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Abstract 

This project presents the development of a new empirical prediction model to evaluate 

swell pressure of expansive soils (Ps-ES). An extensive database comprising 168 Ps 

records was established after a comprehensive literature search. The performance of 

developed model was tested using mean absolute error (MAE), root squared error (RSE), 

root mean square error (RMSE), correlation coefficient (R), regression coefficient (R2). 

The results in the increasing order of the contribution of each input parameter is in the order 

of OMC (28.27) > PI (27.59) > CF (14.59) > MDD (12.59) > SP (10.40) > silt (6.55). 

The MEP model outperformed the other AI models found in literature for the prediction 

of swell pressure in terms of closeness of training, validation and testing data set with the 

ideal fit slope. The findings of this study can help researchers and designers to evaluate the 

swell characteristics of the expansive soils in pre-planning and pre-design phases of a 

construction project and for validation of the laboratory and field test results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Importance of Geotechnical Surveys 

A building with the weak foundation can never survive no matter how strong the 

superstructure is. Not only the strength of the foundation but the type of foundation and the 

treatment done before the foundation construction must be taken into account. 

Since if a foundation type and the initial treatment of the soil on which the foundation 

is to be built are not given consideration, even the strongest of foundation material will fail 

when it encounters conditions for which it is not meant. The serious concern of selecting 

the best foundation type and of the specific pre-construction treatment of soil is based on 

the nature of the soil encountered on ground and to know the nature of the soil to make the 

above most important decision a series of a complex and extensive testing of soil is 

required. 

Geotechnical engineering is one of the most complicated field of civil engineering and 

the major reason for this complexity are as follows. 

• Soils are natural materials thus humans have no control over its quality and type.

• Soils are highly non-homogeneous in nature which makes them very difficult to

generalize in terms of properties and responses to conditions.

• Most parameters of soil have highly multivariable dependencies.
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• Apart from this, most of the testing procedures are very time-consuming, the 

testing machinery and operators required is very expensive and need skilled 

professionals to work on them. 

• Owing to the above complexities, researchers have always tried to find ways to 

make correlations of simpler and easy to evaluate soil properties with the more 

complex, expensive, difficult to find and time-consuming parameters. 

 

Figure 1.1 Swell behavior of Soil 

One of the most devastating and difficult to handle parameter of soil is the swell 

pressure (Ps) that is caused when expansive soil encounters water as shown in Fig 1.1. This 

Figure shows the different types of damages that can be caused by swell pressure of 

expansive soils. Expansive soils are the soils that have a high clay fraction. Clay contains 

silicate minerals which are highly hydrophilic and makes strong hydrogen bonds with 

water. This increases the volume of the clay particles and thus they swell significantly. 

This swelling phenomena causes immense pressure on the foundations of buildings and the 

especially upon light structures such as roads, railways, pipelines etc. 
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Calculating the fundamental mechanical parameters of expansive/swelling soils is a 

prerequisite for a particular construction project.(Das et al., 2011; Huat et al., 2014; 

Ikeagwuani & Nwonu, 2019; Anand J. Puppala & Aravind Pedarla, 2017; Xu & Sun, 2001) 

Strong hydrophilic clay minerals, high plasticity, a higher fines fraction and a high void 

ratio are all characteristics of such soils.  

It is critical to examine the swell parameters of these swelling soils in order to minimise 

post-construction failures of engineering structures caused by rising urbanisation and 

industrialisation associated with these swelling soils (Das et al., 2011; Ikeagwuani & 

Nwonu, 2019; Anand J Puppala & Aravind Pedarla, 2017). 

Fig 1.2 and Fig 1.3 show the damages that have been caused by the swell pressure of 

soil to the lightweight structure like Railroads, Highway Roads etc. 

 

Figure 1.2 Cracks in Lightweight Structures (Railroads) 
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The swell behaviour is primarily defined by free swell (FS), swelling pressure (Ps) and 

swell under load, (Çanakcı et al., 2009; Erzin & Erol, 2007). The swelling behaviour of 

compressed hydrophilic clays have been extensively studied over the last decade in terms 

of the effects of particle gradation, plasticity, compaction, and so on the development of 

swell pressure of expansive soils (from here on referred to as Ps-ES) (Atemimi, 2020; 

Cherif et al., 2018; Klopp, 2019; Hong Li et al., 2019; Parastar et al., 2017; Pastor et al., 

2019). 

Building foundation damaged that displaced bricks and inward deflection of foundation 

can be observed in Fig 1.4. 

Figure 1.3 Cracks in Lightweight Structures (Roads) 
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Desiccation Cracks in expansive soil can be seen in in Fig 1.5 caused by drying & 

swelling. 

  

The swell pressure Ps (kPa) is usually measured in the laboratory using an oedometer 

system according to the widely established ASTM standard. Due to the lengthy nature of 

the test and the slower saturation, a variety of empirical equations for the prediction of Ps 

have been created before. These equations have been derived using classical methods 

Figure 1.4 Building damage 

Figure 1. 5 Cracks in expansive soil 
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which have a number of limitations that are discussed in sections to come. (Ashayeri & 

Yasrebi, 2009; ASTM, 2014; Erzin & Erol, 2004; Kayabali & Demir, 2011; Kumar et al., 

2020).  

Soft computing (SC) approaches are gaining popularity due to their greater predictive 

capability in comparison to older approaches. They are being developed to evaluate the 

complicated behaviours of a range of geotechnical engineering systems (Zhang et al., 

2020). Additionally, with the fast development of machine learning methodologies, data 

mining for operations in chemistry, materials science, and civil engineering, in particular, 

has received widespread attention during the last two decades (Hao Li et al., 2019; Vyas 

et al., 2015). 

Recent advances in artificial intelligence (AI) techniques, or soft computation (SC) 

methods like Bayesian neural network (BNN), multilayer perceptron neural network 

(MLPNN), the hybrid form of ANNs, i.e. adaptive neuro-fuzzy inference system (ANFIS), 

alternate decision trees, eXtreme gradient boosting (XGBoost), artificial neural networks 

(ANNs) (subtypes are; back-propagation neural network (BPNN), general regression 

neural network (GRNN), and k-nearest neighbour (KNN)¸ support vector machines 

(SVMs),  multivariate adaptive regression splines (MARS), evolutionary algorithms (EA), 

multi expression programming (MEP), genetic expression programming (GEP), and 

Ensemble Random Forest regression, genetic algorithm (GA),  so on have helped  in the 

formation of models with common statistical methods like regressions (Alade et al., 2018; 

Çanakcı et al., 2009; Das, 2013; Gandomi & Roke, 2015; Iqbal et al., 2020; Ozbek et al., 

2013; Pham et al., 2016; Sathyapriya et al., 2017; Shahin, 2015; Zhang et al., 2020). 
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Mechanistic learning is frequently used to assess estimating models in order to 

construct an intelligent structure(Das, 2013). Additionally, (Giustolisi et al., 2007)  

developed a color-coded categorization system for different mathematical models based on 

white, black and grey. The first kind, referred to as a white-box model, is one in which 

known variables and parameters are based on physical laws, resulting in correct physical 

connections and maximal transparency. However, (Shahin et al., 2009) suggested that 

because their underlying process is unknown, they are hard to characterize. Secondly, 

black-box models are built on regressive data-driven systems in which the functional form 

of the connections between the variables is unknown and must be approximated. Thirdly, 

grey-box models are those logical systems in which a mathematical framework effectively 

analyses the system's behaviour. 

For example both ANNs and ANFISs are classified as 'black-box models' because of 

their (i) lack of transparency, (ii) inability to clearly describe the underlying physical 

processes, and (iii) inability to generate closed-form empirical equations 

(Mohammadzadeh S et al., 2019; Sun et al., 2015). Whereas GEP is categorised as a "grey 

box model" due to its simplified and symbolic representation of physical processes (Mehr, 

2020; Naghadehi et al., 2018). Although Genetic programming based models are believed 

to perform better than neural network-based ANN and ANFIS models in geotechnical 

engineering, comparative studies using various AI tools are ongoing to gain additional 

insights (Çanakcı et al., 2009; Gandomi & Roke, 2015; Hanandeh et al., 2020). 
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Genetic Programming based models are stable and successful since no predefined 

association is assumed while constructing the model (Gandomi, Alavi, Mirzahosseini, et 

al., 2011; Giustolisi et al., 2007).  

Earlier correlations for the Ps of high Expansive soils were determined mostly using 

traditional statistical studies, which had numerous disadvantages such as  

(i) fewer data points, (ii) lesser correlation between commanding factors, and (iii) a lack of 

integrated comparative evaluation (Mohammadzadeh S et al., 2019). Furthermore the swell 

pressure test in the laboratory is both costly and time-consuming (Kumar et al., 2020). In 

the past, a number of studies have utilised simple geotechnical indices with AI approaches 

to estimate swell index (Chen et al., 2019; Das et al., 2011; Das et al., 2010; Mozumder & 

Laskar, 2015; Najjar et al., 1996; Salahudeen et al., 2020). This study attempts to 

create models that use simple and economically determinable essential geo-mechanical 

properties to precisely predict the swell behaviour of virgin expansive soils. A soft 

computing approach, Multi Expression Programming (MEP), were used in this work to 

generate prediction equations for Ps-ES. Nine soil properties i.e., clay fraction (CF), 

plasticity index (PI), specific gravity (Gs), maximum dry density (MDD), optimum 

moisture content (OMC), swell percent (SP), natural water content (wn), percentage sand, 

and percentage silt were used as input variables. Based on previous research, these input 

parameters were taken from the Ps-ES database. The predicted variables, i.e., the output 

variables, was swell pressure (Ps). The major goals of the research were to (i) create MEP-

based prediction model, (ii) obtain an empirical equation from the developed model. (iii) 

compare MEP model's performance with that of the GEP model for Ps prediction. To 
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evaluate the suitability MEP model, the statistical performance measures such as mean 

absolute error (MAE), root squared error (RSE), root mean square error (RMSE), 

correlation coefficient (R), regression coefficient (R2), and relative root mean square error 

(RRMSE) were used. Furthermore, a parametric research was carried out, and the output 

results were then analysed to categorise the majority of positive and negative input 

parameters using sensitivity analysis. 

1.1 Problem Statement  

As the importance of swell potential & their parameters is described earlier it is compulsory 

to calculate all these factors prior to any construction.  

Although we have many other methods like ASTM lab protocols/ methods, but there are 

some limitations with these methods. 

LAB Limitations 

• The experimental procedure of these methods is really time 

consuming/demanding, and some of them may take up to week to complete the 

standard procedure of testing.  

• If we’re required to test a lot of samples for better reliability, we require a greater 

number of apparatus or we will have to wait for completion of sample that is 

under process of incrementally loading, obviously for more than one sample their 

will be time or cost restraint. Apart from that proper care of Soil Undisturbed 

sample, precautions of system & process incremental loadings should be taken 

into account. 
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• Secondly, for those tests, the testing machinery and operators required is very 

costly and need skilled professionals to work on them.  

• Any mishap or un-intentional wrong handling may lead to severe results without 

any indication. 

Literature Limitations 

• While empirical relations are drawn by experts, they have to rely heavily on 

Assumptions, that makes corelations very limited.  

• For the simplicity purpose, mathematical techniques used in these formulas are 

very limited, these practiced formulas do not give corelations with all other 

parameters OR (because of limited nature) does not cater for all those multi 

variable complex relations of input parameters, on which the output is relaying.  

• They contain Very complex Graphical Interpretations, hence there may be a 

chance of human error.  

Prev. AI techniques Limitations  

• Although other AI methods have been applied but all of them fall under the 

category of black model, that don’t give any information about what is happening 

behind the process & they do not give any empirical formula, that is one of our 

basic desire.  

• Although in past many other AI methods have been applied to predict swell 

potential of soil, they do not give any empirical formula or they give complex 

and multi-functional mathematical equation which is really difficult to calculate 

every time & difficult to visualize them, While MEP gives simple equation where 

we can control complexity of our equation.  
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1.2 Project Objective  

Going to the above complexities, Researchers have always tried to find ways to make 

correlations of all inputs & to evaluate soil properties with the more complex input 

parameters that are difficult to find and time-consuming parameters, while making the 

system as simple as possible. 

So, SC is an emerging field in Geotechnical engineering that have potential to solve all 

above mentioned problems. 

• Development of new reliable empirical prediction models to evaluate swell 

pressure of expansive soils (Ps-ES) using Multi Expression Programming MEP 

soft computing methods. 

• Use of detailed information from datapoints about geotechnical indices alongside 

the swell pressure to make correlations and obtain higher degree of accuracy & 

deriving the simple mathematical equations for Ps-ES using MEP modelling. (for 

preplanning phase) 

• To develop a timesaving & cost-effective system that can make complex 

relations of all input parameter without any prior assumption, on which output is 

relaying.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Use of MEP in Geotechnical Engineering 

2.1.1 Soil Classification Using Multi Expression Programming 

Soil properties, such as LL, PL, % of gravel, sand, and fine particles and the soil colour are 

utilised as input factors for forecasting the classification of soil. (Alavi et al., 2010). 

Following were the main observations of this research. 

1. The results show that MEP-based formulations can anticipate target values with

a high degree of accuracy. When compared to analytical and numerical results

acquired by different researchers, the results obtained by MEP formulation are

proven to be more reliable.

2. Using MEP and two separate function sets, two formulae for soil classification

were developed.

3. Comparisons were made between the MEP formulations and the experimental

findings & SLNN (an existing model in the literature,).

4. The results of this comparison show that the suggested MEP models can

anticipate target values with a high degree of accuracy.

5. In addition to their high accuracy, MEP based equations are fairly short &

straight-forward and are more practical for application than SLNN equations.

6. This analysis demonstrated that MEP is a highly promising strategy for the

formulation of many civil engineering issues in the future.
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2.1.2 Data Mining Approach for Complex Geotechnical Problems 

The difficulty of geotechnical behaviour analysis stems from the multivariable 

interdependence of soil and rock reactions. Traditional kinds of the design solutions of 

engineering are made simpler to deal with this complicated behaviour. The simple solutions 

for the creation of conventional models may result in extremely huge mistakes. The aim of 

this study was to demonstrate the effectiveness of genetic programming (GP) variants such 

as multi-expression programming MEP, linear genetic programming LGP and gene 

expression programming GEP by using them for several complex geotechnical problems. 

GEP, LGP, and MEP are the Genetic Programming variants that distinguish between 

an individual's genotype and phenotype. GEP, MEP and LGP approaches are more 

compatible with computer architecture than the classical GP. This significantly accelerates 

their execution. These approaches excel at directly capturing the information inherent in 

experimental data without making assumptions about the fundamental principles guiding 

the system. This is one of their most significant benefits over most classic constitutive 

modelling approaches. (Alavi & Gandomi, 2011). 

The following conclusions were made based on the results obtained from this research. 

1. GEP, MEP and LGP modelling capabilities were demonstrated by predicting 

slope stability, settlement around tunnels, relative settlement of rockfill dams and 

the soil liquefaction. Findings were found to be more accurate when compared to 

those produced by other models provided in the literature. The basic models 

created using GEP, MEP and LGP gave excellent analytic tools for geotechnical 

engineers. 
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2. These ideas address the drawbacks of prior methods for analysing geotechnical 

engineering systems provided in the literature. Unlike ANN and many other soft 

computing techniques, GP approaches give equations that may can be used for 

ordinary design practise. 

3. MEP is unique in its capacity to encode several computer programmes for a 

single problem on a single chromosome. Based on numerical trials, the LGP, 

GEP, and MEP methods surpass related strategies substantially. 

2.1.3 Soil Deformation Moduli (Secant Modulus and Reloading Modulus) 

The goal of this research was to use the MEP technique for creating new constitutive 

models for predicting the deformation moduli of soil. (Alavi et al., 2012). 

The researchers gave the following conclusions from their research. 

1. The suggested models provide accurate estimates of soil deformation moduli.  

2. The Es and Er formulation outperform various empirical models observed in the 

literature.  

3. The validation stages show the models' efficacy for broad application to soil 

moduli determination. In general, the models developed are appropriate for fine-

grained soils. 

2.1.4 Compression Index of Fine-Grained Soils 

Multi-expression programming, MEP was used to develop a non-linear model for 

predicting the compression index of fine soils. This model connects the soil compression 
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index, Cc to its LL, PL and void ratio. 108 consolidation experiments performed on various 

soils were used to create the model. (Mohammadzadeh et al., 2014). 

The researchers gave the following conclusions from their research. 

1. The results show that the MEP technique describes the soil compression index 

properly, resulting in very high prediction performance.  

2. The derived model outperforms the current empirical formulae for the soil 

compression index substantially. 

3. Despite ANN's somewhat better performance for analysed problem, a significant 

benefit of MEP over ANN is that it produces simpler equations that can be easily 

calculated by hand. 

4. By integrating the data of various soil types, the performance of this model can 

be enhanced to produce more accurate results for a larger range of database. 

5. In general, the models developed using this technique should be utilised for pre-

planning and pre-design purposes, as well as to assess the general validity of 

laboratory or field test findings. 

6. Furthermore, when testing is not possible, these models are effective options for 

determining Cc. 

2.1.5 Consolidation Assessment 

Considering the complicated nature of consolidation, the Multi Expression Programming, 

MEP was used to generate several models that are accurate and simple for calculating the 

degree of consolidation.(Sharifi et al., 2020). 
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The major findings of this research are given below. 

1. The solutions consist of two groups of equations, one for calculating the average 

degree of consolidation and the other for calculating the time factor. 

2. The results of the consolidation tests performed on four different clays obtained 

from the literature demonstrated that the proposed models performed well. 

2.1.6 Prediction of Soil Compaction Parameters 

Using multi expression programming (MEP), this work provides the construction of a new 

prediction model for soil compaction parameters (i.e. optimal water content and maximum 

dry density).(Wang & Yin, 2020). 

Following were the main conclusions. 

1. For training dataset, an R2 greater than 0.87 suggested that the model can predict 

the maximum dry density and the optimal water content with good accuracy. 

2. The model is also accurate in predicting these parameters (MDD and OWC) 

based on testing data with R2 > 0.85. 

3. In comparison to prior research, the current model is trustworthy and more 

appropriate for a broader range of soil types, including the coarse grained and 

high plasticity soils. 

4. Because the model requires only 4 physical parameters of soil and the 

compaction energy, it is suitable for geotechnical applications. For example, if 

we assume a certain value of the compaction energy, the suggested model can 

automatically determine the optimal water content (OWC) and the maximum dry 

density (MDD) of soil with the four fundamental physical attributes known. 
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Compaction energy may thus be simply back determined based on the design 

necessary compaction parameter values. 

2.2 Prediction of Swell Pressure Using Different Methods 

Because of the surface properties of various clay types, expansive clays expand in volume 

when they come into contact with water. Swelling Pressure of Soil refers to the pressure 

exerted by expansive soil if it is not permitted to expand or if the volume change of the soil 

is halted. 

2.2.1 Conventional Laboratory Techniques 

These are the earliest known methods for predicting Ps. Since the study of expansive soils 

began, many tests such as the free swell, zero swell, loaded swell, limited swell, constant 

volume, swell-consolidation, and double oedometer test have been utilized; all of these 

tests are basically adaptations to the simple oedometer test. Among the tests described, the 

zero swell, constant volume, free swell, and swell consolidation tests are the most widely 

utilized. (ASTM, 1996; Petry et al., 1992) 

2.2.2 Swell Pressure Prediction by Suction Methods 

Suction methods were used in this study to predict swell pressure using the thermocouple 

psychrometer technique. It was found that the log soil suction and swell pressure had linear 

relationship. Using multiple regression analyses, soil suction was related to plasticity index 

PI, water content and the dry density. The correlations revealed a simple regression 

equation for predicting soil suctions quickly based on easily determined soil properties. 
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The results of  the standard constant-volume (ASTM, 1996) swell tests were used to 

investigate soil suction versus swell pressure behavior. (Erzin & Erol, 2007) 

The swell pressure for a clay soil can be predicted if the plasticity index, dry density & 

the initial soil suction are known. These parameters can be determined in a short period of 

time using simpler techniques than the oedometer test.  

Major findings of this research are discussed below. 

1. Suction methods for categorization of swell behavior in expansive soils 

outperform traditional oedometer tests. 

2. These tests take less time than oedometer tests & provide data that is relevant to 

a variety of moisture content circumstances. 

3. A linear relationship was established among log initial suction & swell pressure. 

4. It is possible to conclude that the initial soil suction is the most important 

condition of suction that describes prospective swell pressures. 

Erzin also considered the use of ANN (Artificial Neural Network) to analyze swell 

pressure vs soil suction. (Erzin, 2007) 

2.2.3 Direct Method versus Indirect Methods 

The direct approach was adopted in this study & the swelling pressure was determined 

using a load cell under constant volume. The direct method's findings were compared to 

indirect approaches such as the limited swell, zero swell, swell consolidation & double 

oedometer tests. (Kayabali & Demir, 2011) 
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Following were the major observations of this research. 

1. The restricted swell test understates the swell pressure. This test requires many 

identical specimens for a single test which can be challenging at times. 

2. The swell-consolidation test exaggerates the swell pressure. 

3. No correlation was seen between swell pressure recorded with measured by the 

double oedometer test & the swell pressure measured by direct method.  

4. The swell pressure measured by zero swell test overestimates the swell. 

5. There was a significant correlation between swell pressure measured directly & 

free swell. It has been suggested that swell pressure may be anticipated using free 

swell. 

6. The equipment used for this study to directly measure swell pressure is simple, 

produces reliable and reproducible findings. It is offered as an easy-to-use 

method for determining the swelling pressure of expansive soils. 

Because of the stiffness of the load cell, swelling pressure measured directly is thought 

to be somewhat less than the real amount. Higher the stiffness value of the load cell, smaller 

will be the degree of inaccuracy in swelling pressure measurements. 

2.2.4 Statistical Regression Models 

This study employed ten distinct soil samples to create 2 linear regression models called 

as M1 & M2, which predict swelling pressure based on index properties and initial 

placement conditions. (James et al., 2013) 
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The researchers gave the following observations about their research. 

1. A dataset of ten distinct soil samples was employed in this investigation. The two 

models were calibrated using eight of these specimens.  The last two soil 

specimens were used to validate the models. This was done by calculating 

absolute error by taking the difference between the predicted swelling pressure 

by the new models & the actual swelling pressure. 

2. When the models were ranked according to their absolute inaccuracy, M1 

performed the best. 

3. M1 produced consistent forecasts of swelling pressure with varying initial water 

content & initial dry unit weight amounts. Because it is a linear model, M1 is 

simple & the most user friendly of the two models.  

2.2.5 Use of Artificial Intelligence Approaches: ANN, ANFIS & GEP 

New empirical prediction models were created for swell pressure using the three soft 

computing methods i.e., artificial neural networks (ANNs), gene expression programming 

(GEP) & adaptive neuro fuzzy inference system (ANFIS). Nine geotechnical parameters 

were chosen as the predictor variables based on their relevance & their ease of determining. 

The network was trained, tested and the predictions were compared to the observed 

outcomes. (Jalal et al., 2021) 

Following were the major conclusions. 

1. The GEP & ANN based models can predict the Ps with high accuracy and 

without having any need for the prior assumptions. 
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2. The mathematical equations derived by GEP are much simpler than the ANFIS 

& ANN models. 

3. The GEP model developed can be applied in normal design practices for the 

prediction of Ps. 

2.3 Summary 

The objectives and outcomes of the research explained above are given in summarised 

form along with proper references in the upcoming Table 2.1 and Table 2.2. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Introduction to Artificial Intelligence 

Before diving into the research methodology, one should have a clear understanding of 

Artificial Intelligence and how it’s implemented in various problems. A simplistic answer 

to the question "What Artificial Intelligence means?" is that it varies depending on whom 

you ask. A person slightly familiar with technology might think of it as robots or some kind 

of advanced computer systems. They'd describe AI as a terminator-like figure that can take 

decisions & act freely. If you ask about AI from a researcher, he/she will tell you that it is 

a set of computer programs that can produce results without being explicitly instructed to 

do so. And they'd all be correct. To summarise, Artificial intelligence (AI) is in fact a 

replication of human intellect in robots that are built to think like people & copy their 

behaviour. 

Artificial intelligence is based on the idea that human intellect may be characterised in 

such a manner that a computer could simply duplicate it and complete tasks ranging from 

the most basic to the most complicated. Artificial intelligence has a goal of imitating human 

cognitive processes. To the extent that they can be described concretely, researchers & 

developers in the area are making unexpectedly quick progress in replicating tasks like as 

learning, reasoning, and perception. Some predict that inventors may soon have a capability 

to create systems that could beat humans' ability to study or reason about any topic. Others, 

however, remain suspicious, owing to the fact that all cognitive activity is laced with value 

judgements that are vulnerable to human experience. 
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As technology makes further advancements, earlier artificial intelligence criteria 

become obsolete. Computers/devices that calculate fundamental calculations or detect text 

with the use of optical character recognition, for example, are no longer regarded to possess 

artificial intelligence since these abilities are now assumed to be inherent in computers. AI 

is constantly developing to help a wide range of sectors. Machines are wired utilising a 

multidisciplinary method that incorporates mathematics, computer science, linguistics, 

psychology & other disciplines.  

3.2 Collection of Data 

A database was created from a comprehensive literature review of globally published 

research publications by collecting 168 Ps entries for the final creation of accurate 

predictive model employing MEP approach. Between 1995 and 2020, data was collected 

for the typical expansive soils ranging from low to extremely high nature, with more than 

95 percent of datapoints collected after 2000. It was important to choose datapoints that 

provided precise information regarding geotechnical indices as well as swell pressure 

parameters. The following Table 3.1 shows the dataset that we’re using in our research. 

 



37 

  Swell pressure, Ps 

S
er

ia
l 

N
o
. 

R
ef

e
re

n
ce

 

C
la

y
 f

ra
ct

io
n
  (

C
F

) 

L
iq

u
id

 L
im

it
 (

L
L

) 

P
la

st
ic

it
y
 I

n
d

ex
 (

P
I)

 

S
p

ec
if

ic
 G

r
a
v
it

y
 (

G
s)

 

M
a
x
. 

D
ry

 D
en

si
ty

 

(M
D

D
) 

O
p

ti
m

u
m

 M
o
is

tu
re

 

C
o
n

te
n

t 
(O

M
C

) 

S
w

el
l 

P
o
te

n
ti

a
l 

(S
P

) 

N
a
tu

ra
l 

W
a
te

r 

C
o
n

te
n

t 
(w

n
) 

Sand Silt 

S
w

el
l 

P
re

ss
u

re
 (

P
s)

 

 

 

 

    % % %   kN/m3 % % % % % KPa  

1 
(Abdalqadir et 

al., 2020) 
34 45.2 19.83 2.72 18.34 15 5.96 2.4 23.2 36.3 142  

2 
(Benyahia et 

al., 2020) 

68 73.3 54.3 2.6 16.97 16.4 7.81 16.4 4 24.5 271  

3 64 74.8 41.5 2.64 16.19 22.09 6.6 22.1 4.2 32.7 258  

4 66 71.7 52.68 2.6 15.99 19.39 6.57 19.4 2 31 236  

5 
(Kowalska and 

Ptaszek, 2019) 
33 71 39 2.77 15.6 22.5 7 2.8 5.4 55.3 120  

6 
(Al-Rawas et 

al., 2005) 
65 148 116 2.68 14.9 23 9.3 3.7 0 35 170  

7 

(Soundara and 

Selvakumar, 

2020) 

72.5 74 35 2.66 17.55 19 5.43 2.2 4 23.5 270  

8 
(Taher et al., 

2020) 
70 31 12.9 2.7 16.8 18.4 14.9 12.1 7 15 139  

9 

(Shi et al., 

2002) 

26 58.5 33 2.7 16.5 19 2.7 19 22 27.5 75  

10 58 63 35.5 2.7 14.5 26 1.3 26 4.7 36 89  

11 32 59.5 30.5 2.7 14.5 30 1.82 30 22 27.5 51  

12 41 64 35.5 2.7 15 28.5 4.49 28.5 18 26 59  

13 19 43 21.5 2.68 14 25 3.4 25 13 67 29  

14 43 57.5 28.5 2.69 15.5 26.5 5.05 26.5 15 29 125  

15 

(Phani Kumar 

and Sharma, 

2004) 

69 80 52 2.72 13.75 40 10.8 14 7 24 90  

16 

(Sabtan, 2005) 

27 52 20 2.66 17.36 9.2 2.4 9.2 34.3 31.8 215  

17 26 58 24 2.66 17.36 8.8 2.5 8.8 34.3 31.8 144  

18 61 46 25 2.66 17.36 12.4 5.6 12.4 4.7 36 283  

19 32 67 30 2.66 17.36 8.1 4.8 8.1 28 20 204  

20 73 58 35 2.66 17.36 4.4 6.5 4.4 2 24 302  

21 34 36 24 2.66 17.36 5.5 3.8 5.5 22.2 34.2 237  

22 71 72 40 2.66 17.36 3.7 7.8 3.7 2.5 22.5 341  

Table 3.1   Dataset obtained from different international publications used in this project 
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23 61 87 45 2.66 17.36 6.2 6.6 6.2 2.7 38 247  

24 21 32 8 2.75 17.36 8.7 1.7 8.7 14 31 123  

25 93 94 70 2.75 17.36 2.7 10.2 2.7 1 6 480  

26 91 105 79 2.75 17.36 2.3 10.8 2.3 1 8 521  

27 41 72 33 2.75 17.36 9.1 4.3 9.1 19 24 223  

28 33 39 21 2.75 17.36 7.2 3.1 7.2 14 27.5 223  

29 84 80 63 2.75 17.36 4.9 9.2 4.9 4 14 425  

30 77 85 50 2.75 17.36 4.3 7.8 4.3 4 19 263  

31 53 82 55 2.75 17.36 5.3 7.2 5.3 12 30 257  

32 58 67 52 2.77 17.36 2.1 8.4 2.1 7 33 377  

33 84 79 53 2.77 17.36 2.3 9.7 2.3 5.5 13 383  

34 71 62 46 2.77 17.36 1.3 8.5 1.3 4 23 421  

35 44 57 41 2.77 17.36 5.5 5.4 5.5 12 28 249  

36 79 93 56 2.77 17.36 2.4 10.5 2.4 6 15 430  

37 48 58 28 2.77 17.36 7.3 4.1 7.3 8 40 182  

38 49 62 31 2.77 17.36 5.1 5.7 5.1 28 20 244  

39 91 89 58 2.77 17.36 3.8 8.2 3.8 1 7 453  

40 
(Puppala et al., 

2006) 
55 44 22 2.46 16.26 17.49 8.1 3.2 3 22 116  

41 
(Seda et al., 

2007) 
45 52 34 2.81 16.5 21.5 8.2 21.6 5.4 37.4 125  

42 
(Yan and Wu, 

2009) 

27 77.2 42.5 2.73 17.2 18 4.09 18 22 27.5 210  

43 33 56 26 2.69 16.5 20 3.34 20 8 40 170  

44 31 55.4 23.9 2.7 16.8 22 2.97 22 22 27.5 142  

45 
(Zheng et al., 

2009) 

47 116 75 2.66 14.9 31.4 5.68 19.1 5 50.1 125  

46 48 132 80 2.67 15 29.2 5.09 20.1 5.4 55.3 150  

47 28.2 108 61 2.64 18 19.9 4.91 17.6 24 35.4 150  

48 
(Lin and 

Cerato, 2011) 

51 59 27 2.68 16.2 26.2 2.3 0.9 8 40 75  

49 62 54 34 2.78 16.7 20.6 5.7 2.3 2 37 141  

50 50 70 49 2.77 15.5 24.2 9.3 3.7 33 17 230  

51 

(Al-Rawas, 

1999) 

23 78 34 2.77 13.5 32 0 0 2 75 65  

52 45 71 28 2.75 11.7 40 0 0 19 24 107  

53 55 94 54 2.78 15.1 28 0.6 0.2 28 20 73  

54 48 64 40 2.77 16.6 17 0.9 0.4 14 27.5 193  

55 48 59 37 2.75 19 7 13.3 5.3 28 20 221  

56 
(Sabat and 

Nanda, 2011) 
56 60 28 2.61 16.1 21 4.78 1.9 18 26 128  

57 
(Al-Mukhtar et 

al., 2012) 
55 95 70 2.65 12.94 32 6.6 2.6 5.4 37.4 150  
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58 (Gandhi, 2013) 60 62 37 2.7 13.1 22.1 5.4 2.2 0 40 216  

59 
(Rashid et al., 

2013) 
43 55 32 2.69 15.3 22 4.5 7 2 58 85  

60 (Sabat, 2013) 60 61 30 2.67 16.7 20.7 5.2 2.1 12 28 132  

61 

(Malekzadeh 

and Bilsel, 

2014) 

52 57 29 2.56 14.68 24 4.4 1.8 8 40 200  

62 
(Radhakrishnan 

et al., 2014) 
70 85.2 52.13 2.61 15.21 24.7 20.6 8.2 2 28 295  

63 
(Reddy et al., 

2015) 

73 98 62 2.56 16.2 26 12 4.8 25 73 192  

64 72 76 46 2.6 16 25 15 6 26 72 230  

65 71 64 38 2.58 16.4 23 17 6.8 26 71 280  

66 

(Zumrawi, 

2015a) 

66 69 36 2.69 14.21 25.38 10.1 4 18 16 105  

67 56 61 31 2.76 15.22 23.4 9.5 3.8 25 19 93  

68 70 72 40 2.72 13.8 25.6 15 6 10 20 130  

69 57 68 37 2.7 14.33 24 8.7 3.5 19 24 95  

70 52 59 30 2.66 14.5 22.7 7 2.8 28 20 90  

71 62 74 39 2.7 13.2 26.7 10.5 4.2 20 18 122  

72 (Ameta et al., 

2007) 

27 100 50 2.69 16.18 16 9.9 4 7 66 104  

73 35 50 27 2.69 16.18 20 5.8 2.3 12 53 61.3  

74 

(Dang et al., 

2016; Hasan et 

al., 2016) 

65 86 49 2.64 12.65 36.5 9.8 30.8 18.3 16 80  

75 
(Shalabi et al., 

2017) 
22.5 51.9 24 2.71 18.02 15.6 5.44 2.2 10.3 64.1 103  

76 (Zumrawi and 

Mohammed, 

2017) 

63 77 49 2.72 14.51 26.5 32.7 13 5 33 250  

77 34 54 31 2.76 15.08 20 8.5 3.4 21.8 36.3 123  

78 53 76 52 2.64 14.64 26 18.5 7.4 4.7 36 210  

79 
(Zumrawi et 

al., 2017b) 
62 63 45 2.74 13 17.45 5.5 2.2 8 30 124  

80 

(Akgün et al., 

2018) 

17 50 25 2.71 14.62 22 3.2 1.3 14 75 42  

81 22 39 12 2.69 16 23.4 0.2 22.5 5 66 18.4  

82 37 70 34 2.69 12.1 28.2 0.5 25.3 1 51 12.5  

83 48 62 31 2.67 13.1 26.05 1.8 27.4 3 32 52.1  

84 
(Lin and 

Cerato, 2014) 
51 59 27 2.8 15.9 26.2 2.3 0.9 4 33 75  

85 
(Dayioglu et 

al., 2017) 
45 57 28 2.67 17.1 17.6 4.32 1.7 0 55 230  
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86 

(Zumrawi, 

2015b) 

56 61 31 2.69 14.21 25.38 9.5 3.8 25 19 90  

87 70 72 40 2.76 15.22 23.4 15 6 10 20 130  

88 52 54 29 2.72 13.8 25.6 7 2.8 28 20 95  

89 62 70 42 2.7 14.33 24 10 4 20 18 122  

90 14 37 10 2.66 14.5 22.7 1.6 0.6 64 22 28  

91 21 45 17 2.7 13.2 26.7 4 1.6 61 18 50  

92 
(Eyo et al., 

2019) 

26 58 28 2.6 15 17 13 5.2 11 74 90  

93 30 85 48 2.65 13.9 21 17 6.8 5.4 70 102  

94 35 130 82 2.69 13.5 23 28 11.2 2.1 65 160  

95 
(Syed et al., 

2020) 
50 52 32 2.59 16.5 24.6 4.4 1.8 27 22 77  

96 
(Gupta and 

Sharma, 2016) 
43 62.7 32.3 2.29 15 22.8 4 1.6 12 28 78  

97 (Parik and 

Patra, 2020) 

35.03 50.3 26.5 2.65 15.6 21.1 3.4 1.4 2.1 62.8 43.5  

98 14.69 45.8 20.5 2.75 16 20.8 1.85 0.7 3.1 81.2 32  

99 
(Zumrawi et 

al., 2017a) 
46 57 38 2.66 14.5 22.7 4.7 1.9 3 34 55  

100 
(Chittoori et 

al., 2019) 
30 43 19 2.6 15.65 21.5 2.58 1 22 27.5 70  

101 

(Gheris and 

Hamrouni, 

2020) 

65.2 52.2 47.97 2.7 14.22 31.7 5.04 31.7 2 33 100  

102 

(Phanikumar 

and Singla, 

2016) 

60 79 53 2.73 12 22.7 21.78 8.7 14 26 152  

103 
(He et al., 

2018) 
40 76 58 2.84 13.47 31 7.1 2.8 18 26 93  

104 (Rosenbalm & 

Zapata, 2017) 

32.2 48 27 2.72 17.15 18 3.46 1.4 3 32 120  

105 48.6 65 42 2.71 16.48 19 5.32 2.1 11 34 230  

106 
(Ramesh et al., 

2012) 
40 64 37 2.75 17.3 18 14.5 5.8 18 40 135  

107 
(Basma et al., 

1998) 
20 56.8 21.9 2.7 17.5 21 8.36 8.9 14 40 182  

108 (Kumar et al., 

2020) 

58 59 31 2.68 15.89 21 5.9 30.9 12 30 202  

109 54 88 53 2.72 16.19 21 6.75 30.2 22 24 260  

110 (Ozer et al., 

2012) 

35.2 65 30 2.7 13.7 29.1 2.6 29.1 23.2 36.3 19.8  

111 35.1 68 35 2.7 12.9 23.1 7.7 23.1 21.8 36.3 51.1  
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112 35.5 67 34 2.7 12.6 32.7 5.3 32.7 22.2 34.2 57.4  

113 23.2 51 23 2.7 16.7 17 4.7 17 39.3 26.7 71.6  

114 21.8 50 23 2.7 14.9 23.2 2.6 23.2 38.5 31.8 18.8  

115 26.5 54 26 2.7 15.9 19.6 5.5 19.6 34.3 31.8 72.2  

116 (Yenes et al., 

2012) 

33.2 115 70.57 2.63 14.51 27.92 8.35 27.9 8 12.7 133  

117 33.1 100 64.35 2.63 12.55 29.76 6.09 35.9 5.4 10 83.4  

118 
(Baby et al., 

2016) 
50 60.2 28.2 2.67 15 22.8 4.3 1.7 26.7 23.2 124  

119 
(Mirzababaei et 

al., 2017) 
93.3 74 47 2.71 16.2 16.8 11.5 4.6 3.6 3.1 219  

120 

(Kaczyński & 

Grabowska-

Olszewska, 

1997) 

27.5 35 13.8 2.69 18.62 16.5 3 1.2 7 66 120  

121 43 56.5 28 2.73 19.32 23.2 13.2 5.3 15 29 131  

122 35 72 30.5 2.73 19.26 16.5 1.8 0.7 18 26 165  

123 47.5 80 47.5 2.74 20.75 17.5 2.5 1 28 20 182  

124 59 54 32 2.74 19.47 19.5 2.2 0.9 7 33 169  

125 (Azzam, 2012) 40 52 30 2.61 14.8 13 30 13 5 55 258  

126 
(Carraro et al., 

2010) 
35 42 26 2.64 16.3 18.6 1.6 19.4 18 72 96  

127 (Yazdandoust 

& Yasrobi, 

2010) 

30 65 41 2.59 12.72 34.4 11 4.4 24 46 65  

128 53 71 48 2.59 11.95 36.9 16.4 6.5 28 19 84.4  

129 73 96 67 2.59 11.1 31 22 8.8 21 6 137  

130 (Trouzine et 

al., 2012) 

55.3 45 22 2.55 15.25 20 4.6 1.8 16 17.6 67  

131 61.2 133 83 2.61 11.5 20 15.9 6.3 20 18.8 148  

132 

(Rashid, 2015) 

23 53 24 2.69 15.1 16.5 4.3 16.5 2 75 64  

133 23 51 28 2.69 16.1 23.2 6 23.2 2 75 95  

134 23 58 28 2.69 15.4 17.2 5.4 17.2 2 75 86  

135 23 51 25 2.69 16.2 16.5 5.7 16.5 2 75 102  

136 24 51 26 2.67 16.3 17.5 6.9 17.5 2 74 107  

137 24 50 26 2.67 17.9 19.5 7.6 19.5 2 74 134  

138 24 54 27 2.67 16.2 14.5 6.5 14.5 2 74 95  

139 20 42 22 2.67 16.5 18 6.6 18 2 74 93  

140 20 51 24 2.67 14.8 16 4.2 16 2 74 43  

141 20 51 28 2.67 16.1 20.5 6.8 20.5 2 74 102  

142 20 56 28 2.67 14.9 10.5 5.4 10.5 2 74 68  

143 20 54 26 2.67 16.3 17.5 6.7 17.5 2 74 105  

144 22 51 23 2.67 16 18.3 5.2 18.3 2 74 90  

145 21 42 21 2.65 16.8 11.4 5.8 11.4 1 78 98  

146 22 50 25 2.65 15.5 17.9 5.8 17.9 1 78 76  

147 22 42 21 2.65 16.5 18.6 5.4 18.6 1 78 86  

148 22 58 28 2.65 16.4 15 7.5 15 1 78 100  
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149 22 55 27 2.65 14.5 18.2 3.9 18.2 1 78 62  

150 22 52 25 2.65 14.6 15 4.9 15 1 78 55  

151 22 56 28 2.65 16.1 18 6.6 18 1 78 105  

152 21 52 26 2.65 16.2 22.7 6.7 22.7 1 78 91  

153 25 55 28 2.7 14.9 10.1 4.7 10.1 1 74 71  

154 21 46 23 2.7 16.2 18 5.5 18 1 74 83  

155 21 37 21 2.7 16.8 22.3 6.7 22.3 1 74 94  

156 21 50 21 2.7 16.8 11.5 6.5 11.5 1 74 105  

157 42 50 25 2.7 15.6 25.3 5 25.3 1 74 81  

158 42 50 23 2.7 15.2 22.1 4.2 22.1 1 74 67  

159 42 51 24 2.7 15.1 16.5 5.1 16.5 1 74 60  

160 (Mujtaba et al., 

2018) 

23 55 30 2.65 18.3 15 7.6 11 11 74 154  

161 22 40 20 2.62 17.9 13.5 5 9.7 11 74 128  

162 
(She et al., 

2020) 
60.4 63 38.06 2.7 18 16.2 19 7.6 3.9 35.7 183  

163 
(Mumtaz et al., 

2020) 
60 56 31 2.74 18.3 14 6 2.4 3 37 180  

164 
(Khennouf & 

Baheddi, 2020) 
71 72.3 43.08 2.74 17.5 14.1 5.4 14.1 4.5 24.5 190  

165 

(Pedarla et al., 

2019) 

22 55 37 2.69 16.33 19 8.8 3.5 34.3 31.8 183  

166 25 63 42 2.69 16.49 19 12 4.8 7 66 194  

167 20 46 26 2.66 16.93 19 6.2 2.5 11 65 88.3  

168 11 24 12 2.61 14.62 27 9.1 3.6 13 75 158  

 

 

  



43 

3.3 Data Division and Pre-Processing 

After generating the basic mathematical equations for Ps utilising MEP modelling, the goal 

was to avoid utilising correlations & achieve a greater degree of accuracy. The specific soil 

parameters used to calculate Ps may be found in Tables 3.1 given previously (Supporting 

Material). As previously stated, the input variables were the grain size distribution, 

Atterberg limits, compaction characteristics & expansivity (i.e., Gs, MDD, CF, PI, OMC, 

Wn, SP, Sand, and Silt). Based on a recent literature analysis (Akan & Keskin, 2019; 

Berrah et al., 2020; Elbadry, 2017; Kumar et al., 2017; Mawlood & Hummadi, 2020; 

Saputra & Putra, 2020; Soleimani et al., 2018), the most critical elements influencing the 

behaviour of expansive soil swelling were identified. 

Table 3.2 shows the description of statistical distribution for whole set of parameters 

addressed here. It provides information on the typical geotechnical indices of expansive 

soils that influence their swell properties. The Ps of the expanding soil are seen to vary 

from 12.5 to 521 KPa. These values (as shown in Table 3.2) are advised to be utilised while 

calculating the Ps utilising the proposed AI model in this work. The effectiveness of 

generated model is heavily influenced by the distribution of datapoints (Gandomi & Roke, 

2015).  Furthermore, the accuracy of prediction of the AI model for a certain prediction aim 

is mostly influenced by the data feature, data size, and the inherent link between input and 

output variables (Maeda, 2018). 
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Table 3.2   Statistical description of the entire dataset  

 

Previous research has shown that combining too many inputs with very low correlation 

with the desired output has a detrimental impact on model performance and increases its 

complexity (Abunama et al., 2019; Javed et al., 2020). The term "complex" refers to a 

transitory period resulting from a reversal, an adventure, or their combination. The 

computational complexity of a certain problem refers to the computing difficulty in 

evaluating a certain problem (Papadimitriou, 2020b). The greater the number of various 

classes within a surface, space, or spatial object, the greater its spatial complexity, which 

may be described as the degree of complexity required to reduce the structure of a two-

dimensional or higher-dimensional item (Papadimitriou, 2020a). As a result, the necessity 

of geographic data complexity for processing & maintaining huge soil data sets is critical, 

because the more spatially complex an area is, the more time consuming and precise the 

environmental management plan will be (Papadimitriou, 2009) Finally, nine parameters 
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were chosen as predictors of the dependent variables for the MEP model construction based 

on the evidence presented (Ps). The Ps is clearly controlled by all factors, notably CF, OMC 

& PI. Following the acquisition of data points, it is common practice to divide the available 

data into three subsets like training, testing, and validation (Iqbal et al., 2020; Maeda, 

2018). The dataset was divided into 3 sets using python’s library sklearn. 

3.4 Modelling Parameters 

As previously stated, numerous MEP fitting parameters must be established before 

modelling in order to construct an efficient and generalised model. The input parameters 

are chosen using earlier recommendations and a trial-and-error method (Mousavi et al., 

2010). The population size determines the number of programmes that will emerge in the 

population. A model having large population would be complicated, highly accurate, and 

may take long time period to converge. Moreover, once the size of the model is raised 

above a certain limit, the issue of overfitting of the model may develop. The procedure 

began by assuming a total of ten subpopulations.  

Table 3.3   Fitting Parameters for our model 
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Table 3.3 shows the parameters that were chosen for the two models produced in the 

study. For the sake of simplicity in the final expressions, the function set considers the four 

basic mathematical operators i.e subtraction, addition, multiplication, and division. The 

number of generations specifies the level of accuracy that the algorithm should reach before 

being terminated. A run with high number of generations would result in a model with the 

fewest statistical errors. Similarly, the rate of crossover and mutation is a measure of the 

likelihood of the off springs undergoing these genetic processes. The cross over rate ranges 

between 50% and 95%. Several combinations of these parameters were tested on the data, 

and the optimum combination was chosen based on the model's overall performance 

qualities, as shown in Table 3.3. Overfitting of the data is one of the challenges with AI-

based modelling. A model works well on the original data, but its efficiency suffers 

dramatically when applied to previously unseen data. To prevent this problem, it has been 

suggested that the trained model be tested on an unknown or testing dataset (Pyo et al., 

2020; Qiu et al., 2020). As a result, the whole database was randomly partitioned into 

training, validation, and testing sets. While modelling, the training and validation data were 

processed. The validated model is next evaluated on the third dataset, which was not 

utilised during model building. It was assured that data distribution is consistent across all 

three datasets. In the current study, 70%, 15%, and 15% of the data were used for training, 

validation, and testing, respectively as shown in fig 3.1. The resulting models outperformed 

the competition on all three datasets. MEPX 2021.05.18.0 a commercially available 

computer tool, was used to implement the MEP algorithm. 
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Figure 3. 1 Division of dataset 

The algorithm begins by producing a population of viable solutions. The process is 

iterative, with each generation bringing us closer to a solution. Within the solution 

population, the fitness of each generation is evaluated. The MEP algorithm evolves until 

there is no change in the pre-specified fitness function, i.e., R or root mean squared 

error (RMSE). The objective function (OF) is also assessed for each trained model in this 

study to assess overall efficiency since it takes into account the effects of R, RMSE, and 

the number of data points. If the model findings for the three datasets (training, validation, 

and testing) are not correct, the procedure is repeated by gradually increasing the number 

and size of subpopulations. The final model is then chosen based on the lowest OF. 

However, it was discovered that the performance of certain models on the training set was 

superior to the testing set, indicating that the model was over-fitted, which should be 

avoided. It should be mentioned that the evolutionary period of the number of generations 

has an effect on the correctness of the produced model. A model would continue to evolve 
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endlessly with these types of algorithms owing to the introduction of additional variables 

into the system. However, in the current work, the model was halted either after 500 

generations or when the change in fitness function was less than 0.1 percent. Furthermore, 

an ideal model should fulfil many performance indicators, as explained in the following 

discussion. 

The models' effectiveness is assessed by estimating numerous statistical error metrics. 

R, RMSE, mean absolute error (MAE), relative root mean square error (RRMSE), relative 

squared error (RSE), and performance index (ρ) are among them. Another approach to 

prevent model overfitting is to choose the optimal model by minimising the objective 

function OF, as recommended by (Azim et al., 2020; Gandomi & Roke, 2015). This method 

was used in the current investigation, and the OF is known as the fitness function. These 

statistical measures have the following expressions: Eqs. (I) – (VII). 
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Where ei, mi, ei, and mi represent the ith experimental, predicted, mean experimental, 

and mean predicted values, respectively, and n represents the total number of data points 

utilized for modelling. 

A high R value and minimal statistical errors imply that the model is accurate. R has 

been proposed by researchers to assess linear dependence between input and output 

(Nguyen et al., 2019), and a value greater than 0.8 denotes a high relationship between 

predicted and experimental values (Gandomi, Alavi, Mirzahosseini, et al., 2011). However, 

 

Fitness Functions for model evaluation 

Eq I 

Eq II 

Eq III 

Eq IV 

Eq V 
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because it is insensitive to multiplication or division of output with a constant, it cannot be 

used alone as a measure of overall model efficiency. The average magnitude of the 

mistakes is quantified by the RMSE and MAE. However, each metric has its own 

relevance. Errors are squared before to estimating the average in RMSE, so larger errors 

are given more weight. A high RMSE score shows that the number of predictions with 

large errors is significantly larger than desired and should be reduced. MAE, on the other 

hand, gives minimal weight to significant errors and is always less than RMSE. Similarly, 

Despotovic et al. (2016) proposed that a model is excellent if the RRMSE value is between 

0 and 0.10, and good if the value is between 0.11 and 0.20. The values of ρ and OF range 

from 0 to infinity. If the value of ρ and OF is < 0.2, the model is regarded satisfactory 

(Gandomi & Roke, 2015). It should be noted that OF considers three elements at the same 

time: R, RRMSE, and the relative fraction of data in separate sets, namely training and 

testing. As a result, a low score signifies higher overall performance of a specific model. 

As previously stated, numerous trial runs were undertaken, and the model with the lowest 

OF is presented in this study. 

A high R value and minimal statistical errors imply that the model is accurate. R has 

been proposed by researchers to assess linear dependency between input and output 

(Nguyen et al., 2019), and a value larger than 0.8 denotes a high relationship between 

anticipated and experimental values (Gandomi, Alavi, Mirzahosseini, et al., 2011; 

Gandomi, Alavi, & Yun, 2011). However, because it is insensitive to multiplication or 

division of output with a constant, it cannot be used alone as a measure of overall model 

efficiency. The average size of the errors is quantified by the RMSE & MAE. Both 

parameters, however, have their own significance. Mistakes are squared before to 
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estimating the average in RMSE, thus greater errors are given more weight. A high RMSE 

score shows that the number of predictions with large errors is significantly larger than 

expected and should be reduced. MAE, on the other hand, gives minimal weight to 

significant mistakes and is always smaller than RMSE. Similarly, Despotovic et al. (2016) 

proposed that a model is excellent if the RRMSE value is between 0 & 0.10, and good if 

the value is between 0.11 & 0.20. The values of and OF range from 0 to infinity. If the 

value of p and OF is 0.2, the model is regarded satisfactory (Gandomi & Roke, 2015). It 

should be mentioned that OF considers three elements at the same time, namely R, 

RRMSE, and the relative percentage of data in separate sets, namely training and testing. 

As a result, a low number signifies a model's greater overall performance. As previously 

stated, numerous trial runs were carried out, and the model with the lowest OF is given in 

this study. 
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CHAPTER 4 

ANALYSIS AND RESULTS 

4.1 Formulation of the Empirical Equations 

The output given by the Multi Expression Programming model has been decoded to get the 

empirical equation for the swell pressure of expansive soils. The equation thus derived is 

given below in (Equation-a). 

𝑃𝑠 =  2 ∗ (𝐴 + 𝑆𝑃) − (𝑂𝑀𝐶 + exp(𝐵)) − 𝐴 − ((𝐵 ∗ 𝑀𝐷𝐷) + 𝑂𝑀𝐶) +  (𝑀𝐷𝐷 ∗ 𝑠𝑞𝑟𝑡(𝑃𝐼 +

𝐶𝐹 + tan(𝑃𝐼 + 𝐶𝐹)))– tan((2 ∗ B ∗ 𝑀𝐷𝐷) + 𝑠𝑖𝑙𝑡)

Where, 

𝐴 =
𝑃𝐼 + 𝐶𝐹 + tan(𝑃𝐼 + 𝐶𝐹)

𝑂𝑀𝐶 + exp(sin(𝑀𝐷𝐷))

B = sin(𝑀𝐷𝐷) 

4.2 Evaluation Through Scatter Plots 

The experimental and the predicted results are compared using scatter plots shown in the 

figures below. It can be seen from the scatter plots that the model is well fitted across all 

the three sets i.e., training, validation and testing. The slopes are as follows. 

• Training:  y = 0.9039x

• Validation:  y = 0.9174x

• Testing:  y = 0.9806x
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The fact that the model is well fitted and that the model possesses a strong correlation 

between the experimental and the predicted values is evident by the slopes of the regression 

lines given above. It can be seen that the slopes are very close to 1 and thus approaching 

the condition of the ideal fit i.e., a slope of 1:1 between the experimental and the predicted 

values. The scatter plots for the individual sets and also for all the three sets combined has 

been shown below (Fig. 4.1-4.4) for better visualization.  

Further it can be seen that the residual values of all the sets are close to the best fitted 

line and are following a general trend in terms of the residuals which is also another 

indication of a good and generalized model.  

We can also see from the combined scatter plot that the residual values of all the sets 

are almost equally spread out in the plot which means that all the three sets taken were 

statistically consistent which is a basic requirement of creating a good model and for the 

ideal training of the model and has been met in our research. 

As Fig 4.1 shows the Comparison of actual and predicted results for training test data. 

A graph with the independent variable on the horizontal axis and the dependent variable 

on the vertical axis is made & comparison has been conducted. 
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Figure 4.1   Scatter Graph for Training Set 

In the following Fig 4.2, the Comparison of actual and predicted results for validation 

data has done. It was 15% of our total dataset for this model. 

 

Figure 4.2   Scatter Graph for Validation Set 

Now in Fig 4.3, Comparison of actual and predicted results for validation data has done. 

It was also 15% of our total dataset for this model. 
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Figure 4.3   Scatter Graph for Testing Set 

Now combing all previous divisions of data set, combined scatter plot is made showing 

all data points for training, validation & testing data as shown in Fig 4.4 

 

Figure 4.4   Scatter Graph for Combined Results 

4.3 Evaluation Through Series Plot 

The experimental and the predicted values are plotted on the series plot to have further a 

visualization of the model. Following is the series plot. 
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Figure 4.5   Series Plot Actual vs. Predicted 

It can be clearly seen that the actual and the predicted values are very close together and 

the predictive capability of our model is very efficient, in Fig 4.5.  

4.4 Evaluation Through Fitness Functions 

Table 4.1   Statistical Evaluation Metrics 

Data RMSE MAE RSE R2 R P OF 

TRAINING 35.85713 24.944 0.16269 0.8629 0.928924 0.132391 

0.110731 VALIDATION 32.47242 25.54723 0.217598 0.8415 0.917333 0.131484 

TESTING 34.94825 27.3584 0.136267 0.8644 0.929731 0.126839 

 

Fitness functions (as mentioned in Table 4.1) are the statistical metrics that define the 

goodness of fit of any model. They include. 

• Gain or reward functions 

• Loss functions 

• Performance indicators 
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For the evaluation of models, it is necessary that the models are evaluated on the bases 

of all three kinds of metrics i.e., loss functions, reward functions and the performance 

indicators. Lower the loss function value and greater the gain function value the better is 

the model. Apart from this the evaluation based on the performance indicators is done 

according to the set standard limits of the literature. All this has been done step wise in the 

coming sections. 

4.4.1 Based on Gain functions 

The two most common gain functions used for the evaluation of predictive models are. 

4.4.1.1 Coefficient of Correlation (R) 

This quantifies the linear dependence between the inputs and the outputs. (Nguyen et al., 

2019) A Pearson coefficient of correlation greater than 0.8 means a strong correlation 

between predicted and experimental values.(Gandomi, Alavi, & Yun, 2011; Gandomi & 

Roke, 2015) As shown in the statistical evaluation metrics Table 4.1, the “R”s value of our 

model is greater than 0.8 and goes above 0.9 which shows that the model has an excellent 

correlation between the predicted and the experimental values. However, this is not the 

only metric to be considered since it assumes linear relationships between the quantities 

and thus it must be used in combination with other metrics.  

4.4.1.2  Coefficient of Determination (R squared) 

Another metric used is the coefficient of determination or R squared. This metric shows 

the ratio between the difference of the squared residuals of the best fitted line and the 

squared residuals of the mean line to the squared residuals of the mean line. This gives us 

an indication of how well our model is fitted on the data w.r.t. the mean line. Its value 
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ranges from 0 to 1 and the closer it is to one the better fitted is the model. The value above 

0.8 is considered a very good coefficient of determination. The values obtained for our 

model are. 

• R training:  0.863 

• R validation:  0.8415 

• R testing:  0.864 

This value is a very big improvement to the model since the previous model developed 

using Gene Expression Programming had low values of R squared i.e., 0.81 for training 

and 0.78 for testing. This shows the robustness of MEP over GEP. Moreover, it must be 

noted that the values of R squared for training and testing of our MEP model unlike the 

previous GEP model are almost equal with a difference of only 0.001 which shows that the 

model is very generalized and performs equally well on unknown (external) data. This in 

turn means that the problem of overfitting has been dealt with properly. This is a great 

improvement of the MEP model over the previous GEP model. 

4.4.2 Based on Loss functions 

The loss functions used for the evaluation of the model are. 

4.4.2.1 Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Root 

Squared Error (RSE) 

The value of RMSE, MAE and RSE of our model for all three datasets are low and very 

close for all the sets which is an indicator of high accuracy and generalization capacity. 

This is also shown by the histogram given below (in Fig 4.6). The histogram shows that 
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the frequency of small errors is more than the larger errors and the larger errors are very 

few from among the residuals which shows the reliability of the model. Moreover it  

 

Figure 4.6   Graph for Histogram 

4.4.3 Based on Performance Indicators 

Two performance indicators have been used to analyse the model i.e. 

• Performance coefficient 

• Objective function 

4.4.3.1 Based On Performance Coefficient 

The value of performance coefficient shows the reliability of the model and it takes into 

account both the Relative root mean squared error and the coefficient of correlation thus 

giving us a comparison to get an idea of how much the model is reliable. The value of 

performance coefficient ranges from 0 to infinity and a model with a value lesser than 0.2 
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is considered a good one.(Gandomi & Roke, 2015) Our model’s values of performance 

coefficient are significantly lesser than 2 thus our model is a very good and reliable one. 

4.4.3.2 Based On Objective Function 

Objective function is another performance indicator and the speciality of the objective 

function is that rather than taking into account each dataset separately it takes the whole 

database and gives us a visualization of the performance by taking into account relative 

root mean squared error (RRMSE) and the correlation coefficient along with the relative 

percentage of the training and the testing datasets. This gives the overall performance of 

the model. 

A good model has the value of objective function lesser than 0.2.(Gandomi & Roke, 

2015) our objective function value is significantly lower than 0.2 i.e. 0.11 thus this value 

validates our overall model performance rather than the performance of each set. The value 

lesser than 0.2 tells that the issue of overfitting of the model has been eliminated 

effectively. 

4.5 Parametric Analysis 

Parametric analysis of the model was carried out to check the sensitivity of the input 

parameters with the output. The graphs through Fig 4.7 - Fig 4.12 shows the trend between 

the inputs and the outputs. The parametric analysis of the model was created by taking the 

mean of all the parameter inputs and then keeping all the inputs equal to the mean and 

except one input at a time and then drawing the graphs between the obtained output versus 

the inputs. The resulting graphs are given below from Fig 4.7 - Fig 4.12. the trends shown 
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by the graphs ID in accordance with the intuitive relation that the inputs have with the 

outputs. 

As shown in Fig 4.7 CF was having almost linear relation with Sell pressure of soil. 

 

Figure 4.7   Graph for Variation in Ps with change in CF 

As shown in following Fig 4.8 relation of PI is given with Sell pressure of soil. A quadratic 

function or a parabolic curve can be seen. Quadratic relation is also given with PI on X-

Axis.  
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Figure 4.8   Graph for Variation in Ps with change in PI 

As shown in following Fig 4.9 relation of MDD is given with Sell pressure of soil. In 

equation of Ps the parameter B is a sinusoidal function of MDD i.e., B=Sin (MDD) that 

can be observed in graph  

 

 

 

 

 

Figure 4.9   Graph for Variation in Ps with change in MDD 
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In the following Fig 4.10 relation of PI is given with OMC of soil. A cubic 3rd degree 

function can be seen, with equation given.  

Figure 4.10   Graph for Variation in Ps with change in OMC 

As shown in Fig 4.11 SP was having almost linear relation with Swell potential of 

soil. Greater the potential of swell in the soil, greater will be the swell pressure exerted by 

soil. 
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y = -0.0131x + 127.67
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Figure 4.11   Graph for Variation in Ps with change in SP 

As shown in Fig 4.12 Ps is having linear relation with Silt percentage in the soil. 

Figure 4.12   Graph for Variation in Ps with change in Silt    
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4.6 Sensitivity Analysis 

Sensitivity analysis was carried out for the model and the relative contribution of each input 

variable that the model has incorporated has been formulated the results of the sensitivity 

analysis are as follows in Table 4.2. 

Table 4.2   Sensitivity percentages of the input variables 

Parameters 
Percent 

sensitivity 

CF 14.59 

PI 27.59 

MDD 12.59 

OMC 28.27 

SP 10.40 

Silt 6.55 

Total percentage 100.00 

 

 

Figure 4.13   Relative contribution of the input parameters (results of sensitivity analysis) 
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This Graph (Fig 4.13) shows the Results of sensitivity analysis, in form of Relative 

contribution of the input parameters. The results in the increasing order of the contribution 

of each input parameter is in the order of OMC (28.27) > PI (27.59) > CF (14.59) > MDD 

(12.59) > SP (10.40) > Silt (6.55). 

Model with output of Ps and the relative contribution of CF parameter is given in this Fig 

4.14 following an accuracy of 0.95. 

 

Figure 4.14   Relative contribution of CF on Ps 

As shown in following Fig 4.15 sensitivity analysis of PI is given with Sell pressure of soil. 

For this relative contribution value of R is 0.9. 
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Figure 4.15   Relative contribution of PI on Ps 

As shown in following Fig 4.16 sensitivity analysis of MDD is given with Sell pressure of 

soil. For this relative contribution value of R is 0.96. This analysis is created to understand 

the impact range of variables on outcome Ps. 
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Figure 4.16   Relative contribution of MDD on Ps 

Analysis are done to understand the impact of a range of variables on a given outcome. 

Figure 4.17   Relative contribution of OMC on Ps 
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As shown in following Fig 4.18 sensitivity analysis of Swell potential is given with Sell 

pressure of soil. This analysis is created to understand the impact range of variables on 

outcome Ps. For this relative contribution value of R is 1 that shows strong impact.  

Figure 4.18   Relative contribution of SP on Ps 

In upcoming Fig 4.19 it shows relative contribution of silt on output Swell pressure of 

soil. For this relative contribution less value of R shows less weak impact.  
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Figure 4.14   Relative contribution of Silt on Ps 

These analysis were carried out for the model and the relative contribution of each input 

variable that the model has incorporated has been formulated the results of the sensitivity 

analysis & used as an indicator. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The type of artificial intelligence (AI) technique which we used to determine the swell 

pressure (Ps) of environmentally vulnerable expansive soils is Multi expression 

programming (MEP). Two databases were created based on an exhaustive review of 145 

globally published research publications, with 168 values for Ps. 

When the influence of input factors on the swell pressure (Ps) was investigated, it was 

determined that the Ps fluctuates linearly and increases with MDD, CF, SP, and PI but 

decreases with OMC and Gs.  

Formulated models consist of MEP predict the Ps with great accuracy and without any 

previous assumptions. Additionally, MEP's prediction of swell pressure features is superior 

to those of ANN. The MEP technique simplifies the derivation of the swell characteristics 

while maintaining a reasonable degree of agreement between simulated and experimental 

data. This demonstrates the versatility of the MEP technique, since it handles both linear 

and nonlinear data. 

Numerous stages, including data processing and division, model simplification, 

sensitivity analysis, and a parametric investigation, are necessary to avoid over-fitting the 

respective model generated using MEP and have been covered in length in the work. 

According to the sensitivity analysis, the increasing order of input significance for Ps was 
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as follows: OMC (28.27) > PI (27.59) > CF (14.59) > MDD (12.59) > SP (10.40) > silt 

(6.55). 

Additionally, a parametric analysis was conducted, and the resulting trends were found 

to be consistent with previous research findings. 

All models are usually evaluated using RMSE, NSE, MAE, RSE, R, RRMSE & In 

general, the comparison results indicate that MEP is effective and dependable strategies 

for Ps prediction. 

The mathematical equations obtained through MEP are significantly easy and clear 

than those suggested by ANN and ANFIS. On the other hand, the later strategies have the 

disadvantages of data overfitting, neural network limitations, and network structural 

confusion. It is advised that the created MEP model be used in normal design practise. 

Additionally, the innovative MEP technique evaluates relevant linkages between portrayed 

physical processes and does not require prior solution, which distinguishes it from others. 

It should be noted that the suggested mathematical expressions from the MEP methodology 

may usually be estimated within the data range of input parameters utilised for formulation. 

As more data points become available, these mathematical equations based on MEP may 

be improved to find the swell pressure across a bigger range. 

The existing models may be used successfully for future applications to estimate the 

expansive soil swell pressure (Ps) utilising basic geotechnical indicators that are efficient, 

timesaving, economically viable and dependable in dealing with sensitive expansive clay 

problems. Consequently, it can lead to the sustainable building of structures sitting on or 
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in expansive soils, resulting in less energy utilization and lower construction costs, i.e., the 

sustainable use of environmental resources. 

The swell pressure is modelled by utilizing the distinguishing features of innovative 

artificial intelligence technique i.e., MEP. The empirical formulations provided are based 

on experimental data from the literature. The generated models produce findings that are 

in good agreement with the experimental results and function similarly well on unseen 

data. The created models' accuracy and dependability were evaluated using several 

performance indicators such as RMSE, RSE, R, MAE, and RRMSE. Furthermore, the 

evaluation of OF and ρ revealed that the constructed models are highly generalizable, and 

the issue of overfitting has been properly handled. The R value is 0.863 for training, 0.8415 

for validation and 0.864 for testing. 

5.2 Recommendations 

Finally, based on the present research findings, this is vital to note that AI approaches are 

pretty strong and useful instruments for solving issues with complicated processes, notably 

in geo-environmental engineering. Simple mathematical formulas can be intelligently 

generalised to previously unknown facts. Furthermore, it is recommended that the results 

of this study be validated with more recent data, and that other AI methods be studied, such 

as Support vector machines (SVMs), Ensemble Random Forest (RF) regression, and 

Gradient boosted (GB) trees, among others. Majority of soft computing approaches 

continue to face criticism due to fundamental flaws such as model interpretability, 

knowledge extraction, and model uncertainty. For good understanding of the learning 
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process, extra emphasis must be made to gaining previous information about the hidden 

physical process by engineering judgement along with strong basics of applied statistics. 

_ _ _ 
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