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ABSTRACT

In today’s era, having a simpler mathematical model is very necessary to analyze and un-

derstand a system. “Model Order Reduction” (MOR) is the technique which helps reducing

our efforts and computational complexities of the mathematical model which is to be an-

alyzed to understand a system’s behavior. It helps us in complex numerical simulation by

reducing the order of the system, without bringing a change in its basic properties. MOR

is actually the procedure of transforming a higher order complex system into a lower order

and non complex system with a reasonable accuracy so we may design the system easily

and model and simulate a large complex system doing less effort. Balanced truncation is

most commonly used MOR technique that ensures stability and yields an error bound for

full frequency range. Sometimes we desire to reduce the system over a specific frequency

band, so it motivates the use of frequency weightings in MOR. This thesis focuses on model

reduction techniques using frequency weightings. First a full order system is considered and

then frequency weighted model order reduction is carried out on that system using proposed

techniques, hence yielding a stable reduced order model (ROM). Stability will be guaran-

teed by having positive/ semidefinite input and output matrices hence assuring the positive

semi-definiteness of observability and controllability Gramians. These Gramians will help

us formulate a transformation matrix by the help of which we will find new state space

realizations of the ROM (internally balanced realizations) which will be stable and gives

computable error bounds and approximation error. Existing MOR techniques do preserve

stability along with relatively large approximation errors and error bounds but proposed re-

search aim is to develope techniques that yield low approximation error and computable

error bound as compared to existing stability preserving techniques.
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Chapter 1

INTRODUCTION

1.1 Overview of Model Order Reduction

While designing a physical system we aim to get some desired performance specifications.

For this purpose, it is necessary to understand the dynamical behaviour of that designed

system. Understanding this dynamical behaviour might become a difficult task to achieve

if the system is complex, hence attaining a simple and reduced mathematical model for a

physical system is the need of hour in today’s era. In spite of the technological success and

progressions, designing of a large system (semiconductor devices, electronic circuits, fluid

mechanics, image compression) results in a high-dimensional mathematical model which

are difficult to understand. As a result, simulation, computation and cost becomes non ef-

ficient and unbearable. Therefore, a simple, non-complex and a ROM is needed instead of

complex systems to have easy simulation and analysis. Model Order Reduction (MOR) is

the technique which helps in reducing a complex and large-scale model into a lower order

model to have a good estimation of the given full order original system, retaining its key

properties like stability, passivity and input and output behavior of system. In order to han-

dle the difficulties (caused by having a higher order model system) in a better and more

robust way, MOR is the solution. Using MOR technique, we can simulate a large complex

system doing less effort by converting it into a lower order and non complex system. MOR

proves that it is a well - known simulation tool for a vast area of issues that relate to both

research and industrial applications [1] - [22].

As Fig 1.1 explains that when any physical system(s) along with some data is modelled,

so a number of ODEs and PDEs are attained. Simulation and control of complex ODEs

are highly costly, therefore, doing MOR to have a reduced number of ODEs can be really

helpful in simulation and control of the system under consideration.

There are multiple factors which are considered significant in MOR. Approximation error

is one of those factors and it is the error between the original system and the reduced system.
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MOR also demands to preserve the other factors of system such as stability, passivity and in-

put and output behavior of the system. These factors make MOR techniques computational

and time efficient. Error bound gives good approximation for selection of any MOR tech-

nique as it gives idea how much error can be accepted for the concerned specific application.

Figure 1.1: Model Order Reduction

1.1.1 Balanced Truncation

Balanced truncation (BT) is one of the classes/ methods of MOR (introduced by Moore [1])

which guaranteed a stable ROM along with a priori error bound. It converts a higher model

approximation into lower order by eliminating states that have low effect on considered

system’s response hence making it stable (bounded output for a given bounded input) and

giving error bounds. It reduces the given under consideration higher order system to a lower

order system. In control theory and its applications, a transfer function has many state space

realizations, among them are some really useful realizations called internally balanced real-

2



izations. These internally balanced realizations point out the most dominant states of a sys-

tem. Also, controllability and observability Gramians are equal and diagonal for a balanced

realization. Using BT technique, a lower order realization is obtained from a higher order re-

alization and it helps in attaining a lower approximation error over an entire frequency range.

Basically, BT eliminates (truncates) the states that have low effect on considered system’s

response hence making it stable (bounded output for a given bounded input) and giving error

bounds hence reducing a higher model model’s approximation into a lower order. A lower

order system for a full range of frequency is reduced from a full (higher) order system but

sometimes it is desired to reduce the system over a specific frequency band, so it motivated

the use of frequency weightings. BT is the most consistently and basically used technique of

MOR to preserve stability along with other properties of the system and yielding of an ap-

proximation error for a responsive error bound in ROMs [2]. While using BT, controllability

and observability Gramians are used to get the internally balanced realizations preserving

stability by truncating least effective states. BT is actually the application of balanced real-

ization to model reduction theory. Moreover, as mentioned, this method of MOR also gives

an error bound formula along with the frequency response error .

Let’s consider an original higher order system with transfer function G(s) = C(sI −

A)−1B + D where {A,B,C,D} represents its nth order minimal realizations with dimen-

sions (A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m), where n represents or-

der of system and number of inputs and outputs are represented by m and p, respectively.

Gr(s) = Cr(sI − Ar)
−1Br + Dr of rth order represents the transfer function for the ROM

where r < n. Since frequency weighted MOR techniques are based on balanced truncation,

so a brief summary of BT method is discussed.

Let P (controllability) and Q (observability) Gramians satisfy the following Lyapunov’s

equations:

AP + PAT +BBT = 0

ATQ+QA+ CTC = 0

A transformation matrix T is attained as

T TQT = T−1PT−T = Σ =

Σ1 0

0 Σ2


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Using this transformation matrix T , the original system realization will be transformed,

where Σ1 = diag{σ1, σ2, . . . , σr}, Σ2 = diag{σr+1, σr+2, . . . , σn}. Hence obtaining new

system realizations as:

A = T−1AT =

A11 A12

A21 A22

 , B = T−1B =

B1

B2


C = CT =

[
C1 C2

]
, D = D

ROM is obtained as Gr(s) = C1(sI −A11)
−1B1 +D . Error between the original and ROM

is equated by the formula:

‖ G(s)−Gr(s)‖ 8 ≤ 2
n∑

i=r+1

σi

Hankel optimal Approximation [2], Pade approximation [36], Krylovtechnique [37] etc are

some other approaches which can be used besides BT to do MOR.

Properties of Balanced Realization

Some of the properties of Balanced realization (BT) are discussed below:

• Transformation of any realization into a balanced realization is possible only in case

of asymptotically stable and minimum original system.

• ‖ G(s)−Gr(s) ‖∞≤ 2
∑n

i=r+1 σi and ‖ G(s)−Gn−1(s) ‖∞= 2σn [26]

• It should be noted that while doing BT at very higher frequencies, reduction error (also

called as frequency response error) is zero and is non zero at very lower frequencies

[36].

• Any transformed realization will be a balanced realization only and only if it is asymp-

totically stable and minimal [26].

• Input and output normal realizations are the other related relazations. An input normal

realization has controllability Gramian as its identity matrix and Observability matrix

as its diagonal matrix and vice versa for output normal realizations [39].

Algorithm of BT

Algorithm of Balanced Truncation (BT) is explained with the help of Fig 1.2. It has the

following steps:
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1. A higher order system is considered having realizations {A,B,C,D }.

2. Performing Singular Value Decompsition (SVD) on the system matrices.

3. Trimming off less dominant Hankel Singular Values (HSV) to obtain equal number of

controllabity and observabiliy Gramians.

4. Obtain a ROM using internally balanced realizations.

Figure 1.2: Balanced truncation

1.2 Frequency Weighted Model Reduction

While doing MOR for all frequencies, a small approximation error between the original sys-

tem and ROM is desired. However, in some cases approximation error is desired over a

specific frequency range instead of full frequencies. In such cases, feedback control sys-

tems use Frequency Weighted Model Reduction (FWMR) [3, 21]. This leads towards the

FWMR problem which involves frequency weights. A full order stable system having a

transfer function G(s) = C(sI − A)−1B + D is desired to be reduced into a lower ROM

having transfer function Gr(s) = Cr(sI − Ar)
−1Br + Dr. Also, a stable input weighting

system and stable output weighting system is given by Vi(s) = Cv(sI −Av)
−1Bv +Dv and

Wo(s) = Cw(sI−Aw)−1Bw +Dw where {A,B,C,D }, {Ar, Br, Cr, Dr} {Av, Bv, Cv, Dv}
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and {Aw, Bw, Cw, Dw} represent nth, rth, pth and qth order minimal realizations respectively

where r < n such that error is achieved as critical as possible.

A FWMR approach is being explained using Fig 1.3. If both input and output weights

are involved so in this case error is given by ‖ W (s)(G(s) − Gr(s)V (s)) ‖∞, whereas

if only input weighting is included (shown in Fig 1.4) so error is given by ‖ (G(s) −

Gr(s))V (s) ‖∞ and if only output weighting is included (shown in Fig 1.5) so error is

given by ‖ (W (s)(G(s)−Gr(s)) ‖∞.

Figure 1.3: Input-Output FWMR error system

Figure 1.4: Input FWMR error system

A good volume of work has been carried out on this topic by many researchers. Enns [3]

had modified FWMR technique using specified input and output model reduction weightings

but its drawback was that using double weightings (input and output weightings) method, it

may yield systems which are not stable because of the symmetric matrices obtained during

procedure may be indefinite [4]. To overcome the instability issue in Enns method, many

6



Figure 1.5: Ouput FWMR error system

research works were being carried out [4,5,39,41,30]. Lin and Chiu [4] proposed a technique

that yield stable ROM in the presence of double sided weightings, but but its drawback

was that their technique is limited to scenarios where only proper weighting functions are

included and when forming the augmented system there is absence of pole zero cancellation

[35]. Another drawback of this technique is that it gives large error.

Varga and Anderson [39] proposed their technique solving instability issue in Enns [3]

method but its limitation was that it only works in those systems where is no pole-zero

cancellation and its another drawback is that it is realization dependant i.e different real-

izations may yield different ROMs. Enns method was modified by Wang et al. [5] giving

an advantage of yielding stable ROMs and error bounds even with inclusion of double -

sided frequency weightings. Drawback of Wang et al’s technique was it yields large ap-

proximation errors too because this technique was realization dependent for a same original

system, and it used to yield a different model for every different realization [36]. Varga and

Anderson again modified Wang et al’s technique to have a more improved approximation

error. Ghafoor and Sreeram [26] also proposed a technique using partial fraction expan-

sion. Reduced stable models are obtained by either direct truncation or singular perturbation

approximation. Drawback of this technique was that it was a parameterized technique. It

means using this technique, some specific parameters will influence the responses on which

the system will depend [35]. Imran and Ghafoor [30] also did work on MOR. This technique

suggests that stability is achieved by taking least negative eigenvalues and subtracting it from

all eigenvalues of some input and output related matrices. Drawback of Imran’s technique

7



was that it gave large approximation error as its last eigenvalue becomes zero. It should be

noted that except Enns technique, all proposed techniques help us to find a stable ROM with

large approximation error and error bound.

1.3 Frequency Limited Model Reduction

Using FWMR, helps us attain the smallest possible weighted reduction error ie,

‖Wo(s)(G(s)−Gr(s))Vi(s)‖∞

where Vi(s) and Wo(s) are some input weightings and output weightings respectively, for

any given system [3]. Results can be manipulated and changed by changing these weights,

making usually these input/output weightings fictitious. Frequency limited model reduction

(FLMR) is used in cases where the original system G(s) is to be estimated over a specific

frequency range. The frequency range is specified by [ω1, ω2]. In absence of any input/output

weightings, FLMR is being carried out. In such scenarios, using FWMR can be troublesome

because the system designer has to create such weights through which this frequency band

is reflected and accommodated, therefore selecting and constructing such weights is an issue

[23]. FLMR technique was first proposed by Gawronski and Juang(GJ) [25] where the

original systemG(s) was approximated without predefining the frequency weights explicitly

and without input/output weights using Gramians over a required frequency range [ω1, ω2].

Its drawback was that it may produce an unstable ROM(s) (similar to Enns method [3]) and

this technique gave no error bounds as well. Modifications have been made to GJ [25] by

Gugercin and Antoulus (GA) [24], Ghafoor and Sreeram (GS) [26], M.Imran and Ghafoor

(MIG) [27] and Imran et al. [28] to attain new techniques aiming to get stable ROMs and

responsive error bounds by satisfying rank conditions. Another FLMR technique was being

proposed by Wang and Zilouchian (WZ) [29] in domain of discrete time system which gave

a good approximation error over a full frequency range. Just like Enns [3] technique and

GJ [25] technique, this technique doesn’t ensure stability phenomenon neither it gives error

bound [26] . To resolve the issue in WZ technique, various methods were proposed such

as Ghafoor and Sreeram Algorithm 1 ( GSA1) [26] which suggested taking absolute of

all eigen values of input output matrices, Ghafoor and Sreeram Algorithm 2 (GSA2) [26]

suggesting to ignore the negative eigenvalues of input output matrices, Imran and Ghafoor

(IG) [30] suggesting subtracting the least negative value from all the eigenvalues of input

8



output matrices and Hamid et al. [31] methods. .

1.4 Problem Summary

All FWMR techniques preserve stability except Enns technique for double sided frequency

weighting. However, existing techniques yield large approximation error with loose error

bound.

1.4.1 Contributions

Three FWMR techniques have been proposed (motivated) from [31] and [32] for continuous

time systems which will be providing stable ROMs, lower approximation error and a easily

computable error bound.

1.5 Thesis Outline

The thesis report compromises of five chapters. An outline is being presented here about

brief description of each chapter. Chapter 2 explains the meaning of FWMR in detail, var-

ious existing techniques of FWMR and then drawbacks are described in detail. Difference

between these existing techniques is explained too using an example. Chapter 3 discusses

the three FWMR techniques to have stable ROMs along with a lower approximation error

and easily computable error bound. Chapter 4 presents numerical examples and their re-

sults prove the effectiveness of proposed techniques. It discusses the achievement of lower

approximation error along with easily computable error bound using proposed techniques

as compared to existing FWMR techniques and ensuring stability. Chapter 5 discusses the

conclusion of thesis and room for future research work.

9



Chapter 2

FREQUENCY WEIGHTED MODEL REDUCTION: AN OVERVIEW

2.1 Introduction

MOR is a very important feature to analyse and design a control system. A controller is

designed to run a physical plant which are dynamic systems of a higher order. The con-

troller and plant are usually of comparable orders. Lower order systems and controllers are

desirable as compared to higher order systems and controllers because [33, 34, 42].

• Non complex and lower order models are easier to analyse, making their simulation

fast.

• They are more reliable.

• They are power and cost efficient.

The main concern of MOR is to reduce complexity of higher order systems, but also to pre-

serve stability, passivity, input and output behaviour of system which are the basic properties

of actual system. When MOR is carried out over a specific frequency range so some input

and output weights are introduced. The specific frequency range is reflected through these

weights. As the approximation error between the original system and ROM is desirable low

so when sometimes a lower approximation error is needed over a specific frequency range

instead of a full frequency interval, FWMR is used. This scenario is used in feedback control

system [3, 21] as described above the problem of a controller and plant. In this chapter, we

discuss the existing FWMR techniques in detail.

2.2 Existing Techniques

2.2.1 Enns Method [3]

Enns was the first one to introduce input and output weightings to the original system.

10



Continous time domain

Consider a continuous LTI time system of nth order having transfer function as :

G(s) = C(sI − A)−1B +D

where {A,B,C,D } are the minimal realizations of the original full order system. Also let

an input weighting system given by the transfer function be:

VE(s) = Cv(sI − Av)
−1Bv +Dv

and output weighting system given by the transfer function be:

WE(s) = Cw(sI − Aw)−1Bw +Dw

where Av, Bv, Cv, Dv are the input weighting minimal realizations and Aw, Bw, Cw, Dw

are the output weighting minimal realizations.

Let the augmented systems obtained by using the original, input weighting and output

weighting system be:

G(s)VE(s) = Ci(sI − Ai)
−1Bi +Di

WE(s)G(s) = Co(sI − Ao)
−1Bo +Do

Let controllability gramian Pie and observability gramian Qoe be

Pie =

PEN P12

P T
12 PV

 , Qoe =

QW QT
12

Q12 QEN


be a solution to the following Lyapunov equations:

AiPie + PieA
T
i +BiB

T = 0 (2.1)

AT
oQoe + AoQoe + CT

o Co = 0 (2.2)

where,

{Ai, Bi, Ci, Di} =
{A BCV

0 AV

 ,
BDV

BV

 , [C DCV

]
, DDV

}

11



{Ao, Bo, Co, Do} =
{AW BWC

0 A

 ,
BWD

B

 , [CW DWC

]
, DWD

}

Following equations are yielded by expanding the (1,1) and (2,2) blocks of equation (2.1)

and (2.2) respectively.

APEN + PEN
AT +X = 0 (2.3)

ATQEN +QENA+ Y = 0 (2.4)

where,

X = BCV P
T
12 + P12C

T
VB

T +BDVD
T
VB

T (2.5)

Y = CTBT
WQ

T
12 +Q12BWC + CTDT

WDWC (2.6)

Let transformation matrix obtained T be

T TQENT = T−1PENT
−T = diag{σ1, σ2, . . . , σn} (2.7)

where σi ≤ σi + 1, i = 1, 2, . . . , n− 1, and σr > σr + 1. Transforming and partitioning the

original system, we get

Â = T−1AT =

A11 A12

A21 A22

 , B̂ = T−1B =

B1

B2

 (2.8)

Ĉ = CT =
[
C1 C2

]
, D̂ = D (2.9)

Now using these realizations, transfer function for the ROM is obtained and represented by

Gr(s) = C1(sI − A11)
−1B1 +D (2.10)

Discrete time domain

Consider a discrete time system of nth order having transfer function as :

H(z) = C(zI − A)−1B +D

where {A,B,C,D } are the minimal realizations of the original full order system. Also let

an input weighting system given by the transfer function be:

VE(z) = Cv(zI − Av)
−1Bv +Dv

12



and output weighting system given by the transfer function be:

WE(z) = Cw(zI − Aw)−1Bw +Dw

where {Av, Bv, Cv, Dv} are the input weighting minimal realizations and {Aw, Bw, Cw, Dw}

are the output weighting minimal realizations.

Let the augmented systems obtained by using the original, input weighting and output

weighting system be:

H(z)VE(z) = Ci(zI − Ai)
−1Bi +Di

WE(z)H(z) = Co(zI − Ao)
−1Bo +Do

Let controllability gramian Pie and observability gramian Qie be

Pie =

PEN P12

P T
12 PV

 , Qoe =

QW QT
12

Q12 QEN


be a solution to the following Lyapunov equations:

AiPieA
T
i − Pie +BiB

T = 0 (2.11)

AT
oQoeAo −Qoe + CT

o Co = 0 (2.12)

where,

{Ai, Bi, Ci, Di} =
{A BCV

0 AV

 ,
BDV

BV

 , [C DCV

]
, DDV

}

{Ao, Bo, Co, Do} =
{AW BWC

0 A

 ,
BWD

B

 , [CW DWC

]
, DWD

}
Remark 1 There are many applications where input and output realizations may not be

minimal.

Following equations are yielded by expanding the (1,1) and (2,2) blocks of equation (2.11)

and (2.12) respectively.

APENA
T + PEN

+X = 0 (2.13)

ATQENA+QEN + Y = 0 (2.14)
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where,

X = AP12C
T
VB

T +BCV P
T
12A

T +BCV PVC
T
VB

T +BDVD
T
VB

T (2.15)

Y = CTBT
WQ

T
12A+ ATQ12BWC + CTBT

WQoeBWC + CTDT
WDWC (2.16)

Let transformation matrix obtained TF be

T T
F QENTF = T−1F PENT

−T
F = diag{σ1, σ2, . . . , σn} (2.17)

where σi ≤ σi + 1, i = 1, 2, . . . , n− 1, and σr > σr + 1. Transforming and partitioning the

original system, we get

Â = T−1F ATF =

A11 A12

A21 A22

 , B̂ = T−1F B =

B1

B2

 (2.18)

Ĉ = CTF =
[
C1 C2

]
, D̂ = D (2.19)

Now using these realizations, transfer function for the ROM is obtained and represented by

Hr(z) = C1(zI − A11)
−1B1 +D (2.20)

Example 2.1 : Consider Example 2.3 of [35] having a state space:

A =


−4 −5 −2

1 0 0

0 1 0

 , B =


1

0

0


C =

[
8 6 2

]
, D =

[
0
]

having input weightings as:

Av =
[
−3
]
, Bv =

[
1
]

Cv =
[
1
]
, Dv =

[
0
]

and output weightings as:

Aw =
[
−4
]
, Bw =

[
1
]

Cw =
[
1
]
, Dw =

[
0
]
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Indefinite matrices X and Y are given below:

X =


−0.0374 −0.0064 −0.0019

−0.0064 0.0001 0.0001

−0.0021 0.0001 0.0001



y =


−2.0532 −0.9832 −0.2432

−0.9832 0.3201 −0.0432

−0.2432 −0.0433 −0.0068


Errors using Enns technique are given in the table 2.1

Table 2.1: Errors using Enns [3] technique
Weighting Order Enns [3] Error

Double
1 Unstable
2 0.024873

Input
1 0.3148
2 0.024873

Output
1 0.32674
2 0.039382

Remark 2 While including input weighting only, transformation matrix T is obtained by

using the matrices Pie and Q while including output weighting only, transformation matrix

T is obtained by using P and Qie

Remark 3 Enns [3] technique has a drawback that ROMs obtained using this technique

may become unstable when using double-sided weightings, for cases where matricesX and

Y become indefinite.

2.2.2 Wang et al. Method [5]

Issue of stability for double weighting case pointed out in Enns [3] technique was solved

making X and Y positive semi definite by using technique of Wang et al.

Continous time domain

In this technique, likely to Enns technique, a controllability gramian PWA and observability

gramian QWA is introduced to to give a solution to the following equations:

APWA + PWAA
T +BWAB

T
WA = 0 (2.21)
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ATQWA +QWAA+ CT
WACWA = 0 (2.22)

Taking a transformation T using above Lyapunov equations as:

T TQWAT = T−1PWAT
−T = diag{σ1, σ2, . . . , σn} (2.23)

where σi > σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1. Doing eigen decomposition of

X and Y results in X = UWASWAU
T
WA and Y = VWARWAV

T
WA. The matrices BWA and

CWA are defined as BWA = UWA|SWA|1/2 and CWA = |RWA|1/2V T
WA. By transforming and

partitioning the original system, ROM is obtained for which the transfer function is given by

Gr(s) = C1(sI − A11)
−1B1 +Dr (2.24)

Discrete time domain

Campbell et al. [41] proposed a discrete time version for Wang et al. method [5]. A control-

lability gramian PWA and observability gramian QWA is introduced to to give a solution to

the following equations:

APWAA
T − PWA +BWAB

T
WA = 0 (2.25)

ATQWAA−QWA + CT
WACWA = 0 (2.26)

Taking a transformation T using above Lyapunov equations as:

T T
F QWATF = T−1PWAT

−T
F = diag{σ1, σ2, . . . , σn} (2.27)

where σi > σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1. Doing eigen decomposition of

X and Y results in X = UWASWAU
T
WA and Y = VWARWAV

T
WA. The matrices BWA and

CWA are defined as BWA = UWA|SWA|1/2 and CWA = |RWA|1/2V T
WA. By transforming and

partitioning the original system, ROM is obtained for which the transfer function is given by

Hr(z) = C1(zI − A11)
−1B1 +D

This technique of Wang et al. suggested to take absolute of the diagonal entries of the

matrices X and Y which contained positive as well as negative entries hence transforming

negative entries into positive while positive entries remained unchanged leading to make

matrices PWA and QWA positive semidefinite resulting into the stability of the system. Its
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drawback was that it yields large approximation error.

Remark 4 A relationship is established between the input matrix B and new constructed

input matrix BWA is established by showing the existance of rank:

rank[BWA B] = rank[BWA]

Error Bound

Theorem 1: If these rank conditions

rank[BWA B] = rank[BWA]

and, CWA

C

 = rank = [CWA]

are satisfied so the following error bound is held:

In case of continous time domain:

‖WW (s)(G(s)−Gr(s))VW (s)‖∞ ≤ 2 ‖WW (s)L‖∞‖KVW (s)‖∞
n∑

i=r+1

σi (2.28)

In case of discrete time domain:

‖WW (z)(H(z)−Hr(z))VW (z)‖∞ ≤ 2 ‖WW (z)L‖∞‖KVW (z)‖∞
n∑

i=r+1

σi (2.29)

These rank conditions are followed from [5].

2.2.3 Varga and Anderson Technique [39]

As the approximation error yielded using technique of Wang et al. [5] was larger so to have

a reduced approximation error, Varga and Anderson proposed their technique.

Continous time domain

A controllability gramian PV A and observability gramian QV A is introduced to satisfy the

below Lyapunov equations:

APV A + PV AA
T +BV AB

T
V A = 0 (2.30)
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ATQV A +QV AA+ CT
V ACV A = 0 (2.31)

Using above Lyapunov equations, a transformation T is taken as:

T TQV AT = T−1PV AT
−T = diag{σ1, σ2, . . . , σn} (2.32)

where σi > σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1 Doing eigen decomposition of X

and Y results in:

X =
[
UV A1 UV A2

]SV A1 0

0 SV A2

UT
V A1

UT
V A2

 (2.33)

Y =
[
VV A1 VV A2

]RV A1 0

0 RV A2

V T
V A1

V T
V A2

 (2.34)

The matrices BV A and CV A are defined as BV A = UV A1S
1/2
V A1

and CV A = R
1/2
V A1

V T
V A1

. By

transforming and partitioning the original system, ROM is obtained for which the transfer

function is given by

Gr(s) = C1(sI − A11)
−1B1 +D (2.35)

Discrete time domain

A controllability gramian PV A and observability gramian QV A is introduced to satisfy the

below Lyapunov equations:

APV AA
T − PV A +BV AB

T
V A = 0 (2.36)

ATQV AA−QV A + CT
V ACV A = 0 (2.37)

Using above Lyapunov equations, a transformation TF is taken as:

T T
F QV ATF = T−1F PV AT

−T
F = diag{σ1, σ2, . . . , σn} (2.38)

where σi > σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1 Doing eigen decomposition of X

and Y results in:

X =
[
UV A1 UV A2

]SV A1 0

0 SV A2

UT
V A1

UT
V A2

 (2.39)

Y =
[
VV A1 VV A2

]RV A1 0

0 RV A2

V T
V A1

V T
V A2

 (2.40)
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The matrices BV A and CV A are defined as BV A = UV A1S
1/2
V A1

and CV A = R
1/2
V A1

V T
V A1

.

By transforming and partitioning the original system, ROM is obtained for which the

transfer function is given by

Hr(z) = C1(zI − A11)
−1B1 +D (2.41)

This technique suggested to replace all the negative entries in matrices X and Y with zero

in order to make the matrices X and Y positive semidefinite resulting in stability of the sys-

tem. Its limitation was that only works in those systems where is no pole-zero cancellation.

Likely to the other techniques, the realization A,BV A, CV A is minimal.

Error Bound

Theorem 2: If these rank conditions

rank[BV A B] = rank[BV A]

and, CV A

C

 = rank = [CV A]

are satisfied so the following error bound is held:

In case of continous time domain:

‖WV A(s)(G(s)−Gr(s))VV A(s)‖∞ ≤ 2 ‖WV A(s)L‖∞‖KVV A(s)‖∞
n∑

i=r+1

σi (2.42)

In case of discrete time domain:

‖WV A(z)(H(z)−Hr(z))VV A(z)‖∞ ≤ 2 ‖WV A(z)L‖∞‖KVV A(z)‖∞
n∑

i=r+1

σi (2.43)

2.2.4 Imran and Ghafoor Technique [30]

A method was being proposed by Imran and Ghafoor to have a much more reduced approx-

imation error in response to an explicit error bound.
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Continous time domain

This method proposes controllability gramian PIG and an observability gramian QIG the

solutions to the following equations:

APIG + PIGA
T +BIGB

T
IG = 0 (2.44)

ATQIG +QIGA+ CT
IGCIG = 0 (2.45)

Taking transformation T as T TQIGT = T−1PIGT
−T = diag{σ1, σ2, . . . , σn} where σi >

σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1. Here, eigen decomposition of the matrices

X and Y result in X = UIGSIGUTIG and Y = VIGRIGV TIG from which BIG and CIG are

defined as :

BIG =


UIG(SIG − snI)1/2 for sn < 0

UIGS
1/2
IG for sn ≥ 0

(2.46)

CIG =


(RIG − rnI)1/2V T

IG for rn < 0

R
1/2
IG V

T
IG for rn ≥ 0

(2.47)

Transforming and partitioning the original system, ROM is obtained as a transfer function

Gr(s) = C1(sI − A11)
−1B1 +D (2.48)

Discrete time domain

This method proposes controllability gramian PIG and an observability gramian QIG the

solutions to the following equations:

APIGA
T − PIG +BIGB

T
IG = 0 (2.49)

ATQIGA−QIG + CT
IGCIG = 0 (2.50)

Taking transformation TF as T T
F QIGTF = T−1F PIGT

−T
F = diag{σ1, σ2, . . . , σn} where σi >

σi + 1 , i = 1, 2, . . . , n − 1 and σr > σr + 1. Here, eigen decomposition of the matrices

X and Y result in X = UIGSIGUTIG and Y = VIGRIGV TIG from which BIG and CIG are
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defined as :

BIG =


UIG(SIG − snI)1/2 for sn < 0

UIGS
1/2
IG for sn ≥ 0

(2.51)

CIG =


(RIG − rnI)1/2V T

IG for rn < 0

R
1/2
IG V

T
IG for rn ≥ 0

(2.52)

Transforming and partitioning the original system, ROM is obtained as a transfer function

Hr(z) = C1(zI − A11)
−1B1 +D (2.53)

Imran and Ghafoor’s technique suggested to subtract all the diagonal entries from the least

minimum entry of the diagonal of matricesX and Y . This technique gave the advantage that

ROM obtained is stable as well as it yields frequency response error bound and improved

frequency response error. It also has a similar effect on all the eigenvalues unlike the previous

techniques. Its drawback was that sometimes it yields large approximation error.

Error Bound

Theorem 3: Like other previoussly proposed techniques, if these rank conditions

rank[BIG B] = rank[BIG]

and, CIG

C

 = rank = [CIG]

are satisfied so the following error bound is held:

In case of continous time domain:

‖WIG(s)(G(s)−Gr(s))VIG(s)‖∞ ≤ 2 ‖WIG(s)L‖∞‖KVIG(s)‖∞
n∑

i=r+1

σi (2.54)

In case of discrete time domain:

‖WIG(z)(H(z)−Hr(z))VIG(z)‖∞ ≤ 2 ‖WIG(z)L‖∞‖KVIG(z)‖∞
n∑

i=r+1

σi (2.55)

21



2.2.5 Advantages/Disadvantages of existing techniques

Table 2.2 interprets the literature survey for all existing proposed techniques.

Table 2.2: Literature survey for all previous techniques
Techniques Stability Approximation Error

Enns [3] No Large
Wang et al. [5] Yes Large
Varga and Anderson [39] Yes Large
Imran and Ghafoor [30] Yes Large

Also some advantages and disadvantages of all techniques are listed as follows:

Enns [3]:

Advantage: It only yields stable ROMs in the presence of single sided weighting.

Disadvantage: Models obtained by Enns technique may not be stable for two-sided

weighting case.

Wang et al. [5]:

Advantages:

• Stability issue was solved by making X and Y positive semi definite.

• Issue of stability in double weighting case is solved.

Disadvantage: It yields large approximation errors.

Varga and Anderson [39]:

Advantages:

• It reduces approximation error.

• Issue of stability in double weighting case is solved,

Disadvantage: It only works in those systems where is no pole-zero cancellation.

Imran and Ghafoor [30]

Advantages:

• ROM obtained is stable.

• It yields frequency response error bound and improved frequency response error.

• It has a likely effect on all the eigenvalues.
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Disdvantages:

• Sometimes it yields large approximation error.

• Its last eigenvalue may become zero.

The main drawback of the existing pioneer frequency weighted model reduction technique

by Enns was to yield an unstable ROM from the original stable system. Many existing

techniques address this limitation and preserve stability in ROMs but at the cost of large

approximation error.
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Chapter 3

MAIN WORK

3.1 Motivation for Proposed Techniques

As all frequency weighted MOR techniques except Enns [3] technique preserve stability

for double sided weightings but at cost of large approximation error. Three techniques are

proposed (motivated from [31] and [32]) aimed to give a low approximation error along

with an easily computable error bound. MOR techniques proposed in [31] and [32] are in

the domain of frequency limited whereas this thesis presents their proposed techniques in

frequency weighted domain.

3.2 Proposed Techniques

Existing frequency weighted MOR techniques except Enns technique preserve stability but

give a large approximation error and a lose error bound. Three techniques are proposed (mo-

tivated from [31] and [32] aimed to give a low approximation error along with a easily com-

putable error bound. Three techniques are proposed to ensure the stability of ROMs along

with a satisfying error bound by making symmetric matrices X and Y positive/semipositive

definite. Our first technique is motivated from third technique proposed in [31] while our

second and third techniques are motivated from first and second technique proposed in [32],

respectively.

Continous time domain

Let’s synthesize controllability and observability Gramians given by PAi
and QAi

, respec-

tively which will satisfy the following Lyapunov equations:

APAi
+ PAi

AT +BAi
BT

Ai
= 0 (3.1)

ATQAi
+QAi

A+ CT
Ai
CAi

= 0 (3.2)

where i = 1, 2, 3. For indefinite matrices X and Y , the new fictitious matrices BAi
and CAi

are defined as:
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BAi
= UAi

S1/2
1 0

0 S
1/2
2

 = UAi
S
1/2
i ,

CAi
=

R1/2
1 0

0 R
1/2
2

VAi

T
i = R

1/2
i Vi

T

for technique 1, i.e. i = 1

BA1 = UA1

S1/2
1 0

0 ((S2/s)
1/N − S2)

1/2

 for sn < 0 (3.3)

CA1 =

R1/2
1 0

0 ((R2/r)
1/N −R2)

1/2

VA1

Tfor rn < 0 (3.4)

where r = (rq+1 + rq+2 + . . . rn)/(n− q) , s = (sp+1 + sp+2 + . . . sn)/(n− p) and q and p

are number of positive eigenvalues.

for technique 2, i.e. i = 2

BA2 = UA2

S1/2
1 0

0 (S2/sn)1/n

 for sn < 0 (3.5)

CA2 =

R1/2
1 0

0 (R2/rn)1/2

VA2

T for rn < 0 (3.6)

for technique 3, i.e. i = 3

BA3 = UA3

S1/2
1 0

0 (S2 ∗ sn)1/2

 for sn < 0 (3.7)

CA3 =

R1/2
1 0

0 (R2 ∗ rn)1/2

VA3

T for rn < 0 (3.8)

The terms UA1 , UA2 , S1, S2, R1, R2, V1, V2 are acquired from following symmetric matri-

ces,
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X =
[
UA1 UA2

] S1 0

0 S2


 UT

A1

UT
A2

 (3.9)

Y =
[
V1 V2

] R1 0

0 R2


 V T

A1

V T
A2

 (3.10)

where

S1 = diag(s1, s2, ...sq), S2 = diag(sq+1, sq+2, ...sn),

R1 = diag(r1, r2, ...rp), R2 = diag(rp+1, rp+2, ...rn)

Similarly, a transformation matrix T is obtained as

T TQAT = T−1PAT
−T = diag{σ1, σ2, . . . , σn} (3.11)

where σi > σi+1 , i = 1, 2, . . . , n− 1 and σr > σr+1.

Using this transformation matrix T , new realizations are defined derived and as a result

ROM is obtained, given by

Gr(s) = C1(sI − A11)
−1B1 +DrA (3.12)

Discrete time domain

Let’s synthesize controllability and observability Gramians given by PAi
and QAi

, respec-

tively which will satisfy the following Lyapunov equations:

APAi
− PAi

AT +BAi
BT

Ai
= 0 (3.13)

ATQAi
−QAi

A+ CT
Ai
CAi

= 0 (3.14)

where i = 1, 2, 3. For indefinite matrices X and Y , the new fictitious matrices BAi
and CAi

are defined as:
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BAi
= UAi

S1/2
1 0

0 S
1/2
2

 = UAi
S
1/2
i ,

CAi
=

R1/2
1 0

0 R
1/2
2

VAi

T
i = R

1/2
i Vi

T

for technique 1, i.e. i = 1

BA1 = UA1

S1/2
1 0

0 ((S2/s)
1/N − S2)

1/2

 for sn < 0 (3.15)

CA1 =

R1/2
1 0

0 ((R2/r)
1/N −R2)

1/2

VA1

Tfor rn < 0 (3.16)

where r = (rq+1 + rq+2 + . . . rn)/(n− q) , s = (sp+1 + sp+2 + . . . sn)/(n− p) and q and p

are number of positive eigenvalues.

for technique 2, i.e. i = 2

BA2 = UA2

S1/2
1 0

0 (S2/sn)1/n

 for sn < 0 (3.17)

CA2 =

R1/2
1 0

0 (R2/rn)1/2

VA2

T for rn < 0 (3.18)

for technique 3, i.e. i = 3

BA3 = UA3

S1/2
1 0

0 (S2 ∗ sn)1/2

 for sn < 0 (3.19)

CA3 =

R1/2
1 0

0 (R2 ∗ rn)1/2

VA3

T for rn < 0 (3.20)

The terms UA1 , UA2 , S1, S2, R1, R2, V1, V2 are acquired from following symmetric matri-

ces,
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X =
[
UA1 UA2

] S1 0

0 S2


 UT

A1

UT
A2

 (3.21)

Y =
[
V1 V2

] R1 0

0 R2


 V T

A1

V T
A2

 (3.22)

where

S1 = diag(s1, s2, ...sq), S2 = diag(sq+1, sq+2, ...sn),

R1 = diag(r1, r2, ...rp), R2 = diag(rp+1, rp+2, ...rn)

Remark 5 When X ≥ 0 and Y ≥ 0, BAi
= UAi

S
1/2
i and CAi

= R
1/2
i V T

Ai
.

Similarly, a transformation matrix TF is obtained as

T T
F QATF = T−1F PAT

−T
F = diag{σ1, σ2, . . . , σn} (3.23)

where σi > σi+1 , i = 1, 2, . . . , n− 1 and σr > σr+1.

Using this transformation matrix TF , new realizations are defined derived and as a result

ROM is obtained, given by

Hr(z) = C1(zI − A11)
−1B1 +DrA (3.24)

Remark 6 As X ≤ BAi
BT

Ai
, Y ≤ CT

Ai
CAi

, BAi
BT

Ai
≥ 0, CT

Ai
CAi
≥ 0, PAi

≥ 0, QAi
≥ 0

the realization (A, BAi
, CAi

) is minimal and stability of ROM is also guaranteed.
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3.2.1 Error Bounds

Theorem 2: If the rank conditions, rank [BAi
B] =rank

[
BAi

]
and rank

CAi

C

 = rank

[CAi
] are satisfied, so the given error bound holds true:

‖W (s)(G(s)−Gr(s))V (s)‖∞ ≤ 2 ‖LAi
‖‖KAi

‖
n∑

j=r+1

σj (3.25)

for i = 1

LA1 =


CV

R−1/21 0

0 ((R2/r)
1/N −R2)

−1/2

 for rn < 0

CV R−1/2 for rn ≥ 0

(3.26)

KA1 =



S−1/21 0

0 ((S2/s)
1/N − S2)

−1/2

UTB for sn < 0

S−1/2UTB for sn ≥ 0

(3.27)

for i = 2

LA2 =


CV

R
−1/2
1 0

0 (R2/rn)
−1/2

 for rn < 0

CV R−1/2 for rn ≥ 0

(3.28)

KA2 =



S
1/2
1 0

0 (S2/sn)
1/2

UTB for sn < 0

S−1/2UTB for sn ≥ 0

(3.29)

for i = 3

LA3 =


CV

R
−1/2
1 0

0 ((R2 ∗ rn)−1/2

 for rn < 0

CV R−1/2 for rn ≥ 0

(3.30)
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KA3 =



S
−1/2
1 0

0 (S2 ∗ sn)−1/2

UTB for sn < 0

S−1/2UTB for sn ≥ 0

(3.31)

Proof: By partitioning BAi
=

 BA1

BA2

 , CAi
=
[
CA1 CA2

]
and then replacing B1 =

BA1KAi
, C1 = LAi

CA1 respectively yields

‖W (s)(G(s)−Gr(s))V (s)‖∞

= ‖W (s)(C(sI−A)−1B−C1(sI−A11)
−1B1)V (s)‖∞

= ‖W (s)(LAi
CAi

(sI − A)−1BAi
KAi
− LAi

CA1(sI − A11)
−1BA1KAi

)V (s)‖∞

= ‖WsLAi
(CAi

(sI − A)−1BAi
− CA1(sI − A11)

−1BA1)KAi
V (s)‖∞

≤ ‖W (s)LAi
‖∞‖(CAi

(sI − A)−1BAi
− CA1(sI − A11)

−1BA1)‖∞‖KAi
V (s)‖∞

If {A11, BA1 , CA1 , D} is ROM achieved by partitioning a balanced realization

{A,BAi
, CAi

, D}, we have [3]

‖(CAi
(sI−A)−1BAi

−CA1(sI−A11)
−1BA1)‖∞ ≤2

n∑
j=r+1

σj (3.32)

whereas for discrete time domain, the error bound will be:

‖W (z)(G(z)−Gr(z))V (z)‖∞ ≤ 2 ‖LAi
‖‖KAi

‖
n∑

j=r+1

σj (3.33)

Remark 7 Rank conditions listed above are followed from [5] and [26].

Remark 8 Stability of ROM is not guaranteed when X and Y are not positive/semi-positive

definite [35].

3.2.2 Algorithm

Given a full order stable system G(s) with input V (s) and output G(s) weights. MOR is

done to achieve ROM Gr(s) by using the following steps:

1. Compute X and Y using equations (2.5) and (2.6) for continous time systems and

equations (2.15) and (2.16) for discrete time systems, respectively.
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2. Compute BA1 , BA2and BA3 from equations (3.3),(3.5) and (3.7) for continous time

systems and from (3.15), (3.17) and (3.19) for discrete time systems, respectively.

3. Compute CA1 , CA2and CA3 from equations (3.4),(3.6) and (3.8) for continous time

systems and equations (3.16), (3.18) and (3.20) for discrete time systems, respectively.

4. Solve equations (3.1) and (3.2) (for continous time systems) or equations (3.13) and

(3.14) to compute PAi
and QAi

.

5. Obtain a transformation matrix T (for continous time system) and TF (for disrete time

systems) to satisfy equation (3.11) and (3.23), respectively.

6. Compute the minimal realizations to find a ROM asGr(s) = C1(sI−A11)
−1B1+DrA

for continous time system or Hr(z) = C1(zI − A11)
−1B1 + DrA for discrete time

systems.
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Chapter 4

Numerical Examples

This section presents some numerical examples in both continous time domain and discrete

time domain to show that the proposed MOR techniques give a less approximation error and

an easily computable error bound as compared to the previously proposed techniques.

4.1 Continous time domain

Example 1: Consider a 6th order stable full order system along with input and output weight-

ings (example 3.1 of [35]).

Table 4.1, 4.2 and 4.3 show the frequency weighted error and error bound comparison of

the proposed techniques with existing techniques [3, 5, 39, 30] respectively for example 1.

It can be observed that the proposed techniques give low approximation error with an error

bound in the presence of input, output and double weightings respectively.

Table 4.1: Frequency weighted approximation error for double weightings Example 1

Order Enns [3] Error
Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 14.284 58.832 16969 15.093 127.23 1200.5 86461 118.82 619.24 7.6505 885.67 38.139 803.14

2 3.2793 75.302 8897.6 14.697 66.621 62.381 20035 5.5816 325.94 7.6846 463.12 38.619 424.46

3 2.078 20.94 1393.2 11.927 11.303 131.47 11967 3.9657 59.052 3.0435 77.463 4.1525 57.043

4 0.026015 3.814 447.84 12.28 3.2337 96.459 5779.5 0.52279 22.2 0.43188 22.841 1.8027 21.967

5 0.014759 0.88682 87.868 4.0617 0.65376 7.4348 1298.4 0.65099 5.4308 0.096824 4.5404 0.34292 4.1727

Table 4.2: Frequency weighted approximation error for input weightings Example 1

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 14.284 1032.4 2078.9 2019.8 185.61 1235.1 12241 182.77 3798.4 285.39 1322.6 162.16 18424

2 3.2793 56.708 1045.3 41.482 93.141 63.532 2895.4 10.798 1806.6 7.2643 663.37 11.976 8997

3 2.078 71.616 190.54 58.727 17.678 108.32 1565.9 12.678 432.19 10.113 125.18 14.37 1514.5

4 0.026015 9.6581 61.43 4.3143 5.1725 103.22 746.25 1.8105 162.93 0.78976 37.099 5.9681 585.28

5 0.014759 3.0357 12.085 1.7647 1.027 41.917 212.21 2.0804 40.235 0.31772 7.3575 1.1918 112.15
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Table 4.3: Frequency weighted approximation error for output weightings Example 1

Order
Enns[3]

Error

Wang et al.[5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 24.592 1038.8 1503.6 785.68 803.98 842.4 1358.8 192.27 2842.6 162.79 2770.8 184.67 2700.9

2 12.054 50.501 399.2 49.385 229.64 49.315 325.37 8.4858 727.13 8.3763 749.52 8.4593 701.47

3 7.657 160.68 224 48.769 139.21 151.68 180.04 27.314 389.92 26.467 429.79 27.106 383.32

4 1.5121 41.302 92.909 27.304 49.274 50.915 78.551 8.657 175.34 6.1575 171.02 7.8819 166.88

5 0.42969 12.188 22.945 11.01 12.141 11.262 19.896 2.1169 43.503 1.9863 42.198 2.0814 41.303

Example 2: Consider a 6th order stable full order system having a state space:

A =



−5 1 0 0 0 0

−89 0 1 0 0 0

−199 0 0 1 0 0

−290 0 0 0 1 0

−500 0 0 0 0 1

−76 0 0 0 0 0


, B =



0 1

1 0.6

0.7 0.3

2 0.1

1 0.2

0.5 1



C =

1 0 1 0 1 0

1 0.2 0.3 0.4 0.5 0.6

 , D =

1 0

0 1


having input and output weightings as:

Av =

−4.25 0.1

0 −0.03

 , Bv =

 1 10.5

0.2 10.3



Cv =

0.3 0.5

0.1 0.1

 , Dv =

1 0

0 1



Aw =

−4 0

0 −0.25

 , Bw =

 1 0.5

0.2 0.3



Cw =

0.3 0.5

0.4 0.7

 , Dw =

1 0

0 0


Table 4.4, 4.5 and 4.6 show the frequency weighted error and error bound comparison of the

proposed techniques with existing techniques [3,5,39,30] respectively for example 2. It can
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be observed that the proposed techniques give low approximation error with an error bound

in the presence of input, output and double weightings respectively.

Table 4.4: Frequency weighted approximation error for double weightings Example 2

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 169.61 739.55 98431 317.77 1185.4 799.13 93671 133.25 2536.8 108.42 6595.6 185.29 2431.4

2 60.139 180.28 53733 27.579 646.34 181.37 42524 30.053 1374.2 30.055 3602.6 30.019 1308.5

3 206.72 688.16 32683 264.27 394.53 637.55 24161 116.82 834.22 110.78 2201.7 127.28 772.61

4 91.807 281.94 16281 88.234 196.38 289.75 9966 47.194 414.97 46.236 1099.1 49.451 363.33

5 10.627 33.589 1940.7 6.9364 25.272 32.56 2479.6 5.6004 48.187 5.4632 137.81 5.7668 40.481

Table 4.5: Frequency weighted approximation error for input weightings Example 2

Order
Enns[3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 169.61 524.16 7540.8 524.21 848.95 523.85 8692.3 87.357 13902 87.366 12842 87.354 15870

2 60.139 214.73 4061.3 214.73 452.67 215.61 4259.7 35.788 7510.8 35.788 6868.8 35.786 8690

3 206.72 378.32 2357.5 366.95 258.77 345.74 2317.4 63.747 4381.5 61.718 3945.8 66.894 5163.4

4 91.807 180.83 1055.5 179.74 110.65 181.51 820.13 30.206 1990.1 30.011 1712.5 30.501 2469.8

5 10.627 55.946 147.32 53.741 17.248 104.23 237.45 9.4176 268.62 9.0888 257.91 9.6544 284.99

Table 4.6: Frequency weighted approximation error for output weightings Example 2

Order
Enns[3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 106.89 863.82 2192.9 766.45 1400.8 891.96 1830.2 152.63 925.1 131.07 2610.4 184.64 1146.6

2 30.067 180.26 1097.2 180.31 704.64 180.83 846.16 30.049 458.23 30.05 1311.7 30.024 565.7

3 69.513 465.05 585.84 446.3 382.14 468.86 454.34 77.738 243.31 75.063 709.05 83.794 290.57

4 19.112 119.04 193.93 117.38 134.45 120.64 154.54 19.955 78.728 19.624 246.42 20.374 80.574

5 3.6465 22.58 43.433 22.326 29.061 24.307 34.573 3.7955 17.792 3.7307 53.636 3.8607 20.281
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Example 3: Consider a 5th order stable full order system having a state space:

A =



−20 −10 0 0 0

−10 0 −10 0 0

0 10 0 −10 0

0 0 10 0 −10

0 0 0 10 −2


, B =



20

0

0

0

0


C =

[
−2 0 0 0 0

]
, D =

[
2
]

having input and output weightings as:

Av =
[
−2.1

]
, Bv =

[
1
]

Cv =
[
7.9
]
, Dv =

[
1
]

Aw =
[
−2.1

]
, Bw =

[
1
]

Cw =
[
7.9
]
, Dw =

[
1
]

Table 4.7 and 4.8 show the frequency weighted error and error bound comparison of the

proposed techniques with existing techniques [3,5,39,30] respectively for example 3. It can

be observed that the proposed techniques give low approximation error with an error bound

in the presence of input and output weightings respectively.

Table 4.7: Frequency weighted approximation error for input weightings Example 3

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 7.4393 12.666 194.91 12.313 23.889 21.635 209.25 2.5335 34315 2.4635 29483 7.1066 372410

2 21.022 50.542 135.28 113.64 16.77 42.714 138.72 10.097 23815 22.297 20697 7.9857 223610

3 3.5998 7.7533 83.774 7.6923 10.077 12.155 79.9 1.5508 14751 1.5385 12438 24.177 121360

4 3.5505 37.673 41.511 36.486 5.0067 57.552 35.077 7.5372 7309.2 7.2951 6179.6 7.8862 19748
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Table 4.8: Frequency weighted approximation error for output weightings Example 3

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 2.254 12.666 194.91 12.313 119.44 21.635 209.25 3.0772 37.388 2.5181 42.789 2.8912 37.443

2 2.043 50.542 135.28 113.64 83.852 42.714 138.72 9.1569 25.674 11.317 29.854 9.2852 25.768

3 1.5333 7.7533 83.774 7.6923 50.387 12.155 79.9 1.5783 16.293 1.5443 18.251 1.5699 16.275

4 1.5328 37.673 41.511 36.486 25.033 57.552 35.077 7.8899 8.0385 7.3693 9.055 7.8201 8.0396

Example 4: Consider the state space of 8th full order stable controller of (Example 6 of

[26]) with the following input and output weightings given as:

Av =
[
−3
]
, Bv =

[
1
]

Cv =
[
100
]
, Dv =

[
0
]

Aw =
[
−10

]
, Bw =

[
1
]

Cw =
[
200
]
, Dw =

[
0
]

Table 4.9 and 4.10 show the frequency weighted error and error bound comparison of the

proposed techniques with existing techniques [3,5,39,30] respectively for example 4. It can

be observed that the proposed techniques give low approximation error with an error bound

in the presence of input and output weightings respectively.

Table 4.9: Frequency weighted approximation error for input weightings Example 4

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 150.19 30.259 175.48 29.435 15.209 32.19 133.99 3.7886 2511.4 3.6801 2336.7 4.4554 9928.9

2 120.44 24.398 129.73 24.217 11.237 26.709 99.437 3.0503 1856.7 3.0276 1726.4 3.3327 7392.5

3 121.09 36.852 90.865 160.16 7.8478 26.463 67.298 4.5759 1300.5 16.758 1205.8 3.5572 5308

4 50.598 10.315 52.89 10.351 4.521 10.405 37.757 1.2893 757.22 1.2937 694.79 1.2195 3629.4

5 51.31 12.793 34.511 11.571 2.9424 11.846 24.422 1.6016 494.13 1.4516 452.23 2.568 2349.8

6 23.665 4.8054 17.031 4.8084 1.4434 4.8186 11.846 0.60066 243.89 0.60104 221.86 0.59414 1314.6

7 23.227 5.5145 8.4571 5.116 0.71722 4.755 5.899 0.69061 121.1 0.64054 110.24 1.6467 641.63
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Table 4.10: Frequency weighted approximation error for output weightings Example 4

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 2.2173 17.771 97.591 17.755 68.824 24.549 215.39 2.5592 57912 2.4803 13.747 2.2193 743.92

2 1.8479 14.802 72.6 14.793 51.196 18.141 157.35 1.9726 43454 1.9492 10.297 1.8491 553.38

3 1.7519 14.034 51.35 14.024 36.191 24.473 118.09 2.0286 31662 1.9852 7.476 1.7531 391.2

4 0.86739 6.9336 30.508 6.9364 21.48 14.858 81.636 0.80088 20725 0.82364 4.7893 0.86705 232.18

5 0.86858 6.9476 20.134 6.9481 14.172 14.723 54.651 1.213 13683 1.1328 3.1678 0.86851 153.19

6 0.41577 3.3257 9.9649 3.3259 7.0081 14.033 29.295 0.41387 7292.2 0.41427 1.662 0.41574 75.753

7 0.40781 3.2639 4.93 3.2632 3.4671 14.587 14.335 0.69318 3588 0.61865 0.819 0.4079 37.477

Example 5: Consider the state space of a 48th full order stable ”Building Model” system

of [40] with the following input and output weightings given by:

Av =
[
−5
]
, Bv =

[
1
]

Cv =
[
190
]
, Dv =

[
0
]

Aw =
[
−4
]
, Bw =

[
1
]

Cw =
[
1000

]
, Dw =

[
0
]

Table 4.11 show the frequency weighted error and error bound comparison of the proposed

techniques with existing techniques [3, 5, 39, 30] respectively for example 5. It can be ob-

served that the proposed techniques give low approximation error with an error bound in the

presence of output weightings.

37



Table 4.11: Frequency weighted approximation error for output weightings Example 5

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 0.80396 38.582 293.4 38.585 152.75 71.601 540.89 0.8038 6.1124 0.80386 1030.7 6.9061 945.84

2 0.29072 13.952 234.33 13.952 120.5 23.27 463.73 0.29067 4.8819 0.29067 813.14 0.29071 766.71

3 0.29067 30.462 187.82 17.824 96.635 55.411 405.4 0.63462 3.9129 0.37133 652.07 0.94138 613.65

4 0.1868 8.1667 141.39 8.321 72.905 16.569 347.73 0.17014 2.9456 0.17335 491.94 0.16531 460.98

5 0.17673 17.35 124.33 14.968 64.229 16.859 312.96 0.36146 2.5902 0.31183 433.4 0.67683 404.14

6 0.065389 8.2774 107.45 8.358 55.633 8.5023 280.54 0.17245 2.2385 0.17412 375.4 0.16758 347.64

7 0.065048 13.425 91.762 12.703 47.2 19.227 253.03 0.27969 1.9117 0.26465 318.49 0.31102 299.73

8 0.12923 3.1894 76.866 3.2123 39.168 7.0566 225.73 0.063609 1.1827 0.066922 264.3 0.065612 254.13

9 0.06454 8.7956 66.704 7.8661 33.971 8.9103 202.38 0.18324 1.3897 0.16388 229.23 0.21287 220.64

10 0.059884 3.0532 56.772 3.0664 28.902 5.9131 179.84 0.063609 1.1827 0.063884 195.03 0.063052 187.84

11 0.059702 5.4947 50.227 5.167 25.611 6.9375 159.47 0.11447 1.0464 0.10765 172.82 0.12359 165.86

12 0.022686 3.0292 43.801 3.0474 22.379 2.401 139.47 0.063109 0.91252 0.063488 151.01 0.062606 144.29

13 0.022542 5.1277 37.723 4.9123 19.178 5.5694 124.07 0.10683 0.7859 0.10234 129.41 0.11283 124.94

14 0.017153 2.2806 31.907 1.6 16.089 1.8822 109.21 0.047513 0.66474 0.033334 108.57 0.071215 106.64

15 0.01713 4.6487 26.587 4.3253 13.405 7.4813 95.171 0.096849 0.5539 0.090111 90.457 0.10735 88.897

Example 6: Consider a 5th order stable full order system having a state space:

A =



−10 −50 −70 = 60 −40

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1


, B =



1

0

0

0

0


C =

[
0 0 1240 460 20

]
, D =

[
0
]

having input and output weightings (cited from example 2.3 and example 2.4, respetively

of [35]) as:

Av =
[
−3
]
, Bv =

[
1
]

Cv =
[
1
]
, Dv =

[
0
]
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Aw =

−0.6250 −0.2500

1 0

 , Bw =
[
1 0

]
Cw =

[
0 0.1250

]
, Dw =

[
0
]

Table 4.12 and 4.13 show the frequency weighted error and error bound comparison of the

proposed techniques with existing techniques [3,5,39,30] respectively for example 6. It can

be observed that the proposed techniques give low approximation error with an error bound

in the presence of input and output weightings respectively.

Table 4.12: Frequency weighted approximation error for input weightings Example 6

Order
Enns [3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 5.1621 90.602 1262.8 90.578 137.53 91.61 1644.8 18.127 129.28 18.127 129.25 18.116 1.1762

2 0.7263 10.36 188.26 9.9006 20.889 7.8586 223.46 2.2057 18.585 2.2057 18.581 1.9802 0.17865

3 0.30882 10.019 57.258 9.4274 6.7115 9.5869 44.944 2.1399 5.0271 2.1399 5.026 1.8855 0.057399

4 0.0058825 1.3996 7.0112 1.2333 0.79614 1.0387 6.0133 0.35967 0.61372 0.35967 0.61358 0.24667 0.0068089

Table 4.13: Frequency weighted approximation error for output weightings Example 6

Order
Enns[3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 8.0899 136.87 258.62 124.02 145.85 151.17 587.13 27.375 66.573 24.805 9998.7 28.78 9770.6

2 1.0709 6.1922 50.108 6.0747 28.796 36.121 362.81 1.2384 12.899 1.2149 1974.1 1.3293 1389.9

3 0.73068 11.357 21.113 6.4754 10.745 38.364 174.08 2.2713 5.4349 1.2951 736.63 6.2242 403.25

4 0.018686 1.1005 2.6765 0.81838 1.3619 21.292 33.107 0.22009 0.68896 0.16368 93.367 2.7359 85.209

Example 7: Consider example 2 of [28] that uses an elliptic band-pass 6th order fil-

ter which passes frequencies between [5,15] rad/s, and with 0.5 dB of ripple in the pass-

band, and 30 dB of attenuation in the stop band along with input weights considering an

elliptic band-pass 2nd order filter which passes frequencies between [3,15] rad/s, and with

0.1 dB of ripple in the pass-band, and 240 dB of attenuation in the stop band and output

weights considering elliptic band-pass 6th order filter which passes frequencies between

[3,7] rad/s,bandwith 0.1 dB of ripple in the pass-band, and 30 dB of attenuation in the stop

band.
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Table 4.14 and 4.15 show the frequency weighted error and error bound comparison of

the proposed techniques with existing techniques [3, 5, 39, 30] respectively for example 7.

It can be observed that the proposed techniques give low approximation error with an error

bound in the presence of input and output weightings respectively.

Table 4.14: Frequency weighted approximation error for input weightings Example 7

Order
Enns[3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 1.8943 5.9942 34.26 5.9942 4.0302 6.0255 24.49 1.0003 373.49 0.99903 372.83 0.99903 371.19

2 1.4192 4.7983 20.16 4.7896 2.3706 4.7947 14.491 0.80375 220.04 0.80231 219.55 0.79879 218.37

3 0.84964 4.7981 12.388 4.7893 1.4559 4.7892 8.874 0.80424 135.41 0.80247 135.04 0.79874 134.14

4 0.21113 1.6735 4.7021 1.6672 0.55246 1.6792 3.3943 0.28182 51.433 0.28079 51.281 0.27825 50.905

5 0.080413 1.6735 2.3311 1.6672 0.27354 1.6787 1.6618 0.28182 25.584 0.28079 25.478 0.27825 25.217

Table 4.15: Frequency weighted approximation error for output weightings Example 7

Order
Enns[3]

Error

Wang et al. [5] Varga Anderson [39] Imran Ghafoor [30] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 0.94939 6.2188 31.604 5.9045 19.305 5.7282 26.739 1.3073 7.6561 1.3004 6.7909 0.98685 11.222

2 0.72459 3.5617 18.784 3.5934 10.832 4.3155 16.132 1.1178 4.5049 1.0864 4.0881 0.58781 6.3327

3 0.43967 3.5419 10.846 2.893 6.0569 3.2512 9.9036 1.0747 2.7393 1.0553 2.4882 0.48918 3.5508

4 0.10954 1.2638 4.451 1.0881 2.6102 1.3004 4.9275 0.4919 1.2124 0.42422 1.0695 0.18436 1.5246

5 0.040464 1.2694 2.002 1.0669 1.0871 1.4883 1.9522 0.4535 0.54261 0.42617 0.4895 0.18133 0.63924

4.2 Discrete time domain

Example 1: Consider an elliptic band-pass 6th order filter which passes frequencies between

[0.2,0.4] rad/s, and with 0.2 dB of ripple in the passband, and 20 dB of attenuation in the

stop band along with input weights given by:

Av =


−1.1619 −0.6959 −0.1378

1 0 0

0 1 0

 , Bv =


1

0

0


Cv =

[
2.8081 2.2444 0.8325

]
, Dv =

[
1
]
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and output weights given by:

Aw =


−1.1619 −0.6959 −0.1378

1 0 0

0 1 0

 , Bw =


1

0

0


Cw =

[
1.8081 2.2444 0.8325

]
, Dw =

[
1
]

Table 4.16 and 4.17 presents the frequency weighted error and error bound comparison

(in case of discrete time systems) of the proposed techniques with existing techniques [3,

41, 39, 21] respectively for example 1. It can be observed that the proposed techniques

yield stable ROMs and give low approximation error with an error bound in the presence

of input and output weightings respectively for Enns [3], Campbell et al.’s [41], Varga and

Anderson’s [39] and Imran and Ghafoor [21]. .

Table 4.16: Frequency weighted approximation error for input weightings Example 1

Order
Enns[3]

Error

Campbell et al.’s [41] Varga Anderson [39] Imran Ghafoor [21] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 1.8943 5.9942 34.26 5.9942 4.0302 6.0255 24.49 1.0003 373.49 0.99903 372.83 0.99903 371.19

2 1.4192 4.7983 20.16 4.7896 2.3706 4.7947 14.491 0.80375 220.04 0.80231 219.55 0.79879 218.37

3 0.84964 4.7981 12.388 4.7893 1.4559 4.7892 8.874 0.80424 135.41 0.80247 135.04 0.79874 134.14

4 0.21113 1.6735 4.7021 1.6672 0.55246 1.6792 3.3943 0.28182 51.433 0.28079 51.281 0.27825 50.905

5 0.080413 1.6735 2.3311 1.6672 0.27354 1.6787 1.6618 0.28182 25.584 0.28079 25.478 0.27825 25.217

Table 4.17: Frequency weighted approximation error for output weightings Example 1

Order
Enns[3]

Error

Campbell et al.’s [41] Varga Anderson[39] Imran Ghafoor[21] Proposed technique 1 Proposed technique 2 Proposed technique 3

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound

1 0.94939 6.2188 31.604 5.9045 19.305 5.7282 26.739 1.3073 7.6561 1.3004 6.7909 0.98685 11.222

2 0.72459 3.5617 18.784 3.5934 10.832 4.3155 16.132 1.1178 4.5049 1.0864 4.0881 0.58781 6.3327

3 0.43967 3.5419 10.846 2.893 6.0569 3.2512 9.9036 1.0747 2.7393 1.0553 2.4882 0.48918 3.5508

4 0.10954 1.2638 4.451 1.0881 2.6102 1.3004 4.9275 0.4919 1.2124 0.42422 1.0695 0.18436 1.5246

5 0.040464 1.2694 2.002 1.0669 1.0871 1.4883 1.9522 0.4535 0.54261 0.42617 0.4895 0.18133 0.63924
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4.3 Conclusion

All the results shown in tables interpret that errors and their responsive error bounds achieved

from the proposed techniques are comparitevely improved than the existing techniques.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Overview of Thesis

Three FWMR tehniques which are motivated from [31] and [32] are presented in this thesis

for continous and discrete time LTI systems.

Chapter 2 discusses the phenomena and motivation of FWMR and explains in detail about

FWMR. In this chapter previously proposed techniques using FWMR are being explained in

detail and their drawbacks are mentioned as well.

In chapter 3, three FWMR techniques are proposed for LTI continuous and discrete time

systems. Stability of a system is assured using proposed techniques, also they provide a

lower approximation error as compared to existing stability preserving techniques. These

techniques proved to be a solution for instability issue in Enns [3] in case of double weight-

ings. ROMs obtained using proposed tehniques are stable along with an easily computable

error bound.

Examples are presented to demonstrate that the proposed techniques give a lower and

better approximation of the original system as compared to the existing techniques.

This thesis presented three new frequency weighted MOR techniques for continuous and

discrete time systems. After simulation of examples it is being shown that the proposed tech-

niques yield lower approximation error (and an easily computable error bound) as compared

to existing techniques. Proposed techniques preserved stability as well. Although Enns [3]

technique yields comparatively least approximation error as compared to existing and newly

proposed techniques but it yields unstable ROM in case of double sided weightings.

5.2 Future Work

The following topics can be used as a future research to enhance the results from this thesis:

• As stability is not guaranteed in Enns techniques [31] for double sided weightings.

Due to indefinite matrices X and Y. It will be interesting to see and validate conditions

which will help to achieve stability of ROM in case of double sided weightings.
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• FWMR techniques proposed in this thesis (Chapter 2) and techniques proposed in

[3, 5, 39, 30] are realisation dependent. Research can be carried out to find and label

the realisation of original system that may yield lower approximation error and tighter

error bound.

• Different FWMR techniques have different formulas to make fictitious input and out-

put matrices. It remains an open problem that which formula among all formulas yield

lowest error.

• The techniques that are proposed in this thesis are applied only to stable linear time

invariant systems and to check whether the results are valid for the case of non-linear

and time varying systems would be interesting.
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