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Abstract 

The plasminogen activator (PA) system is an extracellular proteolytic enzyme system 

linked with various physiological and pathophysiological processes. A previous 

literature shows evidence to support that urokinase-type plasminogen activator (uPA) 

plays a significant role in tumour progression and metastasis. The components of the 

uPA system show altered expression patterns in several common malignancies, which 

have identified them as satisfactory diagnostic, prognostic, and therapeutic targets to 

reduce cancer-associated morbidity and mortality. Proof of uPA inhibition by the seven 

test ligands have been provided in previous research. However, the binding site and 

features involved in inhibition of uPA are unknown. Hence it is conducive to design 

specific inhibitors for the active binding site as an effort to cease the spread further. 

Fitting computational techniques are used for achieving set objectives. Structure based 

and ligand based computational techniques and quantum mechanical technique such as 

Density Functional Theory (DFT) are applied for the characterisation of binding energy 

and to observe interactions between novel boronic acid derivatives and urokinase-type 

plasminogen activator. Molecular Operating Environment (MOE) and Gold softwares 

were used for Molecular Docking simulations and generated results were compared to 

those of the previous study. The focus was to determine residues of uPA which are 

involved in high affinity binding to these seven inhibitors. MOE was used for designing 

pharmacophore model that highlights the descriptors that play important role in high 

affinity binding of the most promising ligand to receptor protein. Quantum mechanical 

studies were applied to the test ligand with most favourable binding interactions with 

the receptor protein, the ligand-protein complex as well as the receptor protein as it is 

equally important to perform calculations on each structure. Results presented here 

combine experimental and theoretical works for crafting uPA inhibitors in cancer 

treatment through a better understanding of the binding interaction of uPA and its 

inhibitors. Ligand SR3 was chosen as most suitable inhibitor among seven compounds 

based on docking results obtained through MOE and GOLD with score -3.2481 

kcal/mol and 46.4523 kcal/mol respectively. These seven ligands were used for 

generating pharmacophore model through random selection with genetic algorithm by 
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MOE having sensitivity of 79% towards the test set, specificity of 78% towards test set 

and 51% calculated Mathews coefficient correlation. The ready model can be verified 

for liability through experimental methods. In Computational Quantum mechanical 

studies hybrid functional B3LYP in conjunction with basis set LANL2DZ of Density 

Functional Theory (DFT) on the extracted model of uPA binding site with ligand SR3 

were applied based upon the electron density of uPA to find the binding energy of 

active ligand. A -2 charge is present on ASP189 of the binding cavity throughout the 

DFT simulations. From the computational analysis Geometric optimization (opt) gave 

values of 53.9 and single point energy (SPE) as -66.3 with self-consistent reaction field 

(SCRF) with calculated value of -49.0. Hence it is concluded that SR3 shows better 

binding with uPA binding pocket and there is a negative two charge on it ASP189 

amino acid residue in the binding pocket.  
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1 Introduction 

1.1 Cancer 

Cancer is a broad expression disease that is caused due to cellular modifications resulting 

in abnormal growth and cell proliferation. About 14 million people around the globe are 

diagnosed with cancer. Cancer has a mortality rate of millions per year and remain the most 

fatal of killers among all diseases [1].  Many efforts are being put in coming up with 

advanced and innovative diagnostic tests and treatment options [2]. Cancer metastasis is 

the start of last stages of tumorigenesis; it is the dissemination of diseased cells from the 

site of origin through detachment, followed by the movement towards other sites for 

invasion by blood vessels or lymphatic vessels. In these far-flung sites, these diseased cells 

settle for further growth and spread [3]. To understand metastasis, it is essential to 

understand the events occurring behind it at the molecular level, which will eventually lead 

to effective treatment of cancer at later stages.  

Although the survival rate of cancer patients has improved considerably owing to a great 

deal of research and work being done in this field for early diagnosis. Nonetheless, the 

morbidity rate is still high, especially if the cancer has metastasised, stage 4 cancer is 

responsible for about 90% of cancer deaths.  

Cancer metastasis is an outcome of a cascade of interdependent stages taking place in the 

tumour micro-environment as described in Figure1.1 which comprise of the following 

steps: 

 The detachment of primary tumour cells from the original site. 

 Circulation through lymphatic/blood vessels to distant organs. 

 Cancer cells, after reaching the distant organ adhere to basement membrane or 

capillary endothelial cells, invading the surrounding tissues, which would 

consequently lead to the degradation of extracellular matrix (ECM).  

 These steps are followed by extravasation of the diseased cell to gain access to 

lymphatic/blood vessels. 

 Proliferation within the distant organ is the last step to metastatic invasion [4]. 
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Figure 1.1 Presentation of steps involved in a metastatic cascade [3] 

The role of the tumour microenvironment (cancer-associated fibroblasts (CAFs), immune 

and inflammatory cell, genes involved in blood and lymphatic vascular networks, 

extracellular matrix structure and growth factors) and its involvement in cancer progression 

and invasion is well understood. Hence, tumour microenvironment and the components 

involved in metastatic processes are considered as potential targets for the prevention and 

inhibition of metastasis[5]. 

The active components of urokinase-type plasminogen activator (uPA) indicated to take 

part in cancer progression are being targeted for development and preparation of potential 

drugs from inhibitors providing promising outcomes through wet-lab experiments and 

reviewing computational results of binding interactions with the receptor along with its 

pharmacokinetic properties. These proteins belong to the vast family of proteins labelled 

as serine proteases. 

1.2 Serine proteases 

Serine proteases cover the most substantial portion of known proteolytic enzymes present 

in nature, having 800 deposited structures in Protein Data Bank (PDB) out of which one 

third being thrombin and trypsin [6]. These functionally diverse enzymes are present in 

every cellular life form, including numerous viral genomes [7]. The widespread family of 
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proteolytic enzymes receive considerable attention from researches because of their crucial 

role in the control of a variety of biological processes such as DNA replication and 

transcription, wound healing, blood coagulation, stem cell mobilisation, cell proliferation, 

tissue remodelling, neurogenesis and apoptosis. Any type of shift in the proteolytic 

processes may lead to adverse pathological disorders including inflammatory and 

cardiovascular diseases, neurodegenerative disorders and cancer [8]. One of the systems 

showcasing its role is the urokinase-type plasminogen activation receptor (uPAR) system. 

1.3 Urokinase-type plasminogen activator receptor system (uPAR) 

The plasminogen activator (PA) system is an extracellular proteolytic enzyme system 

associated with various physiological and pathophysiological processes. A large body of 

evidence support that among the various components of the PA system, urokinase-type 

plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 

and -2 (PAI-1 and PAI-2) play a major role in tumour progression and metastasis  [4], [9]–

[12].  

The binding of uPA with uPAR is instrumental for the activation of plasminogen to 

plasmin, which in turn initiates a proteolytic cascade to degrade the components of the 

extracellular matrix (ECM), and thereby, cause tumour cell migration from the primary site 

of origin to a distant secondary organ [13]. The inactive pro-uPA circulating in plasma and 

extravascular fluids binds to glycophosphatidylinositol (GPI) anchored urokinase receptor 

(uPAR) attached to the cell membrane, hence converting the zymogen plasminogen to 

active plasmin which would successively activate the pro-matrix metalloproteases (MMP). 

Plasmin and active MMPs stimulate the breakdown of the ECM PAI-1, PAI-2 are 

endogenous inhibitors against plasminogen [9]. The urokinase-type plasminogen 

activation system is known to have a hand in various processes of cancer such as 

angiogenesis, cell invasion and metastasis, inflammation etc. [14].  Figure 1.2 in the 

following text describes the activation of zymogen pro-uPA into uPA as it binds to its 

endogenous GPI anchored receptor uPAR. Activated uPA allows the activation of plasmin 

from its inactive state plasminogen that is involved in the degradation of ECM and 

activation of the MMPs.        
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Figure 1.2 Urokinase-type plasminogen activation system in action 

Plasminogen plasmin system is known to have a vital role in the diseased cell progression 

known as metastasis during cancer along with poor prognosis, that makes it conducive to 

design specific inhibitors for the active binding site as an effort to cease the spread further. 

Table 1.1 provides the data showcasing the biological effects expressed by each component 

of the uPAR system according to different cancer model systems in which they are linked. 



Introduction  

5 

 

Table 1.1 Many of the pathological effects, arising by shifts in the function of uPAR system components, 

on cancerous cell progression are listed in the specified table [3]. 

 

 

Cancer type 
Components of 

uPAR  
Observed biological effects 

Oesophageal uPA Increased metastasis 

Oral PAI-1 Promotion of initial stages of oncogenesis 

Gastric uPA, uPAR Poor prognosis, increased angiogenesis 

Colorectal PAI-1, uPAR Poor prognosis, increased motility 

Rectal uPAR Poor prognosis 

Pancreatic uPA, uPAR 
Poor survival, Tumour growth and metastasis, rapid 

progression 

Small cell lung uPAR Improved survival 

Mesothelioma uPAR Tumour promotion 

Osteosarcoma uPA, uPAR Tumour growth and metastasis 

Chondrosarcoma uPA, tPA, PAI-1 Aggressive cancer, Metastasis 

Melanoma PAI-2 Inhibition of apoptosis 

Breast uPA, PAI-1 
Poor survival, metastasis and advanced tumour, poor 

prognosis 

Endometrial uPAR Aggressive cancer 

Cervical uPA Poor prognosis 

Ovarian uPA Metastasis 

Prostate PAI-1, uPA, uPAR  Inhibition of tumour, angiogenesis, and metastasis 

Renal uPA, uPAR, PAI-1 Tumour progression 

Glioma uPA, uPAR Poor survival, Tumour growth and angiogenesis 

Pheochromocytoma uPAR Mitogenic 

Leukaemia uPAR Increased invasiveness, aggressive cancer 
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1.4 Boronic Acid 

Boron is an abundant and low toxic compound which facilitates its use in a variety of fields 

such as organic chemistry, biological sciences, material sciences and medicine. Boron is a 

metalloid present next to carbon on the periodic table has a symbol B and an atomic number 

5. The electronic structure of boron allows it to exhibit diverse chemical features presenting 

some similarity and differences with that of carbon. These characteristic traits make it 

important in medicinal applications [15].  

Boron has been considered as one of the most valuable elements in the nature since the mid 

of 19th century, mainly due to its vacant p orbital due to which it can have a reversible 

covalent interaction with heteroatoms like oxygen and nitrogen. Due to this chemical 

property, it is being used as a target for nucleophilic residues in diseased proteins, thus 

allowing it to be a remarkable medium for manufacturing value-added products. 

Regardless of accessibility, natural products lack the carbon-boron (C-B) bonds. One might 

think of its uselessness due to this feature; however, its low toxicity marks it treasured in 

synthetic chemistry and drug discovery. This attribute makes boron a potential candidate 

in drug discovery [16]. 

Boronic acids are derived by the sequential hydrolysis of a borane as portrayed in Figure 

1.3 [17]. The first step is the conversion of borane to borinic acid, which has one of the 

three carbon groups replaced by a hydroxide group. Borinic acid being more stable than 

the precursor is liable to the second hydrolysis that leads to the formation of boronic acid, 

which is a boron centred chemical structure having two hydroxyls and one R group, 

respectively. It is being used in various synthetic reactions such as Suzuki–Miyaura 

coupling (C–C bonds) and hydroboration (C–H, C–OH bonds) and several drug discovery 

studies i.e. in medicinal chemistry [18].  
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Figure 1.3 Borinic and boronic acids are organoboron species derived from borane [17].  

Boronic acids might also be derived through other methods, some of them being metal-

halogen exchange reactions, trans-metalation and coupling of di-boronyl species with aryl 

halides. The boronic acids show higher stability than both the predecessors which on 

oxidation would give boric acid as a resultant that is used in many household items such 

as glue, eye drops, saline solution, liquid starch, insecticides and many laundry detergents. 

When boronic acids are in their neutral state, they have a central boron displaying trigonal 

planar sp2 hybridized geometry with an alkyl or aryl group and two hydroxyl groups 

attached, resulting in six valence electrons around boron, an exception to the octet rule 

[19]. 

1.4.1 Derivatives of Boronic acid as protease inhibitors 

Boronic acids do not exist in nature; rather these abiotic compounds are a result of two-

fold oxidation of their natural occurring precursors like boric acid, synthetically [22]. 

Boronic acids have valence electrons that can  form can form off-target toxicity as they 

would react with endogenous nucleophiles; therefore the outcomes are in the form of below 

standard pharmacokinetics. Many studies from the literature suggest boron-based warheads 

with stabilised functionality along with reduced toxicity for example in the form of 

aromatic boron-based heterocycles, their ester derivatives, 6‑ Substituted hexamethylene 

amiloride (HMA) derivatives and their multipurpose conjugates which are beneficent 

therapeutically [23][24][25]. The carbon group directly attached to the boron atom 

determines its properties and chemical reactivity (Figure 1.3).  

For the benefit of understanding, we classify the boronic acids according to their respective 

functional groups such as   

 Alkyl-boronic acids, 



Introduction  

8 

 Alkenyl-boronic acids, 

 Alkynyl-boronic acids, 

 Aryl-boronic acids [22].  

Bortezomib and Ixazomib are Boronic-acid based proteasome inhibitor, Food and Drug 

Administration (FDA) approved drugs, which are being used for fighting cancer [20]. They 

can be considered as a template for understanding the pharmacokinetics and role of 

Boronic-acid ligands in the process.   

1.5 Computational techniques applied 

In today’s modern world of powerful tools, the structure-activity relationship (SAR) of 

potential drug-like compounds is being studied using advance chemistry methods together 

with molecular modelling [21]. Researchers search into pharmacodynamics as well as 

pharmacokinetics of a drug like compounds while putting the computational techniques to 

use [22]. During potential drug development, it is of benefit to have vital structural 

information about the drug target. Over 100,000 three-dimensional protein structures, 

nucleic acids, and complex assemblies are available owing it to bio-molecular spectroscopy 

techniques. There is an excellent advancement in structural and molecular biology as a 

result of progression in these techniques such as nuclear magnetic resonance (NMR) and 

X-ray crystallography providing resolution of many protein structures [23]. Powerful and 

highly developed computational tools in the field of drug design have been designed for 

sorting, managing, and examining the accessible data. In the light of provided information, 

fitting silico and experimental techniques are incorporated for better understanding of the 

complex characteristics of intermolecular recognition [24]. To achieve the mentioned 

goals, two beneficial practical approaches in drug discovery are  

 Structure-based drug design (SBDD) [25]  

 Ligand-based drug design (LBDD) [26] 

In modern pharmaceutical chemistry, structure-based drug design (SBDD) is the primary 

approach which employs available information on existing three-dimensional structures of 

the target in crafting novel drug-like compounds. Some widely applied strategies are 
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structure-based virtual screening (SBVS), molecular docking and molecular dynamics 

(MD). These techniques are operated in a broad range of applications such as calculation 

of binding free energy, binding conformational changes and noncovalent molecular 

interactions. On the other hand, ligand-based drug design (LBDD) techniques use libraries 

that comprise a unique and diverse biochemical data of small-molecules that are well-

known for binding with their specific targets in virtual screening, sequence similarity 

searching, pharmacophore models and quantitative structure-activity relation (QSAR) [25]. 

The mentioned techniques, however, lack studying the electron-based properties for which 

quantum mechanical (QM) methods such as density functional theory(DFT) are developed 

that efficiently describes the drug-receptor microenvironment at a realistic cost. 

Molecular docking simulation, pharmacophore modeling and density functional theory 

calculations are being applied to infer the binding interactions between the ligands and 

target protein based on residues involved in binding along with their binding energies. 

1.5.1 Structure based drug design (SBDD)  

1.5.1.1 Docking 

Molecular docking approach is used in modern drug design for approximating binding free 

energy of a ligand-protein complex along with conformational poses generated by a ligand 

within the binding pocket of a target protein. Diverse computer programs and algorithms 

are available for performing molecular docking. However,one must be familiar with the 

advantages and disadvantages of each algorithm which would pave the way in the 

progression of efficient procedure that would ultimately lead to relevant results [25]. 

1.5.2 Ligand based drug design (LBDD) 

1.5.2.1 Pharmacophore modelling 

Ehrlich in the 19th century first defined the term “pharmacophore” as “a molecular 

framework that carries the essential features responsible for a drug’s biological activity”. 

From here, it can be concluded that a pharmacophore model points towards the essential 

features a potential drug like compound primarily possess. The model would be a depiction 
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of the significant features such as electron acceptors and donors, the position of the 

compound in a binding cavity along with its direction [27]. After that, Schueler, laid the 

foundation for modern pharmacophore; its beginning and our apprehension. The 

International Union of Pure and Applied Chemistry (IUPAC) later defined pharmacophore 

as, “the ensemble of steric and electronic features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological target structure and to trigger (or 

to block) its biological response”. Commercial, as well as free computer programs are 

available for building a pharmacophoric pattern based on the 3D alignment of ligands. 

Some examples of such programs are MOE, LigandScout, Corina and medchemstudio 

[28]. 

1.5.3 Quantum mechanical methods (QM) 

1.5.3.1 Ab initio QM 

Ab initio quantum mechanics being implemented since the past three decades has become 

an unavoidable technique in quantum chemistry while working on complex polyatomic 

and molecular systems especially in fields such as biology and materials science and 

engineering. Everything revolves around finding an appropriate solution for the 

Schrödinger equation if information such as the total number of electrons along with an 

assortment of points where the atomic nuclei are lying in a molecular system, its electron 

density and energy along with additional properties being defined with the help of “model 

chemistry” that are precise, unambiguous mechanical approximations. In 1998, John Pople 

and Walter Kohn were awarded the Nobel prize for their portion of work on the ab initio 

molecular orbital theory and density functional theories that were based on the concept laid 

by Schrödinger and Paul Dirac in the year 1926 who were awarded the Nobel prize in 1933. 

The solution for Schrödinger equation for a system with more than hundred atoms 

modernised the theoretical chemistry in finding solutions with great accuracy by applying 

refined codes and effectual algorithms in varied disciplines [29]. Using computational ab 

initio techniques for large proteins regarded in aqueous solutions is expensive due to which 

its application is limited. Therefore, as alternative small selected parts of the whole system 

are treated by the ab initio quantum mechanics. In contrast, the rest of the system can be 

analysed relatively by molecular mechanics (MM) methods or implicit solvation methods. 
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The integration of the quantum mechanical methods with the additional models obtained 

from the MM and the self-consistent reaction fields (SCRF) methodologies have become 

an illustrious element of the theoretical armament which allows the user to construct 

accurate models of the large intricate molecular structures [30]. 

1.5.3.2 Density Functional Theory  

In the present day, a lot of tools and methods have been realised making computer-aided 

drug design better than before. One of those methods is density functional theory (DFT) 

that is agreeably crucial for the drug design development. Ab-initio DFT approach has 

established an innovative "computational microscope" that gives a detailed insight to the 

biologically pertinent molecules and compounds thus providing a model closest to the 

novel structure [31] at an affordable computational cost relative to the other techniques 

which makes it a vastly applied method in computer-aided drug designing [30], [32], [33]. 

This technique is regularly exploited in a wide variety of fields that are far-off from the 

quantum mechanics such as mineralogy, classical fluids, superconductivity, electronic 

band structures in solid-state physics, magnetic properties of alloys and to our concern the 

binding energy of molecules in computational chemistry are being calculated by using DFT 

processes [34]. While molecular mechanics (MM) methods have been magnificently 

employed conventionally throughout computer-aided drug design and development but 

still these techniques have been failing at some points when applied to understand the 

electron arrangement and its properties in the molecular microenvironment of the drug-

receptor binding. This dilemma has a solution by choosing the quantum mechanical 

techniques. However, these computations are often too exhaustive, which makes it an 

unsatisfactory choice for medicinal chemists. Nevertheless, in the past five years, this 

quantum mechanical method has been applied to pharmaceutical complications which have 

proved to be a diligent and efficient method. Molecular mechanics treat atoms as charged 

expandable balls connected with a spring and essentially deals with the nuclei while in 

quantum mechanics the properties of electrons are the centre of attention.  In QM the wave 

function (Ψ) holds the complete information about a system under investigation. The 

Schrödinger equation (H Ψ = E Ψ, where Ψ is the wave function) is the highlight of the 

QM. If the wave function for a system is identified or known, then it is possible to find out 
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the physical properties of the structures under study. The molecular orbital quantum 

mechanics simulations deliver rough solution for large drug like molecules wave function. 

The wave function (Ψ) for a drug like polyatomic molecular system is the product for one-

electron wave functions (ɸi). ɸ is the three-dimensional empirical function that is used for 

the properties and energy of each individual electron in a drug like molecule. The 

unidentified molecular orbitals of the drug molecule can be denoted by generating the 

linear combination with the help of the already known atomic orbital functions (χi) [33].  

1.5.3.3 Semi-empirical methods  

Semi-empirical quantum mechanical methods are the computations of much larger systems 

that cannot be computed by using the ab initio approaches or the DFT, another method 

mentioned above, i.e. the molecular dynamics simulations are also appropriate for more 

extensive system if the computational expense is in accordance with the correctness. 

However, even if they can are applied to the larger molecular bodies, they do come with a 

limitation being less truthful exclusive of the situation where the procedure is being applied 

to a specific property with the associated parameters being assigned [30]. Being conscious 

of the situation where Schrödinger equation is unsolvable for systems with many atoms 

hence there came a need of designing semi-empirical ab initio DFT techniques for the 

estimation of the quantum mechanical resolutions to the complication. Although, the QM 

simulations are the rigorous models but are the most expensive and time consuming ones 

as well, hence being put in practice for minute systems with not many atoms [35]. 

1.6 Problem statement 

Since Plasminogen Plasmin system has a key role in spreading cancerous cells to other 

parts and organs of the body during cancer and contribute to poor prognosis that makes 

it conducive to design specific inhibitors for the active binding site as an effort to cease 

the spread further. 
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1.7 Objectives 

The direct aims of this dissertation are to achieve the objectives listed below:  

 Analyse the ligand-protein interactions of the urokinase type plasminogen activator 

(uPA) with its seven test ligands through computational technique, molecular 

docking, which would further provide an insight into the properties of the 

considered ligands.  

 To discover the crucial features significant in binding hypothesis by generating a 

pharmacophore model through computer aided drug design (CADD) to promote 

the search for active compounds in the compound library.  

 A Quantum Mechanical (QM) method known as Density Functional Theory (DFT) 

method is utilised as it gives accurate results. Also, it is cost efficient as compared 

to other costly techniques and consumes relatively less time for structure 

elucidation and studying the binding interaction between the seven test ligands and 

the binding pocket of the protein of interest. However, there exist some limitations, 

like all the other known techniques to drug design methods.   
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2 Literature Review 

The focus of this thesis is to investigate the binding interactions between seven novel 

boronic acid derivatives and its bio esters with target receptor uPA. The previous results 

obtained from in silico and in vitro studies are of utmost importance and acknowledged. 

Drug discovery and development is an exhausting and tedious task where drug demands 

are high, and the process is a hit-and-trial course. However, computational chemistry has 

made it that much acceptable and realisable by utilising sophisticated drug discovery tools 

proving to be a great help in medicinal chemistry as well as academic research purposes. 

Nevertheless, pursuit for selecting potential drug candidates i.e. initial hit compounds and 

analysing their multifaceted protein-ligand interactions requires high efficiency and 

precision which makes the classical empirical methods inadequate[35]. The deep-rooted 

attentiveness towards efforts to suppress tumour progression has led to designing novel 

uPA inhibitors. As an upshot of the hard work put in this field, various compounds and 

their derivatives indicated positive results such as antibodies or peptidomimetics depicting 

inhibition of metastasis and tumour growth in mice models as presented in Table 2.1 [36]–

[38] These achievements motivated researchers in hope of finding least toxic and efficient 

compounds capable of drug like properties. The plasminogen activator (PA) system 

together with its components is one of the strongest diagnostic and prognostic factors 

having level-of-evidance-1 in breast carcinoma [39]. 
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Table 2.1 Inhibitors with promising in-vivo metastatic repression in different cancer types. 

 

2.1 Role of uPA and uPAR in cancer 

There have been various studies on trying to understand the logic and mechanism of tumour 

cell progression, along with hard work done in the field of pharmaceuticals trying to 

develop fewer toxic inhibitors for halting pathogenic cell invasion and growth. Researchers 

are now confident about the direct relation of uPA levels with the tumour cell migration 

and invasion [12], [13], [44]–[46] while the overexpression of uPA system components is 

directly linked to poor survival and recovery rates [47]. The literary texts presented by 

several researchers are in alignment with the hypothesis mentioned above, therefore draws 

quite a lot of attention towards the uPA system [48]. uPA does not possess a 

transmembrane domain due to which it is dependent upon its indigenous receptor and other 

components such as vitronectin, for cell signalling and Extra cellular matrix (ECM) 

degradation. Such interactions are accounted for enabling the role of uPA in tumour 

Related Cancer Treatment/ Inhibitors Outcome Reference 

Breast cancer 

Amidino phenylalanine-type 

uPA inhibitor (WX-UK1) 

 

Suppresses metastasis in rat breast 

cancer with reduced primary 

tumour growth 

[37] 

Lung cancer 
Amidine-based, peptide-

derived inhibitor 

Suppresses metastasis in 

fibrosarcoma model in mice 
[40] 

Transgenic 

mammary cancer 

Hybridised uPA-deficient 

mice 
Suppresses metastasis [41] 

Colon cancer 
Antisense inhibition of 

uPAR 
Suppresses invasiveness [42] 

Human 

melanoma, 

prostate cancer 

Antisense oligonucleotides 

for uPAR 

Inhibition of metastasis in human 

melanoma and bone metastasis in 

mice 

[43] 
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progression and angiogenesis by different studies in the literature. Due to the linkage of 

uPA-uPAR, there is an accumulation of the cell surface receptor uPAR promoting 

interaction with vitronectin which further exacerbate ECM degradation along with 

promotion of tumour cell migration to distal organs, angiogenesis and invasion [49]. 

Cells in living organisms are held together by a three dimensional network known as 

extracellular matrix (ECM) composed of proteins, glycoprotein and enzymes which 

provide systematic sustenance to the cells and regulates cell performance by determining 

cell movement, propagation, and differentiation [50]. During normal processes such as 

regeneration of lacerations, organ homeostasis and wound healing the ECM undergoes 

remodelling process which includes degradation and assembly. If any of these courses 

become abnormal, they play a major role in lethal diseased conditions.  

An example is the stiffening of the stromal cell in tumors [51]. Kandice et al. stated in 2009 

that ECM in breast cancer tissue is sturdier with high collagen cross-linking [52]. For the 

remodelling of ECM, two coherent approaches are: either by elimination of a component 

protein that is involved in building up the 3D matrix of ECM, or by tempering with the 

structure or assemblage of the ECM system by reorienting enzymes that are directly 

involved in the structuring. Proteinases present in the extracellular environment playing a 

key role in revamping or degradation of ECM are listed as follows:  

 Serine proteases e.g. plasmin and cathepsin G 

 Matrix metalloproteinases (MMPs) have four subgroups: collagenases, 

stromelysins, gelatinases and membrane type MMPs 

 Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 

 Metzincin proteinases 

The subgroups of MMPs altogether are proficient in complete breaking down ECM and 

basement membrane (BM). Among the protein degrading enzymes, a type of serine 

proteinase known as plasmin is responsible for the activation of growth factors and MMPs. 

These events assist in tumor cell metastasis and invasion, an increase in the plasmin levels 

during these processes is observed which is an outcome of overexpression of the urokinase-
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type plasminogen activator. Inferring from the recorded results and literary work, it seems 

that selecting these enzymes as target for designing a therapeutic approach in an attempt to 

prevent cancerous cell growth and mobility is an effective perception [53]. 

Cantero et al. (1997) investigated high level of expression of uPA and uPAR in pancreatic 

cancer in humans. Several test techniques were applied to evaluate over expression of uPA 

and uPAR in diseased cells and the results achieved strengthened the theory. It was 

observed that 70% of the selected specimen from pancreatic cancer exhibit six times 

elevated expression of uPA mRNA and four times elevated expression of uPAR mRNA 

through Northern blotting technique. The diseased cells also disclosed concurrent existence 

of uPA and uPAR through Immunohistochemistry (IHC) study. The spots harbouring 

invasive tumorigenic cell in some pancreatic ductal adenocarcinoma, such as the stromal 

and ductal cells and the acinar cell going under atrophy showed high immunoreactivity 

towards the labelled antibodies used in immunostaining. uPA and uPAR in surroundings 

with malignant abrasions were also prone to immunoreactivity. The test results were accord 

to the previous publications claiming the influence of uPA system components (i.e. uPA 

and uPAR) on poor patient prognosis along with their elevated co-occurrence at the protein 

level [54].  

2.2 Inhibitors developed against uPA 

Search for compounds that might halt the activity of uPA and possibly its interaction with 

its endogenous receptor (uPAR) began as soon as its involvement in angiogenesis and 

metastasis was elucidated. Numerous research articles are published discussing diverse 

groups of inhibitors designed against uPA but then again lacking in one way or another.  

Initially, peptide aldehydes were the compounds used as inhibitors to deteriorate the action 

of cellular proteases which showed successful inhibition but were considered ineffective 

due to their off-target binding with proteasomes causing toxicity later on. Apart from drug 

toxicity, it failed in bio-availability and stability [55]. However, in 2010 Julian Adams et 

al. reported another significant progress when the derivatives of these compounds (peptide 

boronates) were developed which proved to have improved potency against uPA [56]. The 
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empty p-orbital on boron is accredited for the improved potency by accepting a lone pair 

of oxygen present on the serine residue of the binding pocket [57]. As the pico-molar range 

of the potencies was observed to be short, this provided the opportunity to truncate the 

inhibitor molecule without losing the potency and maintain an effective inhibition quality 

like in case of dipeptidyl boronic acids having a phenylalanine at P2 position. As compared 

to the concise peptide boronates, the dipeptidyl aldehyde compounds require a bulky chunk 

of hydrophobic P2 residues (naphthyl alanine) for an efficient inhibition with great 

potency.  

 
Figure 2.1 Compound 15 [57]  

When analysing the compound number 15 (dipeptidyl boronic acid) given in Figure 2.1, 

the low molecular weight provides benefit over the bulky compounds that cannot fit in the 

slim binding cavity of serine proteases and has a rationalised synthesis.  The key fact that 

gives these compounds such a reputation is their high selectivity towards serine proteases 

is that the inhibitor to show interactions with residues present in the S3 and S4 binding 

subsites in enzymes such as elastase and chymotrypsin for producing maximum inhibitory 

activity which cannot be observed in the dipeptide inhibitors. Conversely, thrombin has a 

liking towards the basic residues that are residing within the P1 region of the catalytic 

region. Hence, does not show break in activity with inhibitors having leucine boronic-acid 

at the mentioned position [57].  

In 2017, Xue at el. and his colleagues presented their work showcasing the inhibition of 

uPA by a member of flavonoid known as Quercetin with IC50 value of 7μM [58]. They 
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presented the molecular function mechanism for the inhibition of uPA with flavonoid 

inhibitors for the first time. Crystal structure using X-ray crystallographic technique was 

used during the study to mould Quercetin:uPA complex in which recombinant protease 

domain exhibiting activity like the two chain uPA was used.  

 

Figure 2.2 A. Quercetin bound to the binding pocket of uPA. B. Electron density map around Quercetin 

molecule as magenta web. C. Asp189 residue depicted in stick form at the bottom of S1 binding site 

shown from side view with electrostatic potential surface. D. Top view of the binding pocket. E. 

Interacting amino acids in the S2 pocket [58]. 

It was evident from their results that quercetin did yield interaction in the binding pocket 

of uPA which can be observed in Figure 2.2 given below. 71.4% of quercetin surface area 

is involved in the binding which can be observed by the electron density map as shown in 

Figure 2.2B. Figure 2.2C and 2.2D depicts the attachment of B ring of Quercetin in the S1 

binding site while the base of S1 site is occupied by two adjacent phenolic hydroxyl groups 

(catechol) at positions B3’ and B4’ forming hydrogen bonds with the residues 

Aspartate(ASP)189, Serine(SER)190 and Glycine(GLY)219. The S2 site is occupied by 

the two hydroxyl groups that are present on the A ring of quercetin as depicted in figure 

2.2A and 2.2E. Other interactions such as hydrophobic interactions of aromatic ring with 
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Tryptophan (TRP)215 and Glutamine (GLN)192 residues of uPA as shown in Figure 2.2B 

are essential for facilitating the ligand receptor binding. Three oxygen atoms of quercetin 

located at position A and C rings are responsible for forming dipole-dipole interactions 

with Histamine (HIS)57 of the catalytic triad HIS57, ASP102 and SER195 as depicted in 

the figure 9A. It was suggested that, inhibition of uPA might be due to the direct interaction 

of quercetin with HIS57 that acts as a catalyst by eliminating a Ser195 proton [58].  

Along with the progression of finding novel inhibitors, boronic acids started to gain 

importance in drug design and can be witnessed in a number of drugs approved by FDA 

e.g. Bortezomib and Ixazomib [20]. Pharmacists want to bring to light the efficient boronic 

acid inhibitors that form reversible covalent interactions with the target protein [56]. 

Bortezomib was the first specific proteasome inhibitor in 2003 that was advanced to phase 

II clinical trials for a number of cancerous tumours along with haematological 

malignancies such as chronic lymphatic leukaemia, prostate cancer, pancreatic cancer and 

colon cancer [55]. It was reported to show quick elimination from the vascular 

compartment; however a pharmacodynamics assay revealed the capability of bortezomib 

to bind reversibly with the target (proteasome) which has dose dependent inhibition and 

controllable toxicity. Adams et al. gave evidence in 2004 supporting their results. On the 

basis of these physicochemical properties of bortezomib, an immunochemical assay is 

developed and utilised for providing accurate and sufficient dose of the compound in phase 

I studies and deduce the proteasome activity from blood or only white blood cells along 

with the antagonist drug potency values. The assay is an analytical instrument for keeping 

the dose escalation in supervision. The immunochemical assay testing in subjects 

suggested low discrepancy between inter-subject and intra-subject proteasome activity. 

They concluded that the activity of the drug was evidently dependent upon the dosage of 

the drug and a dosage of 1.96mg/m²  resulted with 80% proteasome inhibition. Rat models 

were used for further investigation, the drug was given to rats which showed even 

distribution of the drug in most of the organs by whole-body autography and immunoassay 

testing. However, the drug was not detected in the eyes, testes, or the central nervous 

system of the animal models. During further analysis with bortezomib in other animal 

model such as rodents and primates, it was observed that the activity of proteases was 
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restored after 48 to 72 hours once the treatment was discontinued [55]. Keeping the 

previous achievements in mind, it can be suggested that boronic acid and their derivative 

might prove useful in designing novel drugs.  

2.3 Cutting-edge techniques used for finding effective inhibitors for 

uPA 

Bioinformatics is comparatively a new field that is co-evolving with the two subjects: 

biology and computer science. Mathematical and computer science methods are being 

carefully put to sense to crack problems in molecular biology that involves large scale data 

sets, computations based on mathematical algorithms, and analysis research area [59]. 

There are two types of approaches in discovering and developing chemical compounds into 

drugs.  

 Structure based  

 Ligand based 

Different in silico methods for investigation of the interactions between ligand protein 

complex established on the structure and ligand-based approaches can be observed from 

different studies, some of which are mentioned below.  

2.3.1 Structure Based studies for uPA  

Emil Fischer proposed the hypothesis of “lock and key” which laid the foundation of 

structure-based drug design 100 years ago . Many inhibitors have been designed in the past 

by applying the information derived from structure/activity analysis. A three-dimensional 

structure that might be obtained by NMR spectroscopy or X-ray crystallography of the 

target protein is required in structure based studies for retrieval of the information in 

discovering and developing novel inhibitors [60]. However, if the three-dimensional 

structure is not available, we can always opt for homology modelling in the de novo design. 
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2.3.1.1 Structure of Urokinase type plasminogen activator (uPA) 

uPA belongs to a broad family of proteins known as serine protease. It is involved in tissue 

remodelling processes in multiple normal and pathological conditions [61]. For executing 

the said processes it is necessary that matrix metalloproteinases (MMP) be activated which 

would now vitiate the basement membranes and the components of the extracellular matrix. 

The zymogen pro-uPA is cleaved at the point where lysine(LYS)178-Isoleucine(ILE)179 

bond (Uniport/Swiss-Prot entry P00749) is present after binding to it specific cell surface 

receptor uPAR. This is how it is converted into a two-chained active form of uPA that 

would eventually activate the plasminogen to broad range plasmin for proteolytic activities 

[62], [63]. 

There is modularity in design of the uPA, that is in its activated form, which is composed 

of three domains being 

 Growth factor like domain 

 Kringle domain 

 Catalytic domain 

The pathway presented in Figure 2.3 mainly provides a docking region for its chief 

substrate plasminogen having very high substrate specificity.  

 
Figure 2.3 Representation of the three domains of pro-uPA and uPA. Pro-uPA is a single chain 

precursor that is cleaved at peptide bond between Leucine158-Isoleucine159. Active form of uPA has 

two-chains. 
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Gene coding for uPA is (PLUA), which during expression process is meticulously 

controlled by different mechanisms such as post-transcriptional mechanism and epigenetic 

mechanisms such as DNA methylation, modification of the histones plus regulation of the 

noncoding ribonucleic acid. There are two regions governing the PLUA transcription 

respectively: the proximal minimal promoter region rich in GC/GA content which is 

upstream of the TATA box and recognised by omnipresent transcription factors, the second 

factor being the upstream enhancer element [49]. 

More than a few elements are recognised in the 5ʹ flanking region of the transcribed region 

as regulatory factors serving the regulation of uPA expression. These mechanisms provide 

elevated chances of the disease cell progression due to the tenacious overexpression of uPA 

in a diseased condition. Keeping in mind the previous facts it has been suggested that uPA 

play an important role in cancer invasion and metastasis [54].  

2.3.1.2 Molecular docking studies for uPA 

In 2014 Sulimov et al. worked on exploring and developing new uPA inhibitors as 

antitumor drugs through molecular modelling in computer aided structure-based drug 

design [64]. The small drug like compounds can bind to the receptor protein efficiently and 

inhibit their biological activity.  Through docking with SOL program, the ligand-receptor 

binding free energy can be predicted that is associated to the inhibitory effect of the ligand. 

Ligand poses are searched within the binding cavity of receptor protein through global 

optimization of ligand-receptor potential energy in docking. The calculations are expected 

to be less time consuming in SOL if: 

 There is no degree of freedom in the receptor protein with broadened atomic 

potential with range of 0.3- 0.4 Å to be conscious of partial flexibility of atoms. 

 Docking cube is used to cover all the active site atoms.  

 Born model is used for de-solvation energy calculation through grid potentials.  

 SOLGRID program has an already calculated uniform space grid for the potentials 

of the receptor atoms that is utilised in calculating the ligand-receptor binding 

energy.  
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 When searching for ligand binding poses local energy optimization is excluded. 

 When searching for ligand binding poses bond angles and lengths are fixed. 

 The scoring function is a weighted sum of the entropy components and ligand-

receptor binding energy components such as the van der waal and coulombs 

interactions.  

An accurate and efficient docking program can differentiate between the active compounds 

and the inactive compounds against a target from a large dataset. The authentication of a 

docking program can be evaluated by checking how accurately is it placing the native 

ligand into the binding site of the receptor protein. It is important to check the correctness 

while calculating thr ligand-receptor binding free energy. The correctness of the ligand 

placement in the binding site of the target protein is evaluated based on root mean square 

deviation (RMSD) between the placement of the native ligand and the placement of the 

docked ligand orientation. If RMSD is less than 1 Å, the quality of docking model is 

classified as excellent. The model is classified as good if the RMSD is greater than 1 Å and 

less than 2 Å and it is classified as satisfactory if RMSD is greater than 2 and less than 3 

Å.   However, a docking model is evaluated as bad if the RMSD is greater than 3 Å [64]. 

In 2015, Leonardo et al. analysed the molecular docking approaches that were being 

utilised in development of bio-active molecules (drugs) and investigated the advancements 

made in the disciplines related to pharmaceutics as well as the part played in it by structural 

and ligand based techniques. Different strategies can be applied to improve the accuracy 

of molecular docking as the present scoring functions are unable to predict the absolute 

energy related to intermolecular interactions between novel bioactive compounds and their 

target receptor proteins with satisfactory accuracy [25].  

Researchers following this scheme use three-dimensional structures to gather knowledge 

and apply it to their work known as structure-based drug design (SBDD) being applied in 

medicinal chemistry these days due to their extensive use in molecular interactions and 

energetics along with induced conformational change analysis [65]. 
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The complications encountered with handling solvent effect, entropic effect and receptor 

flexibility can be minimised by planning a precise virtual screening approach that are 

cheaper, time-saving, and effective. This can be achieved by having concrete 

understanding and enough experience with basics and applied methods.  

 
Figure 2.4 Functional process chart of structure-based drug design (SBDD) 

 

Figure 2.4 depicts SBDD flowchart that involves three-dimensional molecular receptor 

structure for molecular modelling studies. These structures are used in manufacturing 

possible drug like bio-active compounds that are further explored through experiments. 

The ligand-receptor complex structures can further be utilised in designing novel 

compounds and modelling studies [25].   

2.3.2 Ligand Based studies for uPA  

Pharmacophore is considered as a three-dimensional model of the common steric and 

electrostatic features as described by Seidel et al. in 2010. The non-covalent ligand-

receptor interactions are labelled as pharmacophoric features characterised for example 

aromatic rings, hydrophobic regions, hydrogen bond donors and hydrogen bond acceptors, 

cationic and anionic groups. The position and the orientation of the selected 
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pharmacophoric features is of utmost importance. These characteristics make a good and 

efficient pharmacophoric model with immaculate predictive properties that is able to 

portray the type of functional groups along with their precise location [66].  

Mahmoud et al. in 2014 contributed in finding sophisticated pharmacophores using 

inhibitors of seven distinct sets. The chemical space of the 202 inhibitors was investigated 

for the retrieval of high-quality pharmacophore models that were ultimately analysed by 

quantitative structure-activity relationship (QSAR) based on genetic algorithm. This 

analysis provided a platform for evaluating the most favourable combination of 

physicochemical properties and pharmacophore models that can elucidate the variation 

within the pharmacological activity of the training set of inhibitors. According to the QSAR 

equation three orthogonal pharmacophoric models came out implying that there are three 

possible binding modes of interaction available at the binding site of the uPA. These 

binding modes of interaction were like the ones witnessed in the crystal structures of 

ligands in complex with uPA showing interactions with the binding site. The compounds 

available at the national cancer institute (NCI) were screened through the build 

pharmacophore models and generated QSAR equation which were further employed to in 

vitro testing. Three hits were retrieved from the list of compounds that showed better 

potencies as compared to existing traditional amiloride inhibitors against uPA. 

Pharmacophore based virtual screening incorporation with quantitative structure-activity 

relationship proved as a beneficial method for discovering novel uPA inhibitors of distinct 

nature [67]. 

Ligand based drug design techniques are acknowledged as computational tools applied in 

screening of large data sets of possible drugs like compounds. Pharmacophore modelling 

is one of the most frequently used technique applied in lead identification, lead 

optimization, selectivity profiling and compounds with possible toxic influences can be 

identified through ligand-receptor interactions and further explored. In 2015 Teresa et al. 

focused particularly on pharmacophore-based virtual screening of target hydroxysteroid 

dehydrogenases and highlighted the importance of pharmacophore modelling based on the 

achievements accomplished for this technique in various fields and suggested it to be 

utilised in future work [28]. 
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2.3.3 Quantum mechanical studies for uPA 

For drug designing of novel medications it is essential that there is molecular 

complementarity between the ligand and the binding site of the receptor protein through 

noncovalent bonds for example hydrogen bonds, hydrophobic forces, van der Waals forces, 

π–π interactions, and/or electrostatic effects. Consequently, in rational drug design the 

information on the target protein is utilised in producing novel medications[33]. In the 

following exemplary work presented by Christian et al. in 2018, the energy of interaction 

between the target protein urokinase type plasminogen activator and three different 

inhibitors was calculated through quantum mechanics-based Density Functional Theory 

(DFT) calculations. Three different ligands (PDB ID: 1SQA, 1SQO, and 1FV9)[68] in 

complex with the target protein were used in crystallographic arrangement for the quantum 

biochemistry calculations. The interaction energies calculated for the ligands are given in 

Table 2.2.  

Table 2.2 The calculated interaction energies for the three ligands UI1, UI2 and 172 with urokinase type    

plasminogen activator are in agreement with the theoretical results that are -107.3 kcal/mol, -99.4 

kcal/mol and -35.3 kcal/mol respectively. 

Ligand Binding energy 

2-amino- 5-hydroxybenzimidazole (172) -35.30 

UI1 -107.30 

UI2 -99.5 

The generated results concur with the known experimental values. The ligands UI1 and 

UI2 showed binding interactions with uPA at binding energy level lower than -4.0kcal/mol 

for the following residues: ASP189, SER190, cysteine(CYS)191, glutamine(GLN)192, 

CYS220, TRP215, GLY216, and GLY219. However, ligand 712 showed important 

binding interactions with ASP189, CYS191, SER190 and CYS220 amino acid residues of 

the binding pocket. The distance of radius from ligand was chosen as 10 Å so that the 

residues showing interactions in theoretical results are examined. The mentioned work 

inspires the use of quantum biochemistry for the progression and development of new 

medications for malignancies as these theoretical approaches open the doors to 

comprehend the binding mechanism of the receptor protein uPA.  
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Furthermore, good correlation has been recognised between amino acid residues involved 

in uPA binding interactions and the significant features of ligand. For ligand UI1 the 

significant amino acid residues showing interactions with uPA are ASP189, CYS191-

CYS220, GLN192, GLY219, SER190, GLY216, ASP60A, and TRP215 arranged in 

descending sequence according to interaction energy values lower than -4.0 kcal/mol 

paying a role in total energy. For ligand UI2, the amino acid residues sequence according 

to decreasing energy values is CYS191-CYS220, GlLY219, ASP189, GLN192, GLY216, 

SER190, SER146, and TRP215. For compound 172, ASP189, CYS191-CYS220, and 

SER190 are depicted as the most significant residues in their decreasing order based on 

energy values. From the obtained results, ASP189 is a significant residue of uPA and the 

functional group interacting with this residue has a strong effect on the total binding energy 

depending upon its protonation state. According to the outcomes, it is stipulated that the 

naphthamidine scaffold is the key factor in ligands UI1 and UI2 contributing about -48.01 

kcal/mol and -62.37 kcal/mol to the total binding energy and is a crucial feature in the 

effectiveness of the drug like compounds. The aminopyrimidine scaffold contributes about 

-41.88 for UI1 and -37.03 kcal/mol for UI2, respectively. The ligand UI1 has a p-amino 

phenyl amide moiety substituted at 6 position due to which a decrease in the binding energy 

is observed and contributes about -17.50 kcal/mol. While this substitution at position 6 

cannot be observed in ligand UI2 and has a naphthamidine scaffold at position 6 that 

accepts electrons from the naphthyl ring hence decreasing its electron density. It is 

concluded from the above study that improved models can be designed by the 

amalgamation of the theoretical methods with experimental systems which are more 

efficient and accurate in designing highly effective inhibitors for uPA [69]. 
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3 Methodology 

Urokinase type plasminogen activator (uPA) is well known to have a role in cancer 

metastasis whose binding pocket is unidentified and not reported. For designing efficient 

sophisticated inhibitors, identification of binding pocket along with important aminoacid 

residues showing interactions with the test ligand is essential therefore two online protein 

modelling web servers are used for defining suitable binding sites with aminoacid residues 

showing effective interactions. The binding pocket predicted was furthered applied in 

molecular docking studies for interpreting the the residues showing strong interactions with 

the test ligands with high affinity. Two softwares were used for verification of the 

generated results that are MOE and Gold. The molecular features that are crucial in the test 

ligands are inferred by building a pharmacophore model using ligands as training set and 

chemical data obtained from online data bank as test set. The binding pocket with the 

features and residues obtained from these calculations are extracted through Gaussview 

and then subjected to DFT simulations in Gaussian. 

The objectives mentioned before are accomplished one at a time by starting with the 

prediction of the specific binding site for urokinase type plasminogen activator (uPA) 

inhibitors as uPA comprises of multiple binding sites for different ligands including the 

two endogenic inhibitors that are plasminogen activator inhibitor-1 (PAI-1) and 

plasminogen activator inhibitor-2 (PAI-2). Figure 3.1 provides a flow chart that illustrates 

the techniques being employed in this research. The set objectives are accomplished in five 

steps beginning with binding pocket prediction followed by structure-based and ligand-

based techniques for finding the binding interactions between the target protein and the 

seven test ligands as illustrated in Figure 3.1. These findings were further validated by 

density functional theory calculations. 
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Figure 3.1 Work flow representing the steps followed to obtain the objectives of this study. 

3.1 Protein binding pocket prediction  

Urokinase type plasminogen activator (uPA) consists of three endogenous binding pockets 

for its endogenous receptor and two inhibitors, urokinase type plasminogen activator 

receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator 

inhibitor-2 (PAI-2) respectively. However, there is no work up to date that had confirmed 

the binding pocket for a highly potent inhibitor against uPA. 

3.1.1 Retrieval of crystal structure 

The structure selected for binding site prediction was obtained from PDB. The Protein Data 

Bank have several crystal structures for a similar protein, selecting the right one depends 
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upon the type of study it is being used in. The criteria upon which the crystal structure for 

uPA (1W10) was selected were 

 The structure is in its active form with bound ligands in solvent 

 The structure is present in its standard form and not the mutated protein 

 The reported resolution of the crystal structure is 2.00 Å, with a lower R-factor of 

0.190. 

 There are no Ramachandran outliers and a low Clash score of 4. 

3.1.2 uPA binding pocket prediction 

DoGsite scorer and RaptorX are the two non-commercial tools used for the prediction of 

the binding site for uPA. 

3.2 DoGsite Scorer 

DoGsite scorer is an online protein modelling web server that allows the prediction of 

pockets and sub pockets of the target protein by the help of support vector machines 

(SVM). A PDB code or a PDB file is provided as an input file and provides results with up 

to 88% prediction correctness. These predictions are based on the search of the physico-

chemical properties of the binding site and evaluates how potent is its binding affinity [70].  

 
Figure 3.2 Web-Server-GUI present for DoGsite scorer for the prediction of binding sites of different 

proteins 
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3.3 RaptorX 

RaptorX is a non-commercial online web portal that allows the template-based prediction 

of protein structures and functions utilising artificial neural networks. FASTA sequence of 

the protein is used as an input for the software for obtaining templates for binding site 

prediction. 

 

Figure 3.3 Main server of RaptorX for protein structure prediction. 

The predicted outcomes are sent to the provided email by the user. RaptorX predicted four 

binding pockets for the target protein with different multiplicity scores. The pocket with 

highest multiplicity score was selected as better multiplicity scores depict goodness of the 

predicted binding sites. Software PyMOL was used for visualising the amino acid residues 

occupying the predicted binding pockets. The residues were labelled as H46, D192, S193, 

C194, Q195, G196, S198, V216, S217, W218, G219, G221, C222 [71]. 

3.4 Molecular Docking 

Two software tools molecular operating environment (MOE) and genetic optimization for 

ligand (GOLD) suit were used for docking studies. Figure 3.4 given below depicts the 

workflow followed for pose analysis by docking studies using the mentioned platforms.  
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Figure 3.4 A workflow for structure based studies involving data collection and protein ligand prepared 

followed by docking, pose generation for each ligand and pose evaluation 

MOE was used for the preparation of the ligand and protein structures. These structures 

were protonated and their charges were fixed, followed by energy minimisation by utilising 

the force field AMBER99 [72].  

3.4.1 Molecular operating environment (MOE) 

MOE is utilised for investigation of the binding poses of a ligand when docked into a 

biomolecule in three dimensional orientations. MOE was used throughout to complete the 

research. As the search for conformations closest to the native pose begins, only the results 

with lowest energies are retained in the MOE database, while the rest are rejected by the 

force field being used [73]. AMBER99 force field was used for the energy minimisation 

of the target protein uPA and the seven test ligands. 
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3.4.2 Genetic optimization and ligand binding (GOLD) 

GOLD suit version 5.6.1 version was used for the prediction of the generated poses closest 

to its native binding conformation. The seven ligands under test were docked into the 

binding pocket of the target protein with PDB ID: 1W10 with resolution 2Å. X, Y and Z 

coordinated were used for the allocation of the binding site in the docking studies within 

15Å radius so that all the significant amino acid residues are encompassed within the range 

of the binding pocket. Ten poses were generated of each ligand using the GOLD scoring 

function as the accuracy rate is up to 81% in the predicted poses [74]. And the generated 

poses were analysed through MOE for selecting the most favourable conformation based 

upon the binding interaction between the ligands and the residues of the binding pocket. 

3.5 Active site extraction/Model 

Quantum mechanical studies are very costly and exhaustive, consuming much time. 

Therefore, it is recommended to withdraw the binding pocket of the biomolecule that is 

involved in binding interactions with ligand. For the extraction of binding pocket of uPA 

from within the whole biomolecule, a molecular visualisation tool Swiss-Pdb viewer was 

used. The extracted structure was further utilized for generation of model complex 

geometry. Swiss-Pdb viewer is a non-commercial molecular modelling tool that provides 

a very user-friendly interface making it easy to visualise multiple biomolecules at the same 

time. This software is developed by Nicolas Guex, Alexandre Diemand, Manuel C. Peitsch, 

& Torsten Schwede [75].  

3.6 Pharmacophore model 

A pharmacophore model is a three-dimensional illustration that embodies the standard 

electrostatic and steric features of a protein molecule that helps predict the complementary 

features responsible for binding interaction between the ligand and the target protein. These 

interactions are responsible for the expected biological response [66]. A pharmacophore 

model can  tell apart the actives from the inactive compounds on the base of the common 

electrostatic and steric features such as the hydrogen bond donors, hydrogen bond 
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acceptors, aromatic ring, hydrophilic and hydrophobic features. The selected features have 

an adjustable radius and space in angstrom (Å). 

3.7 Quantum mechanical studies/calculations 

The Quantum mechanical calculations were achieved by Density functional theory (DFT) 

method to achieve the objective of finding the binding affinity of the test ligand within the 

binding pocket of the target receptor protein uPA. However, QM studies can only be 

practised on simpler and smaller molecular structures and complexes. QM is also far 

truthful than the classical force [76]–[78] 

3.7.1 GaussView      

The input file can be generated from the GaussView graphical interface.  

3.7.2 Gaussian 09   

The DFT studies were carried out using a commercial software GAUSSIAN 09 that was 

developed by Sir John People in 1970. The results generated by Gaussian 09 can be 

observed with the help of GaussView that is also a commercial program. The input file can 

be generated from the GaussView graphical interface. Gaussian is used for calculating 

binding energies, the single point energies, SCRF and frequencies for the molecular 

complex [79]. 

3.7.2.1 Geometry Optimization/Energy Optimization  

Molecules in nature exist at their lowest energy form. Energy minimisation  helps in getting 

as close to the native structure as possible. The structures show much higher stability at 

lower energies levels. Hybrid function B3LYP is a vastly used functional sometimes used 

in combination with LANL2DZ and SDD as the basis set during the optimization  of the 

ligand-protein complex, optimization  of ligand and binding pocket without the ligand [80]. 
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3.7.3 Frequency Calculation  

Zero-point correction energies are derived by calculating the frequencies on the optimized 

geometries to indentify that there must be no imaginary frequency exist in the energy 

minimzed structure. Once the geometries were optimized  their nuclear vibrational motion 

modes can also be analysed through frequency calculations. It is important to make sure 

that there are no imaginary frequencies or negative frequencies [81].  

3.7.4 Single point Energy and Self-Consistent Reaction Field Calculation  

Stuttgart Dresdon (SDD) effective core potential  basis set was used for the calculation of 

the single point energy in both the gas phase (vacuum) and the solvent phase (water) for 

all the optimized geometries as it generates highly accurate calculations [82]. The 

electronic energy of the model complex geometry is calculated as the single point energies 

and their SCRF calculations are also taken into consideration. 

3.8 MOLDEN 

Molden is a free molecular and electronic visualisation package that can read and display 

all the GAUSSIAN output file displaying the molecular density, molecular orbitals, 

electron density and atomic density. MOLDEN can be run on Windows or the OpenGL 

versions can also be utilised for the visualisation of output files such as chemx, PDB, 

Mopac (semi empirical calculations). Reference given below provides additional 

information  
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4 Results and Discussion 

Urokinase type plasminogen activator (uPA) is recognized to have a part in dissemination 

of cancer cells and the binding pocket is unidentified for this protein and not testified. For 

crafting effectual inhibitors, identification of binding pocket along with main aminoacid 

residues showing interactions with the test ligand is necessary consequently, suitable 

binding sites are generated by two online protein modelling web servers  that are DoSite 

scorer and RaptorX. The binding pocket estimated were furthered applied in molecular 

docking studies for interpreting the the residues showing strong interactions with the test 

ligands with high affinity. Two softwares were used for verification of the generated results 

that are MOE and Gold. The key molecular features that are in the seven ligands under test 

are identified by building a pharmacophore model using ligands for building training set 

and chemical data obtained from online data bank as test set. The binding pocket with the 

features and residues obtained from these calculations are extracted through Gaussview 

and then subjected to DFT simulations in Gaussian. 

4.1 Molecular docking 

Molecular docking is used for predicting protein-ligand interactions by exploring the 

conformations generated within the binding pocket by a ligand and was performed using 

the Molecular operating environment (MOE)[73] and Gold suit [83]. The results produced 

by considering the conformational variability and dynamics are more reliable as 

experiments can justify them. Before going for docking, it is essential to know the binding 

pocket. Two different online servers are used for the prediction of a binding pocket that is 

most likely to be like the original binding pocket as described. The listed docking 

parameters and methods are used to compare the crystallised docked complex of ligand 

and protein obtained from PDB. The ligand is first removed so that it can be re-docked to 

analyse the efficacy of the parameters by looking at the orientation of Cartesian 

coordinates. The difference is measured in terms of the RMSD having a threshold of 2Å 

as observed in the literature [83].  
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4.2 Binding pocket prediction 

There is no distinguished binding site in Uniprot data shown for protein uPA.  The literary 

work [6], [58], [84] present till date points towards specific amino acid residues (ASP189, 

SER190) that show improved potency along with selectivity towards the ligands hence 

minimising the off-target toxicity. However, the seven inhibitors being used are new with 

no related work presenting the binding site for these inhibitors. For the prediction of the 

binding site, two software was used: 

 DoGsite scorer 

 RaptorX 

 

4.2.1 DoGsite scorer 

The ligand was docked in different orientations with the protein uPA using  open source 

pocket prediction software DoGsite scorer [85] and nine pockets with different amino acid 

residues and drug scores were generated.  The second predicted pocket (P_1) highlighted 

with red having amino acid residues Alanine183 (ALA183),  ALA184, ALA221, 

Arginine217 (ARG217), Aspartate189 (ASP189), ASP194, ASP223A, Cysteine191 

(CYS191), CYS220, Glutamine192 (GLN192), Glycine (GLY216), GLY219, GLY226, 

Histadine99 (HIS99), Isoleucine17 (ILE17), Leucine181 (LEU181), Lysine223 (LYS223), 

LYS224, Proline225, (PRO225), Serine146 (SER146), SER190, SER214, Threonine147 

(THR147), THR229, Tryptophan21 (TRP215), Tyrosine (TYR171), TYR172, Valine213 

(VAL213), VAL227 and drug score of 0.67 as shown on the right side of Figure 4.1 was 

suggested to be used in further studies as it presented favourable interactions with the 

ligands. 
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Figure 4.1 Results generated by DoGsite scorer showing nine possible binding pockets. 

 

The left side of Figure 4.1 shows protein uPA with all the possible binding sites in different 

colours predicted by DoGsite scorer. The right side of the Figure 4.1 represents the pockets 

with respective colours along with their volume, surface area and drug scores. Predicted 

pocket number two (P_1) coloured with purple had all the important amino acid residues 

as mentioned in the literature to show increased potency and better binding with the 

ligands. The residues present within the different predicted pockets are mentioned in Table 

4.1 given below with their calculated drug scores.  

Table 4.1 Predicted binding pockets with residues and drug scores generated by DoGsitescorer. 

Pocket 

name 
Amino Acid Residues 

Drug 

score 

P_0 

ARG35, ARG36, ARG37A, ASP60A, CYS41, CYS58, GLN19, GLY193, 

HIS237, HIS57, ILE60, PHE59, SER37, THR39, TYR40, TYR149, TYR151, 

TYR60B VAL38, VAL41  

0.55 



 Results and Discussion   

41 

 

 

The predicted binding pockets are visualised using an open source user-sponsored 3D-

molecular structure visualisation tool PyMOL which is issued by Schrödinger.The atoms 

of the receptor protein are depicted as sticks with labelled amino acid residues as shown in 

Figure 4.2. The red outlined cube encloses all the amino acid residues present with in the 

selected binding pocket (P_1). 

P_1 

ALA183, ALA184, ALA221, ARG217, ASP189, ASP194, ASP223A, 

CYS191, CYS220, GLN192, GLY216, GLY219, GLY226, HIS99, ILE17, 

LEU181, LYS223, LYS224, PRO225, SER146, SER190, SER214, THR147, 

THR229, TRP215, TYR171, TYR172, VAL213, VAL227 

0.67 

P_2 
ARG35, ASN74, ILE65, LEU73, LYS, THR147, TYR40, TYR149, TYR150, 

TYR151, VAL38  
0.5 

P_3 

ALA184, ASP185, GLN195B, GLU137, GLY133, ILE138, LEU162, 

LYS161, PHE132, PRO185A, SER135, SER164, THR177, TRP186, 

VAL160 

0.43 

P_4 

ARG166, CYS168, CYS182, GLN169, GLY173, HIS165, ILE163, LEU181, 

MET180, PHE132, SER164, SER174, THR97A, THR177, VAL176, 

VAL227  

0.49 

P_5 

ALA31, ALA32, ARG70, ARG116, GLN27, GLN119, GLY69, ILE24, 

ILE118, LEU4, PHE30, PHE141, PRO28, SER45, THR117, TRP29, TYR40, 

TYR67  

0.31 

P_6 
ARG36, ARG37A, GLU84, GLU110B, ILE65, LYS82, LYS110A, PHE82, 

SER110 
0.17 

P_7 
ARG206, ASN128, GLN204, LEU123, LEU203, PRO124, SER122, 

SER232, THR208  
0.2 

P_8 ARG239, ILE47, ILE238, SER232, THR242, TRP51  0.2 
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Figure 4.2 Binding pocket (P_1) predicted by DoGsite scorer. The amino acids contained in red square 

represent the active binding site 

Green sticks represent carbon atoms, red sticks represent oxygen atoms, blue sticks 

represent nitrogen atoms and orange sticks represent sulphur atoms in Figure 4.2. 

4.2.2 Results from RaptorX 

For the validation of results obtained by DoGSite scorer, RaptorX was used for the 

prediction of ligand binding pocket. RaptorX produced results showing 4 different binding 

sites for uPA for diverse ligands. Residues differ from each other for the generated binding 

pockets. The multiplicity, binding residues, and the top ligands for the four predicted 

binding pockets are presented in Table 4.2. The pockets are analysed based on their 

multiplicity which is one of the confidence score that indicates the goodness of the pocket 

based upon the frequency with which the pocket appeared in the template structure. The 

first predicted pocket with highest multiplicity 127 has the amino acid residues (H46, 

D192, S193, C194, Q195, G196, S198, V216, S217, W218, G219, G221, C222) was most 
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favourable for inhibition of uPA as suggested in the literature [6], [58], [84], the selected 

binding pocket are presented in Figure 4.3 

Table 4.2 Predicted binding pockets with their multiplicity, top ligands and binding residues generated 

by RaptorX 

POCKET MULTIPLICITY TOP LIGAND BINDING RESIDUES 

1 127 SO4 
H46, D192, S193, C194, Q195, G196, S198, 

V216, S217, W218, G219, G221, C222 

2 55 SO4 H95, T178, K180, M181 

3 44 CIT R21, K75, K106 

4 28 SO4 R20, H22, R23 

 

4.2.3 Analysis of generated pockets 

On comparing the results obtained from both the software it was observed that the results 

were coinciding, had common amino acid residues (Figure 4.4). Also there are certain 

amino acids which are present in predicted binding site from one software are reported that 

were mentioned in previous studies and have influence on the selectivity as well as the 

potency of the ligand.  

Figure 4.3 Selected binding pocket with multiplicity calculated as 127 generated with RaptorX. The amino 

acid residues depicted as sticks present in the pocket are labelled. 
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Figure 4.4 The common and uncommon amino acid residues in binding pockets predicted by DoGsite 

scorer and RaptorX 

Figure 4.4 shows a Venn diagram that depicts the amino acid residues selected by DoGsite 

scorer in green circle while the amino acid residues selected by RaptorX are shown in blue 

circle. The common residues are ARG217, ASP189, CYS191, CYS220, GLN192, 

GLY216, GLY219, GLY226, SER190, SER214, TRP215, VAL213, VAL227. 

After selection of the binding pocket, it was unclear how the substrate would bind to the 

binding pocket and in which orientation so that would maximise the favourable interactions 

and minimise the total energy of the ligand and protein complex. Molecular Docking 

technique followed by DFT was chosen to meet these objectives.  

4.3 Molecular Docking  

4.3.1 MOE Results 

While utilising docking technique, the amino acid residues considered important in the 

binding pocket of uPA are as following ASP189, SER190, GLY219. For every ligand 

being studied, 10 conformations were generated using scoring function as LondonDG and 

placement method as Alpha triangle. The interactions observed within the binding pocket 

were saved in the form of pictures with their binding affinity energy values given as scores 

in kcal/mol unit. As observed in the literature the more negative the binding affinity value 

the better. The seven ligands showed interactions with different amino acid residues in the 
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binding pocket of uPA with different scores. Seven ligands BC11, BC57, AB11, AB5, 

JS67, JS62 and SR3 were docked in protein of interest uPA with different scores. 

BC11 was docked in uPA with 10 generated conformations. The third generated 

conformation showed the best score -3.3591 kcal/mol along with best interactions within 

the binding pocket. One of the OH groups showed interaction with the residue ASP189, 

the Sulphur present in the ligand BC11 shows interaction with SER214 and NH₂  group 

shows interaction with HIS57 as represented in the 2D illustrations below Figure 4.5. The 

right-side image represents the 3D protein in ribbon form while the ligand is in purple ball 

and stick form.  

 

Figure 4.5 Visual representation of ligand BC11 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 

BC57 was docked in uPA with 10 generated conformations. The first conformation showed 

the best score -4.4899 kcal/mol along with best interactions within the binding pocket. The 

two OH groups showed interaction with the residues HIS57 and SER214, NH₂  group 

shows interaction with SER146 and GLN192 and NH group of the ligand showed 

interaction with ARG217 as represented in the 2D illustrations below in Figure 4.6. The 

right-side image represents the 3D visualisation with protein in ribbon form while the 

ligand is in purple ball and stick form.  
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Figure 4.6 Visual representation of ligand BC57 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 

JS62 was docked in uPA with 10 generated conformations. The first conformation showed 

the best score -5.3983 kcal/mol. Only the NH group showed interaction with ARG217 

within the binding pocket as represented in the 2D illustrations given below in Figure 4.7. 

The right-side image represents the 3D protein in ribbon form while the ligand is in the ball 

and stick form.  

 
Figure 4.7 Visual representation of ligand JS62 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

JS67 was docked in uPA with 10 generated conformations. The first conformation showed 

the best score -3.7709 kcal/mol. The Sulphur group showed interaction with the residue 
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ASP189, and the NH₂  group showed interaction with GLY219 and SER190 as represented 

in the 2D illustrations below Figure 4.8. The right-side image represents the 3D protein in 

ribbon form while the ligand is in purple ball and stick form.  

 
Figure 4.8 Visual representation of ligand JS67 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 

 SR3 was docked in uPA with 10 generated conformations. The first conformation showed 

the best score -3.2481 kcal/mol along with best interactions within the binding pocket. The 

Sulphur present in the ligand SR3 shows interaction with GLY219 and the NH₂  group 

shows interaction with ASP189 and SER190 as represented in the 2D illustrations below 

Figure 4.9. The right-side image represents the 3D protein in ribbon form while the ligand 

is in purple ball and stick form.  
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Figure 4.9 Visual representation of ligand SR3 docked in uPA binding pocket. Left image depicts the 2D 

representation of interactions. The right image depicts the 3D representation of ligand protein complex 

after docking 

AB11 was docked in uPA with 10 generated conformations. The first conformation showed 

the best score -4.8438 kcal/mol showing no favourable interactions within the binding 

pocket. The Sulphur present in the ligand AB11 shows interaction with GLY219 and 

ARG217 and the NH group also shows interaction with ARG217 as represented in the 2D 

illustrations below Figure 4.10. The right-side image represents the 3D protein in ribbon 

form while the ligand is in purple ball and stick form. 

 
Figure 4.10 Visual representation of ligand AB11 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 
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AB5/4 was docked in uPA with 10 generated conformations. The third conformation 

showed the best score -4.6038 kcal/mol. The Oxygen functional group shows interactions 

within the binding pocket with ARG217 and the Benzene ring shows interactions with 

GLY216 as represented in the 2D illustrations below Figure 4.11. The right-side image 

represents the 3D protein in ribbon form while the ligand is in purple ball and stick form.  

 
Figure 4.11 Visual representation of ligand AB5/4 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

Two compounds BC11 and SR3 were carefully chosen for further analysis for density 

functional theory studies as they showed favourable interactions within the binding pocket 

as a drug like compound reveals is action only when it binds to its receptor specific binding 

site. It was also revealed from previous wet lab studies by performing cell viability test that 

four compounds JS62, JS67, AB11 and AB5/4 caused cell death when Dictyostelium cell 

were subjected to acute and prolonged exposure with the test compounds. Although BC57 

did not cause cell death, it did not show any favourable interactions within the binding 

pocket.  

Table 4.3 provides the structures of the seven test compounds along with their scores that 

is the binding free energy (kcal/mol), electrostatic interaction energy (kcal/mol) and their 

van der wall interaction energy (kcal/mol) within the binding pocket of the protein of 

interest uPA.  
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Table 4.3Structures of the test ligands are given below in the form of ball and stick with the selected 

conformation from docking results. Binding free energy, electrostatic interaction energy and van der 

wall interaction energy is given in Kcal/mol 

 

4.3.2 GOLD Results 

Molecular docking was performed using GOLD suit to verify the results obtained from 

MOE and each pose was generated using stochastic scoring function GOLD fitness score. 

10 poses were generated for each test compound.  

BC11 was docked in uPA with 10 generated conformations. The first conformation was 

suggested as the best fit solution with score 58.3489 along with favourable interactions 

Ligand 

name 

Ligand Structure as 

depicted in MOE 

Conformation 

No. 

Binding Free 

Energy 

(Kcal/mol) 

Electrostatic 

Interaction 

Energy 

(Kcal/mol) 

Van der 

Wall 

Interaction 

Energy 

(Kcal/mol) 

BC11 

 

3 -3.3591 -92.6314 5.8779 

BC57 

 

1 -4.4899 -96.0586 4.0621 

JS62 

 

1 -5.3983 -86.0209 6.8424 

JS67 

 

1 -3.7709 -52.7372 4.4346 

SR3 

 

1 -3.2481 -86.6706 12.9146 

AB11 

 

1 -4.8438 -65.9904 4.5426 

AB5/4 

 

3 -4.6038 -71.2074 4.7132 
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within the binding pocket. The NH₂  group showed interaction with ASP189 and Lus224 

and the Sulphur atom present in the test compound BC11 showed interaction with TRP215 

as represented in the 2D illustrations below Figure 4.12. The right-side image represents 

the 3D protein in ribbon form while the ligand is in aqua stick form.  

 
Figure 4.12 Visual representation of ligand BC11 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

BC57 was docked in uPA with 10 generated conformations. The second conformation was 

suggested as the best fit solution with score 65.1328 along with favourable interactions 

within the binding pocket. The NH₂  group showed interaction with ASP189, ARG217, 

LYS224 and the Sulphur atom present in the test compound BC57 shows interaction with 

TRP215 as represented in the 2D illustrations below Figure 4.13. The right-side image 

represents the 3D protein in ribbon form while the ligand is in the aqua stick form. 
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Figure 4.13 Visual representation of ligand BC57 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 

JS62 was docked in uPA with 10 generated conformations. The first conformation was 

suggested as the best fit solution with score 47.9117 along with no favourable interactions 

within the binding pocket. The NH₂  group showed interaction with TRP215 as represented 

in the 2D illustrations on the left side in Figure 4.14 given below. The right-side image 

represents the 3D protein in ribbon form while the ligand is depicted in the aqua stick form. 

 
Figure 4.14 Visual representation of ligand JS62 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 

JS67 was docked in uPA with 10 generated conformations. The first conformation showed 

the best fit solution with score 57.0528 along with best interactions within the binding 
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pocket. The Sulphur present in the ligand JS67 shows interaction with ASP189 and 

TRP215 as represented in the 2D illustrations on the left side in Figure 4.15 given below. 

The right-side image represents the 3D protein in ribbon form while the ligand is depicted 

in aqua stick form.  

 
Figure 4.15 Visual representation of ligand JS67 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

SR3 was docked in uPA with 10 generated conformations. The fourth conformation 

showed the best fit solution with score 46.4523 along with best interactions within the 

binding pocket. The Sulphur present in the ligand SR3 shows interaction with GLY219, 

the NH group shows interactions with the GLY216 of the binding pocket and NH₂  group 

showed interactions with ASP189 of the binding pocket as represented in the 2D 

illustrations on the left side in Figure 4.16 given below. The right-side image represents 

the 3D protein in ribbon form while the ligand is depicted in aqua stick form.  
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Figure 4.16 Visual representation of ligand SR3 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

AB11 was docked in uPA with 10 generated conformations. The first conformation showed 

the best fit solution with score 53.7381. However, the test compound does not show any 

favourable interactions within the binding pocket. The OH present in the ligand AB11 

shows interaction with SER190 as represented in the 2D illustrations on the left side in 

Figure 4.17 given below. The right-side image represents the 3D protein in ribbon form 

while the ligand is depicted in aqua stick form.  

 
Figure 4.17 Visual representation of ligand AB11 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking. 
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AB5/4 was docked in uPA with 10 generated conformations. The fifth conformation 

showed the best fit solution with score 21.2873. However, the test compound does not 

show any favourable interactions within the binding pocket. The OH present in the ligand 

AB5/4 shows interaction with SER214 and Sulphur showed interactions with ArRG217 as 

represented in the 2D illustrations on the left side in Figure 4.18 given below. The right-

side image represents the 3D protein in ribbon form while the ligand is depicted in aqua 

stick form. 

 
Figure 4.18 Visual representation of ligand AB11 docked in uPA binding pocket. Left image depicts the 

2D representation of interactions. The right image depicts the 3D representation of ligand protein 

complex after docking 

Table 4.4 enlists the seven test compounds along with their structures. The conformations 

selected for further analysis are also mention along with the calculated binding free energy 

(kcal/mol) as Gscore. 
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Table 4.4 Table representing test compound structures in ball and stick figures along with their 

generated score through scoring function Gold score 

 

4.3.3 Validation and accuracy 

Two software were used to validate the accuracy of the results generated through docking. 

For each ligand docked in uPA, 10 poses were generated using scoring function LondonDG 

in combination with Alpha triangle as the placement method. The binding affinity 

calculated for the ligands BC11, BC57, JS62, JS62, SR3, AB11, AB5/4 are -3.3591, -

4.4899, -5.3983, -3.7709, -3.2481, -4.8438, -4.6038 respectively. Even though JS62, 

AB11, AB5/4 shows the highest fitness score, they are not selected for further studies as 

previous studies (Rafiq,2015) reports cell apoptosis caused by JS62, JS67, AB11 and 

AB5/4. Therefore, these ligands will not be mentioned in the quantum mechanical studies. 

Ligand name 
Ligand Structure as depicted in 

MOE 
Conformation No. 

Binding Free 

Energy 

(Kcal/mol) 

BC11 

 

1 58.3489 

BC57 

 

2 65.1328 

JS62 

 

1 47.9117 

JS67 

 

1 57.0528 

SR3 

 

4 46.4523 

AB11 

 

1 53.7381 

AB5/4 

 

5 21.28 
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The criteria for selection of promising ligand candidate is the binding conformation rather 

than the fitness score. SR3 showed binding interactions with the important amino acid 

residues ASP189, SER190 and GLY216 in the previous studies (Rehman,2018) and when 

compared to the generated results it is observed that amino acid residues ASP189, SER190 

were common.  

Additionally, the contribution of SER190 in the binding of uPA with the drug like 

molecules within the S1 binding sub-site was evaluated by Katz et al. and co-workers in 

2004 when they studied the binding of inhibitors with uPA that had a mutated side chain 

at position 190 comprising an Alanine residue instead of Serine. An 18-fold decline was 

recorded for the dropped potency for two lead compounds 5-amidinobenzimidazole and 5-

amidinoindole while a 12-fold decline for the compounds 2-amino-benzamidazole and 

aryl-guanidine was recorded by applying enzymology and a diverse crystallographic data 

set of proteases in complex with the selected inhibitors. It was concluded that the drug 

effectiveness and selectivity was highly influenced by the hydroxyl group present within 

the SER190 residue and the deficiency had a negative effect on the overall performance. 

On further experimentation, it was realised that when 6-halo group substitution was carried 

out for the compound 5-amidinoindol the selectivity was boosted up to 170-folds over the 

alanine(ALA)190 mutant designed for uPA (Ki = 14nM) and for ALA190 in tPA it showed 

an increase of 630-fold. Interestingly, fluoro-5-amidinobenzimidzole (Ki = 11nm) that is a 

lead compound showed a 1000-fold and a 100-fold upsurge in selectivity against uPA as 

compared to the rest of the proteases with residues ALA190 and SER190 individually. This 

alone highlighted the importance of SER190 residue at the position under thought in the 

effective inhibition and potency. This amplification in the selectivity can be scrutinised in 

detail on the structural basis by regarding the differences between various inhibitor-bound 

protease complexes. There resides a conserved water molecule in the binding pocket of 

uPA at S1 sub-site that is locked in place during the binding of inhibitor to the uPA in 

absence of the hydroxyl group in the mutated uPA-SER190Ala. However, integration of 

the 6-halo group dislocates this water molecule as a result permitting direct and deeper 

inhibition by forming hydrogen bond between the inhibitor and SER190 residue of the 

uPA.  
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Docking results obtained by using GOLD suit are presented in 4.2.3 in Chapter 3. For each 

of the seven ligands 10 poses were generated using fitness score GOLD to score each 

generated pose. The score calculated for the ligands BC11, BC57, JS62, JS62, SR3, AB11, 

AB5/4 are 58.3489, 65.1328, 47.9117, 57.0528, 46.4523, 53.7381 and 21.28, respectively. 

Again, the criteria for selection of a promising ligand is not the fitness score but amino acid 

residues involved in the binding interactions.  

Figure 4.19 given below, compares the amino acid residues showing binding interactions 

with uPA binding pocket through docking using two software and the previous studies for 

three ligand BC11, BC57 and SR3, respectively. It can be observed from Figure 4.5 that 

shows binding interactions of ASP189 with the hydroxyl group (OH) of the ligand BC11 

using MOE. However, Figure 4.11 shows binding interaction between ASP189 and the 

amine group (NH₂ ) of the ligand BC11 while using another software GOLD for docking 

studies. From the results presented above, it can be seen in Figure 4.6 that BC57 does not 

show commonality in binding interaction with the two important residues ASP189 and 

SER190. Hence, finally SR3 was the only ligand used for quantum mechanical studies as 

they are very time consuming and computationally expensive. 
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Figure 4.19 Green circle represents results obtained from MOE. Blue circle represents results obtained 

from GOLD. Orange circle represents results obtained from the previous studies. The three diagrams 

depict the amino acid residues for three ligands BC11, BC57 and 

4.3.4 Pharmacophore modelling 

Pharmacophore model was generated using molecular operating environment (MOE). The 

intension for building a pharmacophore model was to show a concept which explains the 

importance of different selected pharmacological features in the test compounds and not to 

optimize the inhibitory effect of these test compounds that act as inhibitors.   

4.3.5 Template selection 

For the seven test compounds against the target protein uPA, all seven are chosen as 

template for generating pharmacophore model based on their high potency and selectivity. 

The compounds were aligned by flexible alignment method and used as template for 

random selection of favourable pharmacophoric features. 
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4.3.6 Selection of test set and activity Cut-off  

263 boronic acid derived inhibitors against uPA in humans with known IC₅ ₀  values were 

selected from Binding database (BDB). Compounds with unknown IC₅ ₀  values were 

removed from the test set. Furthermore, the seven test compounds had IC₅ ₀  values lower 

than 69µM which makes them fitting for activity cut-off. The compounds in the test data 

with 69µM were considered as active compounds while the compounds above 69µM were 

considered as inactive compounds. Out of total 263 compounds, 63 lies in the active 

compounds which have IC₅ ₀  values equal to or less than 69µM and 200 compounds lies 

in the inactive compounds which have IC₅ ₀  values greater than 69µM which is the cut-

off value as stated before.     

4.3.7 Query generation  

For the target protein uPA pharmacophore queries were generated by using MOE software. 

The model was built through random selection of the different pharmacophoric features 

and removal of those descriptors that had no effect on the differentiation of active from 

inactive. The selected pharmacophoric features were revised through modifications or by 

altering the Gaussian radius so that maximum number of actives can be selected as hits by 

the generated pharmacophoric model. 



 Results and Discussion   

61 

4.3.8 Model evaluation 

 
Figure 4.20 Statistically significant (19% True positive and 59.3% True negative rate) boronic acid 

derivative inhibitors pharmacophore model obtained using docking conformations of seven inhibitors 

aligned with flexible alignment used as a template. The pharmacophore consists of four cationic 

hydrogen bond acceptors and two cationic hydrogen bond donors with one aromatic ring. 

The pharmacophore model for the seven ligand was 78% accurate suggesting that the 

generated model in this analysis is well-predicted making it efficient in distinguishing 

between active and inactive compounds which indicates it is able to classify actives as hits 

selectively. In conclusion, the model is finalised for the selected test set of 263 compounds 

(as shown in Figure 4.20) that was able to select all active compounds as hits except for 13 

active compounds. The pharmacophore model selected for screening the boronic acid 

derivative inhibitors of uPA comprises of five distinct features that are:  

 F1 Aromatic hydrophobic ring (Aro-Hyd),  

 F2 Hydrogen bond donor and metal ligator and cation hydrogen bond acceptor 

[Don&ML&(Cat|Acc)], 

 F3 Hydrogen bond donor and metal ligator and cation hydrogen bond acceptor 

[Don&ML&(Cat|Acc)], 



 Results and Discussion   

62 

 F4 Metal ligator and hydrogen bond acceptor and cation and hydrogen bond donor 

[ML&(Acc|Cat|Don)], 

 F5 Metal ligator and hydrogen bond acceptor and cation and hydrogen bond donor 

[ML&(Acc|Cat|Don)]. 

These selected pharmacophoric features have radius within the range of 1.0-2.0 Å. Table 

4.5 given below presents the distances calculated among the pharmacophoric features of 

the ligand data set. The sensitivity and specificity were also calculated for the generated 

pharmacophore model which signifies the correctness of the model. By putting the values 

within the present equations, the following solutions were generated:  

Table 4.5 Calculated distance between the features of pharmacophore model. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

 

 

 

 

Sensitivity = 79% 

The model has 79% sensitivity to distinguishing between active and inactive test 

compounds. 

Feature  F1 F2 F3 F4 F5 

Aro|Hyd F1 0 5.95 5.85 3.65 3.64 

Don&Acc2 F2 5.95 0 2.26 8.94 9.49 

Don&ML&(Cat|Acc) F3 5.85 2.26 0 9.10 9.49 

ML&(Acc|Don|Cat) F4 3.65 8.94 9.10 0 2.26 

ML&(Acc|Cat|Don) F5 3.64 9.49 9.49 2.26 0 

Sensitivity =
50

   50 +13    
 

 

Sensitivity =
50

   50 +13    
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Specificity = 78% 

The model has 78% specificity towards active compounds as hits. 

The overall calculated results provide an understanding of the ligands binding to uPA 

receptor protein by mapping the binding domains, also given the mutual distances between 

the selected pharmacophoric features that include four cationic hydrogen bond acceptors, 

two hydrogen bond donors and a hydrophobic aromatic ring. 

4.4 Quantum mechanical studies 

4.4.1 Model extraction 

The ligand protein complex of uPA with its ligand SR3 obtained as a result through docking 

using GOLD software was further utilised for quantum mechanical studies. It is not 

computationally feasible to perform Density functional studies on the complete protein as 

it is very costly and would take a lot of time in calculating results.  Therefore, the amino 

acid residues in close vicinity to the ligand (SR3) were extracted for further evaluation 

using a free protein homology modelling server Swiss-Pdb (SPDB) Viewer. For quantum 

mechanical studies, the protein ligand complex needs to be truncated and reduced to the 

level of only ligand and the amino acid residues, ASP189, GLY216, GLY219, SER190, 

SER214, HIS57, TRP215 and LYS224 in the target protein located at the binding site and 

takes part in the binding interactions. The extracted model is given below in Figure 4.21. 

Spifecicity =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

Spifecicity =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Specificity =
156

   156 +44    
 

 

Specificity =
156

   156 +44    
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Figure 4.21 Selected residues of the binding pocket of uPA with its bound ligand extracted using SPDB 

viewer. The tube represents the ligand SR3 and the ball and stick model represent the amino acid 

residues of the binding pocket. For simplicity and clear visualise 

4.4.2 Ligand-protein complex geometry optimization  

The extracted model of the binding pocket with bound ligand SR3 was passed through a 

series of clippings and modifications by trimming the amino acid residues ASP189, HIS99, 

SER214 and TRP215 at their alpha carbon (α-carbon) atom positions. To satisfy the 

valency where the cuttings were made, hydrogen atoms were added to the carbons of 

HIS99, SER214 and TRP215. Figure 4.22 given below depicts the selected binding pocket 

in complex with ligand SR3 with the needed clippings and modifications.  

The modified complex geometry of the product designed was subjected to optimization. 

The first step was hydrogen optimization where all the atoms except hydrogen were fixed. 

Once the hydrogens were optimized, this optimized geometry is then subjected to the next 

step that is geometry optimization of the model complex. During geometry optimization 

some of the atoms at the alpha carbons of amino acid residues ASP189, HIS99, SER214 

and TRP215 are fixed, throughout the quantum mechanical studies being carried out, at 
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locations where the trimmings were made so that they would stay on their positions of the 

X-ray crystal structure and retain the effect of normal protein.  

 
Figure 4.22 Proposed optimized model complex of uPA binding pocket with ligand SR3. The sticks 

represent the ligand SR3 while the ball and lines represent the amino acid residues of the binding site. 

Asterics represent the fixed carbons where the cuttings are made. 

For geometry optimization hybrid density functional method B3LYP was used  in 

combination with a basis set LANL2DZ. The optimized geometry was then further utilised 

in the calculation of the single point energies in both gas and solvent phase using 

B3LYP/LANL2DZ level of DFT.  

4.4.3 Binding pocket geometry optimization  

To understand the protein binding interaction energy, the optimized geometry of protein-

ligand complex were used. To obtain minimized energy for protein binding pocket without 

ligand, ligand structure was removed and then protein binding pocket geometry model was 

optimized using same level of DFT, B3LYP/LANL2DZ. Figure 4.23 given below depicts 

the selected binding pocket without the ligand.  
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Figure 4.23 The optimized binding pocket of uPA 

4.4.4 Ligand Geometry optimization 

For ligand model geometry optimization, ligand SR3 was extracted from X-ray crystal 

structure, PDB ID: 1W10 [86]. Figure 4.24 shows the image of optimized ligand SR3 

which was optimized using B3LYP/LANL2DZ level of DFT studies. 

 
Figure 4.24  Optimized geometry of ligand SR3 
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4.4.5 Frequency calculation for all optimized geometries 

To ensure that all the model geometries are fully optimized, frequency calculations were 

performed on the optimized ligand, protein, and protein-ligand complex using DFT method 

(B3LYP/LANL2DZ). Result shows that there is no imaginary frequency present in all three 

model geometries and hence they are the energy minimised structures. 

4.4.6 Single point energy calculation for all optimized geometries 

Single point energies were calculated on all the optimized geometries in both gas phase as 

well as in solvent phase. As biological systems are surrounded by solvents and fluids, we 

consider water as the solvent. The ligand and protein molecules acting as solute present 

within the solvent polarise in response to the solvent polarisation. And conversely the 

molecules of the solvent rearrange themselves and polarise in response to the charge 

density of the solute. This polarisation induces redistribution of charges between the solute 

and the solvent until they reach a state of self-consistency which lowers the energy of the 

whole system and stabilises it.  

Ligand Binding Affinity 

The ligand binding affinity for ligand SR3 with protein uPA was calculated using Equation 

4.1 given below 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑 .                                        (4.2) 

Where 

∆𝐺𝑏𝑖𝑛𝑑 is the ligand binding affinity 

𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is the energy of the ligand bound to the binding pocket 

𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 is the energy calculated for the binding pocket 

𝐺𝑙𝑖𝑔𝑎𝑛𝑑 is the energy calculated for optimized ligand 
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All these G values are calculated in a.m.u (atomic mass unit), therefore, to convert it to 

kcal/mol, it needs to be multiplied with 627.51. Therefore, the equation 4.1 can also be 

written as follows: 

∆𝐺𝑏𝑖𝑛𝑑 = 627.51 (𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑)                                         (4.2) 

 The computed relative energy value (Kcal/mol) for binding affinity of SR3 is presented in 

the Table 4.6 given below 

Table 4.6 Computed energies in kcal/mol for optimized geometry, Single point energy and self-consistent 

reaction field for Sr3 bound uPA binding cavity with the methods used as level of DFT 

 Relative energy (kcal/mol) Level of DFT 

OPT 53.9 B3LYP/LANL2DZ 

SPE -66.3 B3LYP/LANL2DZ// B3LYP/LANL2DZ 

SCRF -49.0 CPCM-B3LYP/LANL2DZ(p)//B3LYP/LANL2DZ 

 

The results indicate that the binding interaction between SR3 and uPA is stable/feasible as 

the relative energy is exothermic with the release of -49.0 kcal/mol energy.     
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5 Conclusion  

Knowing up to date computational quantum mechanical techniques are unable to produce 

very accurate results for the binding free energies specifically in case of ligand and proteins 

in solvent environment that mimic the real situation.  Consequently, the quantum 

mechanical techniques would be appropriate for the prediction purposes instead of the 

precise estimation of binding free energies for the ligands and proteins. The development 

of inhibitors containing moieties which can interact with different uPA sub-sites with high 

selectivity, potency, and improved pharmacokinetic properties are the main challenges at 

this stage. It is hoped that the results presented here should stimulate combining 

experimental and theoretical works for developing uPA inhibitors in cancer treatment 

through a better understanding of the binding interaction of uPA and its inhibitors. 

Structure based technique molecular docking was used to produce a protocol for validation of 

the previously present binding interactions between seven ligands (BC11, BC57, SR3, JS62, 

JS67, AB11 and AB4/5) and uPA and ligand based techniques were combined with them for 

demonstrating the importance of significant descriptors for optimum biological activity at 

receptor site by the inhibitor. Molecular docking simulations were performed to hypothesise 

the binding activity with the help two software. The results generated were analysed not only 

based on calculated score, but the residues involved in the binding as well. Ligand SR3 was 

chosen as most suitable inhibitor among seven with score -3.2481 kcal/mol with MOE and 46.4523 

kcal/mol with GOLD. SR3 showed interactions with receptor amino acid residues GLY219, 

SER190 and ASP189 with Sulphur and amino group generated by MOE and GLY219, 

GLY216, ASP189 with Sulphur, amine and amino group generated by GOLD. A 

pharmacophore model was designed because of significant descriptors. These descriptors 

can be used to search for compounds that may act as efficient inhibitors that fit the model. As 

these features are characterised as essential regarding the biological activity of inhibitors 

against uPA. 
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The biological activity was correlated with effect of 3 dimensional (3D) properties of ligands. 

It was concluded from the results of QSAR that in uPA two hydrogen bond donor groups at 

distance of 2.2 Å apart were considered a favourable for activity. There is an aromatic 

hydrophobic ring at a distance of 5.95 Å and 5.85 Å from the two hydrogen bond donor groups 

and at a distance of 3.65 Å and 3.64 Å from the two metal ligator hydrogen bond acceptor 

groups. Also, the two metal ligator hydrogen bond acceptor groups are situated at 2.2 Å apart 

from each other. The designed model shows 79% Sensitivity, 78% Specificity and 51% 

calculated MCC. This model was tested for a test set of 263 boronic acid derived inhibitors 

against uPA to predict the accountability of the model by judging how well it can differentiate 

between active and inactive compounds with a specific activity cut-off. This model can further 

be tested for liability through experimental methods. 

Computational Quantum mechanical studies were applied based upon the electron density of 

uPA to find the binding energy of active ligand against receptor uPA using hybrid functional 

B3LYP in combination with LANL2DZ of Density Functional Theory (DFT) as basis set on 

the selected model of active site of uPA. A -2 charge is present on ASP189 of the binding 

cavity throughout the simulations. From the computational analysis of the calculated values  

Geometric optimization (opt) = 53.9 

Single point energy (SPE) = -66.3 

Self-consistent reaction field (SCRF) = -49.0 

It is concluded that uPA shows better binding with ligand when there is a negative two charge 

on it ASP189 amino acid residue in the binding pocket.  
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