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Abstract

In recent years a lot of work has been done in the field of Active Noise Cancellation

(ANC) for online estimation of the secondary path. Although vigorous research has

been carried out but mostly for Gaussian noise hence in this thesis online estimation of

secondary path has been done for the Impulsive Noise with different values of α to make

the environment more impulsive. Previously most of the techniques presented were for

stationary acoustic paths and in practical environment noise is non-stationary hence we

carried out simulations for non-stationary environment. Most researchers have worked

on Fx-LMS algorithm which is widely used in the field of ANC and then different

variants of Fx-LMS have been proposed in past but in this paper we have proposed Fil-

tered x Least Mean Absolute Third (FxLMAT) algorithm for online estimation of the

secondary path and further improvements have been added to existing Fx-LMAT algo-

rithm by suggesting two more algorithms i.e. Variable Step-Size Filtered x Absolute

Third (VSSFxLMAT) and Variable Step-Size Filtered x Robust Normalized Absolute

Third (VSSFxRNLMAT) . Proposed Algorithms outperforms the existing algorithms.

Keywords: ANC, IN, MNR, Fx-LMS, LMAT, VSS-FxRNLMAT
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CHAPTER 1

Introduction

1.1 Overview

Noise is an irritating and unwanted signal causing tremor in human beings, affecting

them mentally and physically[1]-[2]. To overcome this problem a lot of interest in

Active Noise Control (ANC) system has been observed, as an increasing number of ap-

plications are being embedded with this technology[3]-[8]. Basic technique behind the

working of an ANC system is the principal of superposition; two waves 180 Degrees

out of phase cancel out each other resulting in a new wave[9]-[13]. Same is the case

in ANC system where an out-of-phase signal cancels out the noise such that the resul-

tant signal is noise free. There are different algorithms which can be implemented in

ANC, however the most famous among them is Filtered-x Least Mean Square (FxLMS)

algorithm. FxLMS is an enhanced version of the LMS algorithm, where a reference sig-

nal x(n) is filtered through a secondary path’s model before entering the adaptive filter

block and thus it is named as FxLMS[14].

1.2 Noise Controlling Techniques

The well known techniques in Noise Control Systems are:

i) Active Noise Control

ii) Passive Noise Control

1



CHAPTER 1: INTRODUCTION

1.2.1 Active Noise Control

An additional anti-noise signal is used in ANC systems to cancel out the noise; it is

commonly used in electronic machines, headphones and anti snoring devices. Active

noise controlling techniques greatly rely on the electrical equipment as that is where all

the algorithm of noise cancellation takes place.

Figure 1.1: Active Noise Control System.

1.2.2 Passive Noise Control

In passive Noise Control Systems, noise is eliminated using passive elements such as

noise absorbing tiles, rubber padding in headphones and earplugs, etc [15]. In simple

words, it is the amount of vibration cancellation provided by the physical device, or

how well the headset works as an earplug. Moreover, a unique design will provide

good passive cancellation before electrical means of noise cancellation (i.e. ANC) are

applied.

2



CHAPTER 1: INTRODUCTION

Figure 1.2: Passive Noise Control using Earplugs.

1.3 Motivation

In the past few years a lot of work has been done on Active Noise Cancellation and

Online Estimation of the Secondary path. Most of the existing methods use Fx-LMS

( Filtered x Least Mean Square ) and its variants [16]. We wanted to come up with a

solution where our method would not only work better than the existing techniques but

would also bring forth fast convergence as well as robustness without increasing the

computational complexity. Furthermore, in our daily lives, the noise we encounter is

impulsive in nature and it was a dire need to address this issue. Hence, our proposed

methods are designed to cater this problem as they eliminate the impulsive noise and

provide improved online secondary path’s estimation. The stability of the adaptive algo-

rithms depends on the reference noise signal x(n) that is filtered through the estimated

secondary path ŝ(n) [17][18]. The work reported in this thesis is based on broadband

feedforward ANC when impulsive noise (IN) is present.

1.4 Uses and Applications

Recently, ANC is used widely in noise cancelling headphones and other electronic de-

vices where noise is an important issue to address. In noise cancelling headphones, an

3



CHAPTER 1: INTRODUCTION

additional signal is used which is out of phase than the noise signal.Other applications

where ANC is used nowadays are Snore ANC system, MRI ANC system and Infant

Incubators. ANC is also used in industrial and heavy electrical equipment to cancel

noise from generators, transformers, compressors, and fans.

1.5 Performance Analysis of ANC System

For any ANC system to be incorporated in practical applications, it must fulfil the fol-

lowing performance measures:

1. System should work for the biggest frequency band possible.

2. The ANC system should be able to withstand change in physical conditions like

temperature, humidity, etc.

3. ANC system must be robust and simple.

4. The ANC system must be adaptive to endure time varying paramters such as

change in noise, acoustic paths, etc.

1.6 Types of ANC Systems

ANC system has two main types: 1) Feedforward ANC system, where a reference noise

signal is available before it goes past the secondary source 2) Feedback control ANC

system, where the filter incorporates the reference signal without using an upstream

reference input.

1.6.1 Broadband Feedforward ANC

In broadband feedforward ANC, the reference input is sensed by a microphone. The

reference signal is handled by the ANC system to generate the control signal to drive

4



CHAPTER 1: INTRODUCTION

Figure 1.3: Broadband Feedforward ANC [14]

a loudspeaker. The ANC system’s performance is evaluated by the error microphone.

The controller’s aim is to reduce the calculated acoustic noise. The basic functionality

of a broadband feedforward ANC is such that there is an adaptive filter W (z) which

estimates the unidentified primary path P (z). The P (z) comprises of the reply from the

microphone acting as reference microphone to the error microphone, if our unknown

plant is dynamic then our adaptive filter must be dynamic so that it can cater to the

variations in our plant. The main purpose of the adaptive filter W (z) is to minimize the

error e(n), i.e. e(n)=d(n)− y(n), which is the residual error.

1.6.2 Narrowband Feedforward ANC

In narrowband feedforward ANC a reference signal is generated internally through the

reference sensor. This system is typically deployed where the primary is produced by

rotating machines and is periodic in nature [17]. A sensor that is synchronised with the

source of noise is used to generate an input signal containing the fundamental frequency

of the noise source.

5



CHAPTER 1: INTRODUCTION

Figure 1.4: System Identification Viewpoint of Broadband ANC [15]

Table 1.1: Different perimeters for ANC systems with OSPM

Quantity Description

p(i) Primary path

s(i) Secondary path

Ŝ(i) OSPM filter

w(i) ANC filter

x(i) Input signal

x′(i) = s(i) ∗ x(i) Input signal filtered

through secondary path

x̂′ = ŝ(i) ∗ x(i) Input signal filtered

through secondary path estimate

d(i) = p(i) ∗ x(i) Disturbance signal

y(i) = wT (i) ∗ x(i) Output of an ANC Filter

y′(i) = s(i) ∗ x(i) Canceling signal

vm(i) Noise Generated internally for OSPM filter

G(i) Gain factor used for v(i)

v(i) = G(i) ∗ vm(i) Noise with gain injected into the system

v̂′(i) = ŝ(i) ∗ vm(i) Output of the OSPM filter

e(i) = d(i)− [y′(i)− vG′(i)] Error Signal of ANC filter

f(i) = e(i)− v̂′(i) Error Signal of OSPM filter

6
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Figure 1.5: Narrowband Feedforward ANC.[17]

1.6.3 Feedback ANC

In feedback ANC, a microphone is deployed which acts as an error sensor to detect

the unwanted noise. The erroneous signal is returned through a magnitude and phase

amplifier such that it cancels out the error signal at sensor located near the microphone

[18]. This configuration can be seen in Fig 1.6 and it only provides narrow attenuation

over a brief range of frequencies for periodic or band-limited noise.

Figure 1.6: Feedback ANC System [11]

7



CHAPTER 1: INTRODUCTION

1.6.4 MultiChannel ANC

If there are many noise sources distributed in a broad location then it becomes im-

possible to diminish the undesirable noise with only single channel feedforward ANC,

hence, a multichannel ANC is used as it has many reference microphones, secondary

sources, and error microphones. A few of the uses are in control of exhaust turbulence

in vehicles[16]-[19].

Figure 1.7: MultiChannel ANC System with J reference inputs, K secondary sources and

M error sensors [19].

1.6.5 Hybrid ANC

In hybrid ANC systems, feedforward and feedback are deployed at the same time. The

noise source is close to the sensor and hence the feedforward ANC gets the reference

signal from the sensor. Error sensor measures the residual noise which is used to syn-

thesize the feedback ANC filter and to update the variables of both feedforward and

8



CHAPTER 1: INTRODUCTION

feedback ANC filters [20].

Figure 1.8: Hybrid ANC system[20].

Figure 1.9: Basic ANC System [1].

1.7 Functioning of Basic ANC System

Fig 1.9 shows the block diagram of basic ANC system, where x(n) is the source of

noise or our microphone used as a reference microphone. Primary path of noise to error

microphone is P (z) and secondary path of noise while passing through ANC system to

9
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secondary loud speaker is S(z) . e(n) is the corrupted error signal and it is returned to

the ANC system for enhanced performance. The ourput of the ANC system is denoted

by y(n).

1.8 Adaptive Algorithms

An adaptive algorithm determines the process by which the filter is updated in relation

to the exterior or required environment[20]-[28]. If w(k) is a vector of some length

M and a time-varying finite impulse response (FIR) of the adaptive filter represents its

components, a generalized equation to update its weight is given as,

w(k + 1) = w(k) + µf [e(k)x(k)]T , (1.8.1)

where, input reference signal is x(k), w(k) is the filter’s weight at time k, w(k + 1)

is the updated weight at time k + 1 and µ controls the incremented size also known as

step-size[29]-[32].

1.8.1 FxLMS Adaptive Algorithm

FxLMS is a widely used adaptive algorithm in ANC systems [33]. This algorithm

functions by lowering the least mean square of the e(n) which is the error signal of the

control filter w(n). The output of the ANC filter is y(n) , p(n) and s(n) are the vectors

representing primary and secondary paths, w(n) represents the ANC filter, and ŝ(n)

represents Online Secondary Path Modeling (OSPM) filter. The output of the ANC

filter y(n) can be written as,

y(n) = wT (n) ∗ x(n) (1.8.2)

The following equation is used to update the weights of the filter:

w(n+ 1) = w(n) + µwe(n)x′(n), (1.8.3)

where

e(n) = d(n)− y(n) (1.8.4)

10



CHAPTER 1: INTRODUCTION

d(n) = pT (n) ∗ x(n) (1.8.5)

x′(n) = sT (n) ∗ x(n) (1.8.6)

and µw represents the step-size of the ANC filter.

1.8.2 FxLMAT

The LMAT is an adaptive algorithm which functions by reducing the third power of

the mean of the absolute error, i.e., |e(n)|3[40]. The LMAT algorithm Weight update is

given by:

w(n+ 1) = w(n) + µe2(n)sign[e(n)]x(n), (1.8.7)

where, sign is the signum fuction, i.e., if e(n) ≥ 0 then sign[e(n)] = 1, else sign[e(n)]

= -1. µ is a small positive constant used as the step size parameter. Despite the fact

that LMAT algorithm performs better than LMS for majority of the probability density

functions (PDFs) of noise, its convergence depends on the strength of the reference

signal x(n).

1.9 Online Secondary Path Modeling (OSPM)

ANC systems have become really favoured in recent times because of their enhanced

functioning, lower cost and the invention of new applications embedded with this tech-

nology. The stableness of FxLMS algorithm depends on the reference signal x(n) fil-

tering through the estimated secondary path ŝ(n). Impoverished estimate, i.e., there is

a difference of more than 90 degrees between the phase response of the original and the

estimated secondary path coefficients. Although it is possible to estimate ŝ(n) offline

before the execution of the ANC system but in real time applications acoustic paths are

time varying hence there is an obligation for OSPM.

11
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1.9.1 Importance of OSPM

The basic adaptive LMS algorithm has degraded performance in the presence of sec-

ondary acoustic path, i.e., the channel between the controller and the error microphone.

To cater for this problem, FxLMS was proposed. In [34]-[37], the reference signal is

filtered through ŝ(n) before being used in the ANC system. Secondary path can be esti-

mated offline, however, ANC system comprises of digital to analog converters (DAC),

analog to digital converters (ADC), etc. Change in any one of these components re-

sults in change of secondary path hence it creates the need to model the secondary path

online.

1.10 Types of Noise

Noise is actually a type of signal that is undesirable and displeasing to our ears. Gener-

ally, noise is an irritating resonance that causes mild to severe discomfort.

1.10.1 Continuous Noise

It is the uninterrupted vibration caused, for example, by machinery that continues to run

and emits undesirable noises. This type of noise generally comes from industrial area,

ventilation systems or from engines.

1.10.2 Intermittent Noise

Intermittent noise is defined as noise that rapidly increases and decreases. This type of

noise has a lot of fluctuation and is caused by factory machinery operating in cycles, a

jet flying nearby or a noisy train passing by [38]-[40].

12
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1.10.3 Low Frequency Noise

This type of noise is abundant in our daily lives. The frequency of this type of noise

ranges from 10Hz-200Hz.

1.10.4 Impulsive Noise

This type of noise is most usually associated with industrial construction and explo-

sions. IN is a short bursts of very high amplitude. IN has high power spectral density

and it affects the communication signals badly [41]-[43]. The work reported in this

thesis focuses on the active control of Impulsive Noise.

1.10.5 Symmetrical -α Stable Distribution

IN is modelled using Symmetrical -α Stable (SαS) Distribution , this distribution is

given by the following characteristic expression,

φ(t) = e−γ|t|
α

(1.10.1)

The (SαS) model is characterized by the help of the following parameters;

1. Characteristic component ‘α’: α controls the shape of the distribution and its

value ranges from 0<α<2. When α is closer to 0 the distribution becomes more

impulsive, whereas, when α is closer to 2 the distribution becomes Gaussian.

2. Skewness parameter ‘β’: With values between -1<β<1, β tells if the distribution

is left skewed, i.e., β<0, centered at 0, i.e., β=0, or is right-skewed, i.e., β>0.

3. Scaling Parameter ‘γ’:γ is the scaling parameter and its value is >0.

4. Location parameter ‘δ’: δ is the parameter that depicts if the PDF lies on the

x-axis or not.
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Figure 1.10: Symmetric-α Stable Distribution

1.11 Objectives

Following are the objectives of this research:

1. To propose an algorithm which helps in fast convergence of OSPM and reduces

control filter error

2. To Improve performance of ANC system

3. To reduce the computational complexity

1.12 Area of Application

1. Headphones

2. Control of noise in air conditioning ducts

3. Control of noise in magnetic resonance imaging machines

1.13 Organization of Thesis

The thesis chapters are organized in five chapters. Chapter 1 provides brief introduction

to ANC systems, their types, and applications. Chapter 2 is based on literature review,

14
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which tells about past techniques and their differences. Chapter 3 give details about

our proposed algorithm and improvements. Chapter 4 covers simulations, results and

complexity analysis of the proposed methods as compared ti past techniques. Chapter

5 tells about conclusion and future recommendations.
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CHAPTER 2

Literature Review

2.1 Background

Over the last few years, ANC has been a center of attention due to advancements in tech-

nology. The investigation of OSPM is required for boosting the effectiveness of ANC

systems. FxLMS is one of the oldest and generally used adaptive algorithm in ANC

systems. Different algorithms have been proposed in literature and all aim at improving

the convergence while lowering down the computational and design complexities.

2.2 Different ANC Systems for OSPM

In the field of ANC systems authors in [44] were the pioneer in bringing in the con-

cept of online secondary path estimation. In Eriksson’s method [44], v(n) is used as a

white noise which serves as a guidance signal and this technique consists of two filters.

Eriksson’s method was improved by Zhang [45] who proposed a third filter to lower

the disturbance caused by the existing two filters, however, Zhangs method increased

the design complexity. Due to increase in design complexity, this method was not very

favored hence Akhter et al. proposed alternate method which required two filters and it

improved the convergence as Variable Step Size LMS (VSS-LMS) algorithm was im-

plemented in the modelling filter and modified FxLMS (MFxLMS) in the control filter

[46]. Trade off of Akhter’s method was that although it lowered the design complexity,
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the usage of MFxLMS algorithm increased the computational complexity. To solve this

issue, Akhter suggested a modified version of [46] known as modified Akhter’s method

[47].This method uses FxLMS instead of MFxLMS algorithm.Drawback of Akhter’s

modified method is slow convergence due to use of FxLMS algorithm. To overcome

slow convergence Carini proposed a self-tuning auxiliary noise power (ANP) schedul-

ing alongside optimal VSS parameters, in which normalized FxLMS (Fx-NLMS) was

used in both control and modelling filter [49]. Carini’s method provided fast conver-

gence but it increased the computational complexity. In [50] Ahmed suggested a new

algorithm which used NFxLMS and NLMS for control and modeling filters, respec-

tively. This algorithm also worked on two stage gain strategy. Pu et al. also introduced

a technique in which modeling filter is updated using VSS-FxLMS algorithm along

with simplified ANP scheduling strategy which decreased the computational complex-

ity [48]. In [51] Yang proposed an enhanced algorithm in which the gain G(n) is de-

termined only by the error function f(n) of the modeling filter. The convergence of all

three filters depend on the step size of the modeling filters.

2.2.1 Eriksson’s Method

Figure 2.1: Erikkson’s Method for Feedforward ANC with OSPM [44].

Figure 2.1 shows Erikkson’s method for OSPM in feedforward ANC. In Eriksson’s

method, v(n) is used as white noise which acts as a guidance signal. This technique
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consist of two filters. One filter is used in controlling process and the other in modeling

process. Control filter is implemented on Fx-LMS algorithm whereas modeling filter is

updated using LMS algorithm. For Eriksson’s ANC system, e(n), i.e., the error signal

is calculated as:

e(n) = y′(n) ∗ v′(n), (2.2.1)

where,

y′(n) = s(n) ∗ y(n) (2.2.2)

v′(n) = s(n) ∗ v(n) (2.2.3)

the white Gaussian noise is referred as v(n). f(n) is used as error signal for the model-

ing filter Ŝ (z).

f(n) = [d(n)− y′(n) + v′(n)], (2.2.4)

which can be rephrased as

f(n) = e(n)− v̂′(n). (2.2.5)

The variables for modelling filter are updated as

ŝ(n+ 1) = ŝ(n) + β ∗ f(n) ∗ v(n) (2.2.6)

where, β is used as a step-size for modeling filter. The f(n) is used as error signal for

the modeling filter Ŝ (z).

coefficients for control filter are changed as

w(n+ 1) = w(n) + α ∗ e(n) ∗ x(n), (2.2.7)

where the step-size for control filter is α. Erikkson’s method was further improved by

Zhang’s.

2.2.2 Zhang’s Method

The results of Erikkson’s method are further enhanced by Zhang’s et al [45], who pro-

posed three filters instead of two filters. In Fig. 2.2, it can be seen that there is another
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block of filter, h(n), which is included to reduce the distortion among the modeling and

control filters. The error signal is then given as,

e(n) = d(n)− s(n) ∗ y(n) (2.2.8)

The new residual error signal, e’(n) can be defined as

e′(n) = e(n)− ŝ(n) ∗ v(n). (2.2.9)

Filter coefficients of the control and the modelling filter are given as:

w(n+ 1) = w(n) + α ∗ e′(n) ∗ x′(n) (2.2.10)

ŝ(n+ 1) = ŝ(n) + β ∗ v(n) ∗ [g(n)− û(n)] (2.2.11)

The filter h(n) decreases the interference caused by noise v(n), update as:

h(n+ 1) = h(n) + δx(n) ∗ e′(n). (2.2.12)

Due to use of an additional filter in Zhang’s method the design complexity of this

Figure 2.2: Zhang’s Method for Feedforward ANC with OSPM [45].

this method was greatly increased and hence further improvements to this method were

suggested.
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2.2.3 Akhter’s Method

Akhter proposed another method which required two filters and it improved the convergence[46].

VSS-LMS algorithm was used in the modelling filter and the control filter used modi-

fied FxLMS (MFxLMS), as shown in Fig. 2.3. In MFxLMS, a fixed block of filter is

implemented to adjust the signal containing error for control filter hence increasing the

upper bound of the step size. Due to implementation of the fixed filter, the convergence

rate increases as compared to the previous methods.The step-size β(n) for VSS-LMS

adaptive algorithm is varied according to the ratio r(n), known as noise power schedul-

ing, defined as

r(n) = Pf (n)
Pe(n) (2.2.13)

Pf (n) and Pe(n) are powers of the f(n) (modelling error signal) and the e(n) (residual

error signal), respectively. The powers of error signals f(n) and e(n) are measured as

Pf (n) = µ ∗ Pf (n− 1) + (1− µ) ∗ f 2(n) (2.2.14)

Pe(n) = µ ∗ Pe(n− 1) + (1− µ) ∗ e2(n) (2.2.15)

(where, µ is forgetting factor and its range is (0.9 < µ < 1). β(n) is the step size that

is estimated as

β(n) = r(n) ∗ βmin + (1− r(n)) ∗ βmax (2.2.16)

where βmin and βmax are minimum and maximum values of the step-size. Trade off of

Akhter’s method was that although it lowered the design complexity, the computational

complexity was increased due to use of MFxLMS algorithm.

2.2.4 Akhter’s Modified Method

To overcome increase in the computational complexity, Akhter suggested a modified

version of his own method known as modified Akhter’s method [47]. This method uses

FxLMS instead of MFxLMS algorithm. Figure 2.4 shows block diagram of modified

Akhter’s method. In the previously proposed algorithms, gain G(n) of the random

noise v(n) was fixed i.e. G(n) = 1 for all values of n. For a stable ANC system,

G(n) should be 0 as the OSPM filter gets in steady state. If G(n) is kept fixed, v(n)
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keeps on appearing in the residual noise e(n) resulting in overall degradation of the

ANC process. ANP scheduling technique is implemented in this method which reduces

v(n) in the residual error e(n) hence resulting in fast convergence. The gain G(n) is

calculated as

G(n) =
√

(1− ρ(n))σ2
vmin

+ ρ(n)σ2
vmax , (2.2.17)

where, σ2
vmin

and σ2
vmax are the minimum and maximum values of the variance of v(n),

ρ(n)=Pf (n)
Pe(n) , and Pe(n) and Pf (n) are the powers of control and modelling error filters,

respectively. Major drawback of the Akhter’s modified method is gradual convergence

due to use of the VSS-FxLMS adaptive algorithm.

Figure 2.3: Akhter’s Method for Feedforward ANC with OSPM [46].

Figure 2.4: Akhter’s Modified Method for Feedforward ANC with OSPM [47].
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2.2.5 Carini’s Method

To overcome slow convergence Carini proposed a self-tuning auxiliary noise power

(ANP) scheduling alongside with optimal VSS parameters in which normalized FxLMS

(Fx-NLMS) was used in both control and modelling filter [49]. In order to get the opti-

mal VSS perimeters, ANC and OSPM filters are updated using the following Normal-

ized LMS adaptations:

w(n+ 1) = w(n) + µw(n) g(n)x̂′(n)
x̂′T (n)x̂′(n) (2.2.18)

ŝ(n+ 1) = ŝ(n) + µs(n) f(n)v1(n)
vT (n)v(n) (2.2.19)

where µw(n) and µs(n) are variable step-sizes for ANC and OSPM filters respectively.

To find the optimal value of µs, a delay coefficient technique is deployed. To imple-

ment the delay coefficient technique the memory length of OSPM filter is made M+D.

ŝ0(n) and ŝ1 are the vectors containing the first D and then the remaining M samples,

respectively, and are updated as:

ŝ0(n+ 1) = ŝ0(n) + µs(n) f(n)v0(n)
vT (n)v(n) (2.2.20)

ŝ1(n+ 1) = ŝ1(n) + µs(n) f(n)v1(n)
vT (n)v(n) , (2.2.21)

where v0 and v1 are the vectors representing D and remaining M samples of v(n).

Optimal value of µs is found by:

µs(n) = N̂s(n)
Pf (n) (2.2.22)

where using delay coefficient technique we obtain N̂ (n). To find the optimal value for

µw for each iteration we use the following equation:

µw(n) = N̂w(n)
Pg(n) (2.2.23)

In this method self-tuning ANP scheduling methodology is implemented is used to keep

the ratio R(n) constant and it is given by:

R(n) = E[((d(n)− y′(n))2]
E[(v′(n))2] (2.2.24)
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G(n), which is ANP scheduling gain, is calculated by:

G(n) =

√√√√ Pe(n)
(R + 1)Pŝ(n) (2.2.25)

In this method a new approach is used to schedule the noise power and furthermore

normalized optimal step size parameters are used to model ANC and OSPM filters.

Figure 2.5: Carini’s Method for Feedforward ANC with OSPM [49].

2.2.6 Ahmed’s Method

Figure 2.6 shows Ahmed’s method, this method uses a two-stage gain scheduling strat-

egy for ANP [50]. In this method normalized step sizes are used. The gain sheduling in

this proposed method is for two stages separately. Th the first stage, the ANC system is

in a non steady state, i.e., Pf > Px. Time varying G(n) is calculated :

G(n) =

√√√√Pf (n− 1)
||ŝ(n)2||

(2.2.26)

In the second stage, the ANC system is approaching steady state, i.e., Pf ≤ Px, then

the time varying G(n) is given as:

G(n) =

√√√√Px(n)
Pv(n) if β(n) > Px(n)

Pv(n) (2.2.27)

else

G(n) = β(n) (2.2.28)
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In this technique, normalized step sizes are used for the ANC and the OSPM filters.

The weights of the ANC and the OSPM filters are updated as,

w(n+ 1) = w(n) + µw(n)k(n)x̂′(n) (2.2.29)

ŝ(n+ 1) = ŝ(n) + µs(n)f(n)v(n) (2.2.30)

Ahmed’s method has better convergence with less computational complexity, however,

it performs computations for two separate stages. Therefore, this method is not suited

for abrupt changes in acoustic paths.

Figure 2.6: Ahmed’s Method for Feedforward ANC with OSPM [50].

2.2.7 Pu’s Method

Figure 2.7 shows block diagram of Pu’s method. This method uses a new VSS FxLMS

algorithm along with a new suggested ANP scheduling which only uses the parameters

available [48]. In the ANP scheduling, the time varying gain G(n) is given as:

G(n+ 1) = Px(n)Pf (n)
Pe(n) (2.2.31)

The strategy suggested here is based on the OSPM system which is depicted in Pf and

the reference signal power Px. The ANC and OSPM filters are updated as:

w(n+ 1) = w(n) + µwf(n)x′(n) (2.2.32)

ŝ(n+ 1) = ŝ(n) + µs(n)f(n)v(n) (2.2.33)
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where, µw is a controlling parameter for the ANC filter, and µs is formulated using a

new VSSFxLMS technique defined as:

µs(n) = Pv(n)
Pe(n) (2.2.34)

Although Pu’s algorithm has fast convergence with lower computational complexity,

however, it cannot cater to abrupt changes in the acoustic paths.

Figure 2.7: Pu’s Method for Feedforward ANC with OSPM [48].

2.3 Comparison and Comments

It has been observed through simulations and analysis that Carini’s method performs

the best for ANC in the presence of IN for stationary acoustic paths, i.e., p(n) and s(n)

whereas Ahmed’s proposed method gives the accurate OSPM with fast convergence.
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Proposed Method

All the existing methods for OSPM in ANC used variants of FxLMS adaptive algorithm

for control and modeling filters in the presence of Gaussian noise so there was a need

to investigate an efficient method for IN. Our findings motivated us to switch to LMAT

family as it provided more robustness in IN as compared to FxLMS.

3.1 Problem Statement

In ANC systems there is great difficulty in coming up with an algorithm that converges

fast while keeping the computational complexity low. Most of the research work car-

ried out in the ANC relies on the use of FxLMS algorithm which has slow convergence.

Most of the research work is done in the presence of Gaussian noise and there is limited

work done for IN. In order to cater for this problem we tested out FxLMAT algorithm in

the presence of IN. We tested our proposed algorithms in low and high impulsive envi-

ronments for ANC and OSPM and the results produced were promising surpassing the

existing complex techniques. We proposed modification to FxLMAT algorithm called

variable step size least mean absolute third (VSS-FxLMAT) where we optimised the

step size and generated a new error signal that resulted in better ANC and OSPM. To

further increase the convergence speed and improve OSPM while keeping ANC in mind

we proposed yet another modification to FxLMAT called Variable step size filtered x

robust normalized least mean absolute third (VSS-FXRNLMAT) algorithm. This al-

26



CHAPTER 3: PROPOSED METHOD

gorithm approached the convergence of recursive least square (RLS) family algorithms

while providing the complexity of LMS algorithm. Our proposed technique worked in

both stationary acoustic paths and Non-Stationary acoustic paths with different impul-

sive inputs. Our proposed techniques showed very promising results as compared to

already developed ANC system algorithms while lowering down the complexity and

improving the OSPM.

3.2 Proposed Fx-LMAT

Figure 3.1: Block Diagram of Feedforward ANC with Fx-LMAT for OSPM

Figure 3.1 Shows the proposed technique with Fx-LMAT algorithm in the control filter.

Control filter weight update equation for our proposed algorithm is given as

w(i+ 1) = w(i) + µw*f(i)2*sign(f(i))*x′(i) (3.2.1)

Modeling filter weight update equation is given as:

s(i+ 1) = s(i) + µs(i) ∗ g(i) ∗ v(i) (3.2.2)

where, µs is the step-size for our modeling filter, g(i) is the error signal which is used

for the adaptation of modeling filter, and v(i) is the white noise injected in the modeling

filter. e(i) is the error signal expressed as

e(i) = d(i)− [y′(i)− v′(i)] (3.2.3)
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The error signal f(i) which updates the coefficients of control filter w(i), is expressed

as

f(i) = [d(i)− y′(i)] + [v′(i)− v̂′(i)] (3.2.4)

The error signal for the modelling filter ŝ(i) is g(i) which is expressed as

g(i) = ε(i) + v(i) ∗ [s(i)− ŝ(i− 1)] (3.2.5)

where ε(i) is expressed as

ε(i) = d(i)− s(i) ∗ y(i)− x(i) ∗ h(i) (3.2.6)

The step size for the modelling filter is µs, expressed as

µs(i) = 1/vTv(i) + δs(i) (3.2.7)

v(i) is the white noise which is injected and δs is the parameter used for regularization

often called regularization parameter

ĝ(i) = ε(i) + v(i) ∗ [s(i)− ŝ(i)] (3.2.8)

For the modeling filter ŝ(i) to be updated, the component ε(i) in the error signal g(i)

is the disturbance and it has to be taken out speedily so that modelling process can be

accelerated. By substituting Eq. 14 into Eq. 17 and replacing ŝ(i − 1), we get the

following equation for δs

δs(i) =
Pv(i)[Pε(i) +

√
Pg(i)Pε(i)]

Pg(i)− Pε(i) (3.2.9)

The power Pv is expressed as

Pv(i) = λPv(i− 1) + (1− λ)v2(i) (3.2.10)

The power Pg(i) is expressed as

Pg(i) = λPg(i− 1) + (1− λ)g2(i) (3.2.11)

λ is another constant used as a forgetting factor, Value of λ ranges from .9 to 1. To

make the modeling filter more stable, we multiply Eq. 19 with α, where α ranges from

0 to 1 Now the µs is expressed after multiplying with α as,

µs(i) = α

vT (i)v(i) + δs(i)
(3.2.12)
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The third filter h(i) is updated as,

h(i+ 1) = h(i) + µhg(i)x(i) (3.2.13)

where µh is the step size of the third filter and its main purpose is to minimize the

interference hence it enables faster convergence of OSPM.

3.3 Proposed VSS-FxLMAT

Figure 3.2: Block Diagram of Feedforward ANC with VSS FxLMAT for OSPM

Since the proposed Fx-LMAT performance in OSPM and in Control filter could be im-

proved, we propose another algorithm, i.e., a Variable Step size Least Mean Absolute

Third (VSS-LMAT). The block diagram of this technique is same as Fx-LMAT, how-

ever, there are changes in the control filter only which enabled for outclass performance.

The block diagram of our proposed VSS-FxLMAT algorithm is shown in Figure 3.2.

For VSS-LMAT we have suggested a new error signal which is expressed as

En(i) = [(λEn) + (1− λ) ∗ (|f(i)2|) (3.3.1)

Now we have a proposed a new step-size for the ANC filter µwn, expressed as

µwn = µw
δ2 + |x̂2|+ En(i) (3.3.2)

The control filter is updated as

w(i+ 1) = w(i) + µwn*f(i)2*sign(f(i))*x′(i) (3.3.3)
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Two new terms are introduced in this method which make the error signal low and that

aids the process as the over all interference is also reduced.The new step size and the

new error signal is used for the control filter which yields outclass results.

3.4 Proposed VSS-FxRNLMAT

Figure 3.3: Block Diagram of Feedforward ANC with VSS-FxRNLMAT for OSPM

To achieve faster online estimation of the secondary path along with better results, we

propose variable step size filtered x robust normalized least mean absolute third ( VSS-

FxRNLMAT) algorithm. This algorithm has far better results than most of the previous

techniques. The block diagram of our proposed VSS-FxRNLMAT algorithm has been

shown in Figure 3.3. We need to find a new error signal En like we did in previous

technique, expressed as

En(i+ 1) = (λEn(i)) + ((1− λ)) ∗ |f(i)2| (3.4.1)

Step size for the modeling of the control filter is then expressed as

µwn = µw
||x′2||+ δ2 + En(i+ 1) (3.4.2)

To further improve the control process we further propose a better step size defined µw2.

µw2, which is our step size for the control filter, written as

µw2 = µwn
1 + β2 ∗ |f(i)3|

(3.4.3)
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This yields outclass performance and the convergence is greatly improved. The weight

update equation of the control filter then becomes

w(i+ 1) = w(i) + µw2 ∗ f(i)2 ∗ sign(f(i)) ∗ x′(i) (3.4.4)
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Simulations, Results and Complexity

Analysis

This chapter provides and discusses simulation results of various ANC methods, all of

the simulations were carried out in MATLAB. A detailed analysis of all the existing and

proposed methods for ANC in IN for OSPM is performed. The following algorithms

are compared with our proposed methods:

• Erikkson’s method

• Akhter’s method

• Carini’s method

• Pu’s method

• Yang’s methof

• Fareeha’s method

In formulating our results, we tested the existing techniques and our proposed algo-

rithms in IN and also in non stationary acoustic paths in the presence of IN. The per-

formance matrices which we selected are Relative Modeling Error ∆S, Mean Noise

Reduction (MNR) which tells us about the performance of Control Filter and vibration

reduction parameter R.

MNR(i) = E(Ae(i)
Ad(i)

) (4.0.1)
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Relative modeling Error ∆S is expressed as

∆S(i) = 10Log10
||s(i)− ŝ(i)||2
||s(i)|| (4.0.2)

Vibration Reduction R is expressed as

R(i) = −10log(
∑
e(i)2∑
d(i)2 ) (4.0.3)

Finite impulse response (FIR) filters are used to mimic the primary p(n) and secondary

s(n) acoustic paths. The impulse response of the primary acoustic path is set to a mem-

ory length of 48 while the secondary acoustic path is set to a memory length of 16. The

tap vector length of ANC filter w(n) and OSPM filter ŝ(n) is set to 32 and 16, respec-

tively. In our simulations, two phases of ANC system have been taken into account.

In the first phasem ANC filter has been kept inactive till 5000 iterations and only the

OSPM filter is adapted to obtain the secondary path’s estimate. In the second phase, af-

ter 5000 iterations, both ANC and OSPM filters are adapted simultaneously. The v(n)

signal is white Gaussian noise with zero mean and 0.05 variance. A lot of simulations

have been carried in order to get the optimal values of parameters for improving ANC

system’s OSPM performance. In our simulations we have considered the following four

cases which are mentioned below:

• Case 1: Stationary acoustic paths with impulsive input, α=1.85

• Case 2: Stationary acoustic paths with impulsive input, α=1.65

• Case 3: Non-Stationary acoustic paths with impulsive input, α=1.65

• Case 4: Non-Stationary acoustic paths with impulsive input, α=1.85

4.1 Case 1: Stationary acoustic paths with impulsive in-

put, α=1.85

In case 1, the input is IN with α=1.85 and the acoustic paths are kept stationary.

Figure 4.2 shows ∆S for stationary acoustic paths when n=5000 as the ANC is in offline
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Table 4.1: Parameters for Impulsive Noise used in Simulations

Table 4.2: Values of Parameters for ANC System used in Simulations

state before 5000 iterations and after that the proposed Fx-LMAT converges around

55000 iterations and reaches its steady state at 70000 iterations at -40dBs. Proposed

VSS Fx-LMAT follows the same trend at -40dBs surpassing many proposed techniques.

The simulation results show that our proposed VSS Fx-RNLMAT has the best conver-

gence and steady state as it converges at n=2900 and shows robustness with no spikes

and reaches -35dBs. Our proposed algorithm performs better than Yang’s , Carini’s,

PU’s, Akhter’s and Erikkson’s methods.

Figure 4.3 shows Mean noise Reduction after 5000 Iterations, our proposed Fx-LMAT
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Table 4.3: Values of Controlling Parameters for Existing and Proposed Methods

Table 4.4: Complexity Analysis of Existing and Proposed Techniques
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Figure 4.1: Complexity Analysis Representation

Figure 4.2: Relative Modelling Error for Case 1

shows good MNR and at 20000 iterations, it reaches 1.5 which surpasses Yangs. Carini’s

method diverges in impulsive environment and so does PU’s method. Eriksson’s and

Akhter’s method remains at 1. Proposed VSS-FxLMAT converges at 11000 iterations

and reaches steady state at 20000 iterations and remains less than 0.5 showing amaz-

ing performance. Our proposed VSS-FxRNLMAT converges right at 5000 iterations as

soon as the ANC is switched on and it reaches steady state at 6000 iterations and re-

mains at 0.4, performing better than Fareeha’s method and almost following the Carini’s
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Figure 4.3: Mean Noise Reduction for Case 1

Figure 4.4: Vibration Reduction Parameter R for Case 1

method.

Figure 4.4 shows Vibration Reduction after 5000 Iterations when the ANC gets in

online mode the convergence is good for all of the proposed Algorithms but VSS-

FxRNLMAT out classes the rest of the algorithm and just falling under Fareeha’s and

Carini’s method.
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Figure 4.5: Relative Modelling Error for Case 2

Figure 4.6: Mean Noise Reduction for Case 2

4.2 Case 2: Stationary acoustic paths with impulsive in-

put, α=1.65

In case 2 the input is IN with α=1.65 and the acoustic paths are kept stationary.

Figure 4.5 shows ∆S for stationary acoustic paths when n=5000 as the ANC is in of-

fline state before 5000 iterations. Our proposed Fx-LMAT converges around 55000

iterations and reaches its steady state around 70000 iterations at -40dBs. Proposed VSS

Fx-LMAT follows the same trend at -40dBs surpassing many proposed techniques. Fig-

ure 4.4 shows that our VSS Fx-RNLMAT has the best convergence and steady state as

it converges at n=2900 and shows robustness with no spikes at -35dBs. Our proposed
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Figure 4.7: Vibration Reduction Parameter R for Case 2

Algos perform better than Yang’s , Carini’s, PU’s, Akhter’s and Erikkson’s algorithm.

Figure 4.6 shows mean noise reduction after 5000 Iterations. Our Proposed Fx-LMAT

shows good MNR and at 20000 iterations, it reaches 1.5 which is better than Yangs.

Carini’s method diverges in impulsive environment and so does PU’s method. Eriks-

son’s and Akhter’s method remains at 1. Proposed VSS-FxLMAT converges at 11000

Iterations and reaches steady state at 20000 iterations and remains less than 0.5 showing

outstanding performance. The proposed VSS-FxRNLMAT converges right at 5000 it-

erations as soon as the ANC is switched on and it reaches steady state at 6000 iterations

and remains at 0.4, thus, performing better than Fareeha’s method and almost showing

following the Carini’s method.

Figure 4.7 Shows Vibration Reduction after 5000 iterations. When the ANC gets in

online mode, the convergence is good for all of the proposed algorithms, however, the

VSS-FxRNLMAT out classes the rest of the algorithms and just falling under Fareeha’s

and Carini’s method.
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Figure 4.8: Relative Modelling Error for Case 3

Figure 4.9: Mean Noise Reduction for Case 3

4.3 Case 3: Non-Stationary acoustic paths with impul-

sive input, α=1.65

In case 3, the acoustic paths are non stationary and the input noise is IN with α=1.65.

Figure 4.8 confirms our findings that in varying acoustic paths with high impulsive envi-

ronment the proposed Fx-LMAT algorithm shows robustness and stability as compared

to all other algorithms. It converges right at 5000 iterations when the ANC is in on-

line mode and continues to show rigidity and achieves steady state at 5000 iterations.

At 50000 iterations when the acoustic paths are reversed the algorithm converges back

showing stability at -22dBs. The proposed VSS-FxLMAT shows a similar robustness
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Figure 4.10: Vibration Reduction Parameter R for Case 3

and follows the same trend at -25dBs, whereas, our proposed VSS-FxRNLMAT shows

fast convergence and stability as compared to both Yang’s and Fareeha’s methods which

lack robustness. Moreover, at 50000 iterations when the acoustic paths are reversed our

Algorithm reaches the stability and ends at -25dBs.

Figure 4.9 shows the Mean Noise Reduction Comparison of our proposed algorithms

with the already existing techniques. In high impulsive non stationary environment,

our proposed Fx-LMAT performs better than Yang’s and shows stability and reaches

MNR of 1.5 to improve the stability and robustness our proposed VSS-FxLMAT shows

better convergence and reaches MNR of 0.8. VSS-FxRNLMAT has better convergence

stability and performance than all other algorithms. It reaches the steady state at 20000

iterations and shows robustness as compared to Fareeha’s method and falls back to sta-

bility even when the acoustic paths are reversed and reaches MNR of 0.4.

Figure 4.10 shows the vibration reduction parameter R. Yang’s and Carini’s methods

don’t show any results as these two algorithms don’t converge for R, however, our pro-

posed LMAT shows robustness and stability and reaches -6. VSS-LMAT shows better

results but stability is affected by change in acoustic paths and it reaches -4. VSS-

FxRNLMAT shows the best result although there is little deviation when the acoustic

paths are reversed at 50000 iterations but the algorithm stabilizes and shows result of 7

surpassing Fareeha’s method.
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4.4 Case 4: Non-Stationary acoustic paths with impul-

sive input, α=1.85

Figure 4.11: Relative Modelling Error for Case 4

Figure 4.12: Mean Noise Reduction for Case 4

Figure 4.11 shows that After 5000 iterations the ANC gets in online mode and Fx-

LMAT converges rapidly and reaches steady state right at instant and even when acous-

tic paths are reversed at 50000 Fx-LMAT converges back at -23dBs. Our proposed VSS-

FxLMAT converges at 6000 iterations and reaches steady state and when the acoustic

paths are reversed the proposed algorithm falls back and reaches steady state at 55000

iterations while being robust at -27dBs. Our proposed VSS-FxRNLMAT follows the
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Figure 4.13: Vibration Reduction Parameter R for Case 4

same trend where as surpassing Fareeha’s method as it takes a lot of time in converging

back once the acoustic paths are reversed. Yang’s method is slow at converging and

after 50000 iterations it falls back slowly and shows lack of robustness.

Figure 4.12 shows that our proposed Fx-LMAT exhibits robustness and after 5000 it-

erations it remains robust. Moreover, there is hardly any fluctuation when the acoustic

paths are reversed and it reaches an MNR value of 1.5 surpassing Yang’s method. Our

proposed VSS-FxLMAT algorithm show better results but the convergence is slow al-

though it does not diverge even after 50000 iterations and reaches 0.8. VSS-FxRNLMAT

out performs all the proposed algorithms as it converges at 10000 iterations and even

when the acoustic paths are reversed it converges back with utmost robustness and

reaches an MNR value of 0.4.

Figure 4.13 shows that our proposed Fx-LMAT shows robustness and does not get af-

fected by change in acoustic paths and reaches -10. VSS-FxLMAT converges faster

than Fx-LMAT but when the acoustic paths are reversed there is a big dip in the algo-

rithm and it reaches -6. VSS-FxRNLMAT converges right at 5000 iterations and the

algorithm handles the change in acoustic paths, finally reaching the value of 6. Carini’s

and Yang’s methods diverge in non-stationary environment, only Fareeha’s method is

able to challenge VSS-FxRNLMAT.
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4.5 Discussion

From our results and analysis it can be deduced that Carini’s method provided the best

noise control and vibration reduction for non stationary and stationary acoustic paths.

Fareeha’s method also achieved better noise control as compared to other existing meth-

ods. The proposed modifications in the FxLMAT algorithm proved fruitful as our pro-

posed VSS-FxLMAT and VSS-FxRNLMAT provided excellent robustness against low

and high IN. Our proposed algorithms were able to perform in both stationary and non

stationary acoustic paths with fast convergence and excellent noise control.
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Conclusion and Future

Recommendations

In this thesis we have reported research work based on Active Noise Control (ANC) of

impulsive noise (IN) with online secondary path modelling (OSPM). In this research

work we tested filtered x Least mean absolute third (FxLMAT) in IN and suggested

two modifications to this adaptive algorithm. Our proposed modifications are variable

step size filtered x least mean absolute third (VSS-FxLMAT) and variable step size

filtered x robust normalized least mean absolute third (VSS-FxRNLMAT) algorthims.

Simulation results showed that our proposed VSS-FxRNLMAT surpassed all current

algorithms in noise control and OSPM while reducing the computational complexity.

We also observed that VSS-FxRNLMAT approached recursive least square (RLS) adap-

tive filters family while providing the complexity of least mean square (LMS) adaptive

algorithms family.

5.1 Future Recommendations

This research work focuses on active noise control systems that are feedforward in

impulsive noise with online secondary path modelling. This research can be further

extended to feedback and hybrid ANC systems. Modifications can be made to the pro-

posed VSS-FxRNLMAT so that step size can be optimized further to aid the modeling
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process. The proposed methods can be further used for narrow-band or continuous

noise inputs.

Furthermore, by making necessary changes to the control and modelling processes,

computational complexity may be lowered even further.
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