/name of the coordinate axes (e.g., point 2x' is the projection of point 
2 on x'-axis), 2) our reference is Figure 1.6 that consists of five subfigures 
(I through V). We shall refer to 
any of these 5 subfigures within 
this paragraph directly without 
naming their figure’s number 

If the relation ( )y f x=  is 

given graphically, then the prior-
ity will be given to the graphical 
calculation. 

Let us discuss the calcula-
tion of the area under the un-
numbered, smooth, and dotted 
curve that illustrated in Subfig-
ure I It is clear from  
Subfigure I that this curve is x-
increasing ≥( 0)dx  one that is 

located over x-axis ( 0),y >  and 

accordingly (see HD1-5) it is a 
pure positive curve, so it does 
not suffer from heterogeneity in 
the sign of (y) and/or (dx), and 
the area under it is a pure posi-
tive area. Therefore, there is no 
need to divide it into partial 
curves before measuring it (see 
Nt1-16). The area under this 
curve and under any of its parts 
can be measured directly in a 
single-step measurement from 
Subfigure I using an existing 
planimeter (x-axis in Subfigure I 
is not displaced; it is congruent 
with y = 0 line). In the absence 
of instruments for measuring 
areas, and since the analytical 
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equation of the mentioned curve is unknown, the graphical calculation of 
the area under the dotted curve can be done as follows: 1) connect each two 
neighboring points with a straight line (this transforms the dotted line that 
consists of n points into a refracted one that consists of “n-1” straight line 
segments), 2) create from each line’s point a vertical to x-axis line that ends 
on it (on x-axis). In so doing the area under the dotted line divides into  
(n-1) trapezoids (rectangles are special cases of trapezoids) and therefore 
(see Equation 1-44),  

( )
− −

+
+ + +

= =

+ = ⋅ − = ⋅ Δ  
 
n 1 n 1

i 1 i
under dotted line i 1 i avgi 1 i i 1 i

i 1 i 1

y y
A (x x ) y x

2
 (1-54) 

In this equation, the point with number “i = 1” is point 1, which 
stands for the beginning of the replacing curve, and the point number “i = n 
+ 1” is point E, which stands for the end of the replacing curve. The coor-
dinates of line’s points in this equation can be measured or read from 
line’s graph. 

The consumed time in the above described graphical calculation of 
the area under a dotted curve depends on the number of curve’s points (n) 
that participate in calculations, the greater number of points (n) the longer 
consumed time and accordingly the greater exactness. Therefore, and 
since the dotted curve in Subfigure I consists of 45 points, it is impractical to 
calculate the area under it according to the above description. One of the prac-
tical ways is as follows: (1) Without any calculations we graphically ap-
proximate the plane dotted smooth line with/by a plane refracted line that 
consists of straight line segments to comply with the relation: AURL≈AUDL 
that transforms for subfigure I into: Area (1-2-3-4-5-6-7-E)≈AUDL. The 
indexes URL and UDL stand for under the refracted line and under the 
dotted line respectively. (2) We shall refer to the dotted line by original 
curve and to the refracted line by replacing curve. The start point of the 
original curve may not coincide with point 1, but it lies on x-constant line (1–1x) 
or on its extension. Also, the end point of the original curve may not coincide 
with point E, but it lies on x-constant line (E–Ex) or on its extension. As can be 
seen from Subfigure I, (3) the original and the replacing curves are in good 
convergence, and (4) the replacing curve and the area under it are also pure 
positive curve and area, respectively. The decrease in the number (n) of the 
parts (straight-line segments) constituting the replacing curve eases the 
calculation of the area under it and simultaneously decreases the accuracy 
of the calculation. The calculation here will be executed according to 
Equation (1-54). 
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The following discussions require introducing the following definitions 
HD1-7A: We shall refer to: 1) the rectangle, whose vertices are the in-
tersection points of the closest to plane graph’s curve(s) gridlines; those 
may contact graph’s curves without intersecting them as the main 
graph’s frame. Rectangle A-B-C-D-A in subfigures II through IV is 
graph’s 1-6 main frame, 2) the rectangular area that includes graph’s 
curves (the main graph’s frame) and the coordinate axes as the plane 
graph’s range. This means that the sides of each of the plane graph’s 
range and the main graph’s frame are parallel, whereas some of them 
(these sides) are parallel to the horizontal and the others to the vertical 
coordinate axes. 3) The graph, whose main and range frames are con-
gruent as the compact graph. A coordinate axis of the compact graph is 
either a crosser or a tangent to its main frame. The graphs in subfigures 
IV and V are compact; but that in subfigure V is a magnified copy of 
subfigure IV to occupy the same width as subfigure I. 

 
Let us transform the no compact graph in subfigure (I) into a compact 

one (see Subfigure IV). To determine graph’s 1-6 main frame we deter-
mine graph’s gridlines that intersect curve 1-2-3-4-5-6-7-E. According to 
the labels of x and y axes these gridlines are y=20 [y-units], y=25 [y-units] 
and y=30 [y-units] that located between curve’s 1-2-3-4-5-6-7-E no inter-
secting gridlines y=15 [y-units] and y=35 [y-units] in addition to Gridlines 
x=20 [x-units], x=25 [x-units], x=30 [x-units], x=35 [x-units], x=40  
[x-units], x=45 [x-units], x=50 [x-units], x=55 [x-units], x=60 [x-units], 
and x=65 [x-units], that located between curve’s 1-2-3-4-5-6-7-E no inter-
secting gridlines x=15 [x-units] and x=70 [x-units]. Thus the closest to 
graph’s 1-6 curve 1-2-3-4-5-6-7-E gridlines those may contact the curves 
without intersecting them are grid lines y=35 [y-units], x=70 [x-units], 
y=15 [y-units] and x=15 [x-units] and therefore, the graph’s 1-6 main 
frame is rectangle A-B-C-D-A. 

To reach the compact graph (see subfigure IV), we cut-off/exclude 
/eliminate the graph’s areas that are outside rectangle A-B-C-D-A. As 
seen from Subfigures II and IV the sum of these unnecessary areas is the 
highlighted area in Subfigure II. The existing mathematical methods allow 
eliminating this highlighted area without decreasing graph’s calculating 
effectiveness. This can be done by: (A) cutting off the highlighted area 
under line y=15 [y-units] with deleting y-axis’ part that borders it. Such 
cutting off results 1) disappearing each of the low part of y-axis and the 
gridlines in the cut off area, 2) displacing vertically x-axis with its nota-
tions to superpose on/with gridline y=15 [y-units] (see subfigures II  
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and III) and 3) replacing each x in/on the displaced x-axis’ notations by x' 
(x-axis’ notations that confuse the view of subfigure III were deleted from 
it; because they can be restored any time from the label of the coordinate 
axis “e.g., x'” and curve’s points’ numbers “see the first lines of §1.2.1.1”) 
and (B) cutting off the highlighted area between the remaining of y-axis 
and line A-B that superposes on/with gridline x=15 [x-units] (see Subfig-
ure IV). Such cutting off results 1) disappearing the gridlines in the cut off 
area, 2) displacing horizontally the remaining of y-axis with its notations 
to superpose on/with gridline x=15 [x-units] or line A-B (see Subfigures 
III and IV) and 3) replacing y in the displaced y-axis label by y'. The re-
sulted compact graph in subfigure IV allows 1) reading the coordinates of 
any point of the represented curve 1-2-3-4-5-6-7-E and 2) calculating ana-
lytically and graphically the areas between the represented curve and each 
of the eliminated x-axis (Area 1-2-3-4-5-6-7-E-Ex-1x-1) and the displaced 
x'-axis (Area 1-2-3-4-5-6-7-E-Ex'-1x'-1). Point 1x' exists in subfigure IV 
without labeling; it is the projection of point 1 on x'-axis, whose ordinate 
is (15 [y-units] or 15 [y'-units]). 

In the following we shall prove that the compact graph in subfigure 
IV fully replaces the full graph in subfigure I. The coordinates of any 
point of the refracted line (1–2–3–4–5–6–7–E) or of its original dotted line 
can be easily read/obtained from any of the two subfigures, Therefore, 
calculating area (Area 1-2-3-4-5-6-7-E-Ex-1x-1) that is the area between the 
refracted line (1–2–3–4–5–6–7–E) and the original x-axis can be done 
using the same equation (1-54) for both subfigures. The measurement of 
the mentioned area using an existing planimeter with taking in considera-
tion graph’s scale does not need any other steps for subfigure I; but the 
measurement of area 1-2-3-4-5-6-7-E-Ex-1x-1 using Subfigure IV and an 
existing planimeter cannot be done in the absence of the relationship be-
tween the mentioned area and other areas, those exist in Subfigure IV. 
From the comparison between Subfigures I and IV and taking in consider-
ation the creation of figure 1.6 we find that x'-axis superposes with/on 
gridline y=y'=15 and therefore,  

A1-2-3-4-5-6-7-E-Ex-1x-1 = A1-2-3-4-5-6-7-E-Ex'-1x'-1+yA (xE− x1) 

 = A1-2-3-4-5-6-7-E-Ex'-1x'-1+yA (x'E− x'1) (1-55) 

All constituents of the right side of this equation can be obtained from 
Subfigure IV and therefore we can measure area 1-2-3-4-5-6-7-E-Ex-1x-1  
through: 1) Measuring the existing in Subfigure IV area 1-2-3-4-5-6-7-E-
Ex'-1x'-1 using an existing planimeter with taking in consideration graph’s 
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scale. 2) Substituting in equation 1-55 the values of the measured area  
1-2-3-4-5-6-7-E-Ex'-1x'-1 in y'·x' units, y'A in y' units, x'E in x' units and x'1 
in x' units we obtain the measured value of area 1-2-3-4-5-6-7-E-Ex-1x-1 

 
Nt1-24A:  No contradiction in equation (1-55). Ex is the label/name of 
the point that is the x-projection of point E of the refracted curve, 
whereas xE is the x-value of point E.  
Nt1-24B:  For closed curves the start and end points (1 and E) are con-
gruent; therefore: − = − = − =E 1 E 1 E 1x x x' x' x" x" 0,  

⋅ − = ⋅ − = ⋅ − =x" E 1 x' E 1 x E 1y (x" x" ) y (x' x' ) y (x x ) 0,  and 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − −= =1 2 3 4 5 6 7 E E' 1' 1 1 2 3 4 5 6 7 E b a 1 1 2 3 4 5 6 7 E b' a ' 1A A A ,

which insures rules (OR1-12 and NR1-7). 
 

Nt1-25: To increase the accuracy of the graphical calculation, the scale 
of the graphs and diagrams is usually increased. Often, this procedure 
is accompanied (associated) with transforming the no compact graph 
into a compact one. 
Nt1-25A: Although the readings of the coordinates of any of diagram’s 
point are the same, whether they were obtained using the original or the 
displaced coordinate axes, the distance from a point in the diagram to 
the axis changes with changing the displacement of the axis; therefore, 
with the exception of obtaining the coordinates of graph’s points and/or 
calculating the areas of plane simple closed curves (see OR1-12), the 
displacement of the coordinate axes must be taken into consideration in 
graphical calculations.  
 
Conclusion 1-1: Calculating the real area under function y f (x)=  that 

is represented in scale on a graph must be executed with taking into 
consideration the scale of the graph (see Nt1-11) and the displacement 
of the coordinate axes (see Nt1-25), see also (§1.2.1). 

1.2.1.2 Analytical calculation of the area under y = f(x) curve 

If the function ( )y f x=  is given analytically, then the priority for calcu-

lating the area under this curve will be the analytical one because it is  
accurate and rarely difficult for execution (this depends on the complexity 
of the y = f (x) function). To whatever extent the curve is complicated, the 
given data divide, if necessary, the multiequation curve into single-
equation ones (parts) and almost completely defines each part by its  
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equation and limits, but the calculator will have to determine the points of 
the inversion in the sign (≥ 0 or ≤ 0) of y or dx of a curve. Therefore, the 
analytical calculation of the area under each part is often simple. The area 
under the whole curve, which equals the algebraic sum of all partial areas 
under it, is also simple. To calculate each of the sum of all positive differ-
ential areas and the sum of all negative differential areas under the whole 
curve, we need to determine all points of the inversion in the sign of the 
expression y·dx. 

 

Nt1-26: According to Nt1-19 (see the underlined), the function  
y = f(x) is often positive in thermodynamic calculations; therefore, the 
determination of the area’s sign is often reduced to the determination of 
dx_sign. 

1.2.1.3 Tabular calculation of the area under y = f(x) curve 

If the function ( )y f x=  is given tabularly, then the priority for calculating 

the area under this curve will be the tabular one. The order of numbering 
each of the curve’s points and the table’s lines must be sequential. There-
fore, the first line of the table (line no. 1) contains the two (x1 and y1)  
coordinates of the first (start) point of the curve, the second contains x2 
and y2 of the second point, line (i) contains xi and yi of point no. (i), and so 
on. If the total number of the tabulated points is undefined, the last/end 
point of the curve can be numbered/symbolized as “E” and the point be-
fore it is (E – 1), … The corresponding line to E-point can be numbered as 
E-line and its coordinates’ symbols can be xE and yE. If we imaginarily 
plot the points of the curve, which represents the tabular data, on a y_x 
plane, number each point by the table’s line number that includes its coor-
dinates, connect each neighboring two points by/with a straight line, and 
create x = constant lines from each point until x-axis, then we obtain a 
graph that is similar to the illustration in Figure 1.6. Obviously, the area 
under the plotted, on the basis of the given, tabular refracted curve can be 
calculated using Equation (1-54). This means that (1) the tabular calcula-
tion of the area under the given tabular curve does not require any graph-
ical creations, it requires only applying Equation (1-54). If the partial lines 
(i_i+1) of the refracted tabular curve (1–2–···–i–···–E) are straight ones, 
then Nt1-22 and NR1-3 through NR1-6 can be applied to execute the cal-
culations. There is no need here to determine the points at which dx in-
verts its sign as it keeps this sign throughout the straight-line sector. But 
the inversion in the sign (≥ 0 or ≤ 0) of y is still needed (we need to find 
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the points with y = 0 that are situated between neighboring points with 
different y-signs). Each y = 0 point divides the straight-line sector (to 
which it belongs) into two pure (positive and negative) area’s curves 
(straight lines) (see HD1-5 and HD1-6). 

 

Figure 1.7. The graphical interpolation and extrapolation of  
the tabular data of a plane curve. 

1.2.2 TABULAR DETERMINATION OF y-VALUE VERSUS A 
GIVEN x-VALUE 

From §s 1.2.1.1 and 1.2.1.3 and Figure 1.7, whose symbolizing system is 
the same as that explained in §1.2.1.3, we conclude the following: 

 

1) The procedure of graphical determination of the value of y = f (x) 
versus any x-value within graph’s x-interval (x1 − xE) is also time-
consuming and provide the same exactness value that depends on 
the graph’s scale (see the determination of yA in Figure 1.7). 

2) Tabular determination of y-value versus any x-value that exists in the 
lines of the table is exact, very comfortable, and least time-consuming. 

 

Nt1-27: It is clear from Figure 1.7 that a small part (i_i+1) of the curve 
(1_E), whose x-interval (xi_xi + 1) includes the given xA-value is enough 
to determine the value of yA = f(xA). The creation of this small part  
(i_i + 1) for exact/almost-exact calculating yA-value versus the given 
xA-value requires (1) knowing the coordinates of points (i – 1 through i 
+ 2) and (2) creating a curve (i – 1 through i + 2), to which we shall 
refer as the interpolation line, in a large scale. Such partial graph crea-
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tion warrantees obtaining yA-value’s exactness that is a little bit lower 
than the exactness of points (i and i + 1). This procedure is called non-
linear interpolation (or simply interpolation). Thus, to be exact, the 
nonlinear interpolation requires using at least three lines of the exact 
table of function y = f (x), whose x-interval includes the given x-value 
(whose xmax and xmin comply with the condition xmax > xgiven > xmin). 

For the cases that allow considering linear relationship y = f(x) be-
tween any two table’s successive lines (e.g., i and i + 1), function’s  
y = f(x) curve (1_E in Figure 1.7) becomes a refracted line whose re-
fraction points are defined by the table’s lines and whose parts are the 
straight line segments (i_i + 1) that interconnect each two successive 
refraction points. We shall refer to this refracted line as the linear in-
terpolation line, and to the procedure applied to obtain y-value versus 
a given x-value that uses the linear interpolation line or a part of it as 
the linear interpolation. In this case, the equation of any of the straight 
line segments (i_i + 1) is the well-known equation of the line passing 
through the two different points i(xi, yi) and i(xi+1, yi+1), that is, 

 

i i

i 1 i i 1 i

y y x x

y y x x+ +

− −
=

− −
 from which ( ) i

i i 1 i
i 1 i

x x
y y y y

x x+
+

−
= + −

−
 (1-56) 

where x is the given x-value that lies between xi and xi + 1. 
This means that, when the table’s data allow linear interpolation, 

it is sufficient, for tabular determination of y-value versus any x-value 
that included within the table’s x-interval, to substitute table’s succes-
sive lines (i and i + 1), whose x-interval includes the given x-value, with 
the given x-value in Equation (1-56) and calculate the required y-value. 

Nt1-28: If the given x-value is outside the x-interval (x1_xE) of the table 
(this eliminates the possibility of using interpolation) and in the  
absence other possibilities for calculations, we find ourselves obliged 
to extend the tabular curve (1–E) so that the given x-value is inside the 
x-interval (xB_xC) of the extended curve “B–C” (see Figure 1.7) and de-
termine the sought y-value through curve “B–C.” This procedure is 
known as extrapolation and has two disadvantages: (1) there is no war-
rantee that the extension of the tabular curve (1 – E) is done correctly, 
and (2) it is not practical to create the whole curve “B–C” in a consid-
erably large scale to execute one relatively exact calculation; therefore, 
the extrapolation that must be done only as a last resort must not  
require (1) large extension of the tabular curve and (2) must not in-
volve all tabular lines. Thus, using at least three of the extreme lines of 
the table that adjoin the given x-value, we create the side part of curve 
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1_E that is closer to the point under consideration/to be found (B or C; 
see Figure 1.7) and somehow extend it so that it includes the point un-
der consideration. In other words, we magnify the appropriate of the 
two dashed rectangles in Figure 1.7. 

Note that the extrapolation can also be used as a last resort in the 
case of presenting the function y = f (x) graphically. 

The author’s advice is creating the extensions (B_1 and/or E_C) as 
straight tangents to curves (1_2_3 and/or E-2_E-1_E), respectively. 

Using exact and comprehensive/detailed y-value versus x-value  
tables with considering the linear relationship y = f (x) between any two 
table’s successive lines (e.g., i and i + 1) in calculating the areas under  
y = f (x) curves gives almost exact results. Equation (1-54) is used here. 
We remind here that Equation (1-56) is used in calculating almost exactly 
the y-values versus given x-values from the same exact and comprehen-
sive tables. 

Using exact and abbreviated/not-detailed y-value versus x-value 
tables with Equations (1-54) and (1-56) or any of them in calculations 
gives approximate results. Almost exact results can be reached when 
using these tables to obtain the large scale graph of the nonlinear inter-
polation line y = f (x) or its part that will be the base to execute the  
required calculations graphically as explained previously (see §1.2.1.1 
and the underlined text in Nt1-25 and Nt1-27). 

1.2.3 DIFFERENCE BETWEEN TWO FUNCTIONS OF THE SAME 
VARIABLE 

It is obvious that the sum/difference of two plane functions of the same 
variable [y2 = f2(x) and y1 = f1(x)] equals/is a third plane function of the 
same variable [y3 = f3(x)] or 

 3 2 1 3y y y f (x)= ± =  (1-56a) 

Let us analyze Equation (1-56a) for the special case when each of the 
resulted function 3 3y f (x)=  and any of the two added/subtracted func-

tions [ 2 2y f (x)=  or 1 1y f (x)= ] are linear [e.g.,  3 3 1 2y f (x) C C x= = +  and 

1 1 1 2y f (x) A A x= = + ]. Equation (1-56a) becomes (here A1, A2…, B1, B2…, 

and C1…, C2… are the constants of functions y1, y2, and y3, respectively): 
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which is a linear equation. 
A similar analysis on the inverse functions [ 1

1 1x f (y),−= 1
2 2x f (y),−=

and 1
3 3x f (y)−= ] of functions [ 1 1y f (x),= 2 2y f (x),= and 3 3y f (x)= ] 

leads to 
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( ) ( )

= = + ⋅ + ⋅
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 

 
2 3 1 1 2 1 2

1 1 2 2 1 2

x x x C' C' x A' A' x

C' A' C' A' x B' B' x  (1-58) 

where A'1, A'2…, B'1, B'2…, and C'1…, C'2… are the constants of inverse 
functions x1, x2, and x3, respectively. 

 

Equations (1-57) and (1-58) can be read as follows. 
HR1-1: If two of the three plane functions/inverse-functions of the 
same variable that constitute a subtracting/summing equation type  
[ 2 3 1y y y=   or 2 3 1x x x=  ] are linear functions, then the third func-

tion/equation will invariably be a linear one that is represented in the 
y_x plane, when its second constant does not equal 0, by an inclined 
straight line, and when it equals 0, by function’s/inverse-function’s 
constant straight line. Or: 

 

Figure 1.8. The twin curves 
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HR1-2: In the y_x plane, the horizontal distance between two no-
horizontal straight lines is (1) a linear function of x for different slope 
lines and (2) an x-independent (x = constant) for identical slopes 
(equal distanced in the horizontal direction) straight lines. 
ND1-3: If a curve y = f(x) that is illustrated in scale in plane Cartesian 
coordinates and denoted as (Or) (Original curve) is copied (with its 
numbered main points) and its copies are pasted without deforming or 
rotating on other places of the same graph (see Figure 1.8), then this 
original curve (Or) and its copies (I, II, …k…n) are the twin curves, or 
the Same Size, Configuration/shape, and Orientation (SSCO) curves. 
We shall refer to a particular point (e.g., the start point 1) of a particu-
lar curve (e.g., curve II) as point (1 )II  and to its coordinates in the Car-

tesian system, whose axes are ( & ),x y  as 1 1( , ).
II II

x y  The creation of 

a twin (e.g., curve I) to/of this curve (II) can be imagined (see the 
above) as follows: we first copy curve (II) on site (the copy is now 
congruent-with/superposed-on its original curve “II”) and starting from 
this initial position, the copy of curve (II) is rigidly transformed (it is 
straight displaced as a hard body “without rotating or deforming”) into 
its position (I) on Figure 1.8). This means that the displacements of all 
points of the copy of curve (II) are the same in value and direction, and 
therefore the distance II _ I(L )  between curve (II) and its copy/twin (I) is 

measured as the straight distance between any two Same-Number 
/Counterpart Points (SNPs or CPs) of the two twin curves, or 

( )= = = =

= = = =
II _ I II _ I II _ I

II _ I II _ I II _ I II _ I

II _ I II _ I 1 1 2 2 3 3SNP

4 4 5 5 6 6 7 7

L L L L L

L L L L or
 

 

( ) ( )

( ) ( )

Δ = Δ = − = −


= − = ⋅⋅ ⋅ = − = − 


Δ = Δ = − = − 
= − = ⋅⋅⋅ = − = − 

II I

II I II I II I

II I

II I II I II I

II _ I II _ I II I 1 1SNPSNP

2 2 6 6 7 7

II _ I II _ I II I 1 1SNPSNP

2 2 6 6 7 7

y y y y y y

y y y y y y

x x x x x x

x x x x x x

 (1-59) 

From which we obtain 

 Δ = − Δ = −
II I II III_I 1 1 II_I 1 1y y y and x x x  (1-60) 
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The creation of curve (II) in Figure 1.8 can be imagined as the result 
of the rigid transformation of the original curve (Or) with its system of 
coordinates vertically for Δ = −_ 1 1II OrII Ory y y  and horizontally for 

Δ = −_ 1 1 .
II OrII Orx x x  After such transformation, curve (Or) superposes 

on/with curve (II). Denoting the displaced axes as Y and X and the origin 
of the displaced coordinates by O', we can say the following: 

1) The equation of curve (II) in plane (Y_X) can be obtained from the 
equation of curve (Or) in plane (y_x) by replacement (Or by II, y by 
Y, and x by X). Thus, the equation of curve (II) in plane (Y_X) is 

 ( )=II IIY f X  (1-61) 

2) The coordinates of point (1II) in plane (Y_X) are 

 = − = − =
II II Or Or1 1 o ' 1 1Y y y y 0 y    and   = − =

II II Or1 1 o ' 1X x x x  (1-62) 

To obtain the equation of curve (II) in plane (y_x) from Equation 
(1-61), we apply the mathematical method of translation of axes. For 
this purpose, we replace (YII and XII) in Equation (1-61) by their 
equivalents from Figure 1.8, where 'Y oy y= −  and = − o'X x x , and 

obtain 

 ( )− = −
II IIII O ' II O 'y y f x x  (1-63) 

Taking into consideration Equations (1-60) and (1-62), we obtain 

 

( )
( )

− + = − +

= − Δ = − Δ
II Or II OrII 1 1 II 1 1

II II _ Or II II _ Or

y y y f x x x

y y f x x  (1-64) 

And, for copy (k) that is not illustrated in Figure 1.8 

 

( )
( )

− + = − +

= − Δ = − Δ
k Or k Ork 1 1 k 1 1

k k _ Or k k _ Or

y y y f x x x

y y f x x  (1-64a) 

If the original curve starts from the origin of coordinates (i.e., if 

or1 0y =  and 
or1 0x = ), the values of 

_ OrIIyΔ  and 
_ OrIIxΔ  will be 1II

y  

and 1II
x , respectively, and Equation (1-64a) becomes 

 ( ) ( )− = −
II IIII 1 II 1y y f x x  (1-64b) 
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As II IIy and x  are the coordinates of the unfixed point of curve II 

(they are variables), while 
II II1 1y and x  are the coordinates of the 

start/initial fixed point 1II (they are the constants of curve II), we can 
form an equation as 

 
For curve (II) ( )− = −

II II1 1y y f x x
                          

or 

 ( ) − = − II II1 1
II

y y f x x       or      ( )− = −
II IIII 1 II 1y y f x x  (1-65) 

Following the same procedure mentioned previously, we can form 
an equation for copy (k), regardless of the presence or absence of its il-
lustration in Figure 1.8 

 
For curve (k): ( )− = −

k k1 1y y f x x                       or 

 
( ) − = − k k1 1

k
y y f x x      or      ( )− = −

k kk 1 k 1y y f x x  (1-66) 

And for copy(I) 

 ( )
I I1 1y y f x x− = −  (1-66a) 

From Equation 1-59, we conclude the following. 
 
Conclusion 1-2: The general form equation of all twin curves that 
have the same SSCO in Cartesian coordinates is see the second of 
equations 1-66)  

( )
k k1 1y y f x x− = −  

where k stands for twin curve no. k that can be any positive integer 
number and 

k k1 1y and x  are the coordinates of the initial point of the 

curve under consideration (k). 
 

Nt1-29: From the beginning of ND1-3 till now, we used the symbol 
f(…), where (f) is free from indexes, subscripts, superscripts, and 
primes to insist that, during this analysis,  the structure of the function 
is kept the same. Here, three different structure functions are delivered 
to explain what we mean by the structure of a function: 
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• Functions ( ) ( ) ( )
k k k

3

1 1 1 3 1f x x A x x A x x− = − + −  and 

( ) 3
1 2f x A x A x= +  are the same-structure functions.  

• Functions ( ) 1 2f x A sin(x B) A cos 2(x B)= − − −  and 

( ) 1 2f x A sin x A cos 2x= −  are the same-structure 

functions. 

• Functions ( ) ( ) ( )1k

k k

x x

1 1 1 3f x x A x x A e
−− = − +  and 

( ) x
1 3f x A x A e= +  are the same-structure functions. 

The difference between any two same-structure functions is lim-
ited in the variable’s expression that may be a sum of the variable and 
a constant that are included inside parentheses such as [x, XII, 

−
IIII O '(x x ),  and so on]. Therefore, a set of same-structure functions 

can be expressed by one general-form equation. The terms “same-
structure function and general-form equation” are widely used in Chap-
ter 6 of this book. 

Conclusion 1-3: The constituents of each pair of a set of twin curves are 
equal distanced in the direction of any straight line that interconnects the 
counterpart points of its constituents. And, it happens that the counterpart 
(same code) points such as initial, final, and central points of more than 
two twin curves lie on the same straight line. 

In Chapter 6, we shall discuss two special cases of twin curves when 
the constituents of each pair of curves are equal distanced in the vertical 
direction (for the first special case) or in the horizontal direction (for the 
second special case). For the first special case, 

Xk _ Or kX const 0,Δ = =  

Equation (1-64a) becomes 

 
( )−Δ =k k_Or ky y f x  (1-67) 

And, for the second special case, 
Yk _ Or kY const 0,Δ = =  Equation  

(1-64a) becomes ( )k k k _ Ory f x x .= − Δ  This direct function equation is not 

appropriate for calculations and discussions; therefore, we use its inverse 

 ( )
x1 k k k _Or k kf y x x x const= −Δ = −  (1-68) 

For the case when the original curve starts from the origin of coordinates, 

Or Or k k1 1 k _ Or 1 k _ Or 1y x 0 y y and x x= =  Δ = Δ =  (see the text between 

Equations (1-64a) and (1-65); therefore, Equation (1-67), for equal dis-
tanced in the vertical direction twin curves, becomes 
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( )

kk 1 ky y f x− =  (1-69) 

And, Equation (1-68), for equal distanced in the horizontal direction 
twin curves, becomes 

 ( )1 k k 1kf y x x= −  (1-70) 

HD1-8: In the common case, when the plane coordinate axes (y and x) 
divide their graph into 4 quadrants (I through IV), a set of twin (SSCO) 

curves that are expressed by equation ( )− = −
k k1 1y y f x x  or its in-

verse ( )− = −
k k1 1 1x x f y y  includes only one curve, whose equation is 

the simplestA among the equations of its twins and its characteristic 
point to which we shall refer as “main characteristic point” superposes 
on the origin of coordinates. We shall refer to this curve as “the Mas-
ter/Configuration curve (MC-curve) of the set of twin (SSCO) curves”. 
The MC-curve is governed/expressed by the Master/Configuration 
equation (MC equation) ( )=[ y f x  or its inverse = 1( )]x f y  that 

equals zero for =[ 0x or = 0].y  

A. The circle whose equation is the simplest is the one whose centre 
superposes on the origin of coordinates. Therefore, the graphs that 
do not occupy all four quadrants of the coordinate plane do not in-
clude any twin circle whose equation is the simplest.  

As seen previously, the condition “the original curve starts from 
the origin of coordinates” simplifies twin curves’ equations, calcula-
tions, and accordingly creation. 

1.3 SUMMARY 

A dimension (physical characteristic), such as temperature, pressure, and 
mass, is expressed by two interconnected measurements (parts), numerical 
and unit. And, it is denoted by a symbol (e.g., T for temperature, p for 
pressure, and m for mass). In the direct expression, the unit follows directly 
the numerical part, for example, T = 65(F) = 65F, which is read as the 
temperature is sixty-five degrees Fahrenheit. But in the indirect expres-
sion, the two parts of the dimension are separated (in this case, the unit 
follows the dimension’s symbol), for example, T [F ] = 65, (F) which is 
read as the temperature in degrees Fahrenheit is sixty-five. 
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The main relations between temperature scales are as follows: 
 

1) T[K] = T[°C] + 273.15, which is read as the temperature in kelvins 
equals the sum of the temperature in degrees Celsius and 273.15. Thus, 
if T = 50°C, then T = [°C] = 50 and T[K] = 50 + 273.15 = 323.15, so  
T = 323.15K.  

2) = ⋅T [R] 1.8 T [K].  For =T [K] 323.15,  

= ⋅ =T [R] 1.8 323.15 581.67,  or =T 581.67 R.  

3) T [R] T [F] 459.67.= +  For T [R] 581.67,=  

 T [F] T [R] 459.67 581.67 459.67 122,= − = − =  so T 122 F.=  

 
A unit can be simple (its full name cannot be split into more than one 

unit name) or complex (its full name cannot be split into more than one 
unit name). The metric horsepower, hp(M), is a simple unit (the only unit 
name that can be extracted through splitting this full name is horse-
power), whereas the Watt-hour is a complex unit (its full name can be split 
into Watt “a power unit” and hour “a time”). The unit of dimension D  
(see Equation 1-1) is a fraction in which each of the numerator and de-
nominator is a complex unit consisting of two simple units, and it can be 

written as follows: 
2 2ch s ch s

, ,
K kgf K kgf

 ⋅ ⋅
 ⋅ ⋅ 

 2(ch s ) / (K kgf ),⋅ ⋅  [ch-s2/kgf-K],  

[ch s2/kgf K], ch-s2/kgf-K, and ch s2/kgf K. In addition, we note that when 
the complex unit is inside brackets or parentheses, it can be written directly 
(without a space) after the number preceding it, otherwise a space is  
required. 
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CHAPTER 2 

THE WORKING FLUID AND ITS 

BASIC PROPERTIES  

2.1 ENERGY AND ITS TRANSFORMATIONS 

2.1.1 INTRODUCTION 

Thermodynamics is defined as the science that studies energy (thermal, 
mechanical, electrical, chemical, etc.) transformations from one form to 
another, concentrating on the use of these transformations in the tech-
nique. The word thermodynamics stems from the Greek words therme 
(heat) and dynamis (power), which gives exact description to the early 
efforts to convert heat into power. At this time, thermodynamics deals 
with all aspects of energy—how it is generated and transformed, including 
power generation and refrigeration—and the relations between the proper-
ties of the substance. 

2.1.2 TYPES OF ENERGY 

Energy can be transitional, one can feel it through his senses, or stored 
(latent energy), one cannot feel it unless it is converted into transitional 
one. 

The brink of an abyss has mechanical potential (latent) energy that 
cannot be felt unless the rock falls down and its potential energy converts 
into mechanical kinetic (transitional) energy. The thermodynamic defini-
tion of the mechanical energy is “mechanical energy is the energy that 
could lead to raising loads.” 
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Also, the fuel has chemical latent energy that cannot be felt unless the 
fuel combusts and its chemical latent energy converts into heat (transitional) 
energy that can be seen in the form of a flame and felt due to temperature 
raise. In the other type of chemical reactions, the effect of the reaction is 
an electrical energy, which occurs in a form of electrical current passing 
through the car battery. From the above, we conclude that chemical energy 
resulted from chemical reaction’s energy. 

The third type of energy is the electrical energy that is defined as the 
energy made available by the flow of electric charge through a conductor. 

In addition to the energy forms defined previously, we mention (1) 
the electromagnetic energy, which is the energy transmitted in the form of 
electromagnetic waves at the speed of light but with different wavelengths 
and (2) the atomic energy, which is stored inside atoms and appears only 
when the components of atoms of the material interact. The two main 
types of this energy are Atomic Fission and Fusion energies. 

2.1.3 ENERGY TRANSFORMATION 

Energy transforms (totally or partially) from one form to another. All no-
thermal forms of energy transform fully and directly into thermal energy. 

In a fuel cell, an isothermal chemical reaction occurs between the fuel 
and oxidizer, which results in direct generation of electrical energy. This 
reaction continues until the interruption of the fuel and oxidizer or any of 
them. In the battery, the chemical energy is converted directly into electri-
cal energy. And, in the photovoltaic cell, the solar energy transforms  
directly into electrical energy. In the electric generator, the mechanical 
energy transforms directly to electrical energy, and in the electric motor, 
the electrical energy transforms directly into work. 

The mechanical energy is obtained from the thermal energy by heat 
engines. What is a heat engine? 

2.2 THE HEAT ENGINE 

In this paragraph, we shall use some terms that need to be defined: 

Others’ Definition 2-1 (OD2-1): The working fluid (WF) is the flu-
id substance, in its gaseous or gaseous and liquid phases, that actuates 
cyclic devices (machines operating on a cycle such as heat engines, refrig-
erators, and heat pumps). The transformations of mechanical energy into 
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thermal and thermal into mechanical are associated with changes in the 
state of the WF through which these transformations are performed. The 
WF is also known as working body. 

OD2-1A: The completely/fully/totally defined equations are the ones 
whose all constants are known directly or indirectly. These known  
constants can be grouped into (1) data to be given that change from one 
problem to another (temporary constituents) and (2) permanent con-
stant constituents of the equation. If the permanent constant constitu-
ents exist in the equation in the form of symbols those are not defined 
in its legend (in the explanation that follows the equation), then the 
equation is a general form equation, else it is a calculating one. 
OD2-2: The heat reservoir (also called reservoir) is a hypothetical 
infinitely large body; whatever quantity of heat is exchanged with it, its 
temperature does not change, making it a constant temperature body. 
On the other hand, a mini reservoir (MR) may change its own temper-
ature during exchanging heat with the WF. 

The heat reservoir can (1) act as constant-temperature heat source 
(HS) that is also called high-temperature heat reservoir or simply high 
reservoir, (2) act as constant-temperature heat sink (low-temperature  
heat reservoir or simply low reservoir), and (3) exchange heat in both 
directions and we shall refer to it as medial-temperature heat reservoir or 
simply medial reservoir. Therefore, any heat transfer discussion between 
the WF and the heat reservoir is valid for all three above-listed heat  
exchanges. 

The mini heat reservoir (MR) can (1) act as constant-temperature 
HS, (2) act as constant-temperature heat sink, (3) act as nonconstant-
temperature HS, (4) act as nonconstant-temperature heat sink, (5) be a 
simple compressible substance/system (see §2.4.9), and (6) exchange heat 
in both directions. Therefore, any heat transfer discussion between the WF 
and the MR is valid for all six above-listed heat exchanges. 

In many places in this book, the direction of the WF’s heat transfer dur-
ing some processes is unknown in advance and we cannot predict the exact 
name of the other body that exchanges heat with the WF; therefore, we shall 
name it temporarily as the MR and introduce the following definition: 

 

HD2-1: The MR is the body that exchanges heat with the WF. If the 
heat machine is an engine, and the result of the exchange is MR’s heat 
loss, then the MR is called HS, and if the result is MR’s heat gain, then 
the MR is called heat sink/bath. 
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In the past, the mechanical energy was expressed as work and the 
work was expressed as raising a weight/load. And today: 

 
OD2-3: The engine is the machine that can continuously transfer energy 
into mechanical energy. In other words, the engine is the machine which 
produces mechanical energy from something else continuously. The 
“something else” can be either energy or energy source. The name of 
the engine is completed by the name of the “something else”. Thus: (1) 
The wind engine is a machine that produces mechanical energy from the 
wind (wind kinetic energy). (2) The electric engine is a machine which 
produces mechanical energy from electricity (electric energy). (3) The 
heat engine is a machine which produces mechanical energy from heat 
(thermal energy). (4) The solar engine is a machine which produces  
mechanical energy from the solar energy. And (5) The combustion  
engine is a machine which produces mechanical energy from the fuel 
combustion. 

 
The last three types of the listed in 

OD2-3 engines (items 3 through 5) are 
heat engines, because they continuously 
transform heat into mechanical energy. 
But, the type described in item (3) is the 
general case, and the other two types are 
special cases of it. 

Many different designs comply with 
the definition of heat engine stated in 
item (3), but they all have the following 
characteristics (see Figure 2.1): 

 
1) They receive heat from an HS (burning fuels, solar energy, nucle-

ar reactor, etc.) and convert a part of it into mechanical  
energy. 

2) They reject the remaining waste heat, which is no longer valid for 
work production, to a heat sink (the atmosphere, lakes, oceans, 
etc.). 

3) They operate on a cycle. 
 

  

 

Figure 2.1. The working  

principle of a heat engine 

QL

Heat sink

Work W
Heat engine

W=QH-OL

QH

Heat source
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The existing heat engine’s definition is: 
 

OD2-3A: The heat engine is the machine that operates cyclically  
(continuously), transforms a part of the  heat transferred from an HS 
into work, and gets rid of (rejects) the remaining part, which is no 
longer valid for work production, to a heat sink. 
 

The burning fuels and solar rays are the often high-temperature reser-
voirs (HSs). That is why we divide HSs into three major categories: fuel 
combustion, natural power, and nuclear power. The environment  
(the atmospheric air, land, river, lake, sea, or ocean) is the often-met sink 
(the low-temperature heat reservoir). 

2.3 THE PROCESS OF TRANSFORMING THERMAL 
ENERGY INTO MECHANICAL IN HEAT ENGINES 

It is clear from the previous paragraph that heat engines are divided into 
two main types: 
 

• The first consumes heat energy from noncombustion HSs (natural 
“solar power and geothermal energy” and nuclear power). 

• The second consumes heat energy resulting from fuel combustion 
reaction. In turn, engines those consume the fuel combustion heat 
energy are divided into external combustion and internal combus-
tion engines. Depending on how the heat is supplied to the WF, 
fuel combustion heat engines are classified into internal  
combustion engines (represented by automobile engines) and  
external combustion engines (represented by steam power plants). 
In internal combustion engines (in the broad sense), fuel combusts 
inside the WF, whose initial components are fuel and oxidizer 
(mostly air). In external combustion engines, fuel combusts outside 
the WF (it combusts inside combustion chambers or furnaces), 
which allow only heat transfer between the combustion products 
and WF. 
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2.3.1 INTERNAL COMBUSTION ENGINES  
(IN THE BROAD SENSE) 

The internal combustion engines (Figure 2.2) are divided into many types, 
including the following: 

 

Figure 2.2. Types of heat engines 

1) Reciprocating (piston) engines: They are also called internal 
combustion engines (in the narrow sense) or simply internal com-
bustion engines. These engines operate using piston–cylinder  
arrangements (Figure 2.3). Somehow, compressed air and fuel 
(evaporated or sprayed) enter the combustion chamber (the small 
space trapped inside the cylinder when the piston in its top dead 
center [TDC] extreme position), where the ignition conditions are 
available (through ignition plug or fuel injector). The fuel combusts 
and the combustion products expand, pushing the piston strongly.  
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This leads to the generation of mechanical energy. Reciprocating 
engines are divided in terms of how the ignition is executed: 

 

Figure 2.3. Nomenclature for the piston–cylinder  
arrangement of the internal combustion engine 

a) Spark ignition engines: The charge (a mixture of air and fuel 
“gasoline” vapor) is sucked/drawn into the cylinder and com-
pressed to the desired pressure in the combustion chamber, 
where the fuel is ignited by a high-voltage electric spark gen-
erated (by the ignition system) between the poles of spark 
plug installed in the top of the cylinder. 

b) Compression ignition engines: Fresh air is drawn into the cylin-
der and compressed to the desired temperature in the combus-
tion chamber, which exceeds the autoignition temperature of the 
fuel. The injection device starts injecting fuel (diesel or any other 
oil) into the combustion chamber and the combustion starts on 
contact as the fuel is injected and sprayed into this hot air. 

2) Rotary engines: The most notable rotary engine is the gas turbine 
engine, the turbine of which is rotated by the high-pressure and -
temperature combustion products, coming from a separate com-
bustion chamber. In this chamber, fuel is sprayed and injected into 
the compressed air, coming from the rotary compressor, and com-
busts in it. According to the purpose of the gas turbine engine, the 
turbine produces either all mechanical energy that can be obtained 
from the combustion products or the part of it that is required by 
the compressor and the electric generator of the plane. 

3) Rocket engines: In the simplest of this type of engines, there are 
no rotating parts, but there is a tank for the compressed fuel and 
another for the compressed oxidizer, which are connected to a 
combustion chamber through valves. The combustion products 
lunge through engine’s exit at high speeds, causing the jet  

propulsion force or the rocket propulsion force. 
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2.3.2 EXTERNAL COMBUSTION ENGINES 

Four types of external combustion engines are represented in Figure 2.2. 
Because of the aim of this book and its small size, we shall skip the steam 
engines and light in brief on the Stirling and Ericsson engines. 

Both engines are reciprocating external combustion engines, which 
can use any ideal gas as WF. 

To understand the principal differences between the reciprocating  
external combustion engines and the internal combustion engines, imag-
ine that the external combustion engine operates using piston–cylinder 
arrangement that differs from that in Figure 2.3 by the head of the cylin-
der. The head of the cylinder of the external combustion engine is 
equipped, instead of the instruments shown in Figure 2.3, with (1) an out-
side fire source that operates when the piston is around the TDC heating 
the fixed-mass WF without touching it (without changing its formula) and 
(2) another outside cooling source that operates when the piston is around 
the bottom dead center (BDC) cooling the fixed-mass WF without touching 
it (without changing its formula). This excludes the need to change the WF 
portion after each mechanical cycle, making the thermodynamic cycle of 
the explained external combustion engine closed. 

2.4 BASIC CONCEPTS AND DEFINITIONS 

2.4.1 INTRODUCTION 

OD2-4: The Macrostate is the macroscopic thermodynamic state, and 
the Microstate is the microscopic thermodynamic state. 
OD2-5: Macrobodies are large objects existing in nature, which we 
may see or not see; but we can have their measurements easily and 
simply. The kinetic energy of macrobodies is mechanical energy. 
OD2-6: Microbodies: All macrobodies consist of minute objects called 
molecules, which in turn consist of atoms. These objects as well as 
clusters consisting of a small number of them are invisible minute  
objects, and cannot be measured using conventional methods. There-
fore, they are called microbodies. 

2.4.2 THE PURE SUBSTANCE AND ITS MOLECULES 

OD2-7: A pure substance is any substance that has a fixed chemical 
composition throughout. For example, gold, water, oxygen, hydrogen, 
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and carbon monoxide are pure substances. A pure substance (chemical 
element or compound) consists of a large number of homogeneous par-
ticles called molecules. 
OD2-8: A molecule is the smallest particle of a pure substance that has 
all chemical properties of the pure substance. Therefore, the properties 
of a pure substance depend on the behavior of its molecules. A molecu-
lar pure substance is represented by its molecular formula; for example, 
hydrogen is represented by the formula H2 and water by H2O. Molecules 
differ in size, molecular mass, and structure. According to the number 
of atoms the molecule consists, molecules can be classified into mona-
tomic, diatomic, triatomic, and multiatomic/polyatomic ones (prefixes 
mon = 1, di = 2, tri = 3, and multi = poly = more than 3). Many refer-
ences use multi/poly for two and more. The molecule of a chemical 
compound can be diatomic, triatomic, or multiatomic/polyatomic. 
OD2-9: A phase is identified as having a distinct molecular arrange-
ment that is homogeneous throughout and separated from other phases 
by easily identifiable boundary surfaces (e.g., the two phases of H2O in 
iced water).1 

 
A substance can exist in three principal phases (solid, liquid, and gas), 

and it may have several phases within a principal phase. Each of these 
phases has its different molecular structure. Within an acceptable toler-
ance, the principal phases of a substance are recognized from their own 
characteristics, some of which are: 

 

• A solid (1) retains its own shape and volume (2) is virtually in-
compressible; (3) diffusion within a solid occurs extremely slowly; 
and (4) does not flow.2 

• A liquid (1) assumes the shape of the portion of the container it 
occupies, (2) does not expand to fill container, (3) is virtually  
incompressible; (4) diffusion within a liquid occurs slowly; and  
(5) flows readily.2 

• A gas (1) assumes/takes both the volume and shape of its container 
(2) is compressible; (3) diffusion within a gas occurs rapidly; (4) 
flows readily;2 and it (5) exerts the same pressure on all walls of 
the not high container. The first property can be formulated for gas 
mixtures as the following rule: 

OR2-1: if several gases unable to chemically interact were put in one 
container, they will form a homogeneous mixture as a result of the 
thermal movement (random motion). 



60 • GRAPHICAL THERMODYNAMICS 

A substance can exist: (1) as a mono phase (solid, liquid, or gaseous) 
substance whose temperature and pressure are independent intensive 
properties. (2) as a mixture of two principal phases (solid and liquid,  
liquid and gas, and solid and gas) whose temperature and pressure are  
dependent intensive properties. In addition, each substance can exist as a 
mixture of its three principal phases (solid, liquid, and gaseous) in one 
fixed state whose temperature and pressure are fixed. The states of mater 
at which all three phases coexist are known as the triple phase states, and 
are represented in p_T diagram by one point that called the triple point. 
For water, the triple-point temperature and pressure are 0.01°C and 0.6117 
kPa respectively.  

When the matter undergoes a melting/freezing process, it consists of 
the liquid and solid phases. In the boiling, vaporization/condensation  
process, the matter consists of the liquid and gaseous phases, and in the 
sublimation process, the matter consists of the solid and gaseous phases.  

OR2-2: For a pure substance, the pressure and temperature of any of 
the states of the saturated liquid, vapor, and their mixture zone are in-
terconnected by its liquid-vapor saturation equation. And therefore 
they are dependent to each other. 

 

In this book, we are interested in the gaseous phase exclusively. 
 

OD2-10:3 The mole (abbreviation mol) is the SI unit of material quan-
tity. Its other name is the gram-mole (abbreviated gmol). It is the quan-
tity of material consisting of as many specified elementary entities  
(atoms, molecules, electrons, ions, or other particles or specific groups) 
as there are atoms in 12 g of carbon-12. The number of atoms in 12 g of 
carbon-12 is too close to 6.022141 × 1023, which is known as Avoga-
dro’s number/constant for mole. The authorized organization to adopt 
the value of Avogadro’s constant (NA) to be used throughout the world 
as the exact one is the Committee on Data for Science and Technology 
(CODATA). CODATA adopted in the years 2006, 2010 and2011 the 
following values of Avogadro constant (the first value is represented in 
both comprehensive and abbreviated forms, whereas the others in only 
the abbreviated form).  

    

23 1
A

23 1

N (6.022 141 79 0.00000030) 10 mol

6.022 141 79 (30) 10 mol ;

−

−

= ± ×

= ×
 

23 1
AN 6.022 141 29 (27) 10 mol−= ×  and 

23 1
AN 6.022 140 78 (18) 10 mol−= ×  respectively.3 
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Therefore, we shall adopt −= × 23 1
AN 6.022 141 10 mol  as the exact value 

of NA throughout this book. 
 
Also, the mole can be defined as the quantity of a pure sub-

stance/composition whose mass in grams is equal to its relative molar 
mass (Mr). 

OD2-11: The kilomole (kmol) or the kilogram-mole (kgmol) equals 
1,000 moles. It is also defined as (1) the quantity of a substance whose 
mass in kilograms is equal to its molecular weight and (2) the number 
of entities in 12 kg of 12C. 
OD2-12: The pound-mole (denoted lb-mol or lbmol) is defined as the 
number of entities in 12 lbm of 12C (carbon-12); one lb-mol equals 
453.59237 moles.4 

Also, the pound-mole can be defined as the quantity of a substance 
whose mass in pounds is equal to its molecular weight. 

 
Nt2-1: Since Avogadro’s number mentioned above ( = ×AN 6.022 141

−23 110 mol )  was assigned for 1 mole and since the kmol and lbmol are 

the doubles of the mole, then we can refer to the number as the per 
mole Avogadro’s number, and to the number of the molecules in one 
kmole that equals ( )× × = ×23 261000 6.022 141 10 6.022 141 10  as the 

per kmole Avogadro’s number “
−= × 26 1

AN 6.022 141 10 kmol ,” and to 

the number of the molecules in one lbmol that equals 
× × = × ≈ ×23 23 26453.59237 6.022 141 10 2731.597 208 664 17 10 2.732 10

 as the per lbmole Avogadro’s number “
−≈ × 26 1

AN 2.732 10 lbmol .” 

Thus, we already have three Avogadro’s numbers assigned for the three 
quantities (1 mole, 1 kmol, and 1 lbmol), and we may need to speak 
about more Avogadro’s numbers in the future. To differentiate one 
Avogadro’s number from another, this number was treated as a dimen-
sion, whose today’s units are mole−1, kmole−1, and lbmole−1. This  
allows defining Avogadro’s number as follows: 

 

− −

−

= × = ×

≈ ×

23 1 26 1
A

26 1

N 6.022 141 10 mol 6.022 141 10 kmol

2.732 10 lbmol  (2-1) 

Nt2-1A: In classical thermodynamics and accordingly in this book, 
where we practically do not deal with other elementary entities than 
molecules (the molecule of a mono-atomic substance consists of one 
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atom), we usually understand 1 mol of water (H2O) as 1 mol of water 
(H2O) molecules exclusively. Therefore, we can define the mole here 
as the Avogadro’s number/constant (6.022141× ×1023) of molecules 
and consider the units of Avogadro’s number/constant as mole-
cule/mol, molecule/kmol, and molecule/lbmol, instead of mol−1, 
kmol−1, and lbmol−1, which are used in chemistry. Thus, we can rewrite 
Equation (2-1) as 

 

23
A

26 26

molecule
N 6.022141 10

mol
molecule molecule

6.022 141 10 2.732 10
kmol lbmol

= ⋅

= ⋅ ≈ ⋅  (2-1a) 

This procedure helps in some explanations since it clarifies the  
essence of Avogadro’s number/constant that is a dimensional number 
whose numerical value depends on the chosen unit, but it will surely cause 
misunderstanding in the units of the gas and universal gas constants that 
have deep roots in thermodynamics, which are introduced below. There-
fore, we shall not apply any changes that affect the shapes of the units of 
the gas and universal gas constants. 

 
OD2-13: The chemistry definitions—of the atomic mass, molecular 
mass, molar mass, molecular weight, and formula weight—lead to the 
following conclusions that can be applied in classical thermodynamics: 
 

1) The atomic mass (ma), molecular mass (mm), and molar mass (M) 
are the masses of one atom, one molecule, and one mole of a 
pure substance/compound, respectively. Therefore, the molecular 
mass equals the sum of the atomic masses of the atoms those 

constitute the molecule = m a
molecule

(m m )  and the molar mass is 

calculated as = ⋅A m(M N m ) , where AN  is Avogadro’s number 

for mole. Thus,  

 = ⋅A mM N m       or        =m Am M / N  (2-1b) 

2) The relative atomic mass (atomic weight) symbol (Ar) is the 
atomic mass related to 1/12 of the mass of a single carbon-12  
atom (at rest). It can be obtained from the standard atomic 
weights that are used in periodic tables and many standard  
references in ordinary terrestrial chemistry.5 
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3) The relative molar mass Mr (the older terms are the molecular 
weight “MW or μ ” and  formula weight FW) is a dimensionless 
quantity (i.e., a pure number, without units) that equals, in SI sys-
tem, to the molar mass in grams per mole divided by the molar 
mass constant (Mu) that is6 

 3 6
uM 10 kg/mol 1 g/mol.−= =  (2-2) 

Thus, 

 r uM M[g/mol] / M [g/mol];=  Abbreviation / .=r uM M M  (2-2a) 

4) The numerical value of the molar mass in g/mol (or kg/kmol) is 
equal to the numerical value of the molecular mass and the di-
mensionless values of the molecular weight and relative molar 
mass (Mr); therefore, we can accept that knowing Mr means 
knowing the values of all above-mentioned molecular properties.  

5) The relative molar mass (Mr) of a compound can be computed 
by obtaining, from the compound’s chemical formula, the kinds 
and numbers of atoms (nuclides) constituting the molecule and 
summing the relative atomic masses (see item 1 above) of all  
atoms constituting the compound’s molecule. For example:

2(H O) (H) (O)2 2 1 16 18.= + ≈ × + ≈r r rM A A  

Nt2-2: To keep the numerical value of the molar mass equal to the rel-
ative molar mass. Almost all thermodynamic references do not use the 
basic SI unit (kg/mol) in measuring the molar mass, but use its part 
[(g/mol)= (kg/kmol)]. The practiced units here are the (kg/kmol) in the 
SI and (lb/lbmol) in the English system. 
Nt2-2A: Let us obtain the equations for calculating pure sub-
stance/compound quantities through the already introduced material in 
this book. Since the metric SI unit system is adopted in this book, these 
quantities can be measured by the numbers of molecules (symbol N), 
moles or kilomoles (symbol K), kilograms (symbol kg), and grams 
(symbol g). 
 

A quantity of a pure substance/compound consists of a number (N) of 
molecules or of (K) moles or of (m) grams, while 1 mole of the same sub-
stance consists of Avogadro’s number (NA = 6.022141× 1023 mol−1) of  
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molecules and its mass is the molar mass M “ [ / mol]M g ” (see Equations 

2-1 and 2-1b). Therefore, the mass of the molecule of a pure substance 
( )mm  can be calculated as 

23
r

m
A

10 Mm M
m g

N N 6.022141

−

= = =  (2-2b) 

 m
A

N M
m N m K M

N

⋅= ⋅ = = ⋅or  (2-2c) 

where, 

= ⋅ = ⋅A A[ molecules] [mol] N [molecules/mol] N [ molecules]N K K . 

The units in this equation are SI ones exclusively. 
 

Nt2-2B: The molar mass of a 
compound is scientifically ac-
ceptable because the chemi-
cal formula of any of its mol-
ecules is the same as its/ 
compound’s formula, while 
the atomic mass of a com-
pound is meaningless because 
the different atoms that con-
stitute compound’s molecule 
do not belong to the same 
chemical element. On the  
other hand, each of the atomic 

and molecular masses of a 
homogeneous mixture of gas-
es is scientifically unaccepta-
ble/meaningless because the 
chemical formula of the mol-
ecules of a homogeneous mix-
ture of gases is not the same 
for/of all its molecules. 

  

Figure 2.3A. A schematic for the rela-
tionship between the IF and the ID in a 
pure substance. The part of the curve that 
is located above the ID axis is character-
ized by RTF>0 belongs to the repulsive 
IF, whereas the other part that is charac-
terized by RTF<0 belongs to the attrac-
tive IF and therefore, the minimum of the 
IF/RIF curve is the maximum of the AIF 
one. 
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2.4.3 INTERMOLECULAR FORCES: 

OD2-14: The force of attraction or repulsion acting between the  
molecules is known as intermolecular force (IF). The nature of inter-
molecular force is electromagnetic.7  
A pure substance experiences IFs. The IF in a pure substance can be  
attractive (cohesive) or repulsive. This force is a function of the inter-
molecular distance ID or r (see Figure 2.3A) and of the properties of 
the interacting molecules but not of temperature. The energy of attrac-
tion/repulsion force is an intermolecular potential energy. At a too 
small ID (ID1), corresponding to a solid state that precedes melting and 
is far enough from it, the IF is zero. Starting from ID=ID1 the decrease 
in (ID) monotony increases the repulsive force trying to return (ID) to 
its ID1 value and prevent the molecules from touching or colliding. At 
ID=∞ the IF is zero and for ID1< ID<∞ the IF is cohesive. It is an  
attractive intermolecular force (AIF). The maximum of the AIF is 
somewhere around the ID2 corresponding to melting point. Starting 
from ID2 (the ID corresponding to the maximum of the AIF), AIF  
decreases with increasing ID. If we imaginarily divide the solid phase 
region into strong repulsive, medial intermolecular and strong cohesive 
force subregions, then the strong cohesive force subregion will be 
neighboring to the melting point, and unless the molecule has enough 
kinetic energy, it will not have the opportunity to leave its relative posi-
tion. Therefore, we can say that the forces that bind the molecules to 
each other are strongest in solids and weakest in gases.  

2.4.4 THE IDEAL AND REAL GAS SUBPHASES 

The theoretical study of substances in gaseous phase (which is the case 
that concerns us here) with taking in consideration the volumes of the 
molecules and their cohesive forces is extremely complicated, and it is too 
difficult to determine the laws of the behavior of gas molecules. This is 
because of the nature of the cohesive forces between the molecules. 

On the other hand, the laws of gases derived on experimental basis 
are very complicated. That is why science, through the Kinetic Molecu-

lar Theory of gases (KMT), created the idea of the Ideal Gas. 
 
OD2-15: The Ideal Gas is a hypothetical (imaginary) gas consisting 
of zero-volume molecules, between which no cohesive forces act. 
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It is clear from the definition that ideal gases do not exist in nature. 
The analysis of the ideal gas is of great scientific value because 
 

1) any gas existing in nature and is very far away from the liquid 
phase (its molecule’s relative volume approaches zero  
( → 0MRV ) or which is the same when its volume per unit mass 
or per mole approaches infinity → ∞v  or which is also the same 
when its pressure approaches zero 0)→p  is ideal gas, and 

2) the required accuracy in heat engineering calculations allows 
dealing with all gases used as WFs outside the scope of refriger-
ating and heat-pump machines, except water vapor, as ideal gases. 
The latter can be found in two cases: (1) when the water vapor is 
a component in gaseous mixtures resulting from the combustion 
of fuel. In this case, water vapor is at high temperature and low 
pressure, and therefore, it can be considered as an ideal gas. And 
(2) when water vapor is used as a WF in steam engines or as a 
heat carrier in heat exchangers. In this case, the water vapor is 
close enough to the liquid phase and therefore it cannot be con-
sidered an ideal gas. 

 

Properties No 1, 5, and 1a of gases (see OD2-9) result from the ran-
dom translational motion of a huge amount of particles that do not give a 
certain privilege for a particular direction. 

For a particular gas the intermolecular cohesive forces decrease with 
increasing temperature and/or decreasing pressure. Both the increase in 
temperature and decrease in pressure lead to increasing gas volume, and 
accordingly increasing the average ID and thus weakening of the cohesion 
forces between molecules, and simultaneously reducing Molecules’ Rela-
tive Volume (MRV). The MRV is the ratio between gas molecules’ vol-
ume, which is approximately constant, and the gas volume that is the 
space in which gas molecules move. 

For gas states that are far enough from the liquid phase, both the  
intermolecular cohesive forces and MRV are so small that they can be  
neglected. In this case the characteristics of this gas will be consistent with 
the characteristics of the gas that we called ideal gas. This gives us a basis 
to (1) designate any gas in nature, for which the MRV and cohesive forces 
are small enough to be neglected an ideal gas, and (2) consider that the gas 
phase consists two subphases: (I) the ideal-gas subphase that is far away 
from the liquid phase and (II) the real gas subphase that lies between the 
liquid phase and ideal-gas subphase. The separating line between the two 
gaseous subphases cannot be fixed, because it is an accuracy function. 
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OD2-16: Real gases are the ones existing in nature, for which neglect-
ing cohesive forces is not allowed. 

2.4.5 THE THERMODYNAMIC SYSTEM (THE SYSTEM) 

2.4.5.1 Introduction 

OD2-17: A system is defined as a quanti-
ty of matter or a region in space chosen 
for study.8 
OD2-17A: A thermodynamic system is 
the set of objects that interact with each 
other and with other bodies, which we 
call the surroundings. Depending on the 
objectives of the study we determine the 
objects belonging to the system, system’s 
boundary and boundary’s nature, since 
system’s boundary can be real (like the 
walls of a pot) or imaginary surface, 
which surrounds the volume that includes the bodies of the system.9 
OD2-18: The system surroundings is the mass or region outside the 
system.10 
OD2-19: The system boundary is the real or imaginary surface that 
separates the system from its surroundings.11 The system boundary can 
be fixed or moving and can have a changeable or unchangeable shape, 
but in all cases, it is zero mass (does not include any matter) and zero 
thickness (does not occupy any volume). For more clarity, the terms for 
the above three definitions are illustrated in Figure 2.4. Here, the inner 
surface of a piston–cylinder arrangement is the system boundary. It is 
real and has a changeable shape (the piston moves inside the cylinder). 
If the piston–cylinder arrangement is on a moving vehicle (mounted or 
transported), then the system is in motion; else it is almost stationary. 

2.4.5.2 Types of thermodynamic systems 

A number of bases are used for classifying the thermodynamic systems: 
 

Figure 2.4. A schematic  
for a system (gas) and its 
boundary 
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A) The classification on the  
basis of the properties of sys-
tem boundaries (Figure 2.5 
“main figure”), in terms of 
boundaries’ ability to allow 
the transfer of thermal energy 
(heat), nonthermal energy 
(work), and matter (mass): 
 
• The system that does not 

interact in any way with 
its surroundings is called 
an isolated system (illus-
tration 8). 

• The full name of the  
system other than the 
isolated system must  
include a notification 
that highlights mass in-
teraction. The two main 
categories of the system 
are (1) the open system 
(also known as control volume system) that allows mass trans-
fer through its boundary and (2) the closed system (also 
known as control mass system) that does not allow mass trans-
fer through its boundary. If the name of the system does not 
include any additional notification, then heat and work trans-
fer through system’s boundary is allowed (see illustrations  
1 and 2). 

• The additional notification (adiabatic) means thermally isolated. 
Illustrations (3 and 5) are adiabatic open and closed systems, 
respectively. 

• The no-work interaction open and closed systems are  
schematically shown in illustrations (4 and 7), respectively. 

• Illustration (6) stands for the no energy interaction open system. 
 

B) The classification on the basis of the structure of the components 
of the system and the stability of this structure. We can list here: 
(1) the physically homogeneous, (2) the physically heterogeneous, 
(3) the steady state, and (4) the unsteady systems. 

 

Figure 2.5. The classification on 
the basis of the properties of system 
boundaries
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In this book we shall deal with the closed stationary systems of ideal 
gases. 

 
OD2-20: The closed stationary systems are closed systems whose  
velocity and elevation of their center of gravity (CG) remain constant 
during a process (e.g., a closed system inside a stationary closed ves-
sel). Theoretically, the gas undergoing an expansion or compression 
process in a stationary piston–cylinder device is not a closed stationary 
system. This gas 
changes the position 
of its CG as the pis-
ton moves. A good 
example for exactly 
stationary closed sys-
tem is the gas under-
going an expansion 
or compression pro-
cess in the stationary double-piston–cylinder arrangement (see Figure 
2.6). Here the system’s CG will not move during pistons’ movement 
and therefore the system is a closed stationary one. 
Nt2-3: Calculations show that for the gas undergoing an expansion or 
compression process in a piston–cylinder device that is mounted on a 
moving modern overland vehicle, the changes in kinetic and potential 
energies, compared with internal energy changes, are negligible. There-
fore, the gas undergoing an expansion or compression process in a pis-
ton–cylinder device is classified as a closed stationary system. 

2.4.6 INTRODUCTION TO THE KINETIC-MOLECULAR THEORY 

It was created in 1857 by Rudolf Clausius. Its other name is “The theory 
of moving molecules.” It studies the behavior of ideal gases and shows the 
internal connection between the laws of these gases and the limits of their 
use. He invented the idea of the ideal gas and gave to its molecules the 
following properties: 
 

1) Molecules are smooth spherical material (have a mass) points (do 
not have volume) and perfectly elastic (the total kinetic energy of 
collided molecules remains the same). This means that the sole 
energy of these molecules is the kinetic energy of their straight 
movement (the translational kinetic energy). 

Figure 2.6. The CG of the system (Gas) superpos-
es with the centre (C) of the double-piston-cylinder 
arrangement regardless of pistons’ movement. 
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2) Gas molecules move at high speeds and straight paths and after 
each collision, whether with the vessel walls or with other mole-
cules, follow new paths, and therefore the molecular pathways 
are broken lines composed of straight segments. 

3) Molecules are not affected by cohesion forces. 
4) The collision time is too small relative to molecule’s passing time 

through its free path and can be neglected. 
5) Since the molecules are perfectly elastic the kinetic energy losses 

due to collisions are nonexistent. 
 
After that, the laws of mechanics were applied on the ideal-gas mole-

cules, and the basic equation of the kinetic theory of gases was derived 
(see Equation 2-5). Then, Equation (2-10) that interconnects the absolute 
temperature with the average kinetic energy of ideal-gas molecules was 
derived. And after that, all ideal-gas laws were derived using Equations 
(2-5) and (2-10). 

2.4.7 THE STATE OF A GAS 

It is difficult (at least to the author) to give a general definition to the state 
of a substance (or a system) at a given time. Therefore, we will start from 
dealing with the equilibrium state (the special case of the state), which is 
usually expressed by using properties. 
 

OD2-21: A property is a macroscopic characteristic of a system such 
as mass, volume, energy, pressure, and temperature to which a numeri-
cal value can be assigned at a given time without knowing the previous 
behavior (history) of the system.12 See also the beginning of §2.8. 
OD2-22: An intensive property is independent of the mass; the value 
of an extensive property varies directly with the mass. Thus, if a quan-
tity of matter in a given state is divided into two equal parts, each part 
will have the same value of intensive properties as the original and half 
the value of the extensive properties. Pressure, temperature and density 
are examples of intensive properties. Mass and total volume are exam-
ples of extensive properties. Extensive properties per unit mass such as 
specific volume are intensive properties.13 

 
To specify a state, we need to measure and/or calculate all system 

properties throughout the entire system (each property can be measured in 
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several macroscopic parts of the system, and “intensive properties that are 
not uniform throughout may require additional measurements and calcula-
tions”). This gives us a set of properties (a property map) that completely 
describes the condition, or the state, of the system. At a given state, all the 
properties of the macroscopic parts of a system have fixed values. If the 
value of even one property in one macroscopic system’s part changes, the 
state will change to a different one.  

 
HD2-1A: The property map for a given state of a system is the map or 
table that includes full information about the values of its (system’s) 
nonuniform intensive properties and their distribution throughout. 

2.4.7.1 The definition of the state of a system 

OD2-22A: The state of a system is its condition as described by its 
properties (property map).  
OD2-23: The additive dimension is the one that is directly proportion-
al to/with the mass. Therefore, if the additive dimension is a state 
property, then it is an extensive property, which means that the exten-
sive properties are special cases of the additive dimensions. The addi-
tive dimensions such as volume “V,” work “W,” and transferred heat 
(TH) “Q” are usually symbolized by capital letters. Dividing these  
dimensions by their own quantities (in mass units, moles, or normal-
volume “the volume that the gas would occupy if it existed at the  
normal conditions—see OD1-2A” units) transforms them into per mass 
unit, per mole, or per normal-volume unit specific dimensions that are 
abbreviated as mass, molar, or volumetric specific dimensions, respec-
tively. The unit of each specific dimension includes/contains a quantity 
unit in its denominator. 

Table 2.1. Obtaining equation (A) using cross-multiplication 

 Mass Volume Normal  
volume 

No of 
kmoles 

Total m V Vn K 
Per mole Molar mass (M) Molar volume 

Mv 
Normal molar 

volume Mvn 

1 

Per unit 
mass 

 v vn  
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If the additive dimension has a name (e.g., “TH”) and a symbol (Q) 
that is a capital letter, then its mass, molar, and volumetric specific dimen-
sions will be denoted by (q), (Mq or q ), and (q'), respectively (Mq here is 

a combined symbol that consists of the prefix “M” for molar and “q” for 
the specific of the additive dimension “Q”). Thus, the basic part of any of 
the three specific dimensions of the additive dimension (Q) is (q) that is 
the small letter of (Q). When we need to speak in general about the specific 
additive dimension of (Q) that is called the specific transferred heat 
(STH), we can use its abbreviation STH even in equations. 

Most of the following relationships (A) between the mass (m), molar 
mass (M), volume (V), normal volume (Vn), molar volume (Mv or v ), 
normal molar volume (Mvn or v n), the number of kilo-moles (K) of the 
additive dimension (e.g., Q), and its specific dimensions (q), (Mq or q ), 

and (q') are obtained using Table 2.1 and the cross-multiplication: 

= =

= ⋅ =

= = = = =

= = =⋅ ⋅⋅ =
n

n n

n n

n

V Vm V V
K ;

M MV v MV v

/

Q Q
q ; q ' ;

m V

Q m q V q K Mq  'andq Mq Q K K q  (A) 

The first of Equations (A), which is a six-sides multiequation, can be 
the origin of the equations (see Table 2.1): = ⋅Mv M v  and 

n nMv M v ,= ⋅  

while the last of Equations (A) is a four-side multiequation that is written 
for any quantity of the pure substance and can replace all three equations 
that precede it. Thus, we can replace Equations (A) by the following ones: 

 == = = = =⋅ = ⋅n
n n

n
n  Mv M

Vm V
K ; v v

M v v
v; and Mv M v  (2-3) 

=  = = =

=

=

= ×× = × = ×
n

n

Q Q Q Q
STH q ; q ' ; Mq

Matter quantity m V K

and Q m q V q ' K Mq

q

K  q  (2-3a) 

Obviously the first of Equations (2-3a) is the abbreviation (the gen-
eral form) of their last multiequation. 

 
Nt2-3A: Equations (2-3a) are assigned for transferred heats  
calculations and they are able to be transformed into other equations 
that are assigned for calculating other additive dimensions. To obtain  
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the equations for a new additive dimension, from Equations (2-3a),  
replace (1) (STH) with/by the abbreviation of the new specific additive 
dimension, (2) (Q) with/by the symbol of the new additive dimension, 
and (3) each (q) with/by the symbol of the specific dimension of the 
new additive one. For example, the obtained from equations (2-3a) 
equations for the moving boundary work (symbol Wb) and its specific 
boundary work (abbreviated SBW and symbols w, w’, and Mw) will be 
Equation (2-3) as it is, in addition to the following Equation (2-3b):   

n

n

W w W w
SBW w ; w ' ; Mw

Matter quantity m V k

and W m w V w '

w

K  wK Mw

=  = = =

= =

=

⋅ ⋅ ⋅ = ⋅=  (2-3b) 

Nt2-4: Symbolizing the molar volume and normal molar volume as Mv 
instead of the more compact modern symbol ( v ) and Mvn instead of  
( v n) is very successful since each of these symbols denotes additionally 

to its calculating equation (see the last two of Equation “2-3”). There-
fore, we shall adopt this style of symbolizing throughout this book. For 
the moment, all molar specific dimensions will be symbolized so. 
Nt2-4A: From the above we conclude that overlining a mass specific 
dimension transforms it into molar one/specific-dimension. 
Nt2-5: When defining or speaking about the specific additive dimen-
sion (SAD) in common (regardless of the matter quantity kind), some 
books use/apply the symbol of the mass specific additive dimension 
(MSAD) in abbreviating the defining equation of the SAD. In these 
books the general form equation for the STH will look like 

=q Q / (Matter quantity)  instead of the one adopted in this book (see 

equations 2-3a): =STH Q / (Matter quantity) . 

HR2-1: If the unit of a dimension contains a unit quantity in the  
denominator, then the dimension is a specific one, and the original  
dimension (the unit of which does not contain a unit quantity in the  
denominator) is an additive one. 
OD2-24: Two intensive properties are independent if one of them can 
change while the other one is held constant.14

 If two intensive proper-
ties are directly interconnected by a relationship, then fixing one of 
them fixes the other and this means that they are not independent. They 
are dependent properties. 
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2.4.7.2 The equilibrium state 

2.4.7.2.1 The definition of the equilibrium state 

The simplest definition of the most common case equilibrium state is: 
 
OD2-25: The equilibrium state is the state of a system that does not 
undergo any change. 
 

And the comprehensive definition of the same state is/can be: 
 

OD2-26 (Abbreviated): The equilibrium state of a system is defined 
as the state where no system’s macroscopic part tends to change its 
state, and it is possible (when the system is affected by one or more of 
velocity, elevation, surface tension, external force fields “electric, 
magnetic and gravitational” and/or contacting with two or more dif-
ferent temperatures heat reservoirs) that the same parameter (intensive 
property) can have different values in different macroscopic parts of 
the system in its equilibrium state. 
HD2-2: The simple equilibrium (or uniform) state of a system is  
defined as the state where no system’s macroscopic part tends to 
change its state, and the values of its intensive properties are uniform 
throughout. Because of the state postulate (see OD2-30C), the simple 
equilibrium state of a system is also defined as the state where the val-
ues of any two of its independent intensive properties are uniform 
throughout. The equations of state can be written and used only for the 
simple equilibrium state of a system, or for its macroscopic part that is 
simple equilibrium. The graphical representation of a thermodynamic 
state is legal only when the state is simple equilibrium. The graphical 
representation of nonuniform states is illegal or idiomatic/conventional. 
It can be used for some discussions and explanations but not for meas-
urements and calculations (it is not permissible to apply the graph 
properties on no uniform states). Therefore: 
Nt2-6: Classical thermodynamics’ primary emphasis is on studying 
simple equilibrium states and constituted/created from only them so-
called state change processes (see §2.4.10). In this book only these 
states and processes will be studied. 
HD2-3: Two states of a system that are represented on a property  
diagram by one point are the same/congruent only when their state  
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property maps are congruent. A state property map includes (1) the 
borders between system’s macroscopic parts in which state determin-
ing/defining intensive properties of these parts are uniform, (2) the val-
ues of the state determining/defining intensive properties in all these 
parts. The simplest state property map belongs to the simple equilibri-
um state and includes no more than the values of two independent  
intensive properties (see OD2-30C). 

2.4.7.3 Some state properties 

2.4.7.3.1 Density, specific volume, and specific weight 

The mass specific volume (ν) of a substance (abbreviation specific  
volume) is defined as its volume per unit mass, while the density (ρ) of the 
same substance is its mass per unit volume. 

Also, the specific weight (γ) of a substance is the weight per unit  
volume of this substance. Thus, 

 V / m, m / V and G / V m g / V gν γ ρ= ρ = = = × = ×  (2-3c) 

From the first two equations, we conclude that density is the inverse 
of the specific volume and that  

 ρ× =v 1  (2-4) 

Only two (the specific volume and density) of the three quantities  
defined above are intensive properties, because they as the pressure are 
functions of the substance state exclusively and accordingly uniform for 
the simple equilibrium state, but the specific weight is not an intensive 
property, because it changes with the change of geographical location  
(“g” is a function of geographical location). 

2.4.7.3.2 The pressure 

The KMT derived Equation (2-5), and named it the basic equation of the 
KMT: 

 = ⋅ ⋅ ⋅ 2
mp (2 / 3) n (m c / 2)  (2-5) 
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where, p is the gas pressure, mm  the mass of one molecule, and c the 

mean squared speed of the straight movement of the molecules. It is calcu-

lated from the equation: 
=

= n 2
ii 1

c ( c ) / n  

where, n is the molecules’ concentration or the number of molecules 
per unit volume: 

 = ρ = = ⋅m m mn / m (1/ v) / m 1/ (v m )  (2-6) 

where, ρ and v are gas density and specific volume, respectively (see 
Equation 2-3b). 

Equation (2-5) means that the pressure equals two thirds of the trans-
lational (straight movement) kinetic energy of the molecules existing in a 
unit volume of the gas. 

Nt2-6A: In Equation (2-5) n and c2 cannot be negative; whereas mm  is 

always positive integer and cannot be zero therefore, the calculated 
pressure through Equation (2-5) cannot be negative. That is why the 
calculated pressure using the basic equation of the KMT is measured 
starting from zero. Such pressure is called absolute pressure 

abs
.p  

Fluid (gas or liquid) pressure (p) is measured by the force applied 
normally on a unit surface. If F is the force acting normally on the surface 
(A), then: 

 =p F / A  (2-7) 

Three principal kinds of devices are used in measuring pressure: 
 

• The Barometer that measures the so-called absolute pressure  
(its reading is zero when the vessel contains no gas). It is denoted 

by
abs

.p  Thus, the ideal-gas absolute pressure is calculated by 

Equation (2-4). 
• The vacuum meter that measures vacuum pressures vp  (the dif-

ference between the barometric “atmospheric” pressure B and the 
absolute pressure inside the vessel, which is below the barometric 
pressure). Thus, 

 = + = +abs v vB p p p p  (2-8) 

• The manometer that measures gage pressures gp  (the difference 

between the absolute pressure inside the vessel, which is above the 
barometric pressure B, and the barometric pressure). Thus, 
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 = − = −
g abs

p p B p B  (2-9) 

From now on we shall denote to the absolute pressure by p. There-
fore, unless it is clearly/explicitly indicated to the dimension represented 
by p, it should be understood that p represents the absolute pressure. 

Equations (2-8) and (2-9) show that in case of a change in atmospher-
ic pressure, while the gas state inside the vessel is still the same, the gage 
and vacuum pressures change, but the absolute pressure remains constant. 
Therefore, gp  and vp  do not describe the gas state, while the absolute 

pressure is an intensive property (a parameter) of state and it will be used 
in different thermodynamic relations. 

2.4.7.3.3 The temperature 

To evaluate the thermal movement, the KMT interconnected between the 
mean kinetic energy of molecules’ straight motion and the absolute tempera-
ture concept proving the direct proportionality between these two values: 

 ⋅ = ⋅2
mm c / 2 3k T / 2  (2-10) 

where, k is the Boltzmann constant −= ⋅ 23k 1.3806505 10 J / K  and T 

is the absolute temperature. 

Nt2-6B: Equation (2-10) can be discussed similarly to the discussion of 
Equation (2-5) in Nt2-6. The result of such discussion will be “the cal-
culated temperature through Equation (2-10) cannot be negative. That 
is why the calculated temperature using the KMT’s equation for tem-
perature is measured starting from the absolute zero”. Such temperature 
is called absolute temperature (Tabs or T). 

According to the KMT (see Equation 2-10) the ideal-gas absolute tem-
perature approaches zero, when its molecules’ straight velocity approaches 
zero. This zero-temperature state is out of the specter of ideal-gas states. 

The concept of the absolute temperature (2-10) given by the KMT  
coincides with the usual concept of temperature defined in physics courses 
as the degree of hotness or coldness of a body. In other words, the objects 
that have the same temperature in the usual concept of temperature have 
the same temperature according to the concept, which says that the tem-
perature is a measure of the average kinetic energy of the straight move-
ment of molecules. 
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2.4.8 MODES OF WORK 

This place is not appropriate to discuss the work interaction between a 
thermodynamic system and its surroundings. But some of the following 
definitions require, to be understood, a minimum knowledge about the 
modes (models or forms) of the energy transfer by work. This knowledge 
is abbreviated as follows: 
 

Some of the mechanical work modes: 
(1) The moving boundary work (Wb) is the work produced by a simple 
compressible system (gas) during its expansion or compression. Its calcu-
lating differential equation is δWb = p·dV, where p and V are the absolute 
pressure and volume of the system, respectively. It is the only work mode 
that is appropriate to be used with the content of this book, and we will 
deal with it in the following chapters. (2) The shaft work (here energy is 
transmitted with a rotating shaft). (3) The spring work. (4) Work done on 
elastic solid bars. (5) Work associated with the stretching of a liquid film. 
(6) Work done to raise or to accelerate a body. On the other hand, the 
electrical, magnetic, and electrical polarization work are nonmechanical 
work modes.15 

2.4.9 THE SIMPLE COMPRESSIBLE SUBSTANCE 
AND THE SIMPLE COMPRESSIBLE SYSTEM 

The theoretical study of the behavior of substances in gaseous state (which 
is the case that concerns us here) with taking in consideration the effects 
of velocity, elevation, surface tension, and external force fields (electric, 
magnetic, and gravitational) is too difficult. That is why science created 
the ideas of the simple substance and simple system, which simplify the 
study of a group of problems resulting, in terms of accuracy, acceptable 
for heat engineering answers. 
 

OD2-27: A substance that can exchange energy through only work 
mode is called a simple substance.16 
OD2-28: A simple compressible substance is one in which the effects 
of the following are negligible: motion, fluid shear, surface tension, 
gravity, and magnetic and electrical fields.17 
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A more rigorous definition of a simple compressible substance is as 
follows. 

 
OD2-29: If the work mode through which a simple substance can  
exchange energy is boundary movement (or compression/expansion) 
then it is called a simple compressible substance. In other words a 
simple compressible substance can exchange energy with its surround-
ings through p·dv work mode in addition to the energy exchange 
through heat interaction.18 
OD2-29A: Simple thermodynamic systems are those whose states are 
defined in terms of only three coordinates: the uniform pressure  
p exerted by the system on the surroundings, the volume V, and the  
absolute temperature T. It is assumed that the effects of surface tension 
or capillarity, external force fields (electric, magnetic and gravitation-
al), and distortion of solid phases (shear) are absent.19 
OD2-30: The term simple system is applied when there is only one 
way the system energy can be significantly altered by work as the sys-
tem undergoes quasiequilibrium processes.20 
Nt2-7: A comparison between definitions OD2-29A and OD2-29B 
leads to introduce HD2-2 and adopt the name simple equilibrium state. 
OD2-30A: A simple compressible system does not involve kinetic or 
potential energy or energy from magnetic or electric fields.21 
OD2-30B: A system is considered to be a simple compressible one in 
the absence of certain effects which are uncommon in many engineer-
ing applications. These are electromagnetic and gravitational fields, 
surface tension, and motion.22 

 
The number of properties you need to describe the state of a system is 

spelled out in the state postulate. 
 
OD2-30C: The state postulate says: Two independent intensive  
properties are necessary to completely define the state of a simple 
compressible system. A simple compressible system does not involve 
kinetic or potential energy or energy from magnetic or electric fields. If 
the energy forms are involved in a process, then you need to specify 
properties related to those forms of energy in addition to the properties  
required by the postulate.23 
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From OD2-26, HD2-2, and OD2-30C we conclude the following. 
 
HD2-4: Thermodynamic equilibrium states can be simple or compli-
cated with different degrees of complication. For a simple equilibrium 
state all intensive properties are uniform throughout and the number of 
independent properties you need to describe it is two. 
HD2-5: If the deviations from uniformity of the intensive properties of 
a simple thermodynamic state are infinitesimal then the state is called 
a simple quasi-equilibrium state. 

2.4.10 THE STATE CHANGE PROCESSES OF A 
SYSTEM (GAS) 

OD2-30D: If a system changes its state from one state to another  
passing through a number of intermediate states, then a state change 
process or simply process is performed. 
OD2-31: The series of states through 
which a system passes during a  
process is called the path of the pro-
cess.24 It was agreed to give the code 
(1) for the beginning of the process 
and code (2) for the end of the pro-
cess, and therefore the state change 
process of a system begins always 
from state (1) with parameters 

1 1 1, ,p v T  passing through states 3, 4, 

5, 6, and 7, and always ends at state 
(2) with parameters 2 2 2, ,p v T  (see 

Figure 2.7). 

2.4.11 THE THERMODYNAMIC CYCLE 

In the common case there are no conditions: (1) on the initial and final 
states of the state change process of a system and (2) on the process (does 
it cross itself or not), so it is possible for process’s two states (initial and 
final) to be congruent. In this case, the process is called circular/ 
closed/cyclic process or thermal/thermodynamic cycle. 
 

 

Figure 2.7. Numbering the  
distinguished points of a pro-
cess’ path 
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2.4.12 THE EQUILIBRIUM PROCESS AND THE CONDITIONS  
TO REALIZE IT 

2.4.12.1 The equilibrium process 

OD2-32: The equilibrium process is the state change process that con-
sists of only equilibrium states (see OD2-26); otherwise, the process is 
of no equilibrium. Such process can never exist because if its states are 
equilibrium, how it can proceed? More exact expression is that the 
quasi-equilibrium process is the state change process that consists of 
only quasi-equilibrium states; otherwise the process is of no quasi-
equilibrium. Note that not all expressions in classical thermodynamics 
are exact ones. 
OD2-33: A quasi-equilibrium process is one, in which the departure 
from thermodynamic equilibrium is at most infinitesimal. All states 
through which the system passes in a quasi-equilibrium process may be 
considered equilibrium states.25 This definition is a good one and we 
shall adopt it. 
Conclusion 2-1: Since all the states through which the system passes 
in a quasi-equilibrium process may be considered equilibrium ones 
(see OD2-33), then the quasi-equilibrium process itself may be consid-
ered an equilibrium one. Therefore, we shall believe in this book that 
the quasi-equilibrium process and the equilibrium process are two 
names of the same process to which we shall refer to as the equilibrium 
process. 
Conclusion 2-2: A state change process of a system (WF) is recog-
nized equilibrium (we have just decided that quasi-equilibrium and 
equilibrium processes are two names for the same process) if it  
consists of only equilibrium and/or quasi-equilibrium states regardless 
of what happened to the other bodies that participated in this same 
process. 
Conclusion 2-3: Equilibrium processes are theoretical/hypothetical 
ones (they do not exist in reality). According to the above (see also 
HD2-2 and the § following it), each of them may consist of one or 
more of the kinds of equilibrium states. The equilibrium process that 
includes nonsimple equilibrium states cannot be represented by any of 
the equations of state or on property diagrams. Therefore, it is  
important to introduce the following definition: 
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HD2-6: The simple quasi-equilibrium/equilibrium process consists of 
only simple quasi-equilibrium/equilibrium states. This process can be 
legally represented by thermodynamic equations and/or on property  
diagrams. 

2.4.12.2 The conditions for achieving an equilibrium  
(quasi-equilibrium) process 

If the simple compressible substance/system undergoes a quasi-equilibrium 
process in a piston–cylinder arrangement, then at any piston’s position and 
during piston’s movement, system’s state must be quasi-equilibrium and all 
its intensive properties must be almost uniform (the variation in any inten-
sive property throughout the system must be infinitesimal, “the maximum 
difference between the values of any intensive property of any two macro-
scopic parts of the system must be infinitesimal/differential”) throughout. 
Since two independent intensive properties are enough to completely  
define the state of a simple compressible system (see OD2-30C), then it 
will be enough to speak about two conditions those make the state change 
process of a simple compressible system quasi-equilibrium. The primary 
conditions to realize a quasi-equilibrium process can be that (1) the pres-
sure difference between any two macroscopic parts of the system must not 
exceed dp and (2) the temperature difference between any two macroscopic 
parts of the system must not exceed dT. 

To achieve the first condition the piston in the piston–cylinder  
arrangement must move extremely slowly, because its quick movement 
breaks down the equilibrium in the gas differently according to the direc-
tion and speed of piston’s movement. 

Also to achieve the second condition for the gas that exchanges heat 
with an external (MR), the temperature of the heat exchange surface (the 
surface that separates between the gas and “MR”) must vary from the 
temperature of the gas by dT.  Only in this case, the temperature difference 
between the hottest and coldest two macroscopic parts of the whole gas 
mass will be less than dT, and this is enough to consider that the tempera-
ture equilibrium in the gas is achieved. The temperature condition above 
indicates that the thermal equilibrium in the gas is inevitably achieved 
when (1) the external MR temperature differs from the gas temperature by 
dT, or (2) the MR, having significantly different temperature from that of 
the gas, is equipped with/by means (a layer of heat insulation) that allow 
making the temperature of the heat exchange surface that contacts the gas 
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differ by dT from the gas temperature. The two traditionally well-known 
conditions for this special case equilibrium/quasi-equilibrium process are 
as follows. 

 

Figure 2.8. Executing an equilibrium/quasi-
equilibrium dual-directional WF heat exchange  
process 1–2–3–4–5, using heat insulations and  
one MR. Partial processes 1–2–3 and 3–4–5  
(in sub-figure C) are WF heat exporting and  
importing ones, respectively 

 
OR2-3: The pressure condition: to achieve the equilibrium in pressure 
during a quasi-equilibrium process of a gas the speed of the piston must 
be infinitesimal. 
 

Although real processes taking place in reciprocating heat machines 
conduct/proceed at finite (not infinite) speeds and with friction, they do 
not much deviate from equilibrium processes, because the pressure chang-
es in gases spread at high speed that equals to the speed of sound in the 
gas. This means that it is considered that the pressure condition is 
achieved in piston machines. 

 
OR2-4: The temperature condition for the equilibrium process: To 
achieve the equilibrium in temperature during a gas state change pro-
cess, where the gas exchanges heat with an external (MR), the temper-
ature of the heat exchange surface (the surface that separates between 
the gas and “MR”) must vary from the temperature of the gas by dT . 

Thus, the equilibrium in temperature can be achieved in two cases:  
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(1) when the (MR_WF) temperature difference is significant and/but 
the MR is equipped with/by means (e.g., a layer of heat insulation) that 
allow making the temperature difference between the gas and its heat 
exchange surface with the insulation infinitesimal and (2) when the 
(MR_WF) temperature difference is infinitesimal. 
 

If the WF undergoes a process that is fully/partially located in the  
liquid-vapor zone/region, the pressure (p) and temperature (T) will not be 
enough to completely define its saturated states (“p and T” here are  
dependent on each other’s intensive properties “see OR2-1, the underlined 
in OD2-22 and OD2-24”). The conditions that are suitable for all gases 
will be better, which are as follows: 

 
NR2-1: The mechanical equilibrium condition: To achieve the me-
chanical quasi-equilibrium gas state change process, the mechanical 
power exchange (the speed of work exchange) between the WF and its 
surroundings must be infinitesimal. 
NR2-2: The thermal equilibrium condition: To achieve the thermal 
quasi-equilibrium gas state change process the heat power exchange 
(the speed of heat exchange) between the WF and the MR must be  
infinitesimal. 

2.4.12.3 The minimum required number of MRs to achieve an 
equilibrium (quasi-equilibrium) WF state change process 

According to the heat exchange direction between the MR and the WF, 
the minimum required number of MRs to achieve an equilibrium (quasi-
equilibrium) WF state change process can be (1) one HS for the heat 
transfer from the MR to the WF (the sketch of the arrangement here is as 
in sub-Figure 2.8A but without heat sink), (2) one heat sink for the heat 
transfer from the WF to the MR (the sketch of the arrangement here is as 
in sub-Figure 2.8A but without HS), (3) one HS and one heat sink for the 
dual-directional heat transfer process (the sketch of the arrangement here 
is as in sub-Figure 2.8A). The HS serves process’ parts in which the heat 
is imported to the WF; therefore, HS temperature must be higher than the 
highest temperature of process’ parts those import heat to the WF. On the 
other hand, the heat sink serves process’ parts in which the heat is export-
ed from the WF; therefore, the temperature of the heat sink must be lower 
than the lowest temperature of process’ parts those export heat from  
the WF. 
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Nt2-8: If the temperature interval that includes process’ parts that im-
port heat to the WF (1) do not interfere with that that includes process’s 
parts that export heat from the WF and (2) has lower temperatures than 
that that includes exporting heat from the WF subprocesses, then the 
two MRs (the HS and the heat sink) can be replaced by one heat reser-
voir/MR of temperature lying between the two intervals (the sketch of 
the arrangement here is as in sub-Figure 2.8B). 
Nt2-9: Each MR, HS, heat sink, and heat reservoir mentioned in this 
paragraph is supposed to be equipped with/by means (e.g., a layer of 
heat insulation) that allow making the temperatures of the heat  
exchange surface with the gas and gas temperature almost equal  
(see §2.4.3.2). 

2.4.13 THE REVERSIBLE PROCESS AND THE CONDITIONS TO 
REALIZE IT 

2.4.13.1 The definitions of the reversible process 

OD2-34: The reversible process happens so that it can—during revers-
ing—pass through all states of the direct process/direction, and when 
the reverse process is completed, all elements that participated in it  
return to their initial states (the states they had before the start of the 
direct process). This leads to that the reversible process and after its 
two-way going in the direct and reverse directions does not leave any 
trace/impact (change) on any of the elements that participated or did 
not participate in it. It is said about the reversible processes that after 
their two-way going in the direct and reverse directions they do not 
leave any trace/impact (change) in the world, and this saying can be a 
definition for the reversible process. 
OD2-34A: The reversible process for a thermodynamic system is the 
process that can be reversed after occurrence/happening and if it were 
completely reversed, then the compound process (the direct + the  
reversed one) do not leave any change/trace in/on both the system and 
the surroundings.26 
OD2-34B: The r is the process that proceeds so that we can during  
reversing make it pass through all states of the direct direction, so that 
any changes do not occur at/on all the elements involved with it. 
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OD2-34C: A reversible process is a process where the effects of follow-
ing a thermodynamic path can be undone by exactly reversing the 
path.27 
OD2-34D: A reversible process for a system is defined as a process 
that, once having taken place, can be reversed and in so doing leave no 
change in either system or surroundings.28 
OD2-34E: The reversible process is the one that can be reversed, and 
the system restored to its initial state, without leaving net effects in any 
of the systems involved.29 

 
In addition to other definitions which speak about the system exclu-

sively. 
Apparently the above definitions do not lead to the same meaning for 

the reversible process, but logical discussion of all available definitions of 
the reversible process leads to the following comprehensive definition: 

 
HD2-7: The reversible process is the one that if it, after being executed, 
was reversed until its start state, all elements (bodies) participating in 
it (1) pass through all the states passed during the direct pro-
cess/proceeding, but in reverse order. And in doing so, (2) each of the 
participating elements exports all imported kinds of energy and  
imports all exported kinds of energy in the same doses of the direct 
process but in reverse order. In other words, during each reverse of the 
differential/minute parts of the process each of the participating ele-
ments exports all imported, during this differential part, kinds of energy 
and imports all exported, during the same part, kinds of energy. 

2.4.13.2 The practiced in thermodynamics conditions for achieving 
a reversible process 

As it was stated above (see HD2-7) achieving the reversibility of a WF 
state change process requires complying with a group of conditions that 
secure the exact reversing of the paths of all bodies participating in it. 
Obtaining the conditions that secure the exact reversing of each of the 
paths of the bodies participating in the reversible process requires a com-
prehensive analysis that cannot be included in the current size of this 
book. The main results of this analysis are: 
 

Nt2-10: WF’s temperature uniformity is necessary for achieving the 
reversible process. 
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Nt2-11: WF’s pressure and temperature uniformity is necessary for 
achiteving the reversible process. 
Nt2-12: All states of the reversible process are quasi-equilibrium/ 
equilibrium. Or: 
HD2-8: The reversible process is that special case of the quasi-
equilibrium/equilibrium process, where, after reversing, all partici-
pants participating in it return back to their initial states along the 
same direct paths but in reverse order. 

Achieving temperature uniformity 

According to the underlined one in (§2.9.3.2) the thermal equilibrium in 
the WF is inevitably achieved when: 
 

OR2-5: The temperature condition for the (WF) temperature reversi-
bility: to achieve the possibility for the (WF) temperature reversibility 
during a reversible process of a gas, the (MR_WF) temperature differ-
ence must be infinitesimal. 
OR2-6: The temperature condition for a reversible process of a gas: 
to achieve the reversibility in temperature during a gas state change 
process, where the gas exchanges heat with an external MR, the 
(MR_WF) temperature difference must be infinitesimal. 

 
A comparison between OR2-6 and OR2-4 leads to the following: 
 

HR2-2: The temperature condition for the equilibrium process allows 
(for some cases) the heat exchange between the MR and the WF (gas) 
at significant differences in temperatures, while the condition for the 
reversible process does not. 

2.4.13.3 Irreversible processes 

OD2-35: Irreversible process is one that is not reversible. 

2.4.13.3.1 Factors that make processes irreversible (in brief) 

The factors that render/make a process irreversible are also called irreversibili-
ties. Normally irreversible processes include one or more irreversibilities. 
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The following list comprises a few of the irreversibilities that are 
commonly encountered. 

 
• Heat transfer through a finite temperature difference 
• Unrestrained expansion of a gas or liquid to a lower pressure 
• Spontaneous chemical reaction 
• Spontaneous mixing of matter at different compositions or states 
• Friction-sliding friction as well as friction in the flow of fluids 
• Electric current flow through a resistance 
• Magnetization or polarization with hysteresis 
• Inelastic deformation.30 

2.4.13.4 The internally reversible processes 

OD2-36: Irreversibilities present inside the system (the WF), such as 
the internal friction between different speed neighboring streams of the 
WF, are called internal irreversibilities and those present outside the 
system are external irreversibilities. The presence of any number of  
internal irreversibilities during a process is enough to render it irre-
versible process. And the absence of all internal and external irreversi-
bilities, during a process, renders it reversible process. The absence of 
any internal irreversibility associated with the presence of any number 
of external irreversibilities, during a process, renders it an internally  
reversible but externally irreversible (or simply internally reversible) 
process. So 
Nt2-13: The internally reversible and the equilibrium/quasi-equilibrium 
processes are almost the same. 
 

Thermodynamics studies primarily the equilibrium, internally reversi-
ble, and the reversible processes. These processes are the only ones that can 
be represented graphically and without hesitation for being composed of 
only equilibrium states while the representation of irreversible processes in 
the diagrams is mostly idiomatic/conventional (as we will see later) and it 
is not always allowed. The study of the irreversible process is executed in 
practice through two stages: 

 
1) The irreversible process is idealized. It is replaced by a reversible 

or internally reversible one that shares with the irreversible  
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process (1) the initial and final states and (2) the thermal effect. 
After that the idealized (alternative reversible) process is studied 
thermodynamically. 

2) Then the transition from the reversible process to the real irre-
versible one, through introducing experimental factors that take 
into consideration the deviation of real processes from the  
reversible ones. 

All mathematical relationships that describe state change processes in 
thermodynamics belong to equilibrium processes, and accordingly they 
are valid for reversible processes. 

NT2-14: A comparison between OR2-4 with OR2-5 shows that the  
second part of OR2-4 is absent in OR2-5 and the reversible process is 
invariably equilibrium/quasi-equilibrium. 

2.5 IDEAL-GAS LAWS 

2.5.1 INTRODUCTION 

Subscripts (1 and 2) for , , andp V T  in the equations of this para-

graph denote to state’s number (1 and 2) of the same ideal gas. 
The ideal-gas laws in parathions (Boyle–Mariette’s ⋅ = ⋅1 1 2 2p V p V , 

Gay-Lussac’s =1 1 2 2/ /V T V T , the combined gas law “also known as the 

common Boyles Mariotte and Gay-Lussac’s law” ⋅ = ⋅1 1 1 2 2 2/ /p V T p V T , 

and the ideal-gas equation of state “also known as Clapeyron equation” 
)ν⋅ = ⋅p R T  were first derived on an experimental basis using the real 

gases other than water vapor (such as air and hydrogen at low pressures) 
that existed at that time. It was found that the lower the densities of gases 
the better the accordance with calculation results by the mentioned laws. 
These ideal-gas laws were derived again and completed by the KMT. The 
derivation by the KMT started from substituting the (n) and ( ⋅ 2 / 2mm c ) 

expressions from Equations (2-6) and (2-10) in the KMT basic Equation 
(2-5). Thus (see Equations 2-2c and 2-3b), 

 mp v k T/m , m p v k T N, or p V k T N⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅  (2-11) 
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2.5.2 IDEAL-GAS EQUATION OF STATE (CLAPEYRON 
EQUATION) ABR 

Applying Equation (2-1b) in Equation (2-11) we obtain 

 ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅A Ap v k T N /M or M p v/T k N  (2-11a) 

The molecular mass (the mass of one molecule mm ) and Boltzmann 

constant (k) are dimensional values; therefore, unless we choose the unit 
system, we cannot substitute their numerical values. For the metric SI 
units: −= × 23 1

AN 6.022 141 10 mol  (see Equation 2-1) and Boltzmann 

constant (see the notice that explains the constituents of Equation 2-10) 
−= ⋅ 231.3806505 10 J/Kk  and therefore, 

 

= = =
⋅

= ≈ =
⋅ ⋅

u

Mpv J
8.314472383109145 R MR

T mol K
J kJ

R 8.3145 8.3145
mol K kmol K

 (2-12) 

The second side of Equation (2-12) is the same for all ideal gases. It is 

called the universal gas constant and denoted by Ru, MR, or R  and equals 

additionally the sixth and seventh sides of the same equations. The Ru unit 
here belongs to the metric SI (it is one of its base units). Also, the exact 
numerical value of Ru that constitutes the second side is rounded up in the 
other sides to consist of only five digits. 

Substituting SI units’ values from Equations (1-19) and (1-31) and 
from (OD2-12) in Equation (2-12) we obtain 

 

⋅= =
⋅ ⋅

J ft lbf
8.314472383109145 1 545

mol K lbmoluR
R

 (2-13) 

For a particular gas, the molar and relative molar masses are constants 
and their values can be calculated according to OD2-13 (see items 3 and 
4). From Equations (2-2a) and (2-12) we obtain 

u
3

r rr

Rp v R 8.3145 [J/(mol K)] 8314.5 J 8.3145 kJ
R

T M M M kg K M kg K10 M [kg/mol]−

⋅ ⋅= = = = = =
⋅ ⋅  

from which we obtain 

 

u

u

r r

R M R MR and

R 8.3145 kJ 8314.5 J
R

M M kg K M kg K

= ⋅ =

= = =  (2-13a) 
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and                 ⋅ = ⋅p v R T  (2-14) 

where, R is the gas constant. It is constant for each gas and is an  
exclusive function of the molar mass M (see Equation “2-2a”). 

As seen from the first part of Equation (2-13a), the third side (MR) 
can be used as the symbol of the universal gas constant (Ru), and in so 
doing the symbol will denote additionally its calculating equation 

= ⋅MR M R . Therefore, we shall adopt this symbol throughout this book. 

In this book, we shall deal with only the numerical value, rounded up 
to only five digits, of = .uR MR  

Each of =uR MR  and rM  is well known and published in many ref-

erences and tables. Definition OD2-13 is helpful in obtaining (Mr). 
Multiplying both sides of Equation (2-14) by the ideal-gas mass (m) 

we obtain: 

 ⋅ = ⋅ ⋅p V m R T  or ⋅ = ⋅ ⋅up V m R T/M  (2-15) 

The differential of Equation (2-14) is p dv v dp R dT.⋅ + ⋅ = ⋅  Dividing 

this differential/equation by Equation (2-14) we obtain 
dp dv dT

.
p v T

+ =  

Thus, both equations 

⋅ + ⋅ = ⋅p dv v dp R dT  and + =dp / p dv / v dT / T  (2-16) 

are differentials of Equation (2-14): the first one is dimensional, while 
the second one is dimensionless. 

Integrating the second part of Equations (2-16) from state (1) to state 
(2), we obtain 

 + =2 2 2

1 1 1

p v T
ln ln ln

p v T
 (2-16a) 

Equations (2-12) and (2-14) through (2-16) are known as Clapeyron 
equations, after the French engineer and physicist Benoît Paul Émile 
Clapeyron. They are also known as ideal-gas equations of state. The full 
name of each of them is Clapeyron equation for (mole or kmole), 
Clapeyron equation for unit mass (or simply Clapeyron equation), 
Clapeyron equation for a mass (m), and the differential Clapeyron equa-
tion, respectively. 
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2.5.3 AVOGADRO’S LAW 

The following topics will be much abbreviated, with keeping the possibility 
to use them in solving problems. 

2.5.3.1 Others’ statements (OSs) 

OS2-1: Equal volumes of different gases, at the same temperature and 
pressure, contain the same number of molecules. This is the statement o: 
Avogadro’s (law, hypothesis, theory or principle). 
 

Writing the third of Equations (2-11) twice (once for the ideal gas No 
1 that is defined by its pressure 1,p  volume 

1V , mass 
1m , molar mass 1M , 

mass of one molecule 
1mm , temperature 1,T  number of moles 1K , and 

number of molecules 
1N . And once for the ideal gas No 2 defined by its 

pressure 2p , volume 
2V , mass 2m , molar mass 2M , mass of one molecule 

2mm , temperature 
2T , number of moles 

2K , and number of molecules 2N ) 

and dividing the equation for the first gas by the equation for the  
second gas we obtain:  

 ⋅ ⋅ ⋅ =1 1 2 2

2 2 1 1

p V N T
1

p V N T  (2-17) 

Repeating the above procedure on the third of Equations (2-2c) we 
obtain: 

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅
1

2

1 m1 1 1 1 1

2 2 m 2 2 2 2

N mm N M K M

m N m N M K M
 

from which we obtain that: 

(1) =1 1

2 2

N K

N K
, (2) 1 1 1

2 2 2

N K m
1

N K m
= =  1

2

m 1

m 2

m M

m M
= =   and  

(3) 1

2

m1 1 1 1

2 m 2 2 2

mm M N K
1

m m M N K
= = = = .  
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The last two items can be combined as: 

 = = ⇔ = =1

2

m1 1 1 1

2 2 2 m 2

mN K m M
1

N K m m M
 (2-17a) 

Equations (2-17) and (2-17a) are the base for stating Avogadro’s law, 
to which we suggest the following abbreviated statement “If three 

relations of the following four groups (a relation of each group)  
a— =1 2V V , b— =1 2T T , c— =1 2p p , and d—( =1 2N N , 

÷ = ÷1 1 2 2m M m M , or =1 2K K ) are realized, then the other relations 

of these groups are inevitably realized.” 
As stated, at the beginning of this paragraph, by Avogadro himself, 

Avogadro’s law can be easily derived from the bolded abbreviated state-
ment in italics for the case of realizing equations (a, b, and c). Avogadro’s 
law can be introduced as the following abbreviation/equation: 

1 2 1 2 1 2

1 2
1 2 1 2

1 2

If V V , T T and p p ,

m m
then N N ,  and K K

M M

= = = 

= = = 


 (2-17b) 

For the case of realizing relations (b, c, and one of d-relations) the 
statement can be introduced by one of the following abbrevia-
tions/equations: 

1 2 1 2 1 2

1 1
1 2 1 2

2 2

If T T , p p and N N ,

m M
then V V , and K K

m M

= = = 

= = = 


 (2-17c)
 

1 1
1 2 1 2

2 2

1 2 1 2 1 2

m M
If T T , p p and ,

m M

then V V , N N and K K

= = = 

= = = 

 (2-17d)
 

1 2 1 2 1 2

1 1
1 2 1 2

2 2

If T T , p p and K K ,

m M
then V V , and N N

m M

= = = 

= = = 


 (2-17e)
 

Abbreviation/equation (2-17d) can be read as “The masses of any two 
different ideal gases, at the same temperature and pressure, and whose 
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ratio equals the ratio of their molar masses, occupy equal volumes.” 
This statement is the statement of the inverse Avogadro’s law. 

Rewriting abbreviation/Equation (2-17e) for K1 = K2 = 1 (m1, m2, V1, 
and V2 become M1, M2, Mv1 and Mv2, respectively) we obtain: 

1 2 1 2 1 2

1 1
1 2 1 2 A

2 2

If K K 1, p p and T T , then

m M
Mv Mv , and N N N

m M

= = = = 

= = = = 


 (2-17f) 

which can be read as “the molar specific volume at the same pres-
sure and temperature is the same for all ideal gases.” Thus, 

n

n

3 3 3

n n

VMv m V M
v ; K ; and

M M Mv Mv Mv

m m m
Mv M v 22.4146 22.4 0.0224

kmol kmol kmol

= = = = ρ = 

= ⋅ = ≈ = 

 (2-18) 

2.6 IDEAL-GAS MIXTURES 

OD2-37: The homogeneous gas: The gas whose molecules are of the 
same chemical formula. Hydrogen is a homogeneous diatomic gas,  
because the chemical formula of any of its molecules is H2, but air when 
considered composed of only oxygen and nitrogen is a diatomic non-
homogeneous gas, because the chemical formula of some of its mole-
cules is N2 while the chemical formula for the rest of its molecules is O2. 
OD2-37A: The homogeneous mixture: The gas whose molecules are 
not of the same chemical formula, but the molecules of each chemical 
formula are uniformly distributed throughout the mixture. The atmos-
pheric air is a homogeneous mixture. 
 

Nonreacting ideal-gas mixtures are accepted as pure substances,  
because they are homogeneous (see the underlined in italics in §2.4.3). 
Thus, we are allowed to apply ideal-gas laws to them if we, when dealing 
with these mixtures, modify the international/chemical mole definition to 
be additionally appropriate for ideal-gas mixture calculations. This was 
traditionally done by introducing the following OD2-38. 

 

OD2-38: the apparent molar mass of a gas mixture mixM  is the molar 

mass of an imaginary (does not exist in nature) pure gas, which has 
the same mass and number of molecules mixN  that the mixture has. 
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Thus, we can use the same ideal-gas relationships in calculations of 
ideal-gas mixtures. From these relations, 

mixture’s quantity in kmol:  

 = + + + ⋅⋅⋅ + + ⋅⋅ ⋅ +mix 1 2 3 k nK K K K K K  (2-19) 

 mmix

mix

ix

mix

nnmix mix
mix

mi

m

x n n mix

ix

mix

V V V

v

m V
K

M (M M vv) ( v)
= == = =  (2-19a) 

Mixture’s specific volume: 

 mix

n

nmix
mix mix

mix mix mix

(Mv)(Mv) 22.4146
v ; v

M M M
= = =  (2-20) 

Mixture’s density: 

 
n

mix

mix mix mix
mix mix

mix n

M M M
;

(Mv) (Mv) 22.4146
ρ = ρ = =  (2-21) 

where, Kk is the quantity of component (k) in one kmol. All other 
symbols in equations (2-19 through 2-21) last with the subscript/sub-
subscript (mix) that denotes to the fact that they are mixture’s dimensions. 
And when these symbols are freed from this subscript/sub-subscript they 
become familiar to the reader, because they were described previously in 
this book. 

The unit of 22.4146 is m3/kmol (or dm3/mol), therefore, the unit of 
Mmix that shares with it the same third side of the second of equations  
(2-20 or 2-21) cannot be other than (mol or kmol) and accordingly the 
mentioned sides must be excluded from equations (2-20 and 2-21) when 
used for the calculations in English units. 

Although OD2-38 successfully solved the problem of the equations to 
be used in dealing with ideal-gas mixtures, it includes some contradictions 
that can be abbreviated as “the mole, molar-mass mixM  and number of 

moles mixK  of an ideal-gas mixture are real (not apparent) values.” For 

details see Additional Discussions in Volume II of this book. 

2.6.1 THE LAWS OF IDEAL-GAS MIXTURES THAT CAN BE 
DERIVED ON THE BASIS OF THE KMT 

These laws were first derived experimentally (exactly as the ideal-gas 
laws) and then were derived from the ideal-gas laws. 
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2.6.1.1 Dalton’s law 

It is also known as “Dalton’s law of partial pressure” or “Dalton’s law of 
additive pressure” and was derived experimentally and it states, “The 
pressure of a gas mixture is equal to the sum of the pressures each gas 
would exert if it existed alone at mixture’s temperature and volume.”31 
Thus, 

 
=

= + + ⋅⋅⋅ + + ⋅⋅⋅ + =
n

mix 1 2 k n k
k 1

p p p p p p  (2-22) 

where, kp  is the partial pressure of mixture’s component k or the 

pressure that mixture’s component k would exert, if it occupied the vol-
ume of the mixture alone and had mixture’s temperature. 

From Dalton’s law we conclude that each gas in the mixture occupies 
all mixture’s volume, has mixture’s temperature and is affected by its own 
(partial) pressure. 

2.6.1.2 Amagat’s law 

It is also known as “Amagat’s law of partial volume” or “Amagat’s law of 
additive volumes.” It was derived experimentally and it states that “The 
volume of a gas mixture is equal to the sum of the volumes each gas 
would occupy if it existed alone at the mixture temperature and pressure.” 
Thus, 

 
=

= + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + = mix 1 2
1

n

k n k
k

V V V V V V  (2-23) 

where, kV  is the partial volume of mixture’s component k, or the  

volume that mixture’s component k will occupy if it were alone at the 
pressure and temperature of the mixture. This means that partial volumes 
measure quantities. 

2.6.2 GAS MIXTURE COMPOSITION 

To calculate the characteristics of a gas mixture, one must know the com-
position of this mixture that can be given by specifying either the amounts 
of the components of the mixture (or the composition of the mixture), or 
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the portions of each of the components in the mixture (or the relative 
composition of the mixture) that can be (1) mass (given by mass portions 

kg ), (2) volumetric (given by volumetric portions kr ), or (3) molar (given 

by molar portions kz ). 

If a gas mixture is composed of (n) components having masses m1, 
m2, m3, …, mk, … and mn, then the mass portion kg of any component k is 

 
n

k k k k mix
i 1

g m m m m
=

= ÷ = ÷  (2-24) 

The sum of all mass portions: 

 =
1

1
n

kg  (2-25) 

Giving the relative mass composition means giving kg  values of all 

gas mixture components. By multiplying each mass portion by 100, we 
obtain the percentage mass composition of the gas mixture. 

The relative volumetric composition of the gas mixture can be given 
using partial volumes, because they (partial volumes) measure quantities 
(see the end of §2.6.1.2). If a gas mixture is composed of (n) components 
having partial volumes V1, V2, V3, … , Vk, … and Vn, then the volumetric 
portion kr  of any component k is: 

 
=

= ÷ = ÷ mix
1

n

k k k k
k

r V V V V  (2-26) 

Each kV  is taken at mixture’s pressure pmix and temperature Tmix. The 

right side of Equation (2-26) is obtained from the middle side using Ama-
gat’s law (2-23). 

The sum of all volumetric portions: 

 =
1

1
n

kr  (2-27) 

The relative molar/kilomolar composition of a gas mixture can also 
be used. In this case we need to introduce additional information that  
relates to the mole of the nonreacting ideal-gas mixture. Historically the 
following definition was introduced: 
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Ratio ÷ mixkK K  is called molar portion and is denoted by kz . Thus, 

 = ÷ mixk kz K K  (2-28) 

Applying Equation (2-19) in (2-28) we obtain:  

 =
1

1
n

kz  (2-28a) 

From Equations (2-18) through (2-19a) and (2-28a) we conclude that 
giving all portions of the components of a gas mixture (giving all gas mix-
ture’s components’ portions), except one whose full name must be also 
given is enough to completely define its composition, because it is possi-
ble to calculate the only not given portion from the appropriate of the 
above-mentioned equation. 

It is easy to prove that the molar and volumetric portions are numeri-
cally equal, and obtain the following equation:  

 = ÷ = ÷ = 
1 1

n n

k k k k k kr V V K K z  (2-29) 

This means that if a mixture’s volumetric composition is known, then 
its molar composition is also known and vice versa. 

If a mixture’s mass composition is known ( 1 2 3 k ng , g , g , , g , g⋅ ⋅ ⋅ ⋅ ⋅ ⋅
are known), then we can calculate all values of 1 1 2 2r z , r z ,= =

3 3 k k n nr z , , r z , r z= ⋅⋅⋅ = ⋅⋅ ⋅ = , which constitute the volumetric/molar 

composition, by using the equation:  

 
=

= = ÷
n

k k
k k

k 1k k

g g
r z

M M  (2-30) 

And if the mixture’s volumetric/molar composition is known  
( = =1 1 2 2, ,r z r z  = ⋅⋅⋅ = ⋅⋅ ⋅ =3 3 k k n nr z , , r z , and r z  are known), then we 

can calculate all the values of ⋅ ⋅⋅ ⋅ ⋅ ⋅1 2 3 k ng , g , g , , g , g , which constitute 

the mass composition, by using the equation: 

 ( ) ( )
= =

= ⋅ ⋅ = ⋅ ⋅ 
n n

k k k k k k k k k
k 1 k 1

g M r / M r M z / M z  (2-31) 

To calculate ideal-gas mixture’s specific volume and/or density, the 
following equations are used: 
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 ( )ρ
=

=  k

k

n
g

mix
k 1

v
  

and  ( ) ( )
= =

ρ = ⋅ρ = ⋅ρ 
n n

mix k k k k
k 1 k 1

r z  (2-32) 

To calculate gas mixture’s apparent/average molar mass (see OD2-38 
and Equations 2-19 and 2-19a), we use the following equations: 

 = 
n

mix k k
1

M M .r
    

and    = 
n

mix k k
1

M 1/ (g / M )  (2-33) 

 mix k
mix k

mix k
mix k

V V
(Mv) vv)

K K
v(M= = == =  (2-34) 

We remind that Vk here is the partial volume of gas (k) in the mixture 
this gas is found alone at mixture’s pressure and temperature, which leads 
according to Avogadro’s law to mix k(Mv) (Mv) .=  

The dry atmospheric air that is close to earth surface has approximate-
ly constant composition that allows us to consider its apparent molecular 
weight μair=29.32 Today’s expression for the previous sentence is: the ap-
parent relative molar mass of Air is =

airrM 29  and its more accurate value 

is 
airrM 28.97,=  which leads to the following atmospheric air characteris-

tic constant = = ⋅aR 8314.5 / 28.97 287.0037970314118053158 J/(kg K)  

and we shall adopt it in this book as, 

 = ⋅aR 287 J/(kg K)  (2-35) 

= ⋅287 J / (kg K)aR  is well known and it can be used directly in 

thermodynamic calculations. To calculate partial pressures we can use the 
following equations: 

= ⋅ ⋅ = ⋅ ⋅k mix k k mix mix k mix kp p g R / R p g M / M   and  =k k mixp r .p  (2-36) 

2.7 THE BOUNDARY WORK CALCULATION 

The calculating differential equation of the moving boundary work (W ) is 
(see §2.4.8) 

 W pdV w pdvδ = δ =or  (2-37) 

where, p, V, v, and w are the absolute pressure, volume, specific  
volume, and SBW of the system, respectively. 
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The work of 1 kg of the gas for the specific volume change from 1v  to 

2v  equals to: 

 = ⋅ 2

1

vw p dv
v

 (2-38) 

If the mass of the gas inside the cylinder is M (its volume will be  
denoted by V), then the result of a similar discussion would be:  

 = ⋅ = ⋅ ⋅ = ⋅ = ⋅  
2 2 2

1 1 1

V v v
W p dV p M dv M p dv M w

V v v
 (2-39) 

This means that the work of kgM  of the gas at the equality of all 

other conditions is greater than that of 1 kg by M times. In other words the 
work is an additive dimension (see OD2-23), and we can write for it rela-
tions of the type of Equation (2-3). 

 μ= ⋅ = ⋅ = ⋅' ( )nW M w V w K w          and          μ μ= ⋅( )w w  (2-40) 

In the common case the work of the gas may not consist of only the 
gas expansion work. In many cases the work of the gas includes other 
modes of work. Therefore, we will assume that the work (w) of the gas is 
composed of the expansion (boundary) work in addition to other works that 
are symbolized by *.w  Thus, the general formula for gas work will be: 

 2

1

*vw p dv W
v

= ⋅ +  (2-41) 

It should be mentioned that relationship (2-41) for calculating the 
work of the gas in reversible process is valid to calculate gas work in the 
irreversible process, but there is a fundamental difference between the two 
cases: 

In the first case this work is clear whether it was an expansion or 
compression work (work spent on compressing the gas), while in the  

second case (for the irreversible process) the integral ⋅ p dv  expresses a 

total value that includes: 
 

• The work that appeared or disappeared 
• The friction work 
• The work that resulted from absorbing the heat of friction or a part 

of it by the (WF). 
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In other words, the integral ⋅ p dv  represents the WF work against 

the piston; here, we will meet problems on how to estimate the values of 
the intensive properties of nonequilibrium states. 

2.8 RECOGNIZING THERMODYNAMIC PROPERTIES 

A quantity is a property if its change in value between two states is inde-
pendent of the process. It follows that if the value of a particular quantity 
depends on the details of the process, and not solely on the end states, that 
quantity cannot be a property.33 

Integrating the differential of the volume (V) from state (1) to state 
(2) does not require any additional information. Therefore, the differential 
of the volume (V) is exact one, its symbol is (dV), and its integral from 
state (1) to state (2) is  

 = −
2

2 11
dV V V  (2-42) 

Also, integrating the differential ⋅(R dp) / p  from state (1) to state (2) 

does not require any additional information, because R0 is constant and 

 ⋅ = ⋅ = ⋅ = − 
2 2

2 1 2 11 1
(R dp) / p R dp / p R ln(p / p ) R(ln p ln p )  (2-42a) 

Thus, volume (V) and pressure (p) are properties since the change in 
value of each of them between two states is independent of the process 
(since their differentials are exact ones). It is obvious that if the change of 

⋅R ln p  value between two states is independent of the process, when  

R = constant, means that the change of (p) value between the same two 
states is independent of the process too. 

 
From the above we obtain the following. 

Nt2-15: The mono variable differentials are exact ones and their inte-
grals are thermodynamic/state properties. 
OR2-7: If the differential of a dimension is exact and does not include 
process’ path functions, then the dimension is a thermodynamic/state 
property, else it is not. With the exception of the intensive properties 
density, pressure, and temperature, this thermodynamic dimension can 
be either intensive property if its unit includes a quantity unit in its  
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denominator or extensive property if its unit does not include a quantity 
unit in its denominator. 
 

The mostly used in thermodynamics dimensions are mono-variable 
dimensions/functions (functions of one other dimension) or dual-variable 
dimensions/functions (functions of two other dimensions). Therefore, Let 
us discuss: 

• The differential of the mono-variable dimensions/functions 
=y f (x)  that equals the product f '(x) dx.×  In this differential, 
'( )f x  is either another function of x [e.g., F(x) ] or constant, and 

in both cases we can refer to f '(x)  as F(x)  and to the product 

×f '(x) dx  as ×F(x) dx . This product ×F(x) dx  is a sole function 

of (x), and the only requirement for its integration is to know the 
integration rules, which means that the mono-variable differentials 
are always exact. 

• The dimensions’ differentials are: 

 0 bq c dT, W p dVδ = δ = ⋅     and    = −p0

dT dp
ds c R

T p
 (A)  

See Equations 3-6, 2-37, and 3-25). These three differentials are ac-
tually four, because the third differential is the sum of two differentials. 
(1) In the differential 0q c dT,δ = ⋅  0c  by definition (see Equation 3-5) is 

process path function, which means (see the beginning of §2.8) that q is 
not a thermodynamic property because the change in value of q between 
two states of the system will be dependent on the process. We did not try to 
evaluate whether the differential of q is exact or not, because this analysis 
through the expression δ = ⋅0q c dT  will not lead to any result. The  
analysis of the expression δ = ⋅q T ds  (see the second of Equation 3-22) by 

applying Equation (3-25) leads to the differential 

p0q T ds (c dT) (R T dp) / p,δ = ⋅ = ⋅ − ⋅ ⋅  whose variables cannot be separated 

that assures the inexactness of differential q T ds.δ = ⋅  (2) The differential 

δ = ⋅bW p dV  is inexact differential, because p by definition (see Equa-

tions (2-5), (2-7), (2-11), (2-11a), and OD2-30C that can be stated as “an 
intensive property such as pressure of a simple compressible system is a 
function of two other independent properties among which can be the  
specific volume) cannot be a sole function of v or V. This means that the 
differential δ = ⋅bW p dV  cannot be integrated without adding another 
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thermodynamic condition that is process’ path dependent and that makes 
w a nonthermodynamic property. Symbol δ in the above equations is used 
instead of d to indicate the inexact differentials, whose integrals from state 

(1) to state (2) are not − = ⋅
2

2 1 01
q q c dT  and − = ⋅

2

2 1 1
W W p dV  but: 

 − = ⋅
2

1 2 01
q c dT            and             − = ⋅

2

1 2 1
W p dV  (2-43) 

Contrary to the first two differentials (see Equations A above), the 
third one that is ds=(cp0·dT/T)-R·dp/p is an exact one (it can be directly 
integrated) since each of its two terms is a mono variable differential 
[cp0·dT/Tfor ideal gases is a mono temperature  differential since 

=p0c f (T)  and R·dp/p is a mono pressure  differential]. The variables of a 

differential that is an algebraic sum of mono variable differentials are al-
ways separated.  

The above means that s is an intensive property. It is fully analyzed in 
§3.1.2.3.1. 

Thus, the TH per unit mass (q) and the boundary work (Wb) are not 
thermodynamic state properties since their value changes between states 
1 and 2 depend on the process. 

2.9 A BRIEF OVERVIEW OF THE PROPERTIES OF 
REAL GASES 

The following is only a reminder to the reader that thermodynamics does 
not only consider ideal gases (as we do in this book), but also considers 
real gases. 

Experiments, conducted on gases in a wide range of changes in pres-
sure and temperature, proved that the properties of all gases deviate in one 
way or another from the laws that characterize the behavior of ideal gases. 
The ideal-gas properties (p, v, and T) are always governed by the simple 
and exact equation of state pv = RT (with the only constant R), and there-
fore, the ideal-gas isotherms in pv_p diagram are always horizontal 
straight (zero slope) lines. While the exact real gas equation of state is 
very complicated (with many constants) and therefore the real gas iso-
therms in pv_p diagram are mostly non-zero-slope ones. A sample of the 
pv = f (p) curves of the same particular real gas that experimented in wide 
intervals of temperatures and pressures (from 1 to 3,000) kgf/cm2 (see 
Figure 2.9) showed that, in an interval of temperatures, (1) the slope of the 
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real gas isotherm is negative in all its points (isotherm t1), which means 
that this gas is more compressible than the ideal one; (2) the slope of the 
real gas isotherm is positive in all its points (isotherm t3), which means 
that this gas is less compressible than the ideal one; (3) the real gas iso-
therm has a minimum (isotherm t2), which means that this gas at relatively 
low pressures is more compressible than the ideal one and at relatively 
high pressures is less compressible; (4) in the interval between t2 and t3, 
there is a temperature (tB) at which no deviation appears in a wide range of 
pressure changes, that is, the real gas at this temperature in the mentioned 
range of pressure changes behaves as an ideal gas. This temperature (tB) is 
called Boyle’s temperature (or Boyle’s point). 

CONCLUSIONS 

1) Gas (ideal and real) state 
equations are of the type  
f(p, v, and T) = 0 (see Equa-
tions 2-14, 2-43, and 2-44). 
It is valid for pure gases 
and for nonreacting gas 
mixtures. 

2) The quantity of a pure gas 
(a nonreacting gas mixture) 
can be measured in mass 
units, moles, and volume 
units (see Equations 2-19 
and 2-19a), but the values 
of pressure and temperature 
should be added to the  
volume units (e.g., m3 at 
normal conditions, or, m3 at 
1 kPa absolute and 288 K). 

2.10 SUMMARY 

As seen from the table of contents, many topics are introduced in brief or 
comprehensively in this chapter. The equilibrium and reversibility are 
among the discussed in depth topics. And we shall introduce below some 

Figure 2.9. A schematic of four 
different temperatures isotherms of the 
same real gas in pv_p diagram. All 
isotherms of any ideal gas in pv_p 
diagram are straight horizontal lines.  
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of the definitions and rules extracted from the discussions of these items in 
addition to those resulted from the comparison between the equilibrium 
and reversible processes 
 

OD2-33: A quasi-equilibrium process is one, in which the departure 
from thermodynamic equilibrium is at most infinitesimal. All states 
through which the system passes in a quasi-equilibrium process may be 
considered equilibrium states. 
 

We shall believe that in this book the quasi-equilibrium process and 
the equilibrium process are two names for the same process that we shall 
refer to as the equilibrium process. 

 
HD2-6: The simple quasi-equilibrium/equilibrium process consists of 
only simple quasi-equilibrium/equilibrium states. This process can be 
legally represented by thermodynamic equations and/or by property  
diagrams. 
OD2-34C is one of the definitions of the reversible process: The  
reversible process is the process that proceeds so that we can during 
reversing make it pass through all states of the direct direction; so that 
any changes do not occur at/on all the elements involved with it. 
OR2-3: The pressure condition for both equilibrium and reversible 
processes: to achieve the equilibrium/reversibility in pressure during a 
quasi-equilibrium process of a gas the speed of the piston must be  
infinitesimal. 
 

The temperature condition for the equilibrium process: to achieve the 
equilibrium in temperature during a gas state change process, where the 
gas exchanges heat with an external MR, the temperature of the heat ex-
change surface (the surface that separates between the gas and “MR”) 
must vary from the temperature of the gas by dT.  Thus, the equilibrium in 
temperature can be achieved in two cases: (1) when the (MR_WF) temper-
ature difference is significant and/but the MR is equipped with/by means 
(e.g., a layer of heat insulation) that allow making the temperature differ-
ence between the gas and its heat exchange surface with the insulation 
infinitesimal and (2) when the (MR_WF) temperature difference is infini-
tesimal. This second case constitutes the temperature condition of the  
reversible process. 

The comparison between the equilibrium and reversible processes led 
to the following. 
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HD2-8: The reversible process is that special case of the quasi-
equilibrium/equilibrium process, where, after reversing, all partici-
pants participating in it return back to their initial states along the 
same direct paths but in reverse order. 
HR2-2: The temperature condition for the equilibrium process allows 
(for some cases) the heat exchange between the MR and the WF (gas) 
at significant differences in temperatures, while the condition for the 
reversible process does not. 
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CHAPTER 3 

THE FIRST LAW OF 

THERMODYNAMICS  

3.1 HEAT TRANSFER CALCULATIONS DURING GAS 
STATE CHANGE PROCESSES 

The heat transfer calculations during gas state change processes are the 
most common and important calculations in thermal engineering. Gas 
state changes can occur during physical processes (without any change in 
the molecular structure) or during chemical processes (with changes in the 
molecular structure). 

We will discuss here, in some details, the first kind of calculations, 
which requires knowing the values of specific heats (SHs). Then, we will 
briefly introduce the second type. 

3.1.1 THE SPECIFIC TRANSFERRED HEAT AND THE SPECIFIC 
HEAT 

3.1.1.1 Basic definitions and relations 

Others’ Definitions (ODs): OD3-1: The specific transferred heat 
(STH) is the transferred heat (Q) to a unit quantity of matter (gas, liq-
uid, or solid), and therefore (see Equations 2-3a), 

 STH Q / Matter quantity=  (3-1) 

 n

n

and      q Q / m; q ' Q / V ; Mq Q / K;

or                 Q m q V q ' K Mq

q

K q

= = = 
= × × == ×= ×

=


 (3-2) 
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OD3-2: The heat capacity (C) is the amount of heat (Q) to be trans-
ferred to the body (gas, liquid, or solid) during a particular process, to 
raise its temperature by one degree. Therefore, the heat capacity de-
pends initially on the amount of the body, its kind (type), and how the 
heat transfer process proceeds, and its calculating equation is 

 = −2 1C Q / (T T )  (3-3) 

OD3-2A: The specific heat capacity (SHC) or the SH (basic symbol c) 
is the share of the amount of heat (Q) to be transferred to a unit quanti-
ty of the body (gas, liquid, or solid) during a particular process, to raise 
its temperature by one degree. Thus, the SH depends initially on the 
kind of the body and how the heat transfer process proceeds, and its 
general form equation (see Equations 3-1 and 3-3) is 

 2 1

2 1

Q / (T T )C STH
SHC

Matter quantity Matter quantity T T

−
= = =

−
 (3-4) 

Let us introduce the following notes 
 
Nt3-1: The most practiced SHs in thermodynamics are the constant 
volume (subscript v) and the constant pressure (subscript p) SHs. These 
SHs are usually positive and cannot equal zero or infinity. On the other 
hand, and according to the process undergone by the gas, its SH can be 
positive, negative, zero value, or infinite value. As we shall see later 
(see St6-1 and Table 6-1) the SH of (1) the constant-temperature (iso-
thermal) process = ±∞tc , (2) the isentropic (constant-entropy) process 

=sc 0 , and (3) several traditional polytropic processes may have any 

value between +∞ − ∞and . 

Nt3-1A: Because the symbols of ideal gas SHs are much repeated 
throughout this book and since all gases approach the behavior of the 
ideal gas when the pressure approaches zero (see OD2-15), we—as 
many other authors—will refer to the ideal gas SHs as the zero-
pressure ones, symbolizing the constant-volume SH by cv0 and the  
constant-pressure one by cp0, when we need/want to emphasize that the 
equation that includes SHs is assigned to ideal gases. 
 

Based on the above definitions, the experimental data, and theoretical 

rules, (1) the SH ( )r gc  of a particular real gas at a particular process  

depends on its temperature and pressure ( , )=r gc f T p , and with the pres-
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ence of the equation of state, we can write ( , )=r gc f T v . And, the SH of a 

particular ideal gas and a particular process depends on temperature only 
( )=i gc f T . Thus, we can write 

 
r g

0 i g

c f (T, p,gas kind,and process path)

and c c f (T,gas kind,and process path)

=

= =
 (3-5) 

Because (c) is temperature dependent, the spe-
cific heat (c) and heat capacity (C) calculated by 
Equations (3-3) and (3-4) are not the actual ones. 
They are the average ones. Any of the upper two 
symbols besides stands for “the average specific 
heat 

avg(c )  within temperature interval 
1 2T _ T ,” and 

any of the lower symbols stands for “the average 
heat capacity 

avg(C )  within temperature interval 
1 2T _ T .” The availability 

of the temperature limits 
1T  and 

2T  of the average SHs and heat capaci-

ties in their equations or in the neighboring text allows using the abbrevi-
ated symbols avg avg(c and C ) . 

Thus, Equation (3-3) must be rewritten as 

 = −avg 2 1C Q / (T T )  (3-5a) 

And Equation (3-4) must be rewritten as 

 
avg avg

avg avg

c C / m Q / (m T) q / T

or Q m q m c T C T

= = ⋅ Δ = Δ 
= ⋅ = ⋅ ⋅ Δ = ⋅ Δ 

 (3-4b) 

To reach the actual SH, the temperature rise (ΔT) must be differential 
(dT). In this case, heat transfer will be differential too and since Q and q 
are not thermodynamic properties because they depend on the path of the 
process, their differentials are inexact (see § 2.8). The symbols of the dif-
ferentials of Q and q are (δQ and δq) but not (dQ and dq). The ideal gas 
actual SH and transferred heat will be calculated from the following gen-
eral relations: 

 0

0 0

c Q / (m dT) q / dT or

Q m q m c dT or q c dT

= δ ⋅ = δ 
δ = ⋅δ = ⋅ ⋅ δ = ⋅ 

 (3-6) 



112 • GRAPHICAL THERMODYNAMICS 

 
2 2

1 1

T T

0 0T T
        Q m q m c dT                  q c dT= ⋅ = ⋅ ⋅ = ⋅ or or  (3-7) 

For the real gas, the ideal gas actual SH ( 0c ) in the Equations (3-6) 

and (3-7) is replaced by the real gas actual SH (c). 
In Equation (3-4), as in any other equation, the units of all sides are 

the same, which means that both STH and SHC in the equation are either 
mass or molar or volumetric specific dimensions, and Equation (3-4) can 
be rewritten as the following group of calculating equations: 

 
2 1 2 1 2 1

q Mq q '
c ;       Mc       and      c '

T T T T T T
= = =

−
=

− −
c  (3-8) 

Applying the group of equations (3-2), we obtain Group (3-9) of cal-
culating equations: 

 2 1 2 1 2 1 2 1

2 1 n 2 1

q Q Mq Q
c ; Mc ;

T T m(T T ) T T K(T T )

q ' Q
and c '

T T V (T T )

= = = = − − − − 

= =
− − 

 (3-9) 

from which we obtain 

 − = ⋅ = ⋅ = ⋅2 1 nQ / (T T ) m c K Mc V c'  (3-10) 

OD3-3: The SH is the amount of heat required per unit mass to raise 
the temperature by one degree. It is considered here a homogeneous 
phase of a substance of constant composition. This phase may be a  
solid, a liquid, or a gas, but no change of phase will occur.1  

 
Adding the last two sentences to each of OD3-2 and OD3-2A  

improves these definitions. 
 

Nt3-1B: It is clear from the above that the heat capacity (C) is an  
additive dimension (OD2-23); therefore (see Nt2-3), its equations can 
be obtained from Equations (2-3) and (2-3a), and we can additionally 
write  

 Mc M c= = ⋅c  (3-11) 

  



THE FIRST LAW OF THERMODYNAMICS • 113 

For the case when allowed to ignore the SH temperature dependence 
in approximate calculations, (c) will still be a function of gas kind and 
process path so that we can write 

 ≠  =0If c f (T) c f (gas kind and process path)  (3-12) 

Nt3-2: Many authors define the SH as the heat transferred to a unit 
mass (see ODs 3-2A & 3-3). 
Nt3-3: Although relations (3-5 and 3-12) are the most accurate expres-
sion of the reality of the SH, we usually deal with the expressions 

( , )=c f T p , ( )=c f T , and constant=c , but we must never forget the 

SH dependence on gas type and process path during calculations. This 
means that the previous equations of this chapter and many other equa-
tions those include specific heat symbols and do not include infor-
mation about process’s kind are general form equations those can be 
written in three (the mass, the molar, and the volumetric) forms for 
each particular process. For example, 
 

The forms of the first of Equation 3-8 for the constant pressure pro-
cess are 

 = = =
− − −

p p p

p p p
2 1 2 1 2 1

q Mq q '
c ; Mc and c '

T T T T T T
 (3-8a) 

And the forms of the second of equations 3-7 for the constant volume 
process are 

 

2 2

1 1

2

1

T T

v v0 v0T T

T

v0T

q c dT; Mq Mc dT

And q ' c ' dT

= ⋅ = ⋅

= ⋅

 

  (3-7a) 

Nt3-4: In this book, we deal with only simple compressible systems. 

3.1.2 THE CALORIC INTENSIVE PROPERTIES 

In §2.4.7.3, we introduced three state intensive properties (specific vol-
ume, pressure, and temperature) called the thermal intensive properties, 
and the material delivered till now is enough to make the reader under-
stand the following three new intensive properties (internal energy,  
enthalpy, and entropy) called the caloric intensive properties. 
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3.1.2.1 Internal energy 

3.1.2.1.1 Introduction 

The concept internal energy comes from the study of the forms of energy 
owned by the molecules/particles constituting a system. The molecules of 
any gas existing in nature/reality are different from that suggested by the 
kinetic-molecular theory (KMT) molecules, and accordingly, the properties 
of the molecules to be discussed in this paragraph do not comply with the 
properties of the KMT molecules stated in OD2-15 and §2.4.6. Thus, real 
molecules (1) may attract/repulse each other and (2) are not smooth spherical 
material points that are perfectly elastic. They, according to their average 
concentration in the container, may attract/repulse each other and, accord-
ing to their chemical formulas, have a volume, a mass that is not uniformly 
distributed throughout its volume, and have a shape. 

3.1.2.1.2 The molecular kinetic energies 

Researches show that the molecules of real systems own different forms 
of kinetic and potential energies. During physical state change processes, 
only the so-called molecular kinetic energies (MKEs) and the cohesion 
forces’ potential energies change. The other forms of molecules’ potential 
energies such as the chemical and atomic energies (see §2.1.2) arise dur-
ing the appropriate nonphysical change of each state, when changes occur 
in the structure of the molecule and/or atom. 

Five forms of motions and accordingly five forms of the so-called 
MKEs may be owned by a molecule. These are as follows: 

 
(A) The translational MKE (MKEtrans) is associated with the random 

motion of molecules. It fully exists in gases and slightly in liquids, 
and is absent in solids.2 

(B) The rotational MKE (MKErot) does not exist in monoatomic sub-
stances nd exists in gases, liquids, and some solids, particularly 
those with a loose crystal structure, for example, solid N2 and H2 
(nonpolar molecules).2 

(C) The vibrational molecular energy (the energy of intramolecular 
vibration) is the kinetic energy associated with the relative motion 
of atoms that constitute the molecule. It exists in all three phases of 
diatomic and polyatomic substances.2 
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(D) The kinetic energy of electrons (the electronic MKE) is the ener-
gy of the electrons arising from their positions relative to the  
nuclei in the molecule.2 This form is small compared with the other 
forms and exists in all three phases. 

(E) The fifth form is the lattice vibrational molecular energy (the  
energy of the molecules of a solid crystal lattice). It exists only in 
the crystalic solid phase. Each of the lattice and intramolecular  
vibrations reaches its nonzero minimum when T = 0 K. This energy 
also increases with the increase of the crystal temperature (the 
higher the temperature of a crystal, the more intensively its atoms 
oscillate about their equilibrium position).3 

 
Nt3-4A: (can be skipped) The MKEtr and MKErot can be expressed in 

terms of molecule’s mass (mm), linear velocity (υ), moment of inertia (I), 

and angular velocity (ɷ) as MKEtr = m·υ2/2 and MKErot = I·ɷ2/2. This 

means that even when the molecule translates and rotates, MKErot will be 
zero for monoatomic substances because Imonatomic = 0 (because it is 
agreed that the mass of an atom is concentrated in its center of gravity, 
then the mass of a monatomic molecule is also concentrated in its atom’s 
center of gravity having no extent, and accordingly, the monatomic mol-
ecule has no moment of inertia and no rotational energy, while diatomic, 
triatomic, and multiatomic molecules have extent and nonzero moment 
of inertia and accordingly they can have MKErot). 
Nt3-4B: From the above, we conclude that for the gases existing in  
nature (1) the so-called MKE in diatomic and polyatomic gases con-
sists of the translational, rotational, vibrational, and electronic forms 
(see items A through D) because no crystal lattices exist in gases, while 
(2) the MKE in monatomic gases consists of the MKEtrans and the elec-
tronic kinetic energies because they cannot have MKErot (Imonatomic = 0) 
(see item B, and Nt3-4A), vibrational molecular energy, or crystal  
lattices (see items C and E). 
HD3-1: If we divide the five forms of the so-called MKE, introduced 
above, into two intermolecular and intramolecular groups, then the so-
called translational, rotational, and lattice vibrational MKEs will con-
stitute the so-called intermolecular MKEs, while the so-called  
vibrational and the electronic MKEs will constitute the so-called  
intramolecular MKE. 
Nt3-4C: The intramolecular vibrational energy, as any oscillating 
movement’s energy, is not purely a kinetic energy. Each vibrational 
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energy between two interacting atoms consists, when it is constant by 
time, of two (kinetic and potential) equal sinusoidal but displaced by 
time/phase energies with zero minimums. Therefore, the intramolecu-
lar vibrational energy of a substance/compound equals the maximum 
value of any of its kinetic or potential energy. A similar discussion can 
be done for the lattice vibrational molecular energy that leads to the 
lattice vibrational molecular energy of a substance/compound equaling 
the maximum value of any of its kinetic or potential energy. This means 
that (1) the intramolecular vibrational energy of a substance/compound 
is a function of the same variables of its intramolecular kinetic vibra-
tional energy, and (2) the lattice vibrational molecular energy of a sub-
stance/compound is a function of the same variables of its lattice vibra-
tional MKE. 

3.1.2.1.3 The constituents of the internal energy of a system  

Since the internal energy of a system is the energy owned by its molecules, 
and since the forms of energy those owned by a molecule of a particular 
phase of the system are listed above, then the forms of internal energy of a 
system are the appropriate, of the following forms, to system’s phase: 
 

(I) The kinetic molecular forms of energy that are, according to the 
phase of the substance/compound, consist of some of the (1) trans-
lational, (2) rotational, (3) vibrational, (4) electronic, and (5) lattice 
vibrational kinetic energy forms.  

(II) The potential molecular forms of energy that consist of (1) the  
cohesion forces’ potential energy that changes with changing  
the distance between the molecules (i.e., with changing the volume 
occupied by the gas), and (2) the other potential energies that arise 
when changes occur in the structure of the molecule and atom  
(the chemical and atomic energies; see §2.1.2). 

 
And, the sum of all appropriate to system’s phase internal energy 

forms specified above (the values of the absent forms will be substituted 
by zero in this sum) of all molecules of the system is called the internal 
thermal energy or just the internal energy of the system. 

We should mention here that in thermodynamics, we usually care 
about the internal energy changes but not about its total/absolute value; 
therefore, we usually neglect the constituents of the internal energy, which 
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do not change throughout the processes under study. In particular, (a) for 
all physical state change processes we neglect the constituents of the  
internal energy, which do not change throughout these processes (see 
subitem 2 of item II, mentioned earlier) and consider that the potential 
internal energy for a system that undergoes only physical state change 
processes is caused by the intermolecular cohesion forces exclusively; (b) 
for physical real gas state change processes we additionally neglect the 
lattice vibrational kinetic energy that does not exist in gases and liquids 
(see item E of §3.1.2.1.2 and subitem 5 of item I); and (c) for physical 
ideal gas state change processes we additionally neglect the potential  
energy of cohesion forces (see subitem (1) of item II); 

 
therefore, during physical state change processes, the internal energy: 

 
(A) For ideal gases and for the cases, when the real gas can be consid-

ered ideal one (when its specific volume is very large), we consid-
er that the internal energy consists of: 
 
1—the translational kinetic energy of the straight random motion 

of the molecules; 
2—the rotational kinetic energy of the rotational motion of the 

molecules; 
3—the intramolecular vibrational energy; and 
4—the electronic MKE. 
 

(B) The real gas internal energy consists of the ideal gas internal  
energy (see item F above) in addition to: 
 
1—the potential energy of the intermolecular cohesive forces. 
 

We remind here that (1) if the real gas, whether considered ideal or 
not, consists of only monatomic molecules, then each of the constituents 
of the internal energy that resulted from the rotational and intramolecular-
vibrational motions of the molecules equals zero/does-not-exist, and (2) 
the mean electronic KME is always the smallest between the mean non-
zero molecular energies in the sum for calculating the internal energy and 
can be ignored, because of its very small value relative to the other values 
in the sum. 

 
Nt3-4D: Throughout the previous part of this §3.1.2.1.3 we were 
speaking about energy forms of molecules and internal energy and this 
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does not mean that the same chemical formula molecules own the same 
molecular energy that is distributed according to the same law into the 
listed forms. The actual seen is totally different, and therefore, we 
need, when speaking about the macroscopic internal energy, to use 
terms like “the mean KME,” “mean electronic KME,” and so on. 
 

It is clear from the above that the internal energy of a quantity of a 
substance/compound is directly proportional to the number of its mole-
cules, or what is the same, the internal energy of a substance/compound is 
directly proportional to its mass/number-of-kilomoles. This means that the 
internal energy is an additive dimension. And therefore: 

• The internal energy of the system is denoted/symbolized by “U.” 
• The specific “per unit mass” internal energy is denot-

ed/symbolized by “u.” 
• The molar “rarely per mole and mostly per kilomole” internal 

energy is denoted/symbolized by “   Mu or u .” 

The above-mentioned three values are related to each other as follows 
(see Equations “2-3 through 2-3b” and the text between them): 

 U m u K (Mu)= ⋅ = ⋅ = ⋅K u        and       (Mu) M u= = ⋅u  (3-13) 

3.1.2.1.4 Internal energy is a state property 

Let us see to which of the intensive properties relates each of the listed 
above five elements of the internal energy (see items F and G above). 
 

(H) The experimental and theoretical studies on substances in their sol-
id, liquid, and gaseous phases show that all forms of the so-called 
“the mean microscopic kinetic energy” that are the mean “kinetic 
translational, kinetic rotational, intramolecular vibrational, kinetic 
electronic, and lattice vibrational” molecular energies (see items A 
through E above) are functions of temperature, increasing with its 
increment and decreasing with its decrease. The microscopic kinet-
ic energy portion of the internal energy gives rise to the tempera-
ture of the system.4 The above means that all forms of the  
internal energy of ideal and those considered ideal gases (see item 
F) are sole functions of temperature, and therefore, the ideal gas 
internal energy is a function of its temperature. 
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(I) The cohesive forces are functions of the average distance between 
the molecules, and this distance is determined by knowing the  
specific volume of the gas; therefore, the cohesion forces’ potential 
energy in a real gas (see item G) is a function of its specific vol-
ume, and therefore, the real gas internal energy is a function of its 
both specific volume and temperature. 

 
After taking into consideration what has been said about the intensive 

properties to which the internal energy relates we conclude: 
 
• The internal energy of an ideal gas is a function of only tempera-

ture: 

u f (T);=     
T T

u u
0;

v p
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



∂
∂

  

 Or              v pdu du du f (T)= = =  (3-14) 

This means that the internal energy of the ideal gas is not a new state 
property, but it carries the same meaning of the temperature. In other 
words, the internal energy and temperature are not independent state prop-
erties, but they depend on each other. 

 
• The internal energy of the real gas is a function of both tempera-

ture and specific volume: 

 rg 1u f (T, v)=  (3-15) 

Because of the existence of the characteristic equation F(p, v,T) 0,=  

the real gas internal energy is a function of any two of the three intensive 
properties (p, v, and T) , that is, in addition to Equation (3-15), we can 

write the following equations: 

 2u f (p,v)=  (3-15a) 

 3u f (T, p)=       (3-15b) 

Accordingly, the value of u, which can be determined for any gas 
state by knowing two of its intensive properties, can itself be an intensive 
property of the gas, that is, it jointly with any other intensive property 
( , , )p v or T can determine the gas state. The internal energy units are  
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generally the same energy units (see §1.1.9). The often used units for 
measuring the specific (per mass) internal energy in thermodynamics are 
kJ/kg, kcal/kg, and Btu/lbf. 

Unlike equation type =F(p, v,T) 0 , Equations (3-15), (3-15a), and 

(3-15b) are named the caloric equations of gas state. 

3.1.2.2 Enthalpy 

In thermal calculations, the expression +u pv  was often encountered; this 

expression has been given the name heat stock “enthalpy”, and it has two 
symbols: today’s symbol h and the old one i. Therefore, by definition  

 = + ⋅h u p v  (3-16) 

Later it was discovered that the enthalpy is a property of state. 

For ideal gases, where =u f (T)  and p v R T,⋅ = ⋅  Equation 3-16  

becomes: 

= + ⋅ = + ⋅ = 7h u R T f (T) R T f (T)      from which we obtain:  

 = +dh du RdT  (3-17) 

Relationship (3-17) clearly confirms that the ideal gas enthalpy is a 
function of only temperature. An additional expression for this relation-
ship can be: 

 
T V PT

h dhh h h
0 or

p dTv T T

∂ ∂ ∂ ∂     = = = =      ∂∂ ∂ ∂      
 

 or       v pdh dh dh f (T)= = =  (3-18) 

To prove that the enthalpy is a state property, we substitute u in the 
enthalpy definition Equation (3-16) from Equation (3-15a) and obtain 

2h f (p, v) pv= +  or: 

 4h f (p,v)=  (3-19) 

Equation (3-19) is similar to Equation (3-15a) and on the basis of this 
similarity we can derive the following equations: 

 H m h K Mh= ⋅ = ⋅ = ⋅K h      and      Mh M h= = ⋅h  (3-20) 

 5h f (T, p)=      and     6h f (T, v)=  (3-19a) 
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Accordingly, the value of h, which can be determined for any gas state by 
knowing two of its intensive properties, can itself be an intensive property of 
the gas, that is, it jointly with any other intensive property (p, v, or T)  can 
determine the gas state, and thus, the enthalpy is a state property. 

3.1.2.3 Ideal gas entropy 

3.1.2.3.1 Ideal gas entropy is a state property 

In thermal calculations the expression δ( q / T)  was often encountered. This 

expression was symbolized by ds.  Later it was discovered that s is a state 
property and has been given the name entropy. Therefore, by definition  

 = δds q / T  (3-21) 

Applying Equation (3-6) we write: 

 ds q / T c dT / T;                  q T ds c dT= δ = ⋅ δ = ⋅ = ⋅  (3-22) 

where =c f (T, p) . 

From Equation (3-22) we conclude that the STH to the gas during the 
process between points 1 and 2 is (see Equation 3-6)  

 = ⋅ = ⋅ 
2 2

1 1
q T ds c dT  (3-23) 

From Equation (3-21), we conclude the following. 
 

OR3-1: the STH is positive when both ds and dT have the same alge-
braic sign. And, when the algebraic signs of ds and dT are different, the 
SH is negative. 
 

Let us first prove the existence of this state property for ideal gases. 
For a rigorous proof, we shall use the Equations (4-13) and (4-18), derived 
later. Dividing all sides of Equation (4-13) by T and applying the ideal gas 

equation of state (2-14), we obtain 
δ = ⋅ + ⋅ = ⋅ +v v

q dT p dT dv
c dv c R

T T T T v
. 

Applying the entropy definition (3-21), we obtain 

 = ⋅ +v

dT dv
ds c R

T v
 (3-24) 
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Nt3-4E: Since the SHs (cv and cp) for ideal gases (see Nt3-1A) are only 
temperature dependent, the variables in this differential equation are 
separated; therefore, ds is exact, and Equation (3-24) can be integrated 
directly, and the ideal gas entropy is a state property (see OR2-7). 
Nt3-4F: Since the ratio dT/T in the first of equations (3-22) is dimen-
sionless, the units of the entropy (s) and the SH (c) are the same and the 
often used units of entropy are ⋅kJ/(kg K),  ⋅kcal/(kg deg),  and 

Btu/(lb.R).  As it can be seen the unit of the ideal gas entropy (s) con-

tains a unit mass in the denominator. According to “HR2-1” (s) is the 
specific ideal gas entropy, while (S = ms) is the total ideal gas entropy 
and at the same time is additive dimension (see OD2-23). 
 

Combining the results of Nt3-4E and Nt3-4F above and considering 
OD2-23, we conclude that “The total ideal gas entropy (S) is an extensive 
property.” 

Therefore, we can write:  

  S m s K Ms and Ms M s= = =⋅ = ⋅ ⋅ = ⋅K s s  (3-24a) 

Applying (Nt3-1A) and Equations (4-18) and (2-16) in Equation  
(2-24a), we obtain 

 = + = − = +v0 p0 v0 p0

dT dv dT dp dp dv
ds c R c R c c

T v T p p v
 (3-25) 

For =v0c f (T)  and accordingly =p0c f (T) , the variables in the  

second and third side of this equation are separated, while in the fourth 
side are not. Therefore, the fourth side is excluded from the exact entropy  
calculations. The special cases that change the look of the equations for 
the exact entropy calculations are: 

 
v v0

p p0

dT
If dv 0 v constant and ds c

T
dT

 and If dp 0 p constant and ds c
T

=  = = 

=  = =


 (3-26) 

Integrating the second differential equation from T1 to T2, we obtain 
—after taking in consideration that the ideal gas entropy s is a state prop-

erty (see §2.8 “OR2-7”) and accordingly ds is exact and = −
2

2 11
ds s s —

the calculating equation for the ideal gas entropy change in the isobaric 
process 1_2, which  can be written as:  
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> = = 




= − = = −    
2 2 2 1

2 1
1 1 ref * ref *

ref *

T T T T

p0 p0 p0 p0 p0 p0T T T T

For T AZ 0K 0R :

dT dT dT
ds s s c c c

T T T

 (3-27) 

The 0 in the subscripts of this set of equations stands for ideal gas—
see Nt3-1A—which means that the mentioned 0 can be skipped if denoted 
somewhere else (in equation’s explanatory texts) that this equation is writ-
ten for ideal gases. The paragraph that precedes the conditioned equation 
(3-27) clearly denotes that this equation is written for ideal gases, there-
fore we can write equation (3-27) in any of the following two forms: 

 
> = = 




= − = = −    
2 2 2 1

2 1
1 1 ref * ref *

ref *

T T T T

p p p p p pT T T T

For ideal gas and T AZ 0K 0R :

dT dT dT
ds s s c c c

T T T

 (3-27-1) 

 

> = = 



= − = = −    
2 2 2 1

2 1
1 1 ref * ref *

ref *

T T T T

p p p p p pT T T T

For T AZ 0K 0R :

dT dT dT
ds s s c c c

T T T

 (3-27-2) 

In equations (3-27 through 3-27-2): 1) 
20ps  (

2ps ) and 
10ps  (

1ps ) are 

the ideal gas entropies of the end and start states in the isobaric process 1-2 
respectively. 2) Tref* is an arbitrary reference temperature at which integral 


2

1

T

pT
c (dT / T)  is separated into integrals 

2

ref *

T

pT
c (dT / T)  and 


1

ref *

T

pT
c (dT / T) . The value of Tref* is essential in tabulating integral 


ref *

T

pT
c (dT / T)  versus T, therefore, no table of integral 

ref *

T

pT
c (dT / T)  ver-

sus T can be created without determining/fixing—in advance—the value of 
its Tref* by table’s author, who declares (or does not declare) its value.  

 
Nt3-4G: Obviously/mathematically, the values of Tref* in the two inte-

grals resulted from the separation of integral 
2

1

T

pT
c (dT / T)  into two, 

must be the same throughout integral’s tabular calculation. This means 
that the tabular calculations through Equation (3-27-1) will be correct 

when the values of its two integrals 
2

ref *

T

pT
c (dT / T)  and 

1

ref *

T

pT
c (dT / T)  

are obtained: 1) either from the same table of the so called Standard 
Entropy, or Thermodynamic relations, or Ideal Gas Properties, of a par-
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ticular gas (Air for example), or 2) from two tables of standard entro-
pies those assigned to the same ideal gas and have the same Tref. Other 
options are risky for not experienced people.  

 

Since the entropy value versus Tref equals zero, the integrals with low-
er limit of Tref will calculate the relative, to table’s principle of entropy, 
ideal gas entropies in the constant pressure process instead of the ideal-
gas entropy change in the constant pressure process. Therefore, any of the 
limits/temperatures of the integrals of Equations “3-27 through 3-27-2” 
(Tref*, T2 and/or T1) cannot equal the absolute zero; because, the absolute 
zero limit, in such integrals (see the following Nt3-5A), makes its integral 
indeterminate (the AZ-value of any of T2 and/or T1 is enough to make the 
third and fourth sides of Equations “3-27 through 3-27-2” indeterminate, 
whereas Tref*=0JK is enough to make the fourth side integral of Equations 
“3-27 through 3-27-2” indeterminate).  

 

Nt3-4H: The limits T1 and T2 of integral 
2

1

T

pT
c (dT / T)  that have defi-

nite values throughout a particular calculation (see equations 3-27 
through 3-27-2), have other values throughout another calculation and so 
on. The two limits of such integral vary from one calculation to another 
and therefore, its limits are considered variables and its tables are of the 

double/dual entry type. Separating the definite integral 
2

1

T

pT
c (dT / T)  in-

to two definite integrals according to the mathematical rule  

= + = −    
2 ref * 2 2 1

1 1 ref * ref * ref *

T T T T T

p p p p pT T T T T

dT dT dT dT dT
c c c c c

T T T T T
 

(See the last two sides of any of equations 3-27 through 3-27-2) con-
siderably simplifies its tabular calculation; because, the resulted from this 

separation integrals 
2

ref*

T

pT
c (dT / T)  and 

1

ref *

T

pT
c (dT / T)  with their common 

case 
ref *

T

p0T
c (dT / T)  are able for tabulation, versus T, in single-entry 

(temperature) ideal gas table since they have only one variable limit (T2, 

T1 or T) each. The table of integral 
ref *

T

p0T
c (dT / T)  versus T is enough to 

obtain additionally the values of each of 
2

ref*

T

pT
c (dT / T)  and/or 


1

ref *

T

pT
c (dT / T)  versus (T2 and/or T1). 
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Mathematically, each of the mentioned three special cases of integral 


2

1

T

p0T
c (dT / T) , equals zero for T=Tref* or: 

 
= = =

= = =  
ref * 2 ref * 1 ref *

ref * ref * ref *

T T T T T T

p p pT T T
c (dT / T) c (dT / T) c (dT / T) 0  (3-27-3) 

Symbolizing each of these integrals as *refps  leads to 0s
*refp =  and  

 

= − = 

= =



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ref *
ref *

2 1

2 1
ref * ref *

T

p p p pT

T T

p p p pT T

dT
c s s s , which leads to

T
dT dT

c s and c s
T T

 (3-27a) 

The chosen above arbitrary reference temperature Tref* for tabular cal-
culation of the ideal gas entropy change during the constant pressure pro-

cess −
2 1p ps s  (see Equation 3-27-2) is actually choosing an ideal gas state 

to be the entropy principle for the table of integral 
ref *

T

pT
c (dT / T) , because 

the other intensive property of the chosen state is the pressure of the con-
stant pressure process. such procedure is usual since, in thermodynamics 
when studying physical state change processes, we are not interested in 
the values of the intensive caloric properties of stateA but in their changes 
and therefore, we can, during a particular ideal gas entropy change deter-
mination/calculation, chose any ideal gas state to be the entropy principle.  

 
A. The intensive caloric properties of state are the internal energy, en-

thalpy and entropy.5 
 

In equations (3-27a): ps ,  
2ps ,  and 

1ps  are the relative, to table’s 

principle of entropy, ideal gas entropies in the constant pressure process 
(Abbreviation Table’s ideal gas constant pressure entropies or simply 
Constant Pressure Entropies) for temperatures T, T2, and T1, respective-
ly. The other symbols of (1) 

ps  are 0
Ts  s , or 

Tps ; (2) 
2

ps  are 
2

0
Ts ,  

2s ,  or 

T 2
ps ,  and (3) 

1
ps  are 

1

0
Ts , 

1s , or 
T1

ps .  Therefore (see Equations 3-27 

through 3-27-2 and 3-27a): 

 ° °= − = − = −
2

2 1 2 1 2 1
1

T 0 0
p0 p p T T T TT

dT
c s s s s s s

T
 (3-27b) 
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Where: −
2 1p ps s  or −2 1 p(s s )  or Δ 1_ 2 p0( s )  is the exact ideal gas entro-

py change in the constant pressure process (1_2) that totally lies within/inside 
the ideal gas zone.  

Some authors refer to: 1) the integrals type 
ref*

T

p0T
c (dT / T)  as the 

standard entropies6. Whereas many other authors do not name integral 


ref*

T

p0T
c (dT / T) , when speaking about it, but name one of its symbols (see 

Nt3-4G below). 
A similar analysis for the first of differential Equations (3-26) will 

lead to similar results that concern the exact ideal gas entropy change in 
the constant volume process. Here also: 

 

( )

= = = 

= − = −


  



2 1

ref * ref * ref *

2

1

T T T

v0 v v0 v2 v0 v1T T T

T

v0 v2 v1 2 1 vT

dT dT dT
c s ; c s ; c s

T T T
dT

and c s s s s
T

 (3-27c) 

where: vs , v2s , and v1s  are the relative, to table’s principle of entro-

py, ideal gas entropies in the constant volume process (abbreviation  
Table’s ideal gas constant volume entropies or simply Constant Volume 
Entropies) for temperatures T, T2, and T1, respectively. The determination 
of Tref value is left to table’s author, who chooses it and declares (or does 
not declare) his choice. Also −2 1 v(s s )  or 1_ 2 v( s )Δ  is the exact ideal gas 

entropy change in the constant volume process (1_2) that totally lies with-
in/inside the ideal gas zone. 

 
From the first equations of (3-27a) and (3-27c) we obtain: 

( ) ( ) ( ) ( )− = − = − ⋅  
ref * ref * ref *

T T T

p v p v p vT T T
s s c dT / T c dT / T c c dT / T  

Applying Meyer Equation (see equation 4-18) on this equation we obtain: 

 = − = − = − +
ref *

T

v p p p ref *T
ref *

dT T
s s R s R ln s R ln T RT

T T
 (3-27d) 

 Or     v p

ref *

s s
ln T ln T

R

−
= +      or     v p

ref*

s s
T T exp

R

−
= ⋅  (3-27e) 
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Nt3-4I: We should mention here that different ideal gas property  
tables differently symbolize the constant pressure entropy ps . Thus, 

ps  in (1) Borgnakke and Sonntag (2013)6 is 
0
Ts , (2) Cengel and Boles 

(2006)7 is ,s  (3) Moran and Shapiro (2006)8 is s (T) , (4) Rivkin 

(1973)9 is ,s  and (5) Vukalovich (1958)10 is s (subscript p is skipped 

only inside the tables, but not in the descriptions). Also, these property 
tables have their own reference temperature Tref that is mostly not de-
clared. Only in Vukalovich (1958)10, Tref is declared as 

ref nT T 273.15 K.= =  

Nt3-5: Remember that refT  in any table of thermodynamic properties 

of substances that includes the values of any sp or s ps  temperature 

functions can never be AZ. 
 

The following is a deep abbreviation of the rest of the analysis of the 
ideal gas entropy: 

 ( )− = − + = − −
2 1 2 1

2 2
2 1 v v p pexact

1 1

v p
s s s s R ln s s R ln

v p
 (3-28) 

 − − − = + =
2 1 2 1

2 2 2
p p v v

1 1 1

p v T
(s s ) (s s ) R ln R ln R ln

p v T
 (3-28a) 

For =v0c constant  and accordingly =p0c constant , 

 

2 2 2 2
2 1 v0 p0

1 1 1 1

2 2
v0 p0

1 1

T v T p
s s c ln R ln c ln R ln

T v T p

p v
c ln c ln

p v

− ≅ + ≅ −

≅ +  (3-29) 

To increase the accuracy replace 0vc  by avg0vc  and  0pc  by avg0pc . 

 
∂  = ∂ 

p0

p

cs

T T        and       
∂  = ∂ 

v0

v

cs

T T  (3-30) 

Nt3-5A: Usually, the ideal gas SH expression is an algebraic sum of a 
constant term (CT) and one or more temperature-dependent term(s) 
(TDTs) (see Equations 3-33 through 3-36 for cp0 or cv0 and Equation 6-6 
for the SH of the new polytropic process cn0), but some SH expressions 
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consist of only constant term, whereas in some rare cases the SH  
expression consists of only temperature dependent terms; therefore, the 
integral: 

 

ref
ref ref

T TT

0
T refT T

1̀ 1̀ ref
ref

dT dT T dT
SH (CT TDTs) CT ln TDTs

T T T T

T
CT ln F (T) F (T )

T

= + = ⋅ +

= ⋅ + −

 

 (3-31) 

Which almostB invariably includes the term ( )× refconst ln T / T  that is 

undefined (equals either +∞ − ∞or ) for the case when one of its limits  

(T or Tref) equals AZ = 0 K = 0 R, because = −∞ln 0  and ln + ∞ = +∞ .  

 
B. The last lines of items (1) through (3) of §3.1.6.1 clearly show that 

each of the ideal gas SH expressions that included in references [11] 
through [13] has a constant term and therefore, it is almost improba-
ble/impossible to find a table for standard entropies, whose Tref = AZ  

 
Thus, the following equations are highly probale: 

 ref ref

ref

T T

0 p0
T 0 K T 0 K

T

v0
T 0 K

dT dT
SH ; c

T T

dT
and c

T

= =

=

= ±∞ = ±∞ 

= ±∞

 (3-31A) 

Therefore, (1) the condition ref
T 0 K≠  is inevitable/necessary to tabulate 

the integrals 
ref

T

p0T
c (dT / T)  and 

ref

T

v0T
c (dT / T) . (2) In this book the star 

(*) in (Tref*) is to remind that (Tref) in temperature functions 
ref

T

p0T
c (dT / T)  

and 
ref

T

v0T
c (dT / T)  cannot equal the AZ. 

 
Nt3-5B: Temperature functions ps , p2s , and p1s  whose other symbols are 

( )0
T pTs , s , and/or s

, ( )
2 2

0
T 2 pTs , s ,and/or s , and ( )

1 1

0
T 1 pTs , s , and/or s , 

respectively, in addition to vs , v2s , v1s , and −p v(s s )  are Tref* functions, 

while any of the differences ( )−p2 p1s s  and ( )−v2 v1s s  whose both com-

ponents are obtained from the same property table is not. 
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3.1.3 THE GRAPHICAL REPRESENTATION OF THE GAS STATE 
AND OF THE GAS STATE CHANGE PROCESSES) 

The equation of state (the characteristic equation) is the equation of a space 
surface in the coordinate system ( , , )p v T , and the gas state corresponds 

with a certain point on this surface. This point is called the figurative point. 
If we represent a number of gas states infinitesimally close to each 

other in the chosen coordinate system, then we obtain a representation of 
these states in the chosen coordinate system in the form of line 1–2  
(Figure 3.1), and this line is applicable to the surface representing equa-
tion ( , , ) 0=F p v T . Line (1–2) that represents the gas state changes is 

called the gas curve or process path. Each point of this line represents an 
equilibrium state of the body (gas), and accordingly the graphical repre-
sentation can exist only for thermodynamically equilibrium processes. 

 

Figure 3.1. The equilibrium gas state  
change process the space coordinate  
system p_v_T 

If necessary to represent the nonequilibrium processes on graphs, then 
that would be idiomatic. And then it will not be permissible to make use 
of the properties of the graphs. 

HD3-1A: A legally created state change process path in T_s, C_T, p_v, 
… diagram of a substance is the graphical representation in scale of this 
state change process, which must be in thermodynamical equilibrium, in 
plane T_s, C_T, p_v, …respectively. Only legally created process paths 
are appropriate/suitable for graphical calculations. 
 

The use of the space coordinate system is uncomfortable; therefore, 
usually, we use the plane coordinate system. This allows tracking the 
changes of two of the gas state properties, while the value of the third 
property for each of the points of the process can be calculated from the 
equation of state. The most comfortable of the plane coordinate systems is 
that which interconnects the pressure and specific volume. 
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Gas state change processes may/can run inside a piston–cylinder  
arrangement as illustrated in Figure 3.2, where the gas-specific volume 
change is proportional with piston displacement; therefore, we represent 
the specific volume on x-axis and the pressure at each piston position on 
y-axis, and thus we obtain the so-called p_v diagram (Figure 3.2). 

 

  

Figure 3.2. Expansion processes in  
p_v plane coordinates 

Figure 3.3. Compression  processes 
in p_v plane coordinates 

In Figure 3.2, three gas state change curves (1-2, 1-2', and 1-2") are il-
lustrated. The gas state change according to this curve or that depends on 
how the heat is transferred to/from the body during the process. All these 
processes are expansion ones because the specific volume increases during 
the process, and we shall refer to these curves as the gas expansion curves. 

In Figure 3.3, three gas state compression curves are illustrated (the 
specific volume decreases during the process), and we shall call them the 
gas compression curves. 

 

Nt3-5c: From now on, we shall additionally denote to the relative tem-
perature (see OD1-3D and Equations (1-30)) by t. 

3.1.4 GENERAL FORM EQUATIONS FOR CALCULATING THE 
BOUNDARY WORK AND TRANSFERRED HEAT 

If we know the function =p f (v)  and any of the functions =c f (t) , 

=c f (T) , or =T f (s)  for a process, then we can calculate the boundary 

work (see §2.10) from Equation (2-38) and the transferred heat from 
Equation (3-23); for example, for the constant temperature process where 
T constant f (s) := ≠  
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 = ⋅ = ⋅ = ⋅ − 
2 2

1 1

s s

T 2 1s s
q T ds T ds T (s s )  (3-32) 

Since the gas state change process in coordinates (p_v, T_s, c_T, or c_t) 
is expressed by the general form function =p f (v) , =T f (s) , =c f (T) , or 

=c f (t)  that is similar to the general form function ( )=y f x , which ex-

presses the plane line in coordinates (y_x), then the general discussion and 
calculation of each of the boundary work and the STH during physical state 
change processes can be executed using the appropriate of Equations (2-38) 
and/or (3-23), which are similar to Equation (1-44), that was comprehensive-
ly discussed in Chapter 1. Just replace in Equation (1-44)  
(A, y, and x) by, respectively, (w, p, and v), (q, T, and s), (q, c, and T), or  
(q, c, and t), and you will have a lot of material that belongs to the boundary 

work and/or STH analyses. For example, the STH = ⋅ = ⋅ 
2 2

1 1
q T ds c dT  is 

measured as the area under process path in the appropriate diagram T_s or 

c_T. Also, the specific boundary work = ⋅
2

1
w p dv  is measured as the area 

under process path in p_v diagram. All three diagrams must be created in 
scale. The graph scale and the displacement of the co-ordinate axes must be 
taken in consideration (see Nt1-12, Nt1-25, and §1.2.1). For cyclic processes, 
the area under the curve equals the area inside it (see Nt1-23). 

3.1.5 SOME OF THE RULES, DEFINITIONS, AND NOTES, 
MAINLY USED IN THIS BOOK, THAT SIMPLIFY THE 
GRAPHICAL CALCULATIONS AND DISCUSSIONS 

P_v and T_s diagrams are extensively used in studying and analyzing heat 
engines. We shall extract here the rules, definitions, and notes, mainly 
used in this book, from Chapter 1 by replacing the area (A) under the 
curve ( )=y f x  by the (1) specific boundary work (w) done by the gas 

during process =p f (v) . (2) STH (q) to the gas during process =T f (s) , 

=c f (T) , or =c f (t) . In addition to replacing: 

 
1) When discussing (p_v) diagram: 

• y by the absolute pressure p of the gas, 
• x by the specific volume v of the gas. 

2) When discussing (T_s) diagram: 
• y by the absolute temperature T of the gas, 
• x by the specific entropy s of the gas. 
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3) When discussing c_T or c_t diagram: 
• y by the SH c of the gas, 
• x by the temperature T with c_T diagram or t with c_t one. 

 
Thus, we obtain the following. 

HD3-2: The stationary point (graphical thermodynamics) is the point 
on a process path (curve) at which the tangent is either horizontal or 
vertical. If the tangent at the stationary point intersects the curve at the 
same stationary point, then the stationary point is an inflection point 
(a point of inflection), else, it is a turning point. 
 

According to the relative position between curve’s part that includes 
a turning point and its tangent the turning point can be: 

 
1) Function’s maximum (e.g., T-maximum in T_s diagram) if the Part 

of the Process Path Including It (PPPII) lies under its horizontal 
tangent. 

2) Function’s minimum (e.g., T-minimum) if PPPII lies above its hori-
zontal tangent. 

3) Variable’s maximum (e.g., s-maximum) if PPPII lies rightward its 
vertical tangent. 

4) Variable’s minimum (e.g., s-minimum) if PPPII lies leftward its 
vertical tangent. 

 
If the process path includes some vertical and/or horizontal straight 

parts, then these parts are stationary parts and each of them can be (1) 
function’s flat maximum (e.g., p-flat-maximum in p_v graph), (2) func-
tion’s flat minimum (e.g., p-flat-maximum), (3) variable’s flat maximum 
(e.g.,  v-flat maximum), (4) variable’s flat minimum (e.g., v-flat-minimum), 
(5) function’s flat inversion (e.g., C-flat-inversion in c_T or c_t diagram), 
and (6) variable’s flat inversion (e.g., t-flat-inversion). 

 

Figure 3.4. The two figures represented here do not belong to the same process 
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OD3-4: (Developed from Nt1-15): In the following paragraphs and 
through subfigures (I and II) of Figure 3.4 we shall discuss T_s, c_T, 
c_t, and p_v diagrams at the same time. Such group discussion  
requires, to be fulfilled, knowing in advance the algebraic sign of the 
ordinate of each of the coordinate systems under discussion. This 
means that we need to know in advance the algebraic signs of T, c, and 
p. T and p are always positive, because they are the absolute tempera-
ture and pressure respectively (see Nt2-6B and Nt2-6A), whereas the 
algebraic sign of c for gases depends on the process and can be positive 
or negative (Nt3-1 and equations 3-5).  
 

Processes characterized by: 
1) ≥ds 0 , = ≥dT dt 0 , and d 0≥v  are called entropy-increasing, 

temperature-increasing and expansion (specific-volume-increasing) 
processes, respectively. They are abbreviated as s-increasing,  
(T or t)-increasing, and v-increasing processes, respectively. These 
processes consist of at least one >(ds 0) , = >(dT dt 0) , or 

>(dv 0)  process with some/without any differential/integral con-

stant (s, t, or v) processes, but they do not contain (include) any dif-
ferential/integral (s, t, or v)-decreasing processes. 

2) ds 0,≤  dT dt 0,= ≤  and ≤dv 0  are called entropy-decreasing, 

temperature-decreasing and compression (specific-volume-
decreasing) processes, respectively. They are abbreviated as  
s-decreasing, (T or t)-decreasing, and v-decreasing (compression) 
processes, respectively. These processes consist of at least one 
( 0)<ds , ( 0)= <dT dt , or ( 0)<dv  process with some/without 

any differential/integral constant (s, t, or v) processes, but they do 
not contain (include) any differential/Integral (s, t, or v)-increasing 
processes. 

3) ds = 0 in T_s diagram, dT = dt = 0 in c_T (or c_t) diagram, or dv = 0 
in p_v diagram can be either the vertical straight parts of the process 
(variable flat maximums, minimums, or inversions “see HD3-2”) or 
the process points at which the tangent of the process is parallel to 
the vertical axis (variable maximums, minimums, or inversions  
“see HD3-2”). 

 

Nt3-6: (Developed from Nt1-16): We shall discuss here/below a com-
mon case state change process that is supposed to be represented in the 
four different property diagrams (T_s, c_T, c_t and p_v) through Figure 
3.4. Such representation results, when done in scale, in three different-
shape paths: one for p_v diagram, another for T_s diagram, and a third 
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one for both c_T and c_t diagrams since T = t + constant (“see Equa-
tions 1-39 and 1-40”). 
 

If, in T_s, c_T, c_t, or p_v diagram, the complete process or its com-
ponents suffer from heterogeneity in the sign of the product T·ds, c·dt (or 
c·dT), or p·dv, then it is preferable to divide the process into main partial 
processes that comply with the purpose of the study and the available data. 

For graphical transferred heat calculations any of T_s, c_T, or c_t di-
agrams can be used. If the available diagram is (1) T_s, then the process is 
divided according to the sign of the product T·ds and (2) c_T or c_t, then 
the process is divided according to the sign of any of the products (c·dt or 
c·dT) since dt = dT and accordingly c·dt = c·dT. 

For graphical boundary work calculations p_v diagram must be available. 
The process here is divided according to the sign of the product p·dv. 

The common/bordering states between the main partial processes are 
(see Figure 3.4) (1) the variable’s turning points (maximum “4, 6, 4' and 6'” 
and minimum “3, 5, 7, 3', 5' and 7'”), (2) points at which the origi-
nal/whole/complete process completely intersects (not coincides or contacts 
with) the variable (mostly horizontal) axis (s, t, or v), see points (a and b), 
and (3) the initial and final points of the original/whole/complete process. 
This division is enough for calculating the main (pure positive, pure negative, 
and total) transferred heats from any of T_s, c_T or c_t diagrams and bounda-
ry works from p_v diagram. On the other hand, additional fourth item should 
be added to do detailed analyses and calculations, which is (4) all common 
points between mono-equation processes constituting the complete process, 
in addition to (5) any point that helps in executing the analysis. Each of the 
partial processes divided according to the above belongs to one of the follow-
ing four categories: 

 

• The first category processes comply with one of the conditions 
(T 0 and ds 0), (c 0 and dT dt 0), or (p 0 and dv 0)≥ ≥ ≥ = ≥ ≥ ≥  

each. Partial curves (a-4), (5-6), (3'-4'), (5'-6'), and (7'-2') belong to 
this category. These processes are located on and over the horizon-
tal axis ( 0)≥T , ( 0)≥c , or ( 0)≥p  and are (s, t, or v)-increasing 

≥(ds 0) , = ≥(dT dt 0) , or ≥(dv 0)  ones. Since ( q T dsδ = ⋅ =  

c dT) c dt⋅ = ⋅  and δ = ⋅( w p dv) , then δ ≥( q 0)  or δ ≥( w 0)  for 

this category. 
• The second category processes comply with the conditions 

(T 0 and ds 0) ( 0 and d d 0), orc T t≥ ≤ ≥ = ≤ (p 0 and dv 0).≥ ≤
Partial curves (4-5), (6-b), (1'-3'), (4'-5'), and (6'-7') belong to this 



THE FIRST LAW OF THERMODYNAMICS • 135 

categroy. These processes are located on and over the horizontal 
axis ( 0)≥T , ( 0)≥c , or ( 0)≥p  and are, (s, t or T, or v)-

decreasing ≤(ds 0) , = ≤(dT dt 0) , or ≤(dv 0)  ones. Since 

δ = ⋅ = ⋅ = ⋅( q T ds c dT c dt)  and δ = ⋅( w p dv) , then δ ≤( q 0)  or 

δ ≤( w 0)  for this category. 

 
The following categories are assigned for processes, which are located 

under diagram’s horizontal axis. Such processes do not exist in T_s and p_v 
diagrams because the absolute temperature and pressure cannot be negative. 
Therefore, the following covers only c_t or c_T diagram. 

 
• The third category processes comply with the conditions 

≤ = ≤c 0 and dT dt 0 . Partial curves (1-3) and (b-7) belong to this 

category. These processes are located on and under the horizontal 
axis ( 0)≤c  and are T- or t-decreasing ( 0)= ≤dT dt  ones. Since

δ = ⋅ = ⋅q c dT c dt , then δ ≥( q 0)  for this category. 

• The fourth category processes comply with the conditions 
0 and d d 0≤ = ≥c T t . Partial curves (3-a) and (7-2) belong to this 

category. These processes are located on and under the horizontal 
axis ≤( 0)c  and are T- or t-increasing = ≥(dT dt 0)  ones. Since 

δ = ⋅ = ⋅( q c dT c dt) , then δ ≤( q 0)  for this category. 
 

Nt3-6A: The only difference between c_T and c_t diagrams for the 
same process/cycle is that its path is located at different distances from 
the vertical axes. 
HD3-3: The monodirectional heat transfer 

= ⋅ ⋅ = ⋅ ⋅ = ⋅  
2 2 2

1 1 1

t T s

t T s
(Q m c dt m c dT T dS)  to the system is that which 

complies with any of the following conditions throughout: 
δ = ⋅ ≥( q T ds 0) , ( 0)δ = ⋅ ≥q c dT , ( q d 0)δ = ⋅ ≥c t , δ = ⋅ ≤( q T ds 0) , 

δ = ⋅ ≤( q c dT 0) , or δ = ⋅ ≤( q c dt 0) . The state change process associ-

ated with monodirectional heat transfer is called the monodirectional 
transferred heat process. And, the monodirectional moving boundary 

work of the system = ⋅
2

1
(W p dV)  is that which complies with any of 

the following conditions throughout: δ = ≥( W pdV 0)  or 

δ = ≤( W pdV 0) . The state change process associated with monodi-

rectional moving boundary work is called the monodirectional 
boundary work process. 
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HD3-4: (Developed from HD1-2): The pure positive transferred heat 

to the system 
2

1
( )δ= ⋅ PP PPQ m q  is that which complies with any of the 

following conditions throughout: ( d d 0)δ = ⋅ = ⋅ = ⋅ ≥PPq T s c T c d . The 

state change process  associated with pure positive transferred heat is 
called the pure positive transferred heat process. And the pure posi-
tive moving boundary work of the system 

= δ = ⋅ δ 
2 2

PP PP PP1 1
(W W m w )  is that which complies with the following 

condition throughout: δ = = ⋅ ≥PP( W pdV m pdV 0) . The state change 

process associated with pure positive moving boundary work is called 
the pure positive boundary work process. 
HD3-5: (Developed from HD1-3): The pure negative transferred heat 

to the system 
2

1
( )= ⋅ δPNe PNeQ m q  is that which complies with any of 

the following conditions throughout: ( d d 0).PNeq T s c T c dδ = ⋅ = ⋅ = ⋅ ≤  

The state change process associated with pure negative transferred 
heat is called the pure negative transferred heat process. And the pure 
negative moving boundary work of the system 

2 2

1 1
( )δ δ= = ⋅ PNe PNe PNeW W m w  is that which complies with the follow-

ing condition throughout: PNe( W pdV 0).δ = ≤  The state change pro-

cess associated with pure negative moving boundary work is called 
the pure negative boundary work process. 
HD3-6: The pure neutral transferred heat to the system 

δ= ⋅ 
2

PNl PNl1
(Q m q )  is that which complies with any of the following 

conditions throughout: δ = ⋅ = ⋅ = ⋅ =PNl( q T ds c dT c dt 0) . The state 

change process associated with pure neutral transferred heat is called 
the pure neutral transferred heat process. Pure neutral heat trans-
ferred heat processes do not affect heat transfer calculations. Also, the 
pure neutral moving boundary work of the system 

δ δ= = ⋅ 
2 2

PNl PNl PNl1 1
(W W m w )  is that which complies with the follow-

ing condition throughout: δ = =PNl( W pdV 0) . The state change pro-

cess associated with pure neutral moving boundary work is called the 
pure neutral boundary work process. Pure neutral moving boundary 
work processes do not affect moving boundary work calculations. 
HD3-7: (Developed from HD1-1): In any of diagrams ( _ ),T s  ( _ ),c T  

( _ ),c t  or ( _ ),p v  the pure positive/negative transferred heat to the 
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system or boundary work is represented by a right-angled trapezoid 
that is based (by its right-angled leg) on the horizontal axis. Its  
other leg (mostly not right-angled and may be not straight) is the par-
tial process, which forms its upper border and is defined by  
one of the following relations: δ = ⋅ = ⋅ = ⋅ ≥( q T ds c dT c dt 0) , 

( q T ds c dT c dt 0),δ = ⋅ = ⋅ = ⋅ ≤  ( w p dv 0),δ = ⋅ ≥  or ( w p dv 0).δ = ⋅ ≤  

The area under 1_2 in Figure 1.3 measures the pure positive trans-
ferred heat to the system. 
OR3-2: The transferred heat to the system in T_s plane is pure positive 
during equilibrium entropy increasing ≥(ds 0)  processes and pure 

negative during equilibrium entropy decreasing ≤(ds 0)  ones. In other 

words, adding heat to the system (gas) during the equilibrium process 
is always accompanied with entropy increasing, and rejecting heat 
from it is accompanied with entropy decreasing. Also, the boundary 
work in p_v plane is pure positive during expansion ≥(dv 0)  process-

es and pure negative during compression ≤(dv 0)  ones. 

HD3-8: (Developed from HD1-4): Process’/cycle’s characteristic 
points in a property diagram (T_s, c_T, c_t, or p_v) are the points: 
 
1) at which the process changes its mathematical expression (equa-

tion). These points are mostly path’s refraction points (points 6, 8, 
and 10 in Figure 3.5). The tangents of the path at both sides of the 
refraction point are not the same slope. 

2) which are its/path’s intersection points with the horizontal axis. 
These points do not exist in T_s and/or p_v diagrams because the 
absolute temperature and pressure cannot be negative and the 
whole process/cycle is always situated above the horizontal axis. 
They can exist only in c_t or c_T diagram. At each of these  
points c changes its sign, while dT = dt does not, and therefore,  
δq = cdT = cdt changes its sign too. Thus, at each intersection 
point between process path in c_T (or c_t) diagram and the hori-
zontal axis T (or t) the process changes the sign of its STH. 

3) which are its/path’s initial and final points. These points do not  
exist in cyclic processes (cycles), and 

4) at which the tangents of the smooth parts of the path are either 
horizontal or vertical. In this book, we shall refer to these points as 
path’s stationary points. 

 
HD3-8A: Process’/cycle’s characteristic isotherm in a T_s diagram is 
the isotherm that passes through any of its characteristic points. 
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HD3-9: Process’/cycle’s semicharacteristic points in a T_s diagram 
are the intersection points between the process/cycle and its character-
istic isotherms that are not process’/cycle’s characteristic points. 
 

 

Figure 3.5. Some cycle’s characteristic points  
in T_s diagram 

HD3-9A: Process’/cycle’s maim part in a T_s diagram is its part that 
extends/is located between its two neighboring characteristic iso-
therms. 
HD3-10: Process’/cycle’s main points in a T_s diagram are both pro-
cess’/cycle’s characteristic points and its semicharacteristic points. 
 

Some distinguished points of a cycle 
In Figure 3.5 some distinguished points of a cycle are illustrated in an 
imaginary T-s diagram. This figure will be our reference to this paragraph.  

Path’s stationary points (1 through 5, 7, 9, and 11) can be either 
function’s stationary points (4, 5, 9, and 11) that belong to horizontal 
tangents and known in Mathematics as “stationary points” or variable’s 
stationary points (1, 2, 3, and 7) that belong to vertical tangents. The 
branches of the function’s stationary points are (1) function’s inflection 
points “9,” (2) function’s turning points “4, 5, and 11,” (2a) function’s 
points of maximum “4” (local and absolute), and (2b) function’s points 
of minimum “5 and 11” (local “5” and absolute “11”). On the other 
hand, the branches of the variable’s stationary points are (3) variable’s 
inflection points “7,” (4) variable’s turning points “1, 2, and 3,” (4a) 
variable’s points of maximum “2” (local “2” and absolute), and (4b) 
variable’s points of minimum “1 and 3” (local “3” and absolute “1”). 

According to (OR3-2), the STH to the system throughout any of the 
subprocesses that resulted from dividing the process/cycle in the property 

 T   

s   

9 

4   

5   
3   
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7   
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10   

8   

6   
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diagram (T_s, c_T, or c_t) with/by all its characteristic points will be  
pure (positive, negative, or neutral), while the boundary work throughout 
any of the subprocesses that resulted from dividing it in p_v with/by all its 
characteristic points will also be pure. 

We shall refer to the lines of constant temperature, pressure,  
volume, and entropy that pass through characteristic points as charac-
teristic isotherms, isobars, isochors, and isentrops, respectively. 

3.1.6 THE DETERMINATION OF THE SPECIFIC HEATS OF 
GASES 

SH capacities were first determined experimentally and then theoretically. 
We shall discuss here only the ideal gas SHs. 

3.1.6.1 The experimental determination of the specific heats of 
ideal gases 

Table 3.1. The experimental function Mcp = f(T) for the carbon monoxide 

T [K] 300 500 700 800 1,500 2,000 

Mcp [kJ/kmol deg] 29.13 29.76 31.10 32.44 34.99 35.96 
 

After conducting tests on each gas for a particular process and obtaining 
the tabular experimental data such as that for the carbon monoxide (see 
Table 3.1), the data are treated analytically and/or graphically. The func-
tions and/or curves extracted from the treatment represent the experi-
mental relation c = f(T) between the ideal gas SH (at constant pressure or 
at constant volume) and temperature. 

The maximum required in thermodynamic calculation exactness for 
highly accurate SH calculations is usually reached, when using the 
equation that resulted from approximating, according to the above  
exactness, the experimental curve c = f(T) or c = f(t). The given data in 
such exact approximation is (1) the experimental function c = f(T) or  
c = f(t) in its tabular or graphical form and (2) the degree of the  
required exactness, while the required is the calculating lowest-degree 
polynomial function that ensures the highly accurate calculations of  
the SHs. This lowest-degree function includes four or five terms whose 
factors must be determined during this approximation. 
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Three samples of equations, existing in western thermodynamic refer-
ences, for highly accurate calculations of the ideal gas constant pressure 
SHs are as follows: 

1)11 
2 3

p0 0 1 2 3c C C C C kJ/kg K

T(Kelvin) /1000

= + θ + θ + θ 


θ = 
 (3-33) 

This is the general form equation for 29 calculating equations be-
longing to 29 different ideal gases. The constants for the steam (H2O) 
are 0C 1.79,=  1C 0.107,=  2C 0.586,=  and 3C 0.20,= −  and for 

air are 0C 1.05,=  1C 0.365,= −  2C 0.85,=  and 3C 0.39.= −  ∗This equation is approximate and is valid from 250 to 1,200 K. 
Non of the 29 tabulated in this table SHs of different gases had 

zero constant term (C0 = 0) 

2)12 
( )

2 3
p

2 3
p

a bT cT dT           or  

[kJ / kmol K ] a bT cT Tc d

c = = + + + 


= = + + + 

p

p

Mc

Mc
 (3-34) 

where T is in K, and cp  in kJ/(kmol K). This is the general form 

equation for 28 calculating equations belonging to 28 different ideal 
gases. The constants for the oxygen (O2) are 25.48,=a  

21.520 10 ,−= ×b  57.155 10 ,−= − ×c  91.312 10 ,−= ×d  maximum er-

ror 1.19%, and minimum error 0.28%. Also, the constants for air are 
28.11,=a  20.1967 10 ,−= ×b  50.4802 10 ,−= ×c  91.966 10 ,−= − ×d  

maximum error 0.72%, and maximum error 0.33%. For both gases 
this equation is valid from 273 to 1,800 K. 

Non of the 28 tabulated in this table SHs of gases had zero 
constant term (a = 0) 

3)13 
p  c

 R
= pMc

MR
2 3 4T T T T= α + β + γ + δ + ε  (3-34a) 

where T is in K, and equations are valid from 300 to 1,000 K. This 
is the general form equation for 12 calculating equations belonging to  
12 different ideal gases. The constants for hydrogen (H2) are 

3.057,α =  32.677 10 ,β −= ⋅  65.810 10 ,γ −= − ⋅  95.521 10 ,δ −= ⋅  

and 121.812 10 ,ε −= − ⋅  and for methane (CH4) are 3.826,α =
33.979 10 ,β −= − ⋅  624.558 10 ,γ −= ⋅  922.733 10 ,δ −= − ⋅  and 

126.963 10 .ε −= ⋅  
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Non of the 12 tabulated in this table SHs of gases had zero 
constant term ( oα = ) 

Nt3-7: The bolded sides in Equations (3-34) and (3-34a) are added by 
the author to clarify their original right sides according to the nomen-
clature of this book.  These equations are not suitable for daily use; 
therefore, they are usually tabulated (see Table 3.1). 
Nt3-7A: The values of the factors/constants of each of Equations (3-
33) through (3-34A) are gas kind dependent (see items 1, 2, and 3); 
therefore, the ideal gas constant pressure SH and its terms, not the first, 
are temperature and gas kind dependent [ p0c f (T and gas kind)= ]. 

Nt3-7B: Although the factors of Equations (3-33) through (3-34A) are 
mostly dimensional ones, only their numerical values are directly given 
in references. They are given either after the given calculating equation 
(see Equations 3-33 through 3-34A) or within it (see Table 3.2). 
Nt3-7C:  As seen, Equations (3-33) and (3-34) are polynomials of the 
third degree (their right sides include four terms each), while Equation 
(3-34A) is a polynomial of the fourth degree (its right side includes five 
terms). 

3.1.6.2 The theoretical determination of the specific heats of ideal 
gases 

The development of morphology helped in the theoretical determination 
of the SH. Important successes were achieved in this direction after an-
nouncing the quantum theory. Using this theory, the following Einstein’s 
equation for determining the ideal gas molar SHs at constant volume was 
derived. This equation gives sufficient accuracy for the temperatures used 
in heat engineering and has the following three forms: 

 

( )
( )

( )
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2
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θ

=

θ ⋅

 −=   

=

=

+ θ = + ⋅  
 

 μ  = +  
  

 +  = + ×   −   

+= +









 (3-35) 
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where MR is the universal gas constant (see §2.5.2), e the basis of the 
natural logarithm, T the absolute temperature of the gas [K], andθ  a func-

tion called the distinctive temperature: 

 h / k hc / kν ωθ = ⋅ =  (3-35a) 

where h is the Planck’s constant h = 6.626 10−34 J sec, k the 
Boltzmann’s constant k = 1.38·10−23 J/deg, ν  the frequency of the 
intramolecular vibrations 1c [sec ]ν ω −= ⋅ , c  the speed of light in 

vacuum 102,998.10 cm/sec=c , ω  the waveform number [cm−1]. It 

is determined by spectroscopy, where the frequency is expressed by 
the waveform number ( ω ) that is interconnected with the ordinary 

frequency ( )ν .  

Also n is the number of degrees of freedom of the rotational movement 
of the molecule: 

For monatomic molecules, ------------------------------ n = 0 
For diatomic and linear multiatomic molecules, -------- n = 2 (3-35b) 
For nonlinear molecules (triatomic and multiatomic), n = 3. 

Also 1n  is the number of degrees of freedom of the translational and 

rotational movements of the molecule (see OD2-16). Since the number of 
degrees of freedom for the translational movement of the molecules equals 
3, 1 3= +n n  and: 

For monatomic molecules, ----------------------------- 1n 3=  

For diatomic and linear multiatomic molecules, ------ 1n 5=  (3-35c) 

For nonlinear molecules (triatomic and multiatomic), 1n 6=  

Also 2n  is the number of degrees of freedom of the intramolecular vi-
brations 2 3 (3 )= − +n m n  and m is the number of atoms in the molecule: 

For monatomic molecules 2 3 1 (3 0) 0= ⋅ − + =n  

For diatomic molecules 2 3 2 (3 2) 1= ⋅ − + =n  

For a particular substance, the spectroscopy determines the values  
of its waveform numbers ( iω ) and the value of 2n . For example, the  

result of the spectroscopy is 1
1 x cm ,ω −=  1

2,3 2 3 y cm ,ω ω ω −= = =  and 
1

4 z cmω −= , which means that four frequencies are measured ( 2 4=n ), of 
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which 2ω  and 3ω  are equal. This leads to determining four distinctive 

temperatures 1θ , 2θ  = 3θ , and 4θ  (see Equation 3-35a) and to the sum in 

Equations (3-35) (see the title of Table 3.2) that equals 1 2 3 4+ + +C C C C  

or 1 2 42+ +C C C . For the result 1ω −= x cm  → 2 1=n  and 1
1ω −= x cm  and 

the mentioned sum is C1. 
The first term of the right side of Equation (3-35) calculates the 

amount of heat spent on increasing the translational and rotational kinetic 
energies of the molecules of 1 kmole of the gas, when it is heated at con-
stant volume by1 C , while the second term calculates the amount of heat 
spent on increasing the intramolecular vibrational kinetic energy of the 
same molecules during the same heating process. 

The second term of the right side of Equation (3-35) is not suitable for 
daily use; therefore, we usually resort to one of the following two solutions: 

 

I) Calculating for once the μ θ= ⋅C R f ( / T )  values versus ,( / T )θ
arranging the tables, publishing them, and using the tables in daily 
calculations (see Table 3.2). The μ θ= ⋅C R f ( / T )  values are 

tabulated and listed in Table 3.2. 
II) Replacing Equation (3-35) by a polynomial equivalent to it so that 

takes the form of relationship (3-33). 
 

In the last paragraph the talk was about the molar SH at constant  
volume and this is enough to calculate all other ideal gas SHs. 

Example 3-1: 

Determine the constant volume SH cv for the nitric oxide NO at tempera-
ture t = 1,600°C, taking into account/consideration the vibrational MKE 
(the kinetic energy of intramolecular vibration) and considering the vibra-
tions harmonic. From the spectroscopy of the gas, it is known that the fre-
quency of vibrations is 11906 cmω −= . 

Compare the obtained SH with/by its tabular value that equals to 

vc 0,940 kJ / ( kg.deg )= . 

Solution: 

For approximately calculating the molar SHs of gases in their ideal states, 
we can use the Einstein’s Equation (3-35). For this purpose (see Equation 
3-35a and its explanation/legend), we calculate the value of the only dis-
tinctive temperature 1( )θ : 

 
34

10
1 1 23

h c 6.62 10
1906 2.998 10 2741K

k 1.38 10
ω

−

−

⋅ ⋅θ = = ⋅ =
⋅
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Then we calculate 1 /θ T  value: 1 / 2741/1873 1.464θ = =T . 

According to this value, we find from Table 3.2 the value of function: 

 1 1C MR f ( / T ) 6.988 kJ / ( kg.deg )θ= ⋅ =  

From this equation, the fourth of Equations (3-35), the second of 
Equations (3-35b), Equation (3-11), and taking in consideration that n2 = 1 
(only one 11906 cmω −=  resulted from the spectroscopy), we calculate the 

required SH: v
v

Mc 1 3 2
c .8.314 6.988 0.926 kJ / (kg.K)

M 30.00 2

+ = = + = 
 

 

Mismatching with tabular values Δ = − =v

kJ
c 0.940 0.926 0.014

kg.K
 

constitutes 1.5%. Its explanation is that Einstein’s equation does not take 
into account the lack of compatibility between the vibrational, rotational, 
and electronic energies. 

 
Nt3-7D:  In this book, we shall encode the first five terms of the poly-
nomial as a, b, d, e, and g (c and f are excluded to avoid the confusion 
with the symbols of the SH and function). 

3.1.7 CALCULATING THE TRANSFERRED HEAT DURING 
PHYSICAL IDEAL GAS STATE CHANGE PROCESSES 

To calculate the STH during a physical ideal gas state change process us-
ing any of the Equations of Group (3-7), we need to know the expression 
of the SH during that process. As seen in/from Equation (3-10), the trans-
ferred heat can be calculated through any of the three different forms of 
the SH (c, Mc, and c') that belong to the same ideal gas state change pro-
cess under consideration. Also, as we shall see later (see Equations 3-56 
and 3-57), this same transferred heat can be calculated through the in-
ternal energy and/or enthalpy changes (Δu and Δh), which means that 
the same calculations can be additionally done through any form of the 
constant pressure and/or constant volume SHs (cp, Mcp, c'p, cv, Mcv, and 
c'v). Thus, to calculate the ideal gas transferred heat the expression of any 
of the temperature functions (u, h, c, Mc, c', cp, Mcp, c'p, cv, Mcv, and c'v) is 
needed, and can be given analytically similar to Equations (3-34), graph-
ically through a curve like curve (a-1-2) in Figure 1-3 or tabular through a 
table like in paragraph (3-1-6-1). Earlier (see §3.1.3) we highlighted on 
the graphical calculations; therefore, we will be interested here in the 
analytical and tabular calculations of the transferred heats at constant 
pressure and constant volume. 
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Table 3.2. The values ( ) θ

θθ
−

= ⋅
⋅

/T

/T  2

2 e

(e 1)

kmole
C MR / T

kJ K
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Nt3-8: Since we are mainly interested in ideal gas (see Equations 4-9a 

and 4-11a) = Δ = ⋅
2

1

T

v v0T
q u c dT  or = Δ =  2

1
p p0

tq h c dT
t

, but not in 

2t

v0
( c dt , 

1t

v0
c dt , 

2T

v0
c dT , 

1T

v0
c dT , 

2

ref

T

vT
c dT , 

1

ref

T

vT
c dT , 

2t

p0
c dt , 

1t

p0
c dt , 

2T

p0
c dT , 

1T

p0
c dT , 

2

ref

T

pT
c dT  or 

1

ref

T

pT
c dT ) total (absolute) 

values, then we mostly are not interested in the values of the constant 
lower limits of the last 12 integrals. These lower limits (t = 0, T = 0, or 
Tref) are usually chosen by the authors of the tables of ideal gas proper-
ties of various substances, which usually include the values of a set of 
ideal gas properties against temperature, and among which are u and h. 
Here, Tref can equal the AZ and the units of both upper and lower limits 
of each integral are the same. 
Nt3-8A: Almost all published tables that use the nonlinear relation be-
tween the SH and temperature deal with the isobaric and isochoric pro-
cesses (see the Nt3-1). 

3.1.7.1 The pure analytical calculations of the transferred heat 
during physical ideal gas state change processes 

The highest accuracy in thermodynamics is rarely required (it is required 
for some precise calculations but not for discussions and usual analyses 
and calculations). And it happens sometimes that a distinct accuracy is 
required, while the required calculating equations (see OD2-1A) for such 
calculation are not available. In such cases, we find ourselves obliged to 
execute approximate calculations/solutions that do not require unavailable 
data. That is why we shall discuss here different accuracy calculations. 

The procedure for calculating the transferred heat during physical 
ideal gas state change processes analytically is very simple. Just choose 
the calculating equations, through the available data and references, to be 
used during the calculations, and in case of the absence of calculating er-
rors, you shall sooner or later obtain the required results. Executing this 
simple procedure is not always easy since it depends on the structure of 
the calculating equations to be used. And this structure is required to be 
accuracy dependent. 

Almost all published calculating equations for SHs are polynomial ones: 
 

• Equations (3-33) through (3-34A) are samples of the fourth- or 
third-degree polynomial calculating equations that are used in  
exact calculations of the SHs. 
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• Equation c'p avg = a + b·t/2+ d·t2/3 (see Table 3.3) is an evidence 
that the almost exact polynomial calculating equations of the sec-
ond degree that are used in approximate calculations of the SHs 
exist in some published references. 

• Also, the equations in Table 3.4 are evident that the polynomial 
calculating equations of the first degree that are used in approxi-
mate calculations of the SHs exist in some published references. 

 
If (1) all required calculating equations for obtaining all exactness 

(exact, almost exact, linear approximate, and constant approximate), SHs, 
and STHs for all homogeneous materials were always available, and (2) 
all exactness analytical calculations were consuming the same time, we 
would always use the exact calculations. But since (1) the available refer-
ences never include the required calculating equations for all homogene-
ous materials, and (2) the exact calculations are the most time consuming, 
while the constant approximate SH calculations are the less time consum-
ing, we shall discuss below all possible analytical calculations. 

To avoid misunderstanding or mistakes in such multipurpose/ 
multivariant discussion we first obtain the general form equations of all 
calculating equations to be used in calculating the required dimensions, 
and second we perform these general form equations into calculating ones, 
and only after that we calculate the required dimensions using the ob-
tained calculating equations. 

Let us obtain the multivariant calculating equations for the STH (its 
symbol here will be q). To do this we, using the encoding of this book, 
start from rewriting the general form polynomials of the third and higher 
degrees  that are available in references (see Equations 3-33 and 3-34A): 

 2 3 4
0c a bT dT eT gT= + + + +    and   2 3

0c a bT dT eT= + + +  (3-36) 

where subscript (0) stands for ideal gas. 

We shall refer to each of these equations as the general form of the  
exact (highly accurate) equation for calculating the SH. 

The values of each of the factors/constants (a, b, d, e, and g) vary from 
one gas to another, from one process to another, from one unit quantity to 
another, from one temperature scale to another, and from one polynomial 
degree to another. 
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The lower exactness from the group of equations (3-36) are: 

• The general form of the calculating equations of the almost ex-
act (accurate) SHs: 

 2
0 = + +c a bT dT   (3-36') 

• The general form of the calculating equations of the moderately 
accurate SHs: 

 0c a bT= +   (3-36") 

• The general form of the calculating equations of the less accu-
rate SHs: 

 0 =c a   (3-36'") 

Applying the first of Equations (3-36) in the second of Equations  
(3-7), we, after performing, obtain the general form equation of the cal-
culating equations of the exact (high accurate) STH:  

 ( )2 22

1 1 1

T TT 2 3 4
0T T T

q q c dT a bT dT eT gT dT= = ⋅ = + + + + ⋅                  or 

   ( )2

1

2 2 3 3 4 4 5 5
T 2 1 2 1 2 1 2 1

2 1T

T T T T T T T T
q q a T T b d e g

2 3 4 5

− − − −
= = − + + + +  

 (3-37) 

From this equation we obtain: 
 

• The general form equation of the calculating equations of the 
almost exact (accurate) STHs: 

 ( )2

1

2 2 3 3
T 2 1 2 1

2 1T

T T T T
q q a T T b d

2 3

− −
= = ⋅ − + ⋅ + ⋅  (3-37') 

• The general form equation of the moderately accurate calculat-
ing equations of the STHs:  

 ( )2

1

T 2 2
2 1 2 1T

q q a T T b (T T ) / 2= = − + ⋅ −  (3-37") 

• The general form equation of the less accurate calculating equa-
tions of STHs:  

 ( )2

1

T

2 1T
q q a T T= = ⋅ −  (3-37"') 



THE FIRST LAW OF THERMODYNAMICS • 149 

Based on any of Equations (3-36) through (3-37"') (e.g., the first of 
Equations 3-36), analytical calculations cannot be done in the absence of 
its calculating equation for the SH or for the STH of the material/ideal gas 
under consideration (e.g., ideal gas steam (IGS)). The only available, in 
this book, completely defined/calculating equation for the exact calcula-
tion of IGS SH is Equation (3-33), whose factors when it is rewritten for 
(T) instead of (θ) are (see the explanation that follows Equation 3-33): 

0 1.79=C , 3
1 0.107 10−= ⋅C , 6

2 0.586 10 −= ⋅C , and 9
3 0.20 10 .C −= − ⋅  

Therefore, for the case, when this book is the only available reference, the 
exact equations for calculating the IGS constant pressure molar SH and 
the molar STH at constant pressure are: 

( )

( )

IGS

2

IGS
1

exact 2 3

p

2 2 3 3 4 4
T

exact 2 1 2 1 2 1

p 2 1
T

3

0 1

6 9

2 3

Mc [kJ/(kmol K)] a bT dT eT and

T T T T T TkJ
Mq a T T b d e

kmol 2 3 4

where see the above : 1.79, 0.107 10 ,

0.586 10 and 0.20 10, .

−

− −

⋅ = + + +

− − −
= − + + +

= = = = ⋅

= = ⋅ = = − ⋅



 
   




a C b C

d C e C

  (3-38) 

The other form of Equations (3-38) is the two equations (3-38') and 
(3-38"): 

−

− −

⋅ = + ⋅ ⋅ +

+ ⋅ ⋅ − ⋅ ⋅
IGS

exact 6
p

9 2 10 3

Mc [kJ/(kmol K)] 1.79 107 10 T

586 10 T 2 10 T  (3-38') 

and 

( ) −

− −

−  = − + ⋅ ⋅ +  
− −

+ ⋅ ⋅ − ⋅ ⋅

2

IGS
1

2 2T
exact 6 2 1
p 2 1

T

3 3 4 4
9 102 1 2 1

T TkJ
Mq 1.79 T T 107 10

kmol 2

T T T T
586 10 2 10

3 4
 (3-38'') 

If these exact equations do not suite some persons because of their large 
time consumption, especially when good calculating instrumentation is 
absent, then they (these persons)) can reduce the calculating time con-
sumption on the expense of calculating exactness by moving to other cal-
culating equations of less exactness if the new calculating equations to be 
used or their factors are directly or indirectly available in available refer-
ences (e.g., the calculating equations of the ideal gas steam constant pres-
sure/volume moderate accuracy SHs are indirectly available in this book 
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as 
avgpc 1.833 0.0003111 t,= +  

avgvc 1.3716 0.0003111 t= + , … and can be 

obtained from Table 3.4. The first of them is 

IGS
p

c [kJ / (kg C)] 1.833 2 0.0003111 t⋅ ≈ + ⋅  and the numerical values/parts 

of its factors are 1.833=a  and 2 0.0003111= ⋅b  “see Equations 1-33, 

3-36", 3-44 and 3-45”). The just explained way for reducing the calculat-
ing time consumption on the expense of calculating exactness is the best 
between the other existing ways (see the following paragraph). 

 

Figure 3.6. The experimental SH curve (A_B_C),  
its linear (3_4), and c=constant (line 1_2)  
approximations.  

3.1.7.2 About the bad effect of abbreviating the calculating 
equations by cutting off their higher-degree terms 

Simplifying the expression of the SH, by getting rid of its last term, causes 
losses in the accuracy of calculating each of the SH and the STH. These 
losses are usually minimized by optimizing the values of the fac-
tors/constants of the abbreviated equation/expression to reach its best ap-
proximation to the experimental curve. Applying such optimization on 
Equation (3-36") leads to the same exactness of the equations of Table 3.4 
that is the best approximation to the experimental curve reached by a line-
ar equation (see line 3–4 in Figure 3.6). And we shall refer to it as the best 
linear approximation to the experimental curve. Also, we shall refer to 
the other polynomials that best approximate the experimental curve as the 
best second-degree polynomial approximation to the experimental curve, 
best third-degree polynomial approximation to the experimental  
curve, best fourth-degree polynomial approximation to the experimental 
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curve, and so on.  As stated above, any of the best fourth- and higher-
degree polynomial approximation to the experimental curve is considered 
an exact equation of the experimental curve and the lowest (fourth) degree 
is the less time consuming and the most appropriate for exact thermody-
namic calculations. 

To illustrate the loss of accuracy caused by simplifying the expression 
of the SH we drive Figure 3.6. To simplify this discussion that is qualita-
tive, suppose that the experimental curve is a quadratic one  

2
0[c a bT dT ]= + + , not Equation (3-36); this means that almost all exper-

imental points lie on curve (A–B–D) or near it. 
 

The other four lines are: 
• (3–4) that is considered the best linear approximation to the exper-

imental curve, 
• (1–2) is considered the best c = constant approximation to it, 
• (A–E) that is defined by the equation (c = a + bt) and is the abbre-

viation of the mentioned quadratic equation after excluding its 
third term, and 

• (A–F) that is defined by the equation (c = a) that is the abbrevia-
tion of the same quadratic equation after excluding all its second 
and third terms. 
 

As is obvious from the illustration the best calculating accuracy is as-
sumed to be reached with the quadratic equation. Concerning the linear 
approximation, line (3–4) is much closer to the experimental line than line 
(A–E) and for the c = constant approximation, line (1–2) is much closer to 
the experimental line than line (A–F). This means that the sole abbrevia-
tion of the expression of the SH, by only getting rid of its last term, 
causes losses in the accuracy of calculating each of the SH and the STH 
that exceed the minimum unavoidable ones; therefore, it is necessary to 
optimize/change the values of the factors/constants of the abbreviated 
equations to reach their best approximation to the experimental curve. 
And that is why the values of constant (a), which is the ordinate (the c-
coordinate) of the intersection point of c = f(t) line with c-axis, is not the 
same in the different (nonlinear (quadratic), linear, and temperature-
independent) approximations/equations of the same SH (see points A, 3, 
and 1 in Figure 3.6). Also, constant (b), which is the slope of c = f(t) line 
at its intersection point with c-axis, is not the same in the mentioned non-
linear and inclined linear types of approximations/equations. 
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3.1.7.3 Some additional analyses on Equations (3-36) 

Several mathematical ways can be used to calculate analytically the STH 
expressed by Equations (3-7). These ways are expressed by the following 
multiequation: 

2 2 12 2

1 1 1

2 2 1

1 ref ref

t t tt T

avg 2 1t T t 0 0

T T T

avg 2 avg 1 T T T

avg 2 1 avg 2 ref avg 1 ref

q q c dt c dt c dt c (t t )

c (t 0) c (t 0) c dT c dT c dT

c (T T ) c (T T ) c (T T )

= = ⋅ = ⋅ − ⋅ = ⋅ −

= ⋅ − − ⋅ − = ⋅ = ⋅ − ⋅

= ⋅ − = ⋅ − − ⋅ −

  

  
 (3-38''') 

from which we obtain: 

⋅⋅ ⋅⋅
= = = =

Δ Δ −

= ⋅ − ⋅ = ⋅ − − ⋅ −

= ⋅ − ⋅ = ⋅ − − ⋅ −

 

 

 

2 2

ref1 1

2 12 2

1 1

2 12 2

1 1

Tt Tt

Tt T0

avg avg avg avg

ref

T TT T

avg 2 avg 1T T0 0

t tt t

avg 2 avg 1t t0 0

c dTc dt c dTc dt
c ; c ; c ; c ;

t t T T T

q c dT c dT ; q c (T 0) c (T 0);

q c dt c dt or q c (t 0) c (t 0)

   (3-39) 

In Equations (3-38'" and 3-39), any pair of temperature scales (the 
Rankine–Fahrenheit or the Kelvin–Celsius) can be used. Here no re-
strictions on Tref that can equal the AZ (Tref = the AZ was used in the last 
of Equations 3-39). Noting that the temperature scale used in the expres-
sions of the SHs (see Equations 3-7) is rather of the duty of reference’s 
creator than of table’s user, which means that we as users must be ready 
for the calculations using any temperature scale. From now on we shall 
use the relative temperature scale but do not forget that you can transfer to 
the absolute scale whenever you want. Substituting the value of c0 (index 
0 stands for ideal gas) from the first of Equations (3-36) in the first of 

Equations (3-7) we obtain the equation 
2

1

t 2

t
q (a bt et ) dt= + + ⋅  that per-

forms after integrating into: 

 
22

1 1

2 2 3 3
tt 2 1 2 1

2 1 avg 2 1t t

t t t t
q c dt a(t t ) b e c (t t )

2 3

− −
= ⋅ = − + + = −  (3-40) 

where    2 2
avg 2 1 2 1 2 1 2 1c q / (t t ) a (b / 2)(t t ) (e / 3)(t t t t )= − = + + + + +  

Noting that 

 2 2 1

1

t t t

t 0 0
q q q= −  (3-41) 
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Table 3.3. The average volumetric SHs (the nonlinear relationship) at 

constant pressure 2
pavg

b e
c ' a t t

2 3
= + ⋅ + ⋅  2 

kcal/(m3 deg) kJ/(m3 deg) 
H2O Air O2 N2 CO2 H2O Air 

0.3569 0.3098 1.306 1.295 1.600 1.494 1.297 
0.3595 0.3106 1.318 1.296 1.700 1.505 1.300 
0.3636 0.3122 1.335 1.300 1.787 1.522 1.307 
0.3684 0.3146 1.356 1.307 1.863 1.542 1.317 
0.3739 0.3174 1.378 1.316 1.930 1.565 1.329 
0.3797 0.3207 1.398 1.328 1.989 1.590 1.343 
0.3857 0.3240 1.417 1.340 2.041 1.615 1.357 
0.3920 0.3274 1.434 1.354 2.088 1.641 1.371 
0.3984 0.3306 1.450 1.367 2.131 1.668 1.384 
0.4050 0.3338 1.465 1.380 2.169 1.696 1.398 
0.4115 0.3367 1.478 1.392 2.204 1.723 1.410 
0.4180 0.3395 1.489 1.403 2.235 1.750 1.421 
0.4244 0.3422 1.501 1.414 2.264 1.777 1.433 
0.4306 0.3447 1.511 1.425 1.290 1.803 1.443 
0.4366 0.3470 1.529 1.435 2.314 1.828 1.453 
0.4425 0.3492 1.529 1.444 2.335 1.853 1.462 

and that 2t

0
q  and 

1t

avg 0
c  can be obtained from 2

1

t

t
q  and  

2

1
avg

t

t
c  by re-

placing (t1) by zero and that 1t

0
q  and 

1t

avg 0
c  can be obtained from 2

0

t
q  and 

2

avg 0

t
c  by replacing (t2) by (t1) and thus: 

 

22

2

11

1

tt 2 3
2 2 2 avg 20 0

t 2
avg 2 2 20

tt 2 3
1 1 1 avg 10 0

t 2
avg 1 1 10

tt 2 3
avg0 0

t

avg 0

b e
q c dt at t t c (t 0);

2 3
b e

c q / (t 0) a t t ;
2 3

b e
q c dt at t t c t ;

2 3
b e

c q / (t 0) a t t
2 3

b e
q c dt at t t c t;

2 3

And c q / (t 0) a

= ⋅ = + ⋅ + ⋅ = ⋅ −

= − = + ⋅ + ⋅

= ⋅ = + ⋅ + ⋅ = ⋅

= − = + ⋅ + ⋅

= ⋅ = + ⋅ + ⋅ = ⋅

= − =






2b e

t t
2 3
















+ ⋅ + ⋅


 (3-42) 
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Nt3-9: The symbols of the average SHs (cavg) in Equations (3-38'") 
through (3-42) are free from temperature limits because these limits (of 
dimension c or cavg), in all these equations, are somehow defined (either 
by multiplying cavg by (t2 − t1) or by the other terms of the equation). 
 

Using any of multiequations (3-40) or (3-42) means that we are exe-
cuting the almost exact analytical calculation of the STH (the exact calcu-
lation could be done if we used in the analysis of the transferred heat any 
of the more exact Equations (3-33) through (3-34). Such exact calculation 
will be more time-consuming). Multiequations (3-40) and (3-42) are of 
the same time consumption and exactness and are not suitable for daily 
use. From the above we conclude the following: 

 

Nt3-10: Multiequation (3-40) is difficult for tabulating because each of 
2

1

t

t
q  and 

2

1
avg

t

t
c  is a function of the two variables t1 and t2. But multiequa-

tions (3-42) are easy for tabulating since (1) each of 1

0

t
q  and 

1

avg 0

t
c  is a 

function of the only variable t1 and (2) each of 2

0

t
q  and 

2

avg 0

t
c  is a function 

of the only variable t2. What we can meet in one table is either 
0

t
q  or 

avg 0

t
c  because we can obtain from the column of 

0

t
q  each of 1

0

t
q  and 2

0

t
q

and from the column of avg 0

t
c  we can obtain each of 

1

avg 0

t
c  and 

2

avg 0

t
c . 

The tables of 
t

avg 0
c f (t)=  are organized/created on the basis of the first 

and third sides of the sixth multiequation 3-42 and are called the tables of 
the average SH within the temperature interval from 0 C  up to “t” (the 

nonlinear function). Each table is allocated for one specific gas, and it may 
happen that one table is allocated for more than one gas (Tables 3.3 and 3.4 
are allocated for five gases and for two unit systems each). 

The availability of tabular function avg 0
( )=

t
c f t much eases the exact 

calculations of the STH (q), when the given data (t1 and t2) and the sixth  
of Equations (3-39) are used. But it complicates the exact calculations, when 
one of the given data is q because the substitution of the given data in the 

sixth of Equations (3-39) determines one of the expressions 
2

20
(

t

avgc t⋅  or 

1

10
( ),

t

avgc t⋅  which requires applying time-consuming approximating meth-

ods such as  the successive approximation method (see OD3-4A) to deter-
mine the required temperature (t2) through the sixth of Equations (3-39). This 
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disadvantage of the tabular function avg 0
( )=

t
c f t  does not exist in tabular 

function 
t

0
cdt f (t)= . If function 

t

0
cdt f (t)=  is tabulated and its tables are 

available, then the exact calculation will be totally comfortable. And the STH 
is calculated from the fifth of Equations (3-39). 

 
OD3-4A: The successive approximation method is summarized/ 
defined as the calculating method that leads to the required, not abso-
lutely correct answer by repeated attempts so that the input of each  
decided subsequent attempt is the output of the previous attempt. The 
output of each attempt can be a decision about (1) stopping the calcula-
tions due to reaching the required answer, or (2) the value of the input 
of the subsequent attempt. To start the calculations an expected answer 
to the problem can be adopted as the input to/of the first repeated at-
tempt. Obtaining this first input is the duty of the solver and depends 
on his experience. The closer to the correct answer the adopted input to 
the first repeated attempt, the lesser the number of attempts to reach the 
acceptable answer. 
Nt3-11: It is not practical to publish specified tables for each thermo-
dynamic function. The usual procedure is to publish many thermody-
namic functions in one table. Some of these functions do not accept the 
AZ as a lower limit of integration (see the explanation that follows 
Equation 3-27 and Nt3-5A). At this point table’s authors decide (1) 
whether they use one common reference temperature for all tempera-
ture functions or not and what is the value of each reference tempera-
ture, (2) to declare the values of the chosen reference temperatures or 
not. Therefore, the user of tables must use only one table throughout 
the problem calculation. It is obvious that one of Equations (3-38) is 
used to fulfill the calculations. 

3.1.7.4 The tabular calculations of the transferred heat during 
physical ideal gas state change processes 

If a scientific institution obtains the exact calculating equation 
t

0
q f (t)  or 

t

avg 0
c f (t)=  for a particular gas undergoing a particular state change pro-

cess, creates its computer program to calculate the values of 
t

0
q  or 

t

avg 0
c  

versus distinct temperature values, organize the calculated results in a  
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table, and publish it, then we will have the opportunity to obtain from this 

table the value of either 
2

1

t

t
q  or 

2

1
avg

t

t
c  and apply the obtained value in the 

appropriate of the equations: 

 
2 2 1

1

t t t

t 0 0
q q q= −        and       

2 12

1

t tt

avg 2 avg 1t 0 0
q c t c t= ⋅ − ⋅  (3-43) 

Calculations through published tabulated functions are easy and less 
time-consuming and are of the same accuracy of the used tables. The 
equations like (3-33 through 3-34) based on tables are exact ones and tab-
ular calculations using these tables are practically of the same exactness. 

The usual publications of scientific institutions include property ta-
bles for the widely used gases that depend on the constant pressure and/or 
constant volume SHs; therefore, one can find in these tables some of/all 
the functions/dimensions (cp, cv, u, h, sp, sv … ). One can also find but rare-

ly 
avg

t

v
0

c  … 
avg

T

p
0

c . As we shall see later 
0

= t

vu q   and 
0

=
t

ph q  (see Equa-

tions 4-2 and 4-3) and their tables much ease the exact calculations of not 
only qp and qv, but also the exact calculations of the transferred heats dur-
ing any gas state change process (see Equations 3-54 and 3-57). 

3.1.7.5 The almost exact (highly accurate) calculation of the 
transferred heat 

The above leads to: 
 

(A) The exact (highly accurate) calculation of the transferred heat 
can only be done through exact calculating functions (equations, 
tables, and/or graphs). This means that both tables and graphs 
must be created using exact equations and exact creations (the dis-
tance between two neighboring represented points must be small 
and the scale of the graph be large). 

(B) The most practical/convenient way for the exact (highly accu-
rate) calculation of the transferred heat during physical state 
change processes is the tabular one that can only be used in the 

presence of the exact tables of any of the functions (u, h, 
avg 0

t

vc  

…
avg 0

T

pc  ). It is suitable for daily calculations and is the most  

exact and the less time consuming one. 
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(C) The graphical way for the almost exact (accurate) calculation of 
the transferred heat during physical state change processes can 
only be used in the presence of the exact large-scale graphs of 

any of the functions (u, h, 
avg 0

t

vc  … 
avg 0

T

pc  … ). It is less exact 

than the tabular way, almost the same time consumption and 
suitable for daily calculations. 

(D) The exact and quasi-exact pure analytical calculations of the 
transferred heat during a physical state change process that is 
executed by applying the exact and quasi-exact nonlinear rela-
tions between the SHs and temperature are slightly more exact 
than the tabular calculations that apply the same equations but, 
unless they were previously computer programmed, they are 
much more time consuming and accordingly they are not appro-
priate for daily calculations. 

3.1.7.6 The approximate calculations of the transferred heat during 
physical ideal gas state change processes 

For the cases of (1) the available published tables or large-scale exact 
graphs that do not include calculated data for the SHs and STHs of the gas 
under consideration or (2) the absence of the published tables or large-
scale exact graphs that include calculated data for the SHs and STHs 
of/for the gas under consideration, we find ourselves obliged to choose 
from/of the following calculations the approximate one that gives ac-
ceptable results within an acceptable time. 

If the constants of Equations (3-33), (3-34), (3-34A), and (3-36) are 
known for the ideal gas under consideration, while its calculated data for 
the SHs and STHs are absent, then the simplest way to execute the calcu-
lations is to deal with the available one of Equations (3-36) (if both are 
available you can choose any one of them) that allows almost high, mod-
erate, and/or low accuracy calculations: 

3.1.7.6.1 The approximate calculation using the linear specific 
heats = +c a bt  

Replacing e by zero in Equations (3-36), (3-40), and (3-42) we obtain:  

 c a bt= +  (3-44) 
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2

1

2

1

t 2 2
2 1 2 1 avg 2 1t

t

avg 2 1t

q c dt a(t t ) (b / 2)(t t ) c (t t );

c a (b / 2)(t t )

= ⋅ = − + − = ⋅ − 

= + +



 (3-45) 

2 22

11

t tt 2
2 2 avg 2 avg 20 00

tt 2
1 1 avg 1 avg 10 0

b b
q c dt at t c t where c a t

2 2
b b

and q c dt at t c t where c a t
2 2

= ⋅ = + ⋅ = ⋅ = + ⋅ 

= ⋅ = + ⋅ = ⋅ = + ⋅





(3-46) 

It is clear from Equations (3-45) and (3-46) that assuming the  
function C = f(t) linear simplifies the calculations of the transferred heat 
and makes them almost suitable for daily use. In addition, the values of 

avg 0

t
c  and 

0

t
q  are suitable for tabulation and from their tables  

(if available) the values of 
2

avg 0

t
c , 

1

avg 0

t
c , 

2

1
avg

t

t
c , 2

0

t
q , and 1

0

t
q  can be ob-

tained. And such tables exist at least in soviet references. The table of SHs 
in a reference provides either the actual or the average SHs from the zero 
relative temperature scale until “t” (as in Tables 3.3 and 3.4). 

 
It is clear that Equation (3-46) is simple, suitable for daily use, does 

not need to be tabulated, and all that required to calculate the STH is to 
know the values of the constants (a and b) of any of the different SHs  
(c, Mc, c', cp, Mcp, c'p, cv, Mcv, and c'v) for each gas. These values can ei-
ther be given in their own tables or derived from the tables of SHs (the 
nonlinear relationship “see Table 3.3”). It is obvious that to fulfill the cal-
culations, one of Equation (3-38) is used. 

3.1.7.6.2 The approximate (less accurate) calculation using the 
constant specific heats 

For c = constant = a, we obtain from the second of Equations (3-7): 

 

2 2

1 1

t t

2 1t t
c a const q q c dt a (t t )δ= =  = = ⋅ = ⋅ − 

 

From which we obtain: 
⋅ −

= = =
Δ −

2

1

t 2 1
avg t

2 1

a (t t )q
c a

T t t
                      or 

 
2

1

t

avg t
c a const c c a const= =  = = =  (3-46a) 
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Table 3.4. The average SHs for gases (from 0 to 1,500°C)  
and the linear relationship 

The volumetric SH kJ/(m3 K) 
The SH per unit mass 

kJ/(kg.K) 
Gas 

A—Energy unit kilojoules (kJ) 

1.3138 0.0001577' = +
avgp

tc
0.9429 0.0001577' = +

avgv
tc  

0.9203 0.0001065= +
avgp

tc
0.6603 0.0001065= +

avgv
tc

 O2 

1.2799 0.0001107' = +
avgp

tc
0.9089 0.0001107= +

avgv
tc

 
1.024 0.00008855= +

avgp
tc

0.7272 0.00008855= +
avgv

tc
 N2 

1.2866 0.0001201' = +
avgp

tc
0.9157 0.0001201' = +

avgv
tc

 
0.9965 0.00009299= +

avgp
tc

0.7088 0.00009299= +
avgv

tc
 

Dry 
air 

1.4733 0.0002498' = +
avgp

tc
1.1024 0.0002498' = +

avgp
tc

 
1.833 0.0003111= +

avgp
tc

1.3716 0.0003111= +
avgv

tc
 H2O 

1.6990 0.0004798' = +
avgp

tc
1.3281 0.0004798' = +

avgv
tc

 
0.8654 0.0002443= +

avgp
tc

0.6764 0.0002443= +
avgv

tc
 CO2 

B—Energy unit kilocalorie (kcal) 

0.3138 0.00003766' = +
avgp

tc
0.2252 0.00003766' = +

avgv
tc

 

0.2198 0.00002544= +
avgp

tc
 

0.1577 0.00002544= +
avgv

tc
 O2 

0.3057 0.00002643' = +
avgp

tc
0.2171 0.00002643' = +

avgv
tc  

0.2446 0.00002115= +
avgp

tc
0.1737 0.00002115= +

avgv
tc

 N2 

0.3073 0.00002869' = +
avgp

tc
0.2187 0.00002869' = +

avgv
tc

 

0.2378 0.00002221= +
avgp

tc
 

0.1693 0.00002221= +
avgv

tc
 

Dry 
air 

0.3519 0.00005967' = +
avgp

tc
0.2633 0.00005967' = +

avgv
tc  

0.4379 0.0000743= +
avgp

tc
0.3276 0.0000743= +

avgv
tc  

H2O 

0.4058 0.0001146' = +
avgp

tc
0.3172 0.0001146' = +

avgv
tc  

0.2067 0.00005836= +
avgp

tc
 

0.1616 0.00005836= +
avgv

tc  
CO2 
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The accuracy of the calculation here is the worst possible, and this is 
evident from Figure 3.6. (The points of line 1–2 are more distant from the 
accurate curved line A–B–D compared with those of line 1–2.) 

The value of the SH can be obtained from the KMT of gases. And its 
equation can be derived from Einstein’s Equation (3-35) by deleting the 
second term of its right side. Thus:  

 v 1Mc n MR / 2= ⋅  (3-47) 

Since the adoption of the SH as temperature independent gives inac-
curate results, auditing the value of MR  in Equation (3-47) is not feasi-

ble; the values of the universal gas constant are considered as: 

 MR 8.3 kJ/(kmol·K ) 2 kcal/(kmol·K )≅ ≅  (3-48) 

Thus, for inaccurate calculations 
MR kJ kcal

4.15 1
2 kmol·K kmol·K

≅ ≅  

and Equation (3-47) becomes: 

 
v 1 1Mc 4.15 n kJ/(kmol·K ) n kcal/(kmol·K )≅ ≅  (3-49) 

Applying Equations (3-48) and (3-49) in Meyer’s equation 

pMc vMc Mc MR= +  (see Equation 4-18a), we obtain: 

 
p 1 1

kJ kcal
Mc (8.3 4.15 n ) (2 n )

kmol·K kmol·K
≅ + ≅ +  (3-49a) 

Equations (3-35c), (3-49), and (3-49a) were used for creating  
Table 3.5. 

The deviations of the molar SHs, listed in Table 3.5, according to the 
KMT from the experimental values are acceptable for the monatomic and 
diatomic gases but they are significant and unacceptable for polyatomic 
gases. These large deviations are explained by the presence of considera-
ble vibrations inside the molecules/particles. If we unelaborately take into 
account the values of intramolecular vibrations, we can use the approxi-
mate experimental values of the constant molar SHs listed in  
Table 3.6: (1) for some particular calculations and discussions, and (2) for 
the case when we find ourselves obliged to consider/assume the constancy 
of the SHs because of/due to the lack of data. 
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Table 3.5. Molar specific heats at constant volume and at constant 
pressure for gases (according to the KMT) 

Gas 
⋅kJ / (kmole K) ⋅kcal / (kmole K)  

Mcp Mcv Mcp Mcv 
Monatomic 20.9 12.6 5 3 
Diatomic and linear polyatomic 29.3 20.9 7 5 
Nonlinear polyatomic 33.5 25.1 8 6 

Table 3.6.  Molar specific heats at constant volume and at constant 
pressure for gases. (The experimental constant specific) 

Gas 
⋅kcal / (kmole K) ⋅kJ / (kmole K)  

Mcp Mcv Mcp Mcv 
Monatomic 5 3 20.9 12.6 
Diatomic and linear polyatomic 7 5 29.3 20.9 
Nonlinear polyatomic 9 7 37.7 29.3 

3.1.7.6.3 About the transferred heat and boundary work signs 

In this book we will adopt the algebraic signs of the calculated by Equa-
tions (3-7) and (2-38) through (2-40) transferred heat to the system and 
produced boundary work by the system as the real signs of these dimen-
sions. Therefore: 
 

OR3-6: The transferred heat to the system (WF) is positive, while the 
transferred heat from the system is negative. 
OR3-7: The produced boundary work by the system (WF) is positive 
during system’s expansion and negative during its compression. 

3.1.8 THE SPECIFIC HEAT OF A MIXTURE 

To calculate the SH of a gas mixture, we usually use, from the following 
three equations, the one that appropriates the given data: 

 

( )
n n

mix k k mix k k
k 1 k 1

n

mix k k
k 1

c (c g ), (Mc) r (Mc)

and c' (c ' r )

= =

=

= × = × 

= × 

 


 (3-50) 
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If calculated SH is not the required one, we apply the suitable of the 
following equations to determine the required answer: 

 mix mix mix mix(Mc) M c 22.41 c '= × = ×     (3-51) 

For example, if the given is the mass composition 

1 2 3 k n
g , g , g , ... g , ... g  and the required is mixture’s molar SH 

mix“(Mc) , ” we first apply the first equation of (3-50) and determine 

mix(c )  then apply the equation mix mix mix(Mc) M c= ×  and determine the 

required mix“(Mc) ”.  

3.2 ABOUT HEAT TRANSFER CALCULATIONS FOR 
CHEMICAL STATE CHANGE PROCESSES OF A 
GAS 

What concerns us here is to calculate the amount of heat produced by the 
combustion of the fuel or the so-called calculation of the thermal effect of 
a chemical reaction. 

Usually, fuel consists of a combination of combustible and incombus-
tible substances. The interaction of each of combustible elements/ 
compounds with Oxygen releases a considerable quantity of heat whereas 
the incombustible substances that are called impurities either do not inter-
act with Oxygen or interact with Oxygen without releasing considerable 
quantities of heat. 

The most important combustible elements are hydrogen 2H , carbon 

C, and sulfur S. 
The equations of the complete combustion of hydrogen in air under 

constant pressure are: 

 
2 2 2 Vapor

1
H O H O 58000 kcal/kmole

2
+ = +

 

 
2 2 2 Liquid

1
H O H O 68300 kcal/kmole

2
+ = +

 

Thus, the heat released by the complete combustion of 1 kmol of hydro-
gen is a function of the polarization state (solid, liquid, or gas) of the resulted 
water, if the formed/resulted water was in the liquid phase, then the released 
heat is 68,300 kcal, and if the resulted water was vapor, then 58,000 kcal of 
heat is released. The difference in the amount of the released heat is the re-
quired amount of heat to convert 1 kmol of water into water vapor. 
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The heat released by the complete combustion of a unit quantity of 
fuel at constant pressure is called the heating (caloric) value of fuel. 
Since the amount of fuel can be measured by kmol, unit mass, or the quan-
tity that occupies, in certain conditions, a unit volume, we distinguish be-
tween a molar heating value ( θM ), a mass heating value (θ ), and a 
volumetric heating value ( 'θ ). The relationships that bind these values to 

each other are: 

'θ θ θ= × = ×nM M Mv  

where nMv  is the volume of one kilomole in the normal conditions. 

Table 3.7: Some higher and lower heating values 

Heating value θProduct Gas 
33.65 MJ/kg 2COC 

141.5 MJ/kg 2 LiquidH O2H

121.42 MJ/kg 
2 SteamH O2H

9 MJ/kg 2SOS 

About 10 MJ/kg CO C 
 
The heating value of fuel can be related to a unit amount of (1) pure 

fuel (superscript p), (2) dry fuel (superscript d) "fuel containing impurities 
and not containing moisture (superscript ") or (3) operative fuel (fuel as it 
enters to the burner (superscript o); it contains impurities and moisture). 

As can be noticed, hydrogen has two heating values: higher (subscript 
H) “when the product of combustion is liquid water” and lower (subscript L) 
“when the result of combustion is water vapor.” As the product of combus-
tion in thermal engineering problems is water vapor, not liquid water, we 
usually deal with the lower heating value of the fuel. 

When the combustion of the carbon is complete the following equa-
tion realizes: 

2 2C O CO 96000 kcal/kmole+ = +  

From the last equation we conclude that carbon has only one heating 
value that is used in combustion equations. 

The combustion interaction of hydrocarbons proceeds according to 
the following equation: 

 
n m 2 2 2

m m
C H n O nCO H O

4 2
θ + + = + + 

   
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And the combustion products contain 2H O ; therefore, this kind of 

fuel has two (higher and lower) heating values, and in heat calculations 
the lower heating value Lθ  is used. 

It should be mentioned here that the heating value of the fuel is a 
function of combustion conditions (does the combustion take place at con-
stant volume or at constant pressure and at which temperature it happens). 
But the calculations that we will execute does not require high accuracy, 
and we will use the heating value of fuel that is given in the text of the 
problem to be solved; if it was not given, we shall use Table 3.7. 

The amount of heat released from the completely burned fuel is calcu-
lated from the relationship: 

 
o o o
L n L LQ m V ' K M= ×θ = ×θ = × θ  

where m is the operative mass of the fuel, o
Lθ  the lower heating value (op-

erative mass) per unit mass, o
L'θ  the lower heating value (operative mass) 

per unit volume, o
LMθ  the lower heating value (operative mass) per 

kmole, and K the number of fuel kmoles. 
The quantity of air required for combustion is calculated as follows: 
The minimum required quantity of oxygen for the complete combus-

tion of fuel 
2O min(m )  (the theoretical oxygen) is determined from the com-

bustion equation, then the minimum required quantity of air for the com-
plete combustion (the stoichiometric or theoretical air) is calculated as 

2O min

a min

(m )
(m )

0.232
= , and after that the required quantity of air for combus-

tion is calculated as: 

min( )α= ⋅a am m , where α  is the coefficient of the excess air. 

3.3 THE ZEROTH LAW OF THERMODYNAMICS 

The zeroth law of thermodynamics states that if two thermodynamic sys-
tems are each in thermal equilibrium with a third, then all three are in 
thermal equilibrium with each other.14 

For long time before 1931, the content of this law was obvious, a 
well-known fact, and a familiar experience. This fact is not derived from 
other laws; therefore, it is a thermodynamic law and it was not adopted in 
science as a law in 1931 (i.e., after announcing the first and second laws 
of thermodynamics), when Ralph H. Fowler was the first to formulate and 
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label it.15 From the scientific point of view Fowler’s law must precede the 
first law of thermodynamics and that is why Fowler’s law was called the 
zeroth law of thermodynamics. The zeroth law of thermodynamics is the 
base of the method of measuring temperature. 

3.4 THE CONSERVATION OF ENERGY PRINCIPLE. 
THE FIRST LAW OF THERMODYNAMICS 

3.4.1 INTRODUCTION 

The first steam machine was created at the end of the eighteenth century 
as a result of Newcomen, Simithson, Polzunove, and James Watt, and thus 
people could transform steam energy into mechanical. The invention of 
this machine, as well as observing the different phenomena such as the 
release of amounts of heat during drilling the barrels of the canons (Rum-
ford), attracted the attention of researchers to thermal phenomena and to 
the relationship between heat and mechanical energy. 

A number of experimental works was conducted that led to determin-
ing the equivalence in the mutual transformations of energy. As a result 
the conservation of energy principle was widely approved and it is now a 
fundamental law in Natural Sciences and has many formulations that share 
the statement: “Energy can be neither created nor destroyed.” One of the 
very long statements is: Energy can be neither created nor destroyed. 
However, energy can change forms, and energy can flow from one place 
to another. The total energy of an isolated system does not change.16 

3.4.2 THE FIRST LAW FORMS 

The most common case form of the first law of thermodynamics that deals 
with all kinds of energy is the formulation stated in the previous paragraph 
for the conservation of energy principle. 

The first law of thermodynamics for thermal and mechanical phe-
nomena can be formulated as follows: In all cases, when the quantity of 
heat disappears, a certain amount of mechanical energy (in the form of 
work performed) appears, and on the contrary, when a work is executed 
(at the expense of spending an equal amount of mechanical energy) a cer-
tain amount of thermal energy appears.17 Therefore: 

 Q W=  (3-52) 
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Here, Q is the heat energy that disappeared and W is the resultant 
work at the expense of mechanical energy that appeared (Q and W here 

have the same energy units, see §1.1.9). 
Recognizing (The verification of) the first law of thermodynamics in 

natural sciences led the absolute majority of inventors to stop trying to con-
struct/create engines that can produce work (mechanical energy) from 
nothing (i.e., engines that can produce energy without consuming any kind 
of energy “such as energy resulted from fuel combustion”). This imaginary 
engine was given the name Perpetuum-Mobile18 of the first kind. 

 
18. Today the Italian Perpetuum Mobile means perpetual-motion ma-

chine. And the following formula for the first law of thermody-
namics was introduced as: 

It is impossible to construct a perpetual-motion machine of the 
first kind. 

Some authors prefer using the original Italian name of the im-
aginary engine and the formula of the first law becomes as follows: 
It is impossible to construct a Perpetuum Mobile of the first kind. 

3.5 THE ANALYTICAL EXPRESSION FOR THE FIRST 
LAW OF THERMODYNAMICS 

The equation of the first law of thermodynamics, as it is in Equation  
(3-52), does not completely describe the energy balance during gas state 
change processes. Generally, these processes proceed with exchanging 
heat between the system (gas) and its surroundings; therefore, we should 
know on which independent phenomena of the process the heat was spent, 
and what is the heat amount spent on each phenomenon. 

Let us consider the gas state change process through this point of 
view. 

Consider 1 kg of gas is located inside  
the piston–cylinder arrangement illustrated in 
Figure 3.7. Let us give to this gas the infinites-
imal quantity of heat ( qδ ) and find what 

changes it does. 
In the common case the gas state will infin-

itesimally change so that almost all independent 
properties of the system will infinitesimally 
change (only one independent property of the 

dq

ds

  

Figure 3.7. Deriving 
Equation (3-53) 
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system may not change). Therefore, we should expect infinitesimal changes 
in system’s pressure (dp), temperature (dT), specific volume (dv), and inter-
nal energy (du). The specific volume change (dv) is caused by the piston 
displacement (ds) that caused the volume change (dV). The specific volume 
change (dv) causes the specific boundary work change (δw ). Thus, because 
of adding the heat energy (δq ) to the system, the system increased its inter-

nal energy by (du) and produced the boundary work (δw ). 
 

Nt3-12: At the time when the first and second laws of thermodynamics 
were recognized many scientists used the terms “raising a load” to ex-
press the work and even the mechanical energy in its broad meaning 
and recognized the internal energy as a thermal/heat one; therefore, the 
traditional derivation of the analytical expression of the first law of 
thermodynamics was as follows. 
 

Since the internal energy of body is a thermal one, then the heat (Q) 
that lost/disappeared during our infinitesimal process equals the difference 
( q duδ − ) between the added heat ( q)δ  and the internal energy in-

crease/change (du), while the appeared work (W) equals wδ . Thus, Equa-

tion (3-52) transforms into:  

 q du wδ − = δ                 or               q du wδ = + δ  (3-53) 

Because of the small size of this book we shall skip the more rigorous 
derivation for Equation (3-53). 

OD3-5: No-heat energies are those kinds of energy, which can fully 
transform to other ones. 
Nt3-13: w in Equation (3-53) carries the meaning of per unit mass me-
chanical energy, because we stipulated that and we can use this equa-
tion for all kinds of phenomena supposing that “W” denotes to all kinds 
of no-heat energies (“see OD3-5”). 

Integrating the differential Equation (3-53) we obtain the per unit 
mass first law: 

 = Δ +q u w  (3-54) 

where q  is the specific transferred to the WF heat during the process, or 

as we call it most often the external heat, Δ = −2 1u u u  the internal energy 

change during the process, and w  the work produced by unit mass of the 

gas during the process. 
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Multiplying both sides by m we obtain: 

 = Δ +Q U W  (3-54a) 

Equations (3-53) and (3-54) are the most common case expressions 
for the first law, because the analytical expression of w is not substituted 
in them yet. 

For those classified as simple closed stationary systems (see OD2-20 
and Nt2-3), which are the main topic of this book, the only kind of the 
mechanical energy in its broad meaning (see Nt3-12) that exists is the 
boundary work. Its defining equation (see Equation 2-37) is: 

 w pdvδ =            or         
2

1 2 1
w p dv− = ⋅  (3-55) 

Substituting this equation in Equation (3-53) we obtain the analytical 
expression for the first law of thermodynamics (for the simple closed sta-
tionary systems) in the following forms: 

 q du pdvδ = +           and        = Δ + 
2

1

v

v
q u pdv  (3-56) 

It must be taken into consideration here that d u  is exact differential 
because u  is a state function, while dw pdv=  and accordingly dq  are 

inexact ones (see the forwarding to Equation 2-13, OR2-7 and the § that 
follows it). 

We can obtain the equation of the first law of thermodynamics for the 
simple closed stationary systems in terms of enthalpy (h) from Equation 
(3-16). 

Substituting u  from Equation (3.17) in Equation (3-56) we obtain the 
first law of thermodynamics for those classified as simple closed station-
ary systems in terms of the enthalpy (h): 

 
δ = − ⋅ + ⋅ δ = − ⋅

= Δ + 
2

1

p

p

q d(h p v) p dv or q dh v dp

and q h vdp
 (3-57) 

3.6 SUMMARY 

(I) The following statement that is written for the SH (c): 

“For real gases, the SH ( )r gc  of a particular gas and a particu-

lar process depends on its temperature and pressure ( , )=r gc f t p  
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and with the presence of the equation of state we can write 
( , )=r gc f t v . And for ideal gases, the SH of a particular gas and a 

particular process depends on temperature only 0 ( )= =i gc c f t .” 

It can be rewritten for each of the internal energy (u) and the enthalpy 
( )h u p v= + ⋅  but not for the entropy ( ds q / T c dT / T= δ = ⋅ ), which is a 

function of two other independent intensive properties even for ideal gases. 
 

(II) The following thermodynamic functions: 

“
ref

T

v0T
c dT⋅  (symbol u), 

ref

T

p0T
c dT⋅  (symbol h), 

ref*

T

p0T

dT
c

T  

(symbol sp) and 
ref*

T

v0T

dT
c

T  (symbol sv),” where Tref is an arbitrary 

reference temperature that is constant and can equal the AZ, while 
Tref* is an arbitrary reference temperature that is constant and cannot 

equal the AZ since 
T

p0
0 K 0 R

dT
c

T=
= ±∞    and   

T

v0
0 K 0 R

dT
c

T=
= ±∞  

(see Nt3-5A) 
Are able for tabulation versus T (or t) and they are tabulated for many 

substances. These tabulated functions allow the exact calculations of the 

functions 
2

ref

T

2 v0T
(u c dT,= ⋅  

1

ref

T

1 v0T
u c dT,= ⋅  

2

ref

T

2 p0T
h c dT,= ⋅  

1

ref

T

1 p0T
h c dT,= ⋅  2

2
ref *

T

p p0T

dT
s c ,

T
= ⋅  1

1
ref *

T

p p0T

dT
s c ,

T
= ⋅  2

2
ref *

T

v v0T

dT
s c

T
= ⋅  

and 1

1
ref*

T

v v0T

dT
s c ).

T
= ⋅  In addition to: 

 

• the specific internal energy change Δ = −
tab tabexact 2 1u u u  

• the specific enthalpy change Δ = −
tab tabexact 2 1h h h  

• the exact specific entropy change (see Equation 3-28): 

 ( )
2 1 2 1tab tab tab tab

2 2
2 1 v v p pexact

1 1

v p
s s s s R ln s s R ln

v p
− = − + = − −  (3-58) 

And for the approximate calculation, the SHs are considered constants 
(see Equation 3-29): 
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2 2 2 2
2 1 v0 p0

1 1 1 1

2 2
v0 p0

1 1

T v T p
s s c ln R ln c ln R ln

T v T p

p v
c ln c ln

p v

− ≅ + ≅ −

≅ +  (3-59) 

The exact transferred heats’ calculations can also be done through the 
tabulated thermodynamic functions. For this current level of knowledge 
the transferred heats in the isochoric and isobaric processes equations 

2 1= −vq u u  and   2 1= −pq h h  (see Equations (4-9), (4-9a), and (4-11a) 

can be used. 
In the absence of the tabulated thermodynamic functions and in the 

presence of SHs’ exact equations (such as Equation 3-34), we can use the 
appropriate of these equations with Equation (3-7) for the exact calcula-
tions of the transferred heats. For the approximate calculations simplified 
equations can be used (see §s 3.1.7.6.1 and 3.1.7.6.2). 

The equations of the first law of thermodynamics (see equations 3-56 
and 3-57) are: 

                            δ = + = − ⋅q du pdv dh v dp  

and                          = Δ + = Δ − 
2 2

1 1

v p

v p
q u pdv h vdp                  (3-60) 

make the exact and approximate transferred heats’ calculations possi-
ble through the tabulated thermodynamic functions. 
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CHAPTER 4 

CALCULATIONS OF IDEAL GAS 

PHYSICAL STATE CHANGE 

PROCESSES IN CLOSED 

SYSTEMS (PART I) 

4.1 INTRODUCTION 

The following definitions are used throughout this book and some other 
ones: 

OD4-1: The expansion process (in the broad sense) is defined by  
v2 > v1 and for v2 = v1 by p2 < p1. And, the compression process (in the 
broad sense) is defined by v2 < v1 and for v2 = v1 by p2 > p1. 

4.2 THE SPECIAL CASES OF THE GAS STATE 
CHANGE PROCESSES AND THEIR 
REPRESENTATION ON PROPERTY DIAGRAMS 

Starting from now, we shall deal with the special cases of the gas state 
change processes and their representation on property diagrams, and  
because some of the terms/shortened names are uncommon, we introduce 
them here. 

OD4-2: The shortened names of paths of the special cases of the gas 
state change processes: (1) isochoric (constant volume) is isochore,  
(2) isobaric (constant pressure) is isobar, (3) isothermal (constant tem-
perature) is isotherm, (4) adiabatic is adiabate, (5) isentropic (reversible 
adiabatic or isentropic) is isentrop, and (6) polytropic is polytrope. 
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Figure 4.1. Representing the isochoric process on diagrams. Diagrams  
(A and B) are valid for all cases 

 
In the common case of the gas (simple compressible system) state 

change, we can change two independent properties arbitrarily. In this case, 
the path of the process can have any shape in the plane coordinates. This 
path may be smooth and able for describing by a single simple equation, 
and may not be so. It will be possible to create the paths of the same pro-
cess on other coordinate planes through the given path because we can 
(for a simple compressible system—see OD2-30C and HD2-4), knowing 
two independent intensive properties of each state, find all its remaining 
intensive properties through the relationships that are available in different 
forms (the relationships can have analytical, tabular, or graphical form). 

 

 

Figure 4.2. Representing the isobaric process on diagrams. Diagrams  
(A and B) are valid for all cases 
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Note that it is possible to find the relationship between the specific 
heat and temperature (the law of the process), but this can be difficult 
sometimes. 

If we put some restrictions on some intensive properties or on other 
properties, we get special cases of the gas state change process. In  
Figures 4.1 through 4.4, several special case processes are illustrated on 
several property diagrams. In each diagram a combined/compound process 
(2–1–2'), governed by the same restriction, is illustrated. Points 2 and 2' 
represent the final states of the expansion and compression processes,  
respectively (see OD4-1). 

 
Nt4-1: The constant property line/process is always perpendicular to 
the coordinate axis that is named by the same constant property name 
(see diagrams “A and B” in all four figures). All these diagrams are 
valid for all gases, but diagram (C) of each of Figures 4.1 through 4.4 
is valid for only ideal gases: 
 

 

Figure 4.3. Representing the isothermal process on diagrams. Diagrams  
(A and B) are valid for all cases 

 
1) If we fix the specific volume (i.e., we fix the piston) during the  

process, we get the isochoric (constant volume) gas state change 
process. Its main definition (law) is v = constant (see Figure “4.1”). 
In Figure 4.1C, the straight line 2'–1–2 represents the ideal gas iso-
choric process. It passes through the principle of coordinates, and 
its slope (see Equation 2-14) equals v/R. 

2) If we fix the pressure (i.e., we apply on the piston a constant force 
“F1” that tries to move the unfixed piston toward the head of the 
cylinder) during the process, we get the isobaric (constant pressure) 
gas state change process. Its main definition (law) is p = constant 
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(see Figure “4.2”). In Figure 4.2C, the straight line 2–1–2' repre-
sents the ideal gas isobaric process. It passes through the principle 
of coordinates, and its slope (see Equation 2-14) equals p/R. 

3) If we fix the temperature during the process, we get the isothermal 
(constant temperature) gas state change process. Its main definition 
(law) is T = constant (see Figure “4.3”). In Figure 4.3C, line 2'–1–2, 
which is a hyperbolic isosceles, represents the ideal gas isothermal 
process in p_v diagram. Its equation in this diagram (see the ideal 
gas equation of state “2-14”) is 

constant⋅ = =p v RT  

 

Figure 4.4. Representing the isentropic process on diagrams. Diagrams  
(A and B) are valid for all cases 

 
4) If we prevent heat transfer between the working fluid (WF) and the 

surroundings (i.e., if we thermally isolate the cylinder and piston 
very well), we get the WF adiabatic state change process (at any 
moment of time no heat is exchanged with the “WF”). Thus, the 
definition of the adiabatic process is  

 0qδ =  (4-1) 

From the definitions of the entropy (see Equation 3-21)A and the adi-
abatic process (see Equation 4-1), we obtain ds 0δ = =q T  and because 

0,≠T  then,  

 2 1d 0 or constant or 0= = − =s s s s  (4-1a) 
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A. It was proved that the ideal gas specific entropy is an intensive 
property (see §3.1.2.3.1), and we shall prove later that the specific 
entropy is an intensive property for all gases. 

 
Accordingly, in the equilibrium adiabatic process,B as in other special 

case processes, there is a fixed (restricted) intensive property, which is the 
entropy. Based on Equations (4-1) and (4-1a), the equilibrium adiabatic 
process is called the isentropic process. 

 
B. The process must be equilibrium; otherwise, the WF intensive 

properties cannot be determined. As we shall see later, the WF  
entropy increases during nonequilibrium adiabatic process.  

 
Mathematically, q 0=  does not mean that q 0δ = , because q is the 

algebraic sum of δq  throughout the entire process (e.g., for a process  

“1–3–2”). Where, q = 0 we can write 
3 2

1 3 2 1 3 3 21 3
q q q q q 0δ δ− − − −= + = + =   

from which 1 3 3 2q q− −= − . Therefore, 0=q  cannot be another definition for 

the adiabatic process. 
In Figure 4.4C, line 2'–1–2 represents schematically the ideal gas  

isentropic process in p_v diagram. 

4.3 THE SPECIAL CASES OF THE FIRST LAW OF 
THERMODYNAMICS FOR ANY GAS 

Taking in consideration the title of this chapter, we shall discuss below the 
first law of thermodynamics for the simple closed stationary systems (see 
OD2-30 and OD2-20) exclusively. This means that Equations (3-56) and 
(3-57) are the ones to be discussed below.  

4.3.1 THE FIRST LAW OF THERMODYNAMICS FOR THE 
ISOCHORIC PROCESS 

To obtain the first law of thermodynamics for the isochoric process, 
we index all terms of the first of Equations (3-56) by v and substitute dv 
by zero: 

 ( )v v vv
q du pdv duδ = + =  (4-2) 
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and after integrating from state (1) to state (2) 

 2 1= Δ = −v v v vq u u u  

Applying the third of Equations (3-6) that must be written for the iso-
choric process and for any gas ( dδ =v vq c t ), we obtain 

 v v vq du c dtδ = = ⋅           or         
2

1
v v v

tq u c dt
t

= Δ =             (4-3) 

Equations (4-3) are valid for all gases (during their derivation we did 
not use any equation that belongs exclusively to the ideal gas), and  
because constant=v , the fifth component of Δuv (the change of the poten-

tial energy of the cohesive forces) equals zero, which means that qv (or 
Δuv) is a function of only T1 and T2. 

 
Equations (4-3) can be expressed by any of the following two rules: 

OR4-1: The internal energy change of any gas in the isochoric process 
equals the transferred heat to this gas during this process. 
OR4-2: In the isochoric process, the transferred heat to any gas is 
spent on changing its internal energy. 

4.3.2 THE FIRST LAW OF THERMODYNAMICS FOR THE 
ISOBARIC PROCESS 

To obtain the first law of thermodynamics for the isobaric process, 
we index all terms of the first of Equations (3-56) by p and substitute dp 
by zero: 

 
d ( d )δ = +p p pq u p v

 

and after integrating from state (1) to state (2) 

 p p 2 1 p 2p 2 p 1p 1 pq u [p(v v )] [u (p v ) ] [u (p v ) ]= Δ + − = + ⋅ − + ⋅
 

Applying the third of Equations (3-6) that must be written for the iso-
baric process and for any gas (

p pq c dtδ = ) and the enthalpy definition  

(3-16), we obtain 
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 p p pq dh c dtδ = =     or    2

1
p 2 1 p p p

tq (h h ) h c dt
t

= − = Δ =   (4-4) 

Equations (4-4) are valid for all gases (during their derivation we did 
not use any equation that belongs exclusively to the ideal gas). 

 

OD4-3: In isobaric processes and for any gas, the transferred 
heat to the gas (WF) can be defined as the enthalpy change  
between the final and initial states of the gas. 

4.3.3 THE FIRST LAW OF THERMODYNAMICS FOR THE 
ADIABATIC PROCESS 

The condition of the adiabatic process is q cdT 0δ = =  and because 

dT dt 0= ≠  then c 0.=  Therefore, the first law of thermodynamics for 
the adiabatic process takes the form 

0 du dw du p dv= + = + ⋅             or 

dw du= −            or           1 2w u u= −                    (4-5) 

OD4-4: In the expansion adiabatic process of a gas, the work is pro-
duced on the expense of its internal energy 1 2(u u )−  and vice versa, 

that is, in the compression adiabatic process of a gas, the compression 
work applied by the surroundings on the gas is fully directed to  
increase the gas internal energy and is equal to its change 2 1= −w u u . 

Equations (4-5) are valid for real and ideal processes and for all 
real and ideal gases (during its derivation we did not use any equa-
tion that belongs exclusively to the ideal gas). 

4.3.4 THE FIRST LAW OF THERMODYNAMICS FOR THE 
ISOTHERMAL PROCESS 

None of the terms of the first law of thermodynamics is eliminated 
during the isothermal process; therefore, the first law for the  
isothermal process keeps its original form: 
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         t t t t tq du dw du (pdv)δ = + = +           and           t 2 1 t tq (u u ) w= − +  

These Equations are valid for all gases (during its derivation we did 
not use any equation that belongs exclusively to the ideal gas). 

4.3.5 THE FIRST LAW OF THERMODYNAMICS FOR THE 
CLOSED PROCESS 

As the WF in the closed process (see §2.9.2) returns at the end of the pro-
cess to its initial state, then 2 1u u=  or u 0.Δ =  Therefore, the first law of 

thermodynamics for the closed process (see Equation 3-54) is 

 
q w or Q W where, Q o Q;

W o W; q o q and w o w

= = = δ 


= δ = δ = δ 


  

 (4-6) 

We shall refer to the reversible/internally-reversible cycle as the ideal 
cycle, the heat transferred to its WF as the useful heat (symbol  Q or q ), 

and the work produced by its WF as the useful work (symbol  W or w ). 

The other name of the useful heat is the net heat (symbol net netQ or q ), and 

of the useful work is the network (symbol net netW or w ). On the other hand, 

the path of the closed process is usually a multiequation curve (see HD1-3).  
Taking in consideration the above stated we rewrite Equations  (4-6) 

as follows: 

n

a lg a lg PPs ii 1
cyclecycle

n

a lg a lg PPs ii 1
cyclecycle

W Q o Q Q Q Q

and w q o q q q q

=

=

= = δ = δ = =

= = δ = δ = =

  

  

 

 

 (4-7) 

where PPs stands for partial processes, i

i

Q Q= δ , i

i

q q= δ , i  

(integer number) stands for the sequential number of the monoequation 
partial process of the cycle and n is the total number of these partial pro-
cesses.  

Equations (4-6) and (4-7) are valid for all gases (during its derivation 
we did not use any equation that belongs exclusively to the ideal gas). 

 
From Equation (4-17) and (§3.1.4), we obtain the following: 
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OR4-5: In the cyclic process for any gas, (1) the useful work equals the 
useful heat and, accordingly, (2) in p_v and T_s diagrams, the areas in-
side the same legally created cyclic path and in the same energy units 
are equal. 
 

Thus, q  and w  can be easily calculated as the area inside cycle’s 

curve. 
It is obvious that this cycle must run (must be executed) in a machine 

that excludes all irreversibilities. We will refer to such machine (engine) 
as ideal engine if it is also free from mechanical losses. 

4.4 CALCULATING THE IDEAL GAS INTERNAL 
ENERGY AND ENTHALPY CHANGES 

4.4.1 CALCULATING THE IDEAL GAS INTERNAL ENERGY 
CHANGE 

As the internal energy of an ideal gas—in any process—is a function of 
only temperature (see Equations 3-14), Equations (4-3) take the following 
forms 

 2

1

0 0du dt dtv v v v v v

tq c q u c
t

δ = = = Δ = or  (4-8) 

Applying Equation (3-38"') on the second of Equations (4-8) we  
obtain: 

 

2 2

1 1

2

avg
1

T T

v v 2 1 v v vT T

T

v0 v0 2 1T

q u (u u ) q u

c dT c (T T )

= Δ = − = = Δ

= ⋅ = ⋅ −  (4-8a) 

Calculating 
2

1

t
q C dt

t
=   is discussed comprehensively in Chapter 3 

(see §s 3.1.5 through 3.1.8); therefore, we shall extract from Equation  
(4-8) the following rule: 
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OR4-3: Within any specified temperature interval and in any ideal 
gas state change process the internal energy change equals the 
transferred heat to it in the constant=v  process executed within 
the same specified temperature interval. This means that it was 
unnecessary to indicate/denote the internal energy change in 
Equations (4-8) and (4-8a) by index (v). Thus, 

 v v0q du c dtδ = =             or          = Δ =  2

1
v v0

tq u c dt
t

 (4-9) 

 

= Δ = − = = Δ = ⋅

= ⋅ −


22 2

1 1 1

avg

TT T

v 2 1 v v0T T T

v0 2 1

q u u u q u c dT

c (T T )  (4-9a) 

And for cv = constant: 

 

2

1

2

1

T

v0 v 2 1 v0T

T

v0 v0 2 1T

If c constant q u u u c dT

c dT c (T T )

=  = Δ = − = ⋅

= = ⋅ −



  (4-9b) 

Taking in consideration OR4-3 we obtain from Equations (4-8a), 
(3-13), and (3-46a): 

 
avg

2 1 2 1

v0 2 1 v0 2 1

U U U m (u u ) m u K Mu

m c (T T ) m c (T T )

Δ = − = ⋅ − = ⋅ Δ = ⋅ Δ
= ⋅ ⋅ − ≈ ⋅ ⋅ −  (4-10) 

The specific heat in the right side of this Equation is assumed 
constant. 

4.4.2 CALCULATING THE IDEAL GAS ENTHALPY CHANGE 

As the enthalpy of an ideal gas—in any process—is a function of only 
temperature (see Equations 3-18), we apply them in Equations (4-4) and 
obtain 

 
2

avg
1

p p p0

p 2 1 p p p p0 2 1

q dh c dT or

tq (h h ) h c dT c (T T )
t

δ = = 

= − = Δ = = ⋅ − 

 (4-11) 
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Calculating 
2

1

dttq c
t

=   is discussed comprehensively in Chapter 3 

(see §s 3.1.5 through 3.1.8); therefore, we shall extract from Equation (4-11) 
the following rule: 

 
OR4-4: Within any specified temperature interval and in any ide-
al gas state change process the enthalpy change equals the trans-
ferred heat to it in the constant=p  process executed within the 

same specified temperature interval. This means that it was un-
necessary to indicate/denote the enthalpy change in Equations 
(4-11) by index (p). Thus, 

 
2

avg
1

p p0

p 2 1 p0 p0 2 1

q dh c dT or

tq h h h c dT c (T T )
t

δ = = 

= − = Δ = = ⋅ − 

 (4-11a) 

And for cv0 = constant, which leads to cpo = constant: 

 

2

1

2

1

T

v0 p 2 1 p0T

T

p0 po 2 1T

If c constant q h h h c dT

c dT c (T T )

=  = Δ = − = ⋅

= = ⋅ −



  (4-11b) 

Taking in consideration OR4-4 we obtain from Equations (4-11), 
(3-20), and (3-46a): 

avg

2 1 2 1

p0 2 1 p0 2 1

H H H m (h h ) m h K Mh

c (T T ) m c (T T )

Δ = − = ⋅ − = ⋅ Δ = ⋅ Δ
= ⋅ − ≈ ⋅ ⋅ −

 

The specific heat in the right side of this Equation is assumed 
constant. 

 
Nt4-2: We should remind here that in thermodynamic calculations we 
are much interested in the changes of the internal energy and en-
thalpy, but not in their magnitudes. Therefore, we are not inter-
ested in the principle of the coordinates of the internal energy 
and enthalpy. However, we must always try to use the same 
property table in solving a thermodynamic problem or at least in 
finding a property change. Otherwise, one should exercise cau-
tion and do the necessary to avoid the error that would result  
 



184 • GRAPHICAL THERMODYNAMICS 

from taking the initial and final values of the same property from 
two different tables. Note that the error could happen because of: 
(1) the lack of units’ homogeneity between the two tables, (2) the 
differences in the reference temperature and pressure at which the 
value of the internal energy/enthalpy is chosen to be zero, or (3) both 
former reasons. 

4.5 THE FIRST LAW OF THERMODYNAMICS FOR 
IDEAL GASES 

Taking in consideration (OR4-3 and OR4-4) we obtain from Equa-
tions (4-9) and (4-11a) written for ideal gas: 

 

=  − = 

=  − = 




2

v0 2 1 v01

2

p0 2 1 p01

du c dT u u c dT

and dh c dT h h c dT
 (4-12) 

From Equations (3-6), (3-56), and (4-8), we obtain the differential 
equation of the first law of thermodynamics for ideal gases: 

 
δ = ⋅ + ⋅ = ⋅

− ⋅ + ⋅ =
v0 0

v0 0

q c dT p dv c dT

or (c c ) dT p dv 0
 (4-13) 

where 0c  is a function of temperature, process path, and gas kind (see 

the second of Equations 3-5). Thus, the equation of the first law of ther-
modynamics for ideal gases is 

 

2 2 2

1 1 1

00
dT dv dT

v

t v tq p c
t v tc= ⋅ + ⋅ = ⋅  

 

Also, from Equations (3-6), (3-57), and (4-11), we obtain the other 
form of the differential equation of the first law of thermodynamics for 
ideal gases: 

 0 0dT dp dTpq c v cδ = ⋅ − ⋅ = ⋅  (4-14) 

Thus, the other form of the differential equation of the first law of 
thermodynamics for ideal gases: 
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2 2

1 1

2

0p0
1

t t
q dT v dp c dT

t t
c= ⋅ − ⋅ = ⋅    

Let us try to integrate Equation (4-13) directly. 

Substituting p dv v dp
dT

R

⋅ + ⋅ = 
 

 from Equation (2-16) in Equation 

(4-13) we obtain v0 0 v0 0c c c c R
v dp p dv 0

R R

− − +
⋅ ⋅ + ⋅ =  that performs into 

v0 0

v0 0

c c R dv dp
0

c c v p

− +
⋅ + =

−
 or: 

 
dv dp

n 0,
v p

⋅ + =        where       
0 0

0 0

− +
=

−
v

v

c c R
n

c c  (4-15) 

Unless n = constant, the variables in this equation will not be separat-
ed, and the equation cannot be integrated. For n = constant the undefined 
integral of Equation (4-15) is (n ln v ln p const1 lnconst)⋅ + = =  or: 

 n v0 0

v0 0

c c R
p v const where n const

c c

− +
⋅ = = =

−
 (4-16) 

As we see Equation (4-16) is not for any of the discussed above  
special case state change processes of ideal gases, it is conditioned by 

[( ) / ( )] constant.= − + − + =v vn c c R c c R  The process governed by Equa-

tion (4-16) is called “the polytropic process.” It is comprehensively dis-
cussed in Chapter 6. 

4.5.1 THE FIRST LAW OF THERMODYNAMICS FOR IDEAL GAS 
ISOTHERMAL PROCESS 

For ideal gas isothermal process (dT = 0), we obtain from Equations  
(2-37), (3-24), (4-12), (4-13), and (4-14): 

     Δ = Δ = Δ = Δ =T T t tu h 0 or u h 0  

 T Tq p dv v dp T ds wδ δ= ⋅ = − ⋅ = ⋅ = = Tc dT or⋅  

     T Tq w p dv v dp T dsδ δ= = ⋅ = − ⋅ = ⋅ = Tc dT×  (4-17) 
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 = = ⋅ = − ⋅ = ⋅ =  
2 2 2

T T 1 1 1
q w p dv v dp T ds ×

2

T1
c dT  (4-17a) 

The right sides (product Tc dT⋅  and its integral 
2

T1
c dT⋅ ) of Equa-

tions (4-17 and 4-17a) were scarified/deleted because Tc = ±∞ , dT = dt  

= 0 and accordingly 
Tc dT 0⋅ = ±∞×  and its integral 

2 2

T1 1
c dT 0⋅ = ±∞ ×   

are unknown, which means that they do not define any of Tqδ  or Tq . 

 
From Equation (4-17) and (§3.1.4), we obtain the following: 
 

OR4-6: In the ideal gas isothermal process, (1) the WF produced work 
(wT) equals the heat transferred to the WF (qT) and, accordingly, (2) in 
the ideal gas isothermal expansion process wT and qT are positive and in 
the compression process wT and qT are negative, and (3) in p_v and T_s 
diagrams, the areas under the same legally created isotherm (till the not 
displaced horizontal axes) and in the same energy units are equal. 

4.6 THE MEYER EQUATION 

From Equations (3-17), (4-9), and (4-11a), we obtain 
p0 v0c dt c dt RdT= +  

and because d d=t T  (see the second and fourth of Equations “1-30”), we 
obtain after dividing by dt = dT: 

 p0 v0c c R= +           or          p0 v0c c R− =  (4-18) 

This means that 0pc  and 0vc  are the same type functions consisting of 

the same variable terms and differing only in the constant terms. The con-
stant term of “cp” is greater than that of cv by R. 

Multiplying all terms of Equation (4-18) by the molar mass (M) we 
obtain 

 

p v

kJ kcal
Mc Mc MR 8.314 1.986

Kmole.deg Kmole.deg

kJ kcal
8.3 2

Kmole.deg Kmole.deg

− = = =

≈ ≈  (4-18a) 

Equations (4-18) and (4-18a) are known as Meyer equation. 
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The isentropic exponent (k = cp/cv “also known as the specific heat 
ratio”) is used usually in thermodynamic calculations. For ideal gases (see 
Meyer Equation 4-18 or 4-18a): 

 
p0 p0v0

v0 v0 v0 v0

c Mcc R R
k 1

c c c Mc

+
= = = + =  (4-19) 

For constant=vc , k values are (1) k 1.667=  for monatomic gases, 

(2) k 1.4=  for diatomic gases, and (3) k 1.29=  for tri- and polyatomic 
gases. 

If vMc  is a linear function of temperature, then according to Equation 

(4-18) k is a nonlinear function of temperature. In practical thermodynam-
ic calculations equation: 

 k k tα= − ⋅  (4-20) 

is used. Up to 2000 C , (1) for air and diatomic gases: 1.41=k  and 
655 10α −= ⋅  and (2) for the combustion products: 1.37=k  and 
655 10 .α −= ⋅  

From the first and fourth sides of Equation (4-19) we obtain: 

 0 / ( 1)= −vc R k  (4-21) 

Multiplying by k we obtain 

 0 / ( 1)= ⋅ −pc R k k  (4-22) 

4.7 SUMMARY 

It behooves us in general to study more processes in a chapter entitled 
“calculations of ideal gas physical state change processes in closed sys-
tems” than the state change processes discussed here, and also in more 
details. But the small size of volume (I) of this book, coupled with the 
recently discovered valuable new polytropic process, which requires more 
discussion, has forced us to divide the traditional Chapter 4 into two parts 
(A) the current chapter that includes the first parts of almost all traditional 
processes as Part I and (B) Chapter 6 in volume 2 that comprehensively 
describes the new polytropic process and includes the modern-
ized/improved second parts of part I processes as Part II. 
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As this chapter is very brief, the summary will be a list of the titles of 
chapter’s paragraphs, which are (1) Introduction; (2) the special cases of 
the gas state change processes and their representation on property dia-
grams; (3) the special cases of the first law of thermodynamics for any gas 
(the first law for the isochoric, isobaric, adiabatic, isothermal, and closed 
processes); (4) calculating the ideal gas internal energy and enthalpy 
changes (calculating the ideal gas internal energy change and calculating 
the ideal gas enthalpy change); (5) the first law for ideal gases (the first 
law for ideal gas isothermal process); and (6) the Meyer equation. 

 

 



CHAPTER 5 

THE SECOND LAW OF 

THERMODYNAMICS 

5.1 INTRODUCTION 

The discovery of the conservation of energy principle (the law of the con-
servation and transformation of energy) put, theoretically, an end to the 
attempts for designing a machine that can, without consuming any energy 
from the surroundings, be a continuous source of energy. Such machine 
was named perpetuum mobile (perpetual-motion machine) of the first 
kind. This law is also called the first law of thermodynamics, and it is 
formulated as: It is impossible to construct a perpetuum mobile (perpetu-
al-motion machine) of the first kind. 

The observation of heat machines has shown that the first law of 
thermodynamics cannot give a full explanation for the phenomena of 
thermal energy transformation into mechanical. It is understood from its 
first statement that “if a quantity of heat disappears, a certain amount of 
mechanical energy appears and vice versa.” And this means that the first 
law concerns only in the consequences of the thermal–mechanical 
transformations and does not care about the conditions needed to 
achieve these transformations. And therefore, it does not indicate the 
direction of energy transformation and does not specify the necessary 
conditions to achieve this transformation direction or that. In other 
words, this law does not differentiate between, for example, the transfor-
mation of mechanical energy into thermal and the opposite transfor-
mation—the transformation of heat energy into mechanical. Although the 
numerical relations during the first and second transformations are gov-
erned by the first law, there is a fundamental difference between them. 
The transformation of mechanical energy, like electrical energy and all 
no-heat/thermal kinds of energy, into heat/thermal energy is easy and 
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does not require taking into account any conditions. We can transform 
the entire available amount of mechanical and electric energy into ther-
mal/heat energy: Mechanical energy, for example, transforms into heat by 
friction; electric energy transforms in heating devices, and on the contrary, 
as experience shows, the reverse conversion of heat energy to mechani-
cal in Cyclic Operating heat Engine (COE) performs when certain con-
ditions are taken into account. It is impossible in this engine to transform 
the entire thermal/heat energy available to us into mechanical energy, but 
a part of it remains untransformed into mechanical energy. The long expe-
rience in the use of heat engines and the studies of other heat phenomena 
led to the development of the terms of heat energy transformation into 
mechanical, and these conditions are the essence of the second law of 
thermodynamics. 

5.2 THE OBSERVED PHENOMENA ASSOCIATED 
WITH THE THERMAL–MECHANICAL 
TRANSFORMATIONS 

5.2.1 PHENOMENA ASSOCIATED WITH THE TRANSFORMATION 
OF HEAT ENERGY INTO MECHANICAL ENERGY 

Many natural phenomena and artificial (man-made) ones are associated 
with the transformation of heat energy into mechanical. As we are inter-
ested in this book in artificial phenomena, we will not cite here natural 
phenomena such as the phenomenon of winds. 

The artificial phenomena exist in heat engines. The engine is classi-
cally defined as a machine that produces mechanical energy (work). 

5.2.1.1 Types of heat engines in terms of their ability to operate  
continuously 

In terms of the ability for continuous operating, engines are divided into 
two types: 
 

• The first type is characterized by the ability to operate and produce 
mechanical energy continuously as long as it is not ordered or 
forced to stop, such as in emergency breakdowns. This type of en-
gine operates on a cycle and is called COE. 
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• The second type is characterized by the inability to work and pro-
duce energy continuously. It works for a limited period, or to per-
form a limited stroke, and then cannot continue working even in 
the case of the availability of the energy source and the lack of 
breakdowns. This type of engine does not work cyclically and can 
be named the no-COE. 

5.2.1.2 The cyclic (periodical) operating engine 

The imaginary reciprocating external combustion engine, explained at the 
end of §2.3, is a good example of the COE, in which the piston returns 
each time to its initial position, as well as the working fluid (WF) returns 
to its initial state. This naming must be understood in the sense that the 
machine operates according to frequently repeated process (cycles). The 
design of this machine may not be executed in the form of cylinder–piston 
arrangement. And then, the piston condition (the piston must return to its 
initial position…) can be replaced by another common condition (the con-
tinuous engine’s operation), but the return of the WF to its initial state is 
a prerequisite requirement for whatever engine design. 

What is important in such a COE is the following: at the TDC, the WF 
takes the amount ( 1q ) of heat from the hot gases (the heat source or the hot 

reservoir) that resulted from fuel combustion and rejects the amount ( 2q ) 

of heat to the cooling water (the heat sink or the cold reservoir): The differ-
ence between these quantities ( 1 2q q q− =  ) will no longer exist in the 

form of heat and transforms into mechanical energy, at the expense of 
which the work ( w ) is done. According to the first law of thermodynam-

ics, w q .=   The heat taken from the WF at the BDC is invalid to contin-

ue transforming into mechanical energy because it was taken at the low 
temperature of the WF (at the surroundings temperature), and therefore, it 
cannot be used to obtain work and is considered missing. 

5.2.1.3 The no-COE 

Let us discuss an example about the transformation of heat energy into 
mechanical in the heat engine that does not operate periodically. 

A piston–cylinder arrangement is filled with a gas, and we can consid-
er the gas as a source of heat energy. In this case, it is possible to trans-
form a part of the internal thermal/heat energy of the gas that is located 
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inside the arrangement into mechanical, and this can be done by allowing 
the gas expansion. This machine is a heat engine because it produces the 
mechanical energy and consumes the gas heat. However, its operation is 
limited by the end of piston’s stroke, and hence it is not able to produce 
work constantly, and therefore it is a no-COE. 

Today, the label “heat engine” belongs only to COE, and the engine is 
defined as the machine that can continuously produce mechanical energy 
(work). And more precisely: 

 
OD5-1: The engine is the machine that continuously produces mechanical 
energy from something else. 

5.2.2 PHENOMENA ASSOCIATED WITH THE 
TRANSFORMATION OF MECHANICAL ENERGY INTO 
THERMAL ENERGY 

The observation results show that the transformation of mechanical ener-
gy, like electric energy and all kinds of no-heat/thermal kinds of energy, 
into heat (thermal energy) is easy and does not require taking into account 
any conditions. We can transform the entire amount of mechanical and 
electrical energy available to us into heat/thermal energy (for example, the 
mechanical energy entirely transforms into heat through friction, and elec-
trical energy entirely transforms in heating devices). 

5.2.3 PHENOMENA ASSOCIATED WITH THE HEAT TRANSFER 
WHEN TWO OBJECTS (HOT AND COLD) ARE CONTACTED 

The observation results show that when two objects (hot and cold) come 
into contact, heat transfers from the hotter body to the cooler one, and 
only when the temperatures of the two bodies equalize (when the state of 
thermal equilibrium is accessed), the process of heat transfer stops. 

5.3 THE SECOND LAW OF THERMODYNAMICS 

There are several statements/formulations belonging to the second law of 
thermodynamics, resulted from observing several phenomena. Each 
statement/formulation of the law has resulted from one observed phenom-
enon, and therefore they may not appear to have much connection with 
each other, although they are equivalent. 
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We are primarily interested in the phenomena associated with either 
heat energy transformation into mechanical or heat transfer from one body 
to another. Therefore, we shall introduce the statements belonging to these 
phenomena after reminding that in the past, the mechanical energy was 
expressed as work and before that, the work was expressed as raising a 
weight/load. 

 

A) The many years of experience shows that it is impossible to com-
plete the process of transformation of heat energy into mechanical 
in the COE without the presence of heat reservoirs of at least two 
different temperatures. From this experience, in 1852, Max Planck, 
or maybe both William Thomson (Lord Kelvin) and Max Planck, 
gave a statement for the second law of thermodynamics that is dif-
ferently entitled in different references, slightly different in text but 
with the same meaning in all references. This statement speaks 
about cyclic/continuously operating heat engines, and some of its 
looks are as follows: 
 

1) Max Planck Description Statement: “It is impossible to con-
struct an engine that will work on a complete cycle and pro-
duce no effect except the raising of a weight and the cooling 
of a heat reservoir.”1 

2) Planck’s proposition: “It is impossible to construct an engine 
which will work in a complete cycle, and produce no effect 
except the raising of a weight and cooling of a heat reser-
voir.”2 

3) The Kelvin–Planck statement: “It is impossible to construct a 
device that will operate in a cycle and produce no effect 
other than the raising of a weight and the exchange of heat 
with a single reservoir.”3 

 

As seen from items 1 and 2 above, different references refer 
differently to the same statement to which we shall refer in this 
book as Max Planck Statement. 

Thus, the previous statements/formulations emphasize the im-
possibility of continuously obtaining mechanical energy (lift-
ing/raising a load/weight) in case of the availability of only one 
heat source (single heat reservoir) that is cooled down to transform 
its entire cooling heat into work, although such transformation 
does not contradict any of the thermodynamic laws including the 
first law. 
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B) The second law of thermodynamics formulated by Planck shows 
the futility of the attempts to create an engine that operates con-
stantly when only one heat reservoir is available. Such an engine is 
called perpetuum mobile (perpetual-motion machine) of the  
second type. In this case, the second law of thermodynamics is 
formulated as: It is impossible to construct a perpetuum mobile of 
the second kind.4   

The advantages of the perpetual-motion engine of the second 
type, if it were created, would be of very much importance. This 
kind of imaginary engines can absorb heat energy from sea water 
and transform it completely into mechanical energy. By cooling 
each m3 of water for 1°C or kelvin, it will produce 4,186.8 kJ of 
mechanical energy. 

C) The obtained results from the study of the possibility of transform-
ing heat energy into mechanical in (1) a pot full of gas and located 
on a base, (2) the no-COE (see §5.2.1.2), and (3) a lot of examples 
like them have led William Thomson (Lord Kelvin) in 1851, or 
may be both William Thomson and Max Planck, to formulate the 
second law of thermodynamics that is differently entitled in differ-
ent references, slightly different in text but has, in all references, 
the same meaning. This statement is interested in all heat energy 
transformation into mechanical and some of its looks are as  
follows: 

 
4) William Thomson (Lord Kelvin) statement: “A process, whose 

full effect is limited in cooling a heat reservoir and in equiva-
lent to this cooling, raise of a load, is impossible in nature.”5  

5) Kelvin–Planck statement: “No process is possible whose sole 
result is the absorption of heat from a reservoir and the trans-
form of this heat into work.”6 

 
In this book, we shall refer to this statement as William 

Thomson (Lord Kelvin) statement: 
From this statement/formulation, we conclude that heat 

transformation into work can never be the only result (full ef-
fect) of any process in nature. 

From the two formulations of Planck and Thompson, we 
see that the second law of thermodynamics studies the same 
processes studied by the first law (i.e., studies the processes of 
transforming heat energy into mechanical energy). The first 



THE SECOND LAW OF THERMODYNAMICS • 195 

law of thermodynamics studies the results of the processes if 
they were realized, while the second law studies the conditions 
to be provided to achieve the required processes. 

In contrast to the heat energy transformation process into 
mechanical, the mechanical energy transformation process into 
heat—the opposite of the first (for example, during friction)—
can take place without being associated at the same time with 
any additional process in nature. Such processes that take place 
on their own, without being accompanied by other processes 
“alone,” are called automatic/spontaneous processes (and 
sometimes they are called nonsubstitutable processes). 

Thus, the process of mechanical energy transformation in-
to heat through friction is a spontaneous process, but the re-
verse process or the process of heat energy transformation into 
mechanical is nonspontaneous. 

The second law of thermodynamics that stresses on the 
need to follow certain conditions to be able to transform heat 
energy into mechanical (in the contrary to the reverse process, 
which proceeds, for example, during friction) describes qualita-
tively heat energy and how it differs from mechanical energy. 

In addition to the studied process concerning the heat en-
ergy transformation into mechanical, in nature, there is a huge 
number of processes that take place easily (“alone,” without 
the need for any additional conditions) in one direction and 
cannot be realized alone in the opposite direction. For example, 
the heat transfer process from the hot body to the cold one is of 
this kind. It proceeds (alone) regardless of our wishes, although 
it is impossible for the reverse heat transfer process from the 
cold body to the hot one to be done automatical-
ly/spontaneously. The existence of refrigerating machines con-
vinces us that such a process (heat transfer from the cold body 
to the hot one “base process”) can be carried out if it was asso-
ciated in parallel with a mechanical energy transformation into 
heat process (additional process), that is, it is possible upon 
completion of a mechanical work. 

D) The impossibility of the phenomenon described here without addi-
tional process is the foundation in formulating the following 
statement for/of the second law of thermodynamics: heat cannot 
transfer by itself (automatically/spontaneously) from one body to 
another one that has higher temperature than the first body. 
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This statement was formulated by Clausius (1850). This 
statement must not be understood in only its narrow meaning, that 
is, heat does not transfer from a colder body to a warmer one by 
simple heat transfer, but by its broad meaning, and specifically: 
such heat transfer cannot be completed even by mechanisms if this 
heat transfer were the only result of the process. 

The atomization and diffusion belong to the spontaneous pro-
cesses. 

E) As well as in the heat energy transformation into mechanical pro-
cess, we can say, based on the data of daily observations, that the 
spontaneous reversal of the described processes is impossible. 
These daily observations have led to broader generalization to  
second law of thermodynamics by generalizing it to include all 
processes described here. And then, it can be formulated as fol-
lows: spontaneous/automatic processes are irreversible. 

 
These are the statements of the second law of thermodynamics in 

their experimental shapes, that is, those resulting from observation. It 
should be noted here that generalizing this law, on conditions other than 
those that took place during observation, is ineffective. 

It must be emphasized here that the various statements of the second 
law of thermodynamics do not contradict with each other. 

Finally, we must stress that the requirement/condition to achieve a 
process is not violating any of the first and second laws of thermody-
namics. 

5.4 THE THERMODYNAMIC CYCLE 

A thermodynamic cycle (abbreviation cycle) is a closed state-change pro-
cess (see §2.4.11). The paths of all discussed in thermodynamics till now 
thermodynamic cycles are plane simple curves (see OD1-7).  

Some properties of a reversible/internally reversible cycle are  
(1) cycle’s minimum temperature (Tmin), that, is the minimum tempera-
ture of its WF throughout the cycle; (2) cycle’s maximum temperature 
(Tmax), that is, the minimum temperature of its WF throughout the cycle; 
(3) cycle’s temperature interval, that is, the temperature interval  
between cycle’s minimum temperature (Tmin) and its maximum temperature 
“Tmax” (abbreviation Tmin_Tmax interval); and (4) cycle’s characteristic 
points (see HD3-8). 
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Nt5-1: If we refer to the limited by two neighboring isotherms cycle’s 
area as cycle’s mini-part, then it is obvious for a common case cycle’s 
configuration to meet some continuous mini-parts that consist of one 
elementary area each, whereas the other areas are discontinuous (they 
consist of more than one elementary area each). 
HD5-1: A cycle can be (1) simplest, if it consists of differential contin-
uous mini-parts exclusively (see all subfigures of Figure 5-12), (2) 
simple, if it can be divided into three parts (so that its middle part con-
sists of no more than all cycle’s differential continuous mini-parts) or 
into two parts (so that one of these parts consists of no more than all 
cycle’s differential continuous mini-parts “see Figure 5-2”). We shall 
refer to the cycle or to its part that consists of only continuous differen-
tial continuous mini-parts as the continuous cycle or continuous cy-
cle’s part. Also, we shall refer to the cycle that is no simple and no 
simplest as the complicated cycle. 
 

Simplest cycle’s intermediate parts in T_s diagram located between 
two neighboring characteristic isotherms (see HD3-8A and HD3-8) are 
trapezoids with curved and/or straight legs, while cycle’s extreme parts 
can be either trapezoidal or triangular with curved and/or straight legs. 

It is assumed in the following derivations that the thermodynamic cy-
cle (see §3.1.3 and HD3-1A) is equilibrium/quasi-equilibrium (reversible 
or internally reversible). 

5.4.1 THE DIRECT THERMODYNAMIC (POWER) CYCLE 

The direct thermodynamic (power) cycle (symbol DC) is the cycle, which 
produces mechanical energy. In p_v and T_s A diagrams (see Figure 5-1) 
this direct cycle proceeds clockwise (cycles 1–3–2–5–1 and a–c–b–e–a are 
direct cycles). The specific (per unit mass) B gas (WF) expansion bounda-

ry work throughout the direct cycle ( )expDCw  is measured in p_v graph by 

the area under the expansion process curve 1–3–2, and it is positive 

( )expDCw 0>  because (dv 0)>  as the specific transferred heat to the gas 

(the gained heat) throughout the cycle ( )
DC1q is measured in T_s graph by 

the area under the entropy increasing process curve a–c–b, which is posi-

tive heat ( )
DC1q 0>  because ds 0>  (we remind here that the absolute 

pressure p and temperature T are always positive).  
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A. In §3.1.2.3.1 we already proved that the specific ideal gas entropy 
is an intensive property (see the bolded double underlined in Italics) 
and we justified the legality to deal with ideal gas T_s diagram. 
And we will prove later (see §5.8, Equation 5-56, and OR5-2) that 
the specific entropy is an intensive property for all gases. 

B. q and w are specific dimensions, because s and v used in thieer cal-
culations are specific ones. 

 

Also, the specific gas compression boundary work throughout the same 
cycle ( )compDCw  is measured in p_v graph by the area under the compres-

sion process curve 2–5–1, and it, when calculated by gas work laws Equa-

tion (2-38), is negative work ( )compDCw 0<  because dv 0< , while the 

specific transferred heat from the gas (the rejected heat) throughout the 

cycle ( )
DC2q  is measured in T_s graph by the area under the entropy de-

creasing process curve b–d–a, and it, when calculated by transferred heat 
laws Equation (3-22), is negative heat because ds 0< . 

 

Figure 5.1. Direct and indirect thermodynamic cycles in p_v and T_s diagrams 

 
Thus, the per unit mass gas work (the work done by a unit mass of the 

gas) throughout the cycle 
cycle

w w=   is positive because the positive  

expansion work, as evident from subfigure (A), is greater than the abso-
lute value of the negative compression work. Also, the transferred heat to 
a unit mass of the gas (the specific gained heat) throughout the cycle 

cycle

q q=   is positive because the positive transferred heat to the gas dur-

ing the cycle, as evident from subfigure (B), is greater than the absolute 
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value of the negative transferred heat from the gas (the rejected heat) 
throughout the cycle. The above complies with OR1-12, and in graphical 
solutions and discussions, the area of the cycle in scale is cycle’s (1) per 
unit mass produced work w  in p_v graph and (2) per unit mass trans-

formed into work heat q  in T_s graph. Both are positive because the  

direct cycle precedes clockwise in both T_s and p_v graphs. 
Note that q w=   as is clear from the relationship (4-7). 
As the direct cycle produces work, it is an engine/a power cycle. 

5.4.2 THE REVERSE THERMODYNAMIC CYCLE 

The reverse thermodynamic cycle is the cycle, which produces heat ener-
gy. In p_v and T_s diagrams, this cycle proceeds anticlockwise (cycles 1–
3–2–4–1 and a–c–b–d–a are reverse cycles). Throughout the reverse cycle 
1–3–2–4–1 in p_v graph and a–c–b–d–a in T_s graph, (1) the gas expan-
sion work is 1 3 2 under 1 3 2w A 0− − − −= >  because dv 0> , while the transferred 

heat to the gas is a c b under a c bq A 0− − − −= >  because ds 0> . (2) The gas 
compression work is 2 4 1 under 2 4 1w A 0− − − −= <  because dv 0<  (see Equa-

tion 2-38), while the transferred heat from the gas b d a under b d aq A 0− − − −= <  

because ds 0<  (see equation 3-22). 
Thus, the gas work 

(the work done by the gas) 
throughout the cycle 

cycle

w w=   is negative 

because the positive ex-
pansion work, as evident 
from Figure 5-2, is less 
than the absolute value of 
the negative compression 
work. Also, the transferred 
heat to the gas (the gained 

heat) throughout the cycle 
cycle

q q=   is negative because the positive 

transferred heat to the gas during the cycle, as evident from the same Fig-
ure 5-2, is less than the absolute value of the negative transferred heat 
from the gas (the rejected heat) throughout the cycle. The above complies 
with OR1-12, and in graphical solutions and discussions, the area of the 
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Figure 5.2. The volumetric specific work 
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cycle in scale is cycle’s (1) produced work w  in p_v graph and (2) the 

transformed into work heat q  in T_s graph. Both are negative because 

the reverse cycle proceeds anticlockwise in both T_s and p_v graphs. 
Note that q w=   as is clear from the relationship (4-7). 
As the reverse cycle consumes work, it is not valid for engines. Also, 

in the reverse cycle (1) the rejected heat is greater than that absorbed and 
(2) the heat absorption proceeds at lower temperatures than those at which 
heat rejection proceeds. As we will see later, the heat effect of this cycle 
makes it suitable for use in refrigerating and mechanical heating ma-
chines (heat pumps). 

5.4.3 NOTES ABOUT THERMODYNAMIC CYCLES AND CYCLIC 
OPERATING MACHINES 

From the knowledge delivered through this book till now and the sup-
posed scientific level of the readers, we can summarize, for cyclic operat-
ing machines, the following: 

 

Figure 5.3. A schematic showing all kinds of bodies that can participate 
in executing a thermodynamic cycle.  

    A – a direct cycle                              B – a reverse cycle  

Nt5-1A: The WF is one of the two energy (heat and work) exchanging 
bodies in each energy-exchanging process during the cycle. Therefore, 
when dealing with simple/complicated cyclic operating machines, we 
can mostly analyze the cyclic operating machines and their cycles though 
analyzing the state change process of the WF. Thus, in most cases: 
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• The analytical expressions (equations) of cycle’s path in T_s and 
p_v planes are actually the equations of the state change processes 
of the WF of the machine. 

• The representations of cycle’s path in T_s and p_v diagrams are actu-
ally the paths of the state change processes of the WF of the machine. 

• The calculating equations for work and heat in the machine/cycle 
are actually the same for the WF’s state change processes. 

 

We shall use the fact that the WF participates in all heat transfer pro-
cesses of the cycle to shorten the names of cycle’s heats: 

Nt5-2: Today, the participants in executing a direct or reverse cycle are 
the WF and the other bodies that exchange heat with it during the  
cycle. They are (see Figure 5-3): 

 

(1) Zero or more medium-temperature/side heat reservoir(s)—
abbreviation side Mr(s). Each side MR exports heat to the WF dur-
ing a part of the cycle (The symbol of the sum of these heats during 
a cycle is 

exMQ ), and imports heat from the same WF during anoth-

er part of the same cycle (The symbol of the sum of these heats dur-
ing a cycle is 

imMQ ). Theoretically, it is unnecessary for the heat 

balance of each side MR to be zero, which leads to 
ex imM MQ Q ;=

but, according to former and today’s definitions, for 

ex imM MQ Q 0= ≠  the cycle becomes regenerative (see §5.9.1.3) and 

for 
ex imM MQ Q 0= =  the side MRs will not participate in the cycle 

and the cycle becomes nonregenerative (see §5.9.1.4). As we shall 
see later the participation of at least one side MR (of/with any heat 
balance) in a cycle makes it regenerative (see §5.9.1.3). 

(2) One or more high temperature heat reservoir(s)/MRs—symbol 
(H), and  

(3) One or more low temperature heat reservoir(s)/MRs—symbol (L). 
For the last two MR’s categories the direction of heat transfer de-
pends on cycle’s direction. Thus:  

 

(A) In any direct cycle, the set of high MRs exports heat to the WF 
each time any of its MRs contacts the WF (The symbol of the 
sum of these heats during a cycle is 

exHQ ), whereas the set of 

low MRs imports heat from the WF each time any of its MRs 
contacts the WF (The symbol of the sum of these heats during 
a cycle is 

imHQ ). And 
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(B) In any reverse cycle, the set of high MRs imports heat from the 
WF each time any of its MRs contacts the WF (The symbol of the 
sum of these heats during a cycle is 

imHQ ),  whereas the set of low 

MRs exports heat to the WF each time any of its MRs contacts the 
WF (The symbol of the sum of these heats during a cycle is 

exLQ ).  

As, during a cycle, the sum of the imported to the WF heats 
equals the sum of the exported heats from all MRs that partici-
pate in executing this same cycle, whereas the sum of the ex-
ported from the WF heats equals the sum of the imported heats 
from all MRs that participate in executing this same cycle, we 
can write (see items 1, A and B above and Figure 5-3):  

(C) In any direct cycle (see subfigure A), the WF imports the ex-
ported heats (

exHQ  and 
exMQ ) from the sets of high and side 

MRs and therefore the WF’s imported heat during the cycle 

imWF(Q ) equals 
im ex exWF H MQ Q Q= + , whereas the same WF ex-

ports the imported heats 
imL(Q  and 

imMQ ) to the sets of low 

and side MRs and therefore the WF’s exported heat during the 
cycle (

exWFQ ) is 
ex im imWF L MQ Q Q .= +  Also, in any reverse  

cycle (see subfigure B), the WF exports the imported heats  
(

imHQ  and 
imMQ ) to the sets of high and side MRs and there-

fore the WF’s exported heat during the cycle (
exWFQ ) is 

ex im imWF H MQ Q Q ,= +  whereas the same WF imports the ex-

ported heats (
exLQ  and 

exMQ ) from the sets of low and side 

MRs and therefore the WF’s imported heat during the cycle  
(

imWFQ ) is 
im ex exWF L MQ Q Q= + . 

Nt5-2A: The above symbols are introduced for the first time in this 
book to ease understanding the new derivations: 
 

(1) To create the full names of the introduced symbols take into con-
sideration that Q – stands for cycle’s heat, H – stands for the set of 
high temperature MRs, L – stands for the set of low temperature 
MRs, WF – stands for the working fluid, im – stands for imported 
by and ex – stands for exported by. Thus, the full names of the new 
symbols of the introduced new cycle’s heats (see Table 5-1) are: (1) 

exHQ – Cycle’s exported high MRs’ heat, (2) 
imLQ  – Cycle’s  

imported low MRs’ heat, (3 and 10) 
imWFQ – Cycle’s imported 

WF’s heat, (4 and 9) 
exWFQ – Cycle’s exported WF’s heat, (5) 
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imnetQ – Cycle’s imported net heat, (6) 
exnetW – Cycle’s exported 

net work, (7) 
imHQ – Cycle’s imported high MRs’ heat, (8) 

exLQ  

– Cycle’s exported low MRs’ heat, (11) 
exnetQ – Cycle’s exported 

net heat and (12) 
imnetW – Cycle’s imported net work. 

The above are for the total amount of the WF in the machine. For a 
unit mass of the WF (see Equation 3-4): (1) 

exHq – Specific cycle’s ex-

ported high MRs’ heat, (2) 
imLq  – Specific cycle’s imported low MRs’ 

 

Table 5-1: The current equivalents for the new symbols of the 
introduced new cycle’s heats 

Direct cycle  Reverse cycle 
No New  

symbol 
Current 
symbol 

No New  
symbol 

Current 
symbol 

1 
exHQ HQ 7 

imHQ HQ

2 
imLQ LQ 8 

exLQ LQ

3 
imWFQ 1Q 9 

exWFQ 1Q

4 
exWFQ 2Q 10 

imWFQ 2Q

5 
imnetQ netQ 11 

exnetQ netQ  
6 

exnetW netW 12
imnetW netW  

 

Nt1: Formerly and currently discussed cycles do not include ones, 
whose 

ex imM Mo Q Q o.≠ ≠ ≠  They include either regenerative cycles, 

whose 
ex imM M RQ Q Q o= = ≠  or nonregenerative cycles, whose 

ex imM M RQ Q Q o= = = , where RQ  is cycle’s regenerated heat. Sym-

bol RQ  that is adopted in this book for cycle’s regenerated heat  

denotes also to the rejected heat LQ  in the direct cycle; therefore, un-

less it is clearly/explicitly indicated to the dimension represented by 

RQ , it should be understood that RQ  represents the regenerated heat 

during the cycle. 
Nt2: According to Or3-6, the algebraic values of the new cycle’s 
heats that sub-subscripted by ex are positive and by im are negative.  
Nt3: The above are the properties for the total amount of the WF in the 
machine. To obtain these properties per unit WF mass (the specific 
properties), we divide these properties by WF mass (e.g., H Hq Q / M= ) 
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heat, (3 and 10) 
imWFq – Specific cycle’s imported WF’s heat, (4 and 9) 

exWFq – Specific cycle’s exported WF’s heat, (5) 
imnetq – Specific cycle’s 

imported net heat, (6) 
exnetw – Specific cycle’s exported net work, (7) 

imHq – Specific cycle’s imported high MRs’ heat, (8) 
exLq  – Specific 

cycle’s exported low MRs’ heat, (11) 
exnetq – Specific cycle’s exported 

net heat and (12) 
imnetw – Specific cycle’s imported net work. 

 

Nt5-2A1: In the traditional paragraphs below we continue using tradi-
tional and/or current symbols. The names of the current symbols can be 
(1) taken from other thermodynamic books (e.g., the names of HQ  can 

be the heat that costs or the added heat) or (2) extracted from the names 
of their counterpart new symbols by excluding the word (exported or 
imported) from them. For example, the name of HQ  can be cycle’s 

high MRs’ heat. 
It is obvious that cycle’s heats calculation is possible only when 

the cycle is divided in T_s, C_T, or C_t diagram by/with its characteris-
tic points into processes through which the transferred heats are pure 
(see HD3-8). 
Nt5-2B: Outside the effectiveness equations, where the symbols of  
cycles’ heats (QH, QL, Q1 and Q2) represent their absolute values, a  
cycles’ heat or work is an algebraic quantity whose sign depends on 
whether the WF imports or exports it. The imported by the WF cycles’ 
heat is positive, whereas the exported by the WF cycles’ heat is nega-
tive. Also the exported by the WF cycles’ boundary work is positive, 
whereas the imported by the WF cycles’ boundary work is negative. 
This means (see Nt5-2A) that QH, qH, Q1, q1, Qnet, qnet, Wnet and wnet are 
positive in direct cycles and negative in reverse cycles. Also QL, qL, Q2 
and q2 are negative in direct cycles and positive in reverse cycles. Con-
cerning the introduced in Table 5-1 new symbols for cycle’s heats see 
NT2 of Table 5-1. 

5.4.4 EVALUATING THERMODYNAMIC CYCLES 

The evaluation of any activity can be done through its effective-
ness/efficiency (E), which is the ratio of its valuable product or valuable 
output (VO) to its valuable consumption or valuable input (VI).  

 Effectiveness = VO/VI (5-1) 
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Thus, what is the invaluable product? 
 

HD5-1A: The invaluable product is the product that is available every 
time and anywhere, while the valuable product is the product that is not 
invaluable. The surroundings, when it is used as a low reservoir, is a 
source for invaluable products. All imported to the WF heats are valu-
able, and all exported to the surroundings heats are invaluable. 
 

The name of the effectiveness depends on the activity’s category, 
kind, and the units used for the outputs and inputs. Therefore, Equation  
(5-1) is the common case of a lot of thermodynamic and nonthermody-
namic effectiveness equations. 

We shall discuss here the following special cases that are considered 
in thermodynamics. The inputs and outputs in these efficiencies are  
energy kinds. 

The ideal direct thermodynamic cycles are the ideal cycles of heat en-
gines, and the effectiveness of such cycles is called thermal efficiency  
( tη ). The ideal reverse thermodynamic cycles are the ideal cycles of two 

categories of machines: (1) the refrigerating (cooling) machines, the effec-
tiveness of such cycles is called the cooling factor (β) or the coefficient of 
performance for a refrigerator “COPR.”7 (2) The mechanical heating ma-
chines (the heat pumps), the effectiveness of such cycles is called the heat-
ing factor (β') or the coefficient of performance for a heat pump “COPHP.”8 

All three mentioned devices are energy transformation devices and deal 
with mechanical energy that is always valuable and two kinds of heat ener-
gies (valuable and invaluable that is exported to a lower heat reservoir/MR 
“e.g., surroundings”); therefore, (1) the effectiveness of these devices can be 
denoted by energy transformation effectiveness (ETE), (2) the input of these 
devices from heat reservoirs/MRs can be denoted by valuable energy input 
(VEI), and (3) the output of these devices to others than the surroundings 
reservoirs can be denoted by valuable energy output (VEO). Thus, using 
Equation (5-1), we can write the following equation for the ETE: 

 ETE = VEO/VEI (5-2) 

Here the heat exported to heat sinks and/or the surroundings does not 
exist. 

When talking about the electric generator, the electric power will be 
the VEO, while the mechanical energy is the VEI. 
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5.4.4.1 Evaluating engine cycles (the direct cycles) 

It is necessary to introduce a measure (measures) to evaluate the engine 
cycles. There are quite a number of measures used in heat engineering for 
this purpose, including: 
 

• The most important measure, from the thermodynamics point of 
view, is the thermal efficiency and we shall return to it soon. 

• The fullness factor of p_v diagram ( )σ  is the ratio of the use-

ful/network (w )  in the given cycle to the maximum possible 
work max(w )  within cycle’s pressure max min(p p )−  and specific 

volume max min(v v )−  intervals. Thus (see Figure 5-2) 

 
max max min max min

max min max min

w (p p ) (v v )

w
and

(p p ) (v v )

= − ⋅ − 

σ = − ⋅ − 

  (5-2a) 

The numerical value of this factor allows evaluating the validity of 
the cycle for practical use. 

 
• The volumetric specific work. This factor is also for evaluating the 

validity of the cycle for practical use and it is calculated (see Fig-
ure 5-2) as the ratio of the useful/network ( )w  in the given cycle 
to the Wf’s specific volume at the end of its expansion (vmax): 

 max/= vw w v  (5-2b) 

5.4.4.1.1 The thermal efficiency of the ideal direct cycle 

The thermal efficiency is the measure that enables evaluating the economy 
of the process of heat energy transformation into mechanical in the ideal 
heat engine cycles (see §4.3.5). This measure is defined as follows: 

HD5-2: The thermal efficiency of an ideal heat engine is the ratio of 
the produced mechanical energy W  to the amount of heat HQ  pro-

vided by (transferred from) the set of high-temperature heat reser-
voirs/MRs to the WF during an integer number of thermodynamic 
cycles. Note that the minimum number of high reservoirs/MRs partici-
pating during the cycle is one reservoir/MR. Thus: 
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 t HW / Qη =   (5-3) 

Nt5-3: The thermal efficiency is assigned to evaluate the economy of 
ideal engines/power cycles. To evaluate the economy of real en-
gines/power cycles, other factors are used. One of these factors is ex-
pressed by the same right side of Equation (5-3), but carries another 
name. 

During each thermodynamic cycle that achieved in a thermally insu-
lated thermodynamic system that contains/includes the WF and the reser-
voirs/MRs (1) the set of high reservoirs/MRs loses QH of heat, (2) the set 
of low reservoirs/MRs gains QL of heat, (3) a work of W will appear, and 
(4) the WF returns to its initial state. Thus, the amount disappeared as heat 
is QH − QL while that appeared as work is W. 

Thus, according to the first law of thermodynamics: 

 W = Q = QH − QL   (5-4) 

In paragraph (4-3-5) we discussed the first law for the closed process 
that can be understood as belonging to the WF and expressed for the ideal 
cycle as q w=   and Q W=   (see Equation (4-7)). There, we already 

named W  as the useful work and named Q  as the useful/net amount of 

heat (useful/net heat). As all heat transfer processes in the COE proceed 
through the WF’s boundary (see Nt5-1A), Q is also the useful heat dur-

ing one COE cycle, and q  is also the specific useful heat during one 

COE cycle. 
For the ideal COE cycle relationship (5-4) takes the shape: 

 H LQ W Q Q= = −   (5-4a) 

From (5-3), (5-4a) and (3-4) we obtain: 

 H L H L
t

H H H H

Q Q Q q q q

Q Q q q

− −
η = = = =   (5-4b) 

To be able to calculate tη , the given data must include: 1) either one 

of the following pairs of dimensions: ( HQ  and Q ), ( HQ  and LQ ),  

( Hq  and q ), and ( Hq  and Lq ) or 2) fully defined (mathematically or 

graphically) cycle’s path with an information about the heat regeneration 
(see OD5-3 and OD5-4) in it. For this second case we additionally use 
some of the following calculations and definitions: 
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The fully defined cycle’s path in T_s plane allows determining (see 
Nt5-2A and Table 5-1) cycle’s WF’s heats: (imported 

imWFQ  “ 1Q ”, ex-

ported 
exWFQ  “

2Q ” and imported net 
imnetQ  “

netQ ”) and/or specific cycle’s 

WF’s heats (see Equations 5-5 through 5-8 below that require dividing the 
cycle, in advance, into pure “positive, negative and neutral transferred 
heat” processes/subprocesses “see HD3-4 through HD3-6”). We shall 
refer to such divided cycles as the divided into pure processes exclusively 
(cycleDPPE or DPPEcycle). On the other hand the information about cycle’s 
heat regeneration decides cycle’s regenerated heat QR that allows for 
known 

imWFQ  and 
exWFQ  determining 

HQ  and 
LQ . 

 
DPPE

1a lg pp pp 1 1a lg 1a lg
cycle

q q o q 0 q q q 0= = δ >  = = >   (5-5) 

 DPPE

DPPE

2 a lg PNe PNe
cycle

2 2 a lg PNe
cycle

q q o q 0

and q q q 0

= = δ <



= = − > 


 


 (5-6) 

DPPE

DPPE DPPE

partial processes PP PNe 1 2
cycle cycle

1 2a lg PP PNe
cycle cycle

q q (q q 0) o dq q q

q q q q Cycle's area

= = + + = = −

= + = + =

  

 



 (5-7) 

 
1 2a lg 1 2

1 2 a lg 1 2

Or q q q q q

and accordingly Q Q Q Q Q

= + = − 
= + = − 





 (5-8) 

OD5-3: The heat regeneration is defined as the process that aims to 
increase the thermal efficiency of a mechanical energy–producing cy-
cle (the direct or power cycle) by using a part of the heat Q2, which is 
supposed to become a lost heat, and that is rejected by the WF during 
its s-decreasing process(es) through the entire cycle, in the WF heat-
gaining (s-increasing) process(es). 
OD5-4: The heat regenerator is the device through which the heat  
regeneration is achieved in the real heat engine. 
 

The schemes in Figure 5-3 are the most common case ones. They  
represent the existed, existing and may ever exist schemes for direct and 
reverse thermodynamic cycles. For example, to obtain the scheme of/for 
the: 1) simple heat engine (the heat engine without heat regeneration) 
from the same subfigure A of  Figure 5-3 we (see Figure 2-1) delete the 
right side branch (

exMQ , 
imMQ  and the side source M), widen Arrow 

imLQ  
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to the width of Arrow 
exWFQ  (

2Q ) and decrease the width of Arrow 
imWFQ  

(
1Q ) to the width of Arrow 

exHQ  2) heat engine with a heat regenerator 

from subfigure A of  Figure 5-3 we change the names (
exMQ , 

imMQ  and 

the side source M) with (
RQ , 

RQ  and the heat regenerator R) respective-

ly. And since the heat regenerator is not a heat source, neither a WF, it is 
usually excluded from the scheme (see Figure 5-3a). Figure (5-3a) will be 
our reference during the following explanation of the regenerative power 
cycle (the heat engine cycle with regeneration). 

The heat Q2 (
exWFQ ) rejected from/by the WF branches out into two: 

the first branch 
imLQ  (QL) goes to the low heat reservoir/MR and the other  

(the regenerated heat) 
RQ  (

imMQ  in the sub figure) goes through the re-

generator (the side source M in the sub figure) to the WF to participate 
with the high heat reservoir/MR in supplying the WF with the heat re-
quired by it during its entropy-increasing process during the cycle. 

 

Figure 5.3a. A schematic showing all  
kinds of bodies that can participate in  
executing a thermodynamic cycle.  

From Figure 5.3a we obtain: 

H 1 R L 2 R R 1 H 2 L

H 1 R L 2 R R 1 H 2 L

Q Q Q ; Q Q Q ; Q Q Q Q Q

and accordingly

q q q ; q q q ; q q q q q

= − = − = − = − 


= − = − = − = − 

 (5-9) 
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From these equations and Equation (5-4a) we obtain 

 H L 1 2

H L 1 2

Q W Q Q Q Q

and accordingly q w q q q q

= = − = − 
= = − = − 

 

 

 (5-10) 

And for the cycle without regeneration (QR = 0): 

 H 1Q Q ,=     L 2Q Q ,=     H 1q q=     and    L 2q q=  (5-10a) 

1 a lg 2a lgH L 1 2 L
t reg

H H H 1 R 1a lg R H

1a lg 2a lgH L 1 2 L

H H H 1 R 1a lg R H

Q QQ W Q Q Q Q Q
1

Q Q Q Q Q Q Q Q

q qq w q q q q q
1

q q q q q q q q

+− −
η = = = = = = −

− −

+− −
= = = = = = −

− −

 

   (5-11) 

This multiequation is an abbreviation of a set of equations that cosists 
of 12 equations those share with this multiequation the left sideand each 
of them share also with it one of its no left sides in addition to other equa-
tions whose both sides are two of the the no left sides of this same mul-
tiequation. Multiequation (5-11) is valid for both power cycles’ (with and 
without) heat regeneration. Just substitute each of RQ  ( Rq ) by zero, HQ  

( Hq ) by 1Q  ( 1q ), LQ  ( Lq ) by 2Q  ( 2q ), and W  ( w ) by Q  ( q ) to 

discover that Figure 5-3 transforms into Figure 2-1 and multiequation  
(5-11) transforms into: 

 

1a lg 2a lg1 2 2
t no reg

1 1 1 1a lg 1

1a lg 2a lg1 2 2

1 1 1 1a lg 1

Q QQ W Q Q Q
1

Q Q Q Q Q

q qq w q q q
1

q q q q q

−

+−
η = = = = = −

+−
= = = = = −

 

   (5-12) 

For the case it was allowed to represent the nonregenerative cycle in T_s 
diagram (the cycle is reversible or internally reversible but externally irre-
versible whether it was regenerative or nonregenerative), all elements here 
can be obtained from T_s diagram of the WF, if the required accuracy allows. 

Usually, the diagrams are used in the qualitative analyses of thermo-
dynamic processes due to the outstanding ability of this method in the 
delivery of information to the receiver (reader of the research or listener’s 
to a lecture). 

Based on the above, the following can be concluded: 
 

Nt5-4: The use of T_s diagram in studying the nonregenerative cycles 
(the reversible and internally reversible but externally irreversible  



THE SECOND LAW OF THERMODYNAMICS • 211 

cycles that are allowed processes to be represented graphically) is  
always possible, but its use in studying the regenerative cycles is not 
always easy and is fraught with the dangers of falling into error and 
sometimes is not possible; therefore, we emphasize that: 
Nt5-5: The use of the graphical methods for comparing thermodynam-
ic cycles must be based on comparing nonregenerative cycles; if we 
want to do a graphical comparison between regenerative cycles (or be-
tween a regenerative cycle and another nonregenerative), we first have 
to replace the regenerative cycles by nonregenerative cycles that are 
completely equivalent to them (see HD5-3A) and then do the compari-
son using T_s diagram. 

 

From Multiequation (5-4b) we obtain L H tQ Q (1 )= − η  

where H tQ η×  is the heat transformed into mechanical energy during 

the cycle, while H tQ (1 )− η  is the heat that did not transform into mechan-

ical energy during the cycle, that is, the transferred/given heat to the low-
temperature reservoir/MR. The greater the tη  the smaller the untrans-

formed heat. 
We remind here that we are speaking about the thermal efficiency of the 

ideal cycle; therefore, the values ηt ,  w , and oq  belong to the ideal cycle. 

5.4.5 THE EQUIPOLLENT THERMODYNAMIC CYCLES 

HD5-3: The equivalent/equipollent thermodynamic cycles are those that 
share the values of the (1) specific cycle’s high MRs’ heat—symbol  
( Hq ), (2) specific cycle’s low MRs’ heat—symbol L(q ) , (3) specific use-

ful work H L 1 2w q q q q q ,= = − = −   and (4) thermal efficiency tη . 

And as these four characteristics/properties of the cycle are interconnected 
with each other through the two independent equations t Hq / qη =   and 

H Lq q q ,− =   we do not have to check all of them for being the same in 

all cycles under consideration to conclude/decide whether the equivalency 
between these cycles (under consideration) is-realized/exists or not.  
Cycles characterized by the same values of any two of the properties:  
( H Lq , q , w q ,=   and/or tη ) are invariably equivalent ones. 

HD5-3A: Completely equivalent cycles are the equivalent cycles that 
share the temperature interval Tmin–Tmax (see §5.4). To be completely 
equivalent, cycles must have/share the same values of the six cycle’s 
properties H L tq , q , q , ,η  max minT ,and T . (To realize the completely 
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equivalent cycles, each of the six cycle’s properties H L tq , q , q , ,η  

max minT ,and T  must have the same value in all completely equivalent cy-

cles.) And since H L tq , q , q , and η  of the cycle are interconnected 

with each other through equations t Hq / qη =   and H Lq q q ,− =   we 

have to check, for being the same in all cycles under consideration, any 
two of the four ( H Lq , q , w q ,=   and/or tη ) in addition to maxT  and 

minT , and conclude/decide whether the complete equivalency between 

these cycles (under consideration) exists (is realized) or not. Cycles 
characterized by the same values of each of maxT , minT , and any two of 

the properties ( H Lq , q , w q ,=   and/or tη ) are invariably completely 

equivalent ones. For the special case when all cycles under considera-
tion are Carnot cycles (see the following paragraph), the thermal effi-
ciency tη  is additionally interconnected with max minT and T  through 

equation t H L H max min max(T T ) / T (T T ) / Tη = − = −  that is independent 

from the former t Hq / qη =   and H Lq q q− =   equations. Therefore, 

Carnot cycles characterized by the same values of each of either maxT ,  

minT  with any of H Lq , q , and q , or any of max minT and T  with any two 

of H L , tq , q , q and η  are invariably completely equivalent ones. 

5.5 THE CARNOT CYCLE 

The French engineer and scientist Sadi Carnot created the simplest ideal 
cycle and calculated its thermal efficiency. The WF in this cycle is an ideal 
gas one and this eases the calculations. But this, as we will see later, is not 
necessary for the studied cycle and does not affect its thermal efficiency. 

The Carnot machine operates according to Carnot cycle or its reverse. 
It is a reciprocating ideal heat engine/refrigerator/heat pump with no irre-
versibilities (the piston that is perfectly thermally isolated moves smoothly 
and without friction inside the cylinder that is not equipped with inlet and 
outlet valves, while the cylinder that is perfectly thermally isolated during 
the isentropic processes performs to be an ideal thermal/heat selective con-
ductor that transmits heat between the WF and each of the two, required to 
realize the cycle, heat reservoirs: the high “at constant temperature TH” and 
low “at constant temperature TL”). Thus, the cylinder and piston in the Car-
not machine do not dissipate and not absorb any heat. Also, this arrange-
ment does not allow any mass transfer between the WF inside the piston 
and its cylinder and the surroundings (no mass leakage is allowed). 
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In Figure 5-4 a p_v diagram for Carnot cycle is represented (subfigure 
A), and under it four states of ideal engine’s piston–cylinder arrangement 
that carries out the cycle, which are: 

• One of the states of the isothermal expansion process (1–2) is 
shown in subfigure (1). 

• One of the states of the isentropic expansion process (2–3) is 
shown in subfigure (2). 

• One of the states of the isothermal compression process (3–4)  
is shown in subfigure (3). 

• One of the states of the isentropic compression process (4–1)  
is shown in subfigure (4). 

 

Figure 5.4. The Carnot cycle 

The thick lines of the cylinder wall and the piston denote perfect isola-
tion of both of them. When the WF comes into contact with the heat  
reservoir, the line/surface that separates the WF from the reservoir becomes 
thin denoting to the fact that the heat transfer between them is perfect. 
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Let 1 kg of the WF is enclosed in the piston–cylinder arrangement 
perfectly thermally isolated from the surroundings so that (with the excep-
tion of heat reservoirs) it is impossible for the constant mass WF to  
exchange heat with the surroundings and even with elements of the engine 
itself. In this ideal engine all processes proceed reversibly by our will. By 
our will the heat reservoir, which we want, comes into perfect contact with 
the WF and an ideal heat transfer process is activated between the WF and 
the reservoir. And by our will the heat reservoir gets out of the contact 
with the WF and the WF becomes perfectly isolated. 

The reversible Carnot cycle consists of two isotherms and two isentrops: 

1) The isothermal expansion process that starts from WF’s state 1  
(v1, TH) and ends at state 2 (v2, TH) consumes the heat (see Equa-
tion 3-32 and OR4-6): 

 
1 2 H 2 1q T (s s ) 0
−

= ⋅ − >   and  2 1s s>   because  HT 0>  (5-13) 

That is specific transferred heat because we assumed that the amount 
of the WF inside the engine is 1 kg. 

2) The adiabatic expansion process that starts from WF’s state 2 (v2, TH) 
and ends at state 3 (v3, TL). This process is isentropic because it is 
reversible. Its equations (see Equations (4-1a) and (3-21)) are 

 ds 0=       and      3 2 0s s− =       or      3 2s s=  (5-14) 

 
3 3

2 3 2 2
q T ds T 0 0− = ⋅ = ⋅ =   (5-15) 

3) The isothermal compression process that starts from WF’s state 3 
(v3, TL) and ends at state 4 (v4, TL) rejects the heat (see Equation  
3-32 and “OR4-6”): 

 
3 4 L 4 3q T (s s ) 0
−

= ⋅ − <  (5-16) 

4) The isentropic compression process that starts from WF’s state 4 
(v4, TL) and ends at state 1 (v1, TH). The equations of this process 
(see Equations (4-1a) and (3-21)) are 

 ds 0;=      1 4s s 0− =  (5-17) 

 And    
1 1

4 1 4 4
q T ds T 0 0− = ⋅ = ⋅ =   (5-18) 



THE SECOND LAW OF THERMODYNAMICS • 215 

From Equations (5-14) and (5-17) we obtain 

 2 1 3 4s s s s− = −  (5-19) 

We note here that the above heat exchange processes in the cycle are 
limited to/in two types: the WF gaining heat from the high reservoir in the 
isothermal process 1–2, and the WF rejecting heat to the low reservoir that 
is mostly the surroundings in the isothermal process 3–4. This means that 
the Carnot cycle is nonregenerative (the perfect proof is driven later “see 
the explanation of subfigure 5-12f”), and therefore qH = q1 and qL = q2 (see 
Equations 5-10a) and the equations suitable to calculate its thermal effi-
ciency can be extracted from multiequation (5-11) after replacing each of 

RQ  ( Rq ) by zero or from multiequation (5-12). Thus, the following mul-

tiequation is suitable for calculating the thermal efficiency of the reversi-
ble Carnot cycle and other nonregenerative reversible cycles: 

 

no reg

H L L
t

H H H H 1

1a lg 2a lg1 2 1 2 2

H 1 1a lg 1

q w q q q q
1

q q q q q

q qq q q q q
1

q q q q

−

−
η = = = = − =

+− −
= = = = −

  

 (5-19a) 

Here, q2 is the specific rejected heat to the low reservoir that is, for 
heat engines, the surroundings. Therefore, q2 is the absolute value of the 
amount of heat given to (actually taken of) the WF during its heat rejec-
tion process (3–4). 

Now we can calculate w , q1, and q2 for the ideal gas Carnot cycle. 

The cycle consists of one pure positive heat transfer process (1–2), one 
pure negative heat transfer process (3–4), and two pure neutral heat trans-
fer processes (2–3 and 4–1). From Equations (4-7), (5-7), and (5-13) 
through (5-18), we obtain 

 

1 2 2 3 3 4 4 1

H

PPs
cycle

H 2 1 L 4 3

H L 2 1 H L T

w q q q q q q

T (s s ) 0 T (s s ) 0

(T T ) (s s ) (T T ) s 0

− − − −
= = = + + +

= ⋅ − + + ⋅ − +
= − ⋅ − = − ⋅ Δ >

 

 (5-20) 

From Equations (5-5), (5-6), (5-13), and (5-16), we obtain 

 
H1 1a lg 1 2 H 2 1 H Tq q q T (s s ) T s 0−= = = ⋅ − = ⋅ Δ >  (5-21) 
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3 4 L

H

2a lg L 4 3 L T

2 2a lg L 3 4 L T

q q T (s s ) T s 0

and     q q T (s s ) T s 0

−
= = ⋅ − = ⋅ Δ < 


= = ⋅ − = ⋅ Δ > 

 (5-22) 

From Equations (5-19) through (5-22) we obtain 

 H 2 1 L 4 3 1 2 1a lg 2a lgw q T (s s ) T (s s ) q q q q 0= = − + − = − = + >   

 (5-23) 

Applying Equations (5-21) and (5-22) in Equation (5-12) we obtain 

2a lg L 3 42
tCarnot

1 1 H 2 1

q T (s s )q
1 1 1

q q T (s s )

⋅ −
η = − = + = −

⋅ −
 and applying Equation (5-19) 

in this equation we obtain: 

 2a lg2 L L 2
tCarnot

1 1a lg H H 1

qq q T T
1 1 1 1 1

q q q T T
η = − = + = − = − = −  (5-24) 

Let us represent the Carnot cycle in T_s diagram (Figure 5-5). From 
T1 and p1 we obtain s1 and then we create point 1 in Figure 5-5. Point 1 in 
the diagram represents the initial state of the ideal gas inside the cylinder. 
The isothermal expansion process that starts from point (1) is represented 
by line (1–2), and the specific gained heat (q1) transferred from the high 
reservoir to the WF can be calculated by Equation (5-13) or measured by 
the area 1–2–5–6–1 (or area a + b) under line (1–2). Thus, 

1 H 2 1q T (s s ) a b.= ⋅ − = +  

 

Figure 5.5. The Carnot cycle in T_s diagram 

The following process (the isentropic expansion process) is represent-
ed by the s = constant line (2–3). The isothermal compression starts at 
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point (3). It is entropy-decreasing process and is represented by line (3–4). 
During this process, the WF rejects to the low reservoir the specific reject-
ed heat (q2) that can be calculated by the equation 

2 3 4 4 3 L 3 4q q q T (s s ) b
− −

= = = ⋅ − =  or measured by the area 4–3–5–6–4 

(or area b) under line (4–3). Thus, 
2 L 3 4q T (s s ) b= ⋅ − = . 

Point (4) that represents the final state of the isothermal compression 
must be chosen so that the isentropic compression process passing from it 
passes through point (1), that is, so that the four processes form a closed 
process (a cycle). The difference between the areas (a + b) and (b), that is, 
area (a), measures the specific transformed heat into work. The thermal 
efficiency of the cycle, being nonregenerative, is calculated from Equation 
(5-12) and is equal to the ratio of area (a) by area (a + b). As the bases of 
these rectangles are equal, then their ratio is equal to the ratio of their 

heights or H L
t

H

T Ta 1 4
.

a b T1 6

−−η = = =
+ −

 Thus, we came to the same Equa-

tion (5-24) obtained above. 

5.6 THE REVERSE CARNOT CYCLE 

The Carnot machine here (see §5.5) operates according to the reverse Car-
not cycle. This machine performs the reversible reverse Carnot cycle and its 
only difference from the Carnot engine lies/is in the order of the four pro-
cesses of the cycle, and in the results of such rearrangement (the functions 
of the heat reservoirs and direction of the cycle will be inverted/reflected). 

We will explain this cycle very briefly in order to avoid repeating the 
explanation of the direct cycle. 

In Figure 5-6 a p_v diagram for the reverse reversible Carnot cycle is 
represented (subfigure A), and under it four states of the piston–cylinder 
arrangement of the ideal Carnot machine that carries out the cycle. 

Here also we assume that 1 kg of the WF is enclosed in the piston–
cylinder arrangement. 

The reversible reverse Carnot cycle consists of two isotherms and 
two isentrops: 

 

1) The isentropic expansion process that starts from WF’s state 1  
(v1, TH) and ends at state 2 (v2, TL). The equations of this process 
(see Equations (4-1a) and (3-21) are 

 1 2ds 0− =    and    2 1s s 0− =     or    2 1s s=     and    2 1T T<  (5-25) 
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Figure 5.6. The reverse Carnot cycle 

And the specific transferred heat to the WF is 

 
2 2

1 2 1 1
q T ds T 0 0− = ⋅ = ⋅ =   (5-26) 

2) The isothermal expansion process that starts from WF’s state 2  
(v2, TL) and ends at state 3 (v3, TL) consumes the heat (see Equation 
3-32 and OR4-6): 

 
2 3 L 3 2q T (s s ) 0

−
= ⋅ − >     and   3 2s s>    because   

LT 0>  (5-27) 

3) The isentropic compression process that starts from WF’s state 
state 3 (v3, TL) and ends at state 4 (v4, TH). The equations of this 
process (see Equations (4-1a) and (3-21) are 

 3 4ds 0− =  and 4 3s s 0− =  or 4 3s s=  and 3 4T T<  (5-28) 

And the specific transferred heat to the WF is 

 
4 4

3 4 3 3
q T ds T 0 0− = ⋅ = ⋅ =   (5-29) 
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From Equations (5-25 and 5-28) we obtain: 

 4 1 3 2s s s s− = −  (5-29a) 

4) The isothermal compression process that starts from WF’s state 4 
(v4, TH) and ends at state 1 (v1, TH) rejects the heat (see Equation  
3-32 and “OR4-6”): 

 
4 1 H 1 4q T (s s ) 0

−
= ⋅ − <       and      4 1s s> ,       because       HT 0>  

 (5-30) 

Let us create the reverse Carnot cycle that created in Figure (5-6) in 
T_s diagram (see Figure 5-7). From T1 and p1 we obtain s1 and then we 
create point 1 in Figure 5-7. Point 2 lies under point 1 on the created from 
point 1 isentrop (see Equation 5-25) and point 3 lies to the right from point 
2 on the created from point 2 isotherm (see Equation 5-27). Point 4 is the 
intersection point of the isentrop created from point 3 and the isotherm 
created from point 1. 

It is clear from Figure (5-6) that the WF exchanges heat with only two 
bodies (reservoirs), which means (see items “1 through 4”) that: 

 1 H 1 H 2 L 2 LQ Q ,        q q ,         Q Q ,         and        q q= = = =  (5-31) 

From relations (4-7, 5-7, 5-26, 5-27, 5-29 and 5-29a) we obtain the 
algebraic values of the imported to the WF specific useful work and heat 

a lg a lgw & q :   

 a lg a lg PPs L 3 2 H 1 4
cycle

w q q 0 T (s s ) 0 T (s s )= = = + ⋅ − + + ⋅ −   Or: 

 
a lg a lg PPs H L 3 2

cycle

w q q (T T ) (s s ) 0= = = − − ⋅ − <   (5-32) 

which means that the reverse Carnot machine consumes work (mechanical 
energy), and therefore, it is not an engine. 

From relations (5-26, 5-27, 5-29 and 5-30) we obtain that the reverse 
Carnot cycle includes: 

 
• Only one WF heat importing (gaining) process (2-3) and there-

fore (see Equation 5-27):  

 2 32a lg L a lg L 3 2q q q T (s s ) 0
−

= = = ⋅ − >  (5-33) 
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• Only one WF heat exporting (rejecting) process (4-1) and there-
fore (see Equation 5-30):  

 
4 11a lg H a lg H 1 4q q q T (s s ) 0

−
= = = ⋅ − <  (5-34) 

 

Figure 5.7. The reverse Carnot cycle in T_s diagram 

Returning to Equation (5-2) the VEI for a reverse cycle is cycle’s 
consumed (W )  that was additionally introduced above as cycle’s import-

ed net work 
imnetW  (see Table 5-1 and Nt5-2A): The relation between  

cycle’s imported net work symbols is: 

im imnet a lg net a lg a lgW W W m w m w m w m w= = = ⋅ = ⋅ = − ⋅ = ⋅      

On the other hand, the VEO for the same reverse cycle can be either 
its imported high MRs’ heat 

imH(Q )  or its exported low MRs’ heat 
exL(Q ) , 

(see Table 5-1 and Nt5-2A). 

The relation between the symbols of cycle’s imported high MRs’ heat is:  

= = = =

= ⋅ = ⋅ = ⋅ = ⋅ = ⋅
im

im

H 1 H 1a lg H a lg

H 1 H 1a lg H a lg

Q Q Q Q Q

m q m q m q m q m q
 

And the relation between the symbols of cycle’s exported low MRs’ 
heat is:  

= = = =

= ⋅ = ⋅ = ⋅ = ⋅ = ⋅
ex

ex

L 2 L 2 a lg L a lg

L 2 L 2 a lg L a lg

Q Q Q Q Q

m q m q m q m q m q
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For the reverse Carnot cycle [see Equations (5-31), (5-33), and (5-34)], 
the VEO can be: 

Either equation        1 H 1a lg H a lg H 4 1q q q q T (s s ) 0= = = = ⋅ − >  

 (5-35) 

Or equation          2 L 2a lg L a lg L 3 2q q q q T (s s ) 0= = = = ⋅ − >  

 (5-35a) 

From the above we conclude that (1) in the Carnot engine, heat is im-
ported to the WF from the high reservoir, transformed partially to me-
chanical energy that is exported to the mechanical energy consumer, and 
the nontransformed heat is rejected to the low reservoir that is usually the 
surroundings. (2) In the Carnot reverse machine, the mechanical energy is 
imported to the WF and transformed into heat that is added to the heat 
that is imported from the low heat reservoir/MR, and this sum of heats is 
transferred to the high reservoir. Here according to the purpose of the 
machine the surroundings can be either the high reservoir as in the refrig-
erating machines or the low reservoir as in the heat pumps. 

The purpose of the refrigerating machine is to cool their inside space 
to lower than the surroundings’ temperature by transferring the heat Q2 

(q2) from the cold space inside the refrigerator (the low heat reservoir/MR) 
to the surroundings (the high reservoir). 

When refrigerator’s motor is operating, its mechanical energy W  is 

imported to the WF, transformed into heat Q , and the sum Q + Q2 = Q1 

is transferred/thrown to the surroundings. This can be rewritten for a unit 

mass of the WF as: a lg a lg 1 2w q w q q q= = = = −     

Thus, applying Equations (5-29a), (5-35), and (5-35a) in this equation 
we obtain: 

 

a lg a lg H L 3 2

1 2 H L

w q w q (T T ) (s s )

q q q q 0

= = = = − ⋅ −

= − = − >
   

 (5-36) 

According to the above and taking in consideration Equation (5-34), 
Equation (5-2) for refrigeration becomes: 

 

L L L L

H L H La lg a lg

L

H L H L

Q Q q q

Q Q q qW w

T 1

T T (T / T ) 1

β = = = =
− −

= =
− −

 

 (5-37) 
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From Equation (5-37) we conclude that increasing TL increases β, and 
for a particular value of TL the efficiency of the process increases with 
decreasing TH. 

The purpose of the heat pump is to heat the inside space of the heated 
hall to higher than the surroundings’ temperature by transferring to it the 
heat Q1 (q1) that is the sum of (1) the heat transferred from the atmos-
phere/surroundings (the low heat reservoir/MR) to the WF heat (Q2), and 
(2) the useful heat ( Q ) transformed from the imported to the WF me-

chanical energy ( W ). Therefore, Q1 is the product of the heat pump and 

accordingly is its VEO. 
To rewrite Equation (5-2) for heat pumps, we replace in this equation 

(1) the ETE by the heating factor (β'), (2) the VEO by the exported to the 
high reservoir/MR heat q1 = qH (Q1 = QH), and (3) the VEI by the imported 

mechanical energy a lgw w=   or a lgW W=  . 

According to the above and taking in consideration Equation (5-36), 
Equation (5-2) for refrigeration becomes: 

 

H H H

H La lg a lg

H H

H L H L L H

Q Q q
'

Q QW w

q T 1

q q T T 1 (T / T )

β = = =
−

= = =
− − −

 

 (5-38) 

Subtracting Equation (5-37) from Equation (5-38) we obtain:  

 ' 1β −β =  (5-39) 

The achievement of ideal gas machines operating in accordance with 
the Carnot cycle or its reverse is impossible. Real heat engines, refrigerat-
ing machines, and heat pumps use other cycles. This is because of the im-
possibility to achieve ideal gas isothermal process in real machines. 

 
Nt5-7: If we refer to the entropy change during the isothermal process 
at TH by 

H HT final initial Ts (s s )Δ = −  and to that at TL by 

H LT final initial Ts (s s )Δ = −  we obtain (see Figures 5-5 and 5-7): 

From Equations (5-20) and (5-32): 

 
Ha lg a lg H L Tw q (T T ) s= = − ⋅ Δ   (5-40)  

 From Equations (5-21) and (5-34): 
H1a lg H Tq T s= ⋅ Δ  (5-41) 
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From Equations (5-22) and (5-33): 
L2a lg L Tq T s= ⋅ Δ  (5-42) 

As TH = Tmax, TL = Tmin, and TH − TL are always positive, the signs of 

a lg a lgw q=   and 1a lgq  (see Equations “5-40, 5-41, and 5-42”) are the 

same as that of HTsΔ  and the sign of 2a lgq  is the same as that of sΔ

LT, 

where (see Figures 5-5 and 5-7) sΔ

HT is positive for the direct Carnot cy-

cle and negative for the indirect one, while sΔ

LT is negative for the direct 

Carnot cycle and positive for the indirect one. 

 

Figure 5.7A. Carnot cycles that share the same temperature extremes (Tmax and 
Tmin). JIV is the only reverse cycle 

 
HR5-1: The groups of Carnot (direct and/or reverse) cycles whose el-
ements share the same maximum and minimum temperatures 
(whose elements operate over the same temperature interval) and share 
the same algebraic sum of areas (entropy changes) of their either upper 
or lower isothermal processes 

maxT
sΔ  or 

minT
sΔ  are invariably 

completely equivalent groups. In Figure 5-7A, the six Carnot cycles JI, 
JII, JIII, JIV, JV, and J have/share the same temperature extremes (Tmax and 
Tmin), while cycles JI, JII, and JIII constitute the first group (symbol grI), 
cycles JIV and JV constitute the second group (symbol grII), and cycle J 
constitutes the third group (symbol grIII) of Carnot cycles. The three 
groups have/share the same algebraic sum of entropy changes of their 
upper isothermal processes (at Tmax), therefore, these three groups are 
completely equivalent ones. 

 
In direct and reverse reversible/internally reversible Carnot cycles  

TH = Tmax and TL = Tmin. 
In area calculations of thermodynamic cycles we differentiate be-

tween the belonging to the process/cycle (live/effective/actual) areas and 
those occupied by cycle’s parts on property diagram (apparent) ones. 
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5.7 INTRODUCTION TO CARNOT THEOREM 
(EXISTING FORMULATIONS OF CARNOT 
THEORY) 

Authors agree with that Sadi Carnot performed a set of proofs and  
important conclusions relating to his thermodynamic cycle and which 
were crowned by the theory of S. Carnot that stated by himself as follows: 

No engine can be more efficient than a Carnot engine 

But authors do not agree on naming the mentioned conclusions. What 
is called by some authors Principle or Corollary some others call it Prop-
osition or The Carnot efficiency, as others consider it a basic part of the 
Carnot theory. Whatever the case is, and even if some of the proofs are 
incomplete, the Carnot proofs led to the following results: 

1) The First Carnot Principle (Carnot’s first corollary) 
The thermal efficiency of an irreversible power cycle is al-

ways less than the thermal efficiency of a reversible power cycle 
when each operates between the same two reservoirs. 

2) The efficiency of the Carnot reversible cycle does not depend on 
the nature of the WF, used for executing the cycle. 

3) The Second Carnot Principle (Carnot’s second corollary) 
All reversible power cycles operating between the same two 

thermal reservoirs have the same thermal efficiencies. 
4) The thermal efficiency of any reversible cycle, executed with more 

than two reservoirs, is less than the thermal efficiency of the reversi-
ble Carnot cycle, executed between the two temperature extremes. 

5) Thermal efficiency of a Carnot reversible cycle, operating between 
two thermal reservoirs, is the highest efficiency that a reversible 
power cycle operating between two temperatures can have. 

Statements 4 and 5 have the same proof, and carry the same meaning, 
but statement 5 is more inclusive than statement 4. 

The Carnot theory/theorem has several statements resulting from 
combining the statements, which we have introduced above that is given 
by Carnot himself, and we will cite here the following statement: 

Carnot’s Theorem: All Carnot engines that operate between the 
same temperature reservoirs have the same efficiency, and no other heat 
engine operating between these same two temperatures can have a greater 
efficiency. 

As we will see later (see §7.6), the proof of the fifth statement was 
imperfect and its new perfection did not affect Carnot’s conclusions. 
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5.8 ENTROPY 

Some details of discussing the effectivenesses of thermodynamic cycles 
are not classical (are unusual). These details were used for the first time in 
the base book and are used in this book. The energy terms of the effec-
tiveness expressions ( 1 2 1 2Q , Q , Q , W , q , q , q , w and so on    ) that are 
usually positive are expressed through the absolute values (│Q1alg│, 
│Q2alg│, │Qₒalg│, │Wₒalg│, │q1alg│, │q2alg│, │qₒalg│ and │wₒalg│) of their 
algebraic values (Q1alg, Q2alg, Qₒalg, Wₒalg, q1alg, q2alg, qₒalg and wₒalg). This 
measure does not add any new idea although it, as the author hopes, im-
proves readers understanding. 

Using the (1) rules that resulted from the study of the two reversible 
Carnot cycles (direct and reverse) and (2) the second result that estab-
lished to Carnot theory/theorem (see previous paragraph), it can be proved 
that for any substance there is a very important, in/for studying heat trans-
fer processes, property, which is the entropy. 

Previously we obtained the following relationship (5-24) that belongs 
to the ideal gas reversible Carnot cycle and, which, thanks to the second 
result of (§5.7) that will be proved in volume II of this book (see §7.7), 
became valid for the reversible Carnot cycle operating on/with any gas 

(WF): 
2a lg2 2

tCarnot
1 1a lg 1

qq T
1 1 1 .

q q T
η = − = + = −  From this equation we obtain: 

 2a lg2 2

1 1a lg 1

qq T

q q T
= − =  (5-43) 

Nt5-8: In direct thermodynamic cycles 1a lg 1q q 0,= >  2a lg 2q q 0,= − <  

and accordingly 2 a lg 1a lg(q / q ) 0,<  while in reverse cycles 

1a lg 1q q 0,= − <  2a lg 2q q 0,= >  and accordingly 2 a lg 1a lg(q / q ) 0.<  

Therefore, in all thermodynamic cycles 2a lg 1a lg(q / q ) 0<  (see Nt5-6 

and §s 5.4.1 and 5.4.2). 
 
From Equation (5-43) we obtain: 

 2 a lg 1a lg2 1

2 1 2 1

q qq q
,

T T T T
= = −  or 

 1a lg 2a lg1 2

1 2 1 2

q qq q
0 and 0

T T T T
− = + =  (5-44) 
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Here, 1a lgq  and 2a lgq  are the algebraic values of specific cycle’s high 

WF heat and specific cycle’s low WF heat, respectively. In direct cycles, 

1a lgq ,  its parts, and differentials are always positive, and 2a lgq , its parts, 

and differentials are always negative because, when the cycle is divided 
into pure processes, 1a lgq  is the sum of all pure positive transferred to the 

WF, heats, and 2a lgq  is the sum of all pure negative transferred to the 

same WF heats. This means that for the direct Carnot cycle we can (1) 
identify 1a lgq  and 2a lgq  from the algebraic sign of the pure transferred 

heat pureq , (2) express 
1a lg

1

q

T
 by ( )

s
q / T ,↑  and 

2 a lg

2

q

T
 by ( )

s
q / T ,

↓
 (3) 

substitute these values in (5-43), and (4) obtain 

2
1a lg 2 a lg i a lg

i 1s s1 2 i

q q qq q
0

T T T T T↑
↓

=

   + = + = =   
   


 

The discussion above was for the direct Carnot cycle. If we repeat it 
for the reverse Carnot cycle, where 1 1a lgq q 0,= − >  2 2a lgq q 0,= >  and 

accordingly 
1a lg

s1

q q

T T
↓

 =  
 

 and 2a lg

s2

q q
,

T T ↑

 =  
 

 we obtain 

2
1a lg 2 a lg i a lg

i 1s s1 2 i

q q qq q
0

T T T T T↑
↓

=

   + = + = =   
   


 

From the two equations above we obtain for the Carnot cycle and its 
reverse one: 

 
2

1a lg 2a lg i a lg

i 11 2 i

q q q
0

T T T=

+ = =  (5-45) 

It is more convenient to execute (carry out) the analysis here as many 
other analyses using sine rules type (OR3-6) that is almost used through-
out this book. 

Equation (5-45) can be read/expressed as follows: for a reversible 
Carnot cycle, the algebraic sum of the fractions (resulted from dividing 
each of the transferred to the WF heats by the absolute temperature at 
which the heat transfer is done/carried out) equal to zero. Or: 

 
HD5-3B: The relative heat is the product of dividing the transferred 
to the gas/WF heat by the absolute temperature at which the heat 
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transfer is done (carried out). It is obvious that the relative heat is a 
characteristic of the isothermal process. 
HR5-2: The algebraic sum of all relative heats in the Carnot cycle is 
equal to zero. 
Nt5-9: Because the Carnot cycle, upon which we built our above conclu-
sions, was reversible (this means that H 1T T=  and L 2T T= ), and nonre-

generative (Carnot cycle is naturally no regenerative “unable for regener-
ation”), and this means that H 1q q=  and L 2q q=  we have chosen to deal 

with the transferred to the WF heats, and with its temperatures instead of 
dealing with the values belonging to the two heat reservoirs. 

 
Now consider a common case reversible cycle (1–2–3–4–1), which is 

represented in Figure 5-8A. In the contrary to the nonregenerative Carnot 
cycle, the reversible common case cycle can be regenerative, and there-
fore, it can be carried out with heat regeneration, and this means that 

H 1T T ,=  L 2T T ,=  H 1q q ,≤  and L 2q q .≤  It must be differentiated here 

between the heats belonging to the WF, and those belonging to heat reser-
voirs/MRs, the thing which is unnecessary for temperatures. 

 

Figure 5.8. The set of partial cycles resulted from slicing a reversible cycle 
using reversible adiabates is equivalent to the original cycle. If the number of 
the slicing adiabates is huge, the slices become elementary Carnot cycles. 

We must say the following about the way to achieve this cycle: 
 
In the reversible Carnot cycle, heat was transferred to the WF at con-

stant temperature, while in the common case cycle the heat is transferred 
to the WF at variable temperature. If we had in these conditions one high-
est heat reservoir/MR, with a temperature that equals the highest tempera-
ture of the WF, the heat would have been transferred in the remaining 
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cases of transferring heat to the WF at finite (not infinitesimal) tempera-
ture differences, and such cycle is irreversible. To have a reversible cycle, 
the heat transfer between the heat reservoir/MR (heat accumulator) and 
the WF must proceed at infinitesimal temperature differences. Such heat 
transfer can be theoretically/imaginarily reached, when the WF tempera-
ture is variable, by using an infinite number of heat reservoirs/MRs and 
accumulators, which would have the same WF temperatures (or infinites-
imally different from them) at all heat transfer stages of the cycle.C The 
same thing can be said about the low heat reservoirs/MRs: “In order to 
insure the reversibility of the WF heat rejection process, we can imagine 
that we have an unlimited number of low heat reservoirs/MRs that absorb 
heat from the WF, at infinitesimal differences between the WF tempera-
tures and low reservoirs/MRs temperatures.” 

 
C. As we will see later, the heat exchange between the WF and heat 

reservoirs/MRs at variable temperatures can be achieved in some 
reversible cycles by using those different from the infinite number 
of heat reservoirs/MR modes (such as the ideal heat regenerator). 

 
Let us divide/slice our cycle to a number of partial cycles by the re-

versible adiabates 10-5, 9-6, 8-7, and so on. Then with the exception of 
the two extreme partial cycles, each partial cycle will consist of two re-
versible adiabates and two reversible heat exchange processes that may be 
isotherms or not. Thus, the original cycle (1–2–3–4–1) will consist of a set 
of partial reversible cycles (5–6–9–10–5), (6–7–8–9–6), and so on. 

Let us first make sure that the obtained set of partial cycles (or slices) 
is equivalent to the original cycle (1–2–3–4–1). 

To be able to replace the original cycle, the set of the obtained partial 
cycles must leave on each of the high set of heat reservoirs/MRs, the low 
set of heat reservoirs/MRs, and the recipients of mechanical energy, the 
same effects that the original cycle leaves on them. In other words, the 
following conditions must be met in the obtained set of partial cycles: 

 
• The sum of all specific cycles’ high WF heats belonging to the 

resulted set of partial cycles equals to the original specific cycle’s 
high WF’s heat: 

 1a lgoriginal cycle 1a lgpartial cycles
original cycle

q q=   (5-46) 
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• The sum of all specific cycles’ low WF’s heats belonging to the 
resulted set of partial cycles equals to the original specific cycle’s 
low WF’s heat: 

 2a lgoriginal cycle 2a lgpartial cycles
original cycle

q q=   (5-47) 

• The sum of all specific cycles’ high MRs’ heats belonging to the 
resulted set of partial cycles equals to the original specific cycle’s 
high MRs’ heat: 

 ( )a lgoriginal cycle a lgoriginal cycle 1a lg 2a lg partial cycles
original cycle

w q q q= = +   

 (5-48) 

In the partial cycles of the direct one, processes 5–6, 6–7, and so on 
are expansion ones, while processes 8–9, 9–10, and so on are compression 
ones. During cycle 5–6–9–10–5, the direction of adiabate 6–9 is from 6 to 
9, while during cycle 6–7–8–9–6, the direction of the same adiabate will be 
from 9 to 6, that is, adiabate 6–9 will be common between the two partial 
cycles, and throughout this adiabate the works in both partial cycles are 
equal in absolute values and opposite in signs. As for the transferred heats, 
there is no transferred heat in both directions of the adiabatic process. 
Therefore, when adding the useful works in the neighboring partial cycles 
5–6–9–10–5 and 6–7–8–9–6, the sum of the computed, for the common 
adiabate 6–9, expansion, and compression works will equal to zero. Thus, 
curves 6–9, as well as lines like it such as 7–8, 5–10, and so on, can fall out 
of the study for calculating the useful work and transferred heats, and in 
this case, it can be sufficient to deal with the heat exchange processes in the 
partial cycles, which are fully situated on the entire perimeter of the origi-
nal cycle constituting the full curve of the original cycle. And when adding 
any kind of transferred heats in all studied partial cycles, we will obtain the 
value of this kind for the original cycle 1–2–3–4–1. 

Let us convert the two partial cycles discussed above into two Car-
not’s cycles. For this purpose we will replace the heat exchange processes 
5–6, 6–7, 8–9, and 9–10 in them by isothermal processes that pass from 
the middle of the original processes (see Figure 5-8B). We notice that the 
expansion adiabate 6'–9" is no longer fully coinciding with the compres-
sion adiabate 9'–6", and therefore, the adiabatic expansion work (in the 
Carnot cycle, located to the left of the adiabate) and the adiabatic com-
pression work (in the Carnot cycle, located to the right of the adiabate ) 



230 • GRAPHICAL THERMODYNAMICS 

are not equal in absolute values. With decreasing the distance between 
neighboring adiabates , the heat exchange processes 5–6, 6–7, 8–9, and 9–
10 approach more and more the alternative isothermal processes, and 
therefore the absolute values of the expansion work (in the Carnot cycle, 
located to the left of the adiabate) and the compression work (in the Car-
not cycle, located to the right of the adiabate) approach each other more 
and more, and when the distance between the two neighboring adiabates 
limits to zero and the expansion adiabate 6'–9" coincides with the com-
pression adiabate 9'–6", and therefore, the absolute values of the expan-
sion work (in the Carnot cycle, located to the left of the isentrop) and the 
compression work (in the Carnot cycle, located to the right of the adia-
bate) equalize and the adiabatic processes of the neighboring partial Car-
not cycles become congruent with the dividing adiabates of the original 
cycle (see Figure 5-8A). The above means that:  

 
• The effect of the adiabates of the partial Carnot cycles that are 

congruent with the dividing adiabates of the original cycle on each 
of the elements of the original engine and the surroundings does 
not exist. 

• The external borders (upper and lower) of the set of partial re-
versible Carnot cycles merge with the closed curve of the original 
cycle 1–2–3–4–1. 

 
Thus, the processes of the partial Carnot cycles, which are congruent 

with the partition adiabates of the original cycle, could be dropped off the 
study for calculating the useful works and transferred heats. In this case, it 
can be sufficient to deal with the isothermal processes in the partial cycles, 
which are located entirely on the entire perimeter of the original cycle 
constituting the full curve of the original cycle. And when summing the 
useful works or any kind of transferred heats (useful or transferred to or 
from the WF) in all studied partial cycles we obtain the useful work (use-
ful or transferred to or from the WF) in the original cycle (1–2–3–4–1). 

The carried out analysis that was based on Figure 5-8 assumed that the 
original cycle (1–2–3–4–1) is a direct one. If we make points 2 and 4 ex-
change places, then the original cycle (1–2–3–4–1) and its parts (6"–9'–8"–
7'–6") and (5"–10'–9"–6'–5") become reverse ones, reversible adiabates 
(8"–7', 9"–6') become compression ones, and 6"–9' and 5"–10' become 
expansion ones. Repeating the discussion for the reversed reversible cycle 
of that represented on Figure 5-8, we obtain the same Equations (5-45) 
through (5-48). 
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The above leads to the following conclusion: The set of the differen-
tial reversible Carnot cycles, resulting from the partition of a common 
case reversible thermodynamic cycle (RC) by an infinite number of re-
versible adiabates, is equivalent to the original cycle and leave the same 
effects left by the original cycle on each of the sets of high reser-
voirs/MRs, low reservoirs/MRs, heat accumulators, and the consum-
ers/producers of mechanical energy; therefore and for the purpose of 
thermodynamic analysis, it is allowed to divide the original cycle by re-
versible adiabates into an infinite number of reversible differential Carnot 
cycles (RDCCs). 

Now we can rewrite Equations (5-45) through (5-48) for a common 
case RC that is sliced by an infinite number of reversible adiabates into an 
infinite number of RDCCs. 

  
For the sliced common case (direct or reverse) RC into RDCCs: 
 

• The reversible original specific cycle’s high WF’s heat: 

 
1a lgoriginal RC 1a lgpartial RDCCs

original RC

q q= δ  (5-49) 

• The reversible original specific cycle’s low WF’s heat: 

 2a lgoriginal RC 2a lgpartial RDCCs

original RC

q q= δ  (5-50) 

• The reversible original specific cycle’s useful work: 

 ( )a lgoriginal RC a lgoriginal RC 1a lg 2a lg partial RDCCs
original RC

w q q q= = δ + δ   

 (5-51) 

For any RDCC (direct or reverse) sliced from the common case (di-
rect or reverse) RC (see Equation 5-45): 

 1a lg 2a lg

differential Carnot1 2

q q q
0

T T T

δ δ δ+ = =  (5-52) 

T1 and T2 here are the highest and the lowest temperatures of the par-
tial cycle, but not of the original one. 

If we write for each differential Carnot cycle, sliced from the original 
reversible cycle, an equation that is similar to Equation (5-52), and create 
from all of them one equation so that its left side is the sum of the left 
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sides of these differential equations and its right side is the sum of the 
right sides of them we obtain: 

 
1alg 2 alg 1alg 2 alg

1 2 1 2RC RC RC RC

q q q q q
o + = o + o + o =0

T T T T T

δ δ δ δ  δ
 
 
     (5-53) 

which is the equation for the sliced, into RDCCs, common case (di-
rect or reverse) RC. 

We must note here that the two points (1 and 3) of the cycle in Figure 
5-8A were chosen so that point (1) is located on the contact point (line) 
between the cycle and its left adiabatic tangent, while point (3) is located 
on the contact point (line) between the cycle and its right adiabatic tan-
gent. By this choice, we enclosed all pure positive processes in the pro-
cess (1–2–3), while all pure negative processes were enclosed in the  
process (3–4–1). 

Choosing the location of points (1 and 3) according to the former par-

agraph allows to express the ratio 1a lg

1

q

T

δ
 by one of the expressions 

1 2 3

q

T − −

δ 
 
 

 or 
3 4 1

q

T − −

δ 
 
 

 and the ratio 2 a lg

2

q

T

δ
 by the other expression, and 

thus we can express the sum of the two integrals 
1alg 2 alg

1 2RC RC

q q
o + o

T T

δ δ
   by 

the sum of the two integrals 
1 2 3 3 4 1

q q

T T
− − − −

δ δ   +   
      that equals 

1-2-3-4-1 RC

q q
= o

T T

δ δ 
 
   . 

 
Relations (5-53) can be expressed as follows: 
 

OR5-1: For any reversible cycle the algebraic sum of all fractions 
(caused by dividing each of WF’s transferred heats (differential and 
integral) by the absolute temperature at which this heat was trans-
ferred) equal to zero. Or: 
HR5-3: The algebraic sum of the relative heats in any reversible cy-
cle equals zero. 

Let us symbolize 
RC

q
o

T

δ
  by RCsΔ , substitute it in relations (5-53) and 

obtain: 
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 RCs 0Δ =  (5-54) 

which can be read as the entropy change (Δs) for a RC equals zero. 
Let us find out what does this mean. 

In Figure 5-9 the reversible cycles (1–5–2–3–1 and 1–4–2–3–1) that 
share the reversible process (2–3–1) are represented. 

 

Figure 5.9. Two reversible cycles sharing the  
process 2-3-1 

Applying Equation (5-54) on them we obtain: 

 1 5 2 3 1 1 5 2 2 3 1s s s 0− − − − − − − − −Δ = Δ + Δ =  (5-55) 

 1 4 2 3 1 1 4 2 2 3 1s s s 0− − − − − − − − −Δ = Δ + Δ =  (5-56) 

from which we obtain 1 5 2 1 4 2s s ,− − − −Δ = Δ  which can be read as follows. 
 

OR5-2: The s-change is initial and final states dependent, but not 
process path dependent. This rule can be derived for all functions of 
state such as the internal energy and enthalpy for all gases. 
 

According to the beginning of §2.8, s is a property of state for all 
gases, and since s for ideal gases was previously named (entropy), this 
name is used today for all gases. 

Also, Equation (3-21) is now the definition of the entropy change in a 
differential reversible heat transfer process for any gas: 

 ds q / T= δ  (5-57) 
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T, here, is the heat reservoir’s/MR’s temperature. And because we as-
sume that the temperature difference between the heat reservoir/MR and 
the WF is infinitesimal, T is also the WF’s temperature. 

The entropy change in any reversible heat transfer process is calcul 
ated as: 

 
2

2 1

1

q
s s s

T

δΔ = − =   (5-58) 

And the entropy change between any two common case states  
(1 and 2) is process path independent; therefore, s-value for a given state 
is determined by its state properties, without any need to know the path of 
the process through which the WF achieves this state and this means that s 
can be a property for this state. 

As real gases are not of the interests of this book, we shall deliver in 
brief the following: 

To calculate the value of the entropy of the WF at the state that is de-
scribed, for example, by the pressure (p) and temperature (T), it must be 
agreed about the state for which s will be given the zero value, that is, 
which state will be considered a principle for measuring the entropy. As 
we, when studying physical state change processes in thermodynamics, 
are interested in entropy changes (not in s values), we do not care about 
which state will be chosen as a reference state to be the entropy principle. 
If the normal conditions (Tn and pn) were chosen for the reference state 
then the entropy at T and p will be calculated using the equation: 

 

n n

p,T

p ,T

q
s

T

δ=   (5-59) 

For the reversible adiabatic process dq 0=  and T 0≠ , Equation  

(5-57) becomes ds q / T 0= δ =  and its integral becomes s constant= . 

That is why the reversible adiabatic process that is defined by: 

 ds 0=    and/or   s constant=  (5-60) 

is called the isentropic process.  
For the isothermal process T constant= , T, in Equation (5-58), can 

be moved outside the integration signal, and then the result of integration 
will be: 

 T 2 1q T (s s )= ⋅ −  (5-61) 

which is the same as Equation (3-32). 
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Equations (5-60) and (5-61) allow creating T_s diagrams of Carnot 
cycle and its reverse for all gases on the bases of their p_v diagrams (see 
Figures 5-4A and 5-6A). The result will be Figures 5-5 and 5-7. 

Note that for real gases t tw q≠  because ( )t real gas
u 0.Δ ≠  

 

The entropy is of particular importance when studying the cycles of 
internal combustion engines. Actually, if we create in T_s diagram a 
common case closed equilibrium (reversible) cycle (see Figure 5-10), then 
area 1–2–3–5–6–1 (area a + b or the area under curve 1–2–3 or 

1 2 3 5 6 1A − − − − − ) measures the transferred, during the entropy increasing pro-

cess 1–2–3, heat to the WF (q1). Also, area 1–4–3–5–6–1 (area b or the 
area under curve 3–4–1 or 1 4 3 5 6 1A − − − − − ) measures the transferred, during 

the entropy decreasing process 3–4–1, heat from the WF (q2). Thus, in 
cycle 1–2–3–4–1 the quantity of heat that is measured by area 1–2–3–4–1 
(area a or 1 2 3 4 1A − − − − ) disappears and will not exist as heat any more. 

 

Figure 5.10. A common case closed equilibrium  
(reversible) cycle in T_s diagram. 

It is clear from the above that encoding closed areas in diagrams by 
alphabetical letters located inside their boarders is the most comfortable 
method for graphical discussions. And we will adopt this method as a 
basic one for use in this book. 

In paragraph (4-3-5), it was proved that the lost heat in the closed 
process transforms into useful work. From here we conclude that the area 
located inside the curve of the closed reversible process in T_s diagram 
measures the useful heat that is transformed into useful work. 

According to the relationship (5-12): 1 2
t no reg

1

q q

q−
−

η =  
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As well as the meaning of areas in T_s diagram and from Figure 5-10: 

 1 2 3 4 1
t no reg

6 1 2 3 5 6

A a

A a b
− − − −

−
− − − − −

η = =
+

 (5-62) 

OR5-3: In T_s diagram, the ratio of the area, which measures the 
transformed heat into work during the cycle, to the area, which 
measures the transferred heat to the WF during the same cycle, is nu-
merically equal to the thermal efficiency of the nonregenerative cycle. 
 

Thus, in addition to p_v diagram, T_s diagram as a result of the spe-
cial features of the property entropy is an effective way to study the cycles 
of internal combustion engines. It is obvious from Figure 5-10 that: 

 
OR5-4: Moving/displacing a thermodynamic cycle represented in T_s 
diagram horizontally without deforming or rotating does not affect its 
area, maximum temperature, minimum temperature, and the area under 
it. This leads to not affecting its added, rejected, and net heats, net-
work, temperature interval, and thermal efficiency. 

5.9 HEAT REGENERATION 

From now on some differences can appear in the theoretical execution 
of some theoretical state change processes and cycles. 

In OD5-3 we defined heat regeneration. To achieve heat regeneration, 
the following two conditions must be available: 
 

- The cycle must be regeneratable (able for heat regeneration). 
Some configurations/forms of thermodynamic cycles do not allow 
heat regeneration, while others allow heat regeneration. 

- The engine must be equipped with special devices called heat re-
generator. 

 
Heat regeneration can be full 

maxR R(Q Q ),=  partial 
maxR R(Q Q 0),> >  

or zero (without regeneration “ RQ o= ”). In this last case the regeneration 

is absent and the cycle is nonregenerative cycle. A nonregenerative cycle 
can be regeneratable or nonregeneratable. 

The ratio 
maxR RQ / Q  is called the regeneration ratio and is symbolized 

by σ . It is also called the regenerator effectiveness and symbolized by ε. 
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Its value ranges between zero for the nonregenerative cycle and one for 
the regenerative cycle with full regeneration. The regeneration definitions 
about which we did not fully define yet are as follows: 

5.9.1 BASIC CONCEPTS AND DEFINITIONS 

5.9.1.1 The regeneratable cycle 

The regeneratable cycle is the cycle having a shape/configuration that  
allows using heat regeneration. Depending on their shape/configuration, 
regeneratable cycles are classified into fully reversible, fully irreversible 
and partially reversible regeneratable ones. Also, depending on the availa-
bility of the heat regenerating means (e.g., regenerator) in the engine, the 
cycle can be regenerative or nonregenerative. 

5.9.1.2 The fully reversible regeneratable cycle 

5.9.1.2.1 The first-class regeneratable cycle 

The first-class regeneratable cycle is the one that regenerates the maxi-
mum possible for its shape/configuration heat of regeneration, when exe-
cuted reversibly. In this case the heat regeneration is also reversible. 

5.9.1.2.2 The second-class regeneratable cycle 

The second-class regeneratable cycle is the one that regenerates only a 
part of the maximum possible for its shape/configuration heat of regen-
eration, when executed reversibly. In this case the heat regeneration of the 
mentioned part is also reversible. 

5.9.1.2.3 The third-class regeneratable cycle 

The third-class regeneratable cycle is the one that its shape/configuration 
does not allow any heat regeneration, when executed reversibly. In this 
case the heat regeneration process is irreversible. Therefore, we can also 
define this cycle as the regeneratable one with no ability for reversible 
heat regeneration. 
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5.9.1.3 The regenerative cycle 

The regenerative cycle is the regeneratable cycle that uses heat regenera-
tion. The engine that operates on this cycle is provided with heat regener-
ating means (e.g., regenerator). This name is mostly associated with Ran-
kine cycle. 

5.9.1.4 The nonregenerative cycle 

The nonregenerative cycle is the cycle without heat regeneration. 

5.9.1.5 The nonregeneratable cycle 

The nonregeneratable cycle is the cycle having a form that does not allow 
using regeneration. It is inevitably nonregenerative and we shall call it 
naturally nonregenerative. 

5.9.2 THE HEAT REGENERATOR 

The heat regenerator is a heat exchanger used to increase the thermal effi-
ciency of a power (engine) cycle by transferring heat—from the WF that 
is almost ready for heat rejection—to the WF requiring heat in another 
part of the cycle. Regenerators can be classified into intermittently operat-
ing regenerators (used actually in executing Stirling and Ericsson cycles) 
and continuously operating ones (used actually in Brayton regenerative 
cycle). Note that Stirling, Ericsson, and Brayton cycles will be introduced 
later. 

Intermittently operating regenerators use intermediary objects (heat  
accumulators) to transfer heat from the exporting heat object (rejecting 
heat WF) to the importing heat one (gaining heat WF). These are less uti-
lized than constantly operating regenerators. 

The continuously/constantly operating regenerators are often counter-
flow heat exchanger type, in which the state change processes of the WFs 
participating in the regeneration process are isobaric ones. 

The ideal heat regenerator is the regenerator, in which the heat transfer 
process from the rejecting heat WF to the wining heat WF is realized reversi-
bly, that is, at an infinitesimal temperature difference (see Figure 5-11).  
The most commonly used example in explaining the real/ideal heat regen-
erator is the counterflow heat exchanger in which the state change pro-
cesses of the WFs that participate in the heat regeneration are isobaric 
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ones. This heat regenerator belongs to the continuously operating regener-
ators. It is easy to be realized and to analyze its function when it operates 
as an ideal heat regenerator. When calculating this type of regenerators, 
we assume that (1) The regenerator is perfectly thermally insulated from 
the outside, and that the heat is transferred only within the cross-section of 
the regenerator in the direction of the arrows, and (2) The cooling process 
of the heated WF and the heating process of the cooled WF are isobaric ones.  

 

Figure 5.11. The ideal heat regenerator 

In addition to the continuously operating regenerator of the counterflow 
heat exchanger type that is actually used in Brayton regenerative cycle, the 
intermittently operating regenerators that use intermediate bodies (heat 
accumulators) are used effectively in the implementation of some direct 
thermodynamic cycles, where the WF state change processes during re-
generation are isochoric (Stirling cycle) or isobaric (Ericsson cycle). The 
WF heat exchange curves in any of the three mentioned cycles are equi-
distant in the horizontal direction of T_s diagram, and when you study 
these cycles you talk about the ideal regenerator. 

As we will see later, the use of the ideal regenerator of the types de-
scribed above to serve any part of cycle’s temperature interval that is 
bordered, in T_s diagram, by two curves equidistant in the horizontal 
direction obviates the use of heat reservoirs/MRs in spite of the availabil-
ity of the heat exchange processes. 

In the real regenerator, which operates with a final (not infinitesimal) 
temperature difference, heat regeneration cannot be a reversible process. 
Thus, the regeneration process, in real engine, is irreversible and the re-
generation ratio in it is inevitably less than one. 

It is clear that achieving the reversible regeneration is easy for the case 
of equal specific heats of the two heat-exchanging WFs associated with 
the equality of their flows. 
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Nt5-10: Unlike power cycles, which are subject to the Planck state-
ment, the parts of power cycles, which are subject to Thomson state-
ment, can be achieved without the contribution from any heat reser-
voir/MR or with the contribution of only one heat reservoir/MR. This 
depends on the shape and quality/kind of cycle’s part (depends on the 
participating processes in cycle’s part and on the kind of regeneration). 

5.9.3 ABOUT CYCLE’S ABILITY FOR HEAT REGENERATION 

5.9.3.1 The regeneratability condition 

From the definitions of heat regeneration and regeneratable cycle above 
(see OD5-3 and §5.9.1.1) we conclude that to be regeneratable, the cycle 
must have a configuration that theoretically allows, if the engine was 
equipped with a heat regeneration device, spontaneous transferring of an 
amount of heat (whatever small it was) from the rejecting heat WF to the 
gaining heat WF. As the spontaneous heat transfer goes from the higher-
temperature body to the lower-temperature one, the maximum temperature 
of the rejecting heat WF (the s-decreasing process) 

maxs
T ↓  must be higher 

than the minimum temperature of the gaining heat WF (the s-increasing 
process) 

mins
T ↑  by the differential dT at least. Thus, the regeneratability 

condition is as follows: 
 

HR5-4: If the maximum temperature in the WF s-decreasing process(s) 

maxs
T ↓  during the thermodynamic cycle is higher than the minimum 

temperature in the WF s-increasing process(s) 
mins

T ↑  during the same 

cycle; then the cycle is regeneratable, else it is nonregeneratable. Or: 

 max mins s
If T T Cycle regeneratable else Cycle nonregeneratable↓ ↑>   (5-63) 

5.9.3.2 Discussing the regeneratability of some direct 
thermodynamic cycles 

In Figure 5-12 eight direct (engine) cycles (they proceed clockwise) are repre-
sented in seven T_s diagrams. Four of these cycles (diagrams “c, d, and g”) 
are imaginary and except helping in explanations do not have any application: 

(a) For the cycle in sub-figure (a), the heat rejection (s-decreasing) 
process is process (4–1) and the heat addition (s-increasing) pro-
cess is (2–3), therefore, 

max 4s
T T↓ =  and 

min 2s
T T .↑ =  As 4 2T T ,>  
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then 
max min4 2s s

T T T T ,↓ ↑= > =  and according to the regeneratability 

condition (5-63), the illustrated in subfigure (a) gas turbine cycle 
with heat addition at constant volume is a regeneratable cycle. 

 

Figure 5.12. Cycle’s ability for heat regeneration 

(b) For the cycle in sub-figure (b), the s-decreasing process is process 
(4–1) and the s-increasing process is process (2–3), therefore, 

max 4s
T T↓ =  and 

min 2s
T T .↑ =  As 4 2T T ,>  then 

max mins s
T T ,↓ ↑>  and 

 according to the regeneratability condition (5-63), the Brayton  
cycle illustrated in subfigure (b) is a regeneratable cycle. 

(c) For the cycle in sub-figure (c), the s-decreasing process is  
process (3–4–1) and the s-increasing process is process (1–2–3), 
therefore, 

max 3 1s
T T T↓ = =  and 

min 3 1s
T T T .↑ = =  This means that 
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min maxs s
T T ,↑ ↓=  and according to the regeneratability condition  

(5-63), the horizontal axis elliptical cycle illustrated in subfigure 
(c) is a nonregeneratable cycle. 

(d) For the cycle in sub-figure (d), the s-decreasing process is  
process (3–4–1) and the s-increasing process is process (1–2–3), 
therefore, 

max 3s
T T↓ =  and 

min 1s
T T↑ = . As 3 1T T ,>  then 

max min3 1s s
T T T T ,↓ ↑= > =  and according to the regeneratability con-

dition (5-63), the inclined axis elliptical cycle illustrated in subfig-
ure (d) is a regeneratable cycle. 

(e) For the cycle in sub-figure (b), the s-decreasing process is process 
(4–1) and the s-increasing process is process (2–3),  
therefore, 

max min4 2s s
T T and T T .↓ ↑= =  As 4 2T T ,<  then 

max min4 2s s
T T T T ,↓ ↑= < =  and according to the regeneratability con-

dition (5-63), the Brayton cycle illustrated in subfigure (e) is a 
nonregeneratable cycle. 

(f) For the cycle in sub-figure (f), the s-decreasing process is process 
(4–1) and the s-increasing process is process (2–3), therefore, 

max 4 1s
T T T↓ = =  and 

min 2 3s
T T T .↑ = =  As 2 3 4 1T T T T ,= > =  then

max mins s
T T ,↓ ↑<  and according to the regeneratability condition  

(5-63), the Carnot cycle illustrated in subfigure (f) is a nonregen-
eratable cycle. 

(g) In cycle (1–2–3–4–1) of sub-figure (g), the s-decreasing process is 
process (1–2) and the s-increasing process is process (2–3–4), 
therefore, 

max 2s
T T↓ =  and 

min 2s
T T .↑ =  This means that 

min maxs s
T T ,↑ ↓=  and according to the regeneratability condition  

(5-63), the straight lines’ cycle (1–2–3–4–1) illustrated in subfig-
ure (g) is a nonregeneratable cycle. Also, in cycle (5–6–7–8–9–5) 
of the same sub-figure (g), the s-decreasing processes are process-
es (5–6) and (7–8), while the s-increasing processes are processes 
(6–7), and (8–9), therefore, 

max 8s
T T↓ =  and 

min 6s
T T↑ = . As 8 6T T> , 

then 
max mins s

T T ,↓ ↑>  and according to the regeneratability condition 

(5-63) the straight lines cycle (5–6–7–8–9–5) illustrated in subfig-
ure (g) is a regeneratable cycle. 

 

Thus, cycles (1–2–3–4–1) in subfigures (c, e, f, and g) are nonregen-
eratable or naturally nonregenerative. The other cycles in Figure 5-12 
are regeneratable. 
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Nt5-11: The four regeneratable cycles are not equivalent/equipollent in 
terms of the way to be followed to achieve them with full heat regener-
ation. As we shall see later: 
 

• The one illustrated in subfigure (b) requires an ideal regenerator, a 
set of heat accumulators, or a set of heat reservoirs to serve the in-
terval T2–T4 and achieve in this interval the full reversible regen-
eration. This cycle is regeneratable for all authors (see §6.9.1). 

• The one illustrated in subfigures (a) and (d) require a set of heat res-
ervoirs each to serve the interval T2–T4 and achieve in this interval 
the full reversible regeneration. The ideal regenerator is not appro-
priate for this job. Therefore, these can be executed as absolutely 
reversible (AR)—with full reversible regeneration—from the point 
of view of the traditional model/method, and cannot be so from the 
other authors’ point of view (see HD5-4 and  §5.10.3). 

• Cycle (5–6–7–8–9–5) in subfigure (g) is not reversibly regenerata-
ble and a regenerator helps in irreversibly regenerating some heat. 

 
Nt5-12: Not all cycles illustrated in Figure 5-12 are of thermodynamic 
interest. Only cycles a, b, and c are/were encountered in practice as 
ideal gas power cycles, while the Carnot cycle (f) and its reverse that 
are vital for the second law of thermodynamics is not used as ideal gas 
power and refrigeration cycles because of the impossibility of achiev-
ing/approaching ideal gas state change isothermal processes with ac-
ceptable productivity (energy/power exchange). The other cycles in 
Figure 5-12 are imaginary. 

5.10 ABOUT THE THEORETICAL REALIZATION  
OF REVERSIBLE GAS STATE CHANGE 
PROCESSES: IN BRIEF (THE FULL  
ANALYSIS IN THE SECOND VOLUME) 

5.10.1 INTRODUCTION 

Although all authors adopt the definition of the reversible process (see  
§2.4.13.1 “OD2-34A through OD2-34E”), they are with respect to the 
theoretical achieving/realizing of reversible processes and cycles are di-
vided into two groups: the first group adopts the standards of the tradition-
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al model (see §5.10.3), while the other speaks about a reversible cycle 
without heat regeneration and about another with heat regeneration. As we 
will see later, the results of reversibly executing the same cycle according 
to the standards of each of the two groups are not the same (there are a 
large number of mismatches). To avoid misunderstandings, it is preferable 
to rename the reversible cycles that are executed according to the tradi-
tional model standards. 

The explanations given in the upcoming material/topics may give the 
impression that the author assumes that all users of his book own the 
technique that allows them, at any time and wherever they were, use it 
easily and successfully but the author is sure and understands that this 
explanation is always easy to be understood but not always easy to apply. 
Therefore, the reader after understanding the idea is free to apply it as is 
comfortable to him. 

5.10.2 ABOUT THE IMAGINARY MODELS IN 
THERMODYNAMICS 

As was stated earlier (see §s 2.4.4 and 2.4.6) some imaginary models such 
as the ideal gas are successfully used in thermodynamics, which means 
that using imagination in thermodynamics is not forbidden, but we need to 
be careful in using not approved imaginary models. And may be for this 
reason a group of authors do not adopt the standards of the traditional 
model. As we shall see in the following paragraph executing a noniso-
thermal heat transfer process according to the traditional model requires 
unlimited number of heat reservoirs, which can be understood for some 
people that this imagination is a higher-degree imagination that cannot be 
thermodynamically accepted, while the required two reservoirs for execut-
ing Carnot cycle is a lower-degree imagination that can be thermodynami-
cally accepted. For us both imaginations require carefulness in using, and 
the results of each use should be carefully discussed before making con-
clusions about their thermodynamic validity (see §5.10.5) 

5.10.3 THE TRADITIONAL/CLASSICAL MODEL/METHOD FOR 
REALIZING A REVERSIBLE PROCESS 

During the explanation of the equilibrium and reversible processes above, we 
used a number of assumptions that form the traditional/classical method for 
realizing a reversible process. Its most important items are as follows: 
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1) The heat reservoir is an infinitely large body; whatever the quantity 
of heat exchanged with it is, its temperature does not change  
(see OD2-2). 

2) To achieve a reversible isothermal heat exchange process, a single 
heat reservoir that has the same temperature of the WF is needed. 

3) To achieve a reversible nonisothermal heat exchange process, an 
almost infinite number of heat reservoirs is needed. Here, each non-
isothermal nonisentropic process (cycle’s) curve (e.g., curve 1–2 in 
subfigure A of Figure 5-13) is replaced by/for a similar to stairs re-
fracted line consisting of differential/nondifferential isotherms and 
isentrops such as line 1–5–6–7–8–9–10–11–12–13–2 (see subfigure 
B of Figure 5-13), and so that the initial and final points of each 
stair lie on the original curve, while curve’s nondifferential  
isotherms and/or isentrops remain unchanged (line 2–3–4 (subfig-
ure A) remained unchanged (see subfigure B)), and thus all partial 
heat exchange processes become isothermal, and each temperature 
level will be served by a single heat reservoir that has its same 
temperature, and is able to exchange heat with the WF that has its 
temperature in both directions. A little different from the above,  
locating of the replacing refracted curve was discussed in the ex-
planation of Figure 5-8. Both replacements will lead to the same 
original curve when T dT 0Δ → →  or s ds 0Δ → → . 

 

Figure 5.13. Replacing smooth process (cycle’s) curve by/for a similar 
to stairs refracted line consisting of differential/nondifferential isotherms 
and isentrops.  

Nt5-13: To avoid misunderstanding with the reversible cycle that is in 
use in modern thermodynamic books we shall call (refer to) the re-
versible cycles executed according to the standards of the traditional 
model as the AR cycles (see the beginning of §5.9.1) and define them 
as follows: 
HD5-4: The AR cycle is the one (1) that, unless its configuration does not 
allow reversible heat regeneration, is always with full reversible heat re-
generation,D (2) that is equilibrium for all elements involved in it, (3) that 
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is free from irreversibilities, and (4) that is carried out according to the 
traditional/classical method for realizing reversible processes, where the 
WF’s heat exchange is carried out through contacting/touching it (its WF) 
sequentially, with the necessary number of heat reservoirs those/that re-
versibly exchange heat with the WF at its temperature and in the neces-
sary directions. The number of the required reservoirs exactly equals the 
number of temperature levels secreted by the mathematically acceptable 
replacement, of the original cycle’s line/path by/for a refracted line similar 
to stairs consisting of differential and nondifferential isotherms and isen-
trops. The AR cycle also complies with the definitions of the reversible 
process (see §2.4.13.1), and therefore, it is a special case of the reversible 
cycle according to the authors who do not adopt the standards of the tradi-
tional model. 
 
D. In Figure 5-12, the configuration of cycles (c, e, and f) do not al-

low any heat regeneration, while the configuration of cycle 5–6–7–
8–9–5 in subfigure g allows only irreversible heat regeneration 
(see the regeneratability condition 5-63 and §5.9.3.2). 

 
The following discussion requires introducing some (abbreviated or 

not abbreviated) parts of the comprehensive discussion done in the second 
volume those are: 

 
Nt5-14A: Cycle’s temperature levels are the unlimited-length iso-
therms (usually light-weight lines), whose temperatures are the tem-
peratures of the heat reservoirs that serve the AR cycle, while cycle’s 
mini-part is cycle’s part (cycle’s elementary Carnot cycles) limited by 
two neighboring cycle’s temperature levels. 
Nt5-14B: Cycle’s temperature mini-interval (abbreviation m-int) is 
the unlimited-width area of T_s graph that is limited by two neighbor-
ing cycle’s temperature levels. The mini-interval and the mini-part of 
the same cycle that are limited/bordered by the same temperature levels 
share the same code. 
Nt5-14C: Some mini-parts of the power AR cycles that have gaps 
and/or cavities are discontinuous. They consist of more than one ele-
mentary Carnot cycle and we shall refer to each elementary Carnot cy-
cle of them as mini-subpart and to the whole group of elementary 
Carnot cycles that share the same temperature limits as mini-part. 
 

The live/effective/actual area of a group of elementary areas of an AR 
cycle is the sum of the absolute values of its elementary areas. Therefore, 



THE SECOND LAW OF THERMODYNAMICS • 247 

HD5-4A: Regardless of the differences in numbers, areas, and entropy 
changes of their mini-subparts, two mini-parts of different same direction 
AR cycles in scale and in T_s diagram that share the same WF, the same 
mini-interval (the same upper and lower temperature levels), the same 
live/effective/actual area, and accordingly the same live/effective/actual 
width (Δs) are AR cycles’ completely equivalent mini-parts. 

Completely equivalent mini-parts are special case of completely 
equivalent Carnot cycles (see HD5-3A). 

 
HD5-5 ABR: Two neighbor AR cycle’s mini-parts (lower “i” and up-
per “j”) are briefly called ij (dual) mini-part. An ij mini-part can be (1) 
simple if the two (i and j) mini-parts of the ij mini-part are continuous 
ones and (2) complicated if at least one of the two (i and j) mini-parts 
of the ij mini-part is discontinuous one. 
 

To avoid misunderstanding in the detailed discussions of ij mini-parts 
we introduce the following: 

 
Symbol Tiij will stand for the border of mini-part (i) whose tempera-
ture is Tij. 
Symbol Tjij will stand for the border of mini-part (j) whose tempera-
ture is Tij. 
 
HD5-5A ABR: The Tij temperature level’s contacting part is the con-
tinuous/discontinuous part(s) that contacts any of or both (i and/or j) 
mini-parts. This line/part that is originally a light-weight one consists 
of (1) heavy-weight lines that are, at the same time, heat transfer pro-
cesses and mono-side contacting lines (each of them contacts its 
neighboring AR cycle’s mini-parts from one side “upper or lower”) 
and (2) medium-weight lines that are dual-side contacting parts (each 
of them contacts its neighboring AR cycle’s mini-parts from both sides 
“upper and lower”). 
 

In the following discussion we shall (1) use  the the terms introduced 
in this volume, (2) use  the terms introduced through the borrowed from 
the second volume notes Nt5-14A through Nt5-14C, and definitions HD5-
4A through HD5-5A ABR,  and (3) mainly refer to Figure 5-14, where the 
original cycle in subfigure (A) is divided into only six parts that simplifies 
the discussions on the expense of calculating accuracy. The replaced AR 
cycle (the AR cycle, after replacing its original border line by a refracted 
one according to the classical model “see §5.10.3 and HD5-4”) consists 
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of a positive integer number of reversible elementary Carnot cycles that 
depends on the configuration of the original cycle and on the required 
accuracy of its calculations. This number is six (in Figure 5-14), can be 
one (in the AR Carnot cycle), and can be a very huge number for accurate 
calculations of common case cycles. The elementary Carnot cycles, their 
vertex points, the isotherms that limit them (AR cycle’s temperature  
levels), and other elements of cycle’s diagram (in subfigure 3-14B) are 
encoded according to the system that is comprehensively explained in the 
second volume of this book. The perimeter/border of the AR cycle in sub-
figure (5-14B) is represented as usual by heavy-weight lines and consists 
of only differential and nondifferential isentrops and isotherms to which 
we shall refer as AR cycle’s elementary isentrops and isotherms. The AR 
cycle’s elementary isotherms represent the heat exchange processes 
throughout the cycle, while the elementary isotherms that lay on a particu-
lar cycle’s temperature level (e.g., Tde) represent the heat exchange pro-
cesses throughout this temperature level. The AR cycle in Figure 5-14 
consists of six mini-parts (a, b, c, d, e, and f) that are limited by the seven 
temperature levels (Tmin, Tab, Tbc, Tcd, Tde, Tef, and Tmax) of the seven heat 
reservoirs 

i minT(R , 
abTR , 

bcTR , 
cdTR , 

deTR , 
efTR , and 

i maxTR ) . Each of 

these reservoirs reversibly exchanges heat with the WF in the necessary 
directions, when WF’s temperature equals its temperature. This means 
that for a particular reservoir such as 

deTR  we can write that reservoir’s 

deTR  heat balance 
Tde

HB(R )  and WF’s heat balance 
T Tde de

netq q=  through-

out temperature level Tde are equal in absolute values and opposite in 
signs. Or  

 
T T Tde de de

HB netR q q= − = −  (5-64) 

 

Figure 5.14. The heavy-weight lines are used for the perimeters of the  
original and replacing cycles and the medium-weight ones for the common  
borders between elementary Carnot cycles 
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And as reservoir 
deTR  does not exchange heat at others than tempera-

ture level deT , 
Tde

HBR  is also reservoir’s 
deTR  heat balance throughout the 

AR cycle in subfigure 5-14B. 
Thus, the continuous cycle’s mini-part (j) in Figure 5-15 that included 

inside cycle’s temperature mini-interval (j) consists of one mini-subpart, 
while the discontinuous mini-part (i) of the same cycle in the same Figure 
5-15 consists of the three mini-sub-parts (i1, i2, and i3) that constitute three 
parts (sub-parts) of cycle’s temperature mini-interval (i). 

 

Figure 5.15. Some possible sketches (A–D) for understanding and deriving 

the heat balance 
Tij

HBR of heat reservoir 
ijTR  that serves the complicated dual 

mini-part ij of a complicated AR cycle (see HD5-1 and HD5-5). The sketches 
are drawn for the case when the cycle consists of one dual mini-part, otherwise 
the upper (4–5) and lower (8–9, 12–13 and 16–1) heavy-weight lines must dis-
appear. 

It is clear from above that (1) cycle’s temperature levels and mini-
intervals are endless; they occupy the whole width of T_s diagram, while 
cycle’s mini-parts and mini-subparts are not, and they occupy limited 
parts of temperature mini-intervals. (2) The set of light-weight tempera-
ture level’s lines plays, as the set of gridlines, assisting in reading the or-
dinates of T_s graphs. These light-weight lines carry on some of their 
parts the heavy-weight lines that represent cycle’s isothermal (heat trans-
fer) elementary processes in addition to the medium-weight lines of the 
common borders between neighboring elementary Carnot cycles, where 
the heat transfer between the WF and the heat reservoir is absent. 
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The comprehensive analyses of the most ever complicated AR cycles 
that is done in the second part of this book is based on the four possible 
sketches of a part of the AR cycle that consists of two neighboring mini-
parts (i and j) where i is the successive number of the lower mini-part and 
j = i + 1 is the successive number of the upper mini-part. Thus, we are 
supposed to expect that if the AR cycle consists of n mini-parts, i can be 
any number between 1 and n − 1. 

This comprehensive analysis leads to the following equation for cal-
culating reservoir’s 

ijT(R )  heat balance 
Tij

HB(R )  and WF’s heat balance 

T Tij ij
netq q=  throughout temperature level Tij that are equal in absolute 

values and opposite in signs. Or: 

 T T T T Tij ij ij ij ij
ijl

HB net ij el 2 1
T

R q q T s q q= − = − = − Δ = −  (5-65) 

where, in addition to that explained above, elsΔ  is the entropy change 

of an elementary heat transfer process and 
ijl

el
T

sΔ  the algebraic sum of 

the entropy changes of all elementary heat transfer processes throughout 
the temperature level Tij. For any of the ij mini-parts illustrated in Figure 

5-15, this 
ij

el
T

sΔ  equals 6 7 10 11 14 15 2 3s s s s− − − −Δ + Δ + Δ + Δ . 

Each of these four elementary heat transfer processes does not belong 
to the same mini-part in the four subfigures (e.g., Process 6–7 in subfig-
ures “A and D” belongs to mini part “j,” while it belongs to mini-part “i” 
in subfigures “B and C”). Therefore, we shall continue our discussion for 
a particular subfigure (e.g., subfigure “D”). 

In subfigure (D), state change processes 6–7, 10–11, and 14–15 be-
long to isotherm 6–3 that is the lower border of mini-part (j). Isotherm  
(6–3) consists of the six neighboring/subsequent direction isotherms  
(6–7, 7–10, 10–11, 11–14, 14–15, and 15–3), of which isotherms 7–10, 
11–14, and 15–3 are not state change processes. While in the additional 
subfigure (D) that is imaginary one and where the ij mini-part is split into 
two noncontacted/individual (i and j) mini-parts, all six parts of the lower 
border of mini-part (j) are the same direction state change processes (6–7, 
7–10, 10–11, 11–14, 14–15, and 15–3). This means that both subfigures 
(D and additional D) lead to the same calculating equation: 

 

jijT 3 6 6 3 6 7 7 10 10 11

11 14 14 15 15 3

s s s s s s s

s s s

− − − −

− − −

Δ = − = Δ = Δ + Δ + Δ +

+ Δ + Δ + Δ  (5-66) 
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The underlined parts in this equation are the dimensions of the iso-
thermal lines that represent neither actual/elementary state change process-
es nor the live/effective/actual width (Δs) of cycle’s mini-part. When we 
group these dimensions in the left side, Equation (5-66) transforms into: 

 
jij7 10 11 14 15 3 T 6 7 10 11 14 15s s s s s s s− − − − − −Δ + Δ + Δ = Δ − Δ − Δ − Δ  (5-67) 

The value of these underlined dimensions can be obtained from the 
discontinuous upper border of mini-part i of subfigure (D) that consists of 
the three continuous sub-borders 2–3–15, 14–11, and 10–7, of which only 
part (2–3) is actual/elementary state change process (the other isothermal 
directional lines (3–15, 14–11, and 10–7) are not actual/elementary state 
change processes). Thus, the other calculating equation that can be ob-
tained from both subfigures (D and additional D) is: 

iijT 3 2 15 3 11 14 7 10

2 3 3 15 14 11 10 7

s (s s ) (s s ) (s s ) (s s )

s s s s− − − −

Δ = − + − + − + −

= Δ + Δ + Δ + Δ
 

        Or 
iij3 15 14 11 10 7 T 2 3s s s s s− − − −Δ + Δ + Δ = Δ − Δ  (5-68) 

As 7 10 10 7 11 14 14 11 15 3 3 15s s , s s and s s− − − − − −Δ = −Δ Δ = −Δ Δ = −Δ , the left 

sides of Equations (5-67) and (5-68) are equal in absolute value and oppo-

site in sign or ( )7 10 11 14 15 3 3 15 14 11 10 7s s s s s s− − − − − −Δ + Δ + Δ = − Δ + Δ + Δ ; there-

fore, their right sides are also equal in absolute value and opposite in sign. 

Or ( )jij iijT 6 7 10 11 14 15 T 2 3s s s s s s− − − −Δ − Δ − Δ − Δ = − Δ − Δ  or: 

jij iij

ijl

T T 2 3 6 7 10 11 14 15 el
T

s s s s s s s− − − −Δ + Δ = Δ + Δ + Δ + Δ = Δ or (see the leg-

end of Equation 5-65): 

 jij iij

ijl

el T T
T

s s sΔ = Δ + Δ  (5-69) 

Applying this equation in Equation (5-65) we obtain: 

 ( )
T T Tij ij ij

jij iij T Tij ij
ijl

HB net

ij el ij T T 2 1
T

R q q

T s T s s q q

= − = −

= − Δ = − Δ + Δ = −


 (5-70) 

is valid for any dual ij AR cycle’s mini-part. 
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In this equation 
i jT  is always positive and in such calculations it can-

not be zero, while is 0Δ =  for i j minT T=  and js 0Δ =  for i j maxT T= . 

Therefore, T lij
netq according to the sum ( )jij iijT Ts sΔ + Δ  value can be posi-

tive, negative, or zero. 

Nt5-15: It is obvious from the above that the traditional model is an 
imaginary one, and it cannot be used in thermodynamic actual calcula-
tions. But it is much helpful in understanding, explaining, and discuss-
ing complicated aspects, especially when (1) dealing with the compari-
sons between power cycles and (2) analyzing these cycles qualitatively. 

5.11 SUMMARY 

All topics of this chapter are traditional; some of them are usually dis-
cussed topics under the title “The second law of thermodynamics” such as: 

(1) The second law of thermodynamics, (2) the thermodynamic cycle 
(direct and reverse) and their evaluation, (3) the thermal efficiency of the 
ideal direct cycle, (4) the Carnot cycle, (5) the reverse Carnot cycle, (6) 
introduction to Carnot theorem (Existing formulations of Carnot theory), 
(7) the entropy is a property for all gases, and (8) the heat regenerator. 

While some of the others are valuable traditional topics that are 
skipped from today’s thermodynamics such as (see Nt5-13) the traditional 
model for realizing a reversible process through which the discussion of 
(1) reversible and irreversible gas state change processes and (2) heat  
regeneration and the regeneratability of cycles. 

Based on the following definition of/for the heat reservoir: 
“The heat reservoir is an infinitely large body; whatever the quantity 

of heat exchanged with it is, its temperature does not change (see OD2-2)” 
 
The AR cycle is defined as follows. 
 

HD5-4: The AR cycle is the one (1) that, unless its configuration does 
not allow reversible heat regeneration, is always with full reversible heat 
regeneration, (2) that is equilibrium for all elements involved in it, (3) 
that is free from irreversibilities, and (4) that is carried out according to 
the traditional/classical method for realizing reversible processes, where 
the WF’s heat exchange is carried out through contacting/touching it (its 
WF) sequentially, with the necessary number of heat reservoirs 
those/that reversibly exchange heat with the WF at its temperature  
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and in the necessary directions. The number of the required reservoirs 
exactly equals the number of temperature levels secreted by the mathe-
matically acceptable replacement, of the original cycle’s line/path by/for 
a refracted line similar to stairs consisting of differential and nondiffer-
ential isotherms and isentrops. The AR cycle complies also with the def-
initions of the reversible process (see §2.4.13.1) and therefore it is a 
special case of the reversible cycle according to the authors who do not 
adopt the standards of the traditional model. 
 

The AR cycle is discussed in detail in this and the following chapters 
because it is very helpful (1) in graphical comparisons between power 
cycles and (2) in qualitative discussions of power cycles. All basic discus-
sions in this chapter show that we are able to create a nonregeneratable 
AR cycle that is completely equivalent to any ideal gas AR power cycle. 
This creation as was comprehensively stated (dealt individually with each 
cycle’s mini-part that is located between two neighboring isotherms) is 
mostly time consuming and therefore unless this creation is simplified, in 
the sixth chapter, it will not have any chance for practical application. 

Because of the limited size of volume (I) of this book, the following 
changes were done on this chapter: 

 
A) The main paragraph “5-10-3 the traditional/classical mod-

el/method for realizing a reversible process” that consisted of an 
untitled introduction, two subparagraphs, and many sub-
subparagraphs was briefed to become a paragraph with no branch-
es that does not include all derivations of the original paragraph 
but includes all its results. It has the same original title. The dis-
cussions and derivations that were cut off this briefed paragraph 
“5-10-3”are moved to the second volume. They relate to: 

 
• HR5-7: The regenerated heat throughout any temperature level 

(Tij) of an AR cycle equals the smaller between the WF rejected 
and gained heats. Therefore, temperature levels that do not in-
clude both s-decreasing and s-increasing elementary processes are 
nonregeneratable because qR (the smaller between the WF rejected 
and gained heats in these levels) equals zero. Concerning the heat 
reservoir it loses heat when the WF gained heat is greater than its 
rejected heat, while it gains heat when the WF rejected heat is 
greater than its gained heat and it converts into an ideal heat  
accumulator when the WF rejected and gained heats are equal. 
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• HR5-8: All partial (elementary partial) cycles that resulted from 

partitioning (sequential partitioning) of the area of a direct cycle 
are direct ones and that resulted from partitioning the area of an 
indirect cycle are indirect ones. For the elementary Carnot cycles 
of the AR cycle, this rule performs into “The elementary Carnot 
cycles of an AR cycle are the same direction as their original 
one.” 

• HR5-9: Simple AR cycles (see HD5-1), which consist of only sim-

ple fully contacted ij mini-parts, are always without reversible 
heat regeneration. The simple AR cycle is with reversible heat re-
generation if at least one of its simple ij mini-parts is partially 
contacted or not contacted one. In common, AR cycles, which con-
sist of only nonregenerative ij mini-parts, are always without re-
versible heat regeneration. The AR cycle is with reversible heat 
regeneration if at least one of its ij mini-parts is with heat regen-
eration. 

 
B) Paragraphs “5-10-4 The absolute equipollency between thermody-

namic cycles” and “5-10-5 About the maximum possible thermal 
efficiency of a power cycle” were removed as they were moved to 
the second volume. And we drive here from them the following: 

 
• HD5-10: The absolutely equivalent/equipollent cycles are the 

completely equivalent cycles, which share the same value of the 
full reversible heat regeneration. 

• HR5-11: The thermal efficiency of any power thermodynamic cy-
cle that is executed with maximum ever heat regeneration  
between temperatures Tmax and Tmin equals the ratio 

max min max(T T ) / T .−  
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