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ABSTRACT 

 To produce geopolymer concrete (GPC), fly-ash (FA) like waste material has been effectively utilized 

by various researchers. The laboratory methods to find the compressive strength (𝑓𝑐
′) of fly-ash based 

geopolymer concrete (FGPC) are expensive, time-consuming, and require skilled personnel. In this research, 

the soft computing techniques known as gene expression programming (GEP) were executed to deliver an 

empirical equation to estimate the 𝑓𝑐
′ of FGPC. To build a model, a consistent, extensive and reliable data base 

is compiled through a detailed review of the published research. The compiled data set is comprised of 298 𝑓𝑐
′ 

experimental results. The 10 utmost dominant parameters are counted as explanatory variables, in other words, 

the extra water added as percent FA (%𝐸𝑊), the percentage of plasticizer (%𝑃), the initial curing temperature 

(𝑇), the age of the specimen (𝐴), the curing duration (𝑡), the fine aggregate to total aggregate ratio (𝐹 𝐴𝐺⁄ ), the 

percentage of total aggregate by volume ( %𝐴𝐺), the percent SiO2 solids to water ratio (% 𝑆/𝑊) in sodium 

silicate (Na2SiO3) solution, the NaOH solution molarity (𝑀), the activator or alkali to FA ratio (𝐴𝐿 𝐹𝐴⁄ ), and 

the Na2SiO3 to NaOH ratio (𝑁𝑠 𝑁𝑜⁄ ). A GEP empirical equation is proposed to estimate the 𝑓𝑐
′ of FGPC. The 

accuracy, generalization, and prediction capability of the proposed model was evaluated by performing 

parametric and sensitivity analysis, applying statistical checks, and then compared with non-linear and linear 

regression equations. The performance index (𝜌) for training set and validation set approaches to zero, 

witnesses the better GEP model. In the validation stage, the 𝜌 reveals that GEP model is 53% and 46% better 

than linear and non-linear regression models respectively. The model correctly meets the appropriate 

requirements for external validation considered. The validation of the proposed GEP model via experimental 

results shows that it possesses higher generalization and predictive capability and is appropriate to practice in 

the preliminary design of FGPC according to the Pakistani environment. 

Keywords: waste material; fly-ash; gene expression programming (GEP); geopolymer concrete (GPC); 

compressive strength; regression analysis 
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CHAPTER 1  

INTRODUCTION 

1.1. Background 

 Fly ash has gained an increasing attention recently as their use improves the physical and 

mechanical properties of concrete. Therefore, it has been the subject of interest for many researchers 

since a decade.  As a result, numerous theoretical and empirical methods have been proposed to 

determine the slump, compressive strength, tensile strength, elastic modulus and flexural strength of 

different fly ash based geopolymer concretes (FGPC). Compressive strength is considered to be the 

principal factor in the mix design of geopolymer concrete production. 

The most reliable method for determining the stated properties of FGPC is from results of laboratory 

tests, however, such tests are expensive, time consuming and require the availability of skilled 

personnel to conduct them. In addition, concrete in test cylinder specimens may differ from that in 

the actual structure due to different curing techniques and environment. Therefore, the properties of 

FGPC are very often predicted and used for design. Different researchers used various artificial 

intelligence techniques (AI) to predict the properties of FGPC. The gene expression programming 

(GEP) is one of the latest AI technique that has been employed for the to predict the compressive 

strength of FGPC considering the most sensitive parameters.   

1.2. Problem Statement/Justification for the Selection of Topic 

 Globally the concrete is the second material used universally next to the water, as construction 

is growing vastly throughout the globe. Each year, through the globe 25 billion tons of concrete are 

manufactured. The Ordinary Portland Cement (OPC) is an important ingredient used in the 

production of concrete. As per the present world statistics, every year around 2.6 billion Tons of OPC 

are required. This quantity will be increased by 25% within a span of another 10 years. But the 

manufacture of OPC is carried with an adverse effect. To manufacture one ton of OPC, one ton of 
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carbon dioxide is emitted to the atmosphere, creates an alarming situation to the environment. Since 

the Limestone is the main source material for the OPC an acute shortage of limestone may come after 

25 to 50 years.  

 Moreover, in the production of OPC not only a huge amount of energy is released, but it also 

consumes natural resources significantly.  One ton of OPC production consumes 4GJ of energy. For 

sustainable development, we need to develop an alternative binder to produce concrete. At the same 

time, the large quantity of fly ash generated around the globe is not used effectively and mostly 

disposed into landfills. As geopolymer concrete doesn’t require cement utilization, thus the 

manufacturing of cement will be decreased which leads to the minimization of environmental 

pollution caused by the emission of carbon dioxide. We can address these issues through the 

production of geopolymer concrete by arranging them. 

Geopolymer binder = fly ash from thermal industries + chemical supplements 

 Extensive research is carried out on the production of FGPC. Though there no effective and 

proper mix design procedure developed till now. The mechanical properties of FA-based GPC 

critically depends on several parameters like the extra water added as percent FA (%𝐸𝑊), the 

percentage of plasticizer (%𝑃), the initial curing temperature (𝑇), the age of the specimen (𝐴), the 

curing duration (𝑡), the fine aggregate to total aggregate ratio (𝐹 𝐴𝐺⁄ ), the percentage of total 

aggregate by volume ( %𝐴𝐺), the percent SiO2 solids to water ratio (% 𝑆/𝑊) in sodium silicate 

(Na2SiO3) solution, the NaOH solution molarity (𝑀), the activator or alkali to FA ratio (𝐴𝐿 𝐹𝐴⁄ ), the 

sodium oxide (Na2O) to water ratio (𝑁 𝑊⁄ ) for preparing Na2SiO3 solution, and the Na2SiO3 to NaOH 

ratio (𝑁𝑠 𝑁𝑜⁄ ) [13,28–35]. We need to formalize the properties of GPC. In this research, one of the 

artificial intelligences (AI) techniques, gene expression programming (GEP) will be used to construct 

a mathematical model for the slump, compressive strength, tensile strength, flexural strength, elastic 

modulus FGPC.  
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1.3. Objectives 

 The utilization of geopolymer concrete made of fly-ash like waste, is on rise since last two 

decades but its application in the construction industry is still limited due to the anomalous behavior 

of the mix proportion variables. Also, extensive literature is available on the experimental 

determination of the compressive strength of FGPC but yet no method is available to estimate the 

compressive strength of FGPC based on mix proportion with maximum variables. However, this 

study utilizes AI techniques as alternate to predict compressive strength using expensive experimental 

regime. The objectives of this research can be summarized as follow: 

I. To construct a widespread data base having compressive strength as response parameter and 

employ the GEP technique for determining a model that can accurately predict the 

compressive strength FGPC.  

II. To validate the model using the experimental data in the validation set via different statistical 

metrics, external validation criterion suggested in literature, sensitivity analysis, and 

parametric analysis. 

III. To verify the accuracy of the GEP model by performing experiments on FGPC casted under 

Pakistani environment.  

1.4. Fly Ash Production in Pakistan 

 The production of fly ash in Pakistan is increasing day by day. If we are associated with the 

construction manufacturing material then the addition of the fly ash is the right option. we can buy it 

in various kinds of by-products in Pakistan. Many thermal power stations are producing a large 

amount of fly ash. We can easily find the suppliers of fly ash in Islamabad, Karachi, and Lahore 

situated in Pakistan. Also, it is found in some parts of Sindh and Baluchistan province. 5 Star Mining 
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fly ash available in Pakistan is of high-quality. Table 1.1 shows the province wise coal production in 

Pakistan. Around 185 billion tons of coal can be produced throughout Pakistan.   

Table 1.1. Coal production in Pakistan 

Province Coal production per year (Billion tons) 

Sindh 184.623 

Balouchistan 0.235 

Punjab 0.217 

Khyber Pukhtoon-khwa 0.092 

Azad Kashmir 0.009 

Total 185.175 

 FGPC offers several economic benefits over OPC. The cost of one ton of fly ash is only a 

small fraction (if not free in some parts of the world) of the cost of one ton of OPC. FGPC production 

is carried out along with the use of different chemicals supplements. The most effective chemicals 

being used in the production of FGPC are sodium hydroxide solid (NaOH) and sodium silicate 

solution (Na2SiO3). In Pakistan, based on the current bulk cost of Na2SiO3 and NaOH, we can estimate 

that the cost of chemicals supplements needed to react one ton of fly ash is approximately PKR 6000. 

This is significantly smaller than the current price of OPC. 

 Besides, the appropriate usage of one ton of fly ash earns one carbon-credit that currently has 

a redemption value of about PKR 3500.  Based on the previous researches, one-ton fly ash can be 

utilized to manufacture approximately 2.5 cubic meters of good quality FGPC, and hence earn 

monetary benefits through carbon-credit trade. This carbon credit significantly adds to the economy 

of Pakistan offered by the production of FGPC. And the bulk cost of chemicals needed to manufacture 

this concrete is cheaper than the bulk cost of one ton of OPC.  
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 Given the fact that fly ash is considered as a waste material, the FGPC is, therefore, cheaper 

than the OPC. The special properties of FGPC can further enhance economic benefits. In all, there is 

so much to be gained by using geopolymer concrete. 

1.5. Advantages 

The superior properties of FGPC lead to vast advantages set at room temperature;  

I. The compressive strength of FGPC is high compared to the OPC. The compressive strength 

of geopolymer concrete is about 1.5 times more than that of the compressive strength with the 

OPC concrete, for the same mix. 

II. The geopolymer Concrete showed good workability as of the OPC Concrete.  

III. In high-performance concrete, it can improve both the strength and durability properties of 

the concrete. 

IV. The FGPC has a higher resistance to all inorganic solvents, as geopolymer materials do not 

generate any dangerous alkali-aggregate reaction, even in the presence of high alkali content. 

Eventually saves the repair cost of the builder.  

V. It Keeps house, building or other industrial areas warm in winter and cool in summer because 

it is heat resistant.  

VI. It contains water resistance, dampness and seepage keep the buildings and homes walls 

presentable.  

VII. It is lightweight thus decreasing the cost in steel structure because it allows good compressive 

strength. 
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VIII. The drying shrinkage and creep of FGPC are small, hence reduces the tensile stresses in 

concrete. Eventually leads to economic benefit. 

IX. The overall cost of FGPC is significantly lower than OPC concrete if it is produced in bulk.  

X. The performance of geopolymers is better than the organic polymers in terms of fire 

resistance, durability under ultraviolet light, and did not involve any toxic substances. 

1.6. Areas of Application 

 In the short term, there is a large potential for FGPC applications for bridges, such as precast 

structural elements and decks as well as structural retrofits using geopolymer-fiber composites. 

Geopolymer technology is most advanced in precast applications due to the relative ease in handling 

sensitive materials (e.g., high-alkali activating solutions).  

FGPC can be used in the construction of pavement, sand replacement, cement alternatives, 

and tuff tiles. Moreover, we also use it in lightweight bricks and blocks. Furthermore, its use in 

making concrete slabs, road embankments, soil stabilization, and land files is also worthy. 

 The FGPC can also be used in the manufacture of railway sleepers, as its engineering 

performances are excellent, and the drying shrinkage was small. FGPC are used to strengthened 

concrete structures as well as geopolymer coating to protect the transportation infrastructures. The 

geopolymer composites have been successfully applied to strengthen reinforced concrete beams.  

1.7. Outline of Thesis 

 The present research study is an effort to predict the mechanical properties of fly-ash based 

geopolymer concrete by use of gene expression programming. The study includes five chapters; 

Introduction, Literature Review, Research Methodology, Results, Analysis and Discussion, in the end 

the main findings of the study are presented along with suggestions for future research. 
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 Chapter 1 identifies the studied problem in relevance to the national needs. It includes the 

scope and objectives of the research. A brief description of what will be covered in each chapter is 

included.  

 Chapter 2 covers the detailed literature review of the production of fly-ash, its utilization in 

the construction industry, and the use of artificial intelligence technique namely gene expression 

programming (GEP) to develop an effective and accurate GEP based model for the estimation of 

compressive strength of FGPC.  

 Chapter 3 covers the methodology followed in this research. Which includes the collection of 

experimental data from the peer reviewed published articles, the division of data, and the initial 

statistics of data. This chapter also explain the steps that are carried out to develop the GEP model. 

This includes the selection of input and output variables and pre-processing and determination of 

GEP model’s parameters. It also includes the details of experimental setup.  

 Chapter 4 covers the overall results and discussion of the research. Which includes the 

translation of the expression tree into a mathematical expression for the development of a GEP model 

for the compressive strength of FGPC, performance evaluation of the developed model via statistical 

criteria and the selected external validation criteria, and the analysis of model through sensitivity and 

parametric study. In the end the performance of the model is also evaluated against linear and non-

linear regression models.  

 Chapter 5 summarizes the main conclusions of this work and some suggestions for further 

research and development. 



8 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Utilization of Fly Ash in Concrete Production 

 According to a report published by United Nations, the population of world is increasing at a 

rapid rate and is expected to reach 9.7 billion by year 2050 [1]. The increase in population is 

proportional to spike in the construction activities [1]. The construction industry is the largest 

consumer of world’s energy (approximately one third of the total energy consumption) and 

responsible for 30% of global carbon dioxide (CO2) emission [1]. The production of 1 ton of OPC 

and concrete, which are the most consumed man-made material releases 0.73-0.85 and 0.05-0.13 tons 

of CO2 to the environment, respectively [1].  

 Therefore, the application of green concrete is considered as a prominent factor to reduce 

global CO2 emissions and negative environmental impacts [1]. Green concrete utilizes supplementary 

cementitious materials (fly ash, calcined clay or ground granulated blast furnace slag) as low carbon 

alternatives to OPC [1]. The pozzolanic material from agricultural and industrial by-products, for 

example, silica fume, fly ash, metakaolin and rice husk ash (RHA) has received increasing attention 

recently, as their utilization improves the physical and mechanical properties of the mixed concrete 

cement, the expense and the decrease of negative ecological impacts [2, 3]. 

 Fly ash (FA) is the unburned leftover residue from thermal coal plants [1]. Which is 

transported by gases emitted from the burning zone in the boiler. FA is collected through mechanical 

or electrostatic separator [2]. Annually around 375 million tons of FA is produced throughout the 

globe, with a disposal cost as high as $20–$40 per ton [3]. It is dumped into landfills in sub-urban 

areas [4]. However, dumping tons of FA exclusive of treatment sets off a malignant impact on the 

green environment [5]. The hazardous materials in FA like silica, alumina, and oxides such as a ferric 
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oxide (Fe2O3) are intervening factors in water, soil, and air pollution. This ultimately leads to health 

issues and different geo-environmental problems [6,7]. A good waste management employment is 

desirable for the sustainability of a safe environment [8]. FA, if not properly disposed of, will affect 

the whole ecological cycle. Ultra-fine particles of FA act in the same way as poison when they reach 

the respiratory system. Consequently, causing physiological disorders and other related health issues 

like cancer, hepatic disorder, anemia, dermatitis, and gastroenteritis. FA pollutes surface and 

underground water which stresses aquatic life and causes skin diseases and diarrhea [7]. 

 For every human about three tons of concrete is produced [11]. Around 25 billion tons of 

concrete is manufactured every year globally [12]. According to current world stats, approximately 

2.6 billion tons of cement is produced per year. This will rise by 25 percent in the next 10 years [13]. 

However, the manufacturing of cement has an adverse effect on the environment. One ton of CO2 is 

emitted into the air to produce one ton of cement. This creates an alarming situation for the 

environment. Limestone is the major resource of ordinary Portland cement. Severe limestone 

unavailability could occur in 25–50 years [14,15]. The worldwide construction industry consumes 

one-third of the entire resources and is liable for 30 percent CO2 release globally. Thus, production 

of green concrete is important to reduce adverse environmental effects [16,17]. FA can be used as 

supplementary material in the cementitious matrix. It has been utilized by researchers to make green 

concrete [18–21]. FA utilization in the construction industry is a smart choice as it will reduce the 

usage of cement and the harmful effect of its disposal into landfills. 

 The plentiful availability of fly ash around the world creates the opportunity to use this 

burning coal product, as a substitute for OPC to produce concrete. When used as a replacement for 

partial OPC, in the existence of water and room temperature, calcium silicate hydrate (C-S-H) gel is 

formed after the reaction of fly ash and calcium hydroxide. The advancement in the application of 
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high-volume fly ash concrete, empowered the substitution of OPC up to 60% by mass. Which is 

considered as a noteworthy improvement. However, 20% is the optimum amount reported [3, 4].  

 Geopolymer is a binder that can be generated via polymeric reaction of alkaline liquids with 

the aluminum and the silicon in source materials of the geological origin or by-product materials like 

rice husk ash and fly ash [3]. The authors recommended that pozzolans like fly-ash may be activated 

via alkaline liquids to form a binder and thus completely replace the use of OPC in concrete [3]. For 

now, the main contents to be activated are silicon and calcium in the fly-ash [3]. The fundamental 

binder produced is a C-S-H gel, as the result of the hydration process [3].  

 Extensive research is available regarding the use of geopolymer technology to make fly-ash 

based geopolymer concrete (FGPC). Fly-ash geopolymer binder shows excellent short and long-term 

mechanical properties [3]. Different researchers reported that compressive strength, split tensile 

strength, flexural strength and elastic modulus of geopolymer concrete depends on different 

parameters [3]. Like the type of alkaline activator, the temperature of the curing regime, the time 

required for curing etc. [3].  

 Researchers have reported that for an acceptable polymerization, the critical parameters that 

need to be controlled are the extra water added as percent FA (%𝐸𝑊), the percentage of plasticizer 

(%𝑃), the initial curing temperature (𝑇), the age of the specimen (𝐴), the curing duration (𝑡), the fine 

aggregate to total aggregate ratio (𝐹 𝐴𝐺⁄ ), the percentage of total aggregate by volume ( %𝐴𝐺), the 

percent SiO2 solids to water ratio (% 𝑆/𝑊) in sodium silicate (Na2SiO3) solution, the NaOH solution 

molarity (𝑀), the activator or alkali to FA ratio (𝐴𝐿 𝐹𝐴⁄ ), the sodium oxide (Na2O) to water ratio 

(𝑁 𝑊⁄ ) for preparing Na2SiO3 solution, and the Na2SiO3 to NaOH ratio (𝑁𝑠 𝑁𝑜⁄ ) [13,28–35].  

However, Van Jaarsveld et al. [102] studied that elevated temperature curing for a long time may 

deteriorate the structure of hardened material, that reveals that high temperatures for extended periods 

may debilitate the structure of solidified material. 
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 The researchers narrated that the in comparison with other parameters, the curing temperature 

greatly affect the compressive strength of geopolymer concrete. The compressive strength is 

increased with the increase curing temperature. There is a significant increase in compressive strength 

to 60 0C temperature and 48 hours curing time.  The compressive strength cured at 60 0C for 24 hours 

did not alter with the age and stayed steady at roughly 60 MPa, because of the quick pace of 

polymerization reaction [63]. 

 The author’s investigated that the compressive strength of fly-ash based geopolymer concrete 

increases significantly with the increase of H2O-to-Na2O molar ratio, while the effect of Na2O-to-

SiO2 molar ratio is insignificant. Additionally, the compressive strength gets decreased with the 

increase of water to geopolymer solid ratio [63]. 

 Modulus of elasticity is one of the important parameters to access structural performance. The 

authors described that due to heat curing elastic modulus and long-term compressive strength of fly-

ash based FGPC was indicated as 82% and 66% of that OPC concrete respectively [67]. They 

observed that elastic modulus and compressive strength increases with the increase of curing 

temperature up to 75 0C for 24 hours. Furthermore, the authors also indicated that the elastic modulus 

of heat-cured FGPC was increased due to the presence of silicate ions in the activator solution, while 

the bond and shrinkage properties are adversely affected [67].  

 The authors observed that, although alkali-activated natural pozzolan (AANP) mixes gained 

lower values of static modulus of elasticity than OPC mixtures during first 14 days, the values were 

about 5–20% higher than OPC mixes in long-term tests [24]. Thus, a wide variation in the modulus 

of elasticity of geopolymer concrete was observed in the previous studies [24]. 

 The utilization geopolymer concrete made of FA-like waste, is on the rise for the last two 

decades as lesser amounts of cement are used in geopolymer concrete (GPC) [22–26]. FA has been 

used effectively in the construction industry but its application is still limited due to the anomalous 
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behavior of FA [27]. FGPC is adopted extensively by builders. No method is available to estimate 

the mechanical properties of FGPC based on a mix ratio with maximum variables considered in this 

research. The mechanical properties of FGPC critically depends on several parameters like the extra 

water added as percent FA (%𝐸𝑊), the percentage of plasticizer (%𝑃), the initial curing temperature 

(𝑇), the age of the specimen (𝐴), the curing duration (𝑡), the fine aggregate to total aggregate ratio 

(𝐹 𝐴𝐺⁄ ), the percentage of total aggregate by volume ( %𝐴𝐺), the percent SiO2 solids to water ratio 

(% 𝑆/𝑊) in sodium silicate (Na2SiO3) solution, the NaOH solution molarity (𝑀), the activator or 

alkali to FA ratio (𝐴𝐿 𝐹𝐴⁄ ), the sodium oxide (Na2O) to water ratio (𝑁 𝑊⁄ ) for preparing Na2SiO3 

solution, and the Na2SiO3 to NaOH ratio (𝑁𝑠 𝑁𝑜⁄ ) [13,28–35]. This creates ambiguity in the prediction 

properties of GPC.  

 Moreover, a rapid spike in the use of soft computing techniques to build an empirical model 

has been observed recently [36,37]. Gene expression programming (GEP) is one of the popular soft 

computing methods utilized by various researchers in several engineering perspectives. Actual GEP 

is inspired by the reproduction of DNA molecules at gene level [38]. Tanyildizi et al. [39] predicted 

different mechanical properties of lightweight concrete subjected to elevated temperature. The author 

projected two different GEP models with chromosome levels equal to 30, head size 8, and number of 

genes equal to 4. Multiplication and addition are the two different linking functions used. The 

execution time of the GEP depends on the chromosome level, which dictates the size of the 

population. Genetic operators help in the genetic variation of the chromosomes. The chromosome 

that delivers the best results is forwarded to subsequent generations and the process is repeated until 

the achievement of an acceptable fitness. 

 Recently, different researchers use the GEP for the estimation of various mechanical 

characteristics of different types of concrete. The researchers use experimental and literature-based 

data for the prediction of compressive strength of sugar cane bagasse ash (SCBA) concrete via GEP 
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[36]. Furthermore, the authors proposed a formula using GEP for estimating the axial capacity of 

concrete filled steel tube (CFST) with just 277 instances [37]. Furthermore, Nour et al. [40] worked 

with GEP algorithms for the estimation of compressive strength of CFST containing recycled 

aggregates. 

2.2. Application of Artificial Intelligence Technique in Civil Engineering 

 The latest research in the extent of Artificial Intelligence (AI) methods contributed to the 

formulation of consistent, reliable and accurate models to the problems in structural engineering 

[79].Artificial neural networks (ANN), fuzzy logic, genetic algorithms (GA), and genetic programm

ing (GP) use AI techniques built on natural tools [80-101]. In these methods, training of the available 

data resolves the problem. The configuration detection capabilities of the AI methods (support vector 

regression or ANN) can lead to the generalization of complicated patterns, therefore can be applied 

in the vast field of engineering. Though, several of these methods involve a prebuilt base type (best 

model architecture) and thus need an enormous memory. By employing such approaches, the 

presence of an enormous sum of hidden neurons often allows it impossible to establish a realistic 

relation between the outcome and the inputs. By means of ANN, the strength of rice husk ash (RHA) 

based concrete were predicted [100]. The strength predictive model is highly correlated with the 66 

experimental datasets. ANN was used for the establishment of mix proportion of self-compacting 

concrete (SCC) [23]. In these models, however, there is a realistic correlation, yet no empirical 

expression was projected for practicable use. That is because of the complexity of the ANN model 

structure, and is considered as the main obstruction in the wide-scale adoption of ANN approach [92]. 

From the comparative study of ANN and GP approach to predict concrete slabs punching shear 

strength, the author finds that the ANN models become overfitted when evaluated by comparison 

with values of the design code. This is attributable to their complex structure [25]. Also, the 

multicollinearity makes an issue in these methods. Updated ANN technique likewise extended to 

assess silica fume concrete compressive strength (𝑓𝑐𝑐) and elastic modulus (𝐸𝑐) of concrete 
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incorporates recycled aggregate [101]. Because of the complexities of the relationship proposed, a 

devoted graphical interface was created for the model functional usage [101].  

 A strong soft computing technique, Genetic programming (GP), is valuable as it ignores 

previous form of established relation for the development of the model [102, 103]. An extension of 

GP, Gene expression programming (GEP), to encode a small program, uses easy, fixed length linear 

chromosomes [104]. GEP has an advantage that simple mathematical expression can represent 

outcome that is appropriate for practicable usage of better predictive accurateness. It has currently 

used as an alternate to the common techniques of prediction especially in the civil engineering field 

[105-114]. The establishment of these models was utilized for the prediction of the influence of the 

class of cement strength on 𝑓𝑐
′ of cement mortar, concrete split tensile strength (𝑓𝑠𝑡), self-compacting 

concrete hardened and fresh properties, design of lightweight concrete, 𝑓𝑐
′ of concrete including rice 

husk ash and mechanical properties of lightweight concrete incorporating silica fumes. 

 As the compressive strength is considered as the primary factor in the analysis and design of 

concrete structure. So, the Researchers focused on the experimental route to find out the fly-ash based 

GPC’s compressive strength [36-78]. In order to save time, cost and to sustain the use of fly-ash in 

the building construction industry, the development of accurate and reliable expression is needed in 

order to relate the mix proportion and compressive strength of GPC made with fly-ash. A 

comprehensive and thorough revision of the literature discloses that there are few empirical models 

to predict the compressive strength of fly-ash based GPC [47, 53, 115]. Though, the predictions of 

such empirical models are confined to a specific data base i.e., to the corresponding study 

experimental results. So, the prediction from such models is not viable and accurate outside the 

corresponding database file. So far, no empirical model exists to effectively predict the compressive 

strength of fly-ash based GPC built on GEP. In order to fill this research gap, the GEP approach is 

employed to establish generalized empirical equation for the prediction of the 𝑓𝑐
′ of fly-ash based 

GPC with a tolerable error. A detailed database has been developed on the basis of worldwide 
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published research. The comprehensive database accomplishment guarantees that the models are 

consistent and accessible for the data that is not exercised in the model’s establishment. The model’s 

performance is also verified by observation of the statistical error, parametric analysis, sensitivity 

checks and linear and non-linear regression analysis.  

2.2.1. Overview of Genetic Programming (GP) 

 Koza  proposed GP, in order to provide an alternate for fixed length binary strings (used in 

GA) [116]. It is based on the realistic usage of the genetic and natural selection idea [79, 104]. The 

induction of nonlinear parse tree structure makes it an adaptable programming technique. It is indeed 

an exact technique independent of the domain, where a computer code is structured to address an 

issue dependent on the Darwinian reproductive principle and equivalent to the existing genetic 

operations like reproduction, mutation and crossover [114, 116]. A mechanism is formulated in the 

reproduction phase to decide which programs will diminish. At the execution phase, a particular 

proportion of trees, displaying the unpleasant fitness, are put down, while the remaining trees filled 

up the population as per the chosen procedure [105, 114]. In the mutation process the model is secured 

from premature convergence [114]. Figure 2.1 illustrates the method to develop a computer program 

through GP approach to solve a problem.  

 Five main parameters to be defined throughout the GP methodology are the collection of the 

terminals (the constants and the input variables), the set of primitive functions (domain-explicit 

functions), the fitness evaluation, the control variables (cross-over and population size etc.) and the 

termination criteria followed by result designation method [114, 116]. Three genetic operators were 

identified in GP, but just tree crossover is used practically, thus creates an enormous parse trees 

population [116]. One more limitation of GP is ignorance of the independent genome. The GP uses 

non-linear structures that acts as both the genotype and the phenotype make it unlikely to produce 

basic and simplistic expressions [104]. 
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Figure 2.1. Flow chart of the genetic programming (GP) algorithm [37]. 
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2.2.2. Overview of Gene Expression Programming (GEP) 

 Ferreira proposed GEP that is a modified version of GP. It is built on evolutionary theorem 

of population [104]. It combines together the parse trees (GP) and the rudimentary fixed-length linear 

chromosomes (GA). The parameters necessary are identical to those used in the GP i.e., function set 

terminal set, fitness parameter, terminal constraints, and control parameters. Within that algorithm, 

while processing in the computer program, a character string of a specific size is assumed 

and contrasted with the parse tree of various size in the GP. Entities coded as linear sequence of fixed 

size strings (genome) are afterward displayed by means of nonlinear entities of various shape and 

sizes identified as trees of expression or expression trees (ETs), which are evolved chromosomes-

specific structures [114]. It’s indeed analogous to case that the genotype and phenotype are kept 

separate in GEP and the code will advantage completely from the evolutionary approach [104]. A 

significant alteration throughout GEP is that just the genome is transmitted towards the subsequent 

generation and thus it isn’t needed to repeat the whole structure as the entire changes actually occur 

in a simple linear way. One other noteworthy characteristic is the establishment of entities by a single 

chromosome composed of various genes then categorized as tail and head [114]. Every gene with in 

GEP comes in the form of fitted lengths parameter, terminal sets of constants, and the functions used 

are the arithmetic operations. Also, in genetic code operator, there is a stabilized interaction amongst 

both the associated function or terminal and the chromosome symbol. The chromosome-level genetic 

mechanism makes the development of genetic variance within the simple process of GEP [79]. The 

necessary information for the development of an empirical model is registered into the chromosomes 

and to infer this information a novel language i.e., karva has been established. If the sequence of gene 

is provided, then it is viable to deduce the particular phenotype and vice versa called a karva or K-

expression [104]. Karva 's transformation towards the ETs usually begins on or after the leading 

position in the ETs, and proceeds throughout the string. By take of the record in the nodes through 

root layer to a deepest layer, ETs can indeed be converted into K-expression [102]. The size of the 
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K-expression and GEP gene may or may not be identical, because the size of the ET changes in the 

GEP algorithm that results in the presence of a variety of redundant elements. Exactly the same aren't 

really required for mapping the genome. 

 In Figure 2.2 the phases covered in the algorithm of GEP are shown. The method starts with 

arbitrary formation of fixed size chromosomes for all that individuals. These are afterwards identical 

to the ET’s and for each individual the fitness strength is estimated. In support of the appliance of 

reproduction process, the best fitted individuals are selected. For a number of generations, the 

reiteration lasts with new individuals till the accomplishment of a finest result. Genetic functions like 

cross-over, reproduction and mutation are implemented for population alteration.  

 

Figure 2.2. Gene expression programming (GEP) algorithm flow chart [37]. 
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2.3. Summary 

 This chapter presents detailed literature review on the utilization of fly-ash as replacement of 

OPC in the concrete. The impact of the utilization of such hazardous materials on the sustainability 

problems occurring due to usage of conventional materials in the concrete has also been discussed 

briefly. Moreover, the background of artificial intelligence techniques has been elaborated and the 

recent application in the field of civil engineering has been highlighted. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 In this chapter the methodology adopted for the for the empirical study of the collected data 

will be elaborated. Compressive strength (𝑓𝑐
′) is the main factor in analysis and design of concrete 

structure. To save time, cost, and to sustain the use of FA in the construction industry, the 

development of accurate and reliable expression is needed that can relate the mix proportion and 𝑓𝑐
′ 

of FGPC. The detailed methodology implemented for the experimental investigation of FGPC would 

be discussed.  

3.1. Data Collection 

 A detailed database for the 𝑓𝑐
′ of FGPC, was compiled from previously published, 

experimental researches (see APPENDIX A1) [60,61,63,67–99]. The database comprises of total 298 

samples which include 101 cylindrical specimens of size 200 mm × 100 mm, height × diameter, 166, 

and 31 cube specimens of size 150 mm and 100 mm, respectively. 𝑓𝑐
′ of cube and cylindrical 

specimens depends on the length to diameter (L/D) ratio [100,101]. The 𝑓𝑐
′ of 100 mm cubes are 5% 

greater than 150 mm cubes. While 𝑓𝑐
′ of 150 mm cubes are 20% greater than cylindrical specimens 

of size 100 mm × 200 mm. With the increase of the volume of the specimen, the number of voids 

also increases, so, the specimen with smaller dimension will have lesser 𝑓𝑐
′ than the larger dimension 

specimen. Furthermore, the stress is inversely related to the cross-sectional area of the specimen. The 

one with smaller cross-sectional area will have higher stresses, which means high internal resistance 

to failure. Table 3.1 displays the normalization of the compressive strength of various types of 

specimens considered in this study. The comprehensive database guarantees the model reliability and 

accessibility for the data that is not exercised in the development of the empirical model. 
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Table 3.1. Type of specimens and compressive strength normalization factor. 

Type of sample Number of data points Normalization factor 

Cylindrical (200 × 100) 𝑚𝑚 101 1 

Cube (100 𝑚𝑚) 166 1 × 0.8 

Cube (150 𝑚𝑚) 31 0.95 × 0.8 

 

 The composed database covers data about the explanatory parameters, namely, the extra water 

added as percent FA (%𝐸𝑊), the percentage of plasticizer (%𝑃), the age of the specimen (𝐴), the 

curing duration (𝑡), the fine aggregate to the total aggregate ratio (𝐹 𝐴𝐺⁄ ), the percentage of total 

aggregate by volume ( %𝐴𝐺), the percent SiO2 solids to water ratio (% 𝑆/𝑊) in sodium silicate 

(Na2SiO3) solution, the NaOH solution molarity (𝑀), the activator or alkali to FA ratio (𝐴𝐿 𝐹𝐴⁄ ), and 

the Na2SiO3 to NaOH ratio (𝑁𝑠 𝑁𝑜⁄ ) for the response of compressive strength. All the samples 

collected for the mentioned parameters are heat cured initially for 24 h at different temperatures. The 

𝑓𝑐
′ increases with curing time but researchers reported that the rate of increment in the 𝑓𝑐

′ of FGPC is 

rapid until 24 hours [63]. The early strength of GPC is higher due to the geo-polymerization process 

and limited literature is available for longer curing duration. Van Jaarsveld et al. [102] described that 

for longer than 24 h curing time, the 𝑓𝑐
′ is not increased. Every model performance depends on the 

distribution of explanatory parameters [103]. The marginal histograms of all ten input parameters 

used in this study are shown in Figure 3.1, which dictates that all 10 explanatory parameters selected 

are distributed through its range for the compressive strength. The bar charts added above and to the 

right of the main plot add more information to the data. Along with the distribution of the input 

variables, it also shows the distribution of the compressive strength. Every explanatory variable has 

a strong impact on the variation of the compressive strength of FGPC. 
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Figure 3.1. Marginal histogram of explanatory parameters against output variables. (a) 

Temperature for curing of specimen (T0C), (b) Age of specimen (A), (c) Alkali to fly-ash ratio 

(AL/FA), (d) Sodium silicate to sodium hydroxide ratio (NS/NO), (e) Molarity of NaOH solution (M), 

(f) Percentage of total aggregate by volume (AG), (g) Fine aggregate to total aggregate ratio (F/AG), 

(h) Percentage of superplasticizer (% P), (i) Percentage of SiO2 solids to water ratio (% S/W), (j) 

Percentage of extra water added (% EW). 

 To conduct the generalized study, both cubes and cylindrical specimens are counted to 

construct a database. The output and input variables’ ranges, along with their mean values are 
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presented in Table 3.2 For the achievement of reliable and consistent predictions of the compressive 

strength, it is endorsed to utilize the suggested model with the ranges provided. 

Table 3.2. Range, mean and standard deviation of explanatory and response parameter. 

Parameters Minimum value Maximum value Mean value 
Standard 

deviation 
 

Explanatory 

parameters 
     

T (°C) 23 120 71.57 24.61  

A (days) 1 540 20.87 45.73  

A/F 0.3 1 0.4545 0.1187  

NS/NO 0.4 4 2.275 0.5168  

M 8 20 11.68 2.6415  

AG (%) 60 80 72 4.753  

F/AG 0.2 0.5 0.3568 0.0493  

P (%) 0 11.3 1.998 2.326  

S/W (%) 43.4 81.4 61.68 10.167  

EW (%) 0 35 3.889 6.341  

Response      

fc
’ (MPa) 8.2 63 37 11.154  

 It should be noted that, for the evaluation of the validity, reliability, and consistency of the 

database, multiple trials were conducted. Datasets that diverged considerably from the global norm 

(about 20%) were not included in the model’s creation and performance evaluation. To establish an 
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empirical model, 298 datasets for the prediction of compressive strength were used. In this research, 

the data points were arbitrarily divided into two statistically consistent sets known as the training and 

validation sets [37]. Furthermore, 70% (208 data points) of the total data are assigned to the training 

set and 30% (90 data points) to the validation set [37]. The training set was employed for training the 

empirical model known as gene progression, whereas validation data points were utilized for the 

justification and calibration of the established model’s generalization capability as suggested in the 

literature [57]. 

3.2. Model Development and Evaluation Criteria 

 For the development of the model, the first step is the selection of input parameters that can 

influence the FA-based GPC’s properties. Influential parameters that effect the compressive strength 

(𝑓𝑐
′) of GPC made with FA were selected for the generalized model development. The detailed study 

is carried out and the performance of several initial runs is computed. Hence, the FA-based GPC’s 

compressive strength is taken into account as the function of Equation (1).  

𝑓𝑐
′ = 𝑓 (𝑇, 𝐴, 𝑀, %

𝑆

𝑊
,
𝐴𝐿

𝐹𝐴
,
𝑁𝑆

𝑁𝑂
𝐴𝐺 ,

𝐹

𝐴𝐺
, %𝑃, %𝐸𝑊) (1) 

 Chromosomes, genes, and expression trees (ETs) perform a central role in the development 

of the GEP model. The program’s running duration is regulated through the size of the population 

(chromosome number). The chromosome is comprised of genes that are used for encoding of the 

subexpression trees (sub-ETs). Considering the predictive model complexity, the stages counted as 

population size were 150. The model’s architectural structures rest on the gene number and head-size 

with the latter dictating the difficulty of every term and the latter deciding the sum of the model’s 

sub-ETs. Thus, population size 150, genes 3, and head size 10 is considered for the development of 

the model. The chromosomes are subjected to genetic variation through genetic operators. In 

mutation, the component of the gene’s tail or head is randomly selected and replaced with a randomly 
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selected component of the terminal or function set. The transposition function involves the 

transposition of the sequences inside the chromosomes, in other words, root insertion sequence (RIS) 

and insertion sequence (IS). After all, the recombination combines and splits up 2 chromosomes in 

order to substitute their elements. For creating the fair empirical model, the adjusted settings 

recommended in earlier literature were used [41]. To execute the GEP algorithm, GeneXproTool was 

used. Table 3.3 illustrates the adjusted setting of the hyperparameters utilized in the formation of the 

GEP empirical equation. 

Table 3.3. Adjusted Setting of parameters for the GEP model. 

Parameters Adjusted setting for 𝒇𝒄
′  

General  

Population chromosomes 150 

Genes 4 

Head size 10 

Linking function Multiplication 

Function Set −, +,/,×, √ 
3

 

Arithmetical constants  

Constant per gene 10 

Data type Floating data 

Upper Bound 10 

Lower bound –10 
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Genetic operators  

Mutation rate 0.00138 

Inversion rate 0.00546 

IS transportation rate 0.00546 

RIS transportation rate 0.00546 

One-point recommendation rate 0.00277 

Two-point recommendation rate 0.00277 

Gene recombination rate 0.00755 

Gene transportation rate 0.00277 

 A correlation coefficient (R) is mostly applied to measure model performance. However, it 

cannot be merely studied as the sign of model predictive accuracy as it is insensitive towards division 

and multiplication of outcomes to a constant [104]. For that reason, in this research the mean absolute 

error (MAE), the root means square error (RMSE), the relative root mean squared error (RRMSE), 

and the relative squared error (RSE) are also considered. Moreover, the model performance 

evaluation performance index (𝜌) is recommended, as it covered the function of both the R and 

RRMSE [103]. The equations of error functions used in this study are provided as Equations (2)–(7): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑖 − 𝑚𝑖)2𝑛

𝑖=1

𝑛
 (2) 

𝑀𝐴𝐸 =
∑ |𝑒𝑖 − 𝑚𝑖|

𝑛
𝑖=1

𝑛
 (3) 

𝑅𝑆𝐸 =
∑ (𝑚𝑖 − 𝑒𝑖)

2𝑛
𝑖=1

∑ (𝑒̅ − 𝑒𝑖)2𝑛
𝑖=1

 (4) 
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𝑅𝑅𝑀𝑆𝐸 =
1

|𝑒̅|
√

∑ (𝑒𝑖 − 𝑚𝑖)2𝑛
𝑖=1

𝑛
 (5) 

𝑅 =
∑ (𝑛

𝑖=1 𝑒𝑖 − 𝑒̅𝑖)(𝑚𝑖 − 𝑚̅𝑖)

√∑ (𝑒𝑖 − 𝑒̅𝑖)2𝑛
𝑖=1 ∑ (𝑚𝑖 − 𝑚̅𝑖)2𝑛

𝑖=1

 (6) 

𝜌 =
𝑅𝑀𝑆𝐸

1 + 𝑅
 (7) 

 where 𝑚𝑖 and 𝑒𝑖 are the 𝑖𝑡ℎ model outcome value and experimental value, respectively. While 

𝑚̅𝑖 and 𝑒̅𝑖 are the model’s outcome average value and experimental average value, respectively. 

Additionally, n denotes the overall data points. High R-value and low RMSE, MAE, RSE, and 

RRMSE shows a best-calibrated model. It is suggested that for a deep correlation between measured 

and predicted values, the R-value should be greater than 0.8 (as for ideal model R = 1) [105]. The (𝜌) 

value near to zero replicates better model performance. 

3.3. Experimental Program for Validation of GEP Model According to Pakistani Environment  

 The geopolymer concrete can be prepared from different source material like ground 

granulated blast furnace slag (GGBS), metakaolin, waste foundry and fly-ash etc. The objective of 

this particular section is to encourage the use of fly ash in the construction industry.  

3.3.1 Fly-Ash 

 The fly-ash was obtained from the local supplier at Lahore, Pakistan. The chemical 

composition of fly-ash was assessed via X-ray Florescence (XRF) as presented in Table. The 

cumulative composition of silica (SiO2), iron oxide (Fe2O3) and alumina (Al2O3) are 90.71% that is 

greater than 70%, Which satisfy the condition for pozzolan as per ASTM C618-05. As indicated 

through loss of ignition (LOI), a very less percentage of carbon was noted. Figure 3.2. represent the 

black color of fly-ash.  
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Table 3.4. Detail Analysis of fly-ash via X-ray Florescence (XRF) 

Oxides Percentage by mass 

Silica (SiO2) 53.49 

Aluminum oxide (Al2O3) 26.86 

Iron oxide (Fe2O3) 10.36 

Calcium oxide (CaO) 3.31 

Magnesium oxide (MgO) 1.13 

Phosphorous oxide (P2O5) 1.52 

Potassium oxide (K2O) 0.55 

Sodium oxide (Na2O) 0.33 

Titanium oxide (TiO2) 0.12 

Manganese oxide (MnO) 0.44 

Loss on ignition (LOI) 1.13 

 

Figure 3.2. Pictorial representation of fly-ash 
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3.3.2. Alkaline Solution 

 In the current study, the combination of sodium hydroxide (NaOH) solution and sodium 

silicate (Na2SiO3) solution were selected as alkaline medium. The sodium-based solution was 

selected instead of potassium, as they were easily available and cheaper. Both the chemical 

supplements were obtained from HDE trading Ltd Sheikhupura, Punjab, Pakistan. The NaOH were 

in pellets form with 98% purity.  

 The concentration of NaOH solution were represented by molarity (M). For instance, the 8 M 

NaOH solution was prepared by dissolution of 8*40=320 gram of pellets in water. Where 40 

represents the molecular weight of sodium hydroxide. The Na2SiO3 solution had 14.7% sodium oxide 

(Na2O), 29.4% silicon oxide (SiO2) and 55.9% water (H2O) by mass.  

 

Figure 3.3. Sodium hydroxide and sodium silicate solution 
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3.3.3. Aggregates 

 Both fine and coarse aggregates were obtained from locally available query site. As shown in 

Table 3.5, three different sizes of coarse aggregate and fine were used. The fineness modulus (FM) 

was 5.0. In all mixes a consistent 30% fine and 70% coarse aggregate (15%-20mm, 20%-14mm, and 

35%-7mm) were utilized. The fine and coarse aggregate portion in the entire concrete mix were kept 

at 75% by mass.  

  

Figure 3.4. Aggregates collected from query site (a) Fine aggregate (b) Coarse aggregate 

  

(a) (b) 
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Table 3.5. Gradation of aggregates 

Size of sieve 

(mm) 

Coarse Aggregate (mm) Fine 

Aggregate 

Mixture BS 882:92 

20 14 7 

19 93.44 100 100 100 99.016 95-100 

9.5 3.98 18.40 98.9 100 68.89  

4.75 0.89 1.09 21.1 100 37.73 35-55 

2.36 0.88 1.0 3.76 100 31.65  

1.18 0.85 0.81 2.04 98.89 30.67  

0.6 0.78 0.7 1.53 78.87 24.45 10-35 

0.3 0.75 0.6 1.06 17.53 5.86  

0.15 0.54 0.43 0.68 1.3 0.77 0-8 

3.3.4. Mixing 

 In 2002, Davidovits recommended to prepare the mixture of NaOH and Na2SiO3 solution at 

least a day prior to its addition into a solid element (fly-ash and aggregates).  The solid constituents 

were dry mixed three minutes and after the addition of solution the mixing process was continued for 

another four minutes.  

3.3.5. Mixture Proportion 

 For validating the robustness of GEP model, six different FGPC mixes were prepared on trial-

and-error method (See Table 3.6). The specimen was designated as GC-x. Where “x” ranges from 1 

to 6. In GC1 to GC3, keeping all other variables at constant, the molarity of NaOH solution is varied 

from 8M to 12M with an increment of 2M. While in GC4 to GC6, the ratio between Na2SiO3 solution 

to NaOH solution is varied from 1.5 to 2.5 with an increment of 0.5. For each mix proportion three 
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cubes of size 150 mm were casted. The cubes were demolded after 24 hours and were subjected to 

curing at 600C for next 24 hours.  

 

Figure 3.5. Geopolymer concrete (a) Green concrete (b) Casting of cubes (c) Temperature curing 

Table 3.6. Experimental mixture proportion for validation of GEP model 

Mix 

Designation 
T (°C) A (days) A/F NS/NO M AG (%) F/AG P (%) S/W (%) EW (%) 

GC1 60 7 0.35 1 8 75 0.4 0 52.59 0 

GC2 60 7 0.35 1 10 75 0.4 0 52.59 0 

GC3 60 7 0.35 1 12 75 0.4 0 52.59 0 

GC4 60 7 0.35 1.5 8 75 0.4 0 52.59 0 

GC5 60 7 0.35 2 8 75 0.4 0 52.59 0 

GC6 60 7 0.35 2.5 8 75 0.4 0 52.59 0 

(a) (b) 

(c) 
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3.3.6. Testing Setup 

The hardened cubes specimens were subjected to compression testing machine having maximum 

capacity of 2000 kN. And the compressive strength of each geopolymer mix were determined in 

reference to BS 1881: Part 116: 1983 Standard.  

 

Figure 3.6. Compressive strength testing machine 

3.4. Summary 

 In this chapter the methodology adopted has been explained in detail. The type of data 

collected for modelling the compressive strength of FGPC has been elaborated and the performance 

measures have also been discussed. The criteria adopted for the model development has been 

explained. 
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CHAPTER 4 

GEP MODELLING RESULTS AND DISCUSSION 

4.1. Expression Trees for GEP Model 

 The GEP algorithm’s output for the compressive strength (𝑓𝑐
′) model as an expression tree is 

shown in Figure 4.1. The empirical relationship was obtained by decoding these expression trees 

(ETs) that encompass five arithmetical operations, namely, +, −,×,/ and ∛. 

 GEP ETs use the indicators to express the explanatory variables. The corresponding symbols 

and description of each indicator are provided in Table 4.1. 

Table 4.1. Indicators of GEP expression tree. 

Indicator in expression tree description symbol 

𝑑𝑜 The temperature for curing in degrees Celsius 𝑇 

𝑑1 The age of the sample 𝐴 

𝑑2 Ratio of alkali or activator to the fly-ash 𝐴𝐿 𝐹𝐴⁄  

𝑑3 Ratio of Na2SiO3 to NaOH 𝑁𝑠 𝑁𝑜⁄  

𝑑4 NaOH solution molarity 𝑀 

𝑑5 Percentage of total aggregate by volume % 𝐴𝐺  

𝑑6 Ratio of fine aggregate to total aggregate 𝐹 𝐴𝐺⁄  

𝑑7 Plasticizer as percent fly-ash % 𝑃 

𝑑8 Percentage of SiO2 solids to water ratio % 𝑆 𝑊⁄  
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𝑑9 Extra water addition as percent fly ash % 𝐸𝑊 

 

Figure 4.1. GEP model expression trees (ETS) for compressive strength fc
’. 

4.2. Formulation of Compressive Strength for FGPC 

 Equation (8) is the simplified equation that is presented to estimate the compressive strength, 

𝑓𝑐
′, for GPC made with FA in MPa. It is comprised of four variables namely A, B, C, and D 

represented as Equations (9)–(12) and have been translated from the sub-ETs 1, 2, 3, and 4, 

respectively, as illustrated in Figure 4.1. 

𝑓𝑐
′(𝑀𝑃𝑎) = 𝐴 × 𝐵 × 𝐶 × 𝐷 (8) 

Where; 

𝐴 = √
𝑆

𝑊
%

3

− 𝑃% + (𝑀 ×
𝐹

𝐴𝐺
×

𝐴𝐿

𝐹𝐴
× 6.61) + 𝐸𝑊% − 𝐴𝐺% (9) 
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𝐵 = −√
𝐴 + 80

0.083(𝑇 − 17.87)
+ 𝑀 +

𝑁𝑆

𝑁𝑂

3

 (10) 

𝐶 =
𝐹

𝐴𝐺
− (𝐸𝑊% × 𝑀 −

0.0003

𝑁𝑆

𝑁𝑂
− 𝐸𝑊%

) − 0.0003 (11) 

𝐷 =
√(𝑃% −

𝑆
𝑊 %) 1.16

𝑇

3

+ √
0.17

𝐹
𝐴𝐺

3
+ 0.77 (12) 

 Figure 4.2 represents the comparison of regression lines between experimental and model 

outcomes for both the training samples and validation samples. A strong correlation can clearly be 

seen which is represented via slopes of the regression lines, namely, 1.000 and 0.9892, for the train 

and validation samples, respectively. 
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Figure 4.2. Experimental and predicted compressive strength values comparison: (a) training set 

values and (b) validation set values. 

4.3. Sensitivity and Parametric Analysis 

 Sensitivity analysis (SA) is performed to investigate the relative contribution of input 

variables that are exercised to estimate the compressive strength 𝑓𝑐
′ of GPC made with FA, using 

Equations (13) and (14). SA defines the dependency of the outcome on the input variable.  

𝑁𝑖 = 𝑓𝑚𝑎𝑥(𝑥𝑖) − 𝑓𝑚𝑖𝑛(𝑥𝑖) (13) 

𝑆𝐴 =
𝑁𝑖

∑ 𝑁𝑗
𝑗=1
𝑛

 (14) 

 Where 𝑥𝑖 represents the 𝑖𝑡ℎ input variable. 𝑓𝑚𝑎𝑥(𝑥𝑖) and 𝑓𝑚𝑖𝑛(𝑥𝑖) represent the maximum and 

minimum values of outcome, respectively, that depends on its 𝑖𝑡ℎ input dominion, where other input 
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variables are maintained at a constant average value. The difference between 𝑓𝑚𝑎𝑥(𝑥𝑖) and 𝑓𝑚𝑖𝑛(𝑥𝑖) 

gives the range 𝑁𝑖 of the 𝑖𝑡ℎ input variable. The sensitivity and parametric study were both conducted 

for the training data set, as both the training and validation data sets are consistent [41,105]. Results 

of sensitivity analysis are presented in Figure 4.3. The figure clarifies that, from a material 

engineering perspective, the involvement of the explanatory parameters to the 𝑓𝑐
′ of GPC made with 

FA are similar.  

 

Figure 4.3. Percent relative contribution of input parameter. 

 Besides, the effectiveness of most influential input variables in the projection of the 

compressive strength of FA-dependent GPC is obtained by performing parametric analysis. Changes 

in compressive strength were recorded only by changing the value of one variable from maximum to 

minimum and other inputs were maintained at average values. Figure 4.4 illustrates the GEP model’s 

parametric analysis results. 
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 It is known that the temperature for curing of the samples is the prompting parameter in 

controlling the compressive strength (𝑓𝑐
′) of GPC made with FA. Its relative contribution is 25.3% as 

depicted in Figure 4.3. Figure 4.4 shows that the 𝑓𝑐
′ increases at various rates with the increase of 𝑇, 

𝐴, %𝐴𝐺 , (𝐹 𝐴𝐺⁄ ), (𝑁𝑠 𝑁𝑜⁄ ), and %𝑃, but decreases with %𝐸𝑊, (𝐴𝐿 𝐹𝐴⁄ ), 𝑀, and (% 𝑆 𝑊⁄ ). 

 Hydrates and silicates are released by the alkali-activating solution that helps in the formation 

of the polymeric structure of alumina silicates. Extra heat is needed for speeding up the reaction 

process and to improve the mechanical characteristics of GPC. Figure 4.4 shows that the 𝑓𝑐
′ increases 

with the increase in the curing temperature up to 100 °C. At higher curing temperature the moisture 

from the concrete is lost, even if sealed properly. Analogous results have also been witnessed in 

earlier literature [64]. The decrease in the rate of increment of 𝑓𝑐
′ of GPC after 240 days, is due to the 

decrease in the number of unreacted particles. Wardhono et al. [73] presented scanning electron 

microscopy (SEM) images, which show that gel fills up the voids after 240 days leading to the 

formation of compacted and semi-homogenous microstructure. Furthermore, it can be depicted from 

Figure 4.4 that the 𝑓𝑐
′ increases with an increase in the amount of total aggregate, however, the total 

aggregate relates to the ratio between fine aggregate to total aggregate content. 

 Alkali to FA ratio is linked to the ratio between sodium silicate to sodium hydroxide, and the 

molarity of NaOH. The increase in the 𝑓𝑐
′ is greatly altered with the amount of sodium silicate that 

transforms the microstructure of GPC. In the development of the sodium silicate solution, the ratio 

between percentage silica to water needs to be higher. The higher the sodium silicate content, the 

greater the compressive strength will be. The lower ratio of alkali to fly ash in combination with 

higher sodium silicate to sodium hydroxide ratio, and lower molarity of NaOH solution results in 

higher compressive strength. However, the amount of NaOH solution must remain enough to 

complete the process of dissolution of the geopolymer. Similar findings have also been observed in 

a previous study [74]. 
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Figure 4.4. Influence of input parameters variation on the compressive strength. (a) Temperature for curing of 

specimen (T0C), (b) Age of specimen (A), (c) Percentage of total aggregate by volume (AG), (d) Fine aggregate to total 

aggregate ratio (F/AG), (e) Sodium silicate to sodium hydroxide ratio (NS/NO), (f) Molarity of NaOH solution (M), (g) 

Alkali to fly-ash ratio (AL/FA), (h) Percentage of superplasticizer (% P), (i) Percentage of extra water added (% EW), (j) 

Percentage of SiO2 solids to water ratio (% S/W). 

 In GPC, the total water content is the addition of the water content required in preparing the 

solution of sodium silicate and sodium hydroxide and the addition of extra water needed. To prevent 

cracking and to achieve a practical GPC, it is necessary to consider the addition of extra water and 

plasticizer [90]. The addition of extra water or plasticizer as a percent FA contributes 18.85% and 

6.71% respectively to the 𝑓𝑐
′ in comparison with other input factors. 𝑓𝑐

′ of GPC increases with the 

increase in plasticizer and decreases with the addition of extra water as evident from Figure 4.4, as 

the addition of extra water beyond certain limits leads to bleeding and segregation in fresh concrete 

mix. 



44 

 

 Figure 4.4 is in line with the previous studies of other researchers [74,90]. The results of 

parametric analytics for the proposed GEP model correctly encompasses the influence of input 

variables to estimate the 𝑓𝑐
′ of FA-based GPC. 

4.4. Performance Evaluation of GEP Model 

 According to the previous study, to achieve a reliable GEP equation, the ratio between the 

number of data points in the database to the number of input parameters should be at least equal to 

three [103]. While in this study a higher value of 30 has been used. Table 4.2 represents the statistical 

analysis for validation sets and training sets of the GEP model. These results illustrate the 

effectiveness of training models and the strong correlation between experimental and predicted 

outcomes with minimal error. The RMSE, MAE, and RSE for the training set of the GEP model are 

5.971, 5.832, and 0.325, respectively, and are calculated as 2.643, 2.057, and 0.0675 from the 

validation samples. The statistical measure of the training and validation set are similar, which 

indicates the higher generalization capability of the model. Thus, the developed model can predict 

accurate and reliable outcomes for the new data. Table 4.2 witnesses 𝜌 approach zero (as ideal cases 

equal zero).  

 Figure 4.5 illustrates the absolute error of both the experimental and predicted model 

outcomes, which gives an overall idea of the maximum percentage of error. The average percent error 

and maximum percent error were calculated as 6.47% and 8.32% respectively, which confirms that 

the experimental and model outcomes are similar. Furthermore, the occurrence frequency for the 

maximum error is comparatively smaller. Almost 90% of model predictive outcomes for validation 

set have the error below 10%, while the average percent error is less than 5.56%. This verifies the 

accuracy and generalization of the developed GEP equation. 
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Figure 4.5. Absolute error representation of experimental and predicted outcomes. 

 For external validation and testing of the proposed GEP model, various statistical error tests 

were also employed. The literature discloses a suggested criterion that the slope (inclination) of any 

of the regression lines (𝑘 𝑜𝑟 𝑘ꞌ) traversing the origin should be approximately equal to 1 [106]. The 

slope of regression lines is 1.001 and 0.995 as shown in Table 4.3. It shows greater accurateness and 

correlation. Moreover, the researchers proposed that the squared correlation coefficient (passing by 

origin) among the predicted outcome and experimental results (𝑅𝑜
2) or among the experimental and 

predicted outcome (𝑅𝑜
′2) should approach 1 [107]. Table 4.3 summarizes these checks and was applied 

to the developed GEP equation. The results of these external validations replicate that the proposed 

GEP model is valid. Thus, the proposed model is not only a correlation but also has predictive 

capacity. 
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Table 4.2. Statistical analysis of GEP, linear, and non-linear regression models. 

Model 

RMSE MAE RSE RRMSE (%) R 𝛒 

TR 1 VDN 2 TR VDN TR VDN TR VDN TR VDN TR VDN 

GEP 5.971 2.643 5.823 2.057 0.325 0.0675 16.949 4.949 0.8586 0.9643 0.0911 0.02519 

Linear 6.986 5.546 6.543 4.967 0.589 0.304 19.20 10.21 0.8074 0.8976 0.1062 0.05382 

Non-Linear 6.593 5.054 6.053 4.875 0.497 0.298 18.53 9.021 0.8357 0.9247 0.1009 0.04687 

1 TR symbolizes training sample; 2 VDN symbolizes validation samples. 

Table 4.3. External validation of the GEP model using arithmetical parameter. 

Expression Requirement GEP model, 𝒇𝒄
′  

𝑘 =
∑ (𝑒𝑖 × 𝑚𝑖)

𝑛
𝑖=1

∑ (𝑒𝑖
2)𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 1.001 

𝑘′ =
∑ (𝑒𝑖 × 𝑚𝑖)

𝑛
𝑖=1

∑ (𝑚𝑖
2𝑛

𝑖=1 )
 0.85 < 𝑘′ < 1.15 0.995 

𝑅𝑜
2 = 1 −

∑ (𝑚𝑖 − 𝑒𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑚𝑖 − 𝑚̅𝑖
𝑜)2𝑛

𝑖=1

, 𝑒𝑖
𝑜 = 𝑘 × 𝑚𝑖 𝑅𝑜

2 ≅ 1 0.9998 

𝑅𝑜
′2 = 1 −

∑ (𝑒𝑖 − 𝑚𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑒𝑖 − 𝑒̅𝑖
𝑜)2𝑛

𝑖=1

, 𝑚𝑖
𝑜 = 𝑘′ × 𝑒𝑖 𝑅𝑜

′2 ≅ 1 0.9849 

4.5. Comparison of GEP and Regression Models 

 No GEP model has been identified from the literature that would estimate the compressive 

strength (𝑓𝑐
′) of GPC made with FA and that considers the influencing input variables used in this 

research. So, it is necessary to establish linear and non-linear regression models, on the same data 
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points, for the prediction of the 𝑓𝑐
′ of FA-based GPC, the results are then judged against GEP Equation 

(8). 

 Equations (15) and (16) show the empirical expressions for the prediction of 𝑓𝑐
′ founded on 

linear and nonlinear regression study respectively. 

𝑓𝑐
′ = 12.81 + 0.226𝑇 + 0.0376𝐴 − 26.86

𝐴𝐿

𝐹𝐴
+ 1.1296

𝑁𝑆

𝑁𝑜
− 0.3935𝑀 + 0.6412𝐴𝐺% 

−0.4075
𝐹

𝐴𝐺
+ 1.256𝑃% − 0.452

𝑆

𝑊
% − 0.7125𝐸𝑊% 

(15) 

𝑓𝑐
′ = −7.636 + 1.182𝑇0.6809 + 0.3446𝐴0.634 − 25.80 (

𝐴𝐿

𝐹𝐴
)

2.91

+ 1.779 (
𝑁𝑆

𝑁𝑜
)

0.438

 

−0.00895𝑀2.24 + 0.7605(𝐴𝐺%)0.932 − 0.37099 (
𝐹

𝐴𝐺
)

1.064

+ 2.259(𝑃%)0.7203 

−0.0804 (
𝑆

𝑊
%)

1.345

− 0.2654(𝐸𝑊%)1.316 

(16) 

 The predicted results by all three equations are compared in Figure 4.6. The statistical 

indicators like RMSE, MAE, RSE, RRMSE%, R, and 𝜌 for GEP model, linear and no-linear 

regression model are listed in Table 4.2. The 𝜌 and RMSE of the established GEP equation are 

calculated as the least of all three models, for both the training and validation data points. The values 

of RMSEtraining and 𝜌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 are 14.5% and 14% lower than the linear regression model, respectively. 

In the test stage, the proposed GEP model gives better performance than the non-linear regression 

model. 𝜌𝑡𝑒𝑠𝑡𝑖𝑛𝑔 of the two models varies by 44%. Furthermore, Figure 4.6 shows that linear and non-

linear regression equations failed in efficiently capturing a high 𝑓𝑐
′, which limits the application of 

the regression models. 

 These observations shows that the GEP model performed better than the linear and non-linear 

regression equations, for the same input variables. The regression methods have certain disadvantages 

as in they use some predefined expressions and pre-assume the residual’s normality [105]. Whereas 
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modeling based on GEP implies that the model efficiently picks up the non-linear relationship 

between the dependent and independent parameters, with a higher generalization capacity and 

considerably decreases the error values in comparison with the regression models. 

 

Figure 4.6. Comparison of fc
’ of proposed GEP, linear regression, and non-linear regression models. 

4.6. Experimental Test Results 

 The results for compressive strength of all six geopolymer concrete mixes were accomplished. 

The Table 4.4. shows the compressive strength from experimental results and GEP equation results 

along with the absolute error. The average absolute error for mixes (GC1-GC3), with variation in 

molarity of NaOH, is 2.49 MPa. While for GC3-GC4 (having variation in the ration between sodium 

silicate solution to sodium hydroxide solution) the average absolute error is 0.274 MPa. For both type 

of variation, the error is less than 10 %, which validates the outburst performance of GEP equation.  

Figure 4.7 (a) and 4.7 (b) shows the trend in experimental results for variation in molarity of NaOH 

solution and ratio between Na2SiO3 to NaOH solution respectively. The similar trend was also noted 
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for GEP equation in Figure 4.4 (f) and 4.4 (e). Which was in strong agreement with the previous 

study. Thus, the accuracy of GEP model is experimentally validated and can be confidently used in 

the pre-design of fly-ash based geopolymer concrete.  

Table 4.4. Comparison between experimental and GEP results. 

Mix 

Designation 

Experimental Results 

(MPa) 

GEP Equation 

(MPa) 

Absolute Error 

(MPa) 

Average 

(MPa) 

GC1 46.23 42.70 2.52 

2.49 GC2 45.86 42.26 2.59 

GC3 45.12 41.75 2.37 

GC4 43.25 42.91 0.340 

0.274 GC5 43.36 43.12 0.243 

GC6 43.56 43.32 0.238 
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Figure 4.7. Comparison between experimental and GEP results (a) Variation in molarity of NaOH 

solution (b) Variation in ratio between Na2SiO3 to NaOH solution. 

4.7. Summary 

 In this chapter the results obtained by the GEP modelling are explained in detail. Simplified 

models are developed which can be utilized for the prediction mechanical properties of concrete 

containing fly-ash for pre-design of concrete structures. The statistical parameters and objective 

functions satisfy the pre-defined criteria and are an indicator that the model performs well on all three 

datasets and possess higher capability to predict the accurate results on unseen data. Almost 90% of 

model predictive outcomes for validation set have the MAE below 10%, while the average percentage 

of MAE is less than 5.56%. Other error metrics considered in this study like MSE, RMSE, RRMSE 

also verifies the accuracy and generalization of the developed GEP equation. Sensitivity analysis was 

conducted by considering the classical stochastic method to understand the contribution of the input 

variables on the output. It was observed that the input variables considered in the current study had 

similar contribution to the output and thereby validating the hypothesis of selecting the most 

influential parameters on the output as variables for the modelling purpose. Parametric analysis 

results show that the models accurately captured the influence of actual physical phenomena. The ten 
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input variables considered in this study predicted the accurate results when one of the input variables 

was varied while keeping all the other variables at their mean value. A comparison of regression 

analysis techniques shows that GEP models possess high generalization and robustness. The models 

obtained from the regression technique are empirical and can be termed as a mere correlation between 

the input and output variables. The range of applicability of the regression models is quite limited. 

The GEP equation was also validated via experimental results that shows that the accurateness of the 

GEP model.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

 This research utilizes the gene expression programming technique (GEP) to establish an 

expression for the estimation of the compressive strength, 𝑓𝑐
′, of fly-ash based geopolymer concrete 

(FGPC). The projected GEP model is empirical and is built on the broadly distributed database, 

consisting of ten different highly prominent and influential explanatory variables, that comes from 

the published literature. Based on the results and discussion the following conclusions are formulated; 

• The sensitivity and parametric study were conducted to study the effect of explanatory 

variables on the compressive strength of FGPC.  The sensitivity analysis reveals that the 

increasing trend of the relative importance of explanatory variables used in GEP equation 

followed the order:  T (25.30%) > %S/W (22.94%) > %EW (7.71%) > %AG (7.71%) > AL/FA 

(6.85%) > %P (6.71%) > A (5.88%) > F/AG (2.61%) > M (2.32%) > NS/NO (0.85%). While 

in parametric study, it was deduced that the 𝑓𝑐
′ increases at different rates with the increase of  

T, A, %AG, (F AG⁄ ), (Ns No⁄ ), and %P, but decreases with %EW, (AL FA⁄ ), M, and (% S W⁄ ). 

The resulting trends were inline with the previous literature. Thus, the projected model 

successfully encompasses the impact of the explanatory variables to predict the exact pattern 

of FGPC compressive strength.  

• The accurateness of the projected models is verified by the examination and assessment of 

statistical checks that are R, MAE, RSE, and RMSE, RRMSE, and performance index (𝜌) for 

training and validation samples. The R-value for validation stage equaling 0.9643 confirms 

the stronger correlation between explanatory variables and response parameter. Almost 90% 

of model predictive outcomes for validation set have the MAE below 10%, while the average 
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percentage of MAE is less than 5.56%. The performance index (𝜌) for training set and validation 

set approaches to zero, witnesses the better GEP model. The GEP model also meets the appropriate 

requirements considered for external validation that are 𝑘, 𝑘′, 𝑅𝑜
2, 𝑎𝑛𝑑 𝑅𝑜

′2.  

• The proposed GEP model perform better than the traditional linear and non-linear regression 

models with higher accuracy and without any prior assumptions. It shows the diverse nature 

of GEP model since it considers the linear and non-linear data as well. In the validation stage, 

the 𝜌 reveals that GEP model is 53% and 46% better than linear and non-linear regression models 

respectively.  Thus, the proposed GEP model is suitable to practice in the preliminary design 

of FGPC. 

• The accuracy of proposed GEP model was validated via experimental study conducted in 

Pakistani environment.  The MAE for mixes (GC1-GC3), with variation in molarity of NaOH, 

was 2.49 MPa. While for GC3-GC4 (having variation in the ratio between sodium silicate 

solution to sodium hydroxide solution) the MAE was 0.274 MPa. For both type of variation, 

the error is less than 10 %. The experimental analysis also confirms the robustness of the 

model and can be confidently used in the pre-design of FGPC.  

 Furthermore, before adding fly-ash as a geopolymer binder, it is suggested to perform a 

leachate analysis. The projected models can provide a detailed and practical foundation for increasing 

the use of toxic fly-ash for construction practices, instead of disposal in landfill sites. This would lead 

to effective and sustainable construction as green concrete is made by the incorporation of waste fly-

ash that reduces the consumption of energy, emissions of greenhouse gases, disposal, and 

construction costs. 
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5.2. Recommendation for Future Study 

 Fly-ash (FA)- based geopolymer concrete (GPC) has a great potential to be used in the 

construction industry, as a replacement of ordinary Portland cement (OPC) concrete. The data set 

used in this paper is limited to 298 samples. In fact, proper testing must be carried out by varying 

maximum explanatory variables for a more efficient predictive model. Although, this paper considers 

a wide range comprehensive data base consisting of ten explanatory parameters for modelling the 

compressive strength of geopolymer concrete made with wasted fly-ash. 

 Moreover, study of other mechanical characteristics of fly-ash based GPC like tensile 

strength, elastic modulus, poison ratio, and flexural strength, is highly necessary; at normal 

temperature as well as at elevated temperature. A new data base is also needed for the durability study 

of fly-ash-based GPC. Furthermore, it is recommended to predict the stated mechanical properties of 

fly-ash-based GPC via different artificial intelligence (AI) techniques, such as fuzzy logic, adaptive 

fuzzy interface system (ANFIS), response surface methodology (RSM), support vector machine 

(SVM) analysis, random forest regression (RFR), decision tree (DT), artificial neural network 

(ANN), recurrent neural network (RNN), convolutional neural network (CNN), M5P tree and 

restricted Boltzmann machine (RBM), et cetera. Furthermore, an extensive study related to the 

interaction of geopolymer concrete and reinforcing steel is needed. It would also be worthwhile 

formalizing the different mechanical properties of fiber reinforced geopolymer concrete. 

 Normally it is considered that the production cost of GPC is greater than OPC concrete. It can 

be reduced by the use of different types of waste materials such as sand replacement that are rich in 

alumina silicates; like the use of locally available waste foundry sand, glass waste, and marble wastes, 

et cetera. The authors replaced fine aggregates with waste foundry sand in GPC. They reported that 

the initial production cost of M50 grade GPC is 11% lower than OPC concrete [108]. However, the 

M30 grades of GPC and OPC concrete have almost similar of production costs [108]. Environmental 
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safety delivered by GPC production from waste materials is worthwhile as it reduces the carbon-

dioxide emission from the manufacture of cement and adds a carbon credit to the economy of the 

country as well. Comparing the overall cost, including the maintenance and durability, the cost of 

GPC is similar to OPC concrete as the geopolymer concrete is much more durable and resistive to 

chemical attacks than OPC concrete [109]. The authors immersed GPC and OPC concrete in a 

magnesium sulfate solution for 45 days and reported that the reduction of compressive strength of 

GPC is 13% lower than OPC concrete [109]. Additionally, the immersion for the same duration in a 

sulfuric acid solution resulted in 8% lower reduction of compressive strength of GPC as compared to 

OPC concrete [109]. 
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APPENDIX A 

Table A1. Experimental database for compressive strength of fly-ash based geopolymer concrete (FGPC). 

 
  Heat Curing        sodium silicate solution     

Source 
Sample 

description 

Curing 

temperature 

(0C) 

Curing 

time 

(hours) 

age of 

specimen 

(days) 

Alkali-

to-fly 
ash 

ratio 

Na2SiO3-

to-
NaOH 

ratio 

Molarity 

of 
NaOH 

solution 

Total 

aggregate 

(% 
volume 

of 

concrete) 

Fine-to-

total 
aggregate 

ratio 

Plasticizer 
(%) 

SiO2 

solid 

(%) 

Na2O 

solid 

(%) 

Water 
(%) 

SiO2-

to-
water 

(%) 

Extra 

water 
added 

(Kg/m3) 

Extra water added as 

percent fly ash (% 

FA) 

Compressive 
Strength (MPa) 

Joseph and 

Matthew 

M1A60R20 100 24 7 0.55 2.5 10 60 0.2 2 34.64 16.27 49.09 70.564 0 0 38.0 

M1A60R25 100 24 7 0.55 2.5 10 60 0.25 2 34.64 16.27 49.09 70.564 0 0 39.0 

M1A60R30 100 24 7 0.55 2.5 10 60 0.3 2 34.64 16.27 49.09 70.564 0 0 40.0 

M1A60R35 100 24 7 0.55 2.5 10 60 0.35 2 34.64 16.27 49.09 70.564 0 0 42.0 

M1A60R40 100 24 7 0.55 2.5 10 60 0.4 2 34.64 16.27 49.09 70.564 0 0 39.0 

M1A65R20 100 24 7 0.55 2.5 10 65 0.2 2 34.64 16.27 49.09 70.564 0 0 40.0 

M1A65R25 100 24 7 0.55 2.5 10 65 0.25 2 34.64 16.27 49.09 70.564 0 0 41.0 

M1A65R30 100 24 7 0.55 2.5 10 65 0.3 2 34.64 16.27 49.09 70.564 0 0 42.0 

M1A65R35 100 24 7 0.55 2.5 10 65 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M1A65R40 100 24 7 0.55 2.5 10 65 0.4 2 34.64 16.27 49.09 70.564 0 0 42.0 

M1A70R20 100 24 7 0.55 2.5 10 70 0.2 2 34.64 16.27 49.09 70.564 0 0 43.0 

M1A70R25 100 24 7 0.55 2.5 10 70 0.25 2 34.64 16.27 49.09 70.564 0 0 45.0 

M1A70R30 100 24 7 0.55 2.5 10 70 0.3 2 34.64 16.27 49.09 70.564 0 0 47.0 

M1A70R35 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 52.0 

M1A70R40 100 24 7 0.55 2.5 10 70 0.4 2 34.64 16.27 49.09 70.564 0 0 46.0 

M1A75R20 100 24 7 0.55 2.5 10 75 0.2 2 34.64 16.27 49.09 70.564 0 0 33.0 

M1A75R25 100 24 7 0.55 2.5 10 75 0.25 2 34.64 16.27 49.09 70.564 0 0 35.0 

M1A75R30 100 24 7 0.55 2.5 10 75 0.3 2 34.64 16.27 49.09 70.564 0 0 41.0 

M1A75R35 100 24 7 0.55 2.5 10 75 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

M1A75R40 100 24 7 0.55 2.5 10 75 0.4 2 34.64 16.27 49.09 70.564 0 0 40.0 

M1A60R35 100 24 28 0.55 2.5 10 60 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

M1A65R35 100 24 28 0.55 2.5 10 65 0.35 2 34.64 16.27 49.09 70.564 0 0 47.0 

M1A70R35 100 24 28 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 56.0 

M1A75R35 100 24 28 0.55 2.5 10 75 0.35 2 34.64 16.27 49.09 70.564 0 0 49.0 

M1A60R35 100 24 3 0.55 2.5 10 60 0.35 2 34.64 16.27 49.09 70.564 0 0 42.0 

M1A65R35 100 24 3 0.55 2.5 10 65 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 
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M1A70R35 100 24 3 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 52.0 

M1A75R35 100 24 3 0.55 2.5 10 75 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

M2AL35S1 100 24 7 0.35 1.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 31.0 

M2AL35S2 100 24 7 0.35 2 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 34.0 

M2AL35S3 100 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 39.0 

M2AL35S4 100 24 7 0.35 3 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 36.0 

M2AL35S5 100 24 7 0.35 3.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 34.0 

M2AL45S1 100 24 7 0.45 1.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 34.0 

M2AL45S2 100 24 7 0.45 2 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 40.0 

M2AL45S3 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 47.0 

M2AL45S4 100 24 7 0.45 3 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 43.0 

M2AL45S5 100 24 7 0.45 3.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 38.0 

M2AL55S1 100 24 7 0.55 1.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 47.0 

M2AL55S2 100 24 7 0.55 2 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 54.0 

M2AL55S3 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 58.0 

M2AL55S4 100 24 7 0.55 3 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 52.0 

M2AL55S5 100 24 7 0.55 3.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 43.0 

M2AL65S1 100 24 7 0.65 1.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 41.0 

M2AL65S2 100 24 7 0.65 2 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 43.0 

M2AL65S3 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M2AL65S4 100 24 7 0.65 3 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 42.0 

M2AL65S5 100 24 7 0.65 3.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 41.0 

M3AL35W1 100 24 7 0.35 1.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 40.0 

M3AL35W2 100 24 7 0.35 2 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 38.0 

M3AL35W3 100 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 35.0 

M3AL35W4 100 24 7 0.35 3 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 31.0 

M3AL35W5 100 24 7 0.35 3.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 30.0 

M3AL45W1 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 49.0 

M3AL45W2 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

M3AL45W3 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 42.0 

M3AL45W4 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 39.0 

M3AL45W5 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 35.0 

M3AL55W1 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 60.0 

M3AL55W2 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 56.0 

M3AL55W3 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 52.0 

M3AL55W4 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 49.0 

M3AL55W5 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 46.0 
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M3AL65W1 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 47.0 

M3AL65W2 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M3AL65W3 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 40.0 

M3AL65W4 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 37.0 

M3AL65W5 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 32.0 

M2AL35S3 28 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 14.0 

M2AL35S3 60 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 28.0 

M2AL35S3 70 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 30.0 

M2AL35S3 80 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 32.0 

M2AL35S3 90 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 36.0 

M2AL35S3 100 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 39.0 

M2AL35S3 110 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 32.0 

M2AL35S3 120 24 7 0.35 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 30.0 

M2AL45S3 28 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 14.0 

M2AL45S3 60 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 32.0 

M2AL45S3 70 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 34.0 

M2AL45S3 80 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 35.0 

M2AL45S3 90 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 38.0 

M2AL45S3 100 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M2AL45S3 110 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 39.0 

M2AL45S3 120 24 7 0.45 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 35.0 

M2AL55S3 28 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 16.0 

M2AL55S3 60 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 37.0 

M2AL55S3 70 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 41.0 

M2AL55S3 80 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M2AL55S3 90 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 49.0 

M2AL55S3 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 55.0 

M2AL55S3 110 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 48.0 

M2AL55S3 120 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 44.0 

M2AL65S3 28 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 15.0 

M2AL65S3 60 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 34.0 

M2AL65S3 70 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 38.0 

M2AL65S3 80 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 40.0 

M2AL65S3 90 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 42.0 

M2AL65S3 100 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

M2AL65S3 110 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 40.0 

M2AL65S3 120 24 7 0.65 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 36.0 
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M2AL55S3 100 6 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 25.0 

M2AL55S4 100 12 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 36.0 

M2AL55S5 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 54.0 

M2AL55S6 100 48 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 56.0 

M2AL55S7 100 72 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 57.0 

 100 24 7 0.55 2.5 8 70 0.35 2 34.64 16.27 49.09 70.564 0 0 45.0 

 100 24 7 0.55 2.5 10 70 0.35 2 34.64 16.27 49.09 70.564 0 0 54.0 

 100 24 7 0.55 2.5 12 70 0.35 2 34.64 16.27 49.09 70.564 0 0 47.0 

 100 24 7 0.55 2.5 14 70 0.35 2 34.64 16.27 49.09 70.564 0 0 43.0 

 100 24 7 0.55 2.5 16 70 0.35 2 34.64 16.27 49.09 70.564 0 0 51.0 

M.Fareed 

Ahmad et.al 

M1 70 24 1 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 40 10 53.5 

M2 70 24 1 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 45.0 

M3 70 24 1 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 60 15 37.3 

M4 70 24 1 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 80 20 22.6 

M5 70 48 2 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 51.0 

M6 70 72 3 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 51.4 

M7 70 96 4 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 51.7 

M8 60 48 2 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 44.8 

M9 80 48 2 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 48.6 

M10 90 48 2 0.5 2.5 12 65 0.47 7 29.43 14.26 56.31 52.264 48 12 48.0 

Deb et al. 

GPC 5 20 72 7 0.35 2.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 11.0 

GPC 5 20 72 28 0.35 2.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 25.0 

GPC 5 20 72 56 0.35 2.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 30.0 

GPC 5 20 72 90 0.35 2.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 33.0 

GPC 5 20 72 180 0.35 2.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 35.0 

GPC 8 20 72 7 0.35 1.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 8.0 

GPC 8 20 72 28 0.35 1.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 27.0 

GPC 8 20 72 56 0.35 1.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 32.0 

GPC 8 20 72 90 0.35 1.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 34.0 

GPC 8 20 72 180 0.35 1.5 14 70 0.35 1.5 30.1 11.4 58.5 51.453 0 0 37.0 

Hardjito and 

Rangan 

1 60 24 7 0.35 0.4 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 17.0 

2 30 4 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 8.0 

2 60 4 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 24.0 

2 60 8 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 31.0 

2 60 12 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 41.0 

2 60 48 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 72.0 

2 60 72 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 77.0 
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2 60 96 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 82.0 

2 90 4 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 37.0 

2 30 24 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 20.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 57.0 

2 30 24 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 35.0 

2 45 24 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 41.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 63.0 

2 75 24 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 64.0 

2 90 24 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 63.0 

2 45 6 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 33.0 

2 60 6 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 42.0 

2 75 6 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 48.0 

2 90 6 7 0.35 2.5 8 77.5 0.4 1.3 29.4 14.7 55.9 52.594 0 0 51.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 1 29.4 14.7 55.9 52.594 0 0 56.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 1.5 29.4 14.7 55.9 52.594 0 0 58.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 2 29.4 14.7 55.9 52.594 0 0 57.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 2.5 29.4 14.7 55.9 52.594 0 0 50.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 3 29.4 14.7 55.9 52.594 0 0 50.0 

2 60 24 7 0.35 2.5 8 77.5 0.4 3.5 29.4 14.7 55.9 52.594 0 0 46.0 

2 60 24 3 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 61.0 

2 60 24 14 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 64.0 

2 60 24 28 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 60.0 

2 60 24 56 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 61.0 

2 60 24 91 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 63.0 

2 90 24 7 0.35 2.5 8 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 66.0 

3 60 24 7 0.35 0.4 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 48.0 

4 30 48 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 49.0 

4 60 4 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 25.0 

4 90 4 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 30.0 

4 30 24 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 29.0 

4 60 24 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 68.0 

4 90 24 7 0.35 2.5 14 77.5 0.4 0 29.4 14.7 55.9 52.594 0 0 70.0 

5 60 24 3 0.38 2 14 77.5 0.3 0 29.4 14.7 55.9 52.594 16.5 4 42.0 

6 60 24 3 0.38 2 14 77.5 0.3 1 29.4 14.7 55.9 52.594 16.5 4 41.0 

7 60 24 3 0.38 2 14 77.5 0.3 2 29.4 14.7 55.9 52.594 16.5 4 41.0 

8 60 24 3 0.38 2 14 77.5 0.3 4 29.4 14.7 55.9 52.594 16.5 4 36.0 

9 60 24 7 0.35 2.5 12 77.5 0.35 1.5 29.4 14.7 55.9 52.594 14.3 3.5 40.0 
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10 60 24 7 0.35 2.5 14 77.5 0.35 1.5 29.4 14.7 55.9 52.594 17.6 4.3 43.0 

11 60 24 7 0.35 2.5 12 77.5 0.35 1.5 29.4 14.7 55.9 52.594 14.3 3.5 38.0 

12 60 24 7 0.35 2.5 8 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 63.0 

13 30 24 7 0.35 2.5 14 77.5 0.35 2 29.4 14.7 55.9 52.594 0 0 44.0 

13 45 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 0 0 55.0 

13 60 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 0 0 59.0 

13 75 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 0 0 65.0 

13 90 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 0 0 71.0 

14 30 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 10.7 2.62 35.0 

14 45 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 10.7 2.62 42.0 

14 75 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 10.7 2.62 60.0 

14 90 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 10.7 2.62 59.0 

15 30 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 21.3 5.22 32.0 

15 45 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 21.3 5.22 37.0 

15 60 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 21.3 5.22 44.0 

15 75 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 21.3 5.22 44.0 

15 90 24 7 0.35 2.5 14 77.5 0.3 2 29.4 14.7 55.9 52.594 21.3 5.22 44.0 

16 60 24 7 0.35 2.5 8 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 47.0 

17 60 24 7 0.35 2.5 10 77.5 0.35 1.5 29.4 14.7 55.9 52.594 7.5 1.84 45.0 

18 60 24 7 0.35 2.5 12 77.5 0.35 1.5 29.4 14.7 55.9 52.594 14.4 3.53 42.0 

19 60 24 7 0.35 2.5 14 77.5 0.35 1.5 29.4 14.7 55.9 52.594 20.7 5.1 40.0 

20 60 24 7 0.35 2.5 16 77.5 0.35 1.5 29.4 14.7 55.9 52.594 26.5 6.5 40.0 

21 60 24 21 0.35 2.5 14 77.5 0.35 1.5 29.4 14.7 55.9 52.594 20.7 5.1 40.0 

22 90 4 3 0.35 2.5 14 77.5 0.3 1.5 29.4 14.7 55.9 52.594 16.5 4 40.0 

23 90 24 90 0.35 2.5 14 77.5 0.35 2 29.4 14.7 55.9 52.594 0 0 89.0 

24 90 24 90 0.35 2.5 8 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 68.0 

25 60 24 90 0.4 2 8 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 55.0 

26 60 24 90 0.4 2 8 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 44.0 

Galvin and 

Llyod 

R0 60 18 1 0.35 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 20 5 23.0 

R0 60 18 7 0.35 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 20 5 26.0 

R0 60 18 28 0.35 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 20 5 33.0 

R0 60 18 91 0.35 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 20 5 36.0 

Kubiantoro et 

al. 

C1 65 24 3 0.4 2.5 8 78 0.54 0 29.75 14.73 55.52 53.584 35 10 43.2 

C1 65 24 7 0.4 2.5 8 78 0.54 0 29.75 14.73 55.52 53.584 35 10 44.0 

C1 65 24 28 0.4 2.5 8 78 0.54 0 29.75 14.73 55.52 53.584 35 10 50.0 

C1 65 24 56 0.4 2.5 8 78 0.54 0 29.75 14.73 55.52 53.584 35 10 54.0 
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Lloyd and 

Rangan 
Mixture-1 60 24 7 0.35 2.5 8 77 0.3 1.5 29.4 14.7 55.9 52.594 0 0 56.0 

Nuruddin et al. 

FA 30 24 3 0.4 2.5 8 78 0.35 3 29.43 14.26 56.31 52.264 35 10 34.5 

FA 30 24 7 0.4 2.5 8 78 0.35 3 29.43 14.26 56.31 52.264 35 10 42.3 

FA 30 24 28 0.4 2.5 8 78 0.35 3 29.43 14.26 56.31 52.264 35 10 48.7 

FA 30 24 56 0.4 2.5 8 78 0.35 3 29.43 14.26 56.31 52.264 35 10 50.6 

FA 30 24 90 0.4 2.5 8 78 0.35 3 29.43 14.26 56.31 52.264 35 10 51.4 

Nath and 

Sarker 

A40 S00 23 24 3 0.4 2.5 14 78 0.35 0 30 11.5 58.5 51.282 0 0 5.0 

A40 S00 23 24 7 0.4 2.5 14 78 0.35 0 30 11.5 58.5 51.282 0 0 16.0 

A40 S00 23 24 28 0.4 2.5 14 78 0.35 0 30 11.5 58.5 51.282 0 0 25.6 

A40 S00 23 24 56 0.4 2.5 14 78 0.35 0 30 11.5 58.5 51.282 0 0 30.0 

A40 S00 23 24 90 0.4 2.5 14 78 0.35 0 30 11.5 58.5 51.282 0 0 33.4 

A35 S00 23 24 28 0.35 2.5 14 78 0.35 1.5 30 11.5 58.5 51.282 0 0 32.2 

A35 S00 23 24 90 0.35 2.5 14 78 0.35 1.5 30 11.5 58.5 51.282 0 0 41.1 

Olivia and 

Nikraz 

T1 60 24 1 0.3 1.5 14 72 0.35 1.22 29.4 14.7 55.9 52.594 26.47 5.3 37.8 

T1 60 24 7 0.3 1.5 14 72 0.35 1.22 29.4 14.7 55.9 52.594 26.47 5.3 39.5 

T1 60 24 28 0.3 1.5 14 72 0.35 1.22 29.4 14.7 55.9 52.594 26.47 5.3 39.9 

T2 70 12 1 0.35 2 14 72 0.35 1.27 29.4 14.7 55.9 52.594 23.65 5 34.6 

T2 70 12 7 0.35 2 14 72 0.35 1.27 29.4 14.7 55.9 52.594 23.65 5 35.3 

T2 70 12 28 0.35 2 14 72 0.35 1.27 29.4 14.7 55.9 52.594 23.65 5 37.1 

T3 75 24 1 0.4 2.5 14 72 0.35 1.32 29.4 14.7 55.9 52.594 21.23 4.6 49.7 

T3 75 24 7 0.4 2.5 14 72 0.35 1.32 29.4 14.7 55.9 52.594 21.23 4.6 49.9 

T3 75 24 28 0.4 2.5 14 72 0.35 1.32 29.4 14.7 55.9 52.594 21.23 4.6 49.6 

T4 75 24 1 0.3 2 14 74 0.35 1.32 29.4 14.7 55.9 52.594 18.61 4 41.9 

T4 75 24 7 0.3 2 14 74 0.35 1.32 29.4 14.7 55.9 52.594 18.61 4 40.9 

T4 75 24 28 0.3 2 14 74 0.35 1.32 29.4 14.7 55.9 52.594 18.61 4 42.5 

T4 75 24 91 0.3 2 14 74 0.35 1.5 29.4 14.7 55.9 52.594 18.6 4 58.9 

T5 60 24 1 0.35 2.5 14 74 0.35 1.37 29.4 14.7 55.9 52.594 18.55 4.2 32.5 

T5 60 24 7 0.35 2.5 14 74 0.35 1.37 29.4 14.7 55.9 52.594 18.55 4.2 37.6 

T5 60 24 28 0.35 2.5 14 74 0.35 1.37 29.4 14.7 55.9 52.594 18.55 4.2 38.7 

T6 70 12 1 0.4 1.5 14 74 0.35 1.42 29.4 14.7 55.9 52.594 28.51 6.65 25.2 

T6 70 12 7 0.4 1.5 14 74 0.35 1.42 29.4 14.7 55.9 52.594 28.51 6.65 27.2 

T6 70 12 28 0.4 1.5 14 74 0.35 1.42 29.4 14.7 55.9 52.594 28.51 6.65 28.6 

T7 70 12 1 0.3 2.5 14 76 0.35 1.44 29.4 14.7 55.9 52.594 15.97 3.76 54.1 

T7 70 12 7 0.3 2.5 14 76 0.35 1.44 29.4 14.7 55.9 52.594 15.97 3.76 52.3 

T7 70 12 28 0.3 2.5 14 76 0.35 1.44 29.4 14.7 55.9 52.594 15.97 3.76 54.9 

T7 70 12 91 0.3 2.5 14 76 0.35 1.51 29.4 14.7 55.9 52.594 17.9 4.21 56.5 
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T8 75 24 1 0.35 1.5 14 76 0.35 1.5 29.4 14.7 55.9 52.594 24.46 6 32.4 

T8 75 24 7 0.35 1.5 14 76 0.35 1.5 29.4 14.7 55.9 52.594 24.46 6 34.5 

T8 75 24 28 0.35 1.5 14 76 0.35 1.5 29.4 14.7 55.9 52.594 24.46 6 35.7 

T9 60 24 1 0.4 2 14 76 0.35 1.55 29.4 14.7 55.9 52.594 21.47 5.4 25.9 

T9 60 24 7 0.4 2 14 76 0.35 1.55 29.4 14.7 55.9 52.594 21.47 5.4 29.3 

T9 60 24 28 0.4 2 14 76 0.35 1.55 29.4 14.7 55.9 52.594 21.47 5.4 29.7 

T10 75 24 7 0.3 2.5 14 72 0.35 1.5 29.4 14.7 55.9 52.594 18.8 3.77 59.1 

T10 75 24 28 0.3 2.5 14 72 0.35 1.5 29.4 14.7 55.9 52.594 18.8 3.77 60.2 

T10 75 24 91 0.3 2.5 14 72 0.35 1.5 29.4 14.7 55.9 52.594 18.8 3.77 63.3 

Sarker et al. 

GPC 1 60 24 28 0.38 1.5 14 76 0.35 0 28.9 9.1 62 46.613 4 1 32 

GPC 2 60 24 28 0.38 1.5 14 76 0.35 0 28.9 9.1 62 46.613 0 0 36 

GPC 3 60 24 28 0.42 1.5 14 76 0.35 0 28.9 9.1 62 46.613 0 0 48 

Shi et al. 

GRC0 80 24 3 0.5 2.5 8 77 0.3 0 29.4 14.7 55.9 52.594 0 0 74.37 

GRC0 80 24 7 0.5 2.5 8 77 0.3 0 29.4 14.7 55.9 52.594 0 0 80.58 

GRC0 80 24 28 0.5 2.5 8 77 0.3 0 29.4 14.7 55.9 52.594 0 0 85.66 

GRC0 80 24 60 0.5 2.5 8 77 0.3 0 29.4 14.7 55.9 52.594 0 0 86.15 

GRC0 80 24 90 0.5 2.5 8 77 0.3 0 29.4 14.7 55.9 52.594 0 0 88.22 

Sujatha et al. 
G30 70 24 28 0.46 2.5 12 75 0.3 2 29.4 14.7 55.9 52.594 0 0 35.48 

G50 70 24 28 0.5 2.5 12 75 0.35 2 29.4 14.7 55.9 52.594 0 0 53.5 

Vora and Dave 

Mix-1 75 24 3 0.4 2.5 14 76 0.35 2 35.01 16.84 48.15 72.710 43 10 30 

Mix-2 75 24 3 0.35 2.5 14 76 0.35 2 35.01 16.84 48.15 72.710 43 10 30 

Mix-3 75 24 3 0.4 2 14 76 0.35 2 35.01 16.84 48.15 72.710 43 10 40 

Mix-4B 75 48 3 0.4 2.5 14 76 0.35 2 35.01 16.84 48.15 72.710 43 10 32 

Mix-5B 75 48 3 0.4 2.5 14 76 0.35 3 35.01 16.84 48.15 72.710 43 10 30 

Mix-5C 75 48 3 0.4 2.5 14 76 0.35 4 35.01 16.84 48.15 72.710 43 10 29 

Mix-7A 75 24 3 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 43 10 30 

Mix-7B 75 24 3 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 64 15 24 

Mix-7C 75 24 3 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 86 20 20 

Mix-8A 75 24 7 0.4 2 8 76 0.35 1 35.01 16.84 48.15 72.710 43 10 32 

Mix-8B 75 24 7 0.4 2 10 76 0.35 1 35.01 16.84 48.15 72.710 43 10 35 

Mix-8C 75 24 7 0.4 2 12 76 0.35 1 35.01 16.84 48.15 72.710 43 10 43 

Mix-8D 75 24 7 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 43 10 46 

Mix-9A 60 24 7 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 43 10 38 

Mix-9B 75 24 7 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 43 10 46 

Mix-9C 90 24 7 0.4 2 14 76 0.35 1 35.01 16.84 48.15 72.710 43 10 49 

Wardhono.A. 
et al. 

FAGP 80 24 28 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 22.37 

FAGP 80 24 56 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 25.13 
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FAGP 80 24 90 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 27.01 

FAGP 80 24 180 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 31.09 

FAGP 80 24 360 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 33.23 

FAGP 80 24 540 0.82 1.6 15 64 0.43 0 29.4 14.7 55.9 52.594 10 2.14 33.09 

Weena Lokuge 

M30 80 24 7 0.45 1.75 10 62 0.34 0 29.4 14.7 55.9 52.594 79.2 19.3 26.6 

M30 80 24 28 0.45 1.75 10 62 0.34 0 29.4 14.7 55.9 52.594 79.2 19.3 28.3 

M40 80 24 7 0.5 3 10 74 0.34 0 29.4 14.7 55.9 52.594 0.75 0.2 39.5 

M40 80 24 28 0.5 3 10 74 0.34 0 29.4 14.7 55.9 52.594 0.75 0.2 42.1 

M50 80 24 7 0.45 3.5 10 74 0.34 0 29.4 14.7 55.9 52.594 11.9 3 45.4 

M50 80 24 28 0.45 3.5 10 74 0.34 0 29.4 14.7 55.9 52.594 11.9 3 49 

M55 80 24 7 0.5 4 10 74 0.34 0 29.4 14.7 55.9 52.594 2.6 0.6 50.6 

M55 80 24 28 0.5 4 10 74 0.34 0 29.4 14.7 55.9 52.594 2.6 0.6 55.5 

A.Mehta and 

R.Siddique 

G100C0 80 24 28 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 44.3 

G100C0 80 24 90 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 46.9 

G100C0 80 24 365 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 47.3 

K.Ramujeea 
and M.P.Raju 

G20 60 24 28 0.5 2 8 77.5 0.35 0 29.4 14.7 55.9 52.594 22 6.7 31.33 

G40 60 24 28 0.4 2.5 16 77.5 0.35 1.5 29.4 14.7 55.9 52.594 0 0 50.66 

G60 60 24 28 0.345 2.5 16 77.5 0.3 1.5 29.4 14.7 55.9 52.594 0 0 71.1 

T.Sathanandam 
et al. 

0%GF-Natural 
Curing 

27 24 7 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 15.3 

0%GF-Natural 

Curing 
27 24 14 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 18.6 

0%GF-Natural 
Curing 

27 24 28 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 21.2 

0%GF-Thermal 

Curing 
100 24 7 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 19.3 

0%GF-Thermal 
Curing 

100 24 14 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 20.4 

0%GF-Thermal 

Curing 
100 24 28 0.43 1 12 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 22.4 

0%GF-Natural 
Curing 

27 24 7 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 9.5 

0%GF-Natural 

Curing 
27 24 14 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 12.7 

0%GF-Natural 
Curing 

27 24 28 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 17.1 

0%GF-Thermal 

Curing 
100 24 7 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 18.5 
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0%GF-Thermal 

Curing 
100 24 14 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 19.3 

0%GF-Thermal 
Curing 

100 24 28 0.43 1 16 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 22.1 

0%GF-Natural 

Curing 
27 24 7 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 10.1 

0%GF-Natural 
Curing 

27 24 14 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 17.1 

0%GF-Natural 

Curing 
27 24 28 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 21.6 

0%GF-Thermal 
Curing 

100 24 7 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 20 

0%GF-Thermal 

Curing 
100 24 14 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 22.4 

0%GF-Thermal 
Curing 

100 24 28 0.43 1 20 70 0.456 0 29.4 14.7 55.9 52.594 60.6 17.3 24.5 

A.Mehta and 

R.Siddique 

G100C0 80 24 3 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 41.5 

G100C0 80 24 7 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 43.4 

G100C0 80 24 28 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 45 

G100C0 80 24 90 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 46 

G100C0 80 24 365 0.55 2.5 10 80 0.35 2 34.72 16.2 49.08 70.742 0 0 47.6 

K.Pasupathy et 
al. 

GPC 60 24 90 0.35 2.5 8 75 0.32 1.47 29.4 14.7 55.9 52.594 22.5 5.5 39 

P.Nuaklong et 
al. 

GL8 60 48 7 0.6 1.5 8 70 0.3 0 30.2 12.5 57.3 52.705 0 0 40 

GL12 60 48 7 0.6 1.5 12 70 0.3 0 30.2 12.5 57.3 52.705 0 0 41.4 

GL16 60 48 7 0.6 1.5 16 70 0.3 0 30.2 12.5 57.3 52.705 0 0 38.4 

A.Wongsa et 

al. 

0.70CLRS0.5 60 48 7 0.7 0.5 10 75 0.22 0 30.24 12.53 57.23 52.839 0 0 38.2 

0.70CLRS1.0 60 48 7 0.7 1 10 75 0.22 0 30.24 12.53 57.23 52.839 0 0 36 

0.70CLRS1.5 60 48 7 0.7 1.5 10 75 0.22 0 30.24 12.53 57.23 52.839 0 0 34.1 

Faiz Uddin A.S 
GPC0 60 24 7 0.4 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 0 0 41.1 

GPC0 60 24 28 0.4 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 0 0 45.3 

Hamdy K. 

Shehab 

G1100 100 24 7 0.55 2.5 10 80 0.4 0 34.64 16.27 49.09 70.564 50.76 16.92 28.44 

G1100 100 24 28 0.55 2.5 10 80 0.4 0 34.64 16.27 49.09 70.564 50.76 16.92 31.38 

G2100 100 24 7 0.45 2.5 10 80 0.4 0 34.64 16.27 49.09 70.564 68.81 22.94 23.92 

G2100 100 24 28 0.45 2.5 10 80 0.4 0 34.64 16.27 49.09 70.564 68.81 22.94 26.38 

G3100 100 24 7 0.55 2.5 10 75 0.4 0 34.64 16.27 49.09 70.564 59.23 16.92 32.36 

G3100 100 24 28 0.55 2.5 10 75 0.4 0 34.64 16.27 49.09 70.564 59.23 16.92 35.5 

G4100 100 24 7 0.45 2.5 10 75 0.4 0 34.64 16.27 49.09 70.564 80.28 22.94 27.16 

G4100 100 24 28 0.45 2.5 10 75 0.4 0 34.64 16.27 49.09 70.564 80.28 22.94 29.81 
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Ali A. Aliabdo 
et al. 

Mix-4 50 48 7 0.35 2.5 16 75 0.5 3 29.4 14.7 55.9 52.594 35 10 18.3 

Mix-4 50 48 28 0.35 2.5 16 75 0.5 3 29.4 14.7 55.9 52.594 35 10 22.2 

Mix-5 50 48 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 25.5 

Mix-5 50 48 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 27.5 

Mix-6 50 48 7 0.35 2.5 16 75 0.5 2.33 29.4 14.7 55.9 52.594 35 7.77 33.3 

Mix-6 50 48 28 0.35 2.5 16 75 0.5 2.33 29.4 14.7 55.9 52.594 35 7.77 38.5 

Mix-10 28 48 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 10 

Mix-10 28 48 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 13.2 

Mix-11 70 48 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 35.6 

Mix-11 70 48 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 37.5 

Mix-12 90 48 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 30 

Mix-12 90 48 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 32.5 

Mix-13 50 24 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 22.8 

Mix-13 50 24 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 25.1 

Mix-14 50 72 7 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 28.8 

Mix-14 50 72 28 0.35 2.5 16 75 0.5 2.625 29.4 14.7 55.9 52.594 35 8.75 31 

F.N. Okoye et 

al. 

Mix-1 100 72 3 0.4 2.5 14 77 0.3 1 29.4 14.7 55.9 52.594 0 0 29.2 

Mix-1 100 72 7 0.4 2.5 14 77 0.3 1 29.4 14.7 55.9 52.594 0 0 30 

Mix-1 100 72 14 0.4 2.5 14 77 0.3 1 29.4 14.7 55.9 52.594 0 0 30.2 

Mix-1 100 72 21 0.4 2.5 14 77 0.3 1 29.4 14.7 55.9 52.594 0 0 32 

Mix-1 100 72 28 0.4 2.5 14 77 0.3 1 29.4 14.7 55.9 52.594 0 0 36.8 

N.Ganesan et 
al. 

GPC 60 24 28 0.35 2.5 10 75 0.32 2.5 29.4 14.7 55.9 52.594 14.5 3.55 37 

Lateef N. Assi  
et al. 

SS-W-OM-2 75 48 7 0.35 2.5 14 77 0.4 1.5 29.4 14.7 55.9 52.594 0 0 59.5 

SS-W-OM-3 75 48 7 0.35 2.5 14 77 0.5 1.5 29.4 14.7 55.9 52.594 22.5 5.5 56.7 

F. U. A. 

Shaikh and V. 
Vimonsatit 

Mix-2 60 24 28 0.35 2.5 10 75 0.36 0 29.4 14.7 55.9 52.594 0 0 36.5 

Mix-3 60 24 28 0.35 2.5 13 75 0.36 0 29.4 14.7 55.9 52.594 0 0 64.3 

Mix-4 60 24 28 0.35 2.5 16 75 0.36 0 29.4 14.7 55.9 52.594 0 0 72.1 

Mix-7 60 24 28 0.35 2.5 10 75 0.4 0 29.4 14.7 55.9 52.594 143 35 25 

Mix-8 60 24 28 0.35 2.5 16 75 0.4 0 29.4 14.7 55.9 52.594 143 35 27.5 

Mix-9 60 40 28 0.35 2.5 10 75 0.36 0 29.4 14.7 55.9 52.594 143 35 33 

Sharayu 

Satpute et al. 

NaOH+Na2SiO3 80 24 3 0.35 1 8 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 23.33 

NaOH+Na2SiO3 80 24 7 0.35 1 8 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 31.47 

NaOH+Na2SiO3 80 24 28 0.35 1 8 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 32.66 

NaOH+Na2SiO3 90 24 7 0.35 1 10 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 31.02 

NaOH+Na2SiO3 90 24 28 0.35 1 10 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 41.76 

NaOH+Na2SiO3 90 24 7 0.35 1 12 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 28.31 
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NaOH+Na2SiO3 90 24 28 0.35 1 12 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 35.95 

NaOH+Na2SiO3 90 24 7 0.35 1 14 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 26.08 

NaOH+Na2SiO3 90 24 28 0.35 1 14 77 0.35 0 29.4 14.7 55.9 52.594 0.9 19.1 39.48 

M.D.J. 

Sumajouw and 
B. V. Rangan 

GBI 60 24 28 0.35 2.5 14 76 0.35 1.5 29.4 14.7 55.9 52.594 25.5 6.31 37 

GBII 60 24 28 0.35 2.5 14 76 0.35 1.5 29.4 14.7 55.9 52.594 17 4.21 46 

S. Srinivasan et 

al. 
GPC 70 24 28 0.45 2.5 8 75 0.3 2 29.4 14.7 55.9 52.594  14.65 32.74 

Kumar S et al. 

FGC-M1 70 24 28 1 2.5 16 74 0.44 1 31.35 14.74 53.91 58.152 0 0 17.48 

FGC-M2 70 24 28 0.886 2.5 16 72.03 0.44 1 31.35 14.74 53.91 58.152 0 0 19.92 

FGC-M3 70 24 28 0.793 2.5 16 70.3 0.44 1 31.35 14.74 53.91 58.152 0 0 26.59 

FGC-M4 70 24 28 0.717 2.5 16 68.5 0.44 1 31.35 14.74 53.91 58.152 0 0 28.44 

FGC-M5 70 24 28 0.650 2.5 16 66.8 0.44 1 31.35 14.74 53.91 58.152 0 0 31.55 

FGC-M6 70 24 28 0.603 2.5 16 65 0.44 1 31.35 14.74 53.91 58.152 0 0 35.25 

FGC-M7 70 24 28 0.558 2.5 16 63.3 0.44 1 31.35 14.74 53.91 58.152 0 0 37.11 

FGC-M8 70 24 28 0.520 2.5 16 61.5 0.44 1 31.35 14.74 53.91 58.152 0 0 33.55 

FGC-M9 70 24 28 0.486 2.5 16 59.79 0.44 1 31.35 14.74 53.91 58.152 0 0 28.07 

Subhash V. 
Patankar 

 60 24 7 0.35 1 13 73 0.35 0 34.35 16.37 49.28 69.704 29.46 7.3 37.22 

M. Albitar et 

al. (2014) 

1 70 24 3 0.37 1.5 14 75 0.33 2.034 29.4 14.7 55.9 52.594 0 0 53.8 

2 70 24 3 0.37 1.5 14 75 0.33 3.28 29.4 14.7 55.9 52.594 0 0 34.8 

3 70 24 3 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 0 0 29.4 

4 70 24 3 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 22.32 5.25 36.3 

5 70 24 3 0.37 1.5 14 75 0.33 5.65 29.4 14.7 55.9 52.594 3.36 0.79 74.5 

6 70 24 3 0.37 1.5 14 75 0.33 5.65 29.4 14.7 55.9 52.594 7.2 1.69 67.6 

7 70 24 3 0.37 1.5 14 75 0.33 5.65 29.4 14.7 55.9 52.594 9.6 2.25 64.4 

8 70 24 3 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 40.8 9.6 55.6 

9 70 24 3 0.37 1.5 14 75 0.33 0.2 29.4 14.7 55.9 52.594 35.28 8.87 44.4 

10 70 24 3 0.37 1.5 14 75 0.33 7.45 29.4 14.7 55.9 52.594 9.6 2.25 66.9 

11 70 24 3 0.37 1.5 14 75 0.33 8.6 29.4 14.7 55.9 52.594 9.6 2.25 62.4 

12 70 24 3 0.37 1.5 14 75 0.33 9.72 29.4 14.7 55.9 52.594 9.6 2.25 57.1 

13 70 24 3 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 40.9 

13 70 24 7 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 49.3 

13 70 24 14 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 48.1 

13 70 24 28 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 50.2 

13 70 24 56 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 52.3 

13 70 24 90 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 50.6 

13 70 24 240 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 58.3 



83 

 

13 23 24 3 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 1.52 

13 23 24 7 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 7.11 

13 23 24 14 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 17.1 

13 23 24 21 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 32.7 

13 23 24 28 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 40.7 

13 23 24 56 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 49.6 

13 23 24 90 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 49.3 

13 23 24 240 0.37 1.5 14 75 0.33 11.3 29.4 14.7 55.9 52.594 9.6 2.25 55.3 

14 70 24 3 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 46.2 

14 23 24 3 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 8.02 

14 23 24 7 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 14.3 

14 23 24 14 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 28.3 

14 23 24 21 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 36.8 

14 23 24 28 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 46 

14 23 24 56 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 45.6 10.73 58 

15 70 24 3 0.37 1.5 14 75 0.33 0 29.4 14.7 55.9 52.594 60 14.12 27.2 

Shafiq Ishaq et 

al. 

100FA 27 24 7 0.4 2.5 10 70 0.5 3 27.8 8.2 64 43.438 63.18 5.2 16.15 

100FA 27 24 14 0.45 2.5 10 70 0.5 3 27.8 8.2 64 43.438 63.18 5.2 33.39 

100FA 27 24 28 0.5 2.5 10 70 0.5 3 27.8 8.2 64 43.438 63.18 5.2 42.13 

 Muhd Fadhil 
Nuruddin et al. 

S1 70 24 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 40 10 53.5 

S2 70 24 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 45 

S3 70 24 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 60 15 37.3 

S4 70 24 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 80 20 22.6 

S5 70 48 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 51 

S6 70 72 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 51.4 

S7 70 96 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 51.7 

S8 60 48 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 44.8 

S9 80 48 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 48.6 

S10 90 48 1 0.5 2.5 12 70 0.47 7 29.75 14.73 55.52 53.584 48 12 48 

G Lavanya and 
J Jegan 

M20 27 24 28 0.5 2.5 8 75 0.322 0 29.4 14.7 55.9 52.594 0 0 11.45 

M20 27 24 28 0.5 2.5 10 75 0.322 0 29.4 14.7 55.9 52.594 0 0 18.33 

M20 27 24 28 0.5 2.5 12 75 0.322 0 29.4 14.7 55.9 52.594 0 0 29.33 

M20 27 24 28 0.5 2.5 14 75 0.322 0 29.4 14.7 55.9 52.594 0 0 20 

M20 27 24 28 0.5 2.5 16 75 0.322 0 29.4 14.7 55.9 52.594 0 0 18.71 

M25 27 24 28 0.45 2.5 8 75 0.31 0 29.4 14.7 55.9 52.594 0 0 12.65 

M25 27 24 28 0.45 2.5 10 75 0.31 0 29.4 14.7 55.9 52.594 0 0 19.45 

M25 27 24 28 0.45 2.5 12 75 0.31 0 29.4 14.7 55.9 52.594 0 0 31.25 



84 

 

M25 27 24 28 0.45 2.5 14 75 0.31 0 29.4 14.7 55.9 52.594 0 0 19.78 

M25 27 24 28 0.45 2.5 16 75 0.31 0 29.4 14.7 55.9 52.594 0 0 17.7 

M30 27 24 28 0.4 2.5 8 75 0.3 0 29.4 14.7 55.9 52.594 0 0 13.7 

M30 27 24 28 0.4 2.5 10 75 0.3 0 29.4 14.7 55.9 52.594 0 0 20.65 

M30 27 24 28 0.4 2.5 12 75 0.3 0 29.4 14.7 55.9 52.594 0 0 33 

M30 27 24 28 0.4 2.5 14 75 0.3 0 29.4 14.7 55.9 52.594 0 0 19.94 

M30 27 24 28 0.4 2.5 16 75 0.3 0 29.4 14.7 55.9 52.594 0 0 18.53 

M35 27 24 28 0.35 2.5 8 75 0.3 0 29.4 14.7 55.9 52.594 0 0 15 

M35 27 24 28 0.35 2.5 10 75 0.3 0 29.4 14.7 55.9 52.594 0 0 22.33 

M35 27 24 28 0.35 2.5 12 75 0.3 0 29.4 14.7 55.9 52.594 0 0 35 

M35 27 24 28 0.35 2.5 14 75 0.3 0 29.4 14.7 55.9 52.594 0 0 20.21 

M35 27 24 28 0.35 2.5 16 75 0.3 0 29.4 14.7 55.9 52.594 0 0 19.55 

Raijiwala and 

Patil 

1 60 24 1 0.35 2.5 8 75 0.312 2 36.7 18.2 45.1 81.375 0 0 16.42 

1 60 24 7 0.35 2.5 8 75 0.312 2 36.7 18.2 45.1 81.375 0 0 28.33 

1 60 24 14 0.35 2.5 8 75 0.312 2 36.7 18.2 45.1 81.375 0 0 34.22 

1 60 24 28 0.35 2.5 8 75 0.312 2 36.7 18.2 45.1 81.375 0 0 37.36 

2 60 24 1 0.35 2.5 10 75 0.312 2 36.7 18.2 45.1 81.375 0 0 20.18 

2 60 24 7 0.35 2.5 10 75 0.312 2 36.7 18.2 45.1 81.375 0 0 30.14 

2 60 24 14 0.35 2.5 10 75 0.312 2 36.7 18.2 45.1 81.375 0 0 35.24 

2 60 24 28 0.35 2.5 10 75 0.312 2 36.7 18.2 45.1 81.375 0 0 40.29 

3 60 24 1 0.35 2.5 12 75 0.312 2 36.7 18.2 45.1 81.375 0 0 23.1 

3 60 24 7 0.35 2.5 12 75 0.312 2 36.7 18.2 45.1 81.375 0 0 33.16 

3 60 24 14 0.35 2.5 12 75 0.312 2 36.7 18.2 45.1 81.375 0 0 39.12 

3 60 24 28 0.35 2.5 12 75 0.312 2 36.7 18.2 45.1 81.375 0 0 42.44 

4 60 24 1 0.35 2.5 14 75 0.312 2 36.7 18.2 45.1 81.375 0 0 24.12 

4 60 24 7 0.35 2.5 14 75 0.312 2 36.7 18.2 45.1 81.375 0 0 34.28 

4 60 24 14 0.35 2.5 14 75 0.312 2 36.7 18.2 45.1 81.375 0 0 40.18 

4 60 24 28 0.35 2.5 14 75 0.312 2 36.7 18.2 45.1 81.375 0 0 43 

5 60 24 1 0.35 2.5 16 75 0.312 2 36.7 18.2 45.1 81.375 0 0 25.02 

5 60 24 7 0.35 2.5 16 75 0.312 2 36.7 18.2 45.1 81.375 0 0 35.1 

5 60 24 14 0.35 2.5 16 75 0.312 2 36.7 18.2 45.1 81.375 0 0 41.18 

5 60 24 28 0.35 2.5 16 75 0.312 2 36.7 18.2 45.1 81.375 0 0 44.14 

 

 


